0970327777 A2 | I N Y00 R

=
=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
12 March 2009 (12.03.2009)

(10) International Publication Number

WO 2009/032777 A2

(51) International Patent Classification:
GOG6F 15/16 (2006.01)

(21) International Application Number:
PCT/US2008/074687

(22) International Filing Date: 28 August 2008 (28.08.2008)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

60/968,848 29 August 2007 (29.08.2007) US
(71) Applicant (for all designated States except US): NIR-
VANIX, INC. [US/US]; 525 B Street, Suite 1000, San

Diego, CA 92101 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): CHATLEY, Scott,
P. [US/US]; 11808 Westview Parkway, #155, San Diego,
CA 92126 (US). GALLAGHER, J., Gabriel [US/US];
11120 Ivy Hill Drive, San Diego, CA 92131 (US).
GATCHELL, Troy, C. [US/US]; 4163 Texas Street, San
Diego, CA 92104 (US). PHAN, Thanh, T. [US/US]; 5368
Camino Playa Malaga, San Diego, CA 92124 (US).

(74)

(81)

(34)

Agents: KIM, Richard, C. et al.; Morrison & Foerster
LLP, 12531 High Bluff Drive, Suite 100, San Diego, CA
92130-2040 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AOQ, AT, AU, AZ,BA, BB, BG, BH, BR, BW, BY, BZ, CA,
CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE,
EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID,
1L, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK,
LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW,
MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT,
RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TJ,
™™, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,
ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB,GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL,
NO, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG,
CIL, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

without international search report and to be republished
upon receipt of that report

(54) Title: METHOD AND SYSTEM FOR DETERMINING AN OPTIMALLY LOCATED STORAGE NODE IN A COMMU-

NICATIONS NETWORK

- - b i
Distributed Storage Delivery Nodes
1124~ T12R~ 1126
Stnrace 5 A ! Ciorane io & Staraoe Notde

116~ Storage Node A 11 8‘ 120~ Storage Nove B 192 194 Storage Node K 196

» ; Processing | e Processing A Processing

Processing |, , 1 e ~ ; Processing |, ,) # e e |\ Processing |, , e

Server be/{ﬂver | Server |° 7" S(‘E/m Seryer \Seg/er

Customer
Application
interface

FIG. 1

102+,
A}

Core System

Weh
Services

Firewall

(57) Abstract: A method for locating an optimum storage node for serving a data file request received via a communications net-
& work, includes: receiving a file request from a user device coupled to the communications network; determining a geocode value
based on a communications network address associated with the user device, wherein the geocode value is indicative of a geographic
location of the user device; selecting a storage node from a plurality of storage nodes coupled to the communications network to
serve the file request, wherein the storage node is selected based at least in part on the geocode value; and redirecting the file request

to the selected storage node for handling.

WO 2009/032777 PCT/US2008/074687

METHOD AND SYSTEM FOR DETERMINING AN
OPTIMALLY LOCATED STORAGE NODE IN A
COMMUNICATIONS NETWORK

Cross-Reference to Related Applications

[0001] This application claims priority to U.S. Provisional Patent Application No.
60/968,848 filed August 29, 2007, the content of which is incorporated by reference

herein in its entirety.

Field of the Invention

[0002] The present invention relates generally to data storage, and more
particularly to a method and system for storing, accessing and manipulating data in a

data communications network.

Background of the Invention

[0003] In computing, a file system can store and organize data files in order to
make the data files easier to find and access. File systems may use a data storage
device such as a hard disk or CD-ROM to maintain the physical location of computer
files. A file system may provide access to data on a file server by acting as a client for
a network protocol. In other words, file system can be a set of abstract data types that
are implemented for the storage, hierarchical organization, manipulation, navigation,

access, and retrieval of data.

[0004] A network file system is a file system that acts as a client for a remote file
access protocol, providing access to files on a server. A network file system can be
any computer file system that supports access of files over a computer network. A
network file system may be distributed over clients, servers, and storage devices
dispersed among the machines distributed in an intranet or over the internet. Service
activity occurs across the network, and instead of a single centralized data repository,

the system may have multiple and independent storage devices. In some network file

WO 2009/032777 PCT/US2008/074687

systems, servers run on dedicated machines, while in others a machine can be both a
server and a client. A network file system can be implemented as part of a distributed
operating system, or by a software layer that manages the communication between
conventional operating systems and file systems. A network file system may appear
to its users to be a conventional, centralized file system. The multiplicity and
dispersion of its servers and storage devices can be made invisible, and the client
interface used by programs should not distinguish between local and remote files. It is

up to the network file system to locate the files and to arrange for the transport of data.

[0005] A storage delivery network (SDN) may include a network file system that
is used for scalable networking applications. SDNs can be composed of one or more
storage nodes, each node containing one or more servers for storing data files and at
least one transfer server for serving files and/or media over a network. In one
embodiment, the transfer server and a storage server may be implemented by a single

SErver.

Summary of the Invention

[0006] Embodiments of the invention are directed to methods and systems for
storing, accessing, manipulating and controlling folders and/or files over the internet by
utilizing three control layers: a virtual layer, a logical layer and a physical layer. As
known in the art, a “folder” may store one or more “files” and a “file” typically, but not
necessarily, stores a predetermined amount of information, data or media content (e.g., a

single document, movie, or music/song file).

[0007] In one embodiment of the present invention, a file system is accessed,
controlled and manipulated over the internet via requests to web services (e.g., SOAP or
REST). These web services interact with one or more database servers, referred to
herein as file system database servers or “core servers,” which provide for virtualization
of the file system and mapping of a virtual layer to a logical layer, which in turn is

mapped to a physical layer.

[0008] In one embodiment, user information such as file names, path names,

metadata, etc. is stored in a virtual layer or virtual file system (VFES), which allows users

WO 2009/032777 PCT/US2008/074687

to share access to the same common physical file but assign it individual names,
locations and metadata (extended properties) within the system. During normal access
(e.g., move, copy, delete, rename, etc), the VFS increases speed of file manipulation by
eliminating the necessity of “touching” the physical file itself. Rather, the user’s
directory structure is controlled through the file system database server and the data is
stored within a series of tables. A web services layer of the system presents the accessing
user a tree-structured file system and allows the user to manipulate the system in a

familiar fashion.

[0009] In a further embodiment, access to a user’s file system is secured so that only
authorized users with the correct permissions, in accordance with each user’s account
information (e.g., Application Name/User Name) can access the directory structure and
the files within each folder. In extended circumstances, users may have the ability to
create “public shares” and grant or restrict access to shared files or folders by entities

external to the SDN, as the user sees fit.

[0010] In a further embodiment, names or references to files stored within the
VES are mapped to references stored in a logical file system (LFS). This is the layer
which allows the system to de-duplicate the common elements of user inputted files as
opposed to simple de-duplication of the file itself. Files have certain intrinsic properties
that do not change from user to user, such as embedded metadata, file size, file type.
Once a file is uploaded to the system, this information typically does not change, though
it may be overridden by the user. Information stored within the LES is intrinsic to the
file, and when a file has different information stored within it, even though the files may
appear to be identical to an end user, the virtue of the different embedded data makes
them different for purposes of de-duplication. However, as explained in further detail
below, if a user chooses to over-ride metadata (e.g., run time of a video) or other
intrinsic information contained within a file, the newly created metadata or information
is stored in a separate metadata table in the VFS and does not effect the metadata stored
in the LFS. Thus, the presence of both the VES and LFS allows de-duplication of the
common elements of a file (e.g., the actual content itself) even if a user desires to over-

ride other portions of the file such as metadata. From the perspective of the user, the file

WO 2009/032777 PCT/US2008/074687

has been customized to his or her preference. However, for storage purposes the file

itself can still be stored and referenced by a plurality of users.

[0011] Beneath the LES, lies the physical file system (PFS) where the files
actually reside. The files are stored within one or more servers within one or more nodes.
In one embodiment, the logical file system need only contain information determining
which node(s) each of the files is stored, whereas each node contains the catalog of where
each file exists on which server(s) within that node. In other words, each node
autonomously controls the placement of files within itself and the LFS simply knows that
the file exists somewhere within that node. As used herein, a “node” refers to a storage
element containing one or more storage devices for storing files therein and providing
access to files (e.g., uploading and downloading of files). In one embodiment, a node
contains one or more storage servers, a node manager server for controlling and keeping
track of where each file resides within the node, and one or more transfer servers (e.g.,

web servers) for sending or receiving files to end users.

[0012] In one embodiment, when a store, put or upload request (collectively
referred to as an “upload” request) is received by the system, the VFS determines which
user is adding the file and determines, for example, via geocode, node storage
availability, and other criteria, which node the user should upload to and redirects the
user to the proper node for upload. The user’s connection to the core server is then
severed and the connection is established with the designated node, which begins
accepting the packets of the file. When the file upload is complete, a transfer server at
the node to which the file has been uploaded, makes a request back to the VFS initiating
an entry into the user’s VFES, creating a folder path or virtual file for the user and
assigning the new entry a temporary logical file ID (LFID) so that the user can access the
newly uploaded file immediately. The transfer server then notifies the node’s internal

processing system by adding an entry into a processing queue.

[0013] The processing system then processes the file by applying a hashing
algorithm to it, e.g., the MDS5 file hashing algorithm. Once this hash is determined, a
“media key” is created by logically combining the hash with the file’s size in bytes. The
processing system then communicates with the LFS which then determines whether or

not an identical file already exists within the system. The LFS checks its database tables

WO 2009/032777 PCT/US2008/074687

to determine if there is an identical media key. The LFS then determines whether the file
exists “near enough” to the user requesting upload of the file via geocode comparisons.
If the file does exist at a “near enough” node, the LFS notifies the VFS and the temporary
LFID referenced by the VFES is replaced with the permanent LFID associated with the
identical file stored in the “near enough” node. If an identical file is online and is “near
enough” the LFS informs the node to mark the recently uploaded file for deletion and
temporarily stores the file at a designated storage location. All uploaded files marked for
deletion are cleaned up (deleted) by a daemon which crawls the system as a backend

process that is transparent to the user.

[0014] If the LFS determines that the file does not previously exist in any network
node, or that the file does not exist “near enough,” or that the file is offline, it then
extracts metadata from the file and creates logical file tags for storage in a metadata table
within the LFS. The LFS then assigns a new permanent LFID to the new file and
requests the designated node to place a copy of the file within a selected storage server
and update the node manager database with the new LFID and location of the new

physical file. The LES also notifies the VES of the new LFID assigned to the new file.

[0015] In a further embodiment, the invention determines whether a node or other
network resource is “near enough” by determining a physical location associated with a
user computer by translating its [P address into a geocode and, thereafter, comparing this
geocode with a geocode associated with one or more nodes or other network resources.
The method and system of the invention then assigns one or more nodes or network
resources (e.g., servers) to service the user’s request (e.g., an upload or download
request) based at least in part on the location of the network resource relative to the
location of the user’s computer as determined by respective geocodes associated with

the user’s computer and the network resource.

[0016] As used herein a “geocode” refers to any code or value which is indicative
of a geographic location of an object, device or entity associated with the geocode.
One type of geocode that is known in the art is used, for example, by the U.S. postal
service to assign codes to geographic regions or areas. In general, the geocode is a
code that represents a geospatial coordinate measurement of a geographic location and

time. A geocode representation can be derived, for example, from the following

WO 2009/032777 PCT/US2008/074687

geospatial attributes: latitude, longitude, altitude, date, local time, global time and
other criteria, such as, how the area is coded (e.g., number, letter, mixture of both, or
other), which part of the earth is covered (e.g., whole earth, land, water, a continent, a
country, etc.), what kind of area or location is being coded (e.g., country, county,
airport, etc.), and/or whether an area or point is being coded. Generally, a geocode is

a number representation that takes into account some or all of the above criteria.

[0017] Every computer or device that communicates over the Internet has a
unique Internet Protocol (IP) address assigned to it. Computers and devices residing
within a pre-determined geographic region or area are typically assigned a specified
range of IP addresses. For example, all computers within Japan may have IP
addresses in the range of 43.0.0.0 — 43.255.255.255 (Source: IANA, Japan Inet, Japan
(NET-JAPAN-A).

[0018] In one embodiment, when a user or customer makes an upload (a.k.a.,
“put” or “store”) or download (a.k.a., “get” or “retrieve”) request, via a web services
interface, for example, the request is received by a file system server (a.k.a., “core
system server”) which translates the IP address associated with the incoming request
into a geocode. In one embodiment, the system looks up a table that correlates IP
addresses with geocodes, or IP address ranges with geocode ranges. After the IP
address has been translated into a geocode, the system compares the geocode to the
geocodes that have been assigned to network resources (e.g., a storage node) within
the network and determines, algorithmically, which resources are “nearest” the
requestor. If only one resource is “near enough,” the user is redirected to that
resource. If multiple resources are “near enough,” the system may determine which of
the resources is currently experiencing the lightest volume of requests (e.g., via
updatable polling) and redirect the requestor to that resource. Or, in an alternative
implementation, the requestor may be directed to the absolute nearest resource,
regardless of current volume. In one embodiment, the core system determines if a
network resource is “near enough” by subtracting the geocode identified for the
incoming request from the geocode associated with the target resource and
determining if the absolute value of the difference exceeds a predetermined threshold.

In another embodiment, whether the requester’s geocode indicates the requester is

WO 2009/032777 PCT/US2008/074687

near enough a resource can simply be determined by accessing a look up table (e.g., a

node priority list) which assigns nodes to geocode ranges.

[0019] In one embodiment, if the user request is an upload request, when
determining which network storage nodes are “closest,” an amount of available
storage at each storage node is taken into consideration as a factor. After the closest
storage node has been selected by the core system, the user request is redirected to
that node and the user may immediately begin to upload his or her file(s) to an upload
server at the designated node. When an incoming file is received, the upload server
temporarily stores the file in an upload cache memory while a processing system
within the node processes the received file. This allows the user to access the newly
uploaded file immediately via a download server at the node, if desired. Thus, there is

no delay due to file processing.

[0020] In one embodiment, initial download requests (e.g., a retrieve or “get”
requests) associated with a user [P address are received via a web services interface by
the core system. Via geocode comparison, for example, the core system will identify
the closest storage node containing the requested file and redirect the user request to
that node. It should be understood that even though an online node that stores the
requested file is deemed to be “closest,” this does not necessarily mean it is “near
enough” to the user. The designated node can then start transmitting the requested file
to the user with minimum latency. As the transmission is taking place, a processing
system (e.g., one or more servers) within the node determines whether the node is
“near enough” based on a geocode associated with the user computer making the

download request.

[0021] In one embodiment, a difference in geocode values associated with the
user’s computer and the storage node is indicative of a distance between the node and
the requesting computer or device. If the distance exceeds a predetermined threshold,
the node notifies the core system of the distance value. The core system will then
determine if there are other online nodes that are “near enough” to the user and
whether any of those nodes contain a copy of the requested file (in the event that a
previously offline file recently came online). If there are no “near enough” online

nodes that contain the file, the core system will direct the previously designated node

WO 2009/032777 PCT/US2008/074687

to transfer the file to the closest of the “near enough” nodes. If there is a “near
enough” online node that contains a copy of the file, the user will be redirected
immediately prior to beginning his download. In an alternative implementation, all
download requests begin at the core and thereafter directed to the proper node. In an
alternative embodiment, whether a storage node is “near enough” the user computer
may be determined by looking up a node priority table to see whether a geocode or

geocode range associated with the user computer has been assigned for that node.

[0022] In one embodiment, after a near enough node has been identified in
response to an initial download request, as described above, subsequent requests by
the same computer system for the same file, will not go to the core system via a web
services interface. Instead, the customer application interface keeps a record of the
previous request and the previously identified “near enough” node, and redirects any
subsequent requests for the same file by the same IP address directly to that “near
enough” node. In one embodiment, a permanent redirection only takes place if a
“near enough” node is found. If a requested file exists in the system, but not in a near

enough node, the redirect is temporary.

[0023] In a further embodiment, additional information that can be included
within a geocode, or become part of the “near enough” or distance calculation may
include, for example, quality of service (QoS) as determined by a service level
agreement (SLA) associated with a particular user, number of accesses to the
requested file during a pre-specified period, number of accesses by the particular user,
bandwidth speeds and availability, relative connectivity (i.e., how busy a node is) and

master internet trunk information.

[0024] In another aspect, a method for locating an optimum storage node for
serving a data file request received via a communications network, includes: receiving
a file request from a user device coupled to the communications network; determining
a geocode value based on a communications network address associated with the user
device, wherein the geocode value is indicative of a geographic location of the user
device; selecting a storage node from a plurality of storage nodes coupled to the

communications network to serve the file request, wherein the storage node is selected

WO 2009/032777 PCT/US2008/074687

based at least in part on the geocode value; and redirecting the file request to the

selected storage node for handling.

[0025] In a further aspect, a method for handling requests for access to a network
resource, includes: receiving a request to access a network resource; correlating a
network address associated with the request into a geocode value, wherein the
geocode value is indicative of a geographic location of a source of the request; and
selecting a network resource from among a plurality of available network resources

based at least in part on the geocode value.

[0026] In another embodiment, a system for providing access to a plurality of
network resources coupled to a communications network, includes: a data table
correlating a plurality of communications network addresses with a plurality of
geocode values indicative of a geographic location corresponding to respective ones
of the plurality of communications network addresses; and a server for receiving a
request to access a network resource, identifying a geocode value corresponding to a
communications network address associated with the request, and selecting a network
resource from among a plurality of network resources based at least in part on the

identified geocode value.

Brief Description of the Drawings

[0027] The present disclosure, in accordance with one or more embodiments, is
described in detail with reference to the following figures. The drawings are provided
for purposes of illustration only and merely depict typical or exemplary embodiments
of the disclosure. These drawings are provided to facilitate the reader’s understanding
of the disclosure and shall not be considered limiting of the breadth, scope, or
applicability of the disclosure. It should be noted that for clarity and ease of

illustration these drawings are not necessarily made to scale.

[0028] Figure 1 illustrates an exemplary storage delivery network (SDN) system

in accordance with one embodiment of the invention.

[0029] Figure 2 illustrates a block diagram of an SDN in accordance with one

embodiment of the invention.

WO 2009/032777 PCT/US2008/074687

[0030] Figure 3 illustrates exemplary directory structures for folders and files
uploaded by two exemplary end users in accordance with one embodiment of the

invention.

[0031] Figure 4 illustrates exemplary virtual file system (VES) tables that store
user information corresponding to the directory structures and path names of Figure 3

in accordance with one embodiment of the invention.

[0032] Figure 5 illustrates exemplary logical file system (LFS) tables in

accordance with one embodiment of the invention.

[0033] Figure 6 illustrates an exemplary Physical File Table which is stored in a

node manager database server in accordance with one embodiment of the invention.

[0034] Figure 7A illustrates an exemplary storage node architecture in accordance

with one embodiment of the invention.

[0035] Figure 7B illustrates a flowchart of an exemplary process for moving

requested files from one storage node to another.

[0036] Figure 8A illustrates a flowchart of an exemplary upload process
performed by a designated node in accordance with one embodiment of the present

invention.

[0037] Figure 8B illustrates an exemplary process for decreasing file upload

duration in accordance with one embodiment of the invention.

[0038] Figure 8C illustrates a flowchart of an exemplary download process

performed in accordance with one embodiment of the present invention.

[0039] Figure 8D illustrates an exemplary process for global usage based file

location manipulation in accordance with one embodiment of the invention.

[0040] Figure 9 illustrates an exemplary [P address-to-geocode translation table in

accordance with one embodiment of the invention.

[0041] Figure 10A illustrates exemplary geocode regions surrounding two storage

nodes in accordance with one embodiment of the invention.

10

WO 2009/032777 PCT/US2008/074687

[0042] Figure 10B illustrates an exemplary node priority table in accordance with

one embodiment of the invention.

[0043] Figure 10C illustrates exemplary geocode regions based on longitude

coordinates in accordance with one embodiment of the invention.

[0044] Figure 10D illustrates a flowchart of an exemplary file location

manipulation process in accordance with one embodiment of the invention

[0045] Figure 11A illustrates an exemplary environment where an exemplary
inter-node load balancing process can be performed in accordance with one

embodiment of the invention.

[0046] Figure 11B illustrates a flowchart of an exemplary inter-node load
balancing process performed at the core system in the exemplary environment of

Figure 11A in accordance with one embodiment of the invention.

[0047] Figure 11C illustrates a flowchart of an exemplary inter-node load
balancing process performed at a storage node in the exemplary environment of

Figure 11A in accordance with one embodiment of the invention.

[0048] Figure 11D illustrates a flowchart of an exemplary intra-node load
balancing combined with an inter-node load balancing process in accordance with one

embodiment of the invention.

[0049] Figure 12 illustrates a flowchart of an exemplary cleanup process in

accordance with one embodiment of the invention.

[0050] Figure 13 illustrates a flowchart of an exemplary process of storing files
using an internet media file system (IMFS) in accordance with one embodiment of the

invention.

[0051] Figure 14 illustrates an exemplary download sequence that may be
implemented using an IMFS core database in accordance with one embodiment of the

invention.

[0052] Figure 15 illustrates an exemplary file relocation and download sequence
that may be implemented using an IMFS core database in accordance with one

embodiment.

11

WO 2009/032777 PCT/US2008/074687

Detailed Description of the Exemplary Embodiments

[0053] Various embodiments of the present invention are directed toward systems
and methods for storage delivery network (SDN) systems that enable users to store,
retrieve, and manipulate files from a remote location using a rich set of web service
application programming interfaces (APIs). Embodiments of the invention are
described herein in the context of exemplary applications. As would be apparent to
one of ordinary skill in the art after reading this description, these applications are
merely exemplary and the invention is not limited to operating in accordance with
these examples. It is to be understood that other embodiments may be utilized and
structural changes may be made without departing from the scope of the present

invention.

[0054] In accordance with one embodiment, an SDN system may store, access,
manipulate, and control folders and/or files over the Internet by utilizing three control

layers: a virtual layer, a logical layer, and a physical layer.

[0055] Figure 1 illustrates an exemplary SDN system 100 in accordance with one
embodiment of the invention. The SDN system 100 may comprise a core system 102,
which may control one or more distributed storage delivery nodes 112A, 112BB —
112K. The SDN system 100 may also comprise a customer application interface 110,
which may serve a plurality of end users 114. The core system 102, the distributed
storage delivery nodes 112A, 112B — 112K, and the customer application interface

110 can communicate via a communication network such as the Internet 101.

[0056] The core system 102 may comprise a web services server 104, a firewall
server 106, and an Internet media file system (IMFS) 108. It is understood that the
core system 102 may comprise any number of servers (e.g., the web services server
104, firewall server 106) for performing its tasks and operations described herein. In
addition, the various functionalities and operations described herein may be
consolidated into a fewer number of servers or processors, or distributed among a
larger number of servers or processors, as desired in accordance with network

requirements.

12

WO 2009/032777 PCT/US2008/074687

[0057] The web services server 104 may accept requests from end users 114 (e.g.,
via customer application interface 110) related to accessing, storing and manipulating
files stored on the SDN system 100. The web services server 104 may also redirect
end users 114 to appropriate storage delivery nodes 112 during uploading and

downloading of media files, for example.

[0058] The firewall server 106 provides a software application, which inspects
network traffic passing through the web services server 104, and permits or denies
passage based on a set of rules. A firewall’s basic task is to regulate some of the flow
of traffic between computer networks of different trust levels. Typical examples are
the Internet which is a zone with no trust and an internal network which is a zone of
higher trust. A firewall’s function within a network is to prevent unauthorized or

unwanted network intrusion to the private network.

[0059] In accordance with one embodiment, the IMFS 108 includes a computer
database and computer programs that provide file system services to the web services
server 104. In one embodiment, the IMFS 108 includes a virtual file system (VFS)
105, and a logical file system (LFS) 107. The IMFS 108 may organize the storage of
data using a database structure, such as a relational database structure. Examples of
other database structures that may be used are hierarchical database and object
oriented database structures. Database management systems may be included in the
IMFS 108 to organize and maintain the database. The IMFS 108 may also comprise a

computer or computers dedicated to running the IMFES 108.

[0060] In one embodiment, the core system 102 communicates with a customer
application interface 110 via the Internet 101 in accordance with a web services
protocol (e.g., Simple Object Access Protocol (SOAP) or Representational State
Transfer (REST)). The customer application interface 110 provides requested files
(e.g., music or video files) and services (e.g., video streaming) to a plurality of end
users 114 who have purchased or subscribed to the customer application interface. In
various embodiments, the customer application interface 110 can be a hosted website
on a server, or an application running on a personal computer or other computing

device (e.g., a mobile phone or personal digital assistant (PDA)).

13

WO 2009/032777 PCT/US2008/074687

[0061] With further reference to Figure 1, physical end user files are stored in
physical file storage (PES) distributed across storage delivery nodes 112A, 112B —
112K. Each distributed storage delivery node 112A, 112B — 112K may include a
plurality of processing servers 1-M, 1-N and 1-O respectively (whereA, B and K, and
M, N and O can be any positive integer value). In one embodiment, each distributed
storage delivery node 112A, 112B -112K has a node manager database server, a
transfer server for handling uploading and downloading of files, one or more
processing servers for processing the files, and one or more storage servers for storing
files after they have been processed. An exemplary storage delivery node 112 is

explained in more detail below with reference to Figure 7.

[0062] Figure 2 illustrates an exemplary block diagram of an SDN system 200 in
accordance with one embodiment of the invention. Various elements of SDN system
200 may be identical or similar to elements of SDN system 100 of Figure 1. SDN
system 200 includes a web services subsystem 202, an IMFS 204 (similar to IMFS
108 in Figure 1), distributed storage delivery nodes 220 (similar to storage delivery
nodes 112A, 112BB — 112K of Figure 1), an account management subsystem 206, and
a transaction warehouse/analytics subsystem 208. SDN system 200 may also
comprise middle tier logic 210 coupled to the IMFS 204, storage delivery nodes 220,
and the account management subsystem 206. SDN system 200 further includes a
sharing engine subsystem 212 and server side processing applications 214. Each of

these systems and applications are described in further detail below.

[0063] The web services subsystem 202 can provide an application program
interface (API) to end users 114 (Figure 1) via the Internet 101. In exemplary
embodiments, the web services subsystem 202 operates industry standard REST
and/or SOAP protocols allowing end users 114 to upload, copy, move and delete files
and folders. Furthermore, end users 114 can retrieve a listing of their files stored in
SDN system 200 and associated user defined tags and metadata. In one embodiment,
the web services subsystem 202 presents the end user 114 with a tree-structured file
system allowing the end users 114 to store and access files in a familiar fashion. In
one embodiment, the file system is presented to the end user as a virtual hard drive on

the end user’s computing device. Communications between the end users 114 and

14

WO 2009/032777 PCT/US2008/074687

core system 102 servers (Figure 1) can use the Hypertext Transfer Protocol over

Secure Socket Layer (HTTPS) protocol.

[0064] With further reference to Figure 2, the IMFS 204 can include a Virtual File
System (VEFS) 216 and a Logical File System (LFS) 218 for managing files stored on
the SDN system 200.

[0065] The VES 216 can function as an abstraction layer on top of one or more
conventional file systems to provide a uniform interface that is used to access data or
files from one or more storage locations via a communications network. For example,
VES 216 can be an abstraction of a physical file storage system implementation,
providing a consistent interface to multiple file and/or storage systems, both local and
remote. In other words, the VFS 216 can allow end users 114 to access different types
of file or file systems in a uniform way. The VES 216 can, for example, be used to
access local and remote network storage devices transparently without the client
application noticing the difference. Additionally, in one embodiment, the VES 216
can be used to bridge the differences in various types of file systems, so that client
applications can access files on local or remote file systems without having to know
what type of file systems directly control access to those files. Thus, the consistent
interface provided by VES 216 can allow the end users 114 to uniformly interface

with a number of diverse file system types.

[0066] The VES 216 stores end user information and controls end user directory
structures (e.g., a tree structure) presented to end users 114 accessing files stored in
SDN system 200. Directory structures can be presented to the end users 114 via the
web services subsystem 202. As will be explained in further detail below, the VES
216 includes a database that stores tables populated with information related to user
files stored on the SDN system 200. For example, these tables can be populated by
user folder names (e.g., “Scott’s music”), user assigned file names (i.e., virtual file
name), user overridden metadata, directory and/or path information, as well as virtual
file identification (VFID) values associated with stored files. The VFID can be used

to correlate each virtual file name with logical file and/or physical file information.

15

WO 2009/032777 PCT/US2008/074687

[0067] The LFS 218 provides an application with a consistent view of what can
be, for example, multiple physical file systems and multiple file system
implementations. In one embodiment, file system types, whether local, remote, or
strictly logical, and regardless of implementation, are indistinguishable for
applications using LFS 218. A consistent view of file system implementations is
made possible by the VFS 216 abstraction. The VFS 216 abstraction specifies a set of
file system operations that an implementation includes in order to carry out LFS 218
requests. Physical file systems can differ in how they implement these predefined

operations, but they present a uniform interface to the LFS 218.

[0068] The LFS 218 stores information about files stored on SDN system 200,
such as a media key (e.g., hash key), metadata, file size, file type, and the like. The
LFS 218 also stores a logical file identification (LFID) value that is used to correlate
or link a corresponding VFID with one or more physical files located in the
distributed storage delivery nodes 112A, 112B - 112K (Figure 1). Thus, the LFS 218
acts as an intermediate layer that correlates the virtual layer with the physical layer. It
is appreciated that many VFIDs may correspond to a single LFID, which in turn may
correspond to one-to-many physical files distributed in various geographically
distributed storage delivery nodes 112A, 112B - 112K. For example, if multiple users
have uploaded into their directory a song (e.g., “Wish You Were Here” by Pink
Floyd), then multiple VFID’s corresponding to the respective multiple user songs may
be correlated to a single LFID that identifies the common song. This single LFID
may then be linked (e.g., via SQL relational database tables) to one or more physical
files. For redundancy or access performance reasons, multiple physical files
corresponding to the song may be stored in more than one storage server. However, it
is not necessary to store a physical file for each user. Multiple users can share access
to a single physical file. In this way, the SDN system 200 allows de-duplication of

files, thereby saving a considerable amount of storage real estate.

[0069] The distributed storage delivery nodes 220 (similar to 112A, 112B -112K
in Figure 1) comprise optional archival file storage (AFS) 222, permanent file storage
224. The distributed storage delivery nodes 220 include physical file storage devices

such as one or more hard drives. The AFS 222 may archive files, including

16

WO 2009/032777 PCT/US2008/074687

compressed versions of files stored on or previously stored on the permanent file
storage 224. Each storage delivery node 220 also stores one or more tables (e.g.,
relational database tables) populated by information indicating where files are stored
within the respective storage delivery node. The tables may also be populated with
path information for each file stored in the distributed storage delivery node 220, and

information correlating each file with a logical file identification value (LFID).

[0070] Further to Figure 2, the storage delivery nodes 220 can also include a
cache file system 221, a hierarchical storage system 223 and a management and
policy-based file replication system 225. The cache file system may be used to
temporarily store data before it is stored in a more permanent type of memory storage
system. The hierarchical database may be used to manage how data is stored in a
hierarchical fashion. The management and policy-based file replication system may
be used for managing how many copies of each file are to be stored and whether
copies of the files should be stored on high availability storage or archive storage, for

example.

[0071] The SDN system 200 can also comprise an account management
subsystem 206 that manages accounts for end users 114 and/or customers that have an
account to access and use the SDN system 200. A customer may be, without
limitation, a content and/or application provider. The account management subsystem
206 can, for example, control who can access certain applications and/or content,
track usage, and calculate prices and payment data in accordance with a customer’s

service level agreement (SLA).

[0072] An SLA can be an agreement between one or more users and an SDN
system administrator or customer, which provides a client interface application to the
one or more users. The SLA specifies a level of service (e.g., quality of services,

storage and access rights and preferences, etc.) to be provided to the users.

[0073] The transaction warehouse 208 can store archival information regarding
transactions performed within the VFS 216, including billing, payment history and file

operations. This allows for reporting information to be gathered historically.

17

WO 2009/032777 PCT/US2008/074687

[0074] The middle tier logic 210 does string validation and prepackages user-
inputted data for entry into the IMFS 204. As data is returned from the IMFS 204, the
middle tier logic 210 un-packages it for serialization and presentation to the end users
114. In one embodiment, end users 114 need not issue commands directly to the
IMES 204; rather, end user inputs are parsed and transmitted to the IMFES 204 via the
middle tier 210. Data returned from the IMFS 204 may go through this same middle
tier logic 210. This provides for additional security and command validation prior to

entry into the SDN system 200.

[0075] In addition to providing secured access to uploaded files, users of the
IMFS 204 may have the option of allowing access to individual virtual folders and
files to other users. This is accomplished through the sharing subsystem 212 which
can be directly correlated to the VFES 216. In this manner, once a user has sent the
IMFS 204 a sharing command, a separate entry is created within the VES 216 linked
to the original record. Creation of the entry in the VES 216 allows the end users 114
to share the file or folder using a different name for the file or folder, but without
duplicating the file or folder. End users 114 see the virtual file or folder, and the VES
216 provides the connection to the original file of folder. Additionally, access
restrictions (by IP, password, and so on) can be added to a shared resource, allowing
granular control over whom the user is granting access to. Sharing subsystem 212
may also perform public folder mapping functions and functions related to widget

creation for APIs.

[0076] Uploaded files are processed into the VES 216 and LES 218 via a custom
file system command processor service. The command processor service can be
performed by command processing servers 214, which can determine the uniqueness
of each file and perform transcode services as determined by a controlling SLA.
Command processing servers 214 can also be used for processing new plug-ins,

format translation, advanced tagging, image manipulation and video transcoding.

[0077] The command processing servers 214 can also perform metadata
extractions to populate the LES tables with metadata information as explained in more
detail in the context of Figure 5. In one embodiment, the command processing servers

214 can determine which commands need to be run through a queuing system

18

WO 2009/032777 PCT/US2008/074687

operating, for example, Microsoft Message Queuing (MSMQ). Further, these queuing
system commands can be added to command processing servers 214 without
modifying the internal process of the command processing servers 214. The queuing
system determines a priority order of each queuing command and balances them

across each of the command processing servers 214.

[0078] Figure 3 illustrates exemplary directory structures 300 for folders and files
uploaded by two end users named Scott and Rich. These directory structures 300 may
be represented by the following three virtual path names: Scott\music;

Scott\video\movies\pirates.mov; and Rich\movies\caribbean.mov.

[0079] Figure 4 illustrates exemplary VES tables 400 that store user information
corresponding to the directory structures and path names of Figure 3. In one
embodiment, the VFS tables 400 comprise SQL relational database tables and include
a Virtual Folder Table 4A, a Virtual File Table 4B, and a Virtual Metadata Table 4C.
The Virtual Folder Table 4A comprises a “Folder ID” column 402, a “Folder Name”
column 404 and a “Parent Folder ID” column 406. As shown in Figure 4, the Folder
ID column 402 contains a unique folder ID value (e.g., values 1-6 in this example) for
each user folder that is generated by the VFES 216. The “Folder Name” column 404
contains the name selected by the respective user for each folder (e.g., Scott, Music,
etc. in this example). The names in column 404 may be, but need not be, unique. The
Parent Folder ID (PFID) column 406 contains the unique Folder ID value of the
parent folder of each respective child folder. If the folder is a root folder, its PFID

value is null.

[0080] The Virtual File Table 4B comprises a “File ID” column 410, a “File
Name” column 412, a PFID column 414 and a Logical File ID (“LFID”) column 416.
The Logical File ID column 416 contains a unique file ID value (e.g., 101) that is
generated for each user file, regardless of whether other users may have uploaded that
identical file. The File Name column 412 contains the name of the file that is selected
by its respective owner/user (e.g., Pirates and Caribbean in the present example). The
PFID column 414 is similar to the PFID column 406 discussed above with respect to
the Virtual Folder Table 4A. The PFID column 414 contains the Folder ID value 402

of the folder in which the file is stored. For example, the file named “Pirates™ has a

19

WO 2009/032777 PCT/US2008/074687

File ID 12345 and is stored in the folder associated with Folder ID “4” in column 410,
which is the folder named “movies.” The LFID column 416 contains a value
generated for each unique file. If a file is identical with another file, their LFID
values may also be identical. Thus, multiple virtual files referencing identical data or
content may have a single common LFID value (e.g., 101 in this example). This
allows sharing and de-duplication of physical files, thereby reducing the number of

physical files that must actually be stored in physical memory.

[0081] The Virtual Metadata Table 4C stores metadata that has been created by a
respective end user to override pre-existing metadata contained within the original
file. In one embodiment, the Virtual Metadata Table 4C contains a File ID column
418 and one or more Metadata Type columns 420. The Metadata Type columns 420
may include columns for image width, image height, video width, video height, video
duration, video bit rate, video frame rate, audio title, artist, album, genre, track, bit
rate, duration, and other desired information about data or media content. The Virtual
Metadata Table 4C allows each user to customize a respective file to a limited extent
without affecting whether de-duplication may be appropriate for that particular file.
Since the overridden metadata resides only in the VES 216, only the respective user
may access or use that metadata. Furthermore, since the original physical file is not
modified, its integrity remains intact and can be de-duplicated if an identical physical

file was previously stored in the network.

[0082] Figure 5 illustrates exemplary LFS tables 500, in accordance with one
embodiment of the invention. The LFS tables 500 include a Logical File Table 5A, a
Logical Node Table 5B, and a Logical Metadata Table 5C. The Logical File Table SA
comprises an LFID column 502, a “Media Key (Hash)” column 504, and a “File Size”
column 506. The LFID column 502 stores a unique logical value for each unique file
and serves as the linking parameter to the VFES tables 400 discussed above with
respect to Figure 4. The Media Key column 504 stores a unique algorithmically
calculated value (e.g., media key or hash) for each unique data file. To illustrate, in
the present example Scott’s movie named “Pirates” and Rich’s movie named
“Caribbean” refer to the identical data file containing the movie “Pirates of the

Caribbean”. Both Scott’s movie and Rich’s movie will be assigned the same LFID

20

WO 2009/032777 PCT/US2008/074687

(e.g., 101), because the hash algorithm will generate an identical media key value or
hash value. As shown in Figure 5, one entry in the LFID column is “-1”, which, as
discussed above, indicates a temporary value stored in one or more LFS tables 500.
The “-1” entry remains until a media key is calculated by a designated storage node to
determine whether the file can be de-duplicated or needs to be physically stored at a
designated storage node. The File Size column 506 contains the file size value of the

associated physical file.

[0083] The Logical Node Table 5B contains an LFID column 508, a Node ID
column 510 and an Online column 512. The LFID column 508 links the Logical
Node Table 5B with the Logical File Table 5SA. The Node ID column 510 associates a
unique value assigned to respective storage nodes in the distributed storage delivery
nodes 112 with each LFID value. Thus, the Node ID column 510 indicates in which
node 112 a physical file associated with an LFID is located. The Online column 512
contains a binary value that indicates whether a corresponding storage node is online
or offline. Depending on a user’s or customer’s service level agreement (SLA), for
example, a particular user’s physical files may be stored at multiple physical locations
for redundancy purposes. The particular user’s physical files may also be stored at
multiple physical locations to accommodate upload and download performance
requirements for a particular application or file. Therefore, the copies of the physical
file may be stored in multiple storage nodes. At various times, and for various
reasons, one or more of such multiple storage nodes may be offline (e.g., due to
hardware failure, down for maintenance, etc.). In the exemplary table, a “1” in the
Online column 5B indicates the respective storage node is online and operational and

a “0” indicates the corresponding storage node is offline.

[0084] The Logical Metadata Table 5C comprises an LFID column 514 which
contains the LFID value for each unique logical file in one or more Metadata Type
columns 516 that contain the original, intrinsic metadata that was embedded with the
original physical file. The Metadata Types can be identical or similar to those
discussed above with respect to Figure 4. If an end user has not over-ridden the
original metadata with his or her own custom metadata, the original metadata

contained in this table 5C is available as the default metadata to the end user.

21

WO 2009/032777 PCT/US2008/074687

[0085] Figure 6 shows an exemplary Physical File Table 600. Physical File Table
600 table includes an LFID column 602 which is used as a common linking parameter
to link back to the VES and LFS tables 400/500 discussed with reference to Figures
4A-4C and 5A-5C. In this manner, Physical file Table 600 links the distributed
storage delivery nodes 112A, 112B — 112K to the IMFES 108 via the LFID generated
by the LFS 107. As discussed above, the LFID column 602 stores a unique
identification value for each unique physical file that generates a unique media key
value. The Physical Location 604 column stores location or path information that
indicates the actual physical location of the file in memory. In Figure 6, the illustrated
path indicates that the file is stored in storage node “STO1” at server “Sharel” within
the storage node. In addition, the illustrated path indicates further branch names of
7.15, 15.45, and “XYZ47”. The branch name of 7.15 refers to the date the file was
created. The branch name of 15.45 refers to the time the file was created. The branch
name of “XYZA7” refers to an exemplary automatically generated pseudo-name of
“XYZAT” generated by the node processing server (e.g., by hashing the original name
of the file).

[0086] As discussed above, the LFS 218 can store information indicating the
storage node or storage nodes in which each file is stored. In accordance with one
embodiment, the LFS 218 stores information indicating that the file exists somewhere
within a storage node, but does not indicate where the file is located within that
storage node. Instead, each storage delivery node 112 can autonomously control the
placement of files within itself. Moreover, the Physical File Table stored within each
respective storage node contains the information indicating where each files stored

within a particular storage node are located within that storage node.

[0087] In one embodiment, the VFS tables 400 are stored in a separate database
from the LES tables 500. Both the VFS tables 400 and the LFS tables 500 are
separate from Physical File Tables 600, which are stored at respective geographically
distributed storage delivery nodes 112. By providing three distinct layers (e.g., the
virtual, logical and physical layers) the SDN system 100 de-couples user information
from the actual physical files belonging to each of the end users 114. In order to

search for and/or utilize information, a hacker would need to infiltrate at least three

22

WO 2009/032777 PCT/US2008/074687

separate databases and correlate a vast amount of information to determine which file
belongs to which user or customer. Furthermore, a hacker would not likely know in
advance whether any particular storage node database has any of the physical files a
hacker may be interested in. This de-coupling and de-identification of files from users
provides added security to sensitive information such as financial and bank account
information. The de-coupling and de-identification of files from users features may
be used to meet HIPPA requirements for de-identification of patient related

information and medical records, for example.

[0088] Figure 7A illustrates an exemplary storage node architecture 700 in
accordance with one embodiment of the invention. The storage node architecture 700
includes one or more upload and processing servers 702, one or more transfer servers
707, one or more storage servers 704, a download server 706, a node manager
database server 708, and an archive storage node 710. In one embodiment, the
archive storage node 710 provides a cheaper form of storage (e.g., magnetic tape) than
server storage drives, and stores archive files which do not need to be accessed
quickly and/or frequently. In exemplary embodiments, frequently accessed user files
are stored in one or more storages nodes having high-availability (HA) storage
servers; whereas less frequently accessed files can be stored in separate archive
storage nodes. The HA storage servers can be systems with directly attached storage
devices. Alternatively, those servers can be attached to network attached storage

(NAS) or a storage area network (SAN).

[0089] Various server configurations may be implemented in accordance with
design requirements and considerations. For example, upload and download
functionalities can be performed by transfer server 707 instead of separate servers 702
and 706. In addition, processing functionalities can be implemented by a separate
server. Furthermore, node manager database server 708 can control and keep track of

where files are stored among the storage servers 704 of storage node 700.

[0090] In one embodiment, files can be stored at an archive storage node and
copied to a HA storage node when the file is in demand (e.g. being accessed by a
user), for example. A file may thereafter be deleted off of the HA storage node when

the file is no longer in demand. An ageing algorithm can be used to determine when

23

WO 2009/032777 PCT/US2008/074687

the file should be deleted from the HA storage. Thus, a copy of a file can be
maintained on the archive storage node 710, copied to a HA storage node when the
file is in demand (e.g., when a file is frequently accessed), and deleted from the HA

storage node when the file is no longer in demand.

[0091] Figure 7B is flowchart illustrating an exemplary process 750 for moving
requested files from one storage node to another in accordance with one embodiment
of the present invention. The various tasks performed in connection with process 750
may be implemented by software, hardware, firmware, a computer-readable medium
storing computer executable instructions for performing the process method, or any
combination thereof. It should be appreciated that process 750 may include any
number of additional or alternative tasks. The tasks shown in Figure 7B need not be
performed in the illustrated order, and process 750 may be incorporated into a more
comprehensive procedure or process having additional functionality not described in
detail herein. For illustrative purposes, the following description of process 750 may
refer to elements mentioned above in connection with Figures 1-7A. In various
embodiments, portions of process 750 may be performed by different elements of
systems 100-700, such as core system 102, customer application interface 110, and the
distributed storage delivery nodes 112A, 112B — 112K. Tasks of process 750 may be

performed as backend processes that are transparent to the user.

[0092] At a step 752, a user requests access to a file stored on an archive node.
The requested copy is then copied from the archive storage node to a HA storage node
at step 754. A time since last access date (LAD) of file stored on the HA storage
node can then be periodically monitored at step 756 to determine if the file is in
demand. In this regard, the LAD can be compared to a predetermined threshold at
decision step 758. The predetermined threshold can correspond to a predetermined
time period, e.g., 30 days. If the LAD exceeds the threshold (Yes branch of decision
step 758), then the file is deleted from the HA storage node at step 762. If the LAD
does not exceed the threshold (No branch of decision step 758), then the file is
maintained on the HA storage node at step 760 and the LAD is periodically monitored
again at step 756. If the file is requested after the file has been deleted from the HA

storage node, then process 750 may be repeated.

24

WO 2009/032777 PCT/US2008/074687

[0093] With reference to Figure 1, when an upload request from an end user 114
is received by the core system 102, the core system 102 can redirect the end user 114
to one of the storage delivery nodes 112A, 112B -112K for uploading the requested
file. The end user’s connection to the core system 102 is then severed, and a
connection is established with the upload server 702 at the storage delivery node 112.

The node 112 may then begin accepting data packets of the file from end user 114.

[0094] Figure 8A is a flowchart of an exemplary file upload process 800 in
accordance with one embodiment of the present invention. The various tasks
performed in connection with process 800 may be implemented by software,
hardware, firmware, a computer-readable medium storing computer executable
instructions for performing the process method, or any combination thereof. It should
be appreciated that process 800 may include any number of additional or alternative
tasks. The tasks shown in Figure 8A need not be performed in the illustrated order,
and process 800 may be incorporated into a more comprehensive procedure or process
having additional functionality not described in detail herein. For illustrative
purposes, the following description of process 800 may refer to elements mentioned
above in connection with Figures 1-7. In various embodiments, portions of process
800 may be performed by different elements of systems 100-700, such as core system
102, customer application interface 110, and the distributed storage delivery nodes
112A, 112B — 112K. Tasks of process 800 may be performed as backend processes

that are transparent to the end user 114.

[0095] When an incoming file 802 is received, the upload server 8§04 stores the
file in an upload cache memory 806. The VES 105 also creates a folder path or virtual
file for the end user 114 and assigns a temporary LFID (task 808). The temporary
LFID may, for example, be a negative LFID value as discussed with reference to
Figure 5A. The temporary LFID allows the end user to access the newly uploaded file
immediately via a download server (e.g., server 706 of Figure 7). In this manner, the
impact of file processing delays on a user’s ability to access the file can be decreased
or eliminated. The upload server 804 then notifies the node’s internal processing
server 312 by adding an entry (task 810) into a processing queue. The entry can

contain information such as a physical location of the file to be uploaded (e.g., a

25

WO 2009/032777 PCT/US2008/074687

location of the end user’s computer), the VFID associated with the file, an account ID
associated with the end user 114, an application key ID, a temporary location of the

file, and the like.

[0096] With further reference to Figure 8, processing server §12 applies a hashing
algorithm to the uploaded file to calculate a media key for the file (task 8§14). The
hashing algorithm can be the MD5 file hashing algorithm (internet standard RFC
1312), for example. The result from the hashing algorithm can be referred to herein as
“hash” or a “media key”. Once this media key is created, the processing server 8§12
may provide a copy of the media key to the LES 105 (Figure 1), in accordance with
one embodiment of the invention. The LFS 105 may compare the media key to other
media keys in its Logical File Tables (Figure 5A) to determine if an identical media
key exists (inquiry 816). An identical media key indicates that an identical file is
already stored on the system 100. If an identical file is already stored on the system
100 (“Yes” branch of inquiry task 816), then the temporary LFID is replaced with a
permanent or real LFID associated with the previously stored identical file and the end
user’s VFID is updated with the real LFID (task 818). Since an identical file is

already stored on the system, the recently uploaded file can be deleted (task 820).

[0097] If the LFS 218 determines that an identical copy of the file is not already
stored on the system 200 (No branch of inquiry task 816), then the LFS 218 extracts
metadata from the recently uploaded file (task 822) and creates logical file tags (task
824) for storage in a metadata table (FIG. 4C) within the LFS 218. The newly
uploaded file may then be assigned a unique LFID, which is stored in LFS 218. The
uploaded file is stored in a storage node 112 (Figure 1) and the Physical File Table
stored in a node manager database of the storage node 112 is updated with the LFID
associated with the file and a physical location of the file within the node (task 826).
The LFS 218 is also updated with a Node ID indicating in which node the file is
stored (task 828).

[0098] Figure 8B illustrates an exemplary process 830 for decreasing file upload
duration in accordance with one embodiment of the invention. The various tasks
performed in connection with process 830 may be implemented by software,

hardware, firmware, a computer-readable medium storing computer executable

26

WO 2009/032777 PCT/US2008/074687

instructions for performing the process method, or any combination thereof. It should
be appreciated that process 830 may include any number of additional or alternative
tasks. The tasks shown in Figure 8B need not be performed in the illustrated order,
and process 830 may be incorporated into a more comprehensive procedure or process
having additional functionality not described in detail herein. For illustrative
purposes, the following description of process 830 may refer to elements mentioned
above in connection with Figures 1-7A. In various embodiments, portions of process
830 may be performed by different elements of systems 100-700, such as core system
102, customer application interface 110, and the distributed storage delivery nodes
112A, 112B — 112K. Tasks of process 8§30 may be performed as backend processes

that are transparent to the end user 114.

[0099] Process 830 may begin when a designated node begins receiving a file
from an end user (task 832). In one embodiment, a media key is calculated by a
process local to the file being uploaded. This user-side media key is received shortly
after or concurrently with receiving the file being uploaded (task 834) and compared
to previously generated and stored media keys (task 836). In one embodiment, a
periodically updated table containing all the previously generated media keys are
stored at each node for comparison with received user media keys. In an alternative
embodiment, the previously generated media keys may be stored in the LFS table 500
(Fig. 5) residing in the core system 102. In this embodiment, the designated node may
transmit the received user media key to the core system 102 for comparison with
previously stored media keys. In one embodiment, a program (e.g,, hash algorithm) is
downloaded or installed on the end user’s computer to generate the user-side media
key. The program may be any type of hashing algorithm, for example, as long as it is
the identical program used by the core system 102 to calculate the media keys stored
in the LFS table 500 or within memory tables in each node. A match between the
user-side media key and a previously stored media key indicates an identical file
already exists on SDN system 100. In this way, a determination is made as to whether
a file identical to the file being received has previously been stored in system 100
(task 838). If a match is found and uploading has not been completed, then the upload
can be aborted (task 840) and a “successful upload” message can be immediately sent

to the end user (task 842). The file associated with the matched media key already

27

WO 2009/032777 PCT/US2008/074687

stored on the SDN system 100 can then be designated as a file associated with the end
user (task 842). In this manner, unnecessary uploading of a previously existing file is
aborted, thereby avoiding storing a duplicate file on the system and decreasing file
upload duration. If the match is not found (No branch of inquiry task 838), uploading
of the file continues until it is completed (task 846) after which a “successful upload”
message is sent to the end user (task 847). Finally, the newly uploaded file is
designated as a file that is accessible by the end user (task 848) and stored on the

system 100, as described in process 800 of Figure 8A, for example.

[0100] In one embodiment, when a download request (a.k.a., a retrieve or “get”
request) is received by the core system 102 (Figure 1), the core system 102 determines
which one or more distributed storage delivery nodes 112 contain the requested file and
which of those storage nodes is closest to the end user 114. The end user 114 is
redirected to that storage node. The user’s connection to the core system 102 may be
severed at this point. It can be noted that just because a storage node is closest to the
end user 114 does not necessarily mean that the storage node is “near enough” to the
user’s device. For example, even though a first node may be determined to be “near
enough,” a customer’s SLLA can dictate that a second, different node needs to be used to
service the end user. Thus, policies in a customer’s SLLA can override which node is

deemed appropriate.

[0101] As used herein, an “end user” is an entity that requests uploading and
downloading of files from the SDN. A “customer” can be an end user or, in some
instances, a content provider that provides services to many end users, and which has a
SLA with the core system operator. In one embodiment, policies in a customer’s SLA
may override some or all intrinsic features of the SDN’s storage and file manipulation
rules. For example, a customer may choose to store files wholly within the continental
United States, dictating that those files must never be shipped overseas. In this scenario,
the logic in the SDN will enforce the policy by overriding any conflicting rules,
ensuring this customer’s files are never transmitted to restricted nodes during load
balancing, file protection or file migration activities, for example. Customer’s may
choose to “lock” their files to a node or series of nodes or within a geographical region.

Additionally, customer’s may require that only nodes capable of providing a specified

28

WO 2009/032777 PCT/US2008/074687

quality of service, no wait or queuing; etc., can be used to service requests for the

customer or the customer’s clients.

[0102] Additionally, a customer may also dictate that any file received by the
system must immediately be copied to one or more additional nodes, which may or may
not be specifically designated. This provides redundancy and security against data loss
and/or corruption even in the event of catastrophe, and can improve performance or
quality of service to that specific customer. For example, if the customer frequently
travels to California, New York and Europe, the customer may dictate that a copy of
each of his or her files be stored in a node geographically situated in each of these

regions to minimize latency when he or she requests files from any of these regions.

[0103] As a further example, a customer’s SLA may dictate that certain groups of
end users, which subscribe to the customer’s services, be designated for service by
specific nodes. For example, a group policy may be set for a specific group of users to
be served by specified storage nodes managed by the customer. In this way, node
access and utilization may be controlled or optimized by the customer with respect to
the customer’s subscribers, in accordance with various objectives or criteria specified
by the customer (e.g., subscriber management, accounting, and/or other customer

business objectives).

[0104] Thus, policies set forth in a customer’s SLA can override or supplement the
SDN file allocation and manipulation rules described herein. Some non-exclusive
examples of policies that can be specified in a customer’s SLA include: always
maintain a predetermined number (e.g., 2) of redundant copies of all files associated
with the customer in the SDN; only store the customer’s files in one or more pre-
specified types of nodes or geographic regions; always serve requests associated with
the customer’s account using the fastest available node; always serve requests
associated with the customer’s account using the closest available node; requests
associated with the customer’s account must be served within a maximum latency
threshold or satisfy predetermined quality of service criteria; etc. In one embodiment, a
customer’s SLA is always checked before moving, copying, storing, or providing
access to files associated with the customer. In one embodiment, each customer’s SLA

and policies associated therewith are stored in a database coupled to the core system

29

WO 2009/032777 PCT/US2008/074687

102 (Fig. 1). In further embodiments, all or a subset of all customer SLA’s may be
redundantly stored at designated storage nodes such that the designated storage nodes
can notify the core system 102 if a directed action violates one or more policies of a
relevant customer’s SLA. Upon receiving such notification, the core system 102 can

take any remediation measures.

[0105] In one embodiment, when a download request is received by the designated
node, the node manager database server 708 (Figure 7) determines which storage server
704 within the storage node 700 houses the file. A transfer server 707 requests the file
location from the node manager database server 708 and then requests the file from the
identified storage server (e.g., via a “share” request). The identified server then
transfers the file to the transfer server 707 which then passes the file to the requesting
user (assuming the user has proper access rights). In one embodiment, the user’s
connection does not “touch” the servers on which their files are stored. Instead, the end
user’s connection may access files via a web services proxy agent. The web services
proxy agent in turn interfaces with a node download server 706 or transfer server 707,
but does not interface with the actual storage server 704 in the storage node 700 (Figure

7).

[0106] Figure 8C illustrates a flowchart of an exemplary download process 850 in
accordance with one embodiment of the present invention. The various tasks
performed in connection with process 850 may be implemented with software,
hardware, firmware, a computer-readable medium storing computer executable
instructions for performing the process, or any combination thereof. It should be
appreciated that process 850 may include any number of additional or alternative tasks.
The tasks shown in Figure 8C need not be performed in the illustrated order, and
process 850 may be incorporated into a more comprehensive procedure or process
having additional functionality not described in detail herein. For illustrative purposes,
the following description of process 850 may refer to elements mentioned above in
connection with Figures 1-7. In various embodiments, portions of process 850 may be
performed by different elements of systems 100-700, e.g., core system 102, the

customer application interface 110, and the distributed storage delivery nodes 112. The

30

WO 2009/032777 PCT/US2008/074687

tasks of process 850 may be performed as backend processes that are transparent to the

end user 114.

[0107] It can be noted that process 850 can perform authentication and
authorization before actually “serving out the bytes” (i.e., transmitting the file). At the
end of each request, process 850 may also record the actual number of bytes served for
accounting purposes. If the end user 114 is authenticated and authorized to download
the file, then the file’s content may be streamed to the requesting client (end user).
After the request ends, the actual number of bytes served can be recorded for
accounting purposes. This can happen even if the client aborts the download, in which

case, the number of bytes served up to that point can be recorded.

[0108] At task 852, an incoming download request is received by transfer services
server 854. The download request may be a request redirected from core system 102
(Figure 1) to a storage delivery node 112, for example. A transfer services server 854
can be similar to server 707 of Figure 7A and be located within the storage delivery
node 112. The transfer service server 854 may then communicate with the core system
102 (Figure 1) for the purpose of authenticating the end user 114 associated with the
download request (inquiry task 856). If the end user 114 is not authenticated (“No”

branch of the inquiry task 856), then the request is terminated.

[0109] If the user is authenticated (“Yes” branch of the inquiry task 856), then the
core system 102 determines the identity of a storage node containing the requested file
and returns a physical path for that node to the requester’s computer (task 858). In one
embodiment, if multiple nodes are identified as containing the requested file, the core
system 102 selects the node that is closest and/or least busy, or makes its node selection
based on some combination of these factors. The physical path for the selected node is
correlated with an LFID associated with the user’s virtual file path for the requested
download file. The local node manager database server 708 at the selected node
(Figure 7A) may further determine the physical location of the file within the node
given the LFID (task 858) using Physical File Table 600 (Figure 6). Once the physical
location of the file is determined, the node manager database server 708 then requests
the file from the proper storage server 862 (task 860). In one embodiment, the proper

storage server is the least busy storage server in the node that contains the requested

31

WO 2009/032777 PCT/US2008/074687

file. The transfer service server 854 then receives the data packets of the file from the
proper storage server 862 and thereafter transmits the file to the requester (task 855). In
one embodiment, the file is transferred from the transfer server 854 to the user via a
HTTP proxy download program (task 868). The transfer service server 854 may then
notify the IMFS 108 of the number of bytes transferred to the user for accounting

purposes (task 870).

[0110] Figure 8D illustrates an exemplary global usage based file location
manipulation process 880 in accordance with one embodiment of the invention. The
various tasks performed in connection with process 880 may be implemented by
software, hardware, firmware, a computer-readable medium storing computer
executable instructions for performing the process, or any combination thereof. It
should be appreciated that process 880 may include any number of additional or
alternative tasks. The tasks shown in Figure 8D need not be performed in the illustrated
order, and process 880 may be incorporated into a more comprehensive procedure or
process having additional functionality not described in detail herein. For illustrative
purposes, the following description of process 880 may refer to elements mentioned
above in connection with Figures 1-7A. In various embodiments, portions of process
880 may be performed by different elements of systems 100-700, such as core system
102, customer application interface 110, and the distributed storage delivery nodes
112A, 112B - 112K. Tasks of process 880 may be performed as backend processes

that are transparent to the end user 114.

[0111] Process 880 may begin by receiving a download request at step 882. The
download request can be sent from end user 114 and received by core system 102, for

example.

[0112] The core system 102 then identifies the nearest node containing the
requested file in step 884. For example, the core system 102 can determine an LFID
associated with the file download request and identify which nodes contain files
associated with the LFID using the Logical Node Table described with reference to
Figure 5B. Since copies of a file can be stored in a plurality of nodes, a plurality of
nodes may be identified in step 884. As explained in further detail below, in one

embodiment, when a plurality of nodes contain copies of the file, a comparison, such as

32

WO 2009/032777 PCT/US2008/074687

a geocode comparison between the user’s geocode and each identified node’s geocode
may be used to determine which of those nodes is the nearest node or a “near enough”
node. Alternatively, a look up table such as a Node Priority Table 1070, described in
further detail below, can be accessed to determine which nodes can serve the user based
on his or her geocode. Once the available nodes are identified the core system 102 can
determine which of those nodes contains the requested file and thereafter redirect the
user’s request to the highest ranked node for that user’s geocode as specified in the

Node Priority Table 1070.

[0113] The core system 102 can then determine whether the nearest node is a “near
enough” node at decision step 886. Just because a node is determined to be nearest to
the user in step 884, does not necessarily mean that the node is “near enough.” As used
herein a “near enough node” can refer to a node that is deemed to be sufficient to
process a users request based on various criteria. The criteria can be strictly a distance
between the user and a node or can also include additional or alternative factors, such as
quality of service a node can provide to the user. The criteria used to determine
whether a node is “near enough” can also be specified by an SLA governing the user’s

request.

[0114] If the nearest node is determined to be “near enough”, then the core redirects
the download requests and all subsequent requests from the user to that node at step
888. Thus, a subsequent request from the user need no longer pass through the core
system 102, but instead can directly access the file from the node. In one embodiment,
the customer application interface stores the initial download request details, and
subsequent requests for the same file by the same IP address are redirected to the

previously identified “near enough” storage node.

[0115] If none of the nodes containing the file qualify as a “near enough” storage
node, then the core system 102 temporarily redirects the user to the nearest node (also
referred to as “first node” in this example of Figure 8D) containing the file at step §90.
In other words, the first node serves the download request for the user, but subsequent

requests may be directed to a different node.

33

WO 2009/032777 PCT/US2008/074687

[0116] Next, the core system 102 determines the identity of a “near enough” node at
step 892, and instructs the “near enough” node to get a copy of the requested file from
the first node at step 894. Accordingly, after step 8§94, both the first node and the “near
enough” node have a copy of the requested file. The core system can then notify the
customer application interface of the new “near enough” node’s IP address so that
subsequent requests for the same file by the same user IP address are directed

automatically to the new node identified at step §92.

[0117] In a further embodiment, at decision step 894, the core system 102, or a
clean up program located at the node, can periodically compare a time since the
requested file had been last accessed (LAD) at the “near enough” node with a
predetermined threshold. The predetermined threshold can correspond to a period of
time, e.g., 10 days. If the LAD exceeds the threshold, then the file at the “near enough”
node is deleted in step 896. If the LAD does not exceed the threshold, then the “near
enough” node is designated as the primary storage node at step 897 and the copy of the
file on the first storage node is deleted at step §98. In this manner, process 880 can
move files to nodes which better serve users. Moreover, duplication of files can be

reduced by deleting copies of files that are not frequently accessed.

[0118] In accordance with various embodiments, a node or other network resource
is “near enough” by determining a physical location associated with a user computer by
translating its IP address into a geocode and, thereafter, comparing this geocode with a
geocode associated with one or more nodes or other network resources. One or more
nodes or network resources (e.g., servers) are then assigned to service the user’s request
(e.g., an upload or download request) based at least in part on the location of the
network resource relative to the location of the user’s computer as determined by

respective geocodes associated with the user’s computer and the network resource.

[0119] Geocodes are known in the art and used, for example, by the U.S. postal
service to assign codes to geographic regions or areas. In general, a geocode is a code
that represents a geospatial coordinate measurement of a geographic location and time.
A geocode representation can be derived, for example, from the following geospatial
attributes: latitude, longitude, altitude, date, local time, global time and other criteria,

such as, how the area is coded (e.g., number, letter, mixture of both, or other), which

34

WO 2009/032777 PCT/US2008/074687

part of the earth is covered (e.g., whole earth, land, water, a continent, a country, etc.),
what kind of area or location is being coded (e.g., country, county, airport, etc.), and/or
whether an area or point is being coded. Generally, a geocode is a number

representation that takes into account some or all of the above criteria.

[0120] Every computer or device that communicates over the Internet has a unique
Internet Protocol (IP) address assigned to it. Computers and devices residing within a
pre-determined geographic region or area are typically assigned a specified range of IP
addresses. For example, all computers within Japan may have IP addresses in the range

of 43.0.0.0 — 43.255.255.255 (Source: IANA, Japan Inet, Japan (NET-JAPAN-A).

[0121] In one embodiment, when a user or customer makes an upload (a.k.a., “put”
or “store”) or download (ak.a., “get” or “retrieve”) request, via a web services
interface, for example, the request is received by core system 102 which translates the
IP address associated with the incoming request into a geocode. The core server 102
looks up a table that correlates IP addresses with geocodes, or IP address ranges with
geocode ranges. After the IP address has been translated into a geocode, the system
compares the geocode to the geocodes that have been assigned to storage nodes within
the network and determines, algorithmically, which resources are “nearest” the
requestor. If only one resource is “near enough,” the user is redirected to that resource.
If multiple resources are “near enough,” the system may determine which of the
resources is currently experiencing the lightest volume of requests (e.g., via updatable
polling) and redirect the requestor to that resource. Or, in an alternative
implementation, the requestor may be directed to the absolute nearest resource,

regardless of the current volume of requests being handled by that nearest resource.

[0122] Figure 9 illustrates an exemplary I[P address to Geocode translation table
900, in accordance with one embodiment of the invention. A periodically updated copy
of this table 900 may be stored at the core system 102 and at each of the distributed
storage delivery nodes 112 within the SDN system 100. As previously discussed
above, [P addresses of a group of computers within a particular geographic region or
area are typically assigned IP addresses within a range of addresses. Figure 9 shows
some fictional IP addresses 902 and geocodes 904. Generally, IP addresses 902 may

include four numerical values separated by a period, similar to that shown in Figure 9.

35

WO 2009/032777 PCT/US2008/074687

For example, IP addresses within San Diego county may be assigned an IP address of
192.168.1.X, where X differentiates individual IP addresses within the county. The
correlation between IP addresses and geographic areas and regions can be obtained
from publicly available sources. For example, third party vendors such as [PLigence
may provide such information for a fee. After the IP addresses 902 have been
correlated to corresponding geographic areas, this information can then be used to map
IP addresses to geocodes 904 based on the correlated geographic information. As
previously mentioned, geocodes 904 are known types of codes used by the postal
service, for example, to code geographic areas and regions to indicate relative distances

and positions between the geographic areas.

[0123] In one embodiment, a geocode may comprise at least five numerical fields a-
e. As shown in Figure 9, a first field (a) may indicate a continent (e.g., 7" = Asia), a
second field (b) may indicate a country, a third field (c) may indicate a state or region, a
fourth field (d) may indicate a city and a fifth field (¢) may indicate a postal code, for
example. The values of the geocodes are such that a large difference between two
geocodes indicates a large distance between the respective geographic regions
corresponding to the geocodes. For example, if two geocodes differ in value in the first
field of a geocode, then it is known that the corresponding geographic areas are on
different continents and quite far from each other. Thus, by storing a geocode for each
IP address associated with all users and network resources, relative distances between
user devices and network resources can be calculated by calculating the absolute value
of the difference between respective geocodes. It is understood that the geocode shown
in Figure 9 is exemplary and other formats and fields may be implemented in

accordance with desired criteria and/or applications.

[0124] In one embodiment, the core system 102 may determine distances between
storage nodes and a user’s device, or whether the storage node is “near enough” to the
user device, by calculating the absolute value of the difference between the storage
node’s geocode and the user’s geocode. In one embodiment, a storage node is
determined to be “near enough” if an absolute value of its corresponding distance is
lower than a predetermined threshold value. In further embodiments, additional criteria

may be considered to determine whether a node is “near enough,” or should be selected

36

WO 2009/032777 PCT/US2008/074687

to service the user’s file request. Such additional factors may include, for example,
how busy the node is, as measured by the number of current accesses to the storage
node, or number of accesses to a file within a specified time period by a user,
bandwidth of the network, speeds of the communication links on the network, quality of
service (QoS) of communications on the network, policies and rules as determined by a
user’s or customer’s SLLA, master internet trunk information, relative connectivity of the
storage nodes within the network, the relative performance capabilities of the node as
compared to other nodes, etc. In various embodiments, various combinations of the
above factors may be utilized and considered by logic residing in the core system 102
and/or logic within nodes to determine which one of a plurality of nodes should handle

the user’s request and subsequent requests by the same user.

[0125] In an alternative embodiment, the relative distances between nodes and
various geographic regions can be used to create a Node Priority Table that prioritizes
which nodes have priority with respect to serving end users in each geographic region.
In this embodiment, to determine whether a node is “near enough,” the core system
need not perform any geocode subtractions but simply looks up the Node Priority Table
to determine which nodes are designated to serve a particular user request based on a
geocode value associated with the user request. A more detailed discussion of a Node
Priority Table is provided below with reference to Figure 10B, in accordance with one

embodiment of the invention.

[0126] Determining a node to serve a client request will now be described with
reference to Figures 10A - 10D in accordance with various embodiments of the present

invention.

[0127] Figure 10A illustrates storage nodes A and B located at separate geographic
locations. For example, storage node A may be located in California while storage
node B is located in New York. Geocodes 1-6 are assigned to predetermined
geographic regions defined by circular boundaries having predetermined radii centered
about each node. First and second circular boundaries surrounding node A are defined
by circles 1002 and 1004, respectively. Third and fourth circular boundaries
surrounding node B are defined by circles 1006 and 1008, respectively. In one

embodiment, the boundaries having the smaller radii 1002 and 1006 represents areas

37

WO 2009/032777 PCT/US2008/074687

that can be considered “closest” to a respective node, and the boundaries having the
larger radii 1004 and 1008 can be considered ‘“close enough” to a respective node.
Although Figure 10A illustrates regions defined by circular boundaries, it is appreciated
that various shaped boundaries can be used to define geocode regions, such as
rectangular shapes. Moreover, geocode regions need not even be defined by particular
shapes, but may be defined by other criteria, such as quality of service considerations,
latency times, etc. As shown in Figure 10A, the circles 1002, 1004, 1006 and 1008
define various geographic regions 1-6 with respect to the nodes A and B which may be
translated or correlated to geocodes, or geocode regions, in accordance with one
embodiment of the invention. A first geocode region 1 corresponds to an area of
intersection between circles 1002 and 1004. A second geocode region 2 corresponds to
the area within circle 1002 minus region 1. A third geocode region 3 corresponds to the
area within circle 1004 minus region 1. Similarly, a fourth geocode region 4
corresponds to an area of intersection between circles 1004 and 1008. A fifth geocode
region 5 corresponds to an area within circle 1004 minus regions 2 and 4 and a sixth

geocode region 6 corresponds to an area within circle 1008 minus regions 3 and 4.

[0128] Figure 10B illustrates a Node Priority Table 1070 associated with the
geographic regions of Figures 10A, in accordance with one exemplary embodiment of
the invention. The Node Priority Table 1070 identifies a priority order for a plurality of
nodes to which core system 102 may send user requests based on which geocode region
(e.g., 1-6) a user is calling from. The Node Priority Table 1070 includes a Geocode ID
column 1072, a Priority ID column 1074, and a Node ID column 1076. The Geocode
ID column 1072 is populated by the geocode region IDs (e.g., 1-6) of Figure 10A. The
Priority ID column 1074 is populated by values indicating a node access priority
associated with each node in each geocode region. The Node ID column 1076 is
populated by values identifying a storage node, e.g., A or B which has been designated
to service various geocode regions in accordance with a predetermined priority order of
selection. Based upon which geocode region an end user 114 is calling from, a
particular node can be determined to be a “near enough” or a closest node to the end
user 114 using the Node Priority Table 1070. In one embodiment, the Node Priority
Table 1070 is stored in the core database server 102 which uses the table to select one

or more available nodes to which a user’s file request is redirected.

38

WO 2009/032777 PCT/US2008/074687

[0129] By prioritizing nodes with respect to different geographic regions various
algorithms may be implemented to select particular nodes to service user requests
originating from various geographic regions. In this example, geographic proximity is a
primary factor in determining node selection for a particular user request. However, as
would be apparent to those of skill in the art, various additional factors such as server
latencies, server performance, quality of service, how busy one node is when compared
to another node, etc. may be taken into account and implemented in the node priority
table and/or algorithms for selecting nodes to service user requests. In the present
example geocode regions shown in Figure 10A, a geocode ID region that falls within a
“closest” radius from a node may be assigned a “1” priority with respect to that node
(i.e., a highest priority value). Moreover, a geocode ID region that is outside the
“closest” radius, but falls within the “close enough” radius of a node may be assigned a
priority “2” region with respect to that node. Regions falling outside of the “near

enough” radius may be assigned a priority “3” region.

[0130] Thus, as shown in Figure 10B, geocode ID regions 1 and 2 are considered
“closest” to node A. Accordingly, Node Priority Table 1070 has priority “1” values
assigned under the Priority ID column 1074 associated with node A in geocode ID
regions 1 and 2. Geocode ID regions 4 and 6 fall outside of the “closest” radius, but fall

2

within the “near enough radius.” Accordingly, Node Priority Table 1070 has priority
“2” values assigned under the Priority ID column 1074 associated with node A in
geocode ID regions 4 and 6. Geocode ID region 5 falls outside of the “near enough”
radius of node A, and therefore is assigned a priority “3” value under the Priority ID
column 1074 associated with node A. The priority IDs are assigned in a similar fashion
for node B. Note that some geocodes can have the same Priority ID values for both

nodes. In such cases, the node selected to direct a request to can be determined based

on various factors, such as which node is less busy or other performance-based factors.

[0131] It is understood that geocode regions may be defined in any desired manner
to achieve desired performance goals. For example, geocode regions may be defined
by longitudinal boundaries in accordance with one embodiment. Figure 10C illustrates
exemplary distributed storage nodes A and B and K located at geographically separate

locations around the world. The world is divided into exemplary geocode ID regions 1-

39

WO 2009/032777 PCT/US2008/074687

6 based on longitudinal boundaries indicated by dashed lines. In the embodiment of
Figure 10C, a geographic area is divided based upon longitudinal boundaries, but it is
appreciated that the geographic areas can be divided using zip codes, country codes,
and the like. A Node Priority Table can then have a priority ID value for each geocode
region 1-6 assigned to some or all of the nodes A, B and K. The priority value can be
based on various criteria, including distance from a node to the geocode region and

connectivity performance between the geocode region and the node, for example.

[0132] Figure 10D illustrates an exemplary node selection process 1080. The
various tasks performed in connection with process 1080 may be implemented by
software, hardware, firmware, a computer-readable medium storing computer
executable instructions for performing the process method, or any combination thereof.
It should be appreciated that process 1080 may include any number of additional or
alternative tasks. The tasks shown in Figure 10D need not be performed in the
illustrated order, and process 1080 may be incorporated into a more comprehensive
procedure or process having additional functionality not described in detail herein. For
illustrative purposes, the following description of process 1080 may refer to elements
mentioned above in connection with Figures 1-7A. In various embodiments, portions
of process 1080 may be performed by different elements of systems 100-700, such as
core system 102, customer application interface 110, and the distributed storage
delivery nodes 112A, 112B — 112K. Tasks of process 1080 may be performed as

backend processes that are transparent to the end user 114

[0133] For illustrative purposes the following discussion describes a user download
request. It is appreciated that process 1080 may be equally applicable to a file upload
request with minor modifications. At step 1081, a user request to download a file is
received by the core system 102. In one embodiment, the user request includes an IP

address of the user’s device and a virtual path name of the file being requested.

[0134] Next, at step 1082, the core system 102 determines available nodes that
contain the requested file. This step is performed by correlating the virtual path name
with a LFID as described above with reference to Figures 4A -5A. The LFID can then
be used to identify which nodes contain the file and which of those nodes are available

(e.g., online) using the Logical Node Table of Figure 5B.

40

WO 2009/032777 PCT/US2008/074687

[0135] The core system 102 then determines a priority of the available nodes that
contain the file in step 1083. This is done correlating the available nodes that contain
the file with the Node Priority list 1070 (Figure 10B) and the geocode ID associated
with the region from which the user is calling. The available node that contains the file
having the lowest Node Priority ID value is determined to be the highest priority node.
Thus, a node having a priority ID value of “1” is determined to be a top priority node,

etc.

[0136] In step 1084, the user is redirected to the available node that contains the file
and is assigned the highest node priority ID. For the purposes of this example, this
node can be referred to as the “first node™). The first node then transmits the requested

file to the user in step 1085.

[0137] Synchronously or asynchronously with transmitting the file to the user in
step 1085, the first node determines if it is an appropriate node at decision step 1086. In
one embodiment, the first node determines if it is an appropriate node based on whether
the users IP address or address range, which the first node obtained from the user, is on
a serve list contained in the first node. If the user’s IP address is not on the serve list,
then the first node is not an appropriate node. In other embodiments, this determination
need not be based on a user’s IP address, but can instead be based on various criteria,

including the user’s geocode.

[0138] If the first node is determined to be an appropriate node, then process 1080

may end at step 1087.

[0139] If the first node determines that it is not an appropriate node, then it notifies
the core system102 that it is not an appropriate node in step 1088. The core system 102
then determines a “best node” to serve further download requests from that user in step
1089. The “best node” can be determined based on various criteria including policies
set forth in a controlling SLA. As an example, a controlling SLA may specify a
particular node, in which case that node would be considered the best node. As another
example, the controlling SLA may specify that the best node is any node that can best
serve the user if that node has a copy of the file. In various embodiments, the
determination of which node can best serve users can be based on, for example, usage

patterns of the various nodes, geographic proximity of the various nodes to a user,

41

WO 2009/032777 PCT/US2008/074687

latency measures, quality of service requirements for the user as specified in the user’s

SLA, for example, etc.

[0140] Next, the core system 102 instructs the best node to get a copy of the file in
step 1090. Subsequent requests for the file can then be directed to the best node in step
1091. It is appreciated that one benefit of the above process is that the node off-loads
processing requirements from the core server 102 by determining whether it is an
appropriate node to service a user request (step 1086). As mentioned above, this
determination can be based on a variety of predetermined criteria (e.g., whether the IP
address of the user is on a “serve list,” latency considerations, distance considerations,
quality of service associated with the request, etc.). In most instances it is contemplated
that the selected node will be an appropriate or acceptable node to process a request
and, therefore, the node will not need to bother the core server. Only in rare instances
will the node notify the core that it is not an appropriate or acceptable node to service a
particular request. In this way, the core server 102 does not need to perform an inquiry
for every request that is transmitted to it concerning whether a selected node is an
appropriate or acceptable node. It simply, redirects a request to a nearest available node
containing the requested file and thereafter assumes the node will handle the request.
The core server 102 is only notified if there is a problem and thereafter takes

appropriate action.

[0141] An exemplary environment in which an inter-node balancing process may be
implemented is described with reference to Figure 11A below, in accordance with one
embodiment of the invention. As shown in Figure 11A, SDN system 100 includes a
core system 102 communicatively coupled to four distributed storage delivery nodes
112A, 112B, 112C and 112D. For the purposes of this example, end user device 1102
is calling from a location closest to storage delivery node 112A and a governing SLA
dictates that files requested by the end user device 1102 be moved to a storage node

located “closest” to the end user device 1102 at storage delivery node 112A.

[0142] As used herein, the term “closest” does not necessarily mean the node is the
closest node in terms of absolute distance. The term can also be used to refer to a node
that is better suited for connection with the end user because, for example, the

connection between the user and the node will result in better performance (e.g., higher

42

WO 2009/032777 PCT/US2008/074687

data transmission rate) versus another node. Furthermore, a “closest” node may, in fact,
be further away than another node, yet still be determined to be a “closest” node due to
design efficiencies, and/or relative performance capabilities of the various nodes, and/or
the relative load (e.g., number of requests being handled) of the various nodes. Such
design efficiencies and/or operation parameters may take into account the ease of
managing which nodes users can access as opposed to requiring a strict absolute

distance based analysis.

[0143] Figure 11B illustrates a flowchart of an exemplary inter-node load balancing
process 1120 that can be performed in the environment of Figure 11A in accordance
with one embodiment of the invention. The various tasks performed in connection with
process 1120 may be implemented by software, hardware, firmware, a computer-
readable medium storing computer executable instructions for performing the process
method, or any combination thereof. It should be appreciated that process 1120 may
include any number of additional or alternative tasks. The tasks shown in Figure 11B
need not be performed in the illustrated order, and process 1120 may be incorporated
into a more comprehensive procedure or process having additional functionality not
described in detail herein. For illustrative purposes, the following description of
process 1120 may refer to elements mentioned above in connection with Figures 1-11A.
In various embodiments, portions of process 1120 may be performed by different
elements of systems 100-1100, such as core system 102, customer application interface
110, and the distributed storage delivery nodes 112A, 112B — 112K. Tasks of process

1150 may be performed as backend processes that are transparent to the end user 114.

[0144] Process 1120 may begin by an end user calling (via the end user device
1102) into the core system 102 and requesting a file (task 1122). The request can
comprise the end user’s IP address and information corresponding to a virtual path of
the requested file. The virtual path name is described in more detail with reference to
Figures 3 and 4. The core system 102 then translates the virtual path name to its
corresponding LFID using tables stored in VES 105 and LFS 107 (Figure 1).
Thereafter, the core system 102 identifies all the storage nodes in which the file is
stored using LFS 107 (task 1124). Next, the identified storage nodes are prioritized by
sorting the Node Priority Table 1070 (Fig. 10B) and taking into account the user’s SLA

43

WO 2009/032777 PCT/US2008/074687

(task 1126). The core then determines which of the sorted nodes are “near enough”
(e.g., priority 2 or better) (task 1128). Optionally, the core 102 determines whether any
of the identified “near enough” nodes have recently updated its current access count
(CACQ), which is the number of requests a node is currently handling (task 1130). If the
answer to inquiry 1130 is “no,” then the core 102 directs the user request to the nearest

of the near enough nodes (task 1132), after which process 1120 ends.

[0145] If the answer to inquiry 1130 is “yes,” then the core server 102 determines
whether the nearest of the near enough nodes is too busy (i.e., CAC over threshold?)
(task 1134). It is appreciated that tasks 1130 and 1132 are optionally implemented by
the core in order to potentially bypass tasks 1134-1146, thereby saving processing
bandwidth at the core 102, in accordance with one embodiment of the invention. If
optional tasks 1130 and 1132 are omitted, then inquiry task 1134 immediately succeeds
task 1128 in process 1120. If the answer to inquiry 1134 is “no,” then the core 102
directs the user request to the nearest node (task 1136) and process 1120 ends. If the
answer to inquiry 1134 is “yes,” the core inquires whether any of the other “near
enough” nodes are less busy (task 1138). If the answer to inquiry 1138 is “no,” then the
core 102 directs the user request to the previously identified nearest node (task 1140)
where it is queued for handling. Next, the core determines if there is another near
enough node to copy the file to (task 1142). If so, the core initiates a “file walking”
process by instructing the new “near enough” node to copy the file from one of the

previously identified nodes containing the file (task 1144).

[0146] If the answer to inquiry 1138 is “yes,” the core 102 directs the user request
to the “near enough” node with the lowest current access count (CAC) (task 1146). If
there is only one “near enough” node containing the file that is less busy than the

nearest node, then the user request is automatically directed to that “near enough” node.

[0147] Figure 11C illustrates a supplemental inter-node balancing process 1150
which is implemented by a storage node, in accordance with one embodiment of the
invention. Whenever the user’s request is redirected to a storage node (e.g., tasks 1132,
1136, 1140 or 1146 of Figure 11B), the storage node will receive the user’s request
(task 1152) and thereafter serve the file to the end user (task 1154). After completing

the transfer of the file to the user, the node decrements its current access count (CAC)

44

WO 2009/032777 PCT/US2008/074687

by 1 (task 1156) and then determines whether its CAC has crossed a threshold
indicating that the node is no longer “too busy” (inquiry task 1158). If the answer to
inquiry 1158 is “no,” then there has not been a change of status of the node and the
process 1150 ends. If the answer to inquiry 1158 is “yes,” this means that the node was
previously “too busy” but is no longer “too busy.” Therefore, the node notifies the core
102 that it is no longer “too busy” by updating the core 102 with its node CAC value
(task 1166).

[0148] Immediately upon receiving a request from a user, the node increments its
CAC by 1 (task 1160). Next, concurrently with processing the user request, the node
determines whether its CAC value is above a predetermined threshold value (e.g., 100
requests) (task 1162). If the answer to inquiry 1162 is “no,” then the node is not “too
busy” and the node need not notify the core. If the answer to inquiry 1162 is “yes,”
then the node determines whether the core 102 was previously notified of its “too busy”
status within a predetermined duration of time T (task 1164). If the answer to inquiry
1164 is “yes,” then the core 102 already knows of the current “too busy” status of the
node and no further notification is needed. If the answer to inquiry 1164 is “no,” then
the node notifies the core 102 that it is “too busy” by updating the core 102 with its
CAC value (task 1166). Thus, in this embodiment, the node notifies the core when its

B

status changes from “too busy” to “not too busy” and further notifies the core if its
status is “too busy” and the core has not been alerted of its “too busy” status within a

predetermined time period.

[0149] Figure 11D is an exemplary intra-node load combined with an inter-node
load balancing process 1170 in accordance with one embodiment of the present
invention. The various tasks performed in connection with process 1170 may be
implemented by software, hardware, firmware, a computer-readable medium storing
computer executable instructions for performing the process method, or any
combination thereof. It should be appreciated that process 1170 may include any
number of additional or alternative tasks. The tasks shown in Figure 11C need not be
performed in the illustrated order, and process 1170 may be incorporated into a more
comprehensive procedure or process having additional functionality not described in

detail herein. For illustrative purposes, the following description of process 1100B may

45

WO 2009/032777 PCT/US2008/074687

refer to elements mentioned above in connection with Figures 1-7A. In various
embodiments, portions of process 1170 may be performed by different elements of
systems 100-700, e.g., core system 102, the customer application interface 110, the

distributed storage delivery nodes 112, etc.

[0150] Upon receiving a download request (task 1172) for a file, a download server
706 (Figure 7) at a designated storage node may determine which of a plurality of
storage servers within the node 112 is least busy (task 1174). Least busy may be
measured by, for example, the lowest number of current accesses or accesses within a
predetermined period of time. The server with the lowest number of accesses may then
be used to serve the download request (task 1178). In one embodiment, immediately
upon receiving the transfer request, the identified server’s CAC is incremented by one
(task 1176) to indicate it is currently handling an additional access request. After the
server completes serving the request, its CAC is decremented by one. Each time the
CAC is incremented or decremented the node stores a last update date (LUD) time
stamp for that LFID’s CAC to determine when the CAC was last changed and, hence,
the number of access requests within a predetermined period of time.. In this manner,
the storage node performs “intra-node load balancing” among the plurality of storage

B

servers within the storage node 700 by directing a request to a “least busy” storage
server in the storage node 700. In other words, the number of simultaneous requests
handled by a node is evenly distributed amongst a plurality of storage servers within the
node such that no one server works harder on average than another server. It is
appreciated, that this type of intra-node load balancing reduces service latencies and

optimizes node performance and server longevity.

[0151] Next, the node determines whether it is “near enough” or “local” to the end
user’s device by comparing a geocode value associated with the user’s IP address to its
own geocode or, alternatively, by simply determining whether the user IP addess is
listed on its “serve list,” as described above(inquiry task 1182). If the first storage node
is determined to be “near enough” (“Yes” branch of inquiry task 1182), then the first
storage node compares the number of requests it is handling to a predetermined
threshold (inquiry task 1184). If the number of requests exceeds the threshold (“No”

branch of inquiry task 1184), then the first storage node is determined to be too busy

46

WO 2009/032777 PCT/US2008/074687

and the file is copied to a second storage node (task 1186). In one embodiment, the
node notifies the core 102 that it is too busy, as described above, and the core thereafter
instructs a second node to copy the file from the original node. Alternatively, in
another embodiment, the original node can automatically identify a new node that is
near enough the user and instruct the new node to copy the requested file. It is
appreciated, however, that this latter embodiment requires more information and logic
to be stored at the node. Subsequent requests for the file can then be directed to the
second storage node to offset some of the load of the first storage node. Thus, storage
nodes within the network can perform inter-node load balancing as well. If the number
of requests does not exceed the threshold (“Yes” branch of inquiry task 1178), then the

first storage node continues to process further file requests for that file.

[0152] Referring back to inquiry task 1182, if the storage node determines that it is
not a proper node to serve the requester (“No” branch of inquiry task 1182), then the
storage node notifies the core system 102. The core system 102 then determines the
nearest storage node that contains the requested file based on the [P address of the end
user (task 1188). A distance between the end user and the node containing the file is
compared with a predetermined threshold in decision task 1190. If the threshold is not
exceeded (“Yes” branch of decision task 1190), then the node identified in task 1188
process the request and process 1170 ends. Alternatively, the original node processes
the current request but all subsequent requests for the same file by the same user or user
similarly located as that user are processed by the new node. If the threshold is
exceeded (“No” branch of decision task 1190), then the core system 102 directs the
original storage node to send the file to the nearest storage node identified in task 1188
for storage (task 1192). The new nearest storage node containing the file may then

process the file and notify the LFS 107 of the file’s existence at the node.

[0153] When a file is stored at two or more storage servers within a node, it may be
desirable to delete the file at one or more of the storage servers for de-duplication
purposes. In one embodiment, a cleanup program determines if it is no longer
necessary to store one or more redundant files within a node based on a current access
count (CAC) associated with the LFID for the file. Figure 12 is a flow chart of an

exemplary cleanup process 1200 associated intra-node load balancing, in accordance

47

WO 2009/032777 PCT/US2008/074687

with one embodiment of the present invention. The various tasks performed in
connection with process 1200 may be implemented by software, hardware, firmware, a
computer-readable medium storing computer executable instructions for performing the
process method, or any combination thereof. It should be appreciated that process 1200
may include any number of additional or alternative tasks. The tasks shown in Figure
12 need not be performed in the illustrated order, and these processes may be
incorporated into a more comprehensive procedure or process having additional
functionality not described in detail herein. For illustrative purposes, the following
description of process 1200 may refer to elements mentioned above in connection with
Figures 1-9. In various embodiments, portions of process 1200 may be performed by
different elements of systems 100-700, e.g., core system 102, the customer application

interface 110, the distributed storage delivery nodes 112, etc.

[0154] Process 1200 may begin by counting a total current access count (CAC) for
an LFID associated with a file (task 1210). In this context, “current access count”
refers to a number of times a logical file is currently being accessed. If the total current
access count of the LFID divided by the number of physical files currently associated
with the LFID is not lower than a predetermined threshold (“No” branch of inquiry task
1212), then process 1200 ends and no files are deleted If the total current access count
of the LFID divided by the number of physical files currently associated with the LFID
is lower than the threshold (“Yes” branch of inquiry task 1212), process 1200
determines how many files should be cleaned up by subtracting the rounded-down
quotient of the threshold divided by the CAC from the current physical file count (task
1214). For example, if the total CAC is equal to 10, and the threshold is equal to 12,
and the number of physical files associated with the LFID is equal 2, then the number
of files to be deleted is equal to 2-(rounded down quotient of 12/10) = 1. Thus, in this
example, the number of redundant files to be deleted is equal to 1. Next, the
corresponding number of physical files, which have the lowest CAC associated with
them, are marked offline so no new connections are made to those files and existing
connections are closed after the current transfers are completed (task 1216). A separate
process determines which files are marked offline and are no longer being accessed
(i.e., CAC is equal to zero) (task 1218) and deletes those files from the disk (task
1220).

48

WO 2009/032777 PCT/US2008/074687

[0155] In a further embodiment the minimum number of physical files may be set
to a number greater than one. In this scenario, the formula for task 1214 may be
modified to ensure that a specific number of physical files are always maintained for
each logical file. As would be understood by one of ordinary skill in the art, any
threshold value may be selected based on the operating and/or performance capabilities
of the storage servers within the node, to control the loads on each server. In this
manner, the number of redundant copies of a file stored in a node is continuously and
automatically adjusted based at least in part on the number of access requests for that

file and the operating/performance capabilities of the servers within the node.

[0156] Although the internet media file system is described in the context of
storing, accessing and manipulating files via the internet, it is understood that the
invention is applicable within any type of communcations network (e.g., LAN, WAN,
etc.). However, for illustrative purposes, the data file system and method of the present
invention is described as an internet media file system (IMFS). The IMFS 108 can have

a variety of functions and uses. Some exemplary uses are discussed below.

[0157] As an example, although the IMFS 108 has been described above in
connection with SDN storage nodes 112, it is understood that the IMFS 108 may be
used with various types of physical storage devices having a variety of storage network
configurations. Thus, the IMFS 108 need not be used exclusively with distributed
storage delivery nodes 112, but can be used with other types of memory devices as

well.

[0158] The IMFS 108 is a file system that can enable users to store, retrieve, and
manipulate files from a remote location using a rich set of Web Service API’s. File
system operations require a caller (i.e., a requester such one of the end users 114) to be
authenticated. For example, calls into IMFS 108 may require a session token which can
be obtained by a logical call. In general, paths can be specified as either absolute or

relative to an account’s root folder.

[0159] The following are some exemplary Web Service interfaces for IMFS.

49

WO 2009/032777 PCT/US2008/074687

¢ A CopyFiles function or function is used to copy a file from one location to
another. The CopyFiles function can be used to copy one or more files to a given

folder.

¢ A CopyFolders function is used to copy a folder from one location to another.

The CopyFolders function can be used to copy one or more folders.
¢ A CreateFolders function is used to create a new folder at the specified location.
¢ A DeleteFiles function is used to remove one or more files.
¢ A DeleteFolders function is used to remove one or more folders.
¢ A ListFolder function is used to page the content of a given folder.

o A MoveFiles function is used to move a file from one location to another. The

MoveFiles function can be used to move one or more files to a given folder.

o A MovePFolders function is used to move a folder from one location to another.

The MoveFolders function can be used to move one or more folders.
o A RenameFile function is used to rename a file from one name to another.
o A RenameFolder function is used to rename a folder from one name to another.

[0160] In one embodiment, the IMFS 108 can correlate the physical files with their
corresponding customers. Thus, the IMES 108 can keep track of what content is stored
in the distributed storage delivery nodes 112, where it is stored in the distributed storage
delivery nodes 112, and who has access to the content. The IMFS 108 may map the
customer to a IMFS Web Services in order to keep track of a customer’s file and

provide access for the customer and/or customer’s clients.

[0161] Figure 13 illustrates an exemplary IMFS data flow 1300 in accordance with

one embodiment of the invention.

[0162] As shown in Figure 13 an end user 1302 can make a request to the IMFS
Web Services 1304 to access the IMFS. IMFS Web Services 1304 may provide a set of
API’s that can allow an end user 1302 to upload files to their IMFS and for
manipulating the metadata An exemplary method of providing the API’s is using the

SOAP protocol, however an HTTP upload interface will also be provided. The

50

WO 2009/032777 PCT/US2008/074687

metadata types may include, without limitation, image files, width, height, video file,

duration, bit rate, frame rate, audio files, title, artist, album, genre, track, and the like.

The IMFS can have many function to manipulate metadata, including, without

limitation:

[0163]

A Delete AllMetadata function for removing all metadata from a file.

A DeleteMetadata function for removing specified metadata from a file.
A GetMetadata function for retrieving all metadata from a file.

A SetMetadata function for setting specified metadata for a file.

A DeleteAllTags function for removing all tags from a file.

A DeleteTags function for removing specified tags from a file.

A GetTags function for retrieving all tags from a file.

A SetTags function for setting specified tags for a file.

IMFS Web Services 1304 may include interfaces to the IMFS to allow end

users 1302 to, for example, upload, append, copy, delete, move, and rename files and

folders. In one embodiment, the IMES Web Services 1301 may implement the industry

standard REST and SOAP protocols for implementing the APIs to the functions. The

interfaces to the IMFS may include, without limitation,

e A CopyFiles function used to copy a file from one location to another. The

CopyFiles function can be used to copy one or more files to a given folder.

e A CopyFolders function used to copy a folder from one location to another. The

CopyFolders function can be used to copy one or more folders.

¢ A CreateFolders function used to create a new folder at the specified location.

o A DeleteFiles function used to remove one or more files.

o A DeleteFolders function used to remove one or more folders.

¢ A ListFolder function used to page the content of a given folder.

® A MoveFiles function used to move a file from one location to another. The

MoveFiles function can be used to move one or more files to a given folder.

51

WO 2009/032777 PCT/US2008/074687

o A MoveFolders function used to move a folder from one location to another. The

MoveFolders function can be used to move one or more folders.
o A RenameFile function used to rename a file from one name to another.
o A RenameFolder function used to rename a folder from one name to another.

Furthermore, end users 1302 can retrieve a listing of their files and also associate user

defined tags and metadata.

[0164] With further reference to Figure 13, the IMFS Web Services 1304 may
communicate with an API database 1308 to obtain the IMFS Web Services API’s.
After a device used by the end user 1302 receives an IMFS Web Services API, the
device may use the API to access files through the command processing servers 214
(Figure 2). Unless the end user 1302 is requesting to append or upload a file, the IMFS
Web Services 1304 returns the IMFS Web Services API to the end user 1302 as a

response to the request.

[0165] If the end user 1302 requests to upload or append a file with, for example an
“Upload File” command, then the IMFS Web Services 1304 writes portions (e.g., bytes)
of the user’s file to permanent storage 1310. The IMFS Web Services 1304 may then
submit the “Upload File” command to the message queuing service 1312 (as explained
in more detail below), and return a response to the end user 1302 with the status of the

command.

[0166] The “Upload File” command may be used to upload a file in its entirety. If
the path does not exist it can be created. The maximum file size for uploading a file
using this command may be, for example, about 2 GB. If the file is larger than about 2
GB, then the append file method may be used. For example, if the filename is
“Vacations/2007/Hawaii/beachDay1.jpg”, then when the file is done uploading, the file
would be added to the file system as Vacations/2007/Hawaii/beachDay]1.jpg”. The
IMFES Web Services 1304 may create the folders that do not exist in this scenario using
standard operating system file operations. The “Append File” command can be used to

add data to the uploaded file in parts.

52

WO 2009/032777 PCT/US2008/074687

[0167] When an end user 1302 uploads a file using the API’s append file method
and upload file method, then there may be other actions that occur within the IMFS
Web Services 1304. For example, as soon as the last portion (i.e., last byte) of the file
has been written to the permanent storage 1310, the IMFS Web Services 1304 may
interact with the database 1308 and update the end user’s file system. At that point, the
end user 1302 may complete access to their file. The end user 1302 can download,
copy, move, delete, rename, and set tag and metadata information for the file. The
command processing service 1314 may process this file, and extract industry standard

metadata from image, video, audio files, and the like.

[0168] In one embodiment, the command processing service 1314 can be a
Windows Service operable to be a scalable and extensible solution for executing system
wide tasks for the IMFS Web Services 1304. In alternative embodiments, the command
processing service 1314 can be implemented as an operating system daemon operable
to be a scalable and extensible solution for executing system wide tasks for the IMFS
Web Services 1304. The service 1314 can function as a generic framework for

computations that can be completed asynchronously.

[0169] In one embodiment, a web-based tool may allow the IMES to get a real-time
snapshot of all activity occurring on a given server running the command processing
service 1314. This can be very beneficial for troubleshooting purposes, and to have an

overall view of the number of files that are being uploaded over time.

[0170] One of the purposes of the command processing service 1314 is, for
example, to calculate the MD5 hash for the purpose of physical file de-duplication as
explained above. It can also be responsible for extracting metadata from image, video,
and audio files in order to provide the end user 1302 with more information about their
files. Examples of this type of metadata are image width and height, video frame rate,

the artist and album for an audio file, and the like.

[0171] The command processing service 1314 may function to run regularly
scheduled maintenance jobs for customers (end users) who have unreported usage,
clean up aborted upload files, and provide system resource information such as

available storage to the IMFS database 1308.

53

WO 2009/032777 PCT/US2008/074687

[0172] The command processing service 1314 may run on one or more servers
located throughout various nodes. As processing requirements grow, processing servers
can easily be added to assist in balancing the system 100 load. All processing servers
running the command processing service 1314 may be independent from any other
processing server (i.e., one processing server may have has no idea that any other
processing server exists). Load balancing amongst storage node servers or between

storage nodes may be automatic, as explained above.

[0173] The command processing service 1314 may wait for a command, and then
execute it. When it is not executing a command, it may be idle. The mechanism by
which the command processing service 1314 receives these commands is a queuing
service such as queuing service 1312. In one embodiment, the queuing service 1312
may comprise an MSMQ service. The queuing service 1312 may be configured in a
clustered set of nodes in the node with complete failover capability. Therefore, if one of
the queuing service cluster nodes happened to fail, it would automatically fail-over to
another storage delivery node without any data loss. The queuing service 1312 service
may also be configured to have data recovery if for some reason the queuing service
1312 service needs to be stopped and/or restarted. All data currently stored in the queue

is automatically serialized to disk.

[0174] As mentioned above, a command may be sent to the queuing service 1312
from the IMFS Web Services 1306 when the end user 1302 uploads a file, as will be
explained below. Once a command arrives at the queuing service 1312, it can
automatically be retrieved from one command processing service 1314 that is available
to receive that command for processing. In one embodiment, commands are
asynchronously “pulled” from a command processing service 1314 not “pushed” to a
command processing service 1314. Once a command is retrieved, it can automatically
be removed from the queuing service 1312. Commands sent to the queuing service
1312 may have a priority associated with them. In other words, a command may be
submitted to the queuing service 1312 and be moved ‘to the head of line’ so that it is
received ahead of other commands already in the queuing service 1312. The command

processing service 1314 may be operable to take full advantage of this feature.

54

WO 2009/032777 PCT/US2008/074687

[0175] Each command processing service 1314 can, for example, be initialized with
about 10 processing threads on a given server. Therefore, each processing server can
process about 10 commands simultaneously and each command is executed totally
asynchronous from any other command. The number of processing threads is
configurable. Once a processing thread has completed executing the command, it waits
to receive another command from the queuing service 1312. The threads are either

executing a command or waiting to receive another command until the service is terminated.

[0176] Under optimal conditions, commands submitted to queuing service 1312 are
taken off the queue to be processed immediately. However, under heavy load
conditions, the processing servers may not be able to process all commands as fast as
they are being submitted. As a result, commands may have to wait in the queue longer
than desired before getting processed. In this case, additional processing servers can be

added to further distribute the system load and reduce processing delays.

[0177] Standard commands may asynchronously be sent to the queuing service
1312 and be asynchronously executed by a command processing service 1314. The
standard commands may include, without limitation: a “BaseCommand”, a “Scheduler”
command, a “Media” command, a “File Ingestion” command, a “Multi Node File
Copy” command, a “Partial File Update” command, an “Add Physical File” command,

a “Get Upload Location” command, and the like.

[0178] A “Get Upload Location” command can be used to determine which
distributed storage delivery nodes 112 a file may be uploaded to. The “Get Upload
Location” may return an [P address for the distributed storage delivery nodes 112

(Figure 1) and an upload token.

[0179] It may be possible that a command submitted to processing service 1314
fails to execute. One scenario would be network congestion. If a command fails, the
command processing service 1314 may resubmit this command to the queuing service
1312, but into a special separate queue designed for holding failed commands. Failed
commands may not in any way affect a user’s ability to download or manipulate the
files. It may mean that a file may not have an MD5 hash and its embedded metadata, if
applicable, associated with it. Failed commands can be re-processed at an information

technologist’s discretion once the system/network problem has been resolved.

55

WO 2009/032777 PCT/US2008/074687

[0180] Figure 14 illustrates an exemplary download sequence 1400 that may be
implemented using IMFS core database in accordance with one embodiment. At step
1402, the client initiates download request to the download node to which it was
redirected by the core 102 (Fig. 1). Next, at step 1404, a transfer services server 707
(Fig. 7) asks the IMFS core database to authenticate the user and authorize the
download given a session token, the file path, and the number of bytes being requested.
If the request meets all restrictions placed on this account such as file size limit or
bandwidth limit, a reservation will be made against the account for the number of
download bytes requested. The database then returns the LFID associated with the
user’s virtual file path and a reservation ID for the download at step 1406. Next, the
transfer services server asks the local node manager database for the physical location

of the file given the logical file ID at step 1408 and the physical location is provided in step 1410.

[0181] The transfer services server reads the file content from the physical location
at step 1412 and the transfer services server streams the content to the client at step
1414. After the transfer services server completed serving the client’s request, it commits

the actual bytes transferred for the reservation ID to the IMFS database at step 1416.

[0182] Figure 15 illustrates an exemplary relocated file download sequence 1500
that may be implemented using IMFS core database in accordance with one
embodiment. At step 1502, a client sends a download request to a first download node.
A transfer services server receives this request and then asks the IMFS Core DB to
authenticate the user and authorize the download given a session token, the file path,
and the number of bytes being requested at step 1504. The DB responds with an error
indicating that the requested file is no longer available at the first node and what the
current optimum download node is at step 1506. The transfer services server at the first
download node then redirects the client to a new, second download node at step 1508,
using the original requested URL with the node address replaced. At a next step 1510,
the client initiates the same request to a transfer services server within the second node.
The remaining sequence of process 1500 can be similar to steps 1404 through 1416 of
Figure 14.

56

WO 2009/032777 PCT/US2008/074687

[0183] While various embodiments of the invention have been described above, it
should be understood that they have been presented by way of example only, and not by
way of limitation. Likewise, the various diagrams may depict an example architectural
or other configuration for the disclosure, which is done to aid in understanding the
features and functionality that can be included in the disclosure. The disclosure is not
restricted to the illustrated example architectures or configurations, but can be
implemented using a variety of alternative architectures and configurations.
Additionally, although the disclosure is described above in terms of various exemplary
embodiments and implementations, it should be understood that the various features
and functionality described in one or more of the individual embodiments are not
limited in their applicability to the particular embodiment with which they are
described. They instead can, be applied, alone or in some combination, to one or more
of the other embodiments of the disclosure, whether or not such embodiments are
described, and whether or not such features are presented as being a part of a described
embodiment. Thus the breadth and scope of the present disclosure should not be

limited by any of the above-described exemplary embodiments.

[0184] In this document, the term “module” as used herein, refers to software,
firmware, hardware, and any combination of these elements for performing the
associated functions described herein. Additionally, for purpose of discussion, the
various modules are described as discrete modules; however, as would be apparent to
one of ordinary skill in the art, two or more modules may be combined to form a single

module that performs the associated functions according embodiments of the invention.

[0185] In this document, the terms “computer program product”, “computer-
readable medium”, and the like, may be used generally to refer to media such as,
memory storage devices, or storage unit. These, and other forms of computer-readable
media, may be involved in storing one or more instructions for use by processor to
cause the processor to perform specified operations. Such instructions, generally
referred to as “computer program code” (which may be grouped in the form of
computer programs or other groupings), which when executed, enable the computing

system.

57

WO 2009/032777 PCT/US2008/074687

[0186] It will be appreciated that, for clarity purposes, the above description has
described embodiments of the invention with reference to different functional units and
processors. However, it will be apparent that any suitable distribution of functionality
between different functional units, processors or domains may be used without
detracting from the invention. For example, functionality illustrated to be performed by
separate processors or controllers may be performed by the same processor or
controller. Hence, references to specific functional units are only to be seen as
references to suitable means for providing the described functionality, rather than

indicative of a strict logical or physical structure or organization.

[0187] Terms and phrases used in this document, and variations thereof, unless
otherwise expressly stated, should be construed as open ended as opposed to limiting.
As examples of the foregoing: the term “including” should be read as meaning
“including, without limitation” or the like; the term “example” is used to provide
exemplary instances of the item in discussion, not an exhaustive or limiting list thereof;
and adjectives such as ‘“conventional,” “traditional,” “normal,” “standard,” “known”,
and terms of similar meaning, should not be construed as limiting the item described to
a given time period, or to an item available as of a given time. But instead these terms
should be read to encompass conventional, traditional, normal, or standard technologies
that may be available, known now, or at any time in the future. Likewise, a group of
items linked with the conjunction “and” should not be read as requiring that each and
every one of those items be present in the grouping, but rather should be read as
“and/or” unless expressly stated otherwise. Similarly, a group of items linked with the
conjunction “or” should not be read as requiring mutual exclusivity among that group,
but rather should also be read as “and/or” unless expressly stated otherwise.
Furthermore, although items, elements or components of the disclosure may be
described or claimed in the singular, the plural is contemplated to be within the scope
thereof unless limitation to the singular is explicitly stated. The presence of broadening

k- AN13

words and phrases such as “one or more,” “at least,” “but not limited to”, or other like
phrases in some instances shall not be read to mean that the narrower case is intended or

required in instances where such broadening phrases may be absent.

58

WO 2009/032777 PCT/US2008/074687

WHAT IS CLAIMED IS:

1. A method for locating an optimum storage node for serving a data file
request received via a communications network, comprising:

receiving a file request from a user device coupled to the communications
network;

determining a geocode value based on a communications network address
associated with the user device, wherein the geocode value is indicative of a geographic
location of the user device;

selecting a storage node from a plurality of storage nodes coupled to the
communications network to serve the file request, wherein the storage node is selected
based at least in part on the geocode value; and

redirecting the file request to the selected storage node for handling.

2. The method of claim 1 wherein the communications network comprises an
internet communications network and the communications network address comprises an

internet protocol (IP) address.

3. The method of claim 1 wherein the file request comprises a file download
request and selecting the storage node is further based on whether the storage node

contains a file corresponding to the file download request.

4. The method of claim 1 wherein the selected storage node is selected
because it is determined to be the closest storage node to the user device among the

plurality of storage nodes.

5. The method of claim 4 further comprising determining if the selected
storage node is near enough the user device and if it is determined that the selected
storage node is not near enough, identifying a second storage node that is near enough
and automatically directing subsequent requests by the user device to the second storage

node.

59

WO 2009/032777 PCT/US2008/074687

6. The method of claim 4 wherein a distance between the selected storage
node and the user device is determined by calculating a difference between a geocode
value associated with the selected storage node and the geocode value associated with the

user device.

7. The method of claim 4 wherein the selecting is further based on whether a
number of current access requests being handled by the selected storage node indicates

that the selected storage node is too busy.

8. The method of claim 4 wherein the selecting is further based on whether
selecting one of the plurality of storage nodes violates a policy specified in a service level

agreement (SLLA) associated with the user device.

9. The method of claim 4 wherein the selecting is further based on whether
the communications network address associated with the user device is listed on a serve

list contained within the selected storage node.

10. The method of claim 1 wherein the selection comprises accessing a data
table that correlates the plurality of storage nodes with a plurality of geocode values and
determining which one of the plurality of storage nodes should serve the file request
based on a priority value assigned to one or more of the plurality of storage nodes for the
geocode value associated with the user device, wherein the selected node is associated
with a highest priority value with respect to the geocode value associated with the user

device.

11. The method of claim 10 wherein the data table comprises a geocode ID
column containing a plurality of geocode values, a Priority ID column for containing
priority values for respective ones of the plurality of storage nodes with respect to at least
one of the geocode values, and a Node ID column for containing values associated with

respective ones of the plurality of storage nodes.

60

WO 2009/032777 PCT/US2008/074687

12. The method of claim 1 wherein each of the plurality of storage nodes is
associated with at least one of a plurality of predefined geographic regions and the
geocode value associated with the user device indicates that the user device is located in

one of the plurality of predefined geographic regions.

13. The method of claim 12 wherein the plurality of geographic regions are

defined by areas within a predetermined radius of each of the plurality of storage nodes.

14. A method for handling requests for access to a network resource,
comprising:

receiving a request to access a network resource;

correlating a network address associated with the request into a geocode value,
wherein the geocode value is indicative of a geographic location of a source of the
request;

selecting a network resource from among a plurality of available network

resources based at least in part on the geocode value.

15. The method of claim 14 wherein the network resource comprises a storage

element and the network address comprises an internet protocol (IP) address.

16. The method of claim 14 wherein the selected network resource is selected
because it is determined to be a closest network resource to the source among the

plurality of network resources.

17. The method of claim 16 further comprising determining if the selected
network resource is near enough the source and if it is determined that the selected
network resource is not near enough, identifying a second network resource that is near
enough and automatically directing subsequent requests from the same source to the

second network resource.

61

WO 2009/032777 PCT/US2008/074687

18. The method of claim 16 wherein a distance between the selected network
resource and the source is determined by calculating a difference between a geocode
value associated with the selected network resource and the geocode value associated

with the source.

19. The method of claim 14 wherein the selection comprises accessing a data
table that correlates the plurality of network resources with a plurality of geocode values
and determining which one of the plurality network resources should be selected based on
a priority value assigned to one or more of the plurality of network resources for the
geocode value associated with the source, wherein the selected node is associated with a

highest priority value with respect to the geocode value associated with the source.

20. The method of claim 14 wherein each of the plurality of network resources
is associated with at least one of a plurality of predefined geographic regions and the
geocode value associated with the source indicates that the source is located in one of the

plurality of predefined geographic regions.

21. The method of claim 20 wherein the plurality of geographic regions are
defined by areas within a predetermined radius of each of the plurality of network

resources.

22. A system for providing access to a plurality of network resources coupled
to a communications network, comprising:

a data table correlating a plurality of communications network addresses with a
plurality of geocode values indicative of a geographic location corresponding to
respective ones of the plurality of communications network addresses; and

a server for receiving a request to access a network resource, identifying a
geocode value corresponding to a communications network address associated with the
request, and selecting a network resource from among a plurality of network resources

based at least in part on the identified geocode value.

62

WO 2009/032777 PCT/US2008/074687

23. The system of claim 22 wherein the plurality of network resources
comprise a plurality of storage elements and the plurality of communications network

addresses comprises a plurality of internet protocol (IP) addresses.

24, The system of claim 22 wherein the selected network resource is selected
because it is determined to be a closest network resource to a source of the request among

the plurality of network resources.

25. The system of claim 24 wherein the server further comprises logic for
determining if the selected network resource is near enough the source and if it is
determined that the selected network resource is not near enough, identifying a second
network resource that is near enough and automatically directing subsequent requests

from the same source to the second network resource.

26. The system of claim 24 wherein a distance between the selected network
resource and the source is determined by calculating a difference between a geocode
value associated with the selected network resource and the geocode value associated

with the request.

27. The system of claim 22 further comprising a data table that correlates the
plurality of network resources with a plurality of geocode values and determining which
one of the plurality network resources should be selected based on a priority value
assigned to one or more of the plurality of network resources for the geocode value
associated with the request, wherein the selected node is associated with a highest priority

value with respect to the geocode value associated with the request.

28. The system of claim 22 wherein each of the plurality of network resources
is associated with at least one of a plurality of predefined geographic regions and the
geocode value associated with the request indicates that a source of the request is located

in one of the plurality of predefined geographic regions.

63

WO 2009/032777 PCT/US2008/074687

29. The system of claim 28 wherein the plurality of geographic regions are
defined by areas within a predetermined radius of each of the plurality of network

resources.

64

PCT/US2008/074687

WO 2009/032777

L0l

4 %%%m/
S [[eMail4 gom
() 101-
| 51 \Evﬁ.é&?
201 \\\
18Ua
A SN
el []
601 T s \\e
i —
D \
i 801 n e
Y (TR) a0eLB1U]
™ wvjsAs 8io HORROjddY
_ ISAS 8107) S 18LL0]1SN)
/m&
7/ [\ -
0 180188 N 1BAIAG W 197188
JAAIAS e & al g . J0AI8S e o) g 0o 00 JAI8G |e s e
BLIISSA00/ Duissasoid | | » o o BUISS0901 BL18s80044 BUISS9001] BLIss890.:f
T e T T J o
9ot ¥ apop abeio)g POt WL g apoy abieio)s 021|811 v spop abpig I
AN N-gzil 2Ll
00— A SOPON Aisris) s0RI0NS PaINgGLASI]

PCT/US2008/074687

2/27

WO 2009/032777

¢ i

S M = SLI0U9Y JUN0IY-
ZE 8 el g 012 LOJERIIBA A8Y 8SUBOIT-
=RE| = | Jsuuoes bulg- 8110023 WoYsn)-
21 ARENRE: LoneZf 1 ipimpley- Buuyy vieg-
M Wm & 5 m uogezingn abeI)s- SanAeuy
9% pooe p “....w. 52, -
=] M W nmw Jsiabeuryy Junosay 9snoyare, uonaesuely
s o e il a0z m | 802
Buissa004df apIS-1aMIBS | | = '
b1z = -
Sidly 10RBa)-19BPIM- ©
QQNMMM%\ 1BP[04 G- | | & yaz Mt 0bLI0}S JUBLBULIS
909y |BUCIHPLO.)- o 71 - :
591l BAIBI9Y/PUAS- S| |aze- — m\.\w S :SSE%MM 7 Xapuf Q\QE%MMN
21e" LwioysAg buyreys » mmmm«w\m\\mwm%\me Bunuudiebuiy oy | | Buibbe; ereperapy
m mm e Tsrshs sy Buies 815G By jeaiboT| | TUBISAS ajiy Jeniin
"1 sapoy Asanaq abeIig S
oee— b0z
|
SBIINIGS GBI
~-c0¢
fité .«\m

WO 2009/032777 PCT/US2008/074687

3/21
Scott 4

Music

——— Video
L~—~ Maovies
L——-P,fraz‘es,mw
i?iicf::
|

Movies

— Qaribbean.mov

H
H
i

FiG. 3

WO 2009/032777 PCT/US2008/074687

4/21%
s‘§§§—~\
Virtual Folder Table
Folder iD Foider Nams PEIG
] Scolf g
2 Music i
3 Video H
4 Mavies 3
5 Rich &
5 Movies 5
402~ 404~ 406~
Fit;. 44
»’?Qf?"*\
Viriual File Table
File 1D Fife Name PFID LFHD
12345 Pirates 4 ?’{}:{
£788 Caribbean) 101
l’ T
410~ 4312~ 414~ 416~
FiG. 48
@@3\ , o
Virtual Meiadata fable
File ID Metadata Type
6785 474

WO 2009/032777 PCT/US2008/074687

5/21
5353\

Logical File Tabie

LFID Media Key (Hash) Fife Size
107 AC478BF 400M8
102 X543CT7 2B
-7 ? ?
502~ 504~ 506~
FIG. 54
568 \
Logical Node Table
FFID Node iD Oniine
161 7 7
101 2 {
101 3 i
7 7 7
508 516~ 512~
FiG. 58
5%—\
LHD Metadaia Type
101 ABCE

FIG. 5C

WO 2009/032777

PCT/US2008/074687

6/21

Fhysical File Table

LFID Physical {ocation
101 \STOTShare 117, 15115.45\XY747
2 &®
502~ 804~
FiG. 6
73

Web Services
iferface

1
/
$ inmnmine Sie
S incoming Fie
N Reguesis A~ (2Bod
W
N FERALNN
’\ \3 T . Q
Upload and 702 7 TAnSTEr o8TVeT
Processing {—— 704~ : N
Servers 2 —
\ Storage Ssrvers B
\ = / Downloag
70 \ e) o
FUG™ \\ A 7 SEIvVEr
!l
N\ /
5 ,1[
Y
\ /’
\\ /
£
Node Manager DB\ /
Server \ /
I‘I
710~ \ /
/

/

¥

Archive Nods

FiG. 74

PCT/US2008/074687

WO 2009/032777

7/21
#/—?&?
752~
Receive a Request from a
{iserto Access a File
754~ ‘
Copy the File from Archive Storage
Vg a & {0 a High Availabiiity (HA)
Siorage & de in Response 1o the
Reguest
786~ v
Monitor a Last Access Date (LAD)

of the File Sfored in the Hi <
Storage Node

Maintain the

File in the HA
Storane Made
Sforage Node

Does the
{AD Exceed g

redefermined Threshold »°

Delete the File from the HA
Storage Nods

FiG. 78

PCT/US2008/074687

WO 2009/032777

8/21

incoming Fife

"1 Upload Cache
808~ 4
816 it ¥ Assign
{pload Pf; ssical TempiD
_s:cauén (Neg LFID)
VFID
Acctil
AppKeyiD
812~ § 814~

{ale

| "l Media Key

816~
Does
| fdentical File Already
Exist
82;?"\\ ¥ N ’,3 8?8\\ *
Exiract ~ Yndate VFID
MeifaData Real LFHD
820~

Delete Upload
Physical Lo

82(”3"\ ¥ 828\
indaie Physical :
Upe: ji ?;jff?j Update Node
:‘: iat s {ocation
Lr T and Physical for LFID
geation of File -

33

"
&
%5
X

WO 2009/032777 PCT/US2008/074687

8/21
Sﬁ%\x

o
¢
A%

/

Start Receiving
Uploaded File
from £nd User

o
LA
N
./

¥

Regeive Media
Key from
End User

836~ ¥

Compare User Media
Key fo Previously
Stored Media Keys

846~
Continus
> Recsiving
incoming Fife
847~ o
e s Send Successiu
Abort Recelving > S?Qaff:ﬁ e
!57-}/\ m’ F’i L)'l' U o .‘!(:., Y
fncoming Fiie to End Lser
842 \\ k-4 848 \“\ »
Send Suceessiul Designate Newly
Upload Message Received File
fo End User as a Fife Accessible
by End User
844~ ¥
Dasignate Exisiting
File as a rils ¥
Accessibie by » Fnd)
End {iser PN

FiG. 88

WO 2009/032777 PCT/US2008/074687

16/21
868~ ,
HiTP Proxy Downjoad 892 ;

R incoming
\ Downiload
. \ Request

855 ™~ \

iransmit File To Requestor
-
870~
Undaie

A N vasd
Account wi
i

Byfe Jotals

{Oara DR
{Core DB}

858~

555> J Get f 860~
/’ Physical Request File from
> Paih Proper Storage
/ {NODE DB) Server/Share

/ least Busy

FiG. 8C

WO 2009/032777

11/21

PCT/US2008/074687

880
,g(/"

Permanently Redireot
Stihseguent Downfoad

882~
Receive Request from
a User {o Download
File
884 \ v
gentify Nearest Node
wmai ing the File
886~ LD
> Does the File
7 Existat a YES

_ s\ina; f—ﬁaugﬁu S fOf a

fempors. }:’?ﬂdire ! Downjoad
A @u s fa Fife to Node
<’I’3ﬂza ining the File ("First Node™)

&3

882~ ¥

identify "Near Enough® Storage
Nodes

8§4 -\\ ¥
instruct a "Near Enough® Siorage
Node to Get a Copy of the
Fife from the First Node

i
i
H
}

¥

Hequesis o a
i e b Q< Y0
Mear Fnough” Storags
Node

897~

Designate “Near
"{F’?ugif‘“ Node as

895 /\
i Joes z_ \D Excsed

reshold?

S
felete File af "Near Enough® Nods

Fis. 80

2

Primar Sz‘s:age
NG”’&:

858~

¥
Delete File
at First Node

PCT/US2008/074687

12/21

WO 2009/032777

T e

3
A\
@
=S A
<
3 s Oy mo { \
ONg ‘ =2)
) N
x% 00_. ,/1“
IS _
& E..u\m ® » 0 \
ﬂ.ﬂ._.w 7.(.
BIS)
S |
Yo |
) 3
Vi .
oy) o)
7 M3 e) N
4
= {
=E o OCY
oo
n| &=
SEE
oS B SN S -
] .« wnae '
Cal G D .
<L L0 L0 Y
Q. &
e ”v oy e
R
oy { . v
L)
\ <5 ‘N N e P
N /
Mnmv! \,\
Muvmuw e, . . w‘ﬂ\v . . s

FiG. 104

-
-
e s e e T

-

PCT/US2008/074687

s
1
<

iode

M

i

13/21
Priority 1D

Geocode D

Lo

M

WO 2009/032777

/./
(€] \
//,,./
- S
O\
/.,f MY
S L /7 \
o vk /‘“.i.u\}/ .} -
4
< ™
I R S v e s 8 0
oo o S O S
LL. o o
\M\ w\,,W\
e e K%@ﬁ:i?i
e
ot !
@) .n./_ A \‘
A\ i p /)
Y !
A G W S B 22 =2 sl ﬁ
~ e
/

N

FiG. 100

WO 2009/032777 PCT/US2008/074687

ra
1080~ 14j
x
1087~
Recsive Request
for File
1082~ +
Dslermine A_ve;ilable
Nodes Containing Fife

?{} 83 ™~ ¥
Uetermine Priornity of
Available Nodes
Contafning File

1084~ &

Redjrect User fo Highest

Priority Node Containing
the File {"First Noge®)

P Yt ¢
1085~ b
First «u’s g fransmils

Pt

Si
FiE 10 USEr

First Noae
an Appropriate ¢
Node

1088~

Notify Core that

not Appropriate Node
1089~ v
Determing Best Node
? 09 0 \“‘ ¥

Core instructs Best Nods
to get Copy {}f Fife

Y

o
«w
ooy

™ ¥

Y

- Subsequent Reque
FiG. 168 can be Directad | '
est Node

WO 2009/032777 PCT/US2008/074687

15/21

FiG. 114

WO 2009/032777

Receive a Download Reguest
from a User io

Downioad a File
k4
fdentify all Nodes
where Fife Exisis

il
Sort Node List by
Pripeity | SEA

hid
Determing Which Nodes
are "Near Enough’

i

SYer ok k) Y
(Priorily 2 or Betier)

i
¥
~
FAARN
-
-,
e

. /?3’30
Have
_-"any Nodes Rec Qm‘fv\
. "Qdd fed f’”‘
\\ f‘s‘OgC C

~

7
Vd ‘\

\ /
~ I
S /

ﬂ &
A any
~iear Enough™\JNO
\Jodes iess o
Busy &

Direct Userio
"Near Enough” Node
with {owesi CAC
kil

e
{End }

28

Direct Userto
Nearest node

1
/

4
§

PCT/US2008/074687

M et e

36

Direct User fo
Nearsst Node

o ;-nn‘

1

{

[y

1142

Diregt User to
Nearest Nods

Determine which
(ff Any) Nodes
to Copy File fo

¥

114

FiG. 118

%

fitiate Fife
i/”‘f’afm'ﬂg Fro
fa uG;Q File o

Additional Node

4
™~ 006SS

¥

(End)

WO 2009/032777 PCT/US2008/074687

17/21

s 1152 1160
Receive Request CAC=CAC+T

A4

{405
/’3?5"_/

Alerted in Last [p
Duration

5

Has ¥ _
EAC Crossed YES Update

“INade CAC at Core

™~ ?U!!?;VQS!L?Q.” d

-4

{ E.Zd) (End)

FiG. 11C

WO 2009/032777 PCT/US2008/074687

18/21

- 1178 1180
\ N Y
1174 Send File to § | CurrentAccessCount=
Wihich Server / User CAC -1, LD =Now
Within is Least Busy
> ‘o | owedt 1178
{€.4., LOWESH oA 6
Sy .
Access Gount) | CurrenticcsssCount=
CAC+1, LUD=Now

Count< = Tt

NO 1186~

Copy File
to New
S !
Nearest Online Local
{ocal Location Location
for iP

¥ FIG. 11D

WO 2009/032777

19/21

PCT/US2008/074687

~ 1214

\ forlFiD |\
T . Determine haw Mark Lowest CAC
» Many Fifes Should ! Records for LFID > End
be Cleaned | Up "Offfing®
Lower ihan
Threshold
3 1218 "
f ” ,f Sefect 1220
NG prysicai Path | Delete PR
X \wihere CAC = 0| {>|Retumed Files i——{_£nd)
(End y \ and Count | from Disk
«L FD>1 \f
FiG. 12
wm\\
FRELVET
~1302
/
End User
F . . P & 4
Y4 ncoming HTIPS T T
Requesis
A vy 1304
iMFS
: Upload File
Append File
1308 ™ § 1312 ™ ¥
APfs (ueuing
Database Service
&
1314~ & 1310~ ¥
Command Permanent
» Processing Storane
Server ¥

FiG. 13

PCT/US2008/074687

WO 2009/032777

20/21

yi "9

N 9Lyl !
!) DAPBROJLUMOC] SAIAG IO

_ PivE-~

(em kar hs mnr s ans sms ns ks mms was Akn Sar 4 skne 255 ws man rm 2k mas inm nmn ma ok an 4t wrr £ cwn v ori e cre ore oA <00 ke o o o o amn s st amn wan wno wxs wer e ot o e sno ann ann o .

” SOJAg wiral)s

* STl i peay
L el 0LrL~

! e TR
i | UDJEODT Bfl [RIISAl
m) | uoipa0T A [B9ISAY 199 80F1
“ | |
{ { {
i | _
H { m
{ 1
" | |
w “ !
f { "
H { g
i i i
f i i
| " “
| | 9071 ~,

e et e oesomesven sos 224 de v wen mes vwss vve rn won e cis cos e vt wos rom wrn mapiem wanman tem e o]
| “ (f LolEAIaSaY | qi aji-f (oibaT
! i
_ ! “ cOpl-

1./ B W R ALY ")

m m m b1~ PZUOWNY ¥ ajeaqualny “pesfiniog |
| ; | -

! ! ! ! i
} i H Si!w.:!: _
JOAI3G a0 g0 _J9AG T

SORI0S |3IBDCURH dP0N!| 19400 SN CERITYEINETIA]

o,

1112}

PCT/US2008/074687

WO 2009/032777

21

7
2

21

gL 914

“_ ., g_{
! M_ DOPROJUMD(] SAIAG LYY | oo e e - SwifTaane T *
o em ams mr emaas me wen e aceimes e e oe man o aan mee an ok et et e v e et o e s o s s s s e e o 2fud
a9l PESY |
) Ol pray
! e e e e e e com :.smaailqa.ai!ii‘:{!itité:wv
m UoIRIOT Bjt [BUSAL S
& i
m [voyedy ap reorshyg 109
M w (f UojeAIasay/qy i1 feifio]
J !
! i
! § o
m m _L SZLIOUINY % SIRIIUBUINY | e T
M “ " j
{ | { i
i i { !
“ “ W “
“ ” “ ane m 1 80SE~ o,
| ” o905 N e [TOBO0T BN 01 T00ID0Y
! “ LONEIDT MAN
| | « AL 2061
! ! | SZLOYINY §ARINUBYINY “ D
_ ! " | | peojumoq areai] ’
“ m ! § § {
i " m | S)
VRIS aa aq R o TS
AOBIOIG |V TAnEIRp Ap0N | 18105 SHAl DB PECIIMGE] || S90IAI0S JajSUR]

o,

T 081

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - description
	Page 57 - description
	Page 58 - description
	Page 59 - description
	Page 60 - claims
	Page 61 - claims
	Page 62 - claims
	Page 63 - claims
	Page 64 - claims
	Page 65 - claims
	Page 66 - drawings
	Page 67 - drawings
	Page 68 - drawings
	Page 69 - drawings
	Page 70 - drawings
	Page 71 - drawings
	Page 72 - drawings
	Page 73 - drawings
	Page 74 - drawings
	Page 75 - drawings
	Page 76 - drawings
	Page 77 - drawings
	Page 78 - drawings
	Page 79 - drawings
	Page 80 - drawings
	Page 81 - drawings
	Page 82 - drawings
	Page 83 - drawings
	Page 84 - drawings
	Page 85 - drawings
	Page 86 - drawings

