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BLOCK PARTITIONING AT PICTURE 
BOUNDARIES 

INCORPORATION BY REFERENCE 

[ 0001 ] This present application is a continuation of U.S. 
Ser . No. 17 / 085,499 filed on Oct. 30 , 2020 , which claims the 
benefit of priority to U.S. Provisional Application No. 
62 / 979,184 , “ METHODS ON BLOCK PARTITIONING AT 
PICTURE BOUNDARIES ” filed on Feb. 20 , 2020. The 
disclosures of the prior applications are hereby incorporated 
by reference in their entirety . 

TECHNICAL FIELD 

[ 0002 ] The present disclosure describes embodiments 
generally related to video coding . a 

BACKGROUND 

[ 0007 ] Video codec technologies can include techniques 
known as intra coding . In intra coding , sample values are 
represented without reference to samples or other data from 
previously reconstructed reference pictures . In some video 
codecs , the picture is spatially subdivided into blocks of 
samples . When all blocks of samples are coded in intra 
mode , that picture can be an intra picture . Intra pictures and 
their derivations such as independent decoder refresh pic 
tures , can be used to reset the decoder state and can , 
therefore , be used as the first picture in a coded video 
bitstream and a video session , or as a still image . The 
samples of an intra block can be exposed to a transform , and 
the transform coefficients can be quantized before entropy 
coding . Intra prediction can be a technique that minimizes 
sample values in the pre - transform domain . In some cases , 
the smaller the DC value after a transform is , and the smaller 
the AC coefficients are , the fewer the bits that are required 
at a given quantization step size to represent the block after 
entropy coding . 
[ 0008 ] Traditional intra coding such as known from , for 
example MPEG - 2 generation coding technologies , does not 
use intra prediction . However , some newer video compres 
sion technologies include techniques that attempt , from , for 
example , surrounding sample data and / or metadata obtained 
during the encoding / decoding of spatially neighboring , and 
preceding in decoding order , blocks of data . Such techniques 
are henceforth called “ intra prediction ” techniques . Note 
that in at least some cases , intra prediction is only using 
reference data from the current picture under reconstruction 
and not from reference pictures . 
[ 0009 ] There can be many different forms of intra predic 
tion . When more than one of such techniques can be used in 
a given video coding technology , the technique in use can be 
coded in an intra prediction mode . In certain cases , modes 
can have submodes and / or parameters , and those can be 
coded individually or included in the mode codeword . 
Which codeword to use for a given mode / submode / param 
eter combination can have an impact in the coding efficiency 
gain through intra prediction , and so can the entropy coding 
technology used to translate the codewords into a bitstream . 
[ 0010 ] A certain mode of intra prediction was introduced 
with H.264 , refined in H.265 , and further refined in newer 
coding technologies such as joint exploration model ( JEM ) , 
versatile video coding ( VVC ) , and benchmark set ( BMS ) . A 
predictor block can be formed using neighboring sample 
values belonging to already available samples . Sample val 
ues of neighboring samples are copied into the predictor 
block according to a direction . A reference to the direction 
in use can be coded in the bitstream or may be predicted 
itself . 
[ 0011 ] Referring to FIG . 1A , depicted in the lower right is 
a subset of nine predictor directions known from H.265’s 33 
possible predictor directions ( corresponding to the 33 angu 
lar modes of the 35 intra modes ) . The point where the arrows 
converge ( 101 ) represents the sample being predicted . The 
arrows represent the direction from which the sample is 
being predicted . For example , arrow ( 102 ) indicates that 
sample ( 101 ) is predicted from a sample or samples to the 
upper right , at a 45 degree angle from the horizontal . 
Similarly , arrow ( 103 ) indicates that sample ( 101 ) is pre 
dicted from a sample or samples to the lower left of sample 
( 101 ) , in a 22.5 degree angle from the horizontal . 
[ 0012 ] Still referring to FIG . 1A , on the top left there is 
depicted a square block ( 104 ) of 4x4 samples indicated by 

[ 0003 ] The background description provided herein is for 
the purpose of generally presenting the context of the 
disclosure . Work of the presently named inventors , to the 
extent the work is described in this background section , as 
well as aspects of the description that may not otherwise 
qualify as prior art at the time of filing , are neither expressly 
nor impliedly admitted as prior art against the present 
disclosure . 
[ 0004 ] Video coding and decoding can be performed using 
inter - picture prediction with motion compensation . Uncom 
pressed digital video can include a series of pictures , each 
picture having a spatial dimension of , for example , 1920x 
1080 luminance samples and associated chrominance 
samples . The series of pictures can have a fixed or variable 
picture rate ( informally also known as frame rate ) of , for 
example , 60 pictures per second or 60 Hz . Uncompressed 
video has significant bitrate requirements . For example , 
1080p60 4 : 2 : 0 video at 8 bit per sample ( 1920x1080 lumi 
nance sample resolution at 60 Hz frame rate ) requires close 
to 1.5 Gbit / s bandwidth . An hour of such video requires 
more than 600 GBytes of storage space . 
[ 0005 ] One purpose of video coding and decoding can be 
the reduction of redundancy in the input video signal , 
through compression . Compression can help reduce the 
aforementioned bandwidth or storage space requirements , in 
some cases by two orders of magnitude or more . Both 
lossless and lossy compression , as well as a combination 
thereof can be employed . Lossless compression refers to 
techniques where an exact copy of the original signal can be 
reconstructed from the compressed original signal . When 
using lossy compression , the reconstructed signal may not 
be identical to the original signal , but the distortion between 
original and reconstructed signals is small enough to make 
the reconstructed signal useful for the intended application . 
In the case of video , lossy compression is widely employed . 
The amount of distortion tolerated depends on the applica 
tion ; for example , users of certain consumer streaming 
applications may tolerate higher distortion than users of 
television distribution applications . The compression ratio 
achievable can reflect that : higher allowable / tolerable dis 
tortion can yield higher compression ratios . 
[ 0006 ] A video encoder and decoder can utilize techniques 
from several broad categories , including , for example , 
motion compensation , transform , quantization , and entropy 
coding 

a 
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a dashed , boldface line ) . The square block ( 104 ) includes 16 
samples , each labelled with an “ S ” , its position in the Y 
dimension ( e.g. , row index ) and its position in the X 
dimension ( e.g. , column index ) . For example , sample S21 is 
the second sample in the Y dimension ( from the top ) and the 
first ( from the left ) sample in the X dimension . Similarly , 
sample S44 is the fourth sample in block ( 104 ) in both the 
Y and X dimensions . As the block is 4x4 samples in size , 
S44 is at the bottom right . Further shown are reference 
samples that follow a similar numbering scheme . A refer 
ence sample is labelled with an R , its Y position ( e.g. , row 
index ) and X position ( column index ) relative to block 
( 104 ) . In both H.264 and H.265 , prediction samples neigh 
bor the block under reconstruction ; therefore no negative 
values need to be used . 
[ 0013 ] Intra picture prediction can work by copying ref 
erence sample values from the neighboring samples as 
appropriated by the signaled prediction direction . For 
example , assume the coded video bitstream includes signal 
ing that , for this block , indicates a prediction direction 
consistent with arrow ( 102 ) that is , samples are predicted 
from a prediction sample or samples to the upper right , at a 
45 degree angle from the horizontal . In that case , samples 
S41 , S32 , S23 , and S14 are predicted from the same refer 
ence sample R05 . Sample S44 is then predicted from ref 
erence sample R08 . 
[ 0014 ] In certain cases , the values of multiple reference 
samples may be combined , for example through interpola 
tion , in order to calculate a reference sample ; especially 
when the directions are not evenly divisible by 45 degrees . 
[ 0015 ] The number of possible directions has increased as 
video coding technology has developed . In H.264 ( year 
2003 ) , nine different direction could be represented . That 
increased to 33 in H.265 ( year 2013 ) , and JEM / VVC / BMS , 
at the time of disclosure , can support up to 65 directions . 
Experiments have been conducted to identify the most likely 
directions , and certain techniques in the entropy coding are 
used to represent those likely directions in a small number 
of bits , accepting a certain penalty for less likely directions . 
Further , the directions themselves can sometimes be pre 
dicted from neighboring directions used in neighboring , 
already decoded , blocks . 
[ 0016 ] FIG . 1B shows a schematic ( 105 ) that depicts 65 
intra prediction directions according to JEM to illustrate the 
increasing number of prediction directions over time . 
[ 0017 ] The mapping of intra prediction directions bits in 
the coded video bitstream that represent the direction can be 
different from video coding technology to video coding 
technology ; and can range , for example , from simple direct 
mappings of prediction direction to intra prediction mode , to 
codewords , to complex adaptive schemes involving most 
probable modes , and similar techniques . In all cases , how 
ever , there can be certain directions that are statistically less 
likely to occur in video content than certain other directions . 
As the goal of video compression is the reduction of 
redundancy , those less likely directions will , in a well 
working video coding technology , be represented by a larger 
number of bits than more likely directions . 
[ 0018 ] Motion compensation can be a lossy compression 
technique and can relate to techniques where a block of 
sample data from a previously reconstructed picture or part 
thereof ( reference picture ) , after being spatially shifted in a 
direction indicated by a motion vector ( MV henceforth ) , is 
used for the prediction of a newly reconstructed picture or 

picture part . In some cases , the reference picture can be the 
same as the picture currently under reconstruction . MVs can 
have two dimensions X and Y , or three dimensions , the third 
being an indication of the reference picture in use ( the latter , 
indirectly , can be a time dimension ) . 
[ 0019 ] In some video compression techniques , an MV 
applicable to a certain area of sample data can be predicted 
from other MVs , for example from those related to another 
area of sample data spatially adjacent to the area under 
reconstruction , and preceding that MV in decoding order . 
Doing so can substantially reduce the amount of data 
required for coding the MV , thereby removing redundancy 
and increasing compression . MV prediction can work effec 
tively , for example , because when coding an input video 
signal derived from a camera ( known as natural video ) there 
is a statistical likelihood that areas larger than the area to 
which a single MV is applicable move in a similar direction 
and , therefore , can in some cases be predicted using a similar 
MV derived from MVs of a neighboring area . That results in 
the MV found for a given area to be similar or the same as 
the MV predicted from the surrounding MVs , and that in 
turn can be represented , after entropy coding , in a smaller 
number of bits than what would be used if coding the MV 
directly . In some cases , MV prediction can be an example of 
lossless compression of a signal ( namely : the MVs ) derived 
from the original signal ( namely : the sample stream ) . In 
other cases , MV prediction itself can be lossy , for example 
because of rounding errors when calculating a predictor 
from several surrounding MVs . 
[ 0020 ] Various MV prediction mechanisms are described 
in H.265 / HEVC ( ITU - T Rec . H.265 , “ High Efficiency Video 
Coding ” , December 2016 ) . Out of the many MV prediction 
mechanisms that H.265 offers , described herein is a tech 
nique henceforth referred to as “ spatial merge . ” 
[ 0021 ] Referring to FIG . 1C , a current block ( 111 ) can 
include samples that have been found by the encoder during 
the motion search process to be predictable from a previous 
block of the same size that has been spatially shifted . Instead 
of coding that MV directly , the MV can be derived from 
metadata associated with one or more reference pictures , for 
example from the most recent ( in decoding order ) reference 
picture , using the MV associated with either one of five 
surrounding samples , denoted A0 , A1 , and B0 , B1 , B2 ( 112 
through 116 , respectively ) . In H.265 , the MV prediction can 
use predictors from the same reference picture that the 
neighboring block is using . 

a 

SUMMARY 

[ 0022 ] Aspects of the disclosure provide apparatuses for 
video encoding / decoding . An apparatus includes processing 
circuitry that determines whether a part of a current block of 
a current picture in a coded video sequence is outside the 
current picture . The processing circuitry determines whether 
one of an allowed binary split indicator , an allowed ternary 
split indicator , and an allowed quaternary split indicator of 
the current block is true in response to the part of the current 
block being outside the current picture . The processing 
circuitry applies an implicit binary split to the current block 
in response to none of the allowed binary split indicator , the 
allowed ternary split indicator , and the allowed quaternary 
split indicator being true . 
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[ 0023 ] In an embodiment , the processing circuitry deter 
mines whether a sum of an x - axis position of the current 
block and a width of the current block is greater than a width 
of the current picture . 
[ 0024 ] In an embodiment , the processing circuitry deter 
mines whether a sum of a y - axis position of the current block 
and a height of the current block is greater than a height of 
the current picture . 
[ 0025 ] In an embodiment , the processing circuitry deter 
mines an initial value of a multi - type tree depth offset as a 
first value in response to the part of the current block being 
outside the current picture . 
[ 0026 ] In an embodiment , the processing circuitry deter 
mines the initial value of the multi - type tree depth offset as 
a second value in response to the part of the current block not 
being outside the current picture . 
[ 0027 ] In an embodiment , the processing circuitry deter 
mines a maximum multi - type tree depth of the implicit 
binary split based on the multi - type tree depth offset . 
[ 0028 ] In an embodiment , the first value is 1 and the 
second value is 0 . 
[ 0029 ] In an embodiment , the current block is intra coded 
and luma and chroma components of the current block are 
associated with two separate coding tree structures . 
[ 0030 ] In an embodiment , the processing circuitry deter 
mines whether a partition from the implicit binary split is 
across a virtual process data unit boundary . The processing 
circuitry applies the implicit binary split to the current block 
in response to the partition from the implicit binary split not 
being across the virtual process data unit boundary . 
[ 0031 ] Aspects of the disclosure provide methods for 
video encoding / decoding . In the method , whether a part of 
a current block of a current picture in a coded video 
sequence is outside the current picture is determined . 
Whether one of an allowed binary split indicator , an allowed 
ternary split indicator , and an allowed quaternary split 
indicator of the current block is true is determined in 
response to the part of the current block being outside the 
current picture . An implicit binary split is applied to the 
current block in response to none of the allowed binary split 
indicator , the allowed ternary split indicator , and the allowed 
quaternary split indicator being true . 
[ 0032 ] Aspects of the disclosure also provide non - transi 
tory computer - readable mediums storing instructions which 
when executed by a computer for video decoding cause the 
computer to perform any one or a combination of the 
methods for video decoding . 

[ 0038 ] FIG . 3 is a schematic illustration of a simplified 
block diagram of a communication system in accordance 
with an embodiment ; 
[ 0039 ] FIG . 4 is a schematic illustration of a simplified 
block diagram of a decoder in accordance with an embodi 
ment ; 
[ 0040 ] FIG . 5 is a schematic illustration of a simplified 
block diagram of an encoder in accordance with an embodi 
ment ; 
[ 0041 ] FIG . 6 is a block diagram of an encoder in accor 
dance with another embodiment ; 
[ 0042 ] FIG . 7 is a block diagram of a decoder in accor 
dance with another embodiment ; 
[ 0043 ] FIG . 8A shows nominal vertical and horizontal 
locations of 4 : 2 : 0 luma and chroma samples in a picture in 
accordance with an embodiment ; 
[ 0044 ] FIG . 8B shows nominal vertical and horizontal 
locations of 4 : 2 : 2 luma and chroma samples in a picture in 
accordance with an embodiment ; 
[ 0045 ] FIG . 8C shows nominal vertical and horizontal 
locations of 4 : 4 : 4 luma and chroma samples in a picture in 
accordance with an embodiment ; 
[ 0046 ] FIG . 9A shows an example of a picture divided into 
coding tree units in accordance with an embodiment ; 
[ 0047 ] FIG . 9B shows an example of a picture partitioned 
into tiles and raster - scan slices in accordance with an 
embodiment ; 
[ 0048 ] FIG . 9C shows an example of a picture partitioned 
into tiles and rectangular slices in accordance with an 
embodiment ; 
[ 0049 ] FIG . 9D shows an example of a picture partitioned 
into tiles , bricks , and rectangular slices in accordance with 
an embodiment ; 
[ 0050 ] FIGS . 10A - 10D show exemplary multi - type tree 
splitting modes in accordance with an embodiment ; 
[ 0051 ] FIG . 11 shows signaling for exemplary splitting 
flags in quadtree with a nested multi - type tree coding tree 
structure in accordance with an embodiment ; 
[ 0052 ] FIG . 12 shows an example of a quadtree with a 
nested multi - type tree coding block structure in accordance 
with an embodiment ; 
[ 0053 ] FIGS . 13A - 13E show exemplary coding blocks in 
which ternary split is not allowed in accordance with an 
embodiment ; 
[ 0054 ] FIGS . 14A - 14D show exemplary redundant split 
ting patterns of binary tree split and ternary tree split in 
accordance with an embodiment ; 
[ 0055 ] FIGS . 15A - 15H show examples of disallowed ter 
nary partitioning and binary partitioning in accordance with 
an embodiment ; 
[ 0056 ] FIGS . 16A - 16D show exemplary multi - type tree 
splitting modes in accordance with an embodiment ; 
[ 0057 ] FIG . 17 shows an exemplary flowchart in accor 
dance with an embodiment ; and 
[ 0058 ] FIG . 18 is a schematic illustration of a computer 
system in accordance with an embodiment . 

BRIEF DESCRIPTION OF THE DRAWINGS 

a 

[ 0033 ] Further features , the nature , and various advan 
tages of the disclosed subject matter will be more apparent 
from the following detailed description and the accompa 
nying drawings in which : 
[ 0034 ] FIG . 1A is a schematic illustration of an exemplary 
subset of intra prediction modes ; 
[ 0035 ] FIG . 1B is an illustration of exemplary intra pre 
diction directions ; 
[ 0036 ] FIG . 1C is a schematic illustration of a current 
block and its surrounding spatial merge candidates in one 
example ; 
[ 0037 ] FIG . 2 is a schematic illustration of a simplified 
block diagram of a communication system in accordance 
with an embodiment ; 

DETAILED DESCRIPTION OF EMBODIMENTS 

I. Video Decoder and Encoder Systems 
[ 0059 ] FIG . 2 illustrates a simplified block diagram of a 
communication system ( 200 ) according to an embodiment 
of the present disclosure . The communication system ( 200 ) 
includes a plurality of terminal devices that can communi 
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cate with each other , via , for example , a network ( 250 ) . For 
example , the communication system ( 200 ) includes a first 
pair of terminal devices ( 210 ) and ( 220 ) interconnected via 
the network ( 250 ) . In the FIG . 2 example , the first pair of 
terminal devices ( 210 ) and ( 220 ) performs unidirectional 
transmission of data . For example , the terminal device ( 210 ) 
may code video data ( e.g. , a stream of video pictures that are 
captured by the terminal device ( 210 ) ) for transmission to 
the other terminal device ( 220 ) via the network ( 250 ) . The 
encoded video data can be transmitted in the form of one or 
more coded video bitstreams . The terminal device ( 220 ) may 
receive the coded video data from the network ( 250 ) , decode 
the coded video data to recover the video pictures and 
display video pictures according to the recovered video data . 
Unidirectional data transmission may be common in media 
serving applications and the like . 
[ 0060 ] In another example , the communication system 
( 200 ) includes a second pair of terminal devices ( 230 ) and 
( 240 ) that performs bidirectional transmission of coded 
video data that may occur , for example , during videocon 
ferencing . For bidirectional transmission of data , in an 
example , each terminal device of the terminal devices ( 230 ) 
and ( 240 ) may code video data ( e.g. , a stream of video 
pictures that are captured by the terminal device ) for trans 
mission the other terminal device of the terminal devices 
( 230 ) and ( 240 ) via the network ( 250 ) . Each terminal device 
of the terminal devices ( 230 ) and ( 240 ) also may receive the 
coded video data transmitted by the other terminal device of 
the terminal devices ( 230 ) and ( 240 ) , and may decode the 
coded video data to recover the video pictures and may 
display video pictures at an accessible display device 
according to the recovered video data . 
[ 0061 ] In the FIG . 2 example , the terminal devices ( 210 ) , 
( 220 ) , ( 230 ) and ( 240 ) may be illustrated as servers , personal 
computers and smart phones but the principles of the present 
disclosure may be not so limited . Embodiments of the 
present disclosure find application with laptop computers , 
tablet computers , media players and / or dedicated video 
conferencing equipment . The network ( 250 ) represents any 
number of networks that convey coded video data among the 
terminal devices ( 210 ) , ( 220 ) , ( 230 ) and ( 240 ) , including for 
example wireline ( wired ) and / or wireless communication 
networks . The communication network ( 250 ) may exchange 
data in circuit - switched and / or packet - switched channels . 
Representative networks include telecommunications net 
works , local area networks , wide area networks and / or the 
Internet . For the purposes of the present discussion , the 
architecture and topology of the network ( 250 ) may be 
immaterial to the operation of the present disclosure unless 
explained herein below . 
[ 0062 ] FIG . 3 illustrates , as an example for an application 
for the disclosed subject matter , the placement of a video 
encoder and a video decoder in a streaming environment . 
The disclosed subject matter can be equally applicable to 
other video enabled applications , including , for example , 
video conferencing , digital TV , storing of compressed video 
on digital media including CD , DVD , memory stick , and the 
like . 
[ 0063 ] A streaming system may include a capture subsys 
tem ( 313 ) that can include a video source ( 301 ) , for example 
a digital camera , creating for example a stream of video 
pictures ( 302 ) that are uncompressed . In an example , the 
stream of video pictures ( 302 ) includes samples that are 
taken by the digital camera . The stream of video pictures 

( 302 ) , depicted as a bold line to emphasize a high data 
volume when compared to encoded video data ( 304 ) ( or 
coded video bitstreams ) , can be processed by an electronic 
device ( 320 ) that includes a video encoder ( 303 ) coupled to 
the video source ( 301 ) . The video encoder ( 303 ) can include 
hardware , software , or a combination thereof to enable or 
implement aspects of the disclosed subject matter as 
described in more detail below . The encoded video data 
( 304 ) ( or encoded video bitstream ( 304 ) ) , depicted as a thin 
line to emphasize the lower data volume when compared to 
the stream of video pictures ( 302 ) , can be stored on a 
streaming server ( 305 ) for future use . One or more streaming 
client subsystems , such as client subsystems ( 306 ) and ( 308 ) 
in FIG . 3 can access the streaming server ( 305 ) to retrieve 
copies ( 307 ) and ( 309 ) of the encoded video data ( 304 ) . A 
client subsystem ( 306 ) can include a video decoder ( 310 ) , 
for example , in an electronic device ( 330 ) . The video 
decoder ( 310 ) decodes the incoming copy ( 307 ) of the 
encoded video data and creates an outgoing stream of video 
pictures ( 311 ) that can be rendered on a display ( 312 ) ( e.g. , 
display screen ) or other rendering device ( not depicted ) . In 
some streaming systems , the encoded video data ( 304 ) , 
( 307 ) , and ( 309 ) ( e.g. , video bitstreams ) can be encoded 
according to certain video coding / compression standards . 
Examples of those standards include ITU - T Recommenda 
tion H.265 . In an example , a video coding standard under 
development is informally known as Versatile Video Coding 
( VVC ) . The disclosed subject matter may be used in the 
context of VVC . 
[ 0064 ] It is noted that the electronic devices ( 320 ) and 
( 330 ) can include other components ( not shown ) . For 
example , the electronic device ( 320 ) can include a video 
decoder ( not shown ) and the electronic device ( 330 ) can 
include a video encoder ( not shown ) as well . 
[ 0065 ] FIG . 4 shows a block diagram of a video decoder 
( 410 ) according to an embodiment of the present disclosure . 
The video decoder ( 410 ) can be included in an electronic 
device ( 430 ) . The electronic device ( 430 ) can include a 
receiver ( 431 ) ( e.g. , receiving circuitry ) . The video decoder 
( 410 ) can be used in the place of the video decoder ( 310 ) in 
the FIG . 3 example . 
[ 006 ] The receiver ( 431 ) may receive one or more coded 
video sequences to be decoded by the video decoder ( 410 ) ; 
in the same or another embodiment , one coded video 
sequence at a time , where the decoding of each coded video 
sequence is independent from other coded video sequences . 
The coded video sequence may be received from a channel 
( 401 ) , which may be a hardware / software link to a storage 
device which stores the encoded video data . The receiver 
( 431 ) may receive the encoded video data with other data , 
for example , coded audio data and / or ancillary data streams , 
that may be forwarded to their respective using entities ( not 
depicted ) . The receiver ( 431 ) may separate the coded video 
sequence from the other data . To combat network jitter , a 
buffer memory ( 415 ) may be coupled in between the 
receiver ( 431 ) and an entropy decoder / parser ( 420 ) ( “ parser 
( 420 ) ” henceforth ) . In certain applications , the buffer 
memory ( 415 ) is part of the video decoder ( 410 ) . In others , 
it can be outside of the video decoder ( 410 ) ( not depicted ) . 
In still others , there can be a buffer memory ( not depicted ) 
outside of the video decoder ( 410 ) , for example to combat 
network jitter , and in addition another buffer memory ( 415 ) 
inside the video decoder ( 410 ) , for example to handle 
playout timing . When the receiver ( 431 ) is receiving data 
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from a store / forward device of sufficient bandwidth and 
controllability , or from an isosynchronous network , the 
buffer memory ( 415 ) may not be needed , or can be small . 
For use on best effort packet networks such as the Internet , 
the buffer memory ( 415 ) may be required , can be compara 
tively large and can be advantageously of adaptive size , and 
may at least partially be implemented in an operating system 
or similar elements ( not depicted ) outside of the video 
decoder ( 410 ) . 
[ 0067 ] The video decoder ( 410 ) may include the parser 
( 420 ) to reconstruct symbols ( 421 ) from the coded video 
sequence . Categories of those symbols include information 
used to manage operation of the video decoder ( 410 ) , and 
potentially information to control a rendering device such as 
a render device ( 412 ) ( e.g. , a display screen ) that is not an 
integral part of the electronic device ( 430 ) but can be 
coupled to the electronic device ( 430 ) , as was shown in FIG . 
4. The control information for the rendering device ( s ) may 
be in the form of Supplemental Enhancement Information 
( SEI messages ) or Video Usability Information ( VUI ) 
parameter set fragments ( not depicted ) . The parser ( 420 ) 
may parse / entropy - decode the coded video sequence that is 
received . The coding of the coded video sequence can be in 
accordance with a video coding technology or standard , and 
can follow various principles , including variable length 
coding , Huffman coding , arithmetic coding with or without 
context sensitivity , and so forth . The parser ( 420 ) may 
extract from the coded video sequence , a set of subgroup 
parameters for at least one of the subgroups of pixels in the 
video decoder , based upon at least one parameter corre 
sponding to the group . Subgroups can include Groups of 
Pictures ( GOPs ) , pictures , tiles , slices , macroblocks , Coding 
Units ( CUN ) , blocks , Transform Units ( TUS ) , Prediction 
Units ( PUs ) and so forth . The parser ( 420 ) may also extract 
from the coded video sequence information such as trans 
form coefficients , quantizer parameter values , MVs , and so 
forth . 
[ 0068 ] The parser ( 420 ) may perform an entropy decod 
ing / parsing operation on the video sequence received from 
the buffer memory ( 415 ) , so as to create symbols ( 421 ) . 
[ 0069 ] Reconstruction of the symbols ( 421 ) can involve 
multiple different units depending on the type of the coded 
video picture or parts thereof ( such as : inter and intra 
picture , inter and intra block ) , and other factors . Which units 
are involved , and how , can be controlled by the subgroup 
control information that was parsed from the coded video 
sequence by the parser ( 420 ) . The flow of such subgroup 
control information between the parser ( 420 ) and the mul 
tiple units below is not depicted for clarity . 
[ 0070 ] Beyond the functional blocks already mentioned , 
the video decoder ( 410 ) can be conceptually subdivided into 
a number of functional units as described below . In a 
practical implementation operating under commercial con 
straints , many of these units interact closely with each other 
and can , at least partly , be integrated into each other . 
However , for the purpose of describing the disclosed subject 
matter , the conceptual subdivision into the functional units 
below is appropriate . 
[ 0071 ] A first unit is the scaler / inverse transform unit 
( 451 ) . The scaler / inverse transform unit ( 451 ) receives a 
quantized transform coefficient as well as control informa 
tion , including which transform to use , block size , quanti 
zation factor , quantization scaling matrices , etc. as symbol 
( s ) ( 421 ) from the parser ( 420 ) . The scaler / inverse transform 

unit ( 451 ) can output blocks comprising sample values that 
can be input into aggregator ( 455 ) . 
[ 0072 ] In some cases , the output samples of the scaler / 
inverse transform ( 451 ) can pertain to an intra coded block ; 
that is : a block that is not using predictive information from 
previously reconstructed pictures , but can use predictive 
information from previously reconstructed parts of the cur 
rent picture . Such predictive information can be provided by 
an intra picture prediction unit ( 452 ) . In some cases , the intra 
picture prediction unit ( 452 ) generates a block of the same 
size and shape of the block under reconstruction , using 
surrounding already reconstructed information fetched from 
the current picture buffer ( 458 ) . The current picture buffer 
( 458 ) buffers , for example , partly reconstructed current 
picture and / or fully reconstructed current picture . The aggre 
gator ( 455 ) , in some cases , adds , on a per sample basis , the 
prediction information that the intra prediction unit ( 452 ) 
has generated to the output sample information as provided 
by the scaler / inverse transform unit ( 451 ) . 
[ 0073 ] In other cases , the output samples of the scaler / 
inverse transform unit ( 451 ) can pertain to an inter coded , 
and potentially motion compensated block . In such a case , a 
motion compensation prediction unit ( 453 ) can access ref 
erence picture memory ( 457 ) to fetch samples used for 
prediction . After motion compensating the fetched samples 
in accordance with the symbols ( 421 ) pertaining to the 
block , these samples can be added by the aggregator ( 455 ) 
to the output of the scaler / inverse transform unit ( 451 ) ( in 
this case called the residual samples or residual signal ) so as 
to generate output sample information . The addresses within 
the reference picture memory ( 457 ) from where the motion 
compensation prediction unit ( 453 ) fetches prediction 
samples can be controlled by MVs , available to the motion 
compensation prediction unit ( 453 ) in the form of symbols 
( 421 ) that can have , for example X , Y , and reference picture 
components . Motion compensation also can include inter 
polation of sample values as fetched from the reference 
picture memory ( 457 ) when sub - sample exact MVs are in 
use , MV prediction mechanisms , and so forth . 
[ 0074 ] The output samples of the aggregator ( 455 ) can be 
subject to various loop filtering techniques in the loop filter 
unit ( 456 ) . Video compression technologies can include 
in - loop filter technologies that are controlled by parameters 
included in the coded video sequence ( also referred to as 
coded video bitstream ) and made available to the loop filter 
unit ( 456 ) as symbols ( 421 ) from the parser ( 420 ) , but can 
also be responsive to meta - information obtained during the 
decoding of previous ( in decoding order ) parts of the coded 
picture or coded video sequence , as well as responsive to 
previously reconstructed and loop - filtered sample values . 
[ 0075 ] The output of the loop filter unit ( 456 ) can be a 
sample stream that can be output to the render device ( 412 ) 
as well as stored in the reference picture memory ( 457 ) for 
use in future inter - picture prediction . 
[ 0076 ] Certain coded pictures , once fully reconstructed , 
can be used as reference pictures for future prediction . For 
example , once a coded picture corresponding to a current 
picture is fully reconstructed and the coded picture has been 
identified as a reference picture ( by , for example , the parser 
( 420 ) ) , the current picture buffer ( 458 ) can become a part of 
the reference picture memory ( 457 ) , and a fresh current 
picture buffer can be reallocated before commencing the 
reconstruction of the following coded picture . 

2 



US 2022/0272369 A1 Aug. 25 , 2022 
6 

? 

[ 0077 ] The video decoder ( 410 ) may perform decoding 
operations according to a predetermined video compression 
technology in a standard , such as ITU - T Rec . H.265 . The 
coded video sequence may conform to a syntax specified by 
the video compression technology or standard being used , in 
the sense that the coded video sequence adheres to both the 
syntax of the video compression technology or standard and 
the profiles as documented in the video compression tech 
nology or standard . Specifically , a profile can select certain 
tools as the only tools available for use under that profile 
from all the tools available in the video compression tech 
nology or standard . Also necessary for compliance can be 
that the complexity of the coded video sequence is within 
bounds as defined by the level of the video compression 
technology or standard . In some cases , levels restrict the 
maximum picture size , maximum frame rate , maximum 
reconstruction sample rate ( measured in , for example mega 
samples per second ) , maximum reference picture size , and 
so on . Limits set by levels can , in some cases , be further 
restricted through Hypothetical Reference Decoder ( HRD ) 
specifications and metadata for HRD buffer management 
signaled in the coded video sequence . 
[ 0078 ] In an embodiment , the receiver ( 431 ) may receive 
additional ( redundant ) data with the encoded video . The 
additional data may be included as part of the coded video 
sequence ( s ) . The additional data may be used by the video 
decoder ( 410 ) to properly decode the data and / or to more 
accurately reconstruct the original video data . Additional 
data can be in the form of , for example , temporal , spatial , or 
signal noise ratio ( SNR ) enhancement layers , redundant 
slices , redundant pictures , forward error correction codes , 
and so on . 

[ 0079 ] FIG . 5 shows a block diagram of a video encoder 
( 503 ) according to an embodiment of the present disclosure . 
The video encoder ( 503 ) is included in an electronic device 
( 520 ) . The electronic device ( 520 ) includes a transmitter 
( 540 ) ( e.g. , transmitting circuitry ) . The video encoder ( 503 ) 
can be used in the place of the video encoder ( 303 ) in the 
FIG . 3 example . 
[ 0080 ] The video encoder ( 503 ) may receive video 
samples from a video source ( 501 ) ( that is not part of the 
electronic device ( 520 ) in the FIG . 5 example ) that may 
capture video image ( s ) to be coded by the video encoder 
( 503 ) . In another example , the video source ( 501 ) is a part 
of the electronic device ( 520 ) . 
[ 0081 ] The video source ( 501 ) may provide the source 
video sequence to be coded by the video encoder ( 503 ) in the 
form of a digital video sample stream that can be of any 
suitable bit depth ( for example : 8 bit , 10 bit , 12 bit , ... ) , any 
colorspace ( for example , BT.601 Y CrCB , RGB , ) , and 
any suitable sampling structure ( for example Y CrCb 4 : 2 : 0 , 
Y CrCb 4 : 4 : 4 ) . In a media serving system , the video source 
( 501 ) may be a storage device storing previously prepared 
video . In a videoconferencing system , the video source 
( 501 ) may be a camera that captures local image information 
as a video sequence . Video data may be provided as a 
plurality of individual pictures that impart motion when 
viewed in sequence . The pictures themselves may be orga 
nized as a spatial array of pixels , wherein each pixel can 
comprise one or more samples depending on the sampling 
structure , color space , etc. in use . A person skilled in the art 
can readily understand the relationship between pixels and 
samples . The description below focuses on samples . 

[ 0082 ] According to an embodiment , the video encoder 
( 503 ) may code and compress the pictures of the source 
video sequence into a coded video sequence ( 543 ) in real 
time or under any other time constraints as required by the application . Enforcing appropriate coding speed is one func 
tion of a controller ( 550 ) . In some embodiments , the con 
troller ( 550 ) controls other functional units as described 
below and is functionally coupled to the other functional 
units . The coupling is not depicted for clarity . Parameters set 
by the controller ( 550 ) can include rate control related 
parameters ( picture skip , quantizer , lambda value of rate 
distortion optimization techniques , ... ) , picture size , group 
of pictures ( GOP ) layout , maximum MV allowed reference 
area , and so forth . The controller ( 550 ) can be configured to 
have other suitable functions that pertain to the video 
encoder ( 503 ) optimized for a certain system design . 
[ 0083 ] In some embodiments , the video encoder ( 503 ) is 
configured to operate in a coding loop . As an oversimplified 
description , in an example , the coding loop can include a 
source coder ( 530 ) ( e.g. , responsible for creating symbols , 
such as a symbol stream , based on an input picture to be 
coded , and a reference picture ( s ) ) , and a ( local ) decoder 
( 533 ) embedded in the video encoder ( 503 ) . The decoder 
( 533 ) reconstructs the symbols to create the sample data in 
a similar manner as a ( remote ) decoder also would create ( as 
any compression between symbols and coded video bit 
stream is lossless in the video compression technologies 
considered in the disclosed subject matter ) . The recon 
structed sample stream ( sample data ) is input to the refer 
ence picture memory ( 534 ) . As the decoding of a symbol 
stream leads to bit - exact results independent of decoder 
location ( local or remote ) , the content in the reference 
picture memory ( 534 ) is also bit exact between the local 
encoder and remote encoder . In other words , the prediction 
part of an encoder “ sees ” as reference picture samples 
exactly the same sample values as a decoder would “ see ” 
when using prediction during decoding . This fundamental 
principle of reference picture synchronicity ( and resulting 
drift , if synchronicity cannot be maintained , for example 
because of channel errors ) is used in some related arts as 
well . 
[ 0084 ] The operation of the " local ” decoder ( 533 ) can be 
the same as of a " remote ” decoder , such as the video decoder 
( 410 ) , which has already been described in detail above in 
conjunction with FIG . 4. Briefly referring also to FIG . 4 , 
however , as symbols are available and encoding / decoding of 
symbols to a coded video sequence by an entropy coder 
( 545 ) and the parser ( 420 ) can be lossless , the entropy 
decoding parts of the video decoder ( 410 ) , including the 
buffer memory ( 415 ) and the parser ( 420 ) may not be fully 
implemented in the local decoder ( 533 ) . 
[ 0085 ] An observation that can be made at this point is that 
any decoder technology except the parsing / entropy decod 
ing that is present in a decoder also necessarily needs to be 
present , in substantially identical functional form , in a 
corresponding encoder . For this reason , the disclosed subject 
matter focuses on decoder operation . The description of 
encoder technologies can be abbreviated as they are the 
inverse of the comprehensively described decoder technolo 
gies . Only in certain areas a more detail description is 
required and provided below . 
[ 0086 ] During operation , in some examples , the source 
coder ( 530 ) may perform motion compensated predictive 
coding , which codes an input picture predictively with 
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reference to one or more previously - coded picture from the 
video sequence that were designated as “ reference pictures ” . 
In this manner , the coding engine ( 532 ) codes differences 
between pixel blocks of an input picture and pixel blocks of 
reference picture ( s ) that may be selected as prediction 
reference ( s ) to the input picture . 
[ 0087 ] The local video decoder ( 533 ) may decode coded 
video data of pictures that may be designated as reference 
pictures , based on symbols created by the source coder 
( 530 ) . Operations of the coding engine ( 532 ) may advanta 
geously be lossy processes . When the coded video data may 
be decoded at a video decoder ( not shown in FIG . 5 ) , the 
reconstructed video sequence typically may be a replica of 
the source video sequence with some errors . The local video 
decoder ( 533 ) replicates decoding processes that may be 
performed by the video decoder on reference pictures and 
may cause reconstructed reference pictures to be stored in 
the reference picture cache ( 534 ) . In this manner , the video 
encoder ( 503 ) may store copies of reconstructed reference 
pictures locally that have common content as the recon 
structed reference pictures that will be obtained by a far - end 
video decoder ( absent transmission errors ) . 
[ 0088 ] The predictor ( 535 ) may perform prediction 
searches for the coding engine ( 532 ) . That is , for a new 
picture to be coded , the predictor ( 535 ) may search the 
reference picture memory ( 534 ) for sample data ( as candi 
date reference pixel blocks ) or certain metadata such as 
reference picture MVs , block shapes , and so on , that may 
serve as an appropriate prediction reference for the new 
pictures . The predictor ( 535 ) may operate on a sample 
block - by - pixel block basis to find appropriate prediction 
references . In some cases , as determined by search results 
obtained by the predictor ( 535 ) , an input picture may have 
prediction references drawn from multiple reference pic 
tures stored in the reference picture memory ( 534 ) . 
[ 0089 ] The controller ( 550 ) may manage coding opera 
tions of the source coder ( 530 ) , including , for example , 
setting of parameters and subgroup parameters used for 
encoding the video data . 
[ 0090 ] Output of all aforementioned functional units may 
be subjected to entropy coding in the entropy coder ( 545 ) . 
The entropy coder ( 545 ) translates the symbols as generated 
by the various functional units into a coded video sequence , 
by lossless compressing the symbols according to technolo 
gies such as Huffman coding , variable length coding , arith 
metic coding , and so forth . 
[ 0091 ] The transmitter ( 540 ) may buffer the coded video 
sequence ( s ) as created by the entropy coder ( 545 ) to prepare 
for transmission via a communication channel ( 560 ) , which 
may be a hardware / software link to a storage device which 
would store the encoded video data . The transmitter ( 540 ) 
may merge coded video data from the video coder ( 503 ) 
with other data to be transmitted , for example , coded audio 
data and / or ancillary data streams ( sources not shown ) . 
[ 0092 ] The controller ( 550 ) may manage operation of the 
video encoder ( 503 ) . During coding , the controller ( 550 ) 
may assign to each coded picture a certain coded picture 
type , which may affect the coding techniques that may be 
applied to the respective picture . For example , pictures often 
may be assigned as one of the following picture types : 
[ 0093 ] An Intra Picture ( I picture ) may be one that may be 
coded and decoded without using any other picture in the 
sequence as a source of prediction . Some video codecs allow 
for different types of intra pictures , including , for example 

Independent Decoder Refresh ( “ IDR ” ) Pictures . A person 
skilled in the art is aware of those variants of I pictures and 
their respective applications and features . 
[ 0094 ] A predictive picture ( P picture ) may be one that 
may be coded and decoded using intra prediction or inter 
prediction using at most one MV and reference index to 
predict the sample values of each block . 
[ 0095 ] A bi - directionally predictive picture ( B Picture ) 
may be one that may be coded and decoded using intra 
prediction or inter prediction using at most two MVs and 
reference indices to predict the sample values of each block . 
Similarly , multiple - predictive pictures can use more than 
two reference pictures and associated metadata for the 
reconstruction of a single block . 
[ 0096 ] Source pictures commonly may be subdivided spa 
tially into a plurality of sample blocks ( for example , blocks 
of 4x4 , 8x8 , 4x8 , or 16x16 samples each ) and coded on a 
block - by - block basis . Blocks may be coded predictively 
with reference to other ( already coded ) blocks as determined 
by the coding assignment applied to the blocks ' respective 
pictures . For example , blocks of I pictures may be coded 
non - predictively or they may be coded predictively with 
reference to already coded blocks of the same picture 
( spatial prediction or intra prediction ) . Pixel blocks of P 
pictures may be coded predictively , via spatial prediction or 
via temporal prediction with reference to one previously 
coded reference picture . Blocks of B pictures may be coded 
predictively , via spatial prediction or via temporal prediction 
with reference to one or two previously coded reference 
pictures . 
[ 0097 ] The video encoder ( 503 ) may perform coding 
operations according to a predetermined video coding tech 
nology or standard , such as ITU - T Rec . H.265 . In its 
operation , the video encoder ( 503 ) may perform various 
compression operations , including predictive coding opera 
tions that exploit temporal and spatial redundancies in the 
input video sequence . The coded video data , therefore , may 
conform to a syntax specified by the video coding technol 
ogy or standard being used . 
[ 0098 ] In an embodiment , the transmitter ( 540 ) may trans 
mit additional data with the encoded video . The source coder 
( 530 ) may include such data as part of the coded video 
sequence . Additional data may comprise temporal / spatial / 
SNR enhancement layers , other forms of redundant data 
such as redundant pictures and slices , SEI messages , VUI 
parameter set fragments , and so on . 
[ 0099 ] A video may be captured as a plurality of source 
pictures ( video pictures ) in a temporal sequence . Intra 
picture prediction ( often abbreviated to intra prediction ) 
makes use of spatial correlation in a given picture , and 
inter - picture prediction makes uses of the ( temporal or 
other ) correlation between the pictures . In an example , a 
specific picture under encoding / decoding , which is referred 
to as a current picture , is partitioned into blocks . When a 
block in the current picture is similar to a reference block in 
a previously coded and still buffered reference picture in the 
video , the block in the current picture can be coded by a 
vector that is referred to as a MV . The MV points to the 
reference block in the reference picture , and can have a third 
dimension identifying the reference picture , in case multiple 
reference pictures are in use . 
[ 0100 ] In some embodiments , a bi - prediction technique 
can be used in the inter - picture prediction . According to the 
bi - prediction technique , two reference pictures , such as a 
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first reference picture and a second reference picture that are 
both prior in decoding order to the current picture in the 
video ( but may be in the past and future , respectively , in 
display order ) are used . A block in the current picture can be 
coded by a first MV that points to a first reference block in 
the first reference picture , and a second MV that points to a 
second reference block in the second reference picture . The 
block can be predicted by a combination of the first refer 
ence block and the second reference block . 
[ 0101 ] Further , a merge mode technique can be used in the 
inter - picture prediction to improve coding efficiency . 
[ 0102 ] According to some embodiments of the disclosure , 
predictions , such as inter - picture predictions and intra - pic 
ture predictions are performed in the unit of blocks . For 
example , according to the HEVC standard , a picture in a 
sequence of video pictures is partitioned into coding tree 
units ( CTU ) for compression , the CTUs in a picture have the 
same size , such as 64x64 pixels , 32x32 pixels , or 16x16 
pixels . In general , a CTU includes three coding tree blocks 
( CTBs ) , which are one luma CTB and two chroma CTBs . 
Each CTU can be recursively quad - tree split into one or 
multiple coding units ( CUS ) . For example , a CTU of 64x64 
pixels can be split into one CU of 64x64 pixels , or 4 CUs of 
32x32 pixels , or 16 CUs of 16x16 pixels . In an example , 
each CU is analyzed to determine a prediction type for the 
CU , such as an inter prediction type or an intra prediction 
type . The CU is split into one or more prediction units ( PUS ) 
depending on the temporal and / or spatial predictability . 
Generally , each PU includes a luma prediction block ( PB ) , 
and two chroma PBs . In an embodiment , a prediction 
operation in coding ( encoding / decoding ) is performed in the 
unit of a prediction block . Using a luma prediction block as 
an example of a prediction block , the prediction block 
includes a matrix of values ( e.g. , luma values ) for pixels , 
such as 8x8 pixels , 16x16 pixels , 8x16 pixels , 16x8 pixels , 
and the like . 
[ 0103 ] FIG . 6 shows a diagram of a video encoder ( 603 ) 
according to another embodiment of the disclosure . The 
video encoder ( 603 ) is configured to receive a processing 
block ( e.g. , a prediction block ) of sample values within a 
current video picture in a sequence of video pictures , and 
encode the processing block into a coded picture that is part 
of a coded video sequence . In an example , the video encoder 
( 603 ) is used in the place of the video encoder ( 303 ) in the 
FIG . 3 example . 
[ 0104 ] In an HEVC example , the video encoder ( 603 ) 
receives a matrix of sample values for a processing block , 
such as a prediction block of 8x8 samples , and the like . The 
video encoder ( 603 ) determines whether the processing 
block is best coded using intra mode , inter mode , or bi 
prediction mode using , for example , rate - distortion optimi 
zation . When the processing block is to be coded in intra 
mode , the video encoder ( 603 ) may use an intra prediction 
technique to encode the processing block into the coded 
picture ; and when the processing block is to be coded in inter 
mode or bi - prediction mode , the video encoder ( 603 ) may 
use an inter prediction or bi - prediction technique , respec 
tively , to encode the processing block into the coded picture . 
In certain video coding technologies , merge mode can be an 
inter picture prediction submode where the MV is derived 
from one or more MV predictors without the benefit of a 
coded MV component outside the predictors . In certain other 
video coding technologies , a MV component applicable to 
the subject block may be present . In an example , the video 

encoder ( 603 ) includes other components , such as a mode 
decision module ( not shown ) to determine the mode of the 
processing blocks . 
[ 0105 ] In the FIG . 6 example , the video encoder ( 603 ) 
includes the inter encoder ( 630 ) , an intra encoder ( 622 ) , a 
residue calculator ( 623 ) , a switch ( 626 ) , a residue encoder 
( 624 ) , a general controller ( 621 ) , and an entropy encoder 
( 625 ) coupled together as shown in FIG . 6 . 
[ 0106 ] The inter encoder ( 630 ) is configured to receive the 
samples of the current block ( e.g. , a processing block ) , 
compare the block to one or more reference blocks in 
reference pictures ( e.g. , blocks in previous pictures and later 
pictures ) , generate inter prediction information ( e.g. , 
description of redundant information according to inter 
encoding technique , MVs , merge mode information ) , and 
calculate inter prediction results ( e.g. , prediction block ) 
based on the inter prediction information using any suitable 
technique . In some examples , the reference pictures are 
decoded reference pictures that are decoded based on the 
encoded video information . 
[ 0107 ] The intra encoder ( 622 ) is configured to receive the 
samples of the current block ( e.g. , a processing block ) , in 
some cases compare the block to blocks already coded in the 
same picture , generate quantized coefficients after trans 
form , and in some cases also intra prediction information 
( e.g. , an intra prediction direction information according to 
one or more intra encoding techniques ) . In an example , the 
intra encoder ( 622 ) also calculates intra prediction results 
( e.g. , prediction block ) based on the intra prediction infor 
mation and reference blocks in the same picture . 
[ 0108 ] The general controller ( 621 ) is configured to deter 
mine general control data and control other components of 
the video encoder ( 603 ) based on the general control data . In 
an example , the general controller ( 621 ) determines the 
mode of the block , and provides a control signal to the 
switch ( 626 ) based on the mode . For example , when the 
mode is the intra mode , the general controller ( 621 ) controls 
the switch ( 626 ) to select the intra mode result for use by the 
residue calculator ( 623 ) , and controls the entropy encoder 
( 625 ) to select the intra prediction information and include 
the intra prediction information in the bitstream ; and when 
the mode is the inter mode , the general controller ( 621 ) 
controls the switch ( 626 ) to select the inter prediction result 
for use by the residue calculator ( 623 ) , and controls the 
entropy encoder ( 625 ) to select the inter prediction infor 
mation and include the inter prediction information in the 
bitstream . 
[ 0109 ] The residue calculator ( 623 ) is configured to cal 
culate a difference ( residue data ) between the received block 
and prediction results selected from the intra encoder ( 622 ) 
or the inter encoder ( 630 ) . The residue encoder ( 624 ) is 
configured to operate based on the residue data to encode the 
residue data to generate the transform coefficients . In an 
example , the residue encoder ( 624 ) is configured to convert 
the residue data from a spatial domain to a frequency 
domain , and generate the transform coefficients . The trans 
form coefficients are then subject to quantization processing 
to obtain quantized transform coefficients . In various 
embodiments , the video encoder ( 603 ) also includes a resi 
due decoder ( 628 ) . The residue decoder ( 628 ) is configured 
to perform inverse - transform , and generate the decoded 
residue data . The decoded residue data can be suitably used 
by the intra encoder ( 622 ) and the inter encoder ( 630 ) . For 
example , the inter encoder ( 630 ) can generate decoded 

a 9 
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blocks based on the decoded residue data and inter predic 
tion information , and the intra encoder ( 622 ) can generate 
decoded blocks based on the decoded residue data and the 
intra prediction information . The decoded blocks are suit 
ably processed to generate decoded pictures and the decoded 
pictures can be buffered in a memory circuit ( not shown ) and 
used as reference pictures in some examples . 
[ 0110 ] The entropy encoder ( 625 ) is configured to format 
the bitstream to include the encoded block . The entropy 
encoder ( 625 ) is configured to include various information 
according to a suitable standard such as HEVC . In an 
example , the entropy encoder ( 625 ) is configured to include 
the general control data , the selected prediction information 
( e.g. , intra prediction information or inter prediction infor 
mation ) , the residue information , and other suitable infor 
mation in the bitstream . Note that , according to the disclosed 
subject matter , when coding a block in the merge submode 
of either inter mode or bi - prediction mode , there is no 
residue information . 
[ 0111 ] FIG . 7 shows a diagram of a video decoder ( 710 ) 
according to another embodiment of the disclosure . The 
video decoder ( 710 ) is configured to receive coded pictures 
that are part of a coded video sequence , and decode the 
coded pictures to generate reconstructed pictures . In an 
example , the video decoder ( 710 ) is used in the place of the 
video decoder ( 310 ) in the FIG . 3 example . 
[ 0112 ] In the FIG . 7 example , the video decoder ( 710 ) 
includes an entropy decoder ( 771 ) , an inter decoder ( 780 ) , a 
residue decoder ( 773 ) , a reconstruction module ( 774 ) , and 
an intra decoder ( 772 ) coupled together as shown in FIG . 7 . 
[ 0113 ] The entropy decoder ( 771 ) can be configured to 
reconstruct , from the coded picture , certain symbols that 
represent the syntax elements of which the coded picture is 
made up . Such symbols can include , for example , the mode 
in which a block is coded ( such as , for example , intra mode , 
inter mode , bi - predicted mode , the latter two in merge 
submode or another submode ) , prediction information ( such 
as , for example , intra prediction information or inter pre 
diction information ) that can identify certain sample or 
metadata that is used for prediction by the intra decoder 
( 772 ) or the inter decoder ( 780 ) , respectively , residual 
information in the form of , for example , quantized transform 
coefficients , and the like . In an example , when the prediction 
mode is inter or bi - predicted mode , the inter prediction 
information is provided to the inter decoder ( 780 ) ; and when 
the prediction type is the intra prediction type , the intra 
prediction information is provided to the intra decoder 
( 772 ) . The residual information can be subject to inverse 
quantization and is provided to the residue decoder ( 773 ) . 
[ 0114 ] The inter decoder ( 780 ) is configured to receive the 
inter prediction information , and generate inter prediction 
results based on the inter prediction information . 
[ 0115 ] The intra decoder ( 772 ) is configured to receive the 
intra prediction information , and generate prediction results 
based on the intra prediction information . 

[ 0116 ] The residue decoder ( 773 ) is configured to perform 
inverse quantization to extract de - quantized transform coef 
ficients , and process the de - quantized transform coefficients 
to convert the residual from the frequency domain to the 
spatial domain . The residue decoder ( 773 ) may also require 
certain control information ( to include the Quantizer Param 
eter ( QP ) ) , and that information may be provided by the 
entropy decoder ( 771 ) ( data path not depicted as this may be 
low volume control information only ) . 
[ 0117 ] The reconstruction module ( 774 ) is configured to 
combine , in the spatial domain , the residual as output by the 
residue decoder ( 773 ) and the prediction results ( as output 
by the inter or intra prediction modules as the case may be ) 
to form a reconstructed block , that may be part of the 
reconstructed picture , which in turn may be part of the 
reconstructed video . It is noted that other suitable opera 
tions , such as a deblocking operation and the like , can be 
performed to improve the visual quality . 
[ 0118 ] It is noted that the video encoders ( 303 ) , ( 503 ) , and 
( 603 ) , and the video decoders ( 310 ) , ( 410 ) , and ( 710 ) can be 
implemented using any suitable technique . In an embodi 
ment , the video encoders ( 303 ) , ( 503 ) , and ( 603 ) , and the 
video decoders ( 310 ) , ( 410 ) , and ( 710 ) can be implemented 
using one or more integrated circuits . In another embodi 
ment , the video encoders ( 303 ) , ( 503 ) , and ( 603 ) , and the 
video decoders ( 310 ) , ( 410 ) , and ( 710 ) can be implemented 
using one or more processors that execute software instruc 
tions . 

II . Source , Decoded , And Output Picture Formats 

[ 0119 ] According to aspects of the disclosure , the video 
source that is represented by the bitstream is a sequence of 
pictures in decoding order . The source and decoded pictures 
are each comprised of one or more the following sample 
arrays : ( i ) luma ( Y ) only ( monochrome ) ; ( ii ) luma and two 
chroma ( YCbCr or YCgCo ) ; ( iii ) green , blue , and red ( GBR , 
also known as RGB ) ; and ( iv ) arrays representing other 
unspecified monochrome or tri - stimulus color samplings 
( e.g. , YZX , is also known as XYZ ) . 
[ 0120 ] In some related examples , the variables and terms 
associated with these arrays are referred to as luma ( or L or 
Y ) and chroma , where the two chroma arrays are referred to 
as Cb and Cr , regardless of the actual color representation 
method in use . The actual color representation method in use 
can be indicated by syntax . 
[ 0121 ] For example , in Table 1 , the variables Sub WidthC 
and Sub HeightC are dependent on the chroma format sam 
pling structure , which is specified through the variables 
chroma_format_idc and separate_colour_plane_flag . Other 
values of chroma_format_idc , SubWidthC , and SubHeightC 
can be specified in some related examples . 

TABLE 1 

Chroma 
chroma_format_idc separate_colour_plane_flag format Sub Width Sub HeightC 

0 0 1 1 Monochrome 
4 : 2 : 0 1 0 2 2 

2 0 4 : 2 : 2 2 1 
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TABLE 1 - continued 

Chroma 
format chroma_format_idc separate_colour_plane_flag SubWidthC SubHeightC 

1 3 
3 

0 
1 

4 : 4 : 4 
4 : 4 : 4 1 

[ 0122 ] In monochrome sampling , there is only one sample 
array , which is nominally considered the luma array . In 4 : 2 : 0 
sampling , each of the two chroma arrays has half the height 
and half the width of the luma array . In 4 : 2 : 2 sampling , each 
of the two chroma arrays has the same height and half the 
width of the luma array . In 4 : 4 : 4 sampling , if separate colour 
plane flag is equal to 0 , each of the two chroma arrays has 
the same height and width as the luma array . Otherwise 
( separate_colour_plane_flag is equal to 1 ) , the three colour 
planes are separately processed as monochrome sampled 
pictures . 
[ 0123 ] The number of bits for the representation of each of 
the samples in the luma and chroma arrays in a video 
sequence can be in the range of 8 to 16 , inclusive , and the 
number of bits used in the luma array can differ from the 
number of bits used in the chroma arrays . 
[ 0124 ] When the value of chroma_format_idc is equal to 
1 , the nominal vertical and horizontal relative locations of 
luma and chroma samples in pictures are shown in FIG . 8A . 
Alternative chroma sample relative locations can be indi 
cated in video usability information . 
[ 0125 ] When the value of chroma_format_idc is equal to 
2 , the chroma samples are co - sited with the corresponding 
luma samples and the nominal locations in a picture are as 
shown in FIG . 8B . 
[ 0126 ] When the value of chroma_format_idc is equal to 
3 , all array samples are co - sited for all cases of pictures and 
the nominal locations in a picture are as shown in FIG . 8C . 

? 

of the picture . The bricks within a rectangular slice are in the 
order of brick raster scan of the slice . 
[ 0130 ] FIG . 9B shows an example of raster - scan slice 
partitioning of a picture , where the picture is divided into 12 
tiles and 3 raster - scan slices . FIG . 9C shows an example of 
rectangular slice partitioning of a picture , where the picture 
is divided into 24 tiles ( 6 tile columns and 4 tile rows ) and 
9 rectangular slices . FIG.9D shows an example of a picture 
partitioned into tiles , bricks , and rectangular slices , where 
the picture is divided into 4 tiles ( 2 tile columns and 2 tile 
rows ) , 11 bricks ( the top - left tile contains 1 brick , the 
top - right tile contains 5 bricks , the bottom - left tile contains 
2 bricks , and the bottom - right tile contain 3 bricks ) , and 4 
rectangular slices . 
[ 0131 ] In some related examples such as HEVC , a CTU 
can be split into CUs by using a quaternary - tree structure 
denoted as a coding tree to adapt to various local charac 
teristics . The decision whether to code a picture area using 
inter - picture ( temporal ) or intra - picture ( spatial ) prediction 
can be made at the leaf CU level . Each leaf CU can be 
further split into one , two , or four PUs according to the PU 
splitting type . Inside one PU , the same prediction process 
can be applied and the relevant information can be trans 
mitted to the decoder on a PU basis . After obtaining the 
residual block by applying the prediction process based on 
the PU splitting type , a leaf CU can be partitioned into 
transform units ( TUS ) according to another quaternary - tree 
structure similar to the coding tree for the CU . One feature 
of the HEVC structure is that it has multiple partition 
conceptions including CU , PU , and TU . 
[ 0132 ] In some related examples such as VVC , a quadtree 
with nested multi - type tree using binary and ternary splits 
segmentation structure replaces the concepts of multiple 
partition unit types . That is , the quadtree with nested multi 
type tree removes the separation of the CU , PU , and TU 
concepts except as needed for CUs that have a size too large 
for the maximum transform length , and supports more 
flexibility for CU partition shapes . In the coding tree struc 
ture , a CU can have either a square or rectangular shape . A 
CTU can be first partitioned by a quaternary tree ( referred to 
as quadtree ) structure . Then the quaternary tree leaf nodes 
can be further partitioned by a multi - type tree structure . As 
shown in FIGS . 10A - 10D , there are four splitting types in 
the multi - type tree structure , which are vertical binary 
splitting ( SPLIT_BT_VER ) , horizontal binary splitting 
( SPLIT_BT_HOR ) , vertical ternary splitting ( SPLIT_TT_ 
VER ) , and horizontal ternary splitting ( SPLIT_TT_HOR ) . 
The multi - type tree leaf nodes are called CUs . Unless the 
CU is too large for the maximum transform length , this 
segmentation can be used for prediction and transform 
processing without any further partitioning . This means that , 
in most cases , the CU , PU , and TU can have the same block 
size in the quadtree with the nested multi - type tree coding 
block structure . The exception occurs when the maximum 
supported transform length is smaller than the width or 
height of the color component of the CU . 

III . Partitioning in VVC 
[ 0127 ] In some related examples such as HEVC and VVC , 
pictures can be divided into a sequence of CTUs . For a 
picture that has three sample arrays , a CTU includes an NxN 
block of luma samples together with two corresponding 
blocks of chroma samples . FIG . 9A shows an example of a 
picture divided into CTUs . The maximum allowed size of 
the luma block in a CTU can be specified to be 128x128 , 
although the maximum size of the luma transform blocks 
can be 64x64 . 
[ 0128 ] According to aspects of the disclosure , a picture 
can be divided into one or more tile rows and one or more 
tile columns . A tile can be a sequence of CTUs that covers 
a rectangular region of a picture . A tile can be divided into 
one or more bricks , each of which includes a number of CTU 
rows within the tile . A tile that is not partitioned into multiple 
bricks can also be referred to as a brick . However , a brick 
that is a true subset of a tile is not referred to as a tile . A slice 
either includes a number of tiles of a picture or a number of 
bricks of a tile . 
[ 0129 ] In some related examples , two modes of slices are 
supported , namely the raster - scan slice mode and the rect 
angular slice mode . In the raster - scan slice mode , a slice 
contains a sequence of tiles in a tile raster scan of a picture . 
In the rectangular slice mode , a slice contains a number of 
bricks of a picture that collectively form a rectangular region 

a 

a 
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[ 0133 ] FIG . 11 illustrates an exemplary signaling mecha 
nism of the partition splitting information in quadtree with 
a nested multi - type tree coding tree structure according to an 
embodiment of the disclosure . A CTU can be treated as a 
root of a quaternary tree and first partitioned by a quaternary 
tree structure . A quaternary tree leaf node can then be further 
partitioned by a multi - type tree structure if allowed . In the 
multi - type tree structure , a first flag ( e.g. , mtt_split_cu_flag ) 
can be signaled to indicate whether the node is further 
partitioned . When the node is determined to be further 
partitioned , a second flag ( e.g. , mtt_split_cu_vertical_flag ) 
can be signaled to indicate a splitting direction , and then a 
third flag ( e.g. , mtt_split_cu_binary_flag ) can be signaled to 
indicate whether the split is a binary split or a ternary split . 
Based on the values of mtt_split_cu_vertical_flag and mtt_ 
split_cu_binary_flag , the multi - type tree splitting mode 
( MttSplitMode ) of a CU can be derived as shown in Table 
2 . 

as 16x16 , the MaxBtSize can be set as 128x128 and 
MaxTtSize can be set as 64x64 , the MinBtSize and MinT 
tSize ( for both width and height ) can be set as 4x4 , and the 
MaxMttDepth can be set as 4. The quaternary tree parti 
tioning can be applied to the CTU first to generate quater 
nary tree leaf nodes . The quaternary tree leaf nodes can have 
a size from the MinQTSize ( e.g. , 16x16 ) to the CTU size 
( e.g. , 128x128 ) . If the leaf QT node is 128x128 , it cannot be 
further split by the binary tree since the size exceeds the 
MaxBtSize and MaxTtSize ( e.g. , 64x64 ) . Otherwise , the 
leaf QT node can be further partitioned by the multi - type 
tree . Therefore , the quaternary tree leaf node can also be the 
root node for the multi - type tree and have a multi - type tree 
depth ( mttDepth ) of 0. When the multi - type tree depth 
reaches MaxMttDepth ( e.g. , 4 ) , no further splitting is con 
sidered . When the width of the multi - type tree node is equal 
to MinBtSize and smaller or equal to 2 * MinTtSize , no 
further horizontal splitting is considered . Similarly , when the 

TABLE 2 

MttSplit Mode mtt_split_cu_vertical_flag mtt_split_cu_binary_flag 

SPLIT_TT_HOR 
SPLIT_BT HOR 
SPLIT TT VER 
SPLIT_BT_VER 

0 
0 
1 

0 
1 
0 
1 1 

2 

[ 0134 ] FIG . 12 shows an exemplary CTU divided into 
multiple CUs with a quadtree and a nested multi - type tree 
coding block structure , where the bold block edges represent 
quadtree partitioning and the remaining edges represent 
multi - type tree partitioning . The quadtree with the nested 
multi - type tree partition can provide a content - adaptive 
coding tree structure comprised of CUs . The size of the CU 
can be as large as the CTU or as small as 4x4 in units of luma 
samples . For the case of the 4 : 2 : 0 chroma format , the 
maximum chroma CB size can be 64x64 and the minimum 
chroma CB size can be 2x2 . 
[ 0135 ] In some related examples such as VVC , the maxi 
mum supported luma transform size can be 64x64 and the 
maximum supported chroma transform size can be 32x32 . 
When the width or height of the CB is larger than the 
maximum transform width or height , the CB can be auto 
matically split in the horizontal and / or vertical direction to 
meet the transform size restriction in the corresponding 
direction . 
[ 0136 ] The following parameters are defined and specified 
by sequence parameter set ( SPS ) syntax elements for the 
quadtree with a nested multi - type tree coding tree scheme : 
( i ) CTU size that is the root node size of a quaternary tree ; 
( ii ) MinQTSize that is the minimum allowed quaternary tree 
leaf node size ; ( iii ) MaxBtSize that is the maximum allowed 
binary tree root node size ; ( iv ) MaxTtSize that is the 
maximum allowed ternary tree root node size ; ( v ) MaxMtt 
Depth that is the maximum allowed hierarchy depth of 
multi - type tree splitting from a quadtree leaf ; ( vi ) MinBtSize 
that is the minimum allowed binary tree leaf node size ; and 
( vii ) MinTtSize that is the minimum allowed ternary tree 
leaf node size . 
[ 0137 ] In one example of the quadtree with a nested 
multi - type tree coding tree structure , the CTU size can be set 
as 128x128 luma samples with two corresponding 64x64 
blocks of 4 : 2 : 0 chroma samples , the MinQTSize can be set 

height of the multi - type tree node is equal to MinBtSize and 
smaller or equal to 2 * MinTtSize , no further vertical splitting 
is considered . 
[ 0138 ] In some related cases such as VVC , to allow 64x64 
luma block and 32x32 chroma pipelining design in hardware 
decoders , TT split is forbidden when either a width or a 
height of a luma coding block is larger than 64 , as shown in 
FIGS . 13A - 13E . TT split is also forbidden when either a 
width or a height of a chroma coding block is larger than 32 . 
[ 0139 ] In some related cases such as VVC , the coding tree 
scheme can support the ability for the luma and chroma to 
have a separate block tree structure . In an example , for P and 
B slices , the luma and chroma CTBs in one CTU have to 
share the same coding tree structure . However , for I slices , 
the luma and chroma can have separate block tree structures . 
When a separate block tree mode is applied , the luma CTB 
can be partitioned into CUS by using one coding tree 
structure , and the chroma CTBs can be partitioned into 
chroma CUs by using another coding tree structure . This 
means that a CU in an I slice can include , or consist , of a 
coding block of the luma component or coding blocks of two 
chroma components , and a CU in a P or B slice can include 
coding blocks of all three color components unless the video 
is monochrome . 
[ 0140 ] According to aspects of the disclosure , when a 
portion of a tree node block exceeds the bottom or right 
picture boundary , the tree node block can be forced to be 
split until samples ( e.g. , all samples ) of every coded CU are 
located inside the picture boundaries . The following split 
ting rules can be applied in some related examples such as 
VVC . 
[ 0141 ] In an embodiment , a portion of a tree node block 
exceeds both the bottom and the right picture boundaries . If 
the block is a QT node and the size of the block is larger than 
the minimum QT size ( e.g. , 16x16 ) , the block can be forced 
to be split with QT split mode . Otherwise , the block can be 
forced to be split with SPLIT_BT_HOR mode . 

a 
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[ 0142 ] In an embodiment , a portion of a tree node block 
exceeds the bottom picture boundaries . If the block is a QT 
node and the size of the block is larger than both the 
minimum QT size and the maximum BT size ( e.g. , 128x 
128 ) , the block can be forced to be split with the QT split 
mode . Otherwise , if the block is a QT node and the size of 
the block is larger than the minimum QT size and smaller 
than or equal to the maximum BT size , the block can be 
forced to be split with the QT split mode or SPLIT_BT_ 
HOR mode . Otherwise , if the block is an MTT node or the 
size of the block is smaller than or equal to the minimum QT 
size , the block can be forced to be split with SPLIT_BT_ 
HOR mode . 
[ 0143 ] In an embodiment , a portion of a tree node block 
exceeds the right picture boundaries . If the block is a QT 
node and the size of the block is larger than both the 
minimum QT size and the maximum BT size , the block can 
be forced to be split with the QT split mode . Otherwise , if 
the block is a QT node and the size of the block is larger than 
the minimum QT size and smaller than or equal to the 
maximum BT size , the block can be forced to be split with 
the QT split mode or SPLIT_BT_VER mode . Otherwise , if 
the block is an MTT node or the size of the block is smaller 
than or equal to the minimum QT size , the block can be 
forced to be split with SPLIT_BT_VER mode . 
[ 0144 ] The quadtree with a nested multi - type tree coding 
block structure can provide a highly flexible block partition 
ing structure . Due to the types of splits in the multi - type tree , 
different splitting patterns can potentially result in the same 
coding block structure . In some related examples such as 
VVC , some of these redundant splitting patterns can be 
disallowed . 
[ 0145 ] FIGS . 14A - 14D illustrate exemplary redundant 
splitting patterns of binary tree splits and ternary tree splits 
according to an embodiment of the disclosure . Two levels of 
consecutive binary splits in one direction can have the same 
coding block structure as a ternary tree split followed by a 
binary tree split of the central partition . In this case , the 
binary tree split in the given direction for the central 
partition of a ternary tree split can be prevented by the 
syntax . This restriction can apply for CUs in all pictures . 
[ 0146 ] When the splits are prohibited as described above , 
signaling of the corresponding syntax elements can be 
modified to account for the prohibited cases . For example , 
when any case in FIGS . 14A - 14D is identified ( e.g. , the 
binary split is prohibited for a CU of a central partition ) , the 
syntax element mtt_split_cu_binary flag that specifies 
whether the split is a binary split or a ternary split is inferred 
to be equal to 0 by the decoder instead of being signaled . 
[ 0147 ] According to aspects of the disclosure , virtual 
pipeline data units ( VPDUs ) are defined as non - overlapping 
units in a picture . In hardware decoders , successive VPDUs 
are processed by multiple pipeline stages at the same time . 
The VPDU size can be proportional to the buffer size in most 
pipeline stages , so it is important to keep the VPDU size 
small . In some hardware decoders , the VPDU size can be set 
to the maximum transform block ( TB ) size . However , in 
some related examples such as VVC , TT and BT partitions 
can lead to the increasing of VPDUs size . 
[ 0148 ] In order to keep the VPDU size as 64x64 luma 
samples , the following normative partition restrictions ( with 
syntax signaling modification ) can be applied as shown in 
FIGS . 15A - 15H : ( i ) the TT split is not allowed for a CU with 
either width or height , or both width and height equal to 128 ; 

( ii ) for a 128xNCU with Ns64 ( e.g. , the width is equal to 
128 and the height is smaller than 128 ) , the horizontal BT 
split is not allowed ; and ( iii ) for an Nx128 CU with Ns64 
( e.g. , the height is equal to 128 and the width is smaller than 
128 ) , the vertical BT is not allowed . 
[ 0149 ] According to aspects of the disclosure , in some 
hardware video encoders and decoders , processing through 
put drops when a picture has more small intra blocks 
because of sample processing data dependency between 
neighboring intra blocks . The predictor generation of an 
intra block can require top and left boundary reconstructed 
samples from neighboring blocks . Therefore , intra predic 
tion has to be sequentially processed block by block . 
[ 0150 ] In some related examples such as HEVC , the 
smallest intra CU has a size of 8x8 of luma samples . The 
luma component of the smallest intra CU can be further split 
into four 4x4 luma intra PUs , but the chroma components of 
the smallest intra CU cannot be further split . Therefore , the 
worst case hardware processing throughput occurs when 
4x4 chroma intra blocks or 4x4 luma intra blocks are 
processed . In some related examples such as VVC , in order 
to improve worst case throughput , chroma intra CBs with a 
size being smaller than 16 chroma samples ( e.g. , size is 2x2 , 
4x2 , or 2x4 ) and chroma intra CBs with a width being 
smaller than 4 chroma samples ( size is 2xN ) are disallowed 
by constraining the partitioning of chroma intra CBs . 
[ 0151 ] In a single coding tree , a smallest chroma intra 
prediction unit ( SCIPU ) can be defined as a coding tree node 
whose chroma block size is larger than or equal to 16 chroma 
samples and has at least one child luma block with a size of 
64 luma samples , or a coding tree node whose chroma block 
size is not 2xN and has at least one child luma block with 
a size of 4xN luma samples . In each SCIPU , all CBs are 
inter , or all CBs are non - inter ( i.e. , either intra or intra block 
copy ) . In case of a non - inter SCIPU , chroma of the non - inter 
SCIPU cannot be further split and luma of the SCIPU can be 
allowed to be further split . In this way , the small chroma 
intra CBs with a size being less than 16 or equal to 2xN 
chroma samples are removed . In addition , chroma scaling is 
not applied in case of a non - inter SCIPU , and no additional 
syntax is signaled . Whether an SCIPU is non - inter can be 
derived by the prediction mode of the first luma CB in the 
SCIPU . The type of the SCIPU can be inferred to be 
non - inter if the current slice is an I - slice or the current 
SCIPU has a 4x4 luma partition in it after further split one 
time because no inter 4x4 can be allowed in VVC . Other 
wise , the type of the SCIPU ( inter or non - inter ) can be 
indicated by one flag before parsing the CUs in the SCIPU . 
[ 0152 ] For the dual tree in intra picture , the 2xN intra 
chroma blocks can be removed by disabling vertical binary 
and vertical ternary splits for 4xN and 8xN chroma parti 
tions , respectively . The small chroma blocks with sizes of 
2x2 , 4x2 , and 2x4 are also removed by partitioning restric 
tions . 
[ 0153 ] In addition , a restriction on picture size can be 
considered to avoid 2x2 / 2x4 / 4x2 / 2xN intra chroma blocks 
at the corner of pictures by considering the picture width and 
height to be a multiple of max ( e.g. , 8 , MinCbSizeY ) . 
[ 0154 ] IV . Partitioning And Block Size Related Syntax In 
SPS 

[ 0155 ] Table 3 shows exemplary SPS raw byte sequence 
payload ( RBSP ) syntax . 

a 
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TABLE 3 

Descriptor 

u ( 1 ) 
ue ( v ) 
u ( 1 ) 
ue ( v ) 
ue ( v ) 

ue ( v ) 
ue ( v ) 

ue ( v ) 
ue ( v ) 

seq_parameter_set_rbspo { 

if ( ChromaArrayType ! = 0 ) 
qtbtt_dual_tree_intra_flag 

log2_min_luma_coding_block_size_minus2 
partition_constraints_override_enabled_flag 
sps_log2_diff_min_qt_min_cb_intra_slice_luma 
sps_max_mtt_hierarchy_depth_intra_slice_luma 
if ( sps_max_mtt_hierarchy_depth_intra_slice_luma ! = 0 ) { 
sps_log2_diff_max_bt_min_qt_intra_slice_luma 
sps_log2_diff_max_tt_min_qt_intra_slice_luma 

} 
sps_log2_diff_min_qt_min_cb_inter_slice 
sps_max_mtt_hierarchy_depth_inter_slice 
if ( sps_max_mtt_hierarchy_depth_inter_slice ! = 0 ) { 

sps_log2_diff_max_bt_min_qt_inter_slice 
sps_log2_diff_max__tt_min_qt_inter_slice 

} 
if ( qtbtt_dual_tree_intra_flag ) { 
sps_log2_diff_min_qt_min_cb_intra_slice_chroma 
sps_max_mtt_hierarchy_depth_intra_slice_chroma 
if ( sps_max_mtt_hierarchy_depth_intra_slice_chroma ! = 0 ) { 
sps_log2_diff_max_bt_min_qt_intra_slice_chroma 
sps_log2_diff_max_tt_min_qt_intra_slice_chroma 

} 
} 
sps_max_luma_transform_size_64_flag 
if ( ChromaArray Type ! = 0 ) 

ue ( v ) 
ue ( v ) 

ue ( v ) 
ue ( v ) 

= 

ue ( v ) 
ue ( v ) 

u ( 1 ) 

} 

[ 0156 ] Table 4 shows exemplary picture header structure 
syntax . 

TABLE 4 
Descriptor 

u ( 1 ) 

u ( 1 ) 

ue ( v ) 
ue ( v ) 

ue ( v ) 
ue ( v ) 

ue ( v ) 
ue ( v ) 

picture_header_structure ( ) { 

if ( partition_constraints_override_enabled_flag ) 
partition_constraints_override_flag 

if ( ph_intra_slice_allowed_flag ) { 
if ( partition_constraints_override_flag ) { 
ph_log2_diff_min_qt_min_cb_intra_slice_luma 
ph_max_mtt_hierarchy_depth_intra_slice_luma 
if ( ph_max_mtt_hierarchy_depth_intra_slice_luma ! = 0 ) { 
ph_log2_diff_max_bt_min_qt_intra_slice_luma 
ph_log2_diff_max_tt_min_qt_intra_slice_luma 

} 
if ( qtbtt_dual_tree_intra_flag ) { 
ph_log2_diff_min_qt_min_cb_intra_slice_chroma 
ph_max_mtt_hierarchy_depth_intra_slice_chroma 
if ( ph_max_mtt_hierarchy_depth_intra_slice_chroma ! = 0 ) { 
ph_log2_diff_max_bt_min_qt_intra_slice_chroma 
ph_log2_diff_max_tt_min_qt_intra_slice_chroma 

} 
} 

} 
if ( cu_qp_delta_enabled_flag ) 
ph_cu_qp_delta_subdiv_intra_slice 

if ( pps_cu_chroma_qp_offset_list_enabled_flag ) 
ph_cu_chroma_qp_offset_subdiv_intra_slice 

} 
if ( ph_inter_slice_allowed_flag ) { 

if ( partition_constraints_override_flag ) { 
ph_log2_diff_min_qt_min_cb_inter_slice 
ph_max_mtt_hierarchy_depth_inter_slice 
if ( ph_max_mtt_hierarchy_depth_inter_slice ! = 0 ) { 
ph_log2_diff_max_bt_min_qt_inter_slice 
ph_log2_diff_max_tt_min_qt_inter_slice 

} 

ue ( V ) 
ue ( v ) 

ue ( v ) 

ue ( v ) 

ue ( v ) 
ue ( v ) 

ue ( v ) 
ue ( v ) 
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TABLE 4 - continued 

Descriptor 

} 

} 

[ 0157 ] Table 5 shows exemplary coding tree unit syntax . 
TABLE 5 

Descriptor 

ae ( v ) 

ae ( v ) 

ae ( v ) 

ae ( v ) 
== = = 

ae ( v ) 

coding_tree_unit ( ) { 
xCtb CtbAddrX << CtbLog2Size Y 
yCtb CtbAddrY « CtbLog2SizeY 
if ( slice_sao_luma_flag || slice_sao_chroma_flag ) 

sao ( CtbAddrX , CtbAddrY ) 
if ( slice_alf_enabled_flag ) { 

alf_ctb_flag [ 0 ] CtbAddrX ] [ CtbAddrY ] 
if ( alf_ctb_flag [ 0 ] [ CtbAddrX ] [ CtbAddrY ] ) { 

if ( slice_num_alf_aps_ids_luma > 0 ) 
alf_use_aps_flag 

if ( alf_use_aps_flag ) { 
if ( slice_num_alf_aps_ids_luma > 1 ) 
alf_luma_prev_filter_idx 

} else 
alf_luma_fixed_filter_idx 

} 
if ( slice_alf_chroma_idc 1 || slice_alf_chroma_idc 3 ) { 

alf_ctb_flag [ 1 ] CtbAddrX ] [ CtbAddry ] 
if ( alf_ctb_flag [ 1 ] [ CtbAddrX ] [ CtbAddry ] 
&& alf_chroma_num_alt_filters_minus1 > 0 ) 
alf_ctb_filter_alt_idx [ 0 ] [ Ctb AddrX ] [ CtbAddrY ] 

} 
if ( slice_alf_chroma_idc 2 || slice_alf_chroma_idc = 3 ) { 

alf_ctb_flag [ 2 ] [ CtbAddrX ] [ CtbAddrY ] 
if ( alf_ctb_flag [ 2 ] [ Ctb AddrX ] [ CtbAddrY ] 
&& alf_chroma_num_alt_filters_minus1 > 0 ) 
alf_ctb_filter_alt_idx [ 1 ] [ CtbAddrX ] [ CtbAddrY ] 

} 
} 
if ( slice_cc_alf_cb_enabled_flag ) 
alf_ctb_cc_cb_idc [ CtbAddrX ] [ CtbAddrY ] 

if ( slice_cc_alf_cr_enabled_flag ) 
alf_ctb_cc_cr_idc [ CtbAddrX ] [ CtbAddrY ] 

if ( slice_type = = = I && qtbtt_dual_tree_intra_flag ) 
dual_tree_implicit_qt_split ( xCtb , y?tb , CtbSizeY , O ) 

else 
coding_tree ( xCtb , y?tb , Ctb Size Y , CtbSize Y , 1 , 1 , 0 , 0 , 0 , 0 , 0 , 

SINGLE_TREE , MODE_TYPE_ALL ) 
} 

ae ( v ) 
= = = 

ae ( v ) 

ae ( v ) 

ae ( v ) 

ae ( v ) 

[ 0158 ] Table 6 shows exemplary dual tree implicit QT 
split syntax . 

TABLE 6 

Descriptor 

* 
dual_tree_implicit_qt_split ( x0 , yo , cbSize , cqtDepth ) { ) 

cbSubdiv 2 * cqtDepth 
if ( cbSize > 64 ) { 

if ( cu_qp_delta_enabled_flag && cbSubdiv < = CuQpDeltaSubdiv ) { 
IsCuQpDeltaCoded = 0 
CuQpDeltaVal = 0 
CuQgTop LeftX = x0 
CuQgTop LeftY = yo 

} 
if ( cu_chroma_qp_offset_enabled_flag && cbSubdiv < = CuChromaQpOffsetSubdiv ) { 

IsCuChromaQpOffsetCoded = 0 
CuQpOffsetCb = 0 

= 
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TABLE 6 - continued 

Descriptor 

= 

CuQpOffsetCb = 0 
CuQpOffsetCbCr = 0 

} 
x1 XO + ( cb Size / 2 ) 
yl = y0 + ( cbSize / 2 ) 
dual__tree_implicit_qt_split ( x0 , yo , cbSize / 2 , cqtDepth + 1 ) 
if ( x1 < pic_width_in_luma_samples ) 

dual_tree_implicit_qt_split ( x1 , yo , cbSize / 2 , cqtDepth + 1 ) 
if ( yl < pic_height_in_luma_samples ) 

dual_tree_implicit_qt_split ( x0 , yl , cbSize / 2 , cqtDepth + 1 ) 
if ( xl < pic_width_in_luma_samples && yl < pic_height_in_luma_samples ) 

dual_tree_implicit_qt_split ( x1 , yl , cbSize / 2 , cqtDepth + 1 ) 
} else { 

coding_tree ( x0 , yo , cbSize , cbSize , 1 , 0 , cbSubdiv , cqtDepth , 0 , 0 , 0 , 
DUAL_TREE_LUMA , MODE_TYPE_ALL ) 

coding_tree ( x0 , yo , cbSize , cbSize , 0 , 1 , cbSubdiv , cqtDepth , 0 , 0 , 0 , 
DUAL_TREE_CHROMA , MODE_TYPE_ALL ) 

} 
} 

[ 0159 ] Table 7 shows exemplary coding tree syntax . 
TABLE 7 

Descriptor 

ae ( v ) 

= 0 

ae ( v ) 

coding_tree ( x0 , yo , cbWidth , cbHeight , qgOnY , qgOnC , cbSubdiv , cqtDepth , mttDepth , depthOffset , 
partIdx , treeTypeCurr , mode TypeCurr ) { 

if ( ( allowSplitBtVer || allowSplitBtHor || allowSplitTtVer || allowSplitTtHor || 
allowSplitQT ) && ( 0 + cbWidth < = pic_width_in_luma_samples ) && 
( yo + cb Height < = pic_height_in_luma_samples ) ) 

split_cu_flag 
if ( cu_qp_delta_enabled_flag && qgOnY && cbSubdiv < = CuQpDeltaSubdiv ) { 

IsCuQpDeltaCoded = 0 
CuQpDelta Val = 0 
CuQgTop LeftX = x0 
CuQgTop LeftY = yo 

} 
if ( cu_chroma_qp_offset_enabled_flag && qgOnC && 

cbSubdiv < = CuChromaQpOffsetSubdiv ) { 
IsCuChromaQpOffsetCoded 
CuQpOffsetCb = 0 
CuQpOffsetCb 0 
CuQpOffsetCbCr = 0 ) 

} 
if ( split_cu_flag ) { 

if ( ( allowSplitBtVer || allowSplitBtHor || allowSplitTtVer || allowSplitTtHor ) && 
allowSplitQT ) 

split_qt_flag 
if ( ! split_qt_flag ) { 

if ( ( allowSplitBtHor || allowSplitTtHor ) && ( allowSplitBtVer || allowSplitTtVer ) ) ) 
mtt_split_cu_vertical_flag 

if ( ( allowSplitBtVer && allowSplitTtVer && mtt_split_cu_vertical_flag ) || 
( allowSplitBtHor && allowSplitTtHor && ! mtt_split_cu_vertical_flag ) ) 

mtt_split_cu_binary_flag 
} 
if ( modeTypeCondition : 1 ) 
mode Type MODE_TYPE_INTRA 

else if ( modeTypeCondition = = 2 ) { 
mode_constraint_flag 
modeType = mode_constraint_flag ? MODE_TYPE_INTRA : MODE_TYPE_INTER 

} else 
modeType = modeTypeCurr 

treeType = ( mode Type MODE_TYPE_INTRA ) ? DUAL_TREE_LUMA : treeTypeCurr 
if ( ! split_qt flag ) { 

if ( MttSplitMode [ x0 | yo [ mttDepth ] SPLIT_BT_VER ) { 
depth Offset + = ( x0 + cbWidth > pic_width_in_luma_samples ) ? 1 : 0 

x0 + ( cb Width / 2 ) 
coding_tree ( x0 , yo , cb Width / 2 , cbHeight , qgOn Y , qgOnC , cbSubdiv + 1 , 

cqtDepth , mttDepth + 1 , depthOffset , 0 , treeType , mode Type ) 
if ( x1 < pic_width_in_luma_samples ) 
coding_tree ( x1 , yo , cbWidth / 2 , cbHeight Y , qgOnY , qgOnC , cbSubdiv + 1 , 

cqtDepth , mttDepth + 1 , depthOffset , 1 , tree Type , mode Type ) 

ae ( v ) 

ae ( v ) 

ae ( v ) 
= 

= = 

== 

x1 = 
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TABLE 7 - continued 

Descriptor 
== 

= = 

= 

= < = 

= 

= 

} else if ( MttSplitMode [ 0 ] [ y0 ] [ mttDepth ] SPLIT_BT_HOR ) { 
depth Offset + = ( y0 + cbHeight > pic_height_in_luma_samples ) ? 1 : 0 
y1 = y0 + ( cbHeight / 2 ) 
coding_tree ( x0 , yo , cbWidth , cbHeight / 2 , qgOnY , qgOnC , cbSubdiv + 1 , 

cqtDepth , mttDepth + 1 , depthOffset , 0 , treeType , modeType ) 
if ( yl < pic_height_in_luma_samples ) 
coding_tree ( x0 , yl , cbWidth , cbHeight / 2 , qgOn Y , qgOnC , cbSubdiv + 1 , 

cqtDepth , mttDepth + 1 , depthOffset , 1 , treeType , modeType ) 
} else if ( MttSplitMode [ 0 ] [ yo ] [ mttDepth ] = = SPLIT_TT_VER ) { 
x1 = x + ( cb Width / 4 ) 
x2 = x + ( 3 * cbWidth / 4 ) 
qgNextOnY = qgOnY && ( cbSubdiv + 2 < = CuQpDeltaSubdiv ) 
qgNextOnC = qgOnC && ( cbSubdiv + 2 - CuChromaQpOffsetSubdiv ) 
coding_tree ( x0 , yo , cbWidth / 4 , cbHeight , qgNextOn Y , qgNextOnC , cbSubdiv + 2 , 

cqtDepth , mttDepth + 1 , depthOffset , 0 , treeType , modeType ) 
coding_tree ( x1 , yo , cbWidth / 2 , cbHeight , qgNextOn Y , qgNextOnC , cbSubdiv + 1 , 

cqtDepth , mttDepth + 1 , depthOffset , 1 , treeType , modeType ) 
coding_tree ( x2 , yo , cbWidth / 4 , cbHeight , qgNextOn Y , qgNextOnC , cbSubdiv + 2 , 

cqtDepth , mttDepth + 1 , depthOffset , 2 , treeType , modeType ) 
} else { / * SPLIT_TT_HOR * / 
yl = y0 + ( cbHeight / 4 ) 
y2 = y0 + ( 3 * cbHeight / 4 ) 
qgNextOnY = 4gOnY && ( cbSubdiv + 2 < = CuQpDeltaSubdiv ) 
qgNextOnC = qgOnC && ( cbSubdiv + 2 < = CuChromaQpOffsetSubdiv ) 
coding_tree ( x0 , yo , cb Width , cbHeight / 4 , qgNextOn Y , qgNextOnC , cbSubdiv + 2 , 

cqtDepth , mttDepth + 1 , depthOffset , 0 , treeType , modeType ) 
coding_tree ( x0 , yl , cbWidth , cbHeight / 2 , qgNextOn Y , qgNextOnC , cbSubdiv + 1 , 

cqtDepth , mttDepth + 1 , depthOffset , 1 , treeType , modeType ) 
coding_tree ( x0 , y2 , cb Width , cbHeight / 4 , qgNextOn Y , qgNextOnC , cbSubdiv + 2 , 

cqtDepth , mttDepth + 1 , depthOffset , 2 , treeType , modeType ) 
} 

} else { 
x1 = x0 + ( cbWidth / 2 ) 
yl = y0 + ( cbHeight / 2 ) 
coding_tree ( x0 , yo , cbWidth / 2 , cbHeight / 2 , qgOn Y , qgOnC , cbSubdiv + 2 , 

cqtDepth + 1 , 0 , 0 , 0 , treeType , modeType ) 
if ( xl < pic_width_in_luma_samples ) 
coding_tree ( x1 , yo , cb Width / 2 , cbHeight / 2 , qgOnY , qgOnC , cbSubdiv + 2 , 

cqtDepth + 1 , 0 , 0 , 1 , treeType , modeType ) 
if ( yl < pic_height_in_luma_samples ) 
coding_tree ( x0 , yl , cb Width / 2 , cbHeight / 2 , qgOnY , qgOnC , cbSubdiv + 2 , 

cqtDepth + 1,0,0,2 , treeType , modeType ) 
if ( yl < pic_height_in_luma_samples && x1 < pic_width_in_luma_samples ) 
coding_tree ( x1 , yl , cbWidth / 2 , cbHeight / 2 , qgOnY , qgOnC , cbSubdiv + 2 , 

cqtDepth + 1,0,0 , 3 , treeType , modeType ) 
} 
if ( modeTypeCur MODE_TYPE_ALL && modeType = MODE_TYPE_INTRA ) 

coding_tree ( x0 , yo , cbWidth , cbHeight , 0 , qgOnC , cbSubdiv , cqtDepth , mttDepth , 0 , 0 
DUAL_TREE_CHROMA , modeType ) 

} else 
coding_unit ( x0 , yo , cb Width , cbHeight , cqtDepth , treeTypeCurr , modeTypeCurr ) 

= 

== = = 

} 

V. Partitioning And Block Size Related Semantics [ 0162 ] The variables MinCbLog2Size Y , MinCbSize Y , 
IbcBufWidth Y , IbcBuf WidthC and Vsize can be derived as 
follows : 

MinCbLog2Size Y = ( Eq . 1 ) 

log2_min_luma_coding_block_size_minus2 + 2 

[ 0160 ] When the variable qtbtt_dual_tree_intra_flag is 
equal to 1 , it specifies that , for I slices , each CTU can be split 
into coding units with 64x64 luma samples using an implicit 
quadtree split , and these coding units can be the root of two 
separate coding tree syntax structures for luma and chroma . 
When the variable qtbtt_dual_tree_intra_flag is equal to 0 , it 
specifies that the separate coding tree syntax structure is not 
used for I slices . When the variable qtbtt_dual_tree_intra_ 
flag is not present , it is inferred to be equal to 0 . 
[ 0161 ] The variable log2_min_luma_coding_block_size_ 
minus2 plus 2 specifies the minimum luma coding block 
size . The value range of log2_min_luma_coding_block_ 
size_minus2 can be in the range of 0 to Min ( 4 , sps_log2_ 
ctu_size_minus5 + 3 ) , inclusive . 

MinCbSizeY = 1 « MinCblog2Size Y ( Eq . 2 ) 

IbcBufWidth Y = 256 * 128 / CtbSizeY ( Eq . 3 ) 

IbcBufWidthC = IbcBufWidthY / SubWidthC ( Eq . 4 ) 

VSize = Min ( 64 , CtbSizeY ) ( Eq . 5 ) 
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[ 0163 ] The value of MinCbSize Y can be less than or equal 
to V Size . 
[ 0164 ] The variables Ctb Width and CtbHeightC , which 
specify the width and height , respectively , of the array for 
each chroma CTB , can be derived as follows . If chroma_ 
format_idc is equal to 0 ( monochrome ) or separate_colour_ 
plane_flag is equal to 1 , CtbWidth and CtbHeightC are 
both equal to 0. Otherwise , CtbWidthC and CtbHeightC are 
derived as follows : 

CtbWidthC = CtbSizeY / SubWidth ( Eq . 6 ) 

CtbHeightC = CtbSizeY / SubHeightC ( Eq . 7 ) 

[ 0165 ] For log2BlockWidth ranging from 0 to 4 and for 
log2BlockHeight ranging from 0 to 4 , inclusive , the up - right 
diagonal scan order array initialization process can be 
invoked with 1 << log2Block Width and 
1 << log2BlockHeight as inputs , and the output is assigned to 
DiagScanOrder [ log2Block Width ] [ log2BlockHeight ] . 
[ 0166 ] For log2Block Width ranging from 0 to 6 and for 
log2BlockHeight ranging from 0 to 6 , inclusive , the hori 
zontal and vertical traverse scan order array initialization 
process can be invoked with l « < log2BlockWidth and 
1 « < log2BlockHeight as inputs , and the output is assigned to 
HorTravScanOrder [ log2Block Width ] [ log2BlockHeight ] 
and VerTravScanOrder [ log2BlockWidth ] 
[ log2BlockHeight ] . 
0167 ] When the variable partition_constraints_override_ 
enabled_flag is equal to 1 , it specifies the presence of 
partition_constraints_override_flag in PHs referring to the 
SPS . When the variable partition_constraints_override_en 
abled_flag is equal to 0 , it specifies the absence of partition_ 
constraints_override_flag in PHs referring to the SPS . 
[ 0168 ] The variable sps_log2_diff_min_qt_min_cb_intra_ 
slice_luma specifies the default difference between the base 
2 logarithm of the minimum size in luma samples of a luma 
leaf block resulting from quadtree splitting of a CTU and the 
base 2 logarithm of the minimum coding block size in luma 
samples for luma CUs in slices with slice_type being equal 
to 2 ( e.g. , I ) referring to the SPS . When partition_constraint 
S_override_enabled_flag is equal to 1 , the default difference 
can be overridden by ph_log2_diff_min_qt_min_cb_luma 
present in PHs referring to the SPS . The value of sps_log2_ 
diff_min_qt_min_cb_intra_slice_luma can be in the range of 
0 to Ctblog2Size Y - MinCbLog2Size Y , inclusive . The base 
2 logarithm of the minimum size in luma samples of a luma 
leaf block resulting from quadtree splitting of a CTU can be 
derived as follows : 

archy depth can be overridden by ph_max_mtt_hierarchy_ 
depth_intra_slice_luma present in PHs referring to the SPS . 
The value of sps_max_mtt_hierarchy_depth_intra_slice_ 
luma can be in the range of 0 to 2 * ( CtbLog2SizeY 
MinCbLog2SizeY ) , inclusive . 
[ 0170 ] The variable sps_log2_diff_max_bt_min_qt_intra_ 
slice_luma specifies the default difference between the base 
2 logarithm of the maximum size ( width or height ) in luma 
samples of a luma coding block that can be split using a 
binary split and the minimum size ( width or height ) in luma 
samples of a luma leaf block resulting from quadtree split 
ting of a CTU in slices with slice_type being equal to 2 ( e.g. , 
I ) referring to the SPS . When partition_constraints_over 
ride_enabled_flag is equal to 1 , the default difference can be 
overridden by ph_log2_diff_max_bt_min_qt_luma present 
in PHs referring to the SPS . The value of sps_log2_diff_ 
max_bt_min_qt_intra_slice_luma can be in the range of 0 to 
CtbLog2Size Y - MinQtLog2SizeIntra Y , inclusive . When 
sps_log2_diff_max_bt_min_qt_intra_slice_luma is not pres 
ent , the value of sps_log2_diff_max_bt_min_qt_intra_slice_ 
luma can be inferred to be equal to 0 . 
[ 0171 ] The variable sps_log2_diff_max_tt_min_qt_intra_ 
slice_luma specifies the default difference between the base 
2 logarithm of the maximum size ( width or height ) in luma 
samples of a luma coding block that can be split using a 
ternary split and the minimum size ( width or height ) in luma 
samples of a luma leaf block resulting from quadtree split 
ting of a CTU in slices with slice_type being equal to 2 ( e.g. , 
I ) referring to the SPS . When partition_constraints_over 
ride_enabled_flag is equal to 1 , the default difference can be 
overridden by ph_log2_diff_max_tt_min_qt_luma present 
in PHs referring to the SPS . The value of sps_log2_diff_ 
max_tt_min_qt_intra_slice_luma can be in the range of 0 to 
CtbLog2SizeY - MinQtLog2SizeIntra Y , inclusive . When 
sps_log2_diff_max_tt_min_qt_intra_slice_luma is not pres 
ent , the value of sps_log2_diff_max_tt_min_qt_intra_slice_ 
luma can be inferred to be equal to 0 . 
[ 0172 ] The variable sps_log2_diff_min_qt_min_cb_inter_ 
slice specifies the default difference between the base 2 
logarithm of the minimum size in luma samples of a luma 
leaf block resulting from quadtree splitting of a CTU and the 
base 2 logarithm of the minimum luma coding block size in 
luma samples for luma CUs in slices with slice_type being 
equal to 0 ( i . e . , B ) or 1 ( i.e. , P ) referring to the SPS . When 
partition constraints override enabled flag is equal to 1 , the 
default difference can be overridden by ph_log2_diff_min_ 
qt_min_cb_luma present in PHs referring to the SPS . The 
value of sps_log2_diff_min_qt_min_cb _inter_slice can be 
in the range of 0 to CtbLog2Size Y - MinCbLog2Size Y , 
inclusive . The base 2 logarithm of the minimum size in luma 
samples of a luma leaf block resulting from quadtree split 
ting of a CTU is derived as follows : 

a 

a 
MinQtLog2SizeIntra Y = ( Eq . 8 ) a 

sps_log2_diff_min_qt_min_cb_intra_slice_luma + 
MinCbLog2SizeY MinQtLog2SizeInterY ( Eq . 9 ) = 

sps_log2_diff_min_qt_min_cb_intra_slice + MinCbLog2SizeY 
[ 0169 ] The variable sps_max_mtt_hierarchy_depth_intra_ 
slice_luma specifies the default maximum hierarchy depth 
for coding units resulting from multi - type tree splitting of a 
quadtree leaf in slices with slice_type being equal to 2 ( e.g. , 
I ) referring to the SPS . When partition_constraints_over 
ride_enabled_flag is equal to 1 , the default maximum hier 

[ 0173 ] The variable sps_max_mtt_hierarchy_depth_inter_ 
slice specifies the default maximum hierarchy depth for 
coding units resulting from multi - type tree splitting of a 
quadtree leaf in slices with slice_type being equal to 0 ( B ) 



US 2022/0272369 A1 Aug. 25 , 2022 
18 

MinQtLog2SizeIntraC = ( Eq . 10 ) 

sps_log2_diff_min_qt_min_cb_intra_slice_chroma + 
MinCblog2SizeY 

2 

or 1 ( P ) referring to the SPS . When partition_constraints_ 
override_enabled_flag is equal to 1 , the default maximum 
hierarchy depth can be overridden by ph_max_mtt_hierar 
chy_depth_inter_slice present in PHs referring to the SPS . 
The value of sps_max_mtt_hierarchy_depth_inter_slice can 
be in the range of 0 to 2 * ( CtbLog2Size Y 
MinCbLog2Size Y ) , inclusive . 
[ 0174 ] The variable sps_log2_diff_max_bt_min_qt_inter_ 
slice specifies the default difference between the base 2 
logarithm of the maximum size ( width or height ) in luma 
samples of a luma coding block that can be split using a 
binary split and the minimum size ( width or height ) in luma 
samples of a luma leaf block resulting from quadtree split 
ting of a CTU in slices with slice_type being equal to 0 ( B ) 
or 1 ( P ) referring to the SPS . When partition_constraints_ 
override_enabled_flag is equal to 1 , the default difference 
can be overridden by ph_log2_diff_max_bt_min_qt_luma 
present in PHs referring to the SPS . The value of sps_log2_ 
diff_max_bt_min_qt_inter_slice can be in the range of 0 to 
CtbLog2Size Y - MinQtLog2SizeInterY , inclusive . When 
sps_log2_diff_max_bt_min_qt_inter_slice is not present , 
the value of sps_log2_diff_max_bt_min_qt_inter_slice is 
inferred to be equal to 0 . 
[ 0175 ] The variable sps_log2_diff_max_tt_min_qt_inter 
slice specifies the default difference between the base 2 
logarithm of the maximum size ( width or height ) in luma 
samples of a luma coding block that can be split using a 
ternary split and the minimum size ( width or height ) in luma 
samples of a luma leaf block resulting from quadtree split 
ting of a CTU in slices with slice_type being equal to 0 ( B ) 
or 1 ( P ) referring to the SPS . When partition_constraints 
override_enabled_flag is equal to 1 , the default difference 
can be overridden by ph_log2_diff_max_tt_min_qt_luma 
present in PHs referring to the SPS . The value of sps_log2_ 
diff_max_tt_min_qt_inter_slice can be in the range of 0 to 
CtbLog2Size Y - MinQtLog2SizeInter Y , inclusive . When 
sps_log2_diff_max_tt_min_qt_inter_slice is not present , the 
value of sps_log2_diff_max_tt_min_qt_inter_slice is 
inferred to be equal to 0 . 
[ 0176 ] The variable sps_log2_diff_min_qt_min_cb_intra_ 
slice chroma specifies the default difference between the 
base 2 logarithm of the minimum size in luma samples of a 
chroma leaf block resulting from quadtree splitting of a 
chroma CTU with tree Type being equal to DUAL_TREE 
CHROMA and the base 2 logarithm of the minimum coding 
block size in luma samples for chroma CUs with treeType 
being equal to DUAL_TREE_CHROMA in slices with 
slice_type being equal to 2 ( I ) referring to the SPS . When 
partition_constraints_override_enabled_flag is equal to 1 , 
the default difference can be overridden by ph_log2_diff_ 
min_qt_min_cb_chroma present in PHs referring to the SPS . 
The value of sps_log2_diff_min_qt_min_cb_intra_slice 
chroma can be in the range of 0 to Ctblog2Size Y 
MinCbLog2Size Y , inclusive . When not present , the value of 
sps_log2_diff_min_qt_min_cb_intra_slice_chroma is 
inferred to be equal to 0. The base 2 logarithm of the 
minimum size in luma samples of a chroma leaf block 
resulting from quadtree splitting of a CTU with treeType 
being equal to DUAL_TREE_CHROMA can be derived as 
follows : 

[ 0177 ] The variable sps_max_mtt_hierarchy_depth_intra_ 
slice chroma specifies the default maximum hierarchy depth 
for chroma coding units resulting from multi - type tree 
splitting of a chroma quadtree leaf with treeType being equal 
to DUAL TREE CHROMA in slices with slice_type being 
equal to 2 ( I ) referring to the SPS . When partition_con 
straints_override_enabled_flag is equal to 1 , the default 
maximum hierarchy depth can be overridden by ph_max_ 
mtt_hierarchy_depth_chroma present in PHs referring to the 
SPS . The value of sps_max_mtt_hierarchy_depth_intra_ 
slice_chroma can be in the range of 0 to 2 * ( CtbLog2Size Y 
MinCbLog2SizeY ) , inclusive . When not present , the value 
of sps_max_mtt_hierarchy_depth_intra_slice_chroma is 
inferred to be equal to 0 . 
[ 0178 ] The variable sps_log2_diff_max_bt_min_qt_intra_ 
slice chroma specifies the default difference between the 
base 2 logarithm of the maximum size ( width or height ) in 
luma samples of a chroma coding block that can be split 
using a binary split and the minimum size ( width or height ) 
in luma samples of a chroma leaf block resulting from 
quadtree splitting of a chroma CTU with treeType being 
equal to DUAL_TREE_CHROMA in slices with slice_type 
being equal to 2 ( I ) referring to the SPS . When partition_ 
constraints_override_enabled_flag is equal to 1 , the default 
difference can be overridden by ph_log2_diff_max_bt_min_ 
qt_chroma present in PHs referring to the SPS . The value of 
sps_log2_diff_max_bt_min_qt_intra_slice_chroma can be 
in the range of 0 to CtbLog2SizeY – MinQtLog2SizeIntraC , 
inclusive . When sps_log2_diff_max_bt_min_qt_intra_ 
slice_chroma is not present , the value of sps_log2_diffmax_ 
bt_min_qt_intra_slice_chroma is inferred to be equal to 0 . 
[ 0179 ] The variable sps_log_dif_max_tt_min_qt_intra_ 
slice_chroma specifies the default difference between the 
base 2 logarithm of the maximum size ( width or height ) in 
luma samples of a chroma coding block that can be split 
using a ternary split and the minimum size ( width or height ) 
in luma samples of a chroma leaf block resulting from 
quadtree splitting of a chroma CTU with treeType being 
equal to DUAL_TREE_CHROMA in slices with slice_type 
being equal to 2 ( I ) referring to the SPS . When partition_ 
constraints_override_enabled_flag is equal to 1 , the default 
difference can be overridden by ph_log2_diff_max_tt_min_ 
qt_chroma present in PHs referring to the SPS . The value of 
sps_log2_diff_max_tt_min_qt_intra_slice_chroma can be in 
the range of 0 to CtbLog2Size Y - MinQtLog2SizeIntraC , 
inclusive . When sps_log2_diff_max_tt_min_qt_intra_slice_ 
chroma is not present , the value of sps_log2_diff_max_tt_ 
min_qt_intra_slice_chroma is inferred to be equal to 0 . 
[ 0180 ] When the variable sps_max_luma_transform_ 
size_64 _lag is equal to 1 , it specifies that the maximum 
transform size in luma samples is equal to 64. When the 
variable sps_max_luma_transform_size_64_flag is equal to 
0 , it specifies that the maximum transform size in luma 
samples is equal to 32 . 
[ 0181 ] When CtbSizeY is less than 64 , the value of 
sps_max_luma_transform_size_64_flag can be equal to 0 . 
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[ 0182 ] The variables Min TbLog2Size Y , 
MaxTbLog2Size Y , Min TbSize Y , and 
[ 0183 ] MaxTbSize Y can be derived as follows : 

Min TbLog2Size Y = 2 ( Eq . 11 ) 

MaxTbLog2Size Y = sps_max_luma_transform_size_64_flag ? 6 : 5 ( Eq . 12 ) 
MinTbSizeY = 1 « Min TbLog2SizeY ( Eq . 13 ) 

MaxTbSize Y = 1 « MaxTbLog2SizeY ( Eq . 14 ) 

with treeType equal to DUAL_TREE_CHROMA and the 
base 2 logarithm of the minimum coding block size in luma 
samples for chroma CUs with treeType equal to DUAL_ 
TREE_CHROMA in slices with slice_type equal to being 2 
( I ) associated with the PH . The value of ph_log2_diff_min_ 
qt_min_cb_intra_slice_chroma can be in the range of 0 to 
Ctblog2SizeY - MinCbLog2Size Y , inclusive . When not 
present , the value of ph_log2_diff_min_qt_min_cb_intra_ 
slice_chroma is inferred to be equal to sps_log2_diff_min_ 
qt_min_cb_intra_slice_chroma . 
[ 0189 ] The variable ph_max_mtt_hierarchy depth_intra_ 
slice_chroma specifies the maximum hierarchy depth for 
chroma coding units resulting from multi - type tree splitting 
of a chroma quadtree leaf with treeType equal to DUAL_ 
TREE_CHROMA in slices with slice_type equal to being 2 
( I ) associated with the PH . The value of ph_max_mtt_ 
hierarchy_depth_intra_slice_chroma can be in the range of 
0 to 2 * ( CtbLog2Size Y - MinCbLog2SizeY ) , inclusive . 
When not present , the value of ph_max_mtt_hierarchy_ 
depth_intra_slice_chroma is inferred to be equal to sps_ 
max_mtt_hierarchy_depth_intra_slice_chroma . 
[ 0190 ] The variable ph_log2_diff_max_bt_min_qt_intra_ 
slice_chroma specifies the difference between the base 2 
logarithm of the maximum size ( width or height ) in luma 
samples of a chroma coding block that can be split using a 
binary split and the minimum size ( width or height ) in luma 
samples of a chroma leaf block resulting from quadtree 
splitting of a chroma CTU with tree Type equal to DUAL_ 
TREE_CHROMA in slices with slice_type being equal to 2 
( I ) associated with the PH . The value of ph_log2_diff_max_ 
bt_min_qt_intra_slice_chroma can be in the range of 0 to 
Ctblog2Size Y - MinQtLog2SizeIntraC , inclusive . When not 
present , the value of ph_log2_diff_max_bt_min_qt_intra_ 
slice_chroma is inferred to be equal to sps_log2_diff_max_ 
bt_min_qt_intra_slice_chroma . 
[ 0191 ] The variable ph_log2_diff_max_tt_min_qt_intra_ 
slice_chroma specifies the difference between the base 2 
logarithm of the maximum size ( width or height ) in luma 
samples of a chroma coding block that can be split using a 
ternary split and the minimum size ( width or height ) in luma 
samples of a chroma leaf block resulting from quadtree 
splitting of a chroma CTU with treeType equal to DUAL_ 
TREE_CHROMA in slices with slice_type being equal to 2 
( I ) associated with the PH . The value of ph_log2_diff_max_ 
tt_min_qt_intra_slice_chroma can be in the range of 0 to 
CtbLog2Size Y - MinQtLog2SizeIntraC , inclusive . When not 
present , the value of ph_log2_diff_max_tt_min_qt_intra_ 
slice_chroma is inferred to be equal to sps_log2_diff_max_ 
tt_min_qt_intra_slice_chroma . 
[ 0192 ] The variable slice_type specifies the coding type of 
the slice according to Table 8 . 

[ 0184 ] The variable ph_log2_diff_min_qt_min_cb_intra_ 
slice_luma specifies the difference between the base 2 
logarithm of the minimum size in luma samples of a luma 
leaf block resulting from quadtree splitting of a CTU and the 
base 2 logarithm of the minimum coding block size in luma 
samples for luma CUs in the slices with slice_type being 
equal to 2 ( I ) associated with the PH . The value of ph_log2_ 
diff_min_qt_min_cb_intra_slice_luma can be in the range of 
O to CtbLog2Size Y - MinCbLog2Size Y , inclusive . When not 
present , the value of ph_log2_diff_min_qt_min_cb_luma is 
inferred to be equal to sps_log2_diff_min_qt_min_cb_intra_ 
slice_luma . 
[ 0185 ] The variable ph_max_mtt_hierarchy_depth_intra_ 
slice_luma specifies the maximum hierarchy depth for cod 
ing units resulting from multi - type tree splitting of a 
quadtree leaf in slices with slice_type being equal to 2 ( I ) 
associated with the PH . The value of ph_max_mtt_hierar 
chy_depth_intra_slice_luma can be in the range of 0 to 
2 * ( CtbLog2SizeY - MinCbLog2SizeY ) , inclusive . When not 
present , the value of ph_max_mtt_hierarchy_depth_intra_ 
slice_luma is inferred to be equal to sps_max_mtt_hierar 
chy_depth_intra_slice_luma . 
[ 0186 ] The variable ph_log2_diff_max_bt_min_qt_intra_ 
slice_luma specifies the difference between the base 2 
logarithm of the maximum size ( width or height ) in luma 
samples of a luma coding block that can be split using a 
binary split and the minimum size ( width or height ) in luma 
samples of a luma leaf block resulting from quadtree split 
ting of a CTU in slices with slice_type being equal to 2 ( I ) 
associated with the PH . The value of ph_log2_diff_max 
bt_min_qt_intra_slice_luma can be in the range of 0 to 
CtbLog2Size Y - MinQtLog2SizeIntra Y , inclusive . When not 
present , the value of ph_log2_diff_max_bt_min_qt_intra_ 
slice_luma is inferred to be equal to sps_log2_diff_max_ 
bt_min_qt_intra_slice_luma . 
[ 0187 ] The variable ph_log2_diff_max_tt_min_qt_intra_ 
slice_luma specifies the difference between the base 2 
logarithm of the maximum size ( width or height ) in luma 
samples of a luma coding block that can be split using a 
ternary split and the minimum size ( width or height ) in luma 
samples of a luma leaf block resulting from quadtree split 
ting of a CTU in slices with slice_type being equal to 2 ( I ) 
associated with the PH . The value of ph_log2_diff_max_tt_ 
min_qt_intra_slice_luma can be in the range of 0 to 
CtbLog2Size Y - MinQtLog2SizeIntra Y , inclusive . When not 
present , the value of ph_log2_diff_max_tt_min_qt_intra_ 
slice_luma is inferred to be equal to sps_log2_diff_max_tt_ 
min_qt_intra_slice_luma . 
[ 0188 ] The variable ph_log2_diff_min_qt_min_cb_intra_ 
slice_chroma specifies the difference between the base 2 
logarithm of the minimum size in luma samples of a chroma 
leaf block resulting from quadtree splitting of a chroma CTU 

a 

a 

a 

a 

TABLE 8 a 

slice_type Name of slice_type 
0 B ( B slice ) 

P ( P slice ) 
I ( I slice ) 

[ 0193 ] When not present , the value of slice_type is 
inferred to be equal to 2 . 
[ 0194 ] When ph_intra_slice_allowed_flag is equal to 0 , 
the value of slice_type can be equal to 0 or 1. When 
nal_unit_type is in the range of IDR_W_RADL to CRA_ 
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-continued 
MaxMttDepthC = ph_max_mtt_hierarchy_depth_inter_slice ( Eq . 32 ) = 

CuQpDeltaSubdiv = ph_cu_qp_delta_subdiv_inter_slice ( Eq . 33 ) 

NUT , inclusive , and vps_independent_layer_flag ( General 
LayerIdx [ nuh_layer_id ] ] is equal to 1 , slice_type can be 
equal to 2 . 
[ 0195 ] The variables MinQtLog2Size Y , 
MinQtLog2SizeC , MinQtSize Y , MinQtSizeC , MaxBtSize Y , 
MaxBtSizeC , MinBtSizeY , MaxTtSize Y , MaxTtSizeC , 
MinTtSize Y , MaxMttDepth Y and MaxMttDepthCare 
derived as follows . If slice_type is equal to 2 ( I ) , the 
following applies : 

CuChromaQpOffsetSubdiv = ( Eq . 34 ) 

ph_cu_chroma_qp_offset_subdiv_inter_slice 

[ 0197 ] Then , the following applies : 

MinQtLog2Size Y = MinCblog2SizeY + ( Eq . 15 ) MinQtSize Y = 1 « MinQtLog2SizeY ( Eq . 35 ) 

MinQtSizeC = 1 « MinQtLog2SizeC = ( Eq . 36 ) ph_log2_diff_min_qt_min_cb_intra_slice_luma 
MinQtLog2SizeC = MinCbLog2SizeY + ( Eq . 16 ) = MinBtSize Y = 1 « MinCbLog2SizeY ( Eq . 37 ) 

ph_log2_diff_min_qt_min_cb_intra_slice_chroma Min TtSizeY = 1 « MinCbLog2SizeY ( Eq . 38 ) 

MaxBtSizeY = 1 < ( MinQtLog2SizeY + ( Eq . 17 ) 

ph_log2_diff_max_bt_min_qt_intra_slice_luma ) 
MaxBtSizeC = 1 « ( MinQtLog2SizeC + ( Eq . 18 ) 

ph_log2_diff_max_bt_min_qt_intra_slice_chroma ) 
MaxTtSize Y = 1 < ( MinQtLog2SizeY + ( Eq . 19 ) 

ph_log2_diff_max_tt_min_qt_intra_slice_luma ) 

MaxTtSizeC = 1 < ( MinQtLog2SizeC + ( Eq . 20 ) 

ph_log2_diff_max_tt_min_qt_intra_slice_chroma ) 
MaxMttDepth Y = ph_max_mtt_hierarchy_depth_intra_slice_luma ( Eq . 21 ) 
MaxMttDepthC = ( Eq . 22 ) 

ph_max_mtt_hierarchy_depth_intra_slice_chroma 
CuQpDelta Subdiv = ph_cu_qp_delta_subdiv_intra_slice ( Eq . 23 ) - 

CuChromaQpOffsetSubdiv = ( Eq . 24 ) 

ph_cu_chroma_qp_offset_subdiv_intra_slice 

[ 0196 ] Otherwise , when slice_type is equal to ( B ) or 1 
( P ) ) , the following applies : 

[ 0198 ] The variables allowSplitQt , allowSplitBtVer , 
allowSplitBtHor , allowSplitTtVer , and allowSplitTtHor are 
derived as follows . The allowed quad split process can be 
invoked with the coding block size cbSize set equal to 
cbWidth , the current multi - type tree depth mttDepth , tree 
TypeCurr , and modeTypeCurr as inputs , and the output is 
assigned to allowSplitQt . 
[ 0199 ] The variables minQtSize , maxBtSize , maxTtSize 
and maxMttDepth can be derived as follows . If treeType is 
equal to DUAL TREE CHROMA , then minQtSize , maxBt 
Size , maxTtSize , and maxMttDepth are set equal to MinQt 
SizeC , MaxBtSizeC , MaxTtSizeC , and MaxMttDepthC + 
depth Offset , respectively . 
[ 0200 ] Otherwise , minQtSize , maxBtSize , maxTtSize , 
and maxMttDepth are set equal to MinQtSizeY , MaxBt 
SizeY , MaxTtSize Y , and MaxMttDepth Y + depth Offset , 
respectively . 
[ 0201 ] The allowed binary split process can be invoked 
with the binary split mode SPLIT_BT_VER , the coding 
block width cbWidth , the coding block height cbHeight , the 
location ( x0 , y0 ) , the current multi - type tree depth mttDepth , 
the maximum multi - type tree depth with offset maxMtt 
Depth , the maximum binary tree size maxBtSize , the mini 
mum quadtree size minQtSize , the current partition index 
partIdx , treeTypeCurr , and modeTypeCurr as inputs , and the 
output is assigned to allowSplitBt Ver . 
[ 0202 ] The allowed binary split process can be invoked 
with the binary split mode SPLIT_BT_HOR , the coding 
block height cbHeight , the coding block width cbWidth , the 
location ( x0 , y0 ) , the current multi - type tree depth mttDepth , 
the maximum multi - type tree depth with offset maxMtt 
Depth , the maximum binary tree size maxBtSize , the mini 
mum quadtree size minQtSize , the current partition index 
partIdx , treeTypeCurr , and modeTypeCurr as inputs , and the 
output is assigned to allowSplitBtHor . 
[ 0203 ] The allowed ternary split process can be invoked 
with the ternary split mode SPLIT_TT_VER , the coding 
block width cbWidth , the coding block height cbHeight , the 
location ( x0 , y0 ) , the current multi - type tree depth mttDepth , 
the maximum multi - type tree depth with offset maxMtt 
Depth , the maximum ternary tree size maxTtSize , treeType 
Curr , and modeTypeCurr as inputs , and the output is 
assigned to allowSplit Tt Ver . 
[ 0204 ] The allowed ternary split process can be invoked 
with the ternary split mode SPLIT_TT_HOR , the coding 

MinQtLog2SizeY = ( Eq . 25 ) 

MinCbLog2SizeY + ph_log2_diff_min_qt_min_cb_inter_slice 
MinQtLog2SizeC = ( Eq . 26 ) 

MinCbLog2SizeY + ph_log2_diff_min_qt_min_cb_inter_slice 
MaxBtSize Y = 1 < ( Eq . 27 ) 

( MinQtLog2Size Y + ph_log2_diff_max_bt_min_qt_inter_slice ) 
MaxBtSizeC = 1 < ( Eq . 28 ) 

( MinQtLog2SizeC + ph_log2_diff_max_bt_min_qt_inter_slice ) 
MaxTtSize Y = 1 < ( Eq . 29 ) 

( MinQtLog2SizeY + ph_log2_diff_max_tt_min_qt_inter_slice ) 
MaxTtSizeC = 1 < ( Eq . 30 ) 

( MinQtLog2SizeC + ph_log2_diff_max_tt_min_qt_inter_slice ) 
MaxMttDepth Y = ph_max_mtt_hierarchy_depth_inter_slice ( Eq . 31 ) = 
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block height cbHeight , the coding block width cbWidth , the 
location ( x0 , y0 ) , the current multi - type tree depth mttDepth , 
the maximum multi - type tree depth with offset maxMtt 
Depth , the maximum ternary tree size maxTtSize , treeType 
Curr , and modeTypeCurr as inputs , and the output is 
assigned to allowSplitTtHor . 
[ 0205 ] When the variable split_cu_flag is equal to 0 , it 
specifies that a coding unit is not split . When the variable 
split_cu_flag is equal to 1 , it specifies that a coding unit is 
split into four coding units using a quad split as indicated by 
the syntax element split_qt_flag , or into two coding units 
using a binary split or into three coding units using a ternary 
split as indicated by the syntax element mtt_split_cu_bina 

inferred as to be equal to 1. Otherwise , if allowSplitBtHor is 
equal to TRUE and allowSplitTtVer is equal to TRUE , the 
value of mtt_split_cu_binary_flag is inferred to be equal to 
1 - mtt_split_cu_vertical_flag . Otherwise , if allowSplitBtVer 
is equal to TRUE and allowSplitTtHor is equal to TRUE , the 
value of mtt_split_cu_binary_flag is inferred to be equal to 
mtt_split_cu_vertical_flag . 
[ 0210 ] The variable MttSplit Mode [ x ] [ y ] [ mttDepth ) can 
be derived from the value of mtt_split_cu_vertical_flag and 
from the value of mtt_split_cu_binary_flag as defined in 
Table 9 for x = x0 . . . XO + Cb Width - 1 and y = yo . . .y0 + 
cbHeight - 1 . 

TABLE 9 

MttSplitMode [ 0 ] [ yo ] [ mttDepth ] mtt_split_cu_vertical_flag mtt_split_cu_binary_flag 
SPLIT_TT HOR 
SPLIT BT HOR 
SPLIT_TT_VER 
SPLIT_BT_VER 

0 
0 
1 
1 

0 
1 
0 
1 

a 

ry_flag . The binary or ternary split can be either vertical or 
horizontal as indicated by the syntax element mtt_split_cu_ 
vertical_flag . 
[ 0206 ] When split_cu_flag is not present , the value of 
split_cu_flag is inferred as follows . If one or more of the 
following conditions are true , the value of split_cu_flag is 
inferred to be equal to 1 : ( i ) x0 30 cb Width is greater than 
pic width in luma samples ; and ( ii ) yo + cbHeight is greater 
than pic_height_in_luma_samples . Otherwise , the value of 
split_cu_flag is inferred to be equal to 0 . 
[ 0207 ] The variable split_qt_flag specifies whether a cod 
ing unit is split into coding units with half horizontal and 
vertical size . When split_qt_flag is not present , the following 
applies . If all of the following conditions are true , split_qt_ 
flag is inferred to be equal to 1 : ( i ) split_cu_flag is equal to 
1 ; and ( ii ) allowSplitQt , allowSplitBtHor , allowSplitBtVer , 
allowSplit TtHor , and allowSplitTtVer are equal to FALSE . 
Otherwise , if allowSplitQt is equal to TRUE , the value of 
split_qt_flag is inferred to be equal to 1. Otherwise , the value 
of split_qt_flag is inferred to be equal to 0 . 
[ 0208 ] When the variable mtt_split_cu_vertical_flag is 
equal to 0 , it specifies that a coding unit is split horizontally . 
When the variable mtt_split_cu_vertical_flag is equal to 1 , 
it specifies that a coding unit is split vertically . When the 
variable mtt_split_cu_vertical_flag is not present , it can be 
inferred as follows . If allowSplitBtHor is equal to TRUE or 
allowSplit TtHor is equal to TRUE , the value of mtt_split_ 
cu_vertical_flag is inferred to be equal to 0. Otherwise , the 
value of mtt_split_cu_vertical_flag is inferred to be equal to 
1 . 

[ 0209 ] When the variable mtt_split_cu_binary_flag is 
equal to 0 , it specifies that a coding unit is split into three 
coding units using a ternary split . When the variable mtt_ 
split_cu_binary_flag is equal to 1 , it specifies that a coding 
unit is split into two coding units using a binary split . When 
the variable mtt_split_cu_binary_flag is not present , it can 
be inferred as follows . If allowSplitBtVer is equal to FALSE 
and allowSplitBtHor is equal to FALSE , the value of mtt_ 
split_cu_binary_flag is inferred to be equal to 0. Otherwise , 
if allowSplitTtVer is equal to FALSE and allowSplitTtHor is 
equal to FALSE , the value of mtt_split_cu_binary_flag is 

[ 0211 ] MttSplit Mode [ x0 ] [ y0 ] [ mttDepth ] represents hori 
zontal and vertical binary and ternary splittings of a coding 
unit within the multi - type tree as illustrated in FIGS . 16A 
16D . The array indices x0 , yo specify the location ( x0 , yo ) 
of the top - left luma sample of the considered coding block 
relative to the top - left luma sample of the picture . 
[ 0212 ] The variable mode TypeCondition can be derived 
as follows . If one or more of the following conditions are 
true , modeTypeCondition is set equal to 0 : ( i ) slice_type is 
equal to 1 and qtbtt_dual_tree_intra_flag is equal to 1 ; ( ii ) 
modeTypeCurr is not equal to MODE_TYPE_ALL ; ( iii ) 
chroma_format_idc is equal to 0 ; and ( iv ) chroma_format_ 
idc is equal to 3. Otherwise , if one of the following condi 
tions is true , modeTypeCondition is set equal to 1 : ( i ) 
cb Width * cbHeight is equal to 64 and split_qt_flag is equal 
to 1 ; ( ii ) cbWidth * cbHeight is equal to 64 and MttSplit Mode 
[ x0 ] [ y0 ] [ mttDepth ] is equal to SPLIT_TT_HOR or SPLIT_ 
TT_VER ; ( iii ) cb Width * cbHeight is equal to 32 and Mtt 
SplitMode [ xO ] [ y0 ] [ mttDepth ) is equal to SPLIT_BT_HOR 
or SPLIT_BT_VER . Otherwise , if one of the following 
conditions is true , modeTypeCondition is set equal to 
1 + ( slice_type ! = I ? 1 : 0 ) : ( i ) cb Width * cbHeight is equal to 64 
and MttSplitMode [ xO ] [ y0 ] [ mttDepth ] is equal to SPLIT_ 
BT_HOR or SPLIT_BT_VER and chroma_format_idc is 
equal to 1 ; ( ii ) cbWidth * cbHeight is equal to 128 and 
MttSplit Mode [ x ] [ y0 ] [ mttDepth ] is equal to SPLIT_TT_ 
HOR or SPLIT_TT_VER and chroma_format_idc is equal 
to 1 ; ( iii ) cb Width is equal to 8 and MttSplitMode [ x0 ] [ y0 ] 
[ mttDepth ] is equal to SPLIT_BT_VER ; and ( iv ) cb Width is 
equal to 16 and MttSplit Mode [ xO ] [ y0 ] [ mttDepth ] is equal to 
SPLIT_TT_VER . Otherwise , modeTypeCondition is set 
equal to 0 . 
[ 0213 ] When the variable mode_constraint_flag is equal to 
0 , it specifies that coding units inside the current coding tree 
node can only use inter prediction coding modes . When the 
variable mode_constraint_flag is equal to 1 , it specifies that 
coding units inside the current coding tree node cannot use 
inter prediction coding modes . 

9 VI . Partitioning Availability Processes 
( 0214 ] According to aspects of the disclosure , an allowed 
quad split process can be described as follows . Inputs to this 
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process include a coding block size cbSize in luma samples , 
a multi - type tree depth mttDepth , a variable treeType , and a 
variable modeType . The variable tree Type specifies whether 
a single tree ( SINGLE_TREE ) or a dual tree is used to 
partition the coding tree node and , when a dual tree is used , 
whether the luma ( DUAL_TREE_LUMA ) or chroma com 
ponents ( DUAL_TREE_CHROMA ) are currently pro 
cessed . The variable modeType specifies whether intra 
( MODE_INTRA ) , IBC ( MODE_IBC ) , and inter coding 
modes can be used ( MODE_TYPE_ALL ) , or whether only 
intra and IBC coding modes can be used ( MODE_TYPE_ 
INTRA ) , or whether only inter coding modes can be used 
( MODE_TYPE_INTER ) for coding units inside the coding 
tree node . Output of this process is the variable allowQt 
Split . 
[ 0215 ] The variable allowQtSplit can be derived as fol 
lows . If one or more of the following conditions are true , 
allowQtSplit is set equal to FALSE : ( i ) tree Type is equal to 
SINGLE_TREE or DUAL_TREE_LUMA and cbSize is 
less than or equal to MinQtSizeY ; ( ii ) tree Type is equal to 
DUAL_TREE_CHROMA and cbSize is less than or equal to 
( MinQtSizeC * Sub HeightC / Sub WidthC ) ; ( iii ) mttDepth is 
not equal to 0 ; ( iv ) treeType is equal to DUAL_TREE_ 
CHROMA and ( cbSize / SubWidthC ) is less than or equal to 
4 ; and ( v ) tree Type is equal to DUAL_TREE_CHROMA 
and modeType is equal to MODE_TYPE_INTRA . Other 
wise , allowQtSplit is set equal to TRUE . 
[ 0216 ] According to aspects of the disclosure , an allowed 
binary split process can be described as follows . Inputs to 
this process include a binary split mode btSplit , a coding 
block width cb Width in luma samples , a coding block height 
cbHeight in luma samples , a location ( x0 , y0 ) of the top - left 
luma sample of the considered coding block relative to the 
top - left luma sample of the picture , a multi - type tree depth 
mttDepth , a maximum multi - type tree depth with offset 
maxMttDepth , a maximum binary tree size maxBtSize , a 
minimum quadtree size minQtSize , a partition index partIdx , 
a variable treeType , and a variable modeType . The variable 
treeType specifies whether a single tree ( SINGLE_TREE ) or 
a dual tree is used to partition the coding tree node and , when 
a dual tree is used , whether the luma ( DUAL_TREE_ 
LUMA ) chroma components ( DUAL_TREE 
CHROMA ) are currently processed . The variable mode Type 
specifies whether intra ( MODE_INTRA ) , IBC ( MODE_ 
IBC ) , and inter coding modes can be used ( MODE_TYPE_ 
ALL ) , or whether only intra and IBC coding modes can be 
used ( MODE_TYPE_INTRA ) , or whether only inter coding 
modes can be used ( MODE_TYPE_INTER ) for coding 
units inside the coding tree node . Output of this process is 
the variable allowBtSplit . 
[ 0217 ] The variables parallelTtSplit and cbSize can be 
derived as specified in Table 10 . 

Size ; ( iii ) cbHeight is greater than maxBtSize ; ( iv ) mttDepth 
is greater than or equal to maxMttDepth ; ( v ) tree Type is 
equal to DUAL TREE CHROMA and ( cb Width / Sub 
WidthC ) * ( cbHeight / SubHeightC ) is less than or equal to 16 ; 
( vi ) treeType is equal to DUAL_TREE_CHROMA and 
( cb Width / SubWidthC ) is equal to 4 and btSplit is equal to 
SPLIT_BT_VER ; ( vii ) treeType is equal to DUAL TREE 
CHROMA and modeType is equal to MODE_TYPE_IN 
TRA ; and ( viii ) cb Width * cbHeight is equal to 32 and 
mode Type is equal to MODE_TYPE_INTER . Otherwise , if 
all of the following conditions are true , allowBtSplit is set 
equal to FALSE : ( i ) btSplit is equal to SPLIT_BT_VER ; and 
( ii ) yO + cbHeight is greater than pic height in luma samples . 
Otherwise , if all of the following conditions are true , allow 
BtSplit is set equal to FALSE : ( i ) btSplit is equal to 
SPLIT_BT_VER ; ( ii ) cbHeight is greater than 64 ; and ( iii ) 
xO + cbWidth is greater than pic_width_in_luma_samples . 
Otherwise , if all of the following conditions are true , allow 
BtSplit is set equal to FALSE : ( i ) btSplit is equal to 
SPLIT_BT_HOR ; ( ii ) cbWidth is greater than 64 ; and ( iii ) 
yo + cbHeight is greater than pic_height_in_luma_samples . 
Otherwise , if all of the following conditions are true , allow 
BtSplit is set equal to FALSE : ( i ) xO + cb Width is greater than 
pic_width_in_luma_samples ; ( ii ) yO + cbHeight is greater 
than pic_height_in_luma_samples ; and ( iii ) cb Width is 
greater than minQtSize . Otherwise , if all of the following 
conditions are true , allowBtSplit is set equal to FALSE : ( i ) 
btSplit is equal to SPLIT_BT_HOR ; ( ii ) xO + cb Width is 
greater than pic_width_in_luma_samples ; and ( iii ) 
yO + cbHeight is less than or equal to pic_height_in_luma_ 
samples . Otherwise , if all of the following conditions are 
true , allowBtSplit is set equal to FALSE : ( i ) mttDepth is 
greater than 0 ; ( ii ) partIdx is equal to 1 ; and ( iii ) MttSplit 
Mode [ xO ] [ y0 ] [ mttDepth - 1 ] is equal to parallelTtSplit . Oth 
erwise , if all of the following conditions are true , allowBt 
Split is set equal to FALSE : ( i ) btSplit is equal to SPLIT_ 
BT_VER ; ( ii ) cb Width is less than or equal to 64 ; and ( iii ) 
cbHeight is greater than 64. Otherwise , if all of the following 
conditions are true , allowBtSplit is set equal to FALSE : ( i ) 
btSplit is equal to SPLIT_BT_HOR ; ( ii ) cb Width is greater 
than 64 ; and ( iii ) cbHeight is less than or equal to 64 . 
Otherwise , allowBtSplit is set equal to TRUE . 
[ 0219 ] According to aspects of the disclosure , an allowed 
ternary split process can be described as follows . Inputs to 
this process include a ternary split mode ttSplit , a coding 
block width cb Width in luma samples , a coding block height 
cbHeight in luma samples , a location ( x0 , y0 ) of the top - left 
luma sample of the considered coding block relative to the 
top - left luma sample of the picture , a multi - type tree depth 
mttDepth , a maximum multi - type tree depth with offset 
maxMttDepth , a maximum ternary tree size maxTtSize , a 
variable treeType , and a variable modeType . The variable 

a 

or 

TABLE 10 

btSplit SPLIT_BT_VER btSplit == SPLIT_BT_HOR 

parallelTtSplit 
cb Size 

SPLIT TT VER 
cbWidth 

SPLIT TT HOR 
cbHeight 

[ 0218 ] The variable allowBtSplit can be derived as fol 
lows . If one or more of the following conditions are true , 
allowBtSplit is set equal to FALSE : ( i ) cbSize is less than or 
equal to MinBtSize Y ; ( ii ) cb Width is greater than maxBt 

treeType specifies whether a single tree ( SINGLE_TREE ) or 
a dual tree is used to partition the coding tree node and , when 
a dual tree is used , whether the luma ( DUAL_TREE_ 
LUMA ) chroma components ( DUAL_TREE_ or 
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equal to TRUE ; ( ii ) availableN is set equal to TRUE ; and 
( iii ) CuPredMode [ 0 ] [ xNbY ] [ yNbY ] is not equal to CuPred 
Mode [ O ] [ xCurr ] [ yCurr ] . 

CHROMA ) are currently processed . The variable mode Type 
specifies whether intra ( MODE_INTRA ) , IBC ( MODE_ 
IBC ) , and inter coding modes can be used ( MODE_TYPE_ 
ALL ) , or whether only intra and IBC coding modes can be 
used ( MODE_TYPE_INTRA ) , or whether only inter coding 
modes can be used ( MODE_TYPE_INTER ) for coding 
units inside the coding tree node . Output of this process is 
the variable allowTtSplit . 
[ 0220 ] The variable cbSize can be derived as specified in 
Table 11 . 

VI . Derivation of Partitioning Related Variables 

[ 0225 ] The variable slice_type specifies the coding type of 
the slice according to Table 12 , for example . 

TABLE 12 

TABLE 11 slice_type Name of slice_type 
ttSplit = = SPLIT_TT_VER ttSplit SPLIT_TT_HOR 

cbSize cbWidth 1 cbHeight 
B ( B slice ) 
P ( P slice ) 
I ( I slice ) 2 

[ 0226 ] When not present , the value of slice_type is 
inferred to be equal to 2 . 
[ 0227 ] When ph_intra_slice_allowed_flag is equal to 0 , 
the value of slice_type can be equal to 0 or 1. When 
nal_unit_type is in the range of IDR_W_RADL to CRA_ 
NUT , inclusive , and vps_independent_layer_flag [ General 
LayerIdx [ nuh_layer_id ] ] is equal to 1 , slice_type can be 
equal to 2 . 
[ 0228 ] The variables Min QtLog2Size Y , 
MinQtLog2SizeC , MinQtSize Y , Min QtSizeC , MaxBtSize Y , 
MaxBtSizeC , MinBtSize Y , MaxTtSize Y , MaxTtSizeC , 
MinTtSize Y , MaxMttDepth Y , and MaxMttDepthC can be 
derived as follows . If slice_type is equal to 2 ( I ) , the 
following applies : 

MinQtLog2SizeY = MinCblog2Size Y + ( Eq . 39 ) = 

ph_log2_diff_min_qt_min_cb_intra_slice_luma 
MinQtLog2SizeC = MinCbLog2SizeY + ( Eq . 40 ) = 

[ 0221 ] The variable allowTtSplit can be derived as fol 
lows . If one or more of the following conditions are true , 
allowTtSplit is set equal to FALSE : ( i ) cbSize is less than or 
equal to 2 * MinTtSize Y ; ( ii ) cbWidth is greater than Min ( 64 , 
maxTtSize ) ; ( iii ) cbHeight is greater than Min ( 64 , maxTt 
Size ) ; ( iv ) mttDepth is greater than or equal to maxMtt 
Depth ; ( v ) XO + cbWidth is greater than pic_width_in_luma_ 
samples ; ( vi ) yO + cbHeight is greater than pic_height_in_ 
luma_samples ; ( vii ) treeType is equal to DUAL_TREE 
CHROMA and ( cbWidth / Sub WidthC ) * ( cbHeight / 
SubHeightC ) is less than or equal to 32 ; ( viii ) treeType is 
equal to DUAL_TREE_CHROMA and ( cbWidth / Sub 
WidthC ) is equal to 8 and ttSplit equal to SPLIT_TT_ 
VER ; ( ix ) treeType is equal to DUAL_TREE_CHROMA 
and modeType is equal to MODE_TYPE_INTRA ; and ( x ) 
cbWidth * cbHeight is equal to 64 and modeType is equal to 
MODE_TYPE_INTER . Otherwise , allowTtSplit is set equal 
to TRUE . 
[ 0222 ] According to aspects of the disclosure , a derivation 
process for neighboring block availability can be described 
as follows . Inputs to this process include the luma location 
( xCurr , yCurr ) of the top - left sample of the current block 
relative to the top - left luma sample of the current picture , the 
luma location ( xNbY , yNbY ) covered by a neighboring 
block relative to the top - left luma sample of the current 
picture , the variable checkPredMode Y specifying whether 
availability depends on the prediction mode , and the vari 
able cIdx specifying the color component of the current 
block . An output of this process is the availability of the 
neighboring block covering the location ( xNbY , yNbY ) , 
denoted as availableN . 
[ 0223 ] The neighboring block availability availableN can 
be derived as follows . If one or more of the following 
conditions are true , availableN is set equal to FALSE : 
( i ) xNbY is less than 0 ; ( ii ) yNbY is less than 0 ; ( iii ) xNbY 
is greater than or equal to pic width in luma samples ; ( iv ) 
yNbY is greater than or equal to pic_height_in_luma_ 
samples ; ( v ) Is Available [ cIdx ] [ xNbY ] [ yNbY ] is equal to 
FALSE ; ( vi ) the neighbouring block is contained in a 
different slice than the current block ; ( vii ) the neighbouring 
block is contained in a different tile than the current block ; 
and ( viii ) entropy_coding_sync_enabled_flag is equal to 1 
and ( xNbY >> CtbLog2SizeY ) is greater than or equal to 
( xCurr >> CtbLog2SizeY ) +1 . Otherwise , availableN is set 
equal to TRUE . 
[ 0224 ] When all of the following conditions are true , 
availableN is set equal to FALSE : ( i ) checkPredMode Y is 

ph_log2_diff_min_qt_min_cb_intra_slice_chroma 
MaxBtSize Y = 1 < ( MinQtLog2Size Y + ( Eq . 41 ) 

ph_log2_diff_max_bt_min_qt_intra_slice_luma ) 
MaxBtSizeC = 1 < ( MinQtLog2SizeC + ( Eq . 42 ) 

ph_log2_diff_max_bt_min_qt_intra_slice_chroma ) 
MaxTtSize Y = 1 « ( MinQtLog2SizeY + ( Eq . 43 ) 

ph_log2_diff_max_tt_min_qt_intra_slice_luma ) 
MaxTtSizeC = 1 < ( MinQtLog2SizeC + ( Eq . 44 ) 

ph_log2_diff_max_tt_min_qt_intra_slice_chroma ) 

MaxMttDepth Y = ph_max_mtt_hierarchy_depth_intra_slice_luma ( Eq . 45 ) 
MaxMttDepth = ( Eq . 46 ) 

ph_max_mtt_hierarchy_depth_intra_slice_chroma 
CuQpDeltaSubdiv = ph_cu_qp_delta_subdiv_intra_slice ( Eq . 47 ) - 

CuChromaQpOffsetSubdiv : ( Eq . 48 ) 

ph_cu_chroma_qp_offset_subdiv_intra_slice 
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[ 0229 ] Otherwise , if slice_type is qual to 0 ( B ) or 1 ( P ) , the 
following applies : -continued 

MinBtSize Y = 1 « MinCbLog2Size Y ( Eq . 61 ) 

Min TtSize Y = 1 < MinCbLog2SizeY ( Eq . 62 ) 

MinQtLog2SizeY = ( Eq . 49 ) 

MinCbLog2SizeY + ph_log2_diff_min_qt_min_cb_inter_slice 
MinQtLog2SizeC = ( Eq . 50 ) 

MinCblog2SizeY + ph_log2_diff_min_qt_min_cb_inter_slice 
MaxBtSizeY = 1 < ( Eq . 51 ) 

VII . Block Partitioning At Picture Boundary 
[ 0231 ] In some related examples such as VVC , when a 
coding block is across a picture boundary , and none of the 
conditions for allowing QT split , BT split , or TT split is met , 
implicit QT split can be applied to the coding block . For 
example , if all the variables allowQtSplit , allowTtSplit , and 
allowBtSplit are FALSE , then QT is implicitly used when a 
part of the coding block is outside the picture . However , this 
may not be the best solution in terms of coding efficiency in 

( MinQtLog2SizeY + ph_log2_diff_max_bt_min_qt_inter_slice ) 
MaxBtSizeC = 1 < ( Eq . 52 ) 

( MinQtLog2SizeC + ph_log2_diff_max_bt_min_qt_inter_slice ) 
MaxTtSizeY = 1 < ( Eq . 53 ) some cases . 

( MinQtLog2Size Y + ph_log2_diff_max_tt_min_qt_inter_slice ) 
MaxTtSizeC = 1 < ( Eq . 54 ) 

( MinQtLog2SizeC + ph_log2_diff_max_tt_min_qt_inter_slice ) 
MaxMttDepth Y = ph_max_mtt_hierarchy_depth_inter_slice ( Eq . 55 ) 

( Eq . 56 ) = MaxMttDepth = ph_max_mtt_hierarchy_depth_inter_slice 
CuQpDeltaSubdiv = ph_cu_qp_delta_subdiv_inter_slice 

CuChromaQpOffsetSubdiv = 
( Eq . 57 ) 

( Eq . 58 ) 

[ 0232 ] The disclosure presents methods for improving 
coding efficiency when a coding block is across a picture 
boundary . According to aspects of the disclosure , an implicit 
binary split can be used when a current coding block or CTU 
is across the picture boundary , regardless of the settings of 
maximum multi - type tree depth , current multi - type tree 
depth , or minimum binary tree node size . 
[ 0233 ] The implicit binary tree split can be performed by 
conditionally setting an initial value of a multi - type tree 
depth offset ( e.g. , the variable depth Offset in Table 7 ) 
according to whether the current coding block or CTU is 
across the picture boundary . The multi - type tree depth offset 
is added to a current maximum multi - type tree depth ( e.g. 
MaxMttDepth Y in single tree and dual - tree luma cases , or 
MaxMttDepthC in a dual tree chroma case ) , and the result 
can be used as a new maximum multi - type tree depth to 
determine whether the binary split is allowed ( e.g. , based on 
the allowed binary split process in the section of Partitioning 
Availability Processes ) . 
[ 0234 ] Table 13 shows an exemplary modified coding tree 
unit syntax table . 

ph_cu_chroma_qp_offset_subdiv_inter_slice 

[ 0230 ] Then , the following applies : 

MinQtSize Y = 1 « MinQtLog2SizeY ( Eq . 59 ) = 

MinQtSizeC = 1 « MinQtLog2SizeC ( Eq . 60 ) 

TABLE 13 

Descriptor 
coding_tree_unit ( ) { 

xCtb = CtbAddrX « < Ctblog2SizeY 
yCtb = CtbAddrY << Ctblog2Size Y 
if ( slice_sao_luma_flag || slice_sao_chroma_flag ) 

sao ( CtbAddrX , CtbAddrY ) 
if ( slice_alf_enabled_flag ) { 

alf_ctb_flag [ 0 ] [ CtbAddrX ] [ CtbAddrY ] 
if ( alf_ctb_flag [ 0 ] [ CtbAddrX ] [ CtbAddrY ] ) { 

if ( slice_num_alf_aps_ids_luma > 0 ) 
alf_use_aps_flag 

if ( alf_use_aps_flag ) { 
if ( slice_num_alf_aps_ids_luma > 1 ) 
alf_luma_prev_filter_idx 

ae ( v ) 

ae ( v ) 

ae ( v ) 
} else 

ae ( v ) 
= 

ae ( v ) 

alf_luma_fixed_filter_idx 
} 
if ( slice alf_chroma_idc == || slice_alf_chroma_idc == 3 ) { 

alf_ctb_flag [ 1 ] [ CtbAddrX ] [ CtbAddrY ] 
if ( alf_ctb_flag [ 1 ] [ CtbAddrX ] CtbAddrY ] 
&& alf_chroma_num_alt_filters_minus 1 > 0 ) 
alf_ctb_filter_alt_idx [ 0 ] CtbAddrX ] [ CtbAddrY ] 

} 
if ( slice_alf_chroma_idc == 2 || slice_alf_chroma_idc == 3 ) { 

alf_ctb_flag [ 2 ] [ CtbAddrX ] [ CtbAddrY ] 
if ( alfctb_flag [ 2 ] [ CtbAddrX ] [ CtbAddrY ] 
&& alf_chroma_num_alt_filters_minus 1 > 0 ) 

ae ( v ) 

ae ( v ) 



US 2022/0272369 Al Aug. 25 , 2022 
25 

TABLE 13 - continued 

Descriptor 

alf_ctb_filter_alt_idx [ 1 ] [ CtbAddrX ] [ CtbAddrY ] ae ( v ) 
} 

} 
if ( slice_cc_alf_cb_enabled_flag ) 
alf_ctb_cc_cb_idc [ CtbAddrX ] [ CtbAddrY ] ae ( v ) 

if ( slice_cc_alf_cr_enabled_flag ) 
alf_ctb_cc cr_idc [ CtbAddrX ] [ CtbAddrY ] ae ( v ) 

x1 xCtb + Ctb Size Y 
yl = y Ctb + Ctb Size Y 
mttDepthOffset 

( x1 > pic_width_in_luma_samples || yl > pic_height_in_luma_samples ) ? 1 : 0 
if ( slice_type I && qtbtt_dual__tree_intra_flag ) 

dual__tree_implicit_bt_split ( xCtb , y?tb , CtbSize Y , 0 , mttDepthOffset ) 

== 

else { 
coding_tree ( xCtb , y?tb , CtbSize Y , CtbSizeY , 1 , 1 , 0 , 0 , 0 , mttDepth Offset , 0 , 

SINGLE_TREE , MODE_TYPE_ALL ) 
} 

} 

[ 0235 ] In Table 13 , the variable xl is a sum of an x - axis 
position of the current coding block and a width of the 
current coding block . If the variable xl is greater than a 
width of the picture , the current coding block can be 
determined to be across the picture boundary and the multi 
type tree depth offset mttDepthOffset is set as 1. The variable 
yl is a sum of a y - axis position of the current coding block 
and a height of the current coding block . If the variable yl 
is greater than a height of the picture , the current coding 
block can be determined to be across the picture boundary 
and the multi - type tree depth offset mttDepthOffset is set as 
1. If the variable xl is equal to or less than the width of the 
picture and the variable yl is equal to or less than the height 
of the picture , the current coding block can be determined 

not to be across the picture boundary and the multi - type tree 
depth offset mttDepthOffset is set as 0. In addition , if the 
slice type of the current coding block is Intra and qtbtt_ 
dual_tree_intra_flag is TRUE , a dual tree implicit BT split 
process can be applied to the current coding block and the 
multi - type tree depth offset mttDepthOffset can be used as 
the variable depth Offset in the dual tree implicit BT split 
process . Otherwise , a coding tree process can be applied to 
the current coding block and the multi - type tree depth offset 
mttDepthOffset can be used as the variable depthOffset in 
the coding tree process . 
[ 0236 ] Table 14 shows an exemplary modified dual tree 
implicit BT split syntax table . 

TABLE 14 

Descriptor 

= 

= 

- 

0 

= 

= 0 

dual_tree_implicit_bt_split ( x0 , yo , cbSize , cqtDepth , depthOffset ) { 
cbSubdiv = 2 cqtDepth 
if ( cbSize > 64 ) { 

if ( cu_qp_delta_enabled_flag && cbSubdiv < = CuQpDeltaSubdiv ) { 
IsCuQpDeltaCoded = 0 
CuQpDeltaVal = 0 
CuQgTop LeftX = x0 
CuQgTop LeftY = yo 

} 
if ( cu_chroma_qp_offset_enabled_flag && cbSubdiv < = CuChromaQpOffsetSubdiv ) { 

IsCuChromaQpOffsetCoded 
CuQpOffsetCb = 0 
CuQpOffsetCb 0 
CuQpOffsetCbCr 

} 
dual_tree_implicit_qt_split ( x0 , yo , cbSize / 2 , cqtDepth + 1 , depthOffset ) 
x1 xCtb + Ctb Size Y 
yl = y Ctb + CtbSize Y 
if ( x1 < pic_width_in_luma_samples ) 

dual_tree_implicit_qt_split ( x1 , yo , cbSize / 2 , cqtDepth + 1 , depthOffset ) 
if ( yl < pic_height_in_luma_samples ) 

dual_tree_implicit_qt_split ( x0 , yl , cbSize / 2 , cqtDepth + 1 , depthOffset ) 
if ( x1 pic_width_in_luma_samples && yl < pic_height_in_luma_samples ) 

dual__tree_implicit_qt_split ( x1 , yl , cbSize / 2 , cqtDepth + 1 , depthOffset ) 
} else { 

coding_tree ( x0 , yo , cbSize , cbSize , 1 , 0 , cbSubdiv , cqtDepth , 0 , depth Offset , 0 , 
DUAL_TREE_LUMA , MODE_TYPE_ALL ) 

coding_tree ( x0 , yo , cbSize , cbSize , 0 , 1 , Subdiv , cqtDepth , 0 , depth Offset , 0 , 
DUAL_TREE_CHROMA , MODE_TYPE_ALL ) 

} 
} 

= 

< 
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a 

[ 0237 ] In Table 14 , the variable depthOffset can be set 
based on the variable mttDepthOffset in Table 13 when the 
dual tree implicit BT split process is determined to be used . 
In the dual tree implicit BT split process , the maximum tree 
depth can be determined based on the variable depth Offset . 
[ 0238 ] When the variable cbSize is greater than 64 , the 
dual tree implicit BT split process can be applied to a block 
which has the same position ( x0 , y0 ) as the current block and 
a half size of the current block , and the variable cqtDepth is 
increased by one . Further , when the variable xl is less than 
the width of the current picture , the dual tree implicit BT 
split process can be applied to a block which has a position 
( x1 , yo ) and a half size of the current block , and the variable 
cqtDepth is increased by one . Further , when the variable y1 
is less than the height of the current picture , the dual tree 
implicit BT split process can be applied to a block which has 
a position ( x0 , yl ) and a half size of the current block , and 
the variable cqtDepth is increased by one . Further , when the 
variable x is less than the width of the current picture and the 
variable yl is less than the height of the current picture , the 
dual tree implicit BT split process can be applied to a block 
which has a position ( x1 , yl ) and a half size of the current 
block , and the variable cqtDepth is increased by one . 
[ 0239 ] When the variable cbSize is not greater than 64 , the 
coding tree process can be applied to both luma and chroma 
components of the current block . The variable depthOffset is 
passed to the coding tree process . 
[ 0240 ] In one embodiment , the implicit binary split is not 
allowed to be applied at the picture boundary when a 
partition from the implicit binary split is across a VPDU 
boundary . In some embodiments , the implicit binary split is 
not allowed to be applied at the picture boundary even when 
the VPDU is partially outside the picture . 
[ 0241 ] In one embodiment , the implicit binary split can be 
allowed to be applied at the picture boundary regardless of 
whether a partition from the implicit binary split is across a 
VPDU boundaries or not . 

the process ( 1700 ) proceeds to step ( S1720 ) . Otherwise , the 
process ( 1700 ) proceeds to step ( S1740 ) . 
[ 0244 ] At step ( S1720 ) , the process ( 1700 ) determines 
whether one of an allowed binary split indicator , an allowed 
ternary split indicator , and an allowed quaternary split 
indicator of the current block is true . When none of the 
allowed binary split indicator , the allowed ternary split 
indicator , and the allowed quaternary split indicator is true , 
the process ( 1700 ) proceeds to step ( S1730 ) . Otherwise , the 
process ( 1700 ) proceeds to step ( S1750 ) . 
[ 0245 ] At step ( S1730 ) , the process ( 1700 ) applies an 
implicit binary split to the current block . 
[ 0246 ] At step ( S1740 ) , the process ( 1700 ) determines a 
split for the current block . 
[ 0247 ] At step ( S1750 ) , the process ( 1700 ) applies one 
allowed split to the current block . Then , the process ( 1700 ) 
terminates . 
[ 0248 ] In an embodiment , the process ( 1700 ) determines 
whether a sum of an x - axis position of the current block and 
a width of the current block is greater than a width of the 
current picture . 
[ 0249 ] In an embodiment , the process ( 1700 ) determines 
whether a sum of a y - axis position of the current block and 
a height of the current block is greater than a height of the 
current picture . 
[ 0250 ] In an embodiment , the process ( 1700 ) determines 
an initial value of a multi - type tree depth offset as a first 
value when the part of the current block is outside the 
current picture . 
[ 0251 ] In an embodiment , the process ( 1700 ) determines 
the initial value of the multi - type tree depth offset as a 
second value when the part of the current block is not 
outside the current picture . 
[ 0252 ] In an embodiment , the process ( 1700 ) determines a 
maximum multi - type tree depth of the implicit binary split 
based on the multi - type tree depth offset . 
[ 0253 ] In an embodiment , the first value is 1 and the 
second value is 0 . 
[ 0254 ] In an embodiment , the current block is intra coded 
and luma and chroma components of the current block are 
associated with two separate coding tree structures . 
[ 0255 ] In an embodiment , the process ( 1700 ) determines 
whether a partition from the implicit binary split is across a 
virtual process data unit boundary . The process ( 1700 ) 
applies the implicit binary split to the current block when the 
partition from the implicit binary split is not across the 
virtual process data unit boundary . 
[ 0256 ] IX . Computer System 
[ 0257 ] The techniques described above , can be imple 
mented as computer software using computer - readable 
instructions and physically stored in one or more computer 
readable media . For example , FIG . 18 shows a computer 
system ( 1800 ) suitable for implementing certain embodi 
ments of the disclosed subject matter . 
[ 0258 ] The computer software can be coded using any 
suitable machine code or computer language , that may be 
subject to assembly , compilation , linking , or like mecha 
nisms to create code comprising instructions that can be 
executed directly , or through interpretation , micro - code 
execution , and the like , by one or more computer central 
processing units ( CPUs ) , Graphics Processing Units 
( GPUs ) , and the like . 
[ 0259 ] The instructions can be executed on various types 
of computers or components thereof , including , for example , 

VIII . Flowchart 

[ 0242 ] FIG . 17 shows a flow chart outlining an exemplary 
process ( 1100 ) according to an embodiment of the disclo 
sure . In various embodiments , the process ( 1100 ) is executed 
by processing circuitry , such as the processing circuitry in 
the terminal devices ( 210 ) , ( 220 ) , ( 230 ) and ( 240 ) , the 
processing circuitry that performs functions of the video 
encoder ( 303 ) , the processing circuitry that performs func 
tions of the video decoder ( 310 ) , the processing circuitry that 
performs functions of the video decoder ( 410 ) , the process 
ing circuitry that performs functions of the intra prediction 
module ( 452 ) , the processing circuitry that performs func 
tions of the video encoder ( 503 ) , the processing circuitry that 
performs functions of the predictor ( 535 ) , the processing 
circuitry that performs functions of the intra encoder ( 622 ) , 
the processing circuitry that performs functions of the intra 
decoder ( 772 ) , and the like . In some embodiments , the 
process ( 1700 ) is implemented in software instructions , thus 
when the processing circuitry executes the software instruc 
tions , the processing circuitry performs the process ( 1700 ) . 
[ 0243 ] The process ( 1700 ) may generally start at step 
( S1710 ) , where the process ( 1700 ) determines whether a part 
of a current block of a current picture in a coded video 
sequence is outside the current picture . When the part of the 
current block is determined to be outside the current picture , 
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personal computers , tablet computers , servers , smartphones , 
gaming devices , internet of things devices , and the like . 
[ 0260 ] The components shown in FIG . 18 for computer 
system ( 1800 ) are exemplary in nature and are not intended 
to suggest any limitation as to the scope of use or function 
ality of the computer software implementing embodiments 
of the present disclosure . Neither should the configuration of 
components be interpreted as having any dependency or 
requirement relating to any one or combination of compo 
nents illustrated in the exemplary embodiment of a computer 
system ( 1800 ) . 
[ 0261 ] Computer system ( 1800 ) may include certain 
human interface input devices . Such a human interface input 
device may be responsive to input by one or more human 
users through , for example , tactile input ( such as : key 
strokes , swipes , data glove movements ) , audio input ( such 
as : voice , clapping ) , visual input ( such as : gestures ) , olfac 
tory input ( not depicted ) . The human interface devices can 
also be used to capture certain media not necessarily directly 
related to conscious input by a human , such as audio ( such 
as : speech , music , ambient sound ) , images ( such as : scanned 
images , photographic images obtain from a still image 
camera ) , video ( such as two - dimensional video , three - di 
mensional video including stereoscopic video ) . 
[ 0262 ] Input human interface devices may include one or 
more of ( only one of each depicted ) : keyboard ( 1801 ) , 
mouse ( 1802 ) , trackpad ( 1803 ) , touch screen ( 1810 ) , data 
glove ( not shown ) , joystick ( 1805 ) , microphone ( 1806 ) , 
scanner ( 1807 ) , camera ( 1808 ) . 
[ 0263 ] Computer system ( 1800 ) may also include certain 
human interface output devices . Such human interface out 
put devices may be stimulating the senses of one or more 
human users through , for example , tactile output , sound , 
light , and smell / taste . Such human interface output devices 
may include tactile output devices ( for example tactile 
feedback by the touch - screen ( 1810 ) , data - glove ( not 
shown ) , or joystick ( 1805 ) , but there can also be tactile 
feedback devices that do not serve as input devices ) , audio 
output devices ( such as : speakers ( 1809 ) , headphones ( not 
depicted ) ) , visual output devices ( such as screens ( 1810 ) to 
include CRT screens , LCD screens , plasma screens , OLED 
screens , each with or without touch - screen input capability , 
each with or without tactile feedback capability — some of 
which may be capable to output two dimensional visual 
output or more than three dimensional output through means 
such as stereographic output ; virtual - reality glasses ( not 
depicted ) , holographic displays and smoke tanks ( not 
depicted ) ) , and printers ( not depicted ) . These visual output 
devices ( such as screens ( 1810 ) ) can be connected to a 
system bus ( 1848 ) through a graphics adapter ( 1850 ) . 
[ 0264 ] Computer system ( 1800 ) can also include human 
accessible storage devices and their associated media such 
as optical media including CD / DVD ROM / RW ( 1820 ) with 
CD / DVD or the like media ( 1821 ) , thumb - drive ( 1822 ) , 
removable hard drive or solid state drive ( 1823 ) , legacy 
magnetic media such as tape and floppy disc ( not depicted ) , 
specialized ROM / ASIC / PLD based devices such as security 
dongles ( not depicted ) , and the like . 
[ 0265 ] Those skilled in the art should also understand that 
term “ computer readable media ” as used in connection with 
the presently disclosed subject matter does not encompass 
transmission media , carrier waves , or other transitory sig 
nals . 

[ 0266 ] Computer system ( 1800 ) can also include a net 
work interface ( 1854 ) to one or more communication net 
works ( 1855 ) . The one or more communication networks 
( 1855 ) can for example be wireless , wireline , optical . The 
one or more communication networks ( 1855 ) can further be 
local , wide - area , metropolitan , vehicular and industrial , real 
time , delay - tolerant , and so on . Examples of the one or more 
communication networks ( 1855 ) include local area networks 
such as Ethernet , wireless LANs , cellular networks to 
include GSM , 3G , 4G , 5G , LTE and the like , TV wireline or 
wireless wide area digital networks to include cable TV , 
satellite TV , and terrestrial broadcast TV , vehicular and 
industrial to include CANBus , and so forth . Certain net 
works commonly require external network interface adapt 
ers that attached to certain general purpose data ports or 
peripheral buses ( 1849 ) ( such as , for example USB ports of 
the computer system ( 1800 ) ) ; others are commonly inte 
grated into the core of the computer system ( 1800 ) by 
attachment to a system bus as described below ( for example 
Ethernet interface into a PC computer system or cellular 
network interface into a smartphone computer system ) . 
Using any of these networks , computer system ( 1800 ) can 
communicate with other entities . Such communication can 
be uni - directional , receive only ( for example , broadcast 
TV ) , uni - directional send - only ( for example CANbus to 
certain CANbus devices ) , or bi - directional , for example to 
other computer systems using local or wide area digital 
networks . Certain protocols and protocol stacks can be used 
on each of those networks and network interfaces as 
described above . 
[ 0267 ] Aforementioned human interface devices , human 
accessible storage devices , and network interfaces can be 
attached to a core ( 1840 ) of the computer system ( 1800 ) . 
[ 0268 ] The core ( 1840 ) can include one or more Central 
Processing Units ( CPU ) ( 1841 ) , Graphics Processing Units 
( GPU ) ( 1842 ) , specialized programmable processing units 
in the form of Field Programmable Gate Areas ( FPGA ) 
( 1843 ) , hardware accelerators for certain tasks ( 1844 ) , and 
so forth . These devices , along with Read - only memory 
( ROM ) ( 1845 ) , Random - access memory ( 1846 ) , internal 
mass storage such as internal non - user accessible hard 
drives , SSDs , and the like ( 1847 ) , may be connected through 
the system bus ( 1848 ) . In some computer systems , the 
system bus ( 1848 ) can be accessible in the form of one or 
more physical plugs to enable extensions by additional 
CPUs , GPU , and the like . The peripheral devices can be 
attached either directly to the core's system bus ( 1848 ) , or 
through a peripheral bus ( 1849 ) . Architectures for a periph 
eral bus include PCI , USB , and the like . 
[ 0269 ] CPUs ( 1841 ) , GPUs ( 1842 ) , FPGAs ( 1843 ) , and 
accelerators ( 1844 ) can execute certain instructions that , in 
combination , can make up the aforementioned computer 
code . That computer code can be stored in ROM ( 1845 ) or 
RAM ( 1846 ) . Transitional data can be also be stored in 
RAM ( 1846 ) , whereas permanent data can be stored for 
example , in the internal mass storage ( 1847 ) . Fast storage 
and retrieve to any of the memory devices can be enabled 
through the use of cache memory , that can be closely 
associated with one or more CPU ( 1841 ) , GPU ( 1842 ) , mass 
storage ( 1847 ) , ROM ( 1845 ) , RAM ( 1846 ) , and the like . 
[ 0270 ] The computer readable media can have computer 
code thereon for performing various computer - implemented 
operations . The media and computer code can be those 
specially designed and constructed for the purposes of the 
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present disclosure , or they can be of the kind well known and 
available to those having skill in the computer software arts . 
[ 0271 ] As an example and not by way of limitation , the 
computer system having architecture ( 1800 ) , and specifi 
cally the core ( 1840 ) can provide functionality as a result of 
processor ( s ) ( including CPU , GPUs , FPGA , accelerators , 
and the like ) executing software embodied in one or more 
tangible , computer - readable media . Such computer - readable 
media can be media associated with user - accessible mass 
storage as introduced above , as well as certain storage of the 
core ( 1840 ) that are of non - transitory nature , such as core 
internal mass storage ( 1847 ) or ROM ( 1845 ) . The software 
implementing various embodiments of the present disclo 
sure can be stored in such devices and executed by core 
( 1840 ) . A computer - readable medium can include one or 
more memory devices or chips , according to particular 
needs . The software can cause the core ( 1840 ) and specifi 
cally the processors therein ( including CPU , GPU , FPGA , 
and the like ) to execute particular processes or particular 
parts of particular processes described herein , including 
defining data structures stored in RAM ( 1846 ) and modify 
ing such data structures according to the processes defined 
by the software . In addition or as an alternative , the com 
puter system can provide functionality as a result of logic 
hardwired or otherwise embodied in a circuit ( for example : 
accelerator ( 1844 ) , which can operate in place of or 
together with software to execute particular processes or 
particular parts of particular processes described herein . 
Reference to software can encompass logic , and vice versa , 
where appropriate . Reference to a computer - readable media 
can encompass a circuit ( such as an integrated circuit ( IC ) ) 
storing software for execution , a circuit embodying logic for 
execution , or both , where appropriate . The present disclo 
sure encompasses any suitable combination of hardware and 
software . 
[ 0272 ] While this disclosure has described several exem 
plary embodiments , there are alterations , permutations , and 
various substitute equivalents , which fall within the scope of 
the disclosure . It will thus be appreciated that those skilled 
in the art will be able to devise numerous systems and 
methods which , although not explicitly shown or described 
herein , embody the principles of the disclosure and are thus 
within the spirit and scope thereof . 
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[ 0291 ] GPUs : Graphics Processing Units 
[ 0292 ] GSM : Global System for Mobile communications 
[ 0293 ] HEVC : High Efficiency Video Coding 
[ 0294 ] HRD : Hypothetical Reference Decoder 
[ 0295 ] IBC : Intra Block Copy 
[ 0296 ] IC : Integrated Circuit 
[ 0297 ] JEM : Joint Exploration Model 
[ 0298 ] LAN : Local Area Network 
[ 0299 ] LCD : Liquid - Crystal Display 
[ 0300 ) LTE : Long - Term Evolution 
[ 0301 ] MV : Motion Vector 
[ 0302 ] OLED : Organic Light - Emitting Diode 
[ 0303 ] PBs : Prediction Blocks 
[ 0304 ] PCI : Peripheral Component Interconnect 
[ 0305 ] PLD : Programmable Logic Device 
[ 0306 ] PUs : Prediction Units 
[ 0307 ] RAM : Random Access Memory 
[ 0308 ] ROM : Read - Only Memory 
[ 0309 ] SCC : Screen Content Coding 
[ 0310 ] SEI : Supplementary Enhancement Information 
[ 0311 ] SNR : Signal Noise Ratio 
[ 0312 ] SSD : Solid - state Drive 
[ 0313 ] TUs : Transform Units 
[ 0314 ] USB : Universal Serial Bus 
[ 0315 ] VUI : Video Usability Information 
[ 0316 ) VVC : Versatile Video Coding 
What is claimed is : 
1. A method for video encoding , the method comprising : 
determining , by processing circuitry of a video encoder , 

whether a part of a current block is outside a current 
picture that is being encoded ; 

determining , by the processing circuitry , whether one of a 
binary split , a ternary split , or a quaternary split is 
allowed for the current block in response to the part of 
the current block being outside the current picture ; 

in response to none of the binary split , the ternary split , 
and the quaternary split being allowed , determining , by 
the processing circuitry , whether a partition from an 
implicit binary split is across a virtual pipeline data unit 
boundary ; and 

applying , by the processing circuitry , the implicit binary 
split to the current block in response to the partition 
from the implicit binary split not being across the 
virtual pipeline data unit boundary . 

2. The method of claim 1 , wherein the determining 
whether the part of the current block is outside the current 
picture comprises at least one of : 

determining whether a sum of an x - axis position of the 
current block and a width of the current block is greater 
than a width of the current picture ; and 

determining whether a sum of a y - axis position of the 
current block and a height of the current block is greater 
than a height of the current picture . 

3. The method of claim 1 , further comprising : 
determining an initial value of a multi - type tree depth 

offset as a first value in response to the part of the 
current block being outside the current picture ; and 

determining the initial value of the multi - type tree depth 
offset as a second value in response to the part of the 
current block not being outside the current picture . 

4. The method of claim 3 , wherein the first value is 1 and 
the second value is 0 . 

APPENDIX A : ACRONYMS 
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[ 0273 ] AMVP : Advanced Motion Vector Prediction 
[ 0274 ] ASIC : Application - Specific Integrated Circuit 
[ 0275 ] ATMVP : Alternative Advanced Temporal Motion 

Vector Prediction 
[ 0276 ] BMS : Benchmark Set 
[ 0277 ] BV : Block Vector 
[ 0278 ] CANBus : Controller Area Network Bus 
[ 0279 ] CB : Coding Block 
[ 0280 ] CD : Compact Disc 
[ 0281 ] CPR : Current Picture Referencing 
[ 0282 ] CPUs : Central Processing Units 
[ 0283 ] CRT : Cathode Ray Tube 
[ 0284 ] CTBs : Coding Tree Blocks 
[ 0285 ] CTUs : Coding Tree Units 
[ 0286 ] CU : Coding Unit 
[ 0287 ] DPB : Decoder Picture Buffer 
[ 0288 ] DVD : Digital Video Disc 
[ 0289 ] FPGA : Field Programmable Gate Areas 
[ 0290 ] GOPs : Groups of Pictures 
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5. The method of claim 4 , further comprising : 
determining a maximum multi - type tree depth of the 

implicit binary split based on the multi - type tree depth 
offset . 

6. The method of claim 5 , further comprising determining 
whether the binary split is allowed based on the determined 
maximum multi - type tree depth . 

7. The method of claim 1 , further comprising intra coding 
the current block , wherein luma and chroma components of 
the current block are associated with two separate coding 
tree structures . 

8. An encoding apparatus , comprising : 
processing circuitry configured to : 

determining whether a part of a current block is outside 
a current picture that is being encoded ; 

determine whether one of a binary split , a ternary split , 
or a quaternary split is allowed for the current block 
is true in response to the part of the current block 
being outside the current picture ; 

in response to none of the binary split , the ternary split , 
and the quaternary split being allowed , determine 
whether a partition from an implicit binary split is 
across a virtual pipeline data unit boundary ; and 

apply the implicit binary split to the current block in 
response to the partition from the implicit binary 
split not being across the virtual pipeline data unit 
boundary . 

9. The apparatus of claim 8 , wherein the processing 
circuitry determines whether the part of the current block is 
outside the current picture by determining whether a sum of 
an x - axis position of the current block and a width of the 
current block is greater than a width of the current picture . 

10. The apparatus of claim 8 , wherein the processing 
circuitry determines whether the part of the current block is 
outside the current picture by determining whether a sum of 
a y - axis position of the current block and a height of the 
current block is greater than a height of the current picture . 

11. The apparatus of claim 8 , wherein the processing 
circuitry is further configured to : 

determine an initial value of a multi - type tre depth offset 
as a first value in response to the part of the current 
block being outside the current picture ; and 

determine the initial value of the multi - type tree depth 
offset as a second value in response to the part of the 
current block not being outside the current picture . 

12. The apparatus of claim 11 , wherein the first value is 
1 and the second value is 0 . 

13. The apparatus of claim 12 , wherein the processing 
circuitry is further configured to : 

determine a maximum multi - type tree depth of the 
implicit binary split based on the multi - type tree depth 
offset . 

14. The apparatus of claim 13 , wherein the processing 
circuitry is further configured to determine whether the 
binary split is allowed based on the determined maximum 
multi - type tree depth . 

15. The apparatus of claim 8 , wherein the processing 
circuitry is further configured to intra code the current block , 
wherein luma and chroma components of the current block 
are associated with two separate coding tree structures . 

16. A non - transitory computer - readable storage medium 
storing instructions which , when executed by at least one 
processor , cause the at least one processor to perform : 

determining whether a part of a current block is outside a 
current picture that is being encoded ; 

determining whether one of a binary split , a ternary split , 
or a quaternary split is allowed for the current block in 
response to the part of the current block being outside 
the current picture ; in response to none of the binary 
split , the ternary split , and the quaternary split being 
allowed , determining whether a partition from an 
implicit binary split is across a virtual pipeline data unit 
boundary , and 

applying the implicit binary split to the current block in 
response to the partition from the implicit binary split 
not being across the virtual pipeline data unit boundary . 

17. The non - transitory computer - readable storage 
medium of claim 16 , wherein the determining whether the 
part of the current block is outside the current picture 
comprises at least one of : 

determining whether a sum of an x - axis position of the 
current block and a width of the current block is greater 
than a width of the current picture ; and 

determining whether a sum of a y - axis position of the 
current block and a height of the current block is greater 
than a height of the current picture . 

18 . The non - transitory computer - readable storage 
medium of claim 16 , wherein the stored instructions cause 
the at least one processor to perform : 

determining an initial value of a multi - type tree depth 
offset as a first value in response to the part of the 
current block being outside the current picture ; and 

determining the initial value of the multi - type tree depth 
offset as a second value in response to the part of the 
current block not being outside the current picture . 

19. The non - transitory computer - readable storage 
medium of claim 18 , wherein the first value is 1 and the 
second value is 0 . 

20. The non - transitory computer - readable storage 
medium of claim 19 , wherein the instructions further cause 
the at least one processor to perform : 

determining a maximum multi - type tree depth of the 
implicit binary split based on the multi - type tree depth 
offset . 
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