
US 20220272369A1
INI

(19) United States
(12) Patent Application Publication (10) Pub . No .: US 2022/0272369 A1

(43) Pub . Date : Aug. 25 , 2022 LI et al .

(54) BLOCK PARTITIONING AT PICTURE
BOUNDARIES

(71) Applicant : Tencent America LLC , Palo Alto , CA
(US)

H04N 19/159 (2006.01)
H04N 19/186 (2006.01)
H04N 19/119 (2006.01)

(52) U.S. CI .
CPC H04N 19/44 (2014.11) ; H04N 19/96

(2014.11) ; H04N 19/176 (2014.11) ; H04N
19/159 (2014.11) ; H04N 19/186 (2014.11) ;

H04N 19/119 (2014.11)

(72) Inventors : Guichun LI , San Jose , CA (US) ; Xiang
LI , Saratoga , CA (US) ; Shan LIU , San
Jose , CA (US)

(73) Assignee : Tencent America LLC , Palo Alto , CA
(US)

(57) ABSTRACT

(21) Appl . No .: 17 / 741,176
(22) Filed : May 10 , 2022

Related U.S. Application Data
(63) Continuation of application No. 17 / 085,499 , filed on

Oct. 30 , 2020 , now Pat . No. 11,363,285 .
(60) Provisional application No. 62 / 979,184 , filed on Feb.

20 , 2020 .

A method for video encoding includes determining whether
a part of a current block is outside a current picture that is
being encoded , and determining whether one of a binary
split , a ternary split , or a quaternary split is allowed for the
current block in response to the part of the current block
being outside the current picture . The method also includes ,
in response to none of the binary split , the ternary split , and
the quaternary split being allowed , determining whether a
partition from an implicit binary split is across a virtual
pipeline data unit boundary , and applying the implicit binary
split to the current block in response to the partition from the
implicit binary split not being across the virtual pipeline data
unit boundary .

Publication Classification
(51) Int . Ci .

H04N 19/44 (2006.01)
H04N 19/96 (2006.01)
H04N 19/176 (2006.01)

430

410

CHANNEL
401

RECEIVER
431

BUFFER
MEMORY

415

PARSER
420

SYMBOLS
421 SCALER / INVERSE

TRANSFORM
451

+
LOOP
FILTER
456

412 wi ...

455
MOTION COMP .
PREDICTION

453

INTRA
PREDICTION

452

REFERENCE PICTURE MEMORY
457

CURRENT
PICTURE

BUFFER 458

R01

RO2

RO3

R04

R05

RO6

RO7

ROS

R09

R10 s11

S12

S13

S14
1

Patent Application Publication

-104

R20

S21

S22

S23

S24

R30 1 S31 1

S32

S33

S34 1
|

R40

S41

S42

S43

S441

102

R50 R60

Aug. 25 , 2022 Sheet 1 of 20

R70

101

103

FIG . 1A

US 2022/0272369 A1

X

(Related Art)

34

50

66

1

Patent Application Publication

1

105

18

Aug. 25 , 2022 Sheet 2 of 20

1

FIG . 1B

0 : PLANAR MODE 1 : DC MODE

US 2022/0272369 A1

(Related Art)

116

115 114

Patent Application Publication

B2

B1 BO

CURRENT BLOCK 111

113

A1

Aug. 25 , 2022 Sheet 3 of 20

112

??

FIG . 1C (Related Art)

US 2022/0272369 A1

Patent Application Publication Aug. 25 , 2022 Sheet 4 of 20 US 2022/0272369 A1

210

FIG . 2

1

240

NETWORK 250
-220

o

0 - O
0

230

200

305

308

300

304

Patent Application Publication

309

301

D

312

302

307

Aug. 25 , 2022 Sheet 5 of 20

303

311

313

310

330

US 2022/0272369 A1

FIG . 3

306

430
410

Patent Application Publication

CHANNEL 401

BUFFER MEMORY 415

RECEIVER 431

PARSER 420

1

SYMBOLS 421

SCALER / INVERSE TRANSFORM 451

+

LOOP FILTER 456

412

Aug. 25 , 2022 Sheet 6 of 20

455

MOTION COMP . PREDICTION

INTRA PREDICTION 452

453
REFERENCE PICTURE MEMORY 457

CURRENT PICTURE BUFFER 458

FIG . 4

US 2022/0272369 A1

520 503

CONTROLLER 550

Patent Application Publication

SOURCE VIDEO SEQUENCE
501

SOURCE CODER 530

CODING ENGINE 532

ENTROPY CODER 545

PREDICTOR 535

543

Aug. 25 , 2022 Sheet 7 of 20

REFERENCE PICTURE MEMORY 534

TRANSMITTER 540

DECODER 533

CHANNEL 560

US 2022/0272369 A1

FIG . 5

GENERAL CONTROL DATA

GENERAL CONTROLLER 621

603

BLOCK DATA

Patent Application Publication

623 626

RESIDUE ENCODER 624

INTRA PREDICTIONS RESULT

INTRA ENCODER 622

INTRA PREDICTION INFORMATION

CODED VIDEO SEQUENCE
ENTROPY ENCODER 625

RESIDUE DECODER 628

Aug. 25 , 2022 Sheet 8 of 20

INTER PREDICTION RESULT

INTER ENCODER 630

INTER PREDICTION INFORMATION

REFERENCE PICTURES

US 2022/0272369 A1

FIG . 6

CODED VIDEO SEQUENCE

ENTROPY DECODER 771

RESIDUE DECODER 773

710

INTRA PREDICTION INFORMATION

Patent Application Publication

INTRA DECODER 772

INTRA PREDICTION RESULT

Aug. 25 , 2022 Sheet 9 of 20

INTER PREDICTION INFORMATION

RECONSTRUCTED PICTURES

RECONSTRUCTION 774

INTER DECODER 780

INTER PREDICTION RESULT

REFERENCE PICTURES

US 2022/0272369 A1

FIG . 7

Patent Application Publication Aug. 25 , 2022 Sheet 10 of 20 US 2022/0272369 A1

X X ?

????? X motor ?

X ? X entre X

X X X ? ???? ? X ? mbre
X ? X

X X martin when
:

Location of a s < 33rizzle

FIG . 8A
X me fun X X * 8 *

? * SA 8

X 8 X * &

3 X X

? X

moeten
:

XLocation of luna sample X Location of hua sample

FIG . 8B FIG . 8C

Patent Application Publication Aug. 25 , 2022 Sheet 11 of 20 US 2022/0272369 A1

O

FIG . 9B FIG . ID
1 . 1 11

HU
FIG . 9A

D

FIG . 9C

CTU
8 ?

Patent Application Publication Aug. 25 , 2022 Sheet 12 of 20

SPLIT_BT_VER
SPLIT_BT_HOR
SPLIT_TT_VER
SPLIT_TT_HOR

FIG . 10A FIG . 10B

FIG . 10C FIG . 10D

US 2022/0272369 A1

• O

Patent Application Publication

mtt split binary.cu flag

CR

O

Ot

Ost

mtt split_vertical_cu_flag
os

o

mtt_split_cu_flag
a

mtt_split_binary_cu_flag
• O

Aug. 25 , 2022 Sheet 13 of 20

O

O

mtt_split_binary_cu_flag

FIG . 11

US 2022/0272369 A1

Patent Application Publication Aug. 25 , 2022 Sheet 14 of 20 US 2022/0272369 A1

FIG . 12

128 (luma)
wwwwww

Patent Application Publication

128

FIG . 13A FIG . 13B FIG . 13C

Aug. 25 , 2022 Sheet 15 of 20

FIG . 13D FIG . 13E

US 2022/0272369 A1

Patent Application Publication Aug. 25 , 2022 Sheet 16 of 20 US 2022/0272369 A1

FIG . 14D

FIG . 14C

* FIG . 14B

FIG . 14A
................

128 (luma)

Patent Application Publication

?

X

X

*

128

www X

FIG . 15A FIG . 15B

FIG . 15C FIG . 15D

Aug. 25 , 2022 Sheet 17 of 20

X

X X

*

?

X

*

X

FIG . 15E FIG . 15F FIG . 15G FIG . 15H

US 2022/0272369 A1

Patent Application Publication Aug. 25 , 2022 Sheet 18 of 20

SPLIT BT VER

SPLIT BT HOR

SPLIT IT HOR

FIG . 16A

FIG . 16B

FIG . 16C

FIG . 16D

US 2022/0272369 Al

Start

1700

A part of a current block of a current picture in a coded video sequence is outside the current picture ?

No

Patent Application Publication

S1710

Yes

S1720

Determine a split for the current block .

S1740

No

One of an allowed binary split indicator , an allowed ternary split indicator , and an allowed quaternary split indicator of the current block is true ?

Yes

Aug. 25 , 2022 Sheet 19 of 20

S1730

Apply an implicit binary split to the current block .

S1750

Apply one allowed split to the current block .

Stop

US 2022/0272369 A1

FIG . 17

1800

CPU 1841

GPU 1842

FPGA 1843

ACCL . 1844

1849

Patent Application Publication

1801

SYSTEM BUS 1848

1803

1847

with ()
1802

AASARAN .

GRAPHICS ADAPTER 1850

WWF

1846

1805

1845

1806

7

Aug. 25 , 2022 Sheet 20 of 20

1840

1849

1808
1807

o

NETWORK INTERFACE 1854

US 2022/0272369 A1

1809

1823

1810

1821

1820

1855

FIG . 18

1822

COMMUNICATION NETWORKS

US 2022/0272369 A1 Aug. 25 , 2022
1

BLOCK PARTITIONING AT PICTURE
BOUNDARIES

INCORPORATION BY REFERENCE

[0001] This present application is a continuation of U.S.
Ser . No. 17 / 085,499 filed on Oct. 30 , 2020 , which claims the
benefit of priority to U.S. Provisional Application No.
62 / 979,184 , “ METHODS ON BLOCK PARTITIONING AT
PICTURE BOUNDARIES ” filed on Feb. 20 , 2020. The
disclosures of the prior applications are hereby incorporated
by reference in their entirety .

TECHNICAL FIELD

[0002] The present disclosure describes embodiments
generally related to video coding . a

BACKGROUND

[0007] Video codec technologies can include techniques
known as intra coding . In intra coding , sample values are
represented without reference to samples or other data from
previously reconstructed reference pictures . In some video
codecs , the picture is spatially subdivided into blocks of
samples . When all blocks of samples are coded in intra
mode , that picture can be an intra picture . Intra pictures and
their derivations such as independent decoder refresh pic
tures , can be used to reset the decoder state and can ,
therefore , be used as the first picture in a coded video
bitstream and a video session , or as a still image . The
samples of an intra block can be exposed to a transform , and
the transform coefficients can be quantized before entropy
coding . Intra prediction can be a technique that minimizes
sample values in the pre - transform domain . In some cases ,
the smaller the DC value after a transform is , and the smaller
the AC coefficients are , the fewer the bits that are required
at a given quantization step size to represent the block after
entropy coding .
[0008] Traditional intra coding such as known from , for
example MPEG - 2 generation coding technologies , does not
use intra prediction . However , some newer video compres
sion technologies include techniques that attempt , from , for
example , surrounding sample data and / or metadata obtained
during the encoding / decoding of spatially neighboring , and
preceding in decoding order , blocks of data . Such techniques
are henceforth called “ intra prediction ” techniques . Note
that in at least some cases , intra prediction is only using
reference data from the current picture under reconstruction
and not from reference pictures .
[0009] There can be many different forms of intra predic
tion . When more than one of such techniques can be used in
a given video coding technology , the technique in use can be
coded in an intra prediction mode . In certain cases , modes
can have submodes and / or parameters , and those can be
coded individually or included in the mode codeword .
Which codeword to use for a given mode / submode / param
eter combination can have an impact in the coding efficiency
gain through intra prediction , and so can the entropy coding
technology used to translate the codewords into a bitstream .
[0010] A certain mode of intra prediction was introduced
with H.264 , refined in H.265 , and further refined in newer
coding technologies such as joint exploration model (JEM) ,
versatile video coding (VVC) , and benchmark set (BMS) . A
predictor block can be formed using neighboring sample
values belonging to already available samples . Sample val
ues of neighboring samples are copied into the predictor
block according to a direction . A reference to the direction
in use can be coded in the bitstream or may be predicted
itself .
[0011] Referring to FIG . 1A , depicted in the lower right is
a subset of nine predictor directions known from H.265’s 33
possible predictor directions (corresponding to the 33 angu
lar modes of the 35 intra modes) . The point where the arrows
converge (101) represents the sample being predicted . The
arrows represent the direction from which the sample is
being predicted . For example , arrow (102) indicates that
sample (101) is predicted from a sample or samples to the
upper right , at a 45 degree angle from the horizontal .
Similarly , arrow (103) indicates that sample (101) is pre
dicted from a sample or samples to the lower left of sample
(101) , in a 22.5 degree angle from the horizontal .
[0012] Still referring to FIG . 1A , on the top left there is
depicted a square block (104) of 4x4 samples indicated by

[0003] The background description provided herein is for
the purpose of generally presenting the context of the
disclosure . Work of the presently named inventors , to the
extent the work is described in this background section , as
well as aspects of the description that may not otherwise
qualify as prior art at the time of filing , are neither expressly
nor impliedly admitted as prior art against the present
disclosure .
[0004] Video coding and decoding can be performed using
inter - picture prediction with motion compensation . Uncom
pressed digital video can include a series of pictures , each
picture having a spatial dimension of , for example , 1920x
1080 luminance samples and associated chrominance
samples . The series of pictures can have a fixed or variable
picture rate (informally also known as frame rate) of , for
example , 60 pictures per second or 60 Hz . Uncompressed
video has significant bitrate requirements . For example ,
1080p60 4 : 2 : 0 video at 8 bit per sample (1920x1080 lumi
nance sample resolution at 60 Hz frame rate) requires close
to 1.5 Gbit / s bandwidth . An hour of such video requires
more than 600 GBytes of storage space .
[0005] One purpose of video coding and decoding can be
the reduction of redundancy in the input video signal ,
through compression . Compression can help reduce the
aforementioned bandwidth or storage space requirements , in
some cases by two orders of magnitude or more . Both
lossless and lossy compression , as well as a combination
thereof can be employed . Lossless compression refers to
techniques where an exact copy of the original signal can be
reconstructed from the compressed original signal . When
using lossy compression , the reconstructed signal may not
be identical to the original signal , but the distortion between
original and reconstructed signals is small enough to make
the reconstructed signal useful for the intended application .
In the case of video , lossy compression is widely employed .
The amount of distortion tolerated depends on the applica
tion ; for example , users of certain consumer streaming
applications may tolerate higher distortion than users of
television distribution applications . The compression ratio
achievable can reflect that : higher allowable / tolerable dis
tortion can yield higher compression ratios .
[0006] A video encoder and decoder can utilize techniques
from several broad categories , including , for example ,
motion compensation , transform , quantization , and entropy
coding

a

US 2022/0272369 Al Aug. 25 , 2022
2

>

a

2

2

a dashed , boldface line) . The square block (104) includes 16
samples , each labelled with an “ S ” , its position in the Y
dimension (e.g. , row index) and its position in the X
dimension (e.g. , column index) . For example , sample S21 is
the second sample in the Y dimension (from the top) and the
first (from the left) sample in the X dimension . Similarly ,
sample S44 is the fourth sample in block (104) in both the
Y and X dimensions . As the block is 4x4 samples in size ,
S44 is at the bottom right . Further shown are reference
samples that follow a similar numbering scheme . A refer
ence sample is labelled with an R , its Y position (e.g. , row
index) and X position (column index) relative to block
(104) . In both H.264 and H.265 , prediction samples neigh
bor the block under reconstruction ; therefore no negative
values need to be used .
[0013] Intra picture prediction can work by copying ref
erence sample values from the neighboring samples as
appropriated by the signaled prediction direction . For
example , assume the coded video bitstream includes signal
ing that , for this block , indicates a prediction direction
consistent with arrow (102) that is , samples are predicted
from a prediction sample or samples to the upper right , at a
45 degree angle from the horizontal . In that case , samples
S41 , S32 , S23 , and S14 are predicted from the same refer
ence sample R05 . Sample S44 is then predicted from ref
erence sample R08 .
[0014] In certain cases , the values of multiple reference
samples may be combined , for example through interpola
tion , in order to calculate a reference sample ; especially
when the directions are not evenly divisible by 45 degrees .
[0015] The number of possible directions has increased as
video coding technology has developed . In H.264 (year
2003) , nine different direction could be represented . That
increased to 33 in H.265 (year 2013) , and JEM / VVC / BMS ,
at the time of disclosure , can support up to 65 directions .
Experiments have been conducted to identify the most likely
directions , and certain techniques in the entropy coding are
used to represent those likely directions in a small number
of bits , accepting a certain penalty for less likely directions .
Further , the directions themselves can sometimes be pre
dicted from neighboring directions used in neighboring ,
already decoded , blocks .
[0016] FIG . 1B shows a schematic (105) that depicts 65
intra prediction directions according to JEM to illustrate the
increasing number of prediction directions over time .
[0017] The mapping of intra prediction directions bits in
the coded video bitstream that represent the direction can be
different from video coding technology to video coding
technology ; and can range , for example , from simple direct
mappings of prediction direction to intra prediction mode , to
codewords , to complex adaptive schemes involving most
probable modes , and similar techniques . In all cases , how
ever , there can be certain directions that are statistically less
likely to occur in video content than certain other directions .
As the goal of video compression is the reduction of
redundancy , those less likely directions will , in a well
working video coding technology , be represented by a larger
number of bits than more likely directions .
[0018] Motion compensation can be a lossy compression
technique and can relate to techniques where a block of
sample data from a previously reconstructed picture or part
thereof (reference picture) , after being spatially shifted in a
direction indicated by a motion vector (MV henceforth) , is
used for the prediction of a newly reconstructed picture or

picture part . In some cases , the reference picture can be the
same as the picture currently under reconstruction . MVs can
have two dimensions X and Y , or three dimensions , the third
being an indication of the reference picture in use (the latter ,
indirectly , can be a time dimension) .
[0019] In some video compression techniques , an MV
applicable to a certain area of sample data can be predicted
from other MVs , for example from those related to another
area of sample data spatially adjacent to the area under
reconstruction , and preceding that MV in decoding order .
Doing so can substantially reduce the amount of data
required for coding the MV , thereby removing redundancy
and increasing compression . MV prediction can work effec
tively , for example , because when coding an input video
signal derived from a camera (known as natural video) there
is a statistical likelihood that areas larger than the area to
which a single MV is applicable move in a similar direction
and , therefore , can in some cases be predicted using a similar
MV derived from MVs of a neighboring area . That results in
the MV found for a given area to be similar or the same as
the MV predicted from the surrounding MVs , and that in
turn can be represented , after entropy coding , in a smaller
number of bits than what would be used if coding the MV
directly . In some cases , MV prediction can be an example of
lossless compression of a signal (namely : the MVs) derived
from the original signal (namely : the sample stream) . In
other cases , MV prediction itself can be lossy , for example
because of rounding errors when calculating a predictor
from several surrounding MVs .
[0020] Various MV prediction mechanisms are described
in H.265 / HEVC (ITU - T Rec . H.265 , “ High Efficiency Video
Coding ” , December 2016) . Out of the many MV prediction
mechanisms that H.265 offers , described herein is a tech
nique henceforth referred to as “ spatial merge . ”
[0021] Referring to FIG . 1C , a current block (111) can
include samples that have been found by the encoder during
the motion search process to be predictable from a previous
block of the same size that has been spatially shifted . Instead
of coding that MV directly , the MV can be derived from
metadata associated with one or more reference pictures , for
example from the most recent (in decoding order) reference
picture , using the MV associated with either one of five
surrounding samples , denoted A0 , A1 , and B0 , B1 , B2 (112
through 116 , respectively) . In H.265 , the MV prediction can
use predictors from the same reference picture that the
neighboring block is using .

a

SUMMARY

[0022] Aspects of the disclosure provide apparatuses for
video encoding / decoding . An apparatus includes processing
circuitry that determines whether a part of a current block of
a current picture in a coded video sequence is outside the
current picture . The processing circuitry determines whether
one of an allowed binary split indicator , an allowed ternary
split indicator , and an allowed quaternary split indicator of
the current block is true in response to the part of the current
block being outside the current picture . The processing
circuitry applies an implicit binary split to the current block
in response to none of the allowed binary split indicator , the
allowed ternary split indicator , and the allowed quaternary
split indicator being true .

US 2022/0272369 A1 Aug. 25 , 2022
3

a

a

[0023] In an embodiment , the processing circuitry deter
mines whether a sum of an x - axis position of the current
block and a width of the current block is greater than a width
of the current picture .
[0024] In an embodiment , the processing circuitry deter
mines whether a sum of a y - axis position of the current block
and a height of the current block is greater than a height of
the current picture .
[0025] In an embodiment , the processing circuitry deter
mines an initial value of a multi - type tree depth offset as a
first value in response to the part of the current block being
outside the current picture .
[0026] In an embodiment , the processing circuitry deter
mines the initial value of the multi - type tree depth offset as
a second value in response to the part of the current block not
being outside the current picture .
[0027] In an embodiment , the processing circuitry deter
mines a maximum multi - type tree depth of the implicit
binary split based on the multi - type tree depth offset .
[0028] In an embodiment , the first value is 1 and the
second value is 0 .
[0029] In an embodiment , the current block is intra coded
and luma and chroma components of the current block are
associated with two separate coding tree structures .
[0030] In an embodiment , the processing circuitry deter
mines whether a partition from the implicit binary split is
across a virtual process data unit boundary . The processing
circuitry applies the implicit binary split to the current block
in response to the partition from the implicit binary split not
being across the virtual process data unit boundary .
[0031] Aspects of the disclosure provide methods for
video encoding / decoding . In the method , whether a part of
a current block of a current picture in a coded video
sequence is outside the current picture is determined .
Whether one of an allowed binary split indicator , an allowed
ternary split indicator , and an allowed quaternary split
indicator of the current block is true is determined in
response to the part of the current block being outside the
current picture . An implicit binary split is applied to the
current block in response to none of the allowed binary split
indicator , the allowed ternary split indicator , and the allowed
quaternary split indicator being true .
[0032] Aspects of the disclosure also provide non - transi
tory computer - readable mediums storing instructions which
when executed by a computer for video decoding cause the
computer to perform any one or a combination of the
methods for video decoding .

[0038] FIG . 3 is a schematic illustration of a simplified
block diagram of a communication system in accordance
with an embodiment ;
[0039] FIG . 4 is a schematic illustration of a simplified
block diagram of a decoder in accordance with an embodi
ment ;
[0040] FIG . 5 is a schematic illustration of a simplified
block diagram of an encoder in accordance with an embodi
ment ;
[0041] FIG . 6 is a block diagram of an encoder in accor
dance with another embodiment ;
[0042] FIG . 7 is a block diagram of a decoder in accor
dance with another embodiment ;
[0043] FIG . 8A shows nominal vertical and horizontal
locations of 4 : 2 : 0 luma and chroma samples in a picture in
accordance with an embodiment ;
[0044] FIG . 8B shows nominal vertical and horizontal
locations of 4 : 2 : 2 luma and chroma samples in a picture in
accordance with an embodiment ;
[0045] FIG . 8C shows nominal vertical and horizontal
locations of 4 : 4 : 4 luma and chroma samples in a picture in
accordance with an embodiment ;
[0046] FIG . 9A shows an example of a picture divided into
coding tree units in accordance with an embodiment ;
[0047] FIG . 9B shows an example of a picture partitioned
into tiles and raster - scan slices in accordance with an
embodiment ;
[0048] FIG . 9C shows an example of a picture partitioned
into tiles and rectangular slices in accordance with an
embodiment ;
[0049] FIG . 9D shows an example of a picture partitioned
into tiles , bricks , and rectangular slices in accordance with
an embodiment ;
[0050] FIGS . 10A - 10D show exemplary multi - type tree
splitting modes in accordance with an embodiment ;
[0051] FIG . 11 shows signaling for exemplary splitting
flags in quadtree with a nested multi - type tree coding tree
structure in accordance with an embodiment ;
[0052] FIG . 12 shows an example of a quadtree with a
nested multi - type tree coding block structure in accordance
with an embodiment ;
[0053] FIGS . 13A - 13E show exemplary coding blocks in
which ternary split is not allowed in accordance with an
embodiment ;
[0054] FIGS . 14A - 14D show exemplary redundant split
ting patterns of binary tree split and ternary tree split in
accordance with an embodiment ;
[0055] FIGS . 15A - 15H show examples of disallowed ter
nary partitioning and binary partitioning in accordance with
an embodiment ;
[0056] FIGS . 16A - 16D show exemplary multi - type tree
splitting modes in accordance with an embodiment ;
[0057] FIG . 17 shows an exemplary flowchart in accor
dance with an embodiment ; and
[0058] FIG . 18 is a schematic illustration of a computer
system in accordance with an embodiment .

BRIEF DESCRIPTION OF THE DRAWINGS

a

[0033] Further features , the nature , and various advan
tages of the disclosed subject matter will be more apparent
from the following detailed description and the accompa
nying drawings in which :
[0034] FIG . 1A is a schematic illustration of an exemplary
subset of intra prediction modes ;
[0035] FIG . 1B is an illustration of exemplary intra pre
diction directions ;
[0036] FIG . 1C is a schematic illustration of a current
block and its surrounding spatial merge candidates in one
example ;
[0037] FIG . 2 is a schematic illustration of a simplified
block diagram of a communication system in accordance
with an embodiment ;

DETAILED DESCRIPTION OF EMBODIMENTS

I. Video Decoder and Encoder Systems
[0059] FIG . 2 illustrates a simplified block diagram of a
communication system (200) according to an embodiment
of the present disclosure . The communication system (200)
includes a plurality of terminal devices that can communi

US 2022/0272369 A1 Aug. 25 , 2022
4

a

cate with each other , via , for example , a network (250) . For
example , the communication system (200) includes a first
pair of terminal devices (210) and (220) interconnected via
the network (250) . In the FIG . 2 example , the first pair of
terminal devices (210) and (220) performs unidirectional
transmission of data . For example , the terminal device (210)
may code video data (e.g. , a stream of video pictures that are
captured by the terminal device (210)) for transmission to
the other terminal device (220) via the network (250) . The
encoded video data can be transmitted in the form of one or
more coded video bitstreams . The terminal device (220) may
receive the coded video data from the network (250) , decode
the coded video data to recover the video pictures and
display video pictures according to the recovered video data .
Unidirectional data transmission may be common in media
serving applications and the like .
[0060] In another example , the communication system
(200) includes a second pair of terminal devices (230) and
(240) that performs bidirectional transmission of coded
video data that may occur , for example , during videocon
ferencing . For bidirectional transmission of data , in an
example , each terminal device of the terminal devices (230)
and (240) may code video data (e.g. , a stream of video
pictures that are captured by the terminal device) for trans
mission the other terminal device of the terminal devices
(230) and (240) via the network (250) . Each terminal device
of the terminal devices (230) and (240) also may receive the
coded video data transmitted by the other terminal device of
the terminal devices (230) and (240) , and may decode the
coded video data to recover the video pictures and may
display video pictures at an accessible display device
according to the recovered video data .
[0061] In the FIG . 2 example , the terminal devices (210) ,
(220) , (230) and (240) may be illustrated as servers , personal
computers and smart phones but the principles of the present
disclosure may be not so limited . Embodiments of the
present disclosure find application with laptop computers ,
tablet computers , media players and / or dedicated video
conferencing equipment . The network (250) represents any
number of networks that convey coded video data among the
terminal devices (210) , (220) , (230) and (240) , including for
example wireline (wired) and / or wireless communication
networks . The communication network (250) may exchange
data in circuit - switched and / or packet - switched channels .
Representative networks include telecommunications net
works , local area networks , wide area networks and / or the
Internet . For the purposes of the present discussion , the
architecture and topology of the network (250) may be
immaterial to the operation of the present disclosure unless
explained herein below .
[0062] FIG . 3 illustrates , as an example for an application
for the disclosed subject matter , the placement of a video
encoder and a video decoder in a streaming environment .
The disclosed subject matter can be equally applicable to
other video enabled applications , including , for example ,
video conferencing , digital TV , storing of compressed video
on digital media including CD , DVD , memory stick , and the
like .
[0063] A streaming system may include a capture subsys
tem (313) that can include a video source (301) , for example
a digital camera , creating for example a stream of video
pictures (302) that are uncompressed . In an example , the
stream of video pictures (302) includes samples that are
taken by the digital camera . The stream of video pictures

(302) , depicted as a bold line to emphasize a high data
volume when compared to encoded video data (304) (or
coded video bitstreams) , can be processed by an electronic
device (320) that includes a video encoder (303) coupled to
the video source (301) . The video encoder (303) can include
hardware , software , or a combination thereof to enable or
implement aspects of the disclosed subject matter as
described in more detail below . The encoded video data
(304) (or encoded video bitstream (304)) , depicted as a thin
line to emphasize the lower data volume when compared to
the stream of video pictures (302) , can be stored on a
streaming server (305) for future use . One or more streaming
client subsystems , such as client subsystems (306) and (308)
in FIG . 3 can access the streaming server (305) to retrieve
copies (307) and (309) of the encoded video data (304) . A
client subsystem (306) can include a video decoder (310) ,
for example , in an electronic device (330) . The video
decoder (310) decodes the incoming copy (307) of the
encoded video data and creates an outgoing stream of video
pictures (311) that can be rendered on a display (312) (e.g. ,
display screen) or other rendering device (not depicted) . In
some streaming systems , the encoded video data (304) ,
(307) , and (309) (e.g. , video bitstreams) can be encoded
according to certain video coding / compression standards .
Examples of those standards include ITU - T Recommenda
tion H.265 . In an example , a video coding standard under
development is informally known as Versatile Video Coding
(VVC) . The disclosed subject matter may be used in the
context of VVC .
[0064] It is noted that the electronic devices (320) and
(330) can include other components (not shown) . For
example , the electronic device (320) can include a video
decoder (not shown) and the electronic device (330) can
include a video encoder (not shown) as well .
[0065] FIG . 4 shows a block diagram of a video decoder
(410) according to an embodiment of the present disclosure .
The video decoder (410) can be included in an electronic
device (430) . The electronic device (430) can include a
receiver (431) (e.g. , receiving circuitry) . The video decoder
(410) can be used in the place of the video decoder (310) in
the FIG . 3 example .
[006] The receiver (431) may receive one or more coded
video sequences to be decoded by the video decoder (410) ;
in the same or another embodiment , one coded video
sequence at a time , where the decoding of each coded video
sequence is independent from other coded video sequences .
The coded video sequence may be received from a channel
(401) , which may be a hardware / software link to a storage
device which stores the encoded video data . The receiver
(431) may receive the encoded video data with other data ,
for example , coded audio data and / or ancillary data streams ,
that may be forwarded to their respective using entities (not
depicted) . The receiver (431) may separate the coded video
sequence from the other data . To combat network jitter , a
buffer memory (415) may be coupled in between the
receiver (431) and an entropy decoder / parser (420) (“ parser
(420) ” henceforth) . In certain applications , the buffer
memory (415) is part of the video decoder (410) . In others ,
it can be outside of the video decoder (410) (not depicted) .
In still others , there can be a buffer memory (not depicted)
outside of the video decoder (410) , for example to combat
network jitter , and in addition another buffer memory (415)
inside the video decoder (410) , for example to handle
playout timing . When the receiver (431) is receiving data

a

a

a

US 2022/0272369 A1 Aug. 25 , 2022
5

a

a

from a store / forward device of sufficient bandwidth and
controllability , or from an isosynchronous network , the
buffer memory (415) may not be needed , or can be small .
For use on best effort packet networks such as the Internet ,
the buffer memory (415) may be required , can be compara
tively large and can be advantageously of adaptive size , and
may at least partially be implemented in an operating system
or similar elements (not depicted) outside of the video
decoder (410) .
[0067] The video decoder (410) may include the parser
(420) to reconstruct symbols (421) from the coded video
sequence . Categories of those symbols include information
used to manage operation of the video decoder (410) , and
potentially information to control a rendering device such as
a render device (412) (e.g. , a display screen) that is not an
integral part of the electronic device (430) but can be
coupled to the electronic device (430) , as was shown in FIG .
4. The control information for the rendering device (s) may
be in the form of Supplemental Enhancement Information
(SEI messages) or Video Usability Information (VUI)
parameter set fragments (not depicted) . The parser (420)
may parse / entropy - decode the coded video sequence that is
received . The coding of the coded video sequence can be in
accordance with a video coding technology or standard , and
can follow various principles , including variable length
coding , Huffman coding , arithmetic coding with or without
context sensitivity , and so forth . The parser (420) may
extract from the coded video sequence , a set of subgroup
parameters for at least one of the subgroups of pixels in the
video decoder , based upon at least one parameter corre
sponding to the group . Subgroups can include Groups of
Pictures (GOPs) , pictures , tiles , slices , macroblocks , Coding
Units (CUN) , blocks , Transform Units (TUS) , Prediction
Units (PUs) and so forth . The parser (420) may also extract
from the coded video sequence information such as trans
form coefficients , quantizer parameter values , MVs , and so
forth .
[0068] The parser (420) may perform an entropy decod
ing / parsing operation on the video sequence received from
the buffer memory (415) , so as to create symbols (421) .
[0069] Reconstruction of the symbols (421) can involve
multiple different units depending on the type of the coded
video picture or parts thereof (such as : inter and intra
picture , inter and intra block) , and other factors . Which units
are involved , and how , can be controlled by the subgroup
control information that was parsed from the coded video
sequence by the parser (420) . The flow of such subgroup
control information between the parser (420) and the mul
tiple units below is not depicted for clarity .
[0070] Beyond the functional blocks already mentioned ,
the video decoder (410) can be conceptually subdivided into
a number of functional units as described below . In a
practical implementation operating under commercial con
straints , many of these units interact closely with each other
and can , at least partly , be integrated into each other .
However , for the purpose of describing the disclosed subject
matter , the conceptual subdivision into the functional units
below is appropriate .
[0071] A first unit is the scaler / inverse transform unit
(451) . The scaler / inverse transform unit (451) receives a
quantized transform coefficient as well as control informa
tion , including which transform to use , block size , quanti
zation factor , quantization scaling matrices , etc. as symbol
(s) (421) from the parser (420) . The scaler / inverse transform

unit (451) can output blocks comprising sample values that
can be input into aggregator (455) .
[0072] In some cases , the output samples of the scaler /
inverse transform (451) can pertain to an intra coded block ;
that is : a block that is not using predictive information from
previously reconstructed pictures , but can use predictive
information from previously reconstructed parts of the cur
rent picture . Such predictive information can be provided by
an intra picture prediction unit (452) . In some cases , the intra
picture prediction unit (452) generates a block of the same
size and shape of the block under reconstruction , using
surrounding already reconstructed information fetched from
the current picture buffer (458) . The current picture buffer
(458) buffers , for example , partly reconstructed current
picture and / or fully reconstructed current picture . The aggre
gator (455) , in some cases , adds , on a per sample basis , the
prediction information that the intra prediction unit (452)
has generated to the output sample information as provided
by the scaler / inverse transform unit (451) .
[0073] In other cases , the output samples of the scaler /
inverse transform unit (451) can pertain to an inter coded ,
and potentially motion compensated block . In such a case , a
motion compensation prediction unit (453) can access ref
erence picture memory (457) to fetch samples used for
prediction . After motion compensating the fetched samples
in accordance with the symbols (421) pertaining to the
block , these samples can be added by the aggregator (455)
to the output of the scaler / inverse transform unit (451) (in
this case called the residual samples or residual signal) so as
to generate output sample information . The addresses within
the reference picture memory (457) from where the motion
compensation prediction unit (453) fetches prediction
samples can be controlled by MVs , available to the motion
compensation prediction unit (453) in the form of symbols
(421) that can have , for example X , Y , and reference picture
components . Motion compensation also can include inter
polation of sample values as fetched from the reference
picture memory (457) when sub - sample exact MVs are in
use , MV prediction mechanisms , and so forth .
[0074] The output samples of the aggregator (455) can be
subject to various loop filtering techniques in the loop filter
unit (456) . Video compression technologies can include
in - loop filter technologies that are controlled by parameters
included in the coded video sequence (also referred to as
coded video bitstream) and made available to the loop filter
unit (456) as symbols (421) from the parser (420) , but can
also be responsive to meta - information obtained during the
decoding of previous (in decoding order) parts of the coded
picture or coded video sequence , as well as responsive to
previously reconstructed and loop - filtered sample values .
[0075] The output of the loop filter unit (456) can be a
sample stream that can be output to the render device (412)
as well as stored in the reference picture memory (457) for
use in future inter - picture prediction .
[0076] Certain coded pictures , once fully reconstructed ,
can be used as reference pictures for future prediction . For
example , once a coded picture corresponding to a current
picture is fully reconstructed and the coded picture has been
identified as a reference picture (by , for example , the parser
(420)) , the current picture buffer (458) can become a part of
the reference picture memory (457) , and a fresh current
picture buffer can be reallocated before commencing the
reconstruction of the following coded picture .

2

US 2022/0272369 A1 Aug. 25 , 2022
6

?

[0077] The video decoder (410) may perform decoding
operations according to a predetermined video compression
technology in a standard , such as ITU - T Rec . H.265 . The
coded video sequence may conform to a syntax specified by
the video compression technology or standard being used , in
the sense that the coded video sequence adheres to both the
syntax of the video compression technology or standard and
the profiles as documented in the video compression tech
nology or standard . Specifically , a profile can select certain
tools as the only tools available for use under that profile
from all the tools available in the video compression tech
nology or standard . Also necessary for compliance can be
that the complexity of the coded video sequence is within
bounds as defined by the level of the video compression
technology or standard . In some cases , levels restrict the
maximum picture size , maximum frame rate , maximum
reconstruction sample rate (measured in , for example mega
samples per second) , maximum reference picture size , and
so on . Limits set by levels can , in some cases , be further
restricted through Hypothetical Reference Decoder (HRD)
specifications and metadata for HRD buffer management
signaled in the coded video sequence .
[0078] In an embodiment , the receiver (431) may receive
additional (redundant) data with the encoded video . The
additional data may be included as part of the coded video
sequence (s) . The additional data may be used by the video
decoder (410) to properly decode the data and / or to more
accurately reconstruct the original video data . Additional
data can be in the form of , for example , temporal , spatial , or
signal noise ratio (SNR) enhancement layers , redundant
slices , redundant pictures , forward error correction codes ,
and so on .

[0079] FIG . 5 shows a block diagram of a video encoder
(503) according to an embodiment of the present disclosure .
The video encoder (503) is included in an electronic device
(520) . The electronic device (520) includes a transmitter
(540) (e.g. , transmitting circuitry) . The video encoder (503)
can be used in the place of the video encoder (303) in the
FIG . 3 example .
[0080] The video encoder (503) may receive video
samples from a video source (501) (that is not part of the
electronic device (520) in the FIG . 5 example) that may
capture video image (s) to be coded by the video encoder
(503) . In another example , the video source (501) is a part
of the electronic device (520) .
[0081] The video source (501) may provide the source
video sequence to be coded by the video encoder (503) in the
form of a digital video sample stream that can be of any
suitable bit depth (for example : 8 bit , 10 bit , 12 bit , ...) , any
colorspace (for example , BT.601 Y CrCB , RGB ,) , and
any suitable sampling structure (for example Y CrCb 4 : 2 : 0 ,
Y CrCb 4 : 4 : 4) . In a media serving system , the video source
(501) may be a storage device storing previously prepared
video . In a videoconferencing system , the video source
(501) may be a camera that captures local image information
as a video sequence . Video data may be provided as a
plurality of individual pictures that impart motion when
viewed in sequence . The pictures themselves may be orga
nized as a spatial array of pixels , wherein each pixel can
comprise one or more samples depending on the sampling
structure , color space , etc. in use . A person skilled in the art
can readily understand the relationship between pixels and
samples . The description below focuses on samples .

[0082] According to an embodiment , the video encoder
(503) may code and compress the pictures of the source
video sequence into a coded video sequence (543) in real
time or under any other time constraints as required by the application . Enforcing appropriate coding speed is one func
tion of a controller (550) . In some embodiments , the con
troller (550) controls other functional units as described
below and is functionally coupled to the other functional
units . The coupling is not depicted for clarity . Parameters set
by the controller (550) can include rate control related
parameters (picture skip , quantizer , lambda value of rate
distortion optimization techniques , ...) , picture size , group
of pictures (GOP) layout , maximum MV allowed reference
area , and so forth . The controller (550) can be configured to
have other suitable functions that pertain to the video
encoder (503) optimized for a certain system design .
[0083] In some embodiments , the video encoder (503) is
configured to operate in a coding loop . As an oversimplified
description , in an example , the coding loop can include a
source coder (530) (e.g. , responsible for creating symbols ,
such as a symbol stream , based on an input picture to be
coded , and a reference picture (s)) , and a (local) decoder
(533) embedded in the video encoder (503) . The decoder
(533) reconstructs the symbols to create the sample data in
a similar manner as a (remote) decoder also would create (as
any compression between symbols and coded video bit
stream is lossless in the video compression technologies
considered in the disclosed subject matter) . The recon
structed sample stream (sample data) is input to the refer
ence picture memory (534) . As the decoding of a symbol
stream leads to bit - exact results independent of decoder
location (local or remote) , the content in the reference
picture memory (534) is also bit exact between the local
encoder and remote encoder . In other words , the prediction
part of an encoder “ sees ” as reference picture samples
exactly the same sample values as a decoder would “ see ”
when using prediction during decoding . This fundamental
principle of reference picture synchronicity (and resulting
drift , if synchronicity cannot be maintained , for example
because of channel errors) is used in some related arts as
well .
[0084] The operation of the " local ” decoder (533) can be
the same as of a " remote ” decoder , such as the video decoder
(410) , which has already been described in detail above in
conjunction with FIG . 4. Briefly referring also to FIG . 4 ,
however , as symbols are available and encoding / decoding of
symbols to a coded video sequence by an entropy coder
(545) and the parser (420) can be lossless , the entropy
decoding parts of the video decoder (410) , including the
buffer memory (415) and the parser (420) may not be fully
implemented in the local decoder (533) .
[0085] An observation that can be made at this point is that
any decoder technology except the parsing / entropy decod
ing that is present in a decoder also necessarily needs to be
present , in substantially identical functional form , in a
corresponding encoder . For this reason , the disclosed subject
matter focuses on decoder operation . The description of
encoder technologies can be abbreviated as they are the
inverse of the comprehensively described decoder technolo
gies . Only in certain areas a more detail description is
required and provided below .
[0086] During operation , in some examples , the source
coder (530) may perform motion compensated predictive
coding , which codes an input picture predictively with

a

US 2022/0272369 A1 Aug. 25 , 2022
7

reference to one or more previously - coded picture from the
video sequence that were designated as “ reference pictures ” .
In this manner , the coding engine (532) codes differences
between pixel blocks of an input picture and pixel blocks of
reference picture (s) that may be selected as prediction
reference (s) to the input picture .
[0087] The local video decoder (533) may decode coded
video data of pictures that may be designated as reference
pictures , based on symbols created by the source coder
(530) . Operations of the coding engine (532) may advanta
geously be lossy processes . When the coded video data may
be decoded at a video decoder (not shown in FIG . 5) , the
reconstructed video sequence typically may be a replica of
the source video sequence with some errors . The local video
decoder (533) replicates decoding processes that may be
performed by the video decoder on reference pictures and
may cause reconstructed reference pictures to be stored in
the reference picture cache (534) . In this manner , the video
encoder (503) may store copies of reconstructed reference
pictures locally that have common content as the recon
structed reference pictures that will be obtained by a far - end
video decoder (absent transmission errors) .
[0088] The predictor (535) may perform prediction
searches for the coding engine (532) . That is , for a new
picture to be coded , the predictor (535) may search the
reference picture memory (534) for sample data (as candi
date reference pixel blocks) or certain metadata such as
reference picture MVs , block shapes , and so on , that may
serve as an appropriate prediction reference for the new
pictures . The predictor (535) may operate on a sample
block - by - pixel block basis to find appropriate prediction
references . In some cases , as determined by search results
obtained by the predictor (535) , an input picture may have
prediction references drawn from multiple reference pic
tures stored in the reference picture memory (534) .
[0089] The controller (550) may manage coding opera
tions of the source coder (530) , including , for example ,
setting of parameters and subgroup parameters used for
encoding the video data .
[0090] Output of all aforementioned functional units may
be subjected to entropy coding in the entropy coder (545) .
The entropy coder (545) translates the symbols as generated
by the various functional units into a coded video sequence ,
by lossless compressing the symbols according to technolo
gies such as Huffman coding , variable length coding , arith
metic coding , and so forth .
[0091] The transmitter (540) may buffer the coded video
sequence (s) as created by the entropy coder (545) to prepare
for transmission via a communication channel (560) , which
may be a hardware / software link to a storage device which
would store the encoded video data . The transmitter (540)
may merge coded video data from the video coder (503)
with other data to be transmitted , for example , coded audio
data and / or ancillary data streams (sources not shown) .
[0092] The controller (550) may manage operation of the
video encoder (503) . During coding , the controller (550)
may assign to each coded picture a certain coded picture
type , which may affect the coding techniques that may be
applied to the respective picture . For example , pictures often
may be assigned as one of the following picture types :
[0093] An Intra Picture (I picture) may be one that may be
coded and decoded without using any other picture in the
sequence as a source of prediction . Some video codecs allow
for different types of intra pictures , including , for example

Independent Decoder Refresh (“ IDR ”) Pictures . A person
skilled in the art is aware of those variants of I pictures and
their respective applications and features .
[0094] A predictive picture (P picture) may be one that
may be coded and decoded using intra prediction or inter
prediction using at most one MV and reference index to
predict the sample values of each block .
[0095] A bi - directionally predictive picture (B Picture)
may be one that may be coded and decoded using intra
prediction or inter prediction using at most two MVs and
reference indices to predict the sample values of each block .
Similarly , multiple - predictive pictures can use more than
two reference pictures and associated metadata for the
reconstruction of a single block .
[0096] Source pictures commonly may be subdivided spa
tially into a plurality of sample blocks (for example , blocks
of 4x4 , 8x8 , 4x8 , or 16x16 samples each) and coded on a
block - by - block basis . Blocks may be coded predictively
with reference to other (already coded) blocks as determined
by the coding assignment applied to the blocks ' respective
pictures . For example , blocks of I pictures may be coded
non - predictively or they may be coded predictively with
reference to already coded blocks of the same picture
(spatial prediction or intra prediction) . Pixel blocks of P
pictures may be coded predictively , via spatial prediction or
via temporal prediction with reference to one previously
coded reference picture . Blocks of B pictures may be coded
predictively , via spatial prediction or via temporal prediction
with reference to one or two previously coded reference
pictures .
[0097] The video encoder (503) may perform coding
operations according to a predetermined video coding tech
nology or standard , such as ITU - T Rec . H.265 . In its
operation , the video encoder (503) may perform various
compression operations , including predictive coding opera
tions that exploit temporal and spatial redundancies in the
input video sequence . The coded video data , therefore , may
conform to a syntax specified by the video coding technol
ogy or standard being used .
[0098] In an embodiment , the transmitter (540) may trans
mit additional data with the encoded video . The source coder
(530) may include such data as part of the coded video
sequence . Additional data may comprise temporal / spatial /
SNR enhancement layers , other forms of redundant data
such as redundant pictures and slices , SEI messages , VUI
parameter set fragments , and so on .
[0099] A video may be captured as a plurality of source
pictures (video pictures) in a temporal sequence . Intra
picture prediction (often abbreviated to intra prediction)
makes use of spatial correlation in a given picture , and
inter - picture prediction makes uses of the (temporal or
other) correlation between the pictures . In an example , a
specific picture under encoding / decoding , which is referred
to as a current picture , is partitioned into blocks . When a
block in the current picture is similar to a reference block in
a previously coded and still buffered reference picture in the
video , the block in the current picture can be coded by a
vector that is referred to as a MV . The MV points to the
reference block in the reference picture , and can have a third
dimension identifying the reference picture , in case multiple
reference pictures are in use .
[0100] In some embodiments , a bi - prediction technique
can be used in the inter - picture prediction . According to the
bi - prediction technique , two reference pictures , such as a

a

US 2022/0272369 A1 Aug. 25 , 2022
8

a

first reference picture and a second reference picture that are
both prior in decoding order to the current picture in the
video (but may be in the past and future , respectively , in
display order) are used . A block in the current picture can be
coded by a first MV that points to a first reference block in
the first reference picture , and a second MV that points to a
second reference block in the second reference picture . The
block can be predicted by a combination of the first refer
ence block and the second reference block .
[0101] Further , a merge mode technique can be used in the
inter - picture prediction to improve coding efficiency .
[0102] According to some embodiments of the disclosure ,
predictions , such as inter - picture predictions and intra - pic
ture predictions are performed in the unit of blocks . For
example , according to the HEVC standard , a picture in a
sequence of video pictures is partitioned into coding tree
units (CTU) for compression , the CTUs in a picture have the
same size , such as 64x64 pixels , 32x32 pixels , or 16x16
pixels . In general , a CTU includes three coding tree blocks
(CTBs) , which are one luma CTB and two chroma CTBs .
Each CTU can be recursively quad - tree split into one or
multiple coding units (CUS) . For example , a CTU of 64x64
pixels can be split into one CU of 64x64 pixels , or 4 CUs of
32x32 pixels , or 16 CUs of 16x16 pixels . In an example ,
each CU is analyzed to determine a prediction type for the
CU , such as an inter prediction type or an intra prediction
type . The CU is split into one or more prediction units (PUS)
depending on the temporal and / or spatial predictability .
Generally , each PU includes a luma prediction block (PB) ,
and two chroma PBs . In an embodiment , a prediction
operation in coding (encoding / decoding) is performed in the
unit of a prediction block . Using a luma prediction block as
an example of a prediction block , the prediction block
includes a matrix of values (e.g. , luma values) for pixels ,
such as 8x8 pixels , 16x16 pixels , 8x16 pixels , 16x8 pixels ,
and the like .
[0103] FIG . 6 shows a diagram of a video encoder (603)
according to another embodiment of the disclosure . The
video encoder (603) is configured to receive a processing
block (e.g. , a prediction block) of sample values within a
current video picture in a sequence of video pictures , and
encode the processing block into a coded picture that is part
of a coded video sequence . In an example , the video encoder
(603) is used in the place of the video encoder (303) in the
FIG . 3 example .
[0104] In an HEVC example , the video encoder (603)
receives a matrix of sample values for a processing block ,
such as a prediction block of 8x8 samples , and the like . The
video encoder (603) determines whether the processing
block is best coded using intra mode , inter mode , or bi
prediction mode using , for example , rate - distortion optimi
zation . When the processing block is to be coded in intra
mode , the video encoder (603) may use an intra prediction
technique to encode the processing block into the coded
picture ; and when the processing block is to be coded in inter
mode or bi - prediction mode , the video encoder (603) may
use an inter prediction or bi - prediction technique , respec
tively , to encode the processing block into the coded picture .
In certain video coding technologies , merge mode can be an
inter picture prediction submode where the MV is derived
from one or more MV predictors without the benefit of a
coded MV component outside the predictors . In certain other
video coding technologies , a MV component applicable to
the subject block may be present . In an example , the video

encoder (603) includes other components , such as a mode
decision module (not shown) to determine the mode of the
processing blocks .
[0105] In the FIG . 6 example , the video encoder (603)
includes the inter encoder (630) , an intra encoder (622) , a
residue calculator (623) , a switch (626) , a residue encoder
(624) , a general controller (621) , and an entropy encoder
(625) coupled together as shown in FIG . 6 .
[0106] The inter encoder (630) is configured to receive the
samples of the current block (e.g. , a processing block) ,
compare the block to one or more reference blocks in
reference pictures (e.g. , blocks in previous pictures and later
pictures) , generate inter prediction information (e.g. ,
description of redundant information according to inter
encoding technique , MVs , merge mode information) , and
calculate inter prediction results (e.g. , prediction block)
based on the inter prediction information using any suitable
technique . In some examples , the reference pictures are
decoded reference pictures that are decoded based on the
encoded video information .
[0107] The intra encoder (622) is configured to receive the
samples of the current block (e.g. , a processing block) , in
some cases compare the block to blocks already coded in the
same picture , generate quantized coefficients after trans
form , and in some cases also intra prediction information
(e.g. , an intra prediction direction information according to
one or more intra encoding techniques) . In an example , the
intra encoder (622) also calculates intra prediction results
(e.g. , prediction block) based on the intra prediction infor
mation and reference blocks in the same picture .
[0108] The general controller (621) is configured to deter
mine general control data and control other components of
the video encoder (603) based on the general control data . In
an example , the general controller (621) determines the
mode of the block , and provides a control signal to the
switch (626) based on the mode . For example , when the
mode is the intra mode , the general controller (621) controls
the switch (626) to select the intra mode result for use by the
residue calculator (623) , and controls the entropy encoder
(625) to select the intra prediction information and include
the intra prediction information in the bitstream ; and when
the mode is the inter mode , the general controller (621)
controls the switch (626) to select the inter prediction result
for use by the residue calculator (623) , and controls the
entropy encoder (625) to select the inter prediction infor
mation and include the inter prediction information in the
bitstream .
[0109] The residue calculator (623) is configured to cal
culate a difference (residue data) between the received block
and prediction results selected from the intra encoder (622)
or the inter encoder (630) . The residue encoder (624) is
configured to operate based on the residue data to encode the
residue data to generate the transform coefficients . In an
example , the residue encoder (624) is configured to convert
the residue data from a spatial domain to a frequency
domain , and generate the transform coefficients . The trans
form coefficients are then subject to quantization processing
to obtain quantized transform coefficients . In various
embodiments , the video encoder (603) also includes a resi
due decoder (628) . The residue decoder (628) is configured
to perform inverse - transform , and generate the decoded
residue data . The decoded residue data can be suitably used
by the intra encoder (622) and the inter encoder (630) . For
example , the inter encoder (630) can generate decoded

a 9

US 2022/0272369 A1 Aug. 25 , 2022
9

e

blocks based on the decoded residue data and inter predic
tion information , and the intra encoder (622) can generate
decoded blocks based on the decoded residue data and the
intra prediction information . The decoded blocks are suit
ably processed to generate decoded pictures and the decoded
pictures can be buffered in a memory circuit (not shown) and
used as reference pictures in some examples .
[0110] The entropy encoder (625) is configured to format
the bitstream to include the encoded block . The entropy
encoder (625) is configured to include various information
according to a suitable standard such as HEVC . In an
example , the entropy encoder (625) is configured to include
the general control data , the selected prediction information
(e.g. , intra prediction information or inter prediction infor
mation) , the residue information , and other suitable infor
mation in the bitstream . Note that , according to the disclosed
subject matter , when coding a block in the merge submode
of either inter mode or bi - prediction mode , there is no
residue information .
[0111] FIG . 7 shows a diagram of a video decoder (710)
according to another embodiment of the disclosure . The
video decoder (710) is configured to receive coded pictures
that are part of a coded video sequence , and decode the
coded pictures to generate reconstructed pictures . In an
example , the video decoder (710) is used in the place of the
video decoder (310) in the FIG . 3 example .
[0112] In the FIG . 7 example , the video decoder (710)
includes an entropy decoder (771) , an inter decoder (780) , a
residue decoder (773) , a reconstruction module (774) , and
an intra decoder (772) coupled together as shown in FIG . 7 .
[0113] The entropy decoder (771) can be configured to
reconstruct , from the coded picture , certain symbols that
represent the syntax elements of which the coded picture is
made up . Such symbols can include , for example , the mode
in which a block is coded (such as , for example , intra mode ,
inter mode , bi - predicted mode , the latter two in merge
submode or another submode) , prediction information (such
as , for example , intra prediction information or inter pre
diction information) that can identify certain sample or
metadata that is used for prediction by the intra decoder
(772) or the inter decoder (780) , respectively , residual
information in the form of , for example , quantized transform
coefficients , and the like . In an example , when the prediction
mode is inter or bi - predicted mode , the inter prediction
information is provided to the inter decoder (780) ; and when
the prediction type is the intra prediction type , the intra
prediction information is provided to the intra decoder
(772) . The residual information can be subject to inverse
quantization and is provided to the residue decoder (773) .
[0114] The inter decoder (780) is configured to receive the
inter prediction information , and generate inter prediction
results based on the inter prediction information .
[0115] The intra decoder (772) is configured to receive the
intra prediction information , and generate prediction results
based on the intra prediction information .

[0116] The residue decoder (773) is configured to perform
inverse quantization to extract de - quantized transform coef
ficients , and process the de - quantized transform coefficients
to convert the residual from the frequency domain to the
spatial domain . The residue decoder (773) may also require
certain control information (to include the Quantizer Param
eter (QP)) , and that information may be provided by the
entropy decoder (771) (data path not depicted as this may be
low volume control information only) .
[0117] The reconstruction module (774) is configured to
combine , in the spatial domain , the residual as output by the
residue decoder (773) and the prediction results (as output
by the inter or intra prediction modules as the case may be)
to form a reconstructed block , that may be part of the
reconstructed picture , which in turn may be part of the
reconstructed video . It is noted that other suitable opera
tions , such as a deblocking operation and the like , can be
performed to improve the visual quality .
[0118] It is noted that the video encoders (303) , (503) , and
(603) , and the video decoders (310) , (410) , and (710) can be
implemented using any suitable technique . In an embodi
ment , the video encoders (303) , (503) , and (603) , and the
video decoders (310) , (410) , and (710) can be implemented
using one or more integrated circuits . In another embodi
ment , the video encoders (303) , (503) , and (603) , and the
video decoders (310) , (410) , and (710) can be implemented
using one or more processors that execute software instruc
tions .

II . Source , Decoded , And Output Picture Formats

[0119] According to aspects of the disclosure , the video
source that is represented by the bitstream is a sequence of
pictures in decoding order . The source and decoded pictures
are each comprised of one or more the following sample
arrays : (i) luma (Y) only (monochrome) ; (ii) luma and two
chroma (YCbCr or YCgCo) ; (iii) green , blue , and red (GBR ,
also known as RGB) ; and (iv) arrays representing other
unspecified monochrome or tri - stimulus color samplings
(e.g. , YZX , is also known as XYZ) .
[0120] In some related examples , the variables and terms
associated with these arrays are referred to as luma (or L or
Y) and chroma , where the two chroma arrays are referred to
as Cb and Cr , regardless of the actual color representation
method in use . The actual color representation method in use
can be indicated by syntax .
[0121] For example , in Table 1 , the variables Sub WidthC
and Sub HeightC are dependent on the chroma format sam
pling structure , which is specified through the variables
chroma_format_idc and separate_colour_plane_flag . Other
values of chroma_format_idc , SubWidthC , and SubHeightC
can be specified in some related examples .

TABLE 1

Chroma
chroma_format_idc separate_colour_plane_flag format Sub Width Sub HeightC

0 0 1 1 Monochrome
4 : 2 : 0 1 0 2 2

2 0 4 : 2 : 2 2 1

US 2022/0272369 A1 Aug. 25 , 2022
10

TABLE 1 - continued

Chroma
format chroma_format_idc separate_colour_plane_flag SubWidthC SubHeightC

1 3
3

0
1

4 : 4 : 4
4 : 4 : 4 1

[0122] In monochrome sampling , there is only one sample
array , which is nominally considered the luma array . In 4 : 2 : 0
sampling , each of the two chroma arrays has half the height
and half the width of the luma array . In 4 : 2 : 2 sampling , each
of the two chroma arrays has the same height and half the
width of the luma array . In 4 : 4 : 4 sampling , if separate colour
plane flag is equal to 0 , each of the two chroma arrays has
the same height and width as the luma array . Otherwise
(separate_colour_plane_flag is equal to 1) , the three colour
planes are separately processed as monochrome sampled
pictures .
[0123] The number of bits for the representation of each of
the samples in the luma and chroma arrays in a video
sequence can be in the range of 8 to 16 , inclusive , and the
number of bits used in the luma array can differ from the
number of bits used in the chroma arrays .
[0124] When the value of chroma_format_idc is equal to
1 , the nominal vertical and horizontal relative locations of
luma and chroma samples in pictures are shown in FIG . 8A .
Alternative chroma sample relative locations can be indi
cated in video usability information .
[0125] When the value of chroma_format_idc is equal to
2 , the chroma samples are co - sited with the corresponding
luma samples and the nominal locations in a picture are as
shown in FIG . 8B .
[0126] When the value of chroma_format_idc is equal to
3 , all array samples are co - sited for all cases of pictures and
the nominal locations in a picture are as shown in FIG . 8C .

?

of the picture . The bricks within a rectangular slice are in the
order of brick raster scan of the slice .
[0130] FIG . 9B shows an example of raster - scan slice
partitioning of a picture , where the picture is divided into 12
tiles and 3 raster - scan slices . FIG . 9C shows an example of
rectangular slice partitioning of a picture , where the picture
is divided into 24 tiles (6 tile columns and 4 tile rows) and
9 rectangular slices . FIG.9D shows an example of a picture
partitioned into tiles , bricks , and rectangular slices , where
the picture is divided into 4 tiles (2 tile columns and 2 tile
rows) , 11 bricks (the top - left tile contains 1 brick , the
top - right tile contains 5 bricks , the bottom - left tile contains
2 bricks , and the bottom - right tile contain 3 bricks) , and 4
rectangular slices .
[0131] In some related examples such as HEVC , a CTU
can be split into CUs by using a quaternary - tree structure
denoted as a coding tree to adapt to various local charac
teristics . The decision whether to code a picture area using
inter - picture (temporal) or intra - picture (spatial) prediction
can be made at the leaf CU level . Each leaf CU can be
further split into one , two , or four PUs according to the PU
splitting type . Inside one PU , the same prediction process
can be applied and the relevant information can be trans
mitted to the decoder on a PU basis . After obtaining the
residual block by applying the prediction process based on
the PU splitting type , a leaf CU can be partitioned into
transform units (TUS) according to another quaternary - tree
structure similar to the coding tree for the CU . One feature
of the HEVC structure is that it has multiple partition
conceptions including CU , PU , and TU .
[0132] In some related examples such as VVC , a quadtree
with nested multi - type tree using binary and ternary splits
segmentation structure replaces the concepts of multiple
partition unit types . That is , the quadtree with nested multi
type tree removes the separation of the CU , PU , and TU
concepts except as needed for CUs that have a size too large
for the maximum transform length , and supports more
flexibility for CU partition shapes . In the coding tree struc
ture , a CU can have either a square or rectangular shape . A
CTU can be first partitioned by a quaternary tree (referred to
as quadtree) structure . Then the quaternary tree leaf nodes
can be further partitioned by a multi - type tree structure . As
shown in FIGS . 10A - 10D , there are four splitting types in
the multi - type tree structure , which are vertical binary
splitting (SPLIT_BT_VER) , horizontal binary splitting
(SPLIT_BT_HOR) , vertical ternary splitting (SPLIT_TT_
VER) , and horizontal ternary splitting (SPLIT_TT_HOR) .
The multi - type tree leaf nodes are called CUs . Unless the
CU is too large for the maximum transform length , this
segmentation can be used for prediction and transform
processing without any further partitioning . This means that ,
in most cases , the CU , PU , and TU can have the same block
size in the quadtree with the nested multi - type tree coding
block structure . The exception occurs when the maximum
supported transform length is smaller than the width or
height of the color component of the CU .

III . Partitioning in VVC
[0127] In some related examples such as HEVC and VVC ,
pictures can be divided into a sequence of CTUs . For a
picture that has three sample arrays , a CTU includes an NxN
block of luma samples together with two corresponding
blocks of chroma samples . FIG . 9A shows an example of a
picture divided into CTUs . The maximum allowed size of
the luma block in a CTU can be specified to be 128x128 ,
although the maximum size of the luma transform blocks
can be 64x64 .
[0128] According to aspects of the disclosure , a picture
can be divided into one or more tile rows and one or more
tile columns . A tile can be a sequence of CTUs that covers
a rectangular region of a picture . A tile can be divided into
one or more bricks , each of which includes a number of CTU
rows within the tile . A tile that is not partitioned into multiple
bricks can also be referred to as a brick . However , a brick
that is a true subset of a tile is not referred to as a tile . A slice
either includes a number of tiles of a picture or a number of
bricks of a tile .
[0129] In some related examples , two modes of slices are
supported , namely the raster - scan slice mode and the rect
angular slice mode . In the raster - scan slice mode , a slice
contains a sequence of tiles in a tile raster scan of a picture .
In the rectangular slice mode , a slice contains a number of
bricks of a picture that collectively form a rectangular region

a

a

US 2022/0272369 Al Aug. 25 , 2022
11

.

[0133] FIG . 11 illustrates an exemplary signaling mecha
nism of the partition splitting information in quadtree with
a nested multi - type tree coding tree structure according to an
embodiment of the disclosure . A CTU can be treated as a
root of a quaternary tree and first partitioned by a quaternary
tree structure . A quaternary tree leaf node can then be further
partitioned by a multi - type tree structure if allowed . In the
multi - type tree structure , a first flag (e.g. , mtt_split_cu_flag)
can be signaled to indicate whether the node is further
partitioned . When the node is determined to be further
partitioned , a second flag (e.g. , mtt_split_cu_vertical_flag)
can be signaled to indicate a splitting direction , and then a
third flag (e.g. , mtt_split_cu_binary_flag) can be signaled to
indicate whether the split is a binary split or a ternary split .
Based on the values of mtt_split_cu_vertical_flag and mtt_
split_cu_binary_flag , the multi - type tree splitting mode
(MttSplitMode) of a CU can be derived as shown in Table
2 .

as 16x16 , the MaxBtSize can be set as 128x128 and
MaxTtSize can be set as 64x64 , the MinBtSize and MinT
tSize (for both width and height) can be set as 4x4 , and the
MaxMttDepth can be set as 4. The quaternary tree parti
tioning can be applied to the CTU first to generate quater
nary tree leaf nodes . The quaternary tree leaf nodes can have
a size from the MinQTSize (e.g. , 16x16) to the CTU size
(e.g. , 128x128) . If the leaf QT node is 128x128 , it cannot be
further split by the binary tree since the size exceeds the
MaxBtSize and MaxTtSize (e.g. , 64x64) . Otherwise , the
leaf QT node can be further partitioned by the multi - type
tree . Therefore , the quaternary tree leaf node can also be the
root node for the multi - type tree and have a multi - type tree
depth (mttDepth) of 0. When the multi - type tree depth
reaches MaxMttDepth (e.g. , 4) , no further splitting is con
sidered . When the width of the multi - type tree node is equal
to MinBtSize and smaller or equal to 2 * MinTtSize , no
further horizontal splitting is considered . Similarly , when the

TABLE 2

MttSplit Mode mtt_split_cu_vertical_flag mtt_split_cu_binary_flag

SPLIT_TT_HOR
SPLIT_BT HOR
SPLIT TT VER
SPLIT_BT_VER

0
0
1

0
1
0
1 1

2

[0134] FIG . 12 shows an exemplary CTU divided into
multiple CUs with a quadtree and a nested multi - type tree
coding block structure , where the bold block edges represent
quadtree partitioning and the remaining edges represent
multi - type tree partitioning . The quadtree with the nested
multi - type tree partition can provide a content - adaptive
coding tree structure comprised of CUs . The size of the CU
can be as large as the CTU or as small as 4x4 in units of luma
samples . For the case of the 4 : 2 : 0 chroma format , the
maximum chroma CB size can be 64x64 and the minimum
chroma CB size can be 2x2 .
[0135] In some related examples such as VVC , the maxi
mum supported luma transform size can be 64x64 and the
maximum supported chroma transform size can be 32x32 .
When the width or height of the CB is larger than the
maximum transform width or height , the CB can be auto
matically split in the horizontal and / or vertical direction to
meet the transform size restriction in the corresponding
direction .
[0136] The following parameters are defined and specified
by sequence parameter set (SPS) syntax elements for the
quadtree with a nested multi - type tree coding tree scheme :
(i) CTU size that is the root node size of a quaternary tree ;
(ii) MinQTSize that is the minimum allowed quaternary tree
leaf node size ; (iii) MaxBtSize that is the maximum allowed
binary tree root node size ; (iv) MaxTtSize that is the
maximum allowed ternary tree root node size ; (v) MaxMtt
Depth that is the maximum allowed hierarchy depth of
multi - type tree splitting from a quadtree leaf ; (vi) MinBtSize
that is the minimum allowed binary tree leaf node size ; and
(vii) MinTtSize that is the minimum allowed ternary tree
leaf node size .
[0137] In one example of the quadtree with a nested
multi - type tree coding tree structure , the CTU size can be set
as 128x128 luma samples with two corresponding 64x64
blocks of 4 : 2 : 0 chroma samples , the MinQTSize can be set

height of the multi - type tree node is equal to MinBtSize and
smaller or equal to 2 * MinTtSize , no further vertical splitting
is considered .
[0138] In some related cases such as VVC , to allow 64x64
luma block and 32x32 chroma pipelining design in hardware
decoders , TT split is forbidden when either a width or a
height of a luma coding block is larger than 64 , as shown in
FIGS . 13A - 13E . TT split is also forbidden when either a
width or a height of a chroma coding block is larger than 32 .
[0139] In some related cases such as VVC , the coding tree
scheme can support the ability for the luma and chroma to
have a separate block tree structure . In an example , for P and
B slices , the luma and chroma CTBs in one CTU have to
share the same coding tree structure . However , for I slices ,
the luma and chroma can have separate block tree structures .
When a separate block tree mode is applied , the luma CTB
can be partitioned into CUS by using one coding tree
structure , and the chroma CTBs can be partitioned into
chroma CUs by using another coding tree structure . This
means that a CU in an I slice can include , or consist , of a
coding block of the luma component or coding blocks of two
chroma components , and a CU in a P or B slice can include
coding blocks of all three color components unless the video
is monochrome .
[0140] According to aspects of the disclosure , when a
portion of a tree node block exceeds the bottom or right
picture boundary , the tree node block can be forced to be
split until samples (e.g. , all samples) of every coded CU are
located inside the picture boundaries . The following split
ting rules can be applied in some related examples such as
VVC .
[0141] In an embodiment , a portion of a tree node block
exceeds both the bottom and the right picture boundaries . If
the block is a QT node and the size of the block is larger than
the minimum QT size (e.g. , 16x16) , the block can be forced
to be split with QT split mode . Otherwise , the block can be
forced to be split with SPLIT_BT_HOR mode .

a

US 2022/0272369 A1 Aug. 25 , 2022
12

a

[0142] In an embodiment , a portion of a tree node block
exceeds the bottom picture boundaries . If the block is a QT
node and the size of the block is larger than both the
minimum QT size and the maximum BT size (e.g. , 128x
128) , the block can be forced to be split with the QT split
mode . Otherwise , if the block is a QT node and the size of
the block is larger than the minimum QT size and smaller
than or equal to the maximum BT size , the block can be
forced to be split with the QT split mode or SPLIT_BT_
HOR mode . Otherwise , if the block is an MTT node or the
size of the block is smaller than or equal to the minimum QT
size , the block can be forced to be split with SPLIT_BT_
HOR mode .
[0143] In an embodiment , a portion of a tree node block
exceeds the right picture boundaries . If the block is a QT
node and the size of the block is larger than both the
minimum QT size and the maximum BT size , the block can
be forced to be split with the QT split mode . Otherwise , if
the block is a QT node and the size of the block is larger than
the minimum QT size and smaller than or equal to the
maximum BT size , the block can be forced to be split with
the QT split mode or SPLIT_BT_VER mode . Otherwise , if
the block is an MTT node or the size of the block is smaller
than or equal to the minimum QT size , the block can be
forced to be split with SPLIT_BT_VER mode .
[0144] The quadtree with a nested multi - type tree coding
block structure can provide a highly flexible block partition
ing structure . Due to the types of splits in the multi - type tree ,
different splitting patterns can potentially result in the same
coding block structure . In some related examples such as
VVC , some of these redundant splitting patterns can be
disallowed .
[0145] FIGS . 14A - 14D illustrate exemplary redundant
splitting patterns of binary tree splits and ternary tree splits
according to an embodiment of the disclosure . Two levels of
consecutive binary splits in one direction can have the same
coding block structure as a ternary tree split followed by a
binary tree split of the central partition . In this case , the
binary tree split in the given direction for the central
partition of a ternary tree split can be prevented by the
syntax . This restriction can apply for CUs in all pictures .
[0146] When the splits are prohibited as described above ,
signaling of the corresponding syntax elements can be
modified to account for the prohibited cases . For example ,
when any case in FIGS . 14A - 14D is identified (e.g. , the
binary split is prohibited for a CU of a central partition) , the
syntax element mtt_split_cu_binary flag that specifies
whether the split is a binary split or a ternary split is inferred
to be equal to 0 by the decoder instead of being signaled .
[0147] According to aspects of the disclosure , virtual
pipeline data units (VPDUs) are defined as non - overlapping
units in a picture . In hardware decoders , successive VPDUs
are processed by multiple pipeline stages at the same time .
The VPDU size can be proportional to the buffer size in most
pipeline stages , so it is important to keep the VPDU size
small . In some hardware decoders , the VPDU size can be set
to the maximum transform block (TB) size . However , in
some related examples such as VVC , TT and BT partitions
can lead to the increasing of VPDUs size .
[0148] In order to keep the VPDU size as 64x64 luma
samples , the following normative partition restrictions (with
syntax signaling modification) can be applied as shown in
FIGS . 15A - 15H : (i) the TT split is not allowed for a CU with
either width or height , or both width and height equal to 128 ;

(ii) for a 128xNCU with Ns64 (e.g. , the width is equal to
128 and the height is smaller than 128) , the horizontal BT
split is not allowed ; and (iii) for an Nx128 CU with Ns64
(e.g. , the height is equal to 128 and the width is smaller than
128) , the vertical BT is not allowed .
[0149] According to aspects of the disclosure , in some
hardware video encoders and decoders , processing through
put drops when a picture has more small intra blocks
because of sample processing data dependency between
neighboring intra blocks . The predictor generation of an
intra block can require top and left boundary reconstructed
samples from neighboring blocks . Therefore , intra predic
tion has to be sequentially processed block by block .
[0150] In some related examples such as HEVC , the
smallest intra CU has a size of 8x8 of luma samples . The
luma component of the smallest intra CU can be further split
into four 4x4 luma intra PUs , but the chroma components of
the smallest intra CU cannot be further split . Therefore , the
worst case hardware processing throughput occurs when
4x4 chroma intra blocks or 4x4 luma intra blocks are
processed . In some related examples such as VVC , in order
to improve worst case throughput , chroma intra CBs with a
size being smaller than 16 chroma samples (e.g. , size is 2x2 ,
4x2 , or 2x4) and chroma intra CBs with a width being
smaller than 4 chroma samples (size is 2xN) are disallowed
by constraining the partitioning of chroma intra CBs .
[0151] In a single coding tree , a smallest chroma intra
prediction unit (SCIPU) can be defined as a coding tree node
whose chroma block size is larger than or equal to 16 chroma
samples and has at least one child luma block with a size of
64 luma samples , or a coding tree node whose chroma block
size is not 2xN and has at least one child luma block with
a size of 4xN luma samples . In each SCIPU , all CBs are
inter , or all CBs are non - inter (i.e. , either intra or intra block
copy) . In case of a non - inter SCIPU , chroma of the non - inter
SCIPU cannot be further split and luma of the SCIPU can be
allowed to be further split . In this way , the small chroma
intra CBs with a size being less than 16 or equal to 2xN
chroma samples are removed . In addition , chroma scaling is
not applied in case of a non - inter SCIPU , and no additional
syntax is signaled . Whether an SCIPU is non - inter can be
derived by the prediction mode of the first luma CB in the
SCIPU . The type of the SCIPU can be inferred to be
non - inter if the current slice is an I - slice or the current
SCIPU has a 4x4 luma partition in it after further split one
time because no inter 4x4 can be allowed in VVC . Other
wise , the type of the SCIPU (inter or non - inter) can be
indicated by one flag before parsing the CUs in the SCIPU .
[0152] For the dual tree in intra picture , the 2xN intra
chroma blocks can be removed by disabling vertical binary
and vertical ternary splits for 4xN and 8xN chroma parti
tions , respectively . The small chroma blocks with sizes of
2x2 , 4x2 , and 2x4 are also removed by partitioning restric
tions .
[0153] In addition , a restriction on picture size can be
considered to avoid 2x2 / 2x4 / 4x2 / 2xN intra chroma blocks
at the corner of pictures by considering the picture width and
height to be a multiple of max (e.g. , 8 , MinCbSizeY) .
[0154] IV . Partitioning And Block Size Related Syntax In
SPS

[0155] Table 3 shows exemplary SPS raw byte sequence
payload (RBSP) syntax .

a

US 2022/0272369 Al Aug. 25 , 2022
13

TABLE 3

Descriptor

u (1)
ue (v)
u (1)
ue (v)
ue (v)

ue (v)
ue (v)

ue (v)
ue (v)

seq_parameter_set_rbspo {

if (ChromaArrayType ! = 0)
qtbtt_dual_tree_intra_flag

log2_min_luma_coding_block_size_minus2
partition_constraints_override_enabled_flag
sps_log2_diff_min_qt_min_cb_intra_slice_luma
sps_max_mtt_hierarchy_depth_intra_slice_luma
if (sps_max_mtt_hierarchy_depth_intra_slice_luma ! = 0) {
sps_log2_diff_max_bt_min_qt_intra_slice_luma
sps_log2_diff_max_tt_min_qt_intra_slice_luma

}
sps_log2_diff_min_qt_min_cb_inter_slice
sps_max_mtt_hierarchy_depth_inter_slice
if (sps_max_mtt_hierarchy_depth_inter_slice ! = 0) {

sps_log2_diff_max_bt_min_qt_inter_slice
sps_log2_diff_max__tt_min_qt_inter_slice

}
if (qtbtt_dual_tree_intra_flag) {
sps_log2_diff_min_qt_min_cb_intra_slice_chroma
sps_max_mtt_hierarchy_depth_intra_slice_chroma
if (sps_max_mtt_hierarchy_depth_intra_slice_chroma ! = 0) {
sps_log2_diff_max_bt_min_qt_intra_slice_chroma
sps_log2_diff_max_tt_min_qt_intra_slice_chroma

}
}
sps_max_luma_transform_size_64_flag
if (ChromaArray Type ! = 0)

ue (v)
ue (v)

ue (v)
ue (v)

=

ue (v)
ue (v)

u (1)

}

[0156] Table 4 shows exemplary picture header structure
syntax .

TABLE 4
Descriptor

u (1)

u (1)

ue (v)
ue (v)

ue (v)
ue (v)

ue (v)
ue (v)

picture_header_structure () {

if (partition_constraints_override_enabled_flag)
partition_constraints_override_flag

if (ph_intra_slice_allowed_flag) {
if (partition_constraints_override_flag) {
ph_log2_diff_min_qt_min_cb_intra_slice_luma
ph_max_mtt_hierarchy_depth_intra_slice_luma
if (ph_max_mtt_hierarchy_depth_intra_slice_luma ! = 0) {
ph_log2_diff_max_bt_min_qt_intra_slice_luma
ph_log2_diff_max_tt_min_qt_intra_slice_luma

}
if (qtbtt_dual_tree_intra_flag) {
ph_log2_diff_min_qt_min_cb_intra_slice_chroma
ph_max_mtt_hierarchy_depth_intra_slice_chroma
if (ph_max_mtt_hierarchy_depth_intra_slice_chroma ! = 0) {
ph_log2_diff_max_bt_min_qt_intra_slice_chroma
ph_log2_diff_max_tt_min_qt_intra_slice_chroma

}
}

}
if (cu_qp_delta_enabled_flag)
ph_cu_qp_delta_subdiv_intra_slice

if (pps_cu_chroma_qp_offset_list_enabled_flag)
ph_cu_chroma_qp_offset_subdiv_intra_slice

}
if (ph_inter_slice_allowed_flag) {

if (partition_constraints_override_flag) {
ph_log2_diff_min_qt_min_cb_inter_slice
ph_max_mtt_hierarchy_depth_inter_slice
if (ph_max_mtt_hierarchy_depth_inter_slice ! = 0) {
ph_log2_diff_max_bt_min_qt_inter_slice
ph_log2_diff_max_tt_min_qt_inter_slice

}

ue (V)
ue (v)

ue (v)

ue (v)

ue (v)
ue (v)

ue (v)
ue (v)

US 2022/0272369 A1 Aug. 25 , 2022
14

TABLE 4 - continued

Descriptor

}

}

[0157] Table 5 shows exemplary coding tree unit syntax .
TABLE 5

Descriptor

ae (v)

ae (v)

ae (v)

ae (v)
== = =

ae (v)

coding_tree_unit () {
xCtb CtbAddrX << CtbLog2Size Y
yCtb CtbAddrY « CtbLog2SizeY
if (slice_sao_luma_flag || slice_sao_chroma_flag)

sao (CtbAddrX , CtbAddrY)
if (slice_alf_enabled_flag) {

alf_ctb_flag [0] CtbAddrX] [CtbAddrY]
if (alf_ctb_flag [0] [CtbAddrX] [CtbAddrY]) {

if (slice_num_alf_aps_ids_luma > 0)
alf_use_aps_flag

if (alf_use_aps_flag) {
if (slice_num_alf_aps_ids_luma > 1)
alf_luma_prev_filter_idx

} else
alf_luma_fixed_filter_idx

}
if (slice_alf_chroma_idc 1 || slice_alf_chroma_idc 3) {

alf_ctb_flag [1] CtbAddrX] [CtbAddry]
if (alf_ctb_flag [1] [CtbAddrX] [CtbAddry]
&& alf_chroma_num_alt_filters_minus1 > 0)
alf_ctb_filter_alt_idx [0] [Ctb AddrX] [CtbAddrY]

}
if (slice_alf_chroma_idc 2 || slice_alf_chroma_idc = 3) {

alf_ctb_flag [2] [CtbAddrX] [CtbAddrY]
if (alf_ctb_flag [2] [Ctb AddrX] [CtbAddrY]
&& alf_chroma_num_alt_filters_minus1 > 0)
alf_ctb_filter_alt_idx [1] [CtbAddrX] [CtbAddrY]

}
}
if (slice_cc_alf_cb_enabled_flag)
alf_ctb_cc_cb_idc [CtbAddrX] [CtbAddrY]

if (slice_cc_alf_cr_enabled_flag)
alf_ctb_cc_cr_idc [CtbAddrX] [CtbAddrY]

if (slice_type = = = I && qtbtt_dual_tree_intra_flag)
dual_tree_implicit_qt_split (xCtb , y?tb , CtbSizeY , O)

else
coding_tree (xCtb , y?tb , Ctb Size Y , CtbSize Y , 1 , 1 , 0 , 0 , 0 , 0 , 0 ,

SINGLE_TREE , MODE_TYPE_ALL)
}

ae (v)
= = =

ae (v)

ae (v)

ae (v)

ae (v)

[0158] Table 6 shows exemplary dual tree implicit QT
split syntax .

TABLE 6

Descriptor

*
dual_tree_implicit_qt_split (x0 , yo , cbSize , cqtDepth) {)

cbSubdiv 2 * cqtDepth
if (cbSize > 64) {

if (cu_qp_delta_enabled_flag && cbSubdiv < = CuQpDeltaSubdiv) {
IsCuQpDeltaCoded = 0
CuQpDeltaVal = 0
CuQgTop LeftX = x0
CuQgTop LeftY = yo

}
if (cu_chroma_qp_offset_enabled_flag && cbSubdiv < = CuChromaQpOffsetSubdiv) {

IsCuChromaQpOffsetCoded = 0
CuQpOffsetCb = 0

=

US 2022/0272369 Al Aug. 25 , 2022
15

TABLE 6 - continued

Descriptor

=

CuQpOffsetCb = 0
CuQpOffsetCbCr = 0

}
x1 XO + (cb Size / 2)
yl = y0 + (cbSize / 2)
dual__tree_implicit_qt_split (x0 , yo , cbSize / 2 , cqtDepth + 1)
if (x1 < pic_width_in_luma_samples)

dual_tree_implicit_qt_split (x1 , yo , cbSize / 2 , cqtDepth + 1)
if (yl < pic_height_in_luma_samples)

dual_tree_implicit_qt_split (x0 , yl , cbSize / 2 , cqtDepth + 1)
if (xl < pic_width_in_luma_samples && yl < pic_height_in_luma_samples)

dual_tree_implicit_qt_split (x1 , yl , cbSize / 2 , cqtDepth + 1)
} else {

coding_tree (x0 , yo , cbSize , cbSize , 1 , 0 , cbSubdiv , cqtDepth , 0 , 0 , 0 ,
DUAL_TREE_LUMA , MODE_TYPE_ALL)

coding_tree (x0 , yo , cbSize , cbSize , 0 , 1 , cbSubdiv , cqtDepth , 0 , 0 , 0 ,
DUAL_TREE_CHROMA , MODE_TYPE_ALL)

}
}

[0159] Table 7 shows exemplary coding tree syntax .
TABLE 7

Descriptor

ae (v)

= 0

ae (v)

coding_tree (x0 , yo , cbWidth , cbHeight , qgOnY , qgOnC , cbSubdiv , cqtDepth , mttDepth , depthOffset ,
partIdx , treeTypeCurr , mode TypeCurr) {

if ((allowSplitBtVer || allowSplitBtHor || allowSplitTtVer || allowSplitTtHor ||
allowSplitQT) && (0 + cbWidth < = pic_width_in_luma_samples) &&
(yo + cb Height < = pic_height_in_luma_samples))

split_cu_flag
if (cu_qp_delta_enabled_flag && qgOnY && cbSubdiv < = CuQpDeltaSubdiv) {

IsCuQpDeltaCoded = 0
CuQpDelta Val = 0
CuQgTop LeftX = x0
CuQgTop LeftY = yo

}
if (cu_chroma_qp_offset_enabled_flag && qgOnC &&

cbSubdiv < = CuChromaQpOffsetSubdiv) {
IsCuChromaQpOffsetCoded
CuQpOffsetCb = 0
CuQpOffsetCb 0
CuQpOffsetCbCr = 0)

}
if (split_cu_flag) {

if ((allowSplitBtVer || allowSplitBtHor || allowSplitTtVer || allowSplitTtHor) &&
allowSplitQT)

split_qt_flag
if (! split_qt_flag) {

if ((allowSplitBtHor || allowSplitTtHor) && (allowSplitBtVer || allowSplitTtVer)))
mtt_split_cu_vertical_flag

if ((allowSplitBtVer && allowSplitTtVer && mtt_split_cu_vertical_flag) ||
(allowSplitBtHor && allowSplitTtHor && ! mtt_split_cu_vertical_flag))

mtt_split_cu_binary_flag
}
if (modeTypeCondition : 1)
mode Type MODE_TYPE_INTRA

else if (modeTypeCondition = = 2) {
mode_constraint_flag
modeType = mode_constraint_flag ? MODE_TYPE_INTRA : MODE_TYPE_INTER

} else
modeType = modeTypeCurr

treeType = (mode Type MODE_TYPE_INTRA) ? DUAL_TREE_LUMA : treeTypeCurr
if (! split_qt flag) {

if (MttSplitMode [x0 | yo [mttDepth] SPLIT_BT_VER) {
depth Offset + = (x0 + cbWidth > pic_width_in_luma_samples) ? 1 : 0

x0 + (cb Width / 2)
coding_tree (x0 , yo , cb Width / 2 , cbHeight , qgOn Y , qgOnC , cbSubdiv + 1 ,

cqtDepth , mttDepth + 1 , depthOffset , 0 , treeType , mode Type)
if (x1 < pic_width_in_luma_samples)
coding_tree (x1 , yo , cbWidth / 2 , cbHeight Y , qgOnY , qgOnC , cbSubdiv + 1 ,

cqtDepth , mttDepth + 1 , depthOffset , 1 , tree Type , mode Type)

ae (v)

ae (v)

ae (v)
=

= =

==

x1 =

US 2022/0272369 A1 Aug. 25 , 2022
16

TABLE 7 - continued

Descriptor
==

= =

=

= < =

=

=

} else if (MttSplitMode [0] [y0] [mttDepth] SPLIT_BT_HOR) {
depth Offset + = (y0 + cbHeight > pic_height_in_luma_samples) ? 1 : 0
y1 = y0 + (cbHeight / 2)
coding_tree (x0 , yo , cbWidth , cbHeight / 2 , qgOnY , qgOnC , cbSubdiv + 1 ,

cqtDepth , mttDepth + 1 , depthOffset , 0 , treeType , modeType)
if (yl < pic_height_in_luma_samples)
coding_tree (x0 , yl , cbWidth , cbHeight / 2 , qgOn Y , qgOnC , cbSubdiv + 1 ,

cqtDepth , mttDepth + 1 , depthOffset , 1 , treeType , modeType)
} else if (MttSplitMode [0] [yo] [mttDepth] = = SPLIT_TT_VER) {
x1 = x + (cb Width / 4)
x2 = x + (3 * cbWidth / 4)
qgNextOnY = qgOnY && (cbSubdiv + 2 < = CuQpDeltaSubdiv)
qgNextOnC = qgOnC && (cbSubdiv + 2 - CuChromaQpOffsetSubdiv)
coding_tree (x0 , yo , cbWidth / 4 , cbHeight , qgNextOn Y , qgNextOnC , cbSubdiv + 2 ,

cqtDepth , mttDepth + 1 , depthOffset , 0 , treeType , modeType)
coding_tree (x1 , yo , cbWidth / 2 , cbHeight , qgNextOn Y , qgNextOnC , cbSubdiv + 1 ,

cqtDepth , mttDepth + 1 , depthOffset , 1 , treeType , modeType)
coding_tree (x2 , yo , cbWidth / 4 , cbHeight , qgNextOn Y , qgNextOnC , cbSubdiv + 2 ,

cqtDepth , mttDepth + 1 , depthOffset , 2 , treeType , modeType)
} else { / * SPLIT_TT_HOR * /
yl = y0 + (cbHeight / 4)
y2 = y0 + (3 * cbHeight / 4)
qgNextOnY = 4gOnY && (cbSubdiv + 2 < = CuQpDeltaSubdiv)
qgNextOnC = qgOnC && (cbSubdiv + 2 < = CuChromaQpOffsetSubdiv)
coding_tree (x0 , yo , cb Width , cbHeight / 4 , qgNextOn Y , qgNextOnC , cbSubdiv + 2 ,

cqtDepth , mttDepth + 1 , depthOffset , 0 , treeType , modeType)
coding_tree (x0 , yl , cbWidth , cbHeight / 2 , qgNextOn Y , qgNextOnC , cbSubdiv + 1 ,

cqtDepth , mttDepth + 1 , depthOffset , 1 , treeType , modeType)
coding_tree (x0 , y2 , cb Width , cbHeight / 4 , qgNextOn Y , qgNextOnC , cbSubdiv + 2 ,

cqtDepth , mttDepth + 1 , depthOffset , 2 , treeType , modeType)
}

} else {
x1 = x0 + (cbWidth / 2)
yl = y0 + (cbHeight / 2)
coding_tree (x0 , yo , cbWidth / 2 , cbHeight / 2 , qgOn Y , qgOnC , cbSubdiv + 2 ,

cqtDepth + 1 , 0 , 0 , 0 , treeType , modeType)
if (xl < pic_width_in_luma_samples)
coding_tree (x1 , yo , cb Width / 2 , cbHeight / 2 , qgOnY , qgOnC , cbSubdiv + 2 ,

cqtDepth + 1 , 0 , 0 , 1 , treeType , modeType)
if (yl < pic_height_in_luma_samples)
coding_tree (x0 , yl , cb Width / 2 , cbHeight / 2 , qgOnY , qgOnC , cbSubdiv + 2 ,

cqtDepth + 1,0,0,2 , treeType , modeType)
if (yl < pic_height_in_luma_samples && x1 < pic_width_in_luma_samples)
coding_tree (x1 , yl , cbWidth / 2 , cbHeight / 2 , qgOnY , qgOnC , cbSubdiv + 2 ,

cqtDepth + 1,0,0 , 3 , treeType , modeType)
}
if (modeTypeCur MODE_TYPE_ALL && modeType = MODE_TYPE_INTRA)

coding_tree (x0 , yo , cbWidth , cbHeight , 0 , qgOnC , cbSubdiv , cqtDepth , mttDepth , 0 , 0
DUAL_TREE_CHROMA , modeType)

} else
coding_unit (x0 , yo , cb Width , cbHeight , cqtDepth , treeTypeCurr , modeTypeCurr)

=

== = =

}

V. Partitioning And Block Size Related Semantics [0162] The variables MinCbLog2Size Y , MinCbSize Y ,
IbcBufWidth Y , IbcBuf WidthC and Vsize can be derived as
follows :

MinCbLog2Size Y = (Eq . 1)

log2_min_luma_coding_block_size_minus2 + 2

[0160] When the variable qtbtt_dual_tree_intra_flag is
equal to 1 , it specifies that , for I slices , each CTU can be split
into coding units with 64x64 luma samples using an implicit
quadtree split , and these coding units can be the root of two
separate coding tree syntax structures for luma and chroma .
When the variable qtbtt_dual_tree_intra_flag is equal to 0 , it
specifies that the separate coding tree syntax structure is not
used for I slices . When the variable qtbtt_dual_tree_intra_
flag is not present , it is inferred to be equal to 0 .
[0161] The variable log2_min_luma_coding_block_size_
minus2 plus 2 specifies the minimum luma coding block
size . The value range of log2_min_luma_coding_block_
size_minus2 can be in the range of 0 to Min (4 , sps_log2_
ctu_size_minus5 + 3) , inclusive .

MinCbSizeY = 1 « MinCblog2Size Y (Eq . 2)

IbcBufWidth Y = 256 * 128 / CtbSizeY (Eq . 3)

IbcBufWidthC = IbcBufWidthY / SubWidthC (Eq . 4)

VSize = Min (64 , CtbSizeY) (Eq . 5)

US 2022/0272369 A1 Aug. 25 , 2022
17

[0163] The value of MinCbSize Y can be less than or equal
to V Size .
[0164] The variables Ctb Width and CtbHeightC , which
specify the width and height , respectively , of the array for
each chroma CTB , can be derived as follows . If chroma_
format_idc is equal to 0 (monochrome) or separate_colour_
plane_flag is equal to 1 , CtbWidth and CtbHeightC are
both equal to 0. Otherwise , CtbWidthC and CtbHeightC are
derived as follows :

CtbWidthC = CtbSizeY / SubWidth (Eq . 6)

CtbHeightC = CtbSizeY / SubHeightC (Eq . 7)

[0165] For log2BlockWidth ranging from 0 to 4 and for
log2BlockHeight ranging from 0 to 4 , inclusive , the up - right
diagonal scan order array initialization process can be
invoked with 1 << log2Block Width and
1 << log2BlockHeight as inputs , and the output is assigned to
DiagScanOrder [log2Block Width] [log2BlockHeight] .
[0166] For log2Block Width ranging from 0 to 6 and for
log2BlockHeight ranging from 0 to 6 , inclusive , the hori
zontal and vertical traverse scan order array initialization
process can be invoked with l « < log2BlockWidth and
1 « < log2BlockHeight as inputs , and the output is assigned to
HorTravScanOrder [log2Block Width] [log2BlockHeight]
and VerTravScanOrder [log2BlockWidth]
[log2BlockHeight] .
0167] When the variable partition_constraints_override_
enabled_flag is equal to 1 , it specifies the presence of
partition_constraints_override_flag in PHs referring to the
SPS . When the variable partition_constraints_override_en
abled_flag is equal to 0 , it specifies the absence of partition_
constraints_override_flag in PHs referring to the SPS .
[0168] The variable sps_log2_diff_min_qt_min_cb_intra_
slice_luma specifies the default difference between the base
2 logarithm of the minimum size in luma samples of a luma
leaf block resulting from quadtree splitting of a CTU and the
base 2 logarithm of the minimum coding block size in luma
samples for luma CUs in slices with slice_type being equal
to 2 (e.g. , I) referring to the SPS . When partition_constraint
S_override_enabled_flag is equal to 1 , the default difference
can be overridden by ph_log2_diff_min_qt_min_cb_luma
present in PHs referring to the SPS . The value of sps_log2_
diff_min_qt_min_cb_intra_slice_luma can be in the range of
0 to Ctblog2Size Y - MinCbLog2Size Y , inclusive . The base
2 logarithm of the minimum size in luma samples of a luma
leaf block resulting from quadtree splitting of a CTU can be
derived as follows :

archy depth can be overridden by ph_max_mtt_hierarchy_
depth_intra_slice_luma present in PHs referring to the SPS .
The value of sps_max_mtt_hierarchy_depth_intra_slice_
luma can be in the range of 0 to 2 * (CtbLog2SizeY
MinCbLog2SizeY) , inclusive .
[0170] The variable sps_log2_diff_max_bt_min_qt_intra_
slice_luma specifies the default difference between the base
2 logarithm of the maximum size (width or height) in luma
samples of a luma coding block that can be split using a
binary split and the minimum size (width or height) in luma
samples of a luma leaf block resulting from quadtree split
ting of a CTU in slices with slice_type being equal to 2 (e.g. ,
I) referring to the SPS . When partition_constraints_over
ride_enabled_flag is equal to 1 , the default difference can be
overridden by ph_log2_diff_max_bt_min_qt_luma present
in PHs referring to the SPS . The value of sps_log2_diff_
max_bt_min_qt_intra_slice_luma can be in the range of 0 to
CtbLog2Size Y - MinQtLog2SizeIntra Y , inclusive . When
sps_log2_diff_max_bt_min_qt_intra_slice_luma is not pres
ent , the value of sps_log2_diff_max_bt_min_qt_intra_slice_
luma can be inferred to be equal to 0 .
[0171] The variable sps_log2_diff_max_tt_min_qt_intra_
slice_luma specifies the default difference between the base
2 logarithm of the maximum size (width or height) in luma
samples of a luma coding block that can be split using a
ternary split and the minimum size (width or height) in luma
samples of a luma leaf block resulting from quadtree split
ting of a CTU in slices with slice_type being equal to 2 (e.g. ,
I) referring to the SPS . When partition_constraints_over
ride_enabled_flag is equal to 1 , the default difference can be
overridden by ph_log2_diff_max_tt_min_qt_luma present
in PHs referring to the SPS . The value of sps_log2_diff_
max_tt_min_qt_intra_slice_luma can be in the range of 0 to
CtbLog2SizeY - MinQtLog2SizeIntra Y , inclusive . When
sps_log2_diff_max_tt_min_qt_intra_slice_luma is not pres
ent , the value of sps_log2_diff_max_tt_min_qt_intra_slice_
luma can be inferred to be equal to 0 .
[0172] The variable sps_log2_diff_min_qt_min_cb_inter_
slice specifies the default difference between the base 2
logarithm of the minimum size in luma samples of a luma
leaf block resulting from quadtree splitting of a CTU and the
base 2 logarithm of the minimum luma coding block size in
luma samples for luma CUs in slices with slice_type being
equal to 0 (i . e . , B) or 1 (i.e. , P) referring to the SPS . When
partition constraints override enabled flag is equal to 1 , the
default difference can be overridden by ph_log2_diff_min_
qt_min_cb_luma present in PHs referring to the SPS . The
value of sps_log2_diff_min_qt_min_cb _inter_slice can be
in the range of 0 to CtbLog2Size Y - MinCbLog2Size Y ,
inclusive . The base 2 logarithm of the minimum size in luma
samples of a luma leaf block resulting from quadtree split
ting of a CTU is derived as follows :

a

a
MinQtLog2SizeIntra Y = (Eq . 8) a

sps_log2_diff_min_qt_min_cb_intra_slice_luma +
MinCbLog2SizeY MinQtLog2SizeInterY (Eq . 9) =

sps_log2_diff_min_qt_min_cb_intra_slice + MinCbLog2SizeY
[0169] The variable sps_max_mtt_hierarchy_depth_intra_
slice_luma specifies the default maximum hierarchy depth
for coding units resulting from multi - type tree splitting of a
quadtree leaf in slices with slice_type being equal to 2 (e.g. ,
I) referring to the SPS . When partition_constraints_over
ride_enabled_flag is equal to 1 , the default maximum hier

[0173] The variable sps_max_mtt_hierarchy_depth_inter_
slice specifies the default maximum hierarchy depth for
coding units resulting from multi - type tree splitting of a
quadtree leaf in slices with slice_type being equal to 0 (B)

US 2022/0272369 A1 Aug. 25 , 2022
18

MinQtLog2SizeIntraC = (Eq . 10)

sps_log2_diff_min_qt_min_cb_intra_slice_chroma +
MinCblog2SizeY

2

or 1 (P) referring to the SPS . When partition_constraints_
override_enabled_flag is equal to 1 , the default maximum
hierarchy depth can be overridden by ph_max_mtt_hierar
chy_depth_inter_slice present in PHs referring to the SPS .
The value of sps_max_mtt_hierarchy_depth_inter_slice can
be in the range of 0 to 2 * (CtbLog2Size Y
MinCbLog2Size Y) , inclusive .
[0174] The variable sps_log2_diff_max_bt_min_qt_inter_
slice specifies the default difference between the base 2
logarithm of the maximum size (width or height) in luma
samples of a luma coding block that can be split using a
binary split and the minimum size (width or height) in luma
samples of a luma leaf block resulting from quadtree split
ting of a CTU in slices with slice_type being equal to 0 (B)
or 1 (P) referring to the SPS . When partition_constraints_
override_enabled_flag is equal to 1 , the default difference
can be overridden by ph_log2_diff_max_bt_min_qt_luma
present in PHs referring to the SPS . The value of sps_log2_
diff_max_bt_min_qt_inter_slice can be in the range of 0 to
CtbLog2Size Y - MinQtLog2SizeInterY , inclusive . When
sps_log2_diff_max_bt_min_qt_inter_slice is not present ,
the value of sps_log2_diff_max_bt_min_qt_inter_slice is
inferred to be equal to 0 .
[0175] The variable sps_log2_diff_max_tt_min_qt_inter
slice specifies the default difference between the base 2
logarithm of the maximum size (width or height) in luma
samples of a luma coding block that can be split using a
ternary split and the minimum size (width or height) in luma
samples of a luma leaf block resulting from quadtree split
ting of a CTU in slices with slice_type being equal to 0 (B)
or 1 (P) referring to the SPS . When partition_constraints
override_enabled_flag is equal to 1 , the default difference
can be overridden by ph_log2_diff_max_tt_min_qt_luma
present in PHs referring to the SPS . The value of sps_log2_
diff_max_tt_min_qt_inter_slice can be in the range of 0 to
CtbLog2Size Y - MinQtLog2SizeInter Y , inclusive . When
sps_log2_diff_max_tt_min_qt_inter_slice is not present , the
value of sps_log2_diff_max_tt_min_qt_inter_slice is
inferred to be equal to 0 .
[0176] The variable sps_log2_diff_min_qt_min_cb_intra_
slice chroma specifies the default difference between the
base 2 logarithm of the minimum size in luma samples of a
chroma leaf block resulting from quadtree splitting of a
chroma CTU with tree Type being equal to DUAL_TREE
CHROMA and the base 2 logarithm of the minimum coding
block size in luma samples for chroma CUs with treeType
being equal to DUAL_TREE_CHROMA in slices with
slice_type being equal to 2 (I) referring to the SPS . When
partition_constraints_override_enabled_flag is equal to 1 ,
the default difference can be overridden by ph_log2_diff_
min_qt_min_cb_chroma present in PHs referring to the SPS .
The value of sps_log2_diff_min_qt_min_cb_intra_slice
chroma can be in the range of 0 to Ctblog2Size Y
MinCbLog2Size Y , inclusive . When not present , the value of
sps_log2_diff_min_qt_min_cb_intra_slice_chroma is
inferred to be equal to 0. The base 2 logarithm of the
minimum size in luma samples of a chroma leaf block
resulting from quadtree splitting of a CTU with treeType
being equal to DUAL_TREE_CHROMA can be derived as
follows :

[0177] The variable sps_max_mtt_hierarchy_depth_intra_
slice chroma specifies the default maximum hierarchy depth
for chroma coding units resulting from multi - type tree
splitting of a chroma quadtree leaf with treeType being equal
to DUAL TREE CHROMA in slices with slice_type being
equal to 2 (I) referring to the SPS . When partition_con
straints_override_enabled_flag is equal to 1 , the default
maximum hierarchy depth can be overridden by ph_max_
mtt_hierarchy_depth_chroma present in PHs referring to the
SPS . The value of sps_max_mtt_hierarchy_depth_intra_
slice_chroma can be in the range of 0 to 2 * (CtbLog2Size Y
MinCbLog2SizeY) , inclusive . When not present , the value
of sps_max_mtt_hierarchy_depth_intra_slice_chroma is
inferred to be equal to 0 .
[0178] The variable sps_log2_diff_max_bt_min_qt_intra_
slice chroma specifies the default difference between the
base 2 logarithm of the maximum size (width or height) in
luma samples of a chroma coding block that can be split
using a binary split and the minimum size (width or height)
in luma samples of a chroma leaf block resulting from
quadtree splitting of a chroma CTU with treeType being
equal to DUAL_TREE_CHROMA in slices with slice_type
being equal to 2 (I) referring to the SPS . When partition_
constraints_override_enabled_flag is equal to 1 , the default
difference can be overridden by ph_log2_diff_max_bt_min_
qt_chroma present in PHs referring to the SPS . The value of
sps_log2_diff_max_bt_min_qt_intra_slice_chroma can be
in the range of 0 to CtbLog2SizeY – MinQtLog2SizeIntraC ,
inclusive . When sps_log2_diff_max_bt_min_qt_intra_
slice_chroma is not present , the value of sps_log2_diffmax_
bt_min_qt_intra_slice_chroma is inferred to be equal to 0 .
[0179] The variable sps_log_dif_max_tt_min_qt_intra_
slice_chroma specifies the default difference between the
base 2 logarithm of the maximum size (width or height) in
luma samples of a chroma coding block that can be split
using a ternary split and the minimum size (width or height)
in luma samples of a chroma leaf block resulting from
quadtree splitting of a chroma CTU with treeType being
equal to DUAL_TREE_CHROMA in slices with slice_type
being equal to 2 (I) referring to the SPS . When partition_
constraints_override_enabled_flag is equal to 1 , the default
difference can be overridden by ph_log2_diff_max_tt_min_
qt_chroma present in PHs referring to the SPS . The value of
sps_log2_diff_max_tt_min_qt_intra_slice_chroma can be in
the range of 0 to CtbLog2Size Y - MinQtLog2SizeIntraC ,
inclusive . When sps_log2_diff_max_tt_min_qt_intra_slice_
chroma is not present , the value of sps_log2_diff_max_tt_
min_qt_intra_slice_chroma is inferred to be equal to 0 .
[0180] When the variable sps_max_luma_transform_
size_64 _lag is equal to 1 , it specifies that the maximum
transform size in luma samples is equal to 64. When the
variable sps_max_luma_transform_size_64_flag is equal to
0 , it specifies that the maximum transform size in luma
samples is equal to 32 .
[0181] When CtbSizeY is less than 64 , the value of
sps_max_luma_transform_size_64_flag can be equal to 0 .

US 2022/0272369 A1 Aug. 25 , 2022
19

[0182] The variables Min TbLog2Size Y ,
MaxTbLog2Size Y , Min TbSize Y , and
[0183] MaxTbSize Y can be derived as follows :

Min TbLog2Size Y = 2 (Eq . 11)

MaxTbLog2Size Y = sps_max_luma_transform_size_64_flag ? 6 : 5 (Eq . 12)
MinTbSizeY = 1 « Min TbLog2SizeY (Eq . 13)

MaxTbSize Y = 1 « MaxTbLog2SizeY (Eq . 14)

with treeType equal to DUAL_TREE_CHROMA and the
base 2 logarithm of the minimum coding block size in luma
samples for chroma CUs with treeType equal to DUAL_
TREE_CHROMA in slices with slice_type equal to being 2
(I) associated with the PH . The value of ph_log2_diff_min_
qt_min_cb_intra_slice_chroma can be in the range of 0 to
Ctblog2SizeY - MinCbLog2Size Y , inclusive . When not
present , the value of ph_log2_diff_min_qt_min_cb_intra_
slice_chroma is inferred to be equal to sps_log2_diff_min_
qt_min_cb_intra_slice_chroma .
[0189] The variable ph_max_mtt_hierarchy depth_intra_
slice_chroma specifies the maximum hierarchy depth for
chroma coding units resulting from multi - type tree splitting
of a chroma quadtree leaf with treeType equal to DUAL_
TREE_CHROMA in slices with slice_type equal to being 2
(I) associated with the PH . The value of ph_max_mtt_
hierarchy_depth_intra_slice_chroma can be in the range of
0 to 2 * (CtbLog2Size Y - MinCbLog2SizeY) , inclusive .
When not present , the value of ph_max_mtt_hierarchy_
depth_intra_slice_chroma is inferred to be equal to sps_
max_mtt_hierarchy_depth_intra_slice_chroma .
[0190] The variable ph_log2_diff_max_bt_min_qt_intra_
slice_chroma specifies the difference between the base 2
logarithm of the maximum size (width or height) in luma
samples of a chroma coding block that can be split using a
binary split and the minimum size (width or height) in luma
samples of a chroma leaf block resulting from quadtree
splitting of a chroma CTU with tree Type equal to DUAL_
TREE_CHROMA in slices with slice_type being equal to 2
(I) associated with the PH . The value of ph_log2_diff_max_
bt_min_qt_intra_slice_chroma can be in the range of 0 to
Ctblog2Size Y - MinQtLog2SizeIntraC , inclusive . When not
present , the value of ph_log2_diff_max_bt_min_qt_intra_
slice_chroma is inferred to be equal to sps_log2_diff_max_
bt_min_qt_intra_slice_chroma .
[0191] The variable ph_log2_diff_max_tt_min_qt_intra_
slice_chroma specifies the difference between the base 2
logarithm of the maximum size (width or height) in luma
samples of a chroma coding block that can be split using a
ternary split and the minimum size (width or height) in luma
samples of a chroma leaf block resulting from quadtree
splitting of a chroma CTU with treeType equal to DUAL_
TREE_CHROMA in slices with slice_type being equal to 2
(I) associated with the PH . The value of ph_log2_diff_max_
tt_min_qt_intra_slice_chroma can be in the range of 0 to
CtbLog2Size Y - MinQtLog2SizeIntraC , inclusive . When not
present , the value of ph_log2_diff_max_tt_min_qt_intra_
slice_chroma is inferred to be equal to sps_log2_diff_max_
tt_min_qt_intra_slice_chroma .
[0192] The variable slice_type specifies the coding type of
the slice according to Table 8 .

[0184] The variable ph_log2_diff_min_qt_min_cb_intra_
slice_luma specifies the difference between the base 2
logarithm of the minimum size in luma samples of a luma
leaf block resulting from quadtree splitting of a CTU and the
base 2 logarithm of the minimum coding block size in luma
samples for luma CUs in the slices with slice_type being
equal to 2 (I) associated with the PH . The value of ph_log2_
diff_min_qt_min_cb_intra_slice_luma can be in the range of
O to CtbLog2Size Y - MinCbLog2Size Y , inclusive . When not
present , the value of ph_log2_diff_min_qt_min_cb_luma is
inferred to be equal to sps_log2_diff_min_qt_min_cb_intra_
slice_luma .
[0185] The variable ph_max_mtt_hierarchy_depth_intra_
slice_luma specifies the maximum hierarchy depth for cod
ing units resulting from multi - type tree splitting of a
quadtree leaf in slices with slice_type being equal to 2 (I)
associated with the PH . The value of ph_max_mtt_hierar
chy_depth_intra_slice_luma can be in the range of 0 to
2 * (CtbLog2SizeY - MinCbLog2SizeY) , inclusive . When not
present , the value of ph_max_mtt_hierarchy_depth_intra_
slice_luma is inferred to be equal to sps_max_mtt_hierar
chy_depth_intra_slice_luma .
[0186] The variable ph_log2_diff_max_bt_min_qt_intra_
slice_luma specifies the difference between the base 2
logarithm of the maximum size (width or height) in luma
samples of a luma coding block that can be split using a
binary split and the minimum size (width or height) in luma
samples of a luma leaf block resulting from quadtree split
ting of a CTU in slices with slice_type being equal to 2 (I)
associated with the PH . The value of ph_log2_diff_max
bt_min_qt_intra_slice_luma can be in the range of 0 to
CtbLog2Size Y - MinQtLog2SizeIntra Y , inclusive . When not
present , the value of ph_log2_diff_max_bt_min_qt_intra_
slice_luma is inferred to be equal to sps_log2_diff_max_
bt_min_qt_intra_slice_luma .
[0187] The variable ph_log2_diff_max_tt_min_qt_intra_
slice_luma specifies the difference between the base 2
logarithm of the maximum size (width or height) in luma
samples of a luma coding block that can be split using a
ternary split and the minimum size (width or height) in luma
samples of a luma leaf block resulting from quadtree split
ting of a CTU in slices with slice_type being equal to 2 (I)
associated with the PH . The value of ph_log2_diff_max_tt_
min_qt_intra_slice_luma can be in the range of 0 to
CtbLog2Size Y - MinQtLog2SizeIntra Y , inclusive . When not
present , the value of ph_log2_diff_max_tt_min_qt_intra_
slice_luma is inferred to be equal to sps_log2_diff_max_tt_
min_qt_intra_slice_luma .
[0188] The variable ph_log2_diff_min_qt_min_cb_intra_
slice_chroma specifies the difference between the base 2
logarithm of the minimum size in luma samples of a chroma
leaf block resulting from quadtree splitting of a chroma CTU

a

a

a

a

TABLE 8 a

slice_type Name of slice_type
0 B (B slice)

P (P slice)
I (I slice)

[0193] When not present , the value of slice_type is
inferred to be equal to 2 .
[0194] When ph_intra_slice_allowed_flag is equal to 0 ,
the value of slice_type can be equal to 0 or 1. When
nal_unit_type is in the range of IDR_W_RADL to CRA_

US 2022/0272369 A1 Aug. 25 , 2022
20

-continued
MaxMttDepthC = ph_max_mtt_hierarchy_depth_inter_slice (Eq . 32) =

CuQpDeltaSubdiv = ph_cu_qp_delta_subdiv_inter_slice (Eq . 33)

NUT , inclusive , and vps_independent_layer_flag (General
LayerIdx [nuh_layer_id]] is equal to 1 , slice_type can be
equal to 2 .
[0195] The variables MinQtLog2Size Y ,
MinQtLog2SizeC , MinQtSize Y , MinQtSizeC , MaxBtSize Y ,
MaxBtSizeC , MinBtSizeY , MaxTtSize Y , MaxTtSizeC ,
MinTtSize Y , MaxMttDepth Y and MaxMttDepthCare
derived as follows . If slice_type is equal to 2 (I) , the
following applies :

CuChromaQpOffsetSubdiv = (Eq . 34)

ph_cu_chroma_qp_offset_subdiv_inter_slice

[0197] Then , the following applies :

MinQtLog2Size Y = MinCblog2SizeY + (Eq . 15) MinQtSize Y = 1 « MinQtLog2SizeY (Eq . 35)

MinQtSizeC = 1 « MinQtLog2SizeC = (Eq . 36) ph_log2_diff_min_qt_min_cb_intra_slice_luma
MinQtLog2SizeC = MinCbLog2SizeY + (Eq . 16) = MinBtSize Y = 1 « MinCbLog2SizeY (Eq . 37)

ph_log2_diff_min_qt_min_cb_intra_slice_chroma Min TtSizeY = 1 « MinCbLog2SizeY (Eq . 38)

MaxBtSizeY = 1 < (MinQtLog2SizeY + (Eq . 17)

ph_log2_diff_max_bt_min_qt_intra_slice_luma)
MaxBtSizeC = 1 « (MinQtLog2SizeC + (Eq . 18)

ph_log2_diff_max_bt_min_qt_intra_slice_chroma)
MaxTtSize Y = 1 < (MinQtLog2SizeY + (Eq . 19)

ph_log2_diff_max_tt_min_qt_intra_slice_luma)

MaxTtSizeC = 1 < (MinQtLog2SizeC + (Eq . 20)

ph_log2_diff_max_tt_min_qt_intra_slice_chroma)
MaxMttDepth Y = ph_max_mtt_hierarchy_depth_intra_slice_luma (Eq . 21)
MaxMttDepthC = (Eq . 22)

ph_max_mtt_hierarchy_depth_intra_slice_chroma
CuQpDelta Subdiv = ph_cu_qp_delta_subdiv_intra_slice (Eq . 23) -

CuChromaQpOffsetSubdiv = (Eq . 24)

ph_cu_chroma_qp_offset_subdiv_intra_slice

[0196] Otherwise , when slice_type is equal to (B) or 1
(P)) , the following applies :

[0198] The variables allowSplitQt , allowSplitBtVer ,
allowSplitBtHor , allowSplitTtVer , and allowSplitTtHor are
derived as follows . The allowed quad split process can be
invoked with the coding block size cbSize set equal to
cbWidth , the current multi - type tree depth mttDepth , tree
TypeCurr , and modeTypeCurr as inputs , and the output is
assigned to allowSplitQt .
[0199] The variables minQtSize , maxBtSize , maxTtSize
and maxMttDepth can be derived as follows . If treeType is
equal to DUAL TREE CHROMA , then minQtSize , maxBt
Size , maxTtSize , and maxMttDepth are set equal to MinQt
SizeC , MaxBtSizeC , MaxTtSizeC , and MaxMttDepthC +
depth Offset , respectively .
[0200] Otherwise , minQtSize , maxBtSize , maxTtSize ,
and maxMttDepth are set equal to MinQtSizeY , MaxBt
SizeY , MaxTtSize Y , and MaxMttDepth Y + depth Offset ,
respectively .
[0201] The allowed binary split process can be invoked
with the binary split mode SPLIT_BT_VER , the coding
block width cbWidth , the coding block height cbHeight , the
location (x0 , y0) , the current multi - type tree depth mttDepth ,
the maximum multi - type tree depth with offset maxMtt
Depth , the maximum binary tree size maxBtSize , the mini
mum quadtree size minQtSize , the current partition index
partIdx , treeTypeCurr , and modeTypeCurr as inputs , and the
output is assigned to allowSplitBt Ver .
[0202] The allowed binary split process can be invoked
with the binary split mode SPLIT_BT_HOR , the coding
block height cbHeight , the coding block width cbWidth , the
location (x0 , y0) , the current multi - type tree depth mttDepth ,
the maximum multi - type tree depth with offset maxMtt
Depth , the maximum binary tree size maxBtSize , the mini
mum quadtree size minQtSize , the current partition index
partIdx , treeTypeCurr , and modeTypeCurr as inputs , and the
output is assigned to allowSplitBtHor .
[0203] The allowed ternary split process can be invoked
with the ternary split mode SPLIT_TT_VER , the coding
block width cbWidth , the coding block height cbHeight , the
location (x0 , y0) , the current multi - type tree depth mttDepth ,
the maximum multi - type tree depth with offset maxMtt
Depth , the maximum ternary tree size maxTtSize , treeType
Curr , and modeTypeCurr as inputs , and the output is
assigned to allowSplit Tt Ver .
[0204] The allowed ternary split process can be invoked
with the ternary split mode SPLIT_TT_HOR , the coding

MinQtLog2SizeY = (Eq . 25)

MinCbLog2SizeY + ph_log2_diff_min_qt_min_cb_inter_slice
MinQtLog2SizeC = (Eq . 26)

MinCbLog2SizeY + ph_log2_diff_min_qt_min_cb_inter_slice
MaxBtSize Y = 1 < (Eq . 27)

(MinQtLog2Size Y + ph_log2_diff_max_bt_min_qt_inter_slice)
MaxBtSizeC = 1 < (Eq . 28)

(MinQtLog2SizeC + ph_log2_diff_max_bt_min_qt_inter_slice)
MaxTtSize Y = 1 < (Eq . 29)

(MinQtLog2SizeY + ph_log2_diff_max_tt_min_qt_inter_slice)
MaxTtSizeC = 1 < (Eq . 30)

(MinQtLog2SizeC + ph_log2_diff_max_tt_min_qt_inter_slice)
MaxMttDepth Y = ph_max_mtt_hierarchy_depth_inter_slice (Eq . 31) =

US 2022/0272369 A1 Aug. 25 , 2022
21

block height cbHeight , the coding block width cbWidth , the
location (x0 , y0) , the current multi - type tree depth mttDepth ,
the maximum multi - type tree depth with offset maxMtt
Depth , the maximum ternary tree size maxTtSize , treeType
Curr , and modeTypeCurr as inputs , and the output is
assigned to allowSplitTtHor .
[0205] When the variable split_cu_flag is equal to 0 , it
specifies that a coding unit is not split . When the variable
split_cu_flag is equal to 1 , it specifies that a coding unit is
split into four coding units using a quad split as indicated by
the syntax element split_qt_flag , or into two coding units
using a binary split or into three coding units using a ternary
split as indicated by the syntax element mtt_split_cu_bina

inferred as to be equal to 1. Otherwise , if allowSplitBtHor is
equal to TRUE and allowSplitTtVer is equal to TRUE , the
value of mtt_split_cu_binary_flag is inferred to be equal to
1 - mtt_split_cu_vertical_flag . Otherwise , if allowSplitBtVer
is equal to TRUE and allowSplitTtHor is equal to TRUE , the
value of mtt_split_cu_binary_flag is inferred to be equal to
mtt_split_cu_vertical_flag .
[0210] The variable MttSplit Mode [x] [y] [mttDepth) can
be derived from the value of mtt_split_cu_vertical_flag and
from the value of mtt_split_cu_binary_flag as defined in
Table 9 for x = x0 . . . XO + Cb Width - 1 and y = yo . . .y0 +
cbHeight - 1 .

TABLE 9

MttSplitMode [0] [yo] [mttDepth] mtt_split_cu_vertical_flag mtt_split_cu_binary_flag
SPLIT_TT HOR
SPLIT BT HOR
SPLIT_TT_VER
SPLIT_BT_VER

0
0
1
1

0
1
0
1

a

ry_flag . The binary or ternary split can be either vertical or
horizontal as indicated by the syntax element mtt_split_cu_
vertical_flag .
[0206] When split_cu_flag is not present , the value of
split_cu_flag is inferred as follows . If one or more of the
following conditions are true , the value of split_cu_flag is
inferred to be equal to 1 : (i) x0 30 cb Width is greater than
pic width in luma samples ; and (ii) yo + cbHeight is greater
than pic_height_in_luma_samples . Otherwise , the value of
split_cu_flag is inferred to be equal to 0 .
[0207] The variable split_qt_flag specifies whether a cod
ing unit is split into coding units with half horizontal and
vertical size . When split_qt_flag is not present , the following
applies . If all of the following conditions are true , split_qt_
flag is inferred to be equal to 1 : (i) split_cu_flag is equal to
1 ; and (ii) allowSplitQt , allowSplitBtHor , allowSplitBtVer ,
allowSplit TtHor , and allowSplitTtVer are equal to FALSE .
Otherwise , if allowSplitQt is equal to TRUE , the value of
split_qt_flag is inferred to be equal to 1. Otherwise , the value
of split_qt_flag is inferred to be equal to 0 .
[0208] When the variable mtt_split_cu_vertical_flag is
equal to 0 , it specifies that a coding unit is split horizontally .
When the variable mtt_split_cu_vertical_flag is equal to 1 ,
it specifies that a coding unit is split vertically . When the
variable mtt_split_cu_vertical_flag is not present , it can be
inferred as follows . If allowSplitBtHor is equal to TRUE or
allowSplit TtHor is equal to TRUE , the value of mtt_split_
cu_vertical_flag is inferred to be equal to 0. Otherwise , the
value of mtt_split_cu_vertical_flag is inferred to be equal to
1 .

[0209] When the variable mtt_split_cu_binary_flag is
equal to 0 , it specifies that a coding unit is split into three
coding units using a ternary split . When the variable mtt_
split_cu_binary_flag is equal to 1 , it specifies that a coding
unit is split into two coding units using a binary split . When
the variable mtt_split_cu_binary_flag is not present , it can
be inferred as follows . If allowSplitBtVer is equal to FALSE
and allowSplitBtHor is equal to FALSE , the value of mtt_
split_cu_binary_flag is inferred to be equal to 0. Otherwise ,
if allowSplitTtVer is equal to FALSE and allowSplitTtHor is
equal to FALSE , the value of mtt_split_cu_binary_flag is

[0211] MttSplit Mode [x0] [y0] [mttDepth] represents hori
zontal and vertical binary and ternary splittings of a coding
unit within the multi - type tree as illustrated in FIGS . 16A
16D . The array indices x0 , yo specify the location (x0 , yo)
of the top - left luma sample of the considered coding block
relative to the top - left luma sample of the picture .
[0212] The variable mode TypeCondition can be derived
as follows . If one or more of the following conditions are
true , modeTypeCondition is set equal to 0 : (i) slice_type is
equal to 1 and qtbtt_dual_tree_intra_flag is equal to 1 ; (ii)
modeTypeCurr is not equal to MODE_TYPE_ALL ; (iii)
chroma_format_idc is equal to 0 ; and (iv) chroma_format_
idc is equal to 3. Otherwise , if one of the following condi
tions is true , modeTypeCondition is set equal to 1 : (i)
cb Width * cbHeight is equal to 64 and split_qt_flag is equal
to 1 ; (ii) cbWidth * cbHeight is equal to 64 and MttSplit Mode
[x0] [y0] [mttDepth] is equal to SPLIT_TT_HOR or SPLIT_
TT_VER ; (iii) cb Width * cbHeight is equal to 32 and Mtt
SplitMode [xO] [y0] [mttDepth) is equal to SPLIT_BT_HOR
or SPLIT_BT_VER . Otherwise , if one of the following
conditions is true , modeTypeCondition is set equal to
1 + (slice_type ! = I ? 1 : 0) : (i) cb Width * cbHeight is equal to 64
and MttSplitMode [xO] [y0] [mttDepth] is equal to SPLIT_
BT_HOR or SPLIT_BT_VER and chroma_format_idc is
equal to 1 ; (ii) cbWidth * cbHeight is equal to 128 and
MttSplit Mode [x] [y0] [mttDepth] is equal to SPLIT_TT_
HOR or SPLIT_TT_VER and chroma_format_idc is equal
to 1 ; (iii) cb Width is equal to 8 and MttSplitMode [x0] [y0]
[mttDepth] is equal to SPLIT_BT_VER ; and (iv) cb Width is
equal to 16 and MttSplit Mode [xO] [y0] [mttDepth] is equal to
SPLIT_TT_VER . Otherwise , modeTypeCondition is set
equal to 0 .
[0213] When the variable mode_constraint_flag is equal to
0 , it specifies that coding units inside the current coding tree
node can only use inter prediction coding modes . When the
variable mode_constraint_flag is equal to 1 , it specifies that
coding units inside the current coding tree node cannot use
inter prediction coding modes .

9 VI . Partitioning Availability Processes
(0214] According to aspects of the disclosure , an allowed
quad split process can be described as follows . Inputs to this

US 2022/0272369 A1 Aug. 25 , 2022
22

process include a coding block size cbSize in luma samples ,
a multi - type tree depth mttDepth , a variable treeType , and a
variable modeType . The variable tree Type specifies whether
a single tree (SINGLE_TREE) or a dual tree is used to
partition the coding tree node and , when a dual tree is used ,
whether the luma (DUAL_TREE_LUMA) or chroma com
ponents (DUAL_TREE_CHROMA) are currently pro
cessed . The variable modeType specifies whether intra
(MODE_INTRA) , IBC (MODE_IBC) , and inter coding
modes can be used (MODE_TYPE_ALL) , or whether only
intra and IBC coding modes can be used (MODE_TYPE_
INTRA) , or whether only inter coding modes can be used
(MODE_TYPE_INTER) for coding units inside the coding
tree node . Output of this process is the variable allowQt
Split .
[0215] The variable allowQtSplit can be derived as fol
lows . If one or more of the following conditions are true ,
allowQtSplit is set equal to FALSE : (i) tree Type is equal to
SINGLE_TREE or DUAL_TREE_LUMA and cbSize is
less than or equal to MinQtSizeY ; (ii) tree Type is equal to
DUAL_TREE_CHROMA and cbSize is less than or equal to
(MinQtSizeC * Sub HeightC / Sub WidthC) ; (iii) mttDepth is
not equal to 0 ; (iv) treeType is equal to DUAL_TREE_
CHROMA and (cbSize / SubWidthC) is less than or equal to
4 ; and (v) tree Type is equal to DUAL_TREE_CHROMA
and modeType is equal to MODE_TYPE_INTRA . Other
wise , allowQtSplit is set equal to TRUE .
[0216] According to aspects of the disclosure , an allowed
binary split process can be described as follows . Inputs to
this process include a binary split mode btSplit , a coding
block width cb Width in luma samples , a coding block height
cbHeight in luma samples , a location (x0 , y0) of the top - left
luma sample of the considered coding block relative to the
top - left luma sample of the picture , a multi - type tree depth
mttDepth , a maximum multi - type tree depth with offset
maxMttDepth , a maximum binary tree size maxBtSize , a
minimum quadtree size minQtSize , a partition index partIdx ,
a variable treeType , and a variable modeType . The variable
treeType specifies whether a single tree (SINGLE_TREE) or
a dual tree is used to partition the coding tree node and , when
a dual tree is used , whether the luma (DUAL_TREE_
LUMA) chroma components (DUAL_TREE
CHROMA) are currently processed . The variable mode Type
specifies whether intra (MODE_INTRA) , IBC (MODE_
IBC) , and inter coding modes can be used (MODE_TYPE_
ALL) , or whether only intra and IBC coding modes can be
used (MODE_TYPE_INTRA) , or whether only inter coding
modes can be used (MODE_TYPE_INTER) for coding
units inside the coding tree node . Output of this process is
the variable allowBtSplit .
[0217] The variables parallelTtSplit and cbSize can be
derived as specified in Table 10 .

Size ; (iii) cbHeight is greater than maxBtSize ; (iv) mttDepth
is greater than or equal to maxMttDepth ; (v) tree Type is
equal to DUAL TREE CHROMA and (cb Width / Sub
WidthC) * (cbHeight / SubHeightC) is less than or equal to 16 ;
(vi) treeType is equal to DUAL_TREE_CHROMA and
(cb Width / SubWidthC) is equal to 4 and btSplit is equal to
SPLIT_BT_VER ; (vii) treeType is equal to DUAL TREE
CHROMA and modeType is equal to MODE_TYPE_IN
TRA ; and (viii) cb Width * cbHeight is equal to 32 and
mode Type is equal to MODE_TYPE_INTER . Otherwise , if
all of the following conditions are true , allowBtSplit is set
equal to FALSE : (i) btSplit is equal to SPLIT_BT_VER ; and
(ii) yO + cbHeight is greater than pic height in luma samples .
Otherwise , if all of the following conditions are true , allow
BtSplit is set equal to FALSE : (i) btSplit is equal to
SPLIT_BT_VER ; (ii) cbHeight is greater than 64 ; and (iii)
xO + cbWidth is greater than pic_width_in_luma_samples .
Otherwise , if all of the following conditions are true , allow
BtSplit is set equal to FALSE : (i) btSplit is equal to
SPLIT_BT_HOR ; (ii) cbWidth is greater than 64 ; and (iii)
yo + cbHeight is greater than pic_height_in_luma_samples .
Otherwise , if all of the following conditions are true , allow
BtSplit is set equal to FALSE : (i) xO + cb Width is greater than
pic_width_in_luma_samples ; (ii) yO + cbHeight is greater
than pic_height_in_luma_samples ; and (iii) cb Width is
greater than minQtSize . Otherwise , if all of the following
conditions are true , allowBtSplit is set equal to FALSE : (i)
btSplit is equal to SPLIT_BT_HOR ; (ii) xO + cb Width is
greater than pic_width_in_luma_samples ; and (iii)
yO + cbHeight is less than or equal to pic_height_in_luma_
samples . Otherwise , if all of the following conditions are
true , allowBtSplit is set equal to FALSE : (i) mttDepth is
greater than 0 ; (ii) partIdx is equal to 1 ; and (iii) MttSplit
Mode [xO] [y0] [mttDepth - 1] is equal to parallelTtSplit . Oth
erwise , if all of the following conditions are true , allowBt
Split is set equal to FALSE : (i) btSplit is equal to SPLIT_
BT_VER ; (ii) cb Width is less than or equal to 64 ; and (iii)
cbHeight is greater than 64. Otherwise , if all of the following
conditions are true , allowBtSplit is set equal to FALSE : (i)
btSplit is equal to SPLIT_BT_HOR ; (ii) cb Width is greater
than 64 ; and (iii) cbHeight is less than or equal to 64 .
Otherwise , allowBtSplit is set equal to TRUE .
[0219] According to aspects of the disclosure , an allowed
ternary split process can be described as follows . Inputs to
this process include a ternary split mode ttSplit , a coding
block width cb Width in luma samples , a coding block height
cbHeight in luma samples , a location (x0 , y0) of the top - left
luma sample of the considered coding block relative to the
top - left luma sample of the picture , a multi - type tree depth
mttDepth , a maximum multi - type tree depth with offset
maxMttDepth , a maximum ternary tree size maxTtSize , a
variable treeType , and a variable modeType . The variable

a

or

TABLE 10

btSplit SPLIT_BT_VER btSplit == SPLIT_BT_HOR

parallelTtSplit
cb Size

SPLIT TT VER
cbWidth

SPLIT TT HOR
cbHeight

[0218] The variable allowBtSplit can be derived as fol
lows . If one or more of the following conditions are true ,
allowBtSplit is set equal to FALSE : (i) cbSize is less than or
equal to MinBtSize Y ; (ii) cb Width is greater than maxBt

treeType specifies whether a single tree (SINGLE_TREE) or
a dual tree is used to partition the coding tree node and , when
a dual tree is used , whether the luma (DUAL_TREE_
LUMA) chroma components (DUAL_TREE_ or

US 2022/0272369 A1 Aug. 25 , 2022
23

equal to TRUE ; (ii) availableN is set equal to TRUE ; and
(iii) CuPredMode [0] [xNbY] [yNbY] is not equal to CuPred
Mode [O] [xCurr] [yCurr] .

CHROMA) are currently processed . The variable mode Type
specifies whether intra (MODE_INTRA) , IBC (MODE_
IBC) , and inter coding modes can be used (MODE_TYPE_
ALL) , or whether only intra and IBC coding modes can be
used (MODE_TYPE_INTRA) , or whether only inter coding
modes can be used (MODE_TYPE_INTER) for coding
units inside the coding tree node . Output of this process is
the variable allowTtSplit .
[0220] The variable cbSize can be derived as specified in
Table 11 .

VI . Derivation of Partitioning Related Variables

[0225] The variable slice_type specifies the coding type of
the slice according to Table 12 , for example .

TABLE 12

TABLE 11 slice_type Name of slice_type
ttSplit = = SPLIT_TT_VER ttSplit SPLIT_TT_HOR

cbSize cbWidth 1 cbHeight
B (B slice)
P (P slice)
I (I slice) 2

[0226] When not present , the value of slice_type is
inferred to be equal to 2 .
[0227] When ph_intra_slice_allowed_flag is equal to 0 ,
the value of slice_type can be equal to 0 or 1. When
nal_unit_type is in the range of IDR_W_RADL to CRA_
NUT , inclusive , and vps_independent_layer_flag [General
LayerIdx [nuh_layer_id]] is equal to 1 , slice_type can be
equal to 2 .
[0228] The variables Min QtLog2Size Y ,
MinQtLog2SizeC , MinQtSize Y , Min QtSizeC , MaxBtSize Y ,
MaxBtSizeC , MinBtSize Y , MaxTtSize Y , MaxTtSizeC ,
MinTtSize Y , MaxMttDepth Y , and MaxMttDepthC can be
derived as follows . If slice_type is equal to 2 (I) , the
following applies :

MinQtLog2SizeY = MinCblog2Size Y + (Eq . 39) =

ph_log2_diff_min_qt_min_cb_intra_slice_luma
MinQtLog2SizeC = MinCbLog2SizeY + (Eq . 40) =

[0221] The variable allowTtSplit can be derived as fol
lows . If one or more of the following conditions are true ,
allowTtSplit is set equal to FALSE : (i) cbSize is less than or
equal to 2 * MinTtSize Y ; (ii) cbWidth is greater than Min (64 ,
maxTtSize) ; (iii) cbHeight is greater than Min (64 , maxTt
Size) ; (iv) mttDepth is greater than or equal to maxMtt
Depth ; (v) XO + cbWidth is greater than pic_width_in_luma_
samples ; (vi) yO + cbHeight is greater than pic_height_in_
luma_samples ; (vii) treeType is equal to DUAL_TREE
CHROMA and (cbWidth / Sub WidthC) * (cbHeight /
SubHeightC) is less than or equal to 32 ; (viii) treeType is
equal to DUAL_TREE_CHROMA and (cbWidth / Sub
WidthC) is equal to 8 and ttSplit equal to SPLIT_TT_
VER ; (ix) treeType is equal to DUAL_TREE_CHROMA
and modeType is equal to MODE_TYPE_INTRA ; and (x)
cbWidth * cbHeight is equal to 64 and modeType is equal to
MODE_TYPE_INTER . Otherwise , allowTtSplit is set equal
to TRUE .
[0222] According to aspects of the disclosure , a derivation
process for neighboring block availability can be described
as follows . Inputs to this process include the luma location
(xCurr , yCurr) of the top - left sample of the current block
relative to the top - left luma sample of the current picture , the
luma location (xNbY , yNbY) covered by a neighboring
block relative to the top - left luma sample of the current
picture , the variable checkPredMode Y specifying whether
availability depends on the prediction mode , and the vari
able cIdx specifying the color component of the current
block . An output of this process is the availability of the
neighboring block covering the location (xNbY , yNbY) ,
denoted as availableN .
[0223] The neighboring block availability availableN can
be derived as follows . If one or more of the following
conditions are true , availableN is set equal to FALSE :
(i) xNbY is less than 0 ; (ii) yNbY is less than 0 ; (iii) xNbY
is greater than or equal to pic width in luma samples ; (iv)
yNbY is greater than or equal to pic_height_in_luma_
samples ; (v) Is Available [cIdx] [xNbY] [yNbY] is equal to
FALSE ; (vi) the neighbouring block is contained in a
different slice than the current block ; (vii) the neighbouring
block is contained in a different tile than the current block ;
and (viii) entropy_coding_sync_enabled_flag is equal to 1
and (xNbY >> CtbLog2SizeY) is greater than or equal to
(xCurr >> CtbLog2SizeY) +1 . Otherwise , availableN is set
equal to TRUE .
[0224] When all of the following conditions are true ,
availableN is set equal to FALSE : (i) checkPredMode Y is

ph_log2_diff_min_qt_min_cb_intra_slice_chroma
MaxBtSize Y = 1 < (MinQtLog2Size Y + (Eq . 41)

ph_log2_diff_max_bt_min_qt_intra_slice_luma)
MaxBtSizeC = 1 < (MinQtLog2SizeC + (Eq . 42)

ph_log2_diff_max_bt_min_qt_intra_slice_chroma)
MaxTtSize Y = 1 « (MinQtLog2SizeY + (Eq . 43)

ph_log2_diff_max_tt_min_qt_intra_slice_luma)
MaxTtSizeC = 1 < (MinQtLog2SizeC + (Eq . 44)

ph_log2_diff_max_tt_min_qt_intra_slice_chroma)

MaxMttDepth Y = ph_max_mtt_hierarchy_depth_intra_slice_luma (Eq . 45)
MaxMttDepth = (Eq . 46)

ph_max_mtt_hierarchy_depth_intra_slice_chroma
CuQpDeltaSubdiv = ph_cu_qp_delta_subdiv_intra_slice (Eq . 47) -

CuChromaQpOffsetSubdiv : (Eq . 48)

ph_cu_chroma_qp_offset_subdiv_intra_slice

US 2022/0272369 A1 Aug. 25 , 2022
24

[0229] Otherwise , if slice_type is qual to 0 (B) or 1 (P) , the
following applies : -continued

MinBtSize Y = 1 « MinCbLog2Size Y (Eq . 61)

Min TtSize Y = 1 < MinCbLog2SizeY (Eq . 62)

MinQtLog2SizeY = (Eq . 49)

MinCbLog2SizeY + ph_log2_diff_min_qt_min_cb_inter_slice
MinQtLog2SizeC = (Eq . 50)

MinCblog2SizeY + ph_log2_diff_min_qt_min_cb_inter_slice
MaxBtSizeY = 1 < (Eq . 51)

VII . Block Partitioning At Picture Boundary
[0231] In some related examples such as VVC , when a
coding block is across a picture boundary , and none of the
conditions for allowing QT split , BT split , or TT split is met ,
implicit QT split can be applied to the coding block . For
example , if all the variables allowQtSplit , allowTtSplit , and
allowBtSplit are FALSE , then QT is implicitly used when a
part of the coding block is outside the picture . However , this
may not be the best solution in terms of coding efficiency in

(MinQtLog2SizeY + ph_log2_diff_max_bt_min_qt_inter_slice)
MaxBtSizeC = 1 < (Eq . 52)

(MinQtLog2SizeC + ph_log2_diff_max_bt_min_qt_inter_slice)
MaxTtSizeY = 1 < (Eq . 53) some cases .

(MinQtLog2Size Y + ph_log2_diff_max_tt_min_qt_inter_slice)
MaxTtSizeC = 1 < (Eq . 54)

(MinQtLog2SizeC + ph_log2_diff_max_tt_min_qt_inter_slice)
MaxMttDepth Y = ph_max_mtt_hierarchy_depth_inter_slice (Eq . 55)

(Eq . 56) = MaxMttDepth = ph_max_mtt_hierarchy_depth_inter_slice
CuQpDeltaSubdiv = ph_cu_qp_delta_subdiv_inter_slice

CuChromaQpOffsetSubdiv =
(Eq . 57)

(Eq . 58)

[0232] The disclosure presents methods for improving
coding efficiency when a coding block is across a picture
boundary . According to aspects of the disclosure , an implicit
binary split can be used when a current coding block or CTU
is across the picture boundary , regardless of the settings of
maximum multi - type tree depth , current multi - type tree
depth , or minimum binary tree node size .
[0233] The implicit binary tree split can be performed by
conditionally setting an initial value of a multi - type tree
depth offset (e.g. , the variable depth Offset in Table 7)
according to whether the current coding block or CTU is
across the picture boundary . The multi - type tree depth offset
is added to a current maximum multi - type tree depth (e.g.
MaxMttDepth Y in single tree and dual - tree luma cases , or
MaxMttDepthC in a dual tree chroma case) , and the result
can be used as a new maximum multi - type tree depth to
determine whether the binary split is allowed (e.g. , based on
the allowed binary split process in the section of Partitioning
Availability Processes) .
[0234] Table 13 shows an exemplary modified coding tree
unit syntax table .

ph_cu_chroma_qp_offset_subdiv_inter_slice

[0230] Then , the following applies :

MinQtSize Y = 1 « MinQtLog2SizeY (Eq . 59) =

MinQtSizeC = 1 « MinQtLog2SizeC (Eq . 60)

TABLE 13

Descriptor
coding_tree_unit () {

xCtb = CtbAddrX « < Ctblog2SizeY
yCtb = CtbAddrY << Ctblog2Size Y
if (slice_sao_luma_flag || slice_sao_chroma_flag)

sao (CtbAddrX , CtbAddrY)
if (slice_alf_enabled_flag) {

alf_ctb_flag [0] [CtbAddrX] [CtbAddrY]
if (alf_ctb_flag [0] [CtbAddrX] [CtbAddrY]) {

if (slice_num_alf_aps_ids_luma > 0)
alf_use_aps_flag

if (alf_use_aps_flag) {
if (slice_num_alf_aps_ids_luma > 1)
alf_luma_prev_filter_idx

ae (v)

ae (v)

ae (v)
} else

ae (v)
=

ae (v)

alf_luma_fixed_filter_idx
}
if (slice alf_chroma_idc == || slice_alf_chroma_idc == 3) {

alf_ctb_flag [1] [CtbAddrX] [CtbAddrY]
if (alf_ctb_flag [1] [CtbAddrX] CtbAddrY]
&& alf_chroma_num_alt_filters_minus 1 > 0)
alf_ctb_filter_alt_idx [0] CtbAddrX] [CtbAddrY]

}
if (slice_alf_chroma_idc == 2 || slice_alf_chroma_idc == 3) {

alf_ctb_flag [2] [CtbAddrX] [CtbAddrY]
if (alfctb_flag [2] [CtbAddrX] [CtbAddrY]
&& alf_chroma_num_alt_filters_minus 1 > 0)

ae (v)

ae (v)

US 2022/0272369 Al Aug. 25 , 2022
25

TABLE 13 - continued

Descriptor

alf_ctb_filter_alt_idx [1] [CtbAddrX] [CtbAddrY] ae (v)
}

}
if (slice_cc_alf_cb_enabled_flag)
alf_ctb_cc_cb_idc [CtbAddrX] [CtbAddrY] ae (v)

if (slice_cc_alf_cr_enabled_flag)
alf_ctb_cc cr_idc [CtbAddrX] [CtbAddrY] ae (v)

x1 xCtb + Ctb Size Y
yl = y Ctb + Ctb Size Y
mttDepthOffset

(x1 > pic_width_in_luma_samples || yl > pic_height_in_luma_samples) ? 1 : 0
if (slice_type I && qtbtt_dual__tree_intra_flag)

dual__tree_implicit_bt_split (xCtb , y?tb , CtbSize Y , 0 , mttDepthOffset)

==

else {
coding_tree (xCtb , y?tb , CtbSize Y , CtbSizeY , 1 , 1 , 0 , 0 , 0 , mttDepth Offset , 0 ,

SINGLE_TREE , MODE_TYPE_ALL)
}

}

[0235] In Table 13 , the variable xl is a sum of an x - axis
position of the current coding block and a width of the
current coding block . If the variable xl is greater than a
width of the picture , the current coding block can be
determined to be across the picture boundary and the multi
type tree depth offset mttDepthOffset is set as 1. The variable
yl is a sum of a y - axis position of the current coding block
and a height of the current coding block . If the variable yl
is greater than a height of the picture , the current coding
block can be determined to be across the picture boundary
and the multi - type tree depth offset mttDepthOffset is set as
1. If the variable xl is equal to or less than the width of the
picture and the variable yl is equal to or less than the height
of the picture , the current coding block can be determined

not to be across the picture boundary and the multi - type tree
depth offset mttDepthOffset is set as 0. In addition , if the
slice type of the current coding block is Intra and qtbtt_
dual_tree_intra_flag is TRUE , a dual tree implicit BT split
process can be applied to the current coding block and the
multi - type tree depth offset mttDepthOffset can be used as
the variable depth Offset in the dual tree implicit BT split
process . Otherwise , a coding tree process can be applied to
the current coding block and the multi - type tree depth offset
mttDepthOffset can be used as the variable depthOffset in
the coding tree process .
[0236] Table 14 shows an exemplary modified dual tree
implicit BT split syntax table .

TABLE 14

Descriptor

=

=

-

0

=

= 0

dual_tree_implicit_bt_split (x0 , yo , cbSize , cqtDepth , depthOffset) {
cbSubdiv = 2 cqtDepth
if (cbSize > 64) {

if (cu_qp_delta_enabled_flag && cbSubdiv < = CuQpDeltaSubdiv) {
IsCuQpDeltaCoded = 0
CuQpDeltaVal = 0
CuQgTop LeftX = x0
CuQgTop LeftY = yo

}
if (cu_chroma_qp_offset_enabled_flag && cbSubdiv < = CuChromaQpOffsetSubdiv) {

IsCuChromaQpOffsetCoded
CuQpOffsetCb = 0
CuQpOffsetCb 0
CuQpOffsetCbCr

}
dual_tree_implicit_qt_split (x0 , yo , cbSize / 2 , cqtDepth + 1 , depthOffset)
x1 xCtb + Ctb Size Y
yl = y Ctb + CtbSize Y
if (x1 < pic_width_in_luma_samples)

dual_tree_implicit_qt_split (x1 , yo , cbSize / 2 , cqtDepth + 1 , depthOffset)
if (yl < pic_height_in_luma_samples)

dual_tree_implicit_qt_split (x0 , yl , cbSize / 2 , cqtDepth + 1 , depthOffset)
if (x1 pic_width_in_luma_samples && yl < pic_height_in_luma_samples)

dual__tree_implicit_qt_split (x1 , yl , cbSize / 2 , cqtDepth + 1 , depthOffset)
} else {

coding_tree (x0 , yo , cbSize , cbSize , 1 , 0 , cbSubdiv , cqtDepth , 0 , depth Offset , 0 ,
DUAL_TREE_LUMA , MODE_TYPE_ALL)

coding_tree (x0 , yo , cbSize , cbSize , 0 , 1 , Subdiv , cqtDepth , 0 , depth Offset , 0 ,
DUAL_TREE_CHROMA , MODE_TYPE_ALL)

}
}

=

<

US 2022/0272369 A1 Aug. 25 , 2022
26

a

[0237] In Table 14 , the variable depthOffset can be set
based on the variable mttDepthOffset in Table 13 when the
dual tree implicit BT split process is determined to be used .
In the dual tree implicit BT split process , the maximum tree
depth can be determined based on the variable depth Offset .
[0238] When the variable cbSize is greater than 64 , the
dual tree implicit BT split process can be applied to a block
which has the same position (x0 , y0) as the current block and
a half size of the current block , and the variable cqtDepth is
increased by one . Further , when the variable xl is less than
the width of the current picture , the dual tree implicit BT
split process can be applied to a block which has a position
(x1 , yo) and a half size of the current block , and the variable
cqtDepth is increased by one . Further , when the variable y1
is less than the height of the current picture , the dual tree
implicit BT split process can be applied to a block which has
a position (x0 , yl) and a half size of the current block , and
the variable cqtDepth is increased by one . Further , when the
variable x is less than the width of the current picture and the
variable yl is less than the height of the current picture , the
dual tree implicit BT split process can be applied to a block
which has a position (x1 , yl) and a half size of the current
block , and the variable cqtDepth is increased by one .
[0239] When the variable cbSize is not greater than 64 , the
coding tree process can be applied to both luma and chroma
components of the current block . The variable depthOffset is
passed to the coding tree process .
[0240] In one embodiment , the implicit binary split is not
allowed to be applied at the picture boundary when a
partition from the implicit binary split is across a VPDU
boundary . In some embodiments , the implicit binary split is
not allowed to be applied at the picture boundary even when
the VPDU is partially outside the picture .
[0241] In one embodiment , the implicit binary split can be
allowed to be applied at the picture boundary regardless of
whether a partition from the implicit binary split is across a
VPDU boundaries or not .

the process (1700) proceeds to step (S1720) . Otherwise , the
process (1700) proceeds to step (S1740) .
[0244] At step (S1720) , the process (1700) determines
whether one of an allowed binary split indicator , an allowed
ternary split indicator , and an allowed quaternary split
indicator of the current block is true . When none of the
allowed binary split indicator , the allowed ternary split
indicator , and the allowed quaternary split indicator is true ,
the process (1700) proceeds to step (S1730) . Otherwise , the
process (1700) proceeds to step (S1750) .
[0245] At step (S1730) , the process (1700) applies an
implicit binary split to the current block .
[0246] At step (S1740) , the process (1700) determines a
split for the current block .
[0247] At step (S1750) , the process (1700) applies one
allowed split to the current block . Then , the process (1700)
terminates .
[0248] In an embodiment , the process (1700) determines
whether a sum of an x - axis position of the current block and
a width of the current block is greater than a width of the
current picture .
[0249] In an embodiment , the process (1700) determines
whether a sum of a y - axis position of the current block and
a height of the current block is greater than a height of the
current picture .
[0250] In an embodiment , the process (1700) determines
an initial value of a multi - type tree depth offset as a first
value when the part of the current block is outside the
current picture .
[0251] In an embodiment , the process (1700) determines
the initial value of the multi - type tree depth offset as a
second value when the part of the current block is not
outside the current picture .
[0252] In an embodiment , the process (1700) determines a
maximum multi - type tree depth of the implicit binary split
based on the multi - type tree depth offset .
[0253] In an embodiment , the first value is 1 and the
second value is 0 .
[0254] In an embodiment , the current block is intra coded
and luma and chroma components of the current block are
associated with two separate coding tree structures .
[0255] In an embodiment , the process (1700) determines
whether a partition from the implicit binary split is across a
virtual process data unit boundary . The process (1700)
applies the implicit binary split to the current block when the
partition from the implicit binary split is not across the
virtual process data unit boundary .
[0256] IX . Computer System
[0257] The techniques described above , can be imple
mented as computer software using computer - readable
instructions and physically stored in one or more computer
readable media . For example , FIG . 18 shows a computer
system (1800) suitable for implementing certain embodi
ments of the disclosed subject matter .
[0258] The computer software can be coded using any
suitable machine code or computer language , that may be
subject to assembly , compilation , linking , or like mecha
nisms to create code comprising instructions that can be
executed directly , or through interpretation , micro - code
execution , and the like , by one or more computer central
processing units (CPUs) , Graphics Processing Units
(GPUs) , and the like .
[0259] The instructions can be executed on various types
of computers or components thereof , including , for example ,

VIII . Flowchart

[0242] FIG . 17 shows a flow chart outlining an exemplary
process (1100) according to an embodiment of the disclo
sure . In various embodiments , the process (1100) is executed
by processing circuitry , such as the processing circuitry in
the terminal devices (210) , (220) , (230) and (240) , the
processing circuitry that performs functions of the video
encoder (303) , the processing circuitry that performs func
tions of the video decoder (310) , the processing circuitry that
performs functions of the video decoder (410) , the process
ing circuitry that performs functions of the intra prediction
module (452) , the processing circuitry that performs func
tions of the video encoder (503) , the processing circuitry that
performs functions of the predictor (535) , the processing
circuitry that performs functions of the intra encoder (622) ,
the processing circuitry that performs functions of the intra
decoder (772) , and the like . In some embodiments , the
process (1700) is implemented in software instructions , thus
when the processing circuitry executes the software instruc
tions , the processing circuitry performs the process (1700) .
[0243] The process (1700) may generally start at step
(S1710) , where the process (1700) determines whether a part
of a current block of a current picture in a coded video
sequence is outside the current picture . When the part of the
current block is determined to be outside the current picture ,

US 2022/0272369 A1 Aug. 25 , 2022
27

a

personal computers , tablet computers , servers , smartphones ,
gaming devices , internet of things devices , and the like .
[0260] The components shown in FIG . 18 for computer
system (1800) are exemplary in nature and are not intended
to suggest any limitation as to the scope of use or function
ality of the computer software implementing embodiments
of the present disclosure . Neither should the configuration of
components be interpreted as having any dependency or
requirement relating to any one or combination of compo
nents illustrated in the exemplary embodiment of a computer
system (1800) .
[0261] Computer system (1800) may include certain
human interface input devices . Such a human interface input
device may be responsive to input by one or more human
users through , for example , tactile input (such as : key
strokes , swipes , data glove movements) , audio input (such
as : voice , clapping) , visual input (such as : gestures) , olfac
tory input (not depicted) . The human interface devices can
also be used to capture certain media not necessarily directly
related to conscious input by a human , such as audio (such
as : speech , music , ambient sound) , images (such as : scanned
images , photographic images obtain from a still image
camera) , video (such as two - dimensional video , three - di
mensional video including stereoscopic video) .
[0262] Input human interface devices may include one or
more of (only one of each depicted) : keyboard (1801) ,
mouse (1802) , trackpad (1803) , touch screen (1810) , data
glove (not shown) , joystick (1805) , microphone (1806) ,
scanner (1807) , camera (1808) .
[0263] Computer system (1800) may also include certain
human interface output devices . Such human interface out
put devices may be stimulating the senses of one or more
human users through , for example , tactile output , sound ,
light , and smell / taste . Such human interface output devices
may include tactile output devices (for example tactile
feedback by the touch - screen (1810) , data - glove (not
shown) , or joystick (1805) , but there can also be tactile
feedback devices that do not serve as input devices) , audio
output devices (such as : speakers (1809) , headphones (not
depicted)) , visual output devices (such as screens (1810) to
include CRT screens , LCD screens , plasma screens , OLED
screens , each with or without touch - screen input capability ,
each with or without tactile feedback capability — some of
which may be capable to output two dimensional visual
output or more than three dimensional output through means
such as stereographic output ; virtual - reality glasses (not
depicted) , holographic displays and smoke tanks (not
depicted)) , and printers (not depicted) . These visual output
devices (such as screens (1810)) can be connected to a
system bus (1848) through a graphics adapter (1850) .
[0264] Computer system (1800) can also include human
accessible storage devices and their associated media such
as optical media including CD / DVD ROM / RW (1820) with
CD / DVD or the like media (1821) , thumb - drive (1822) ,
removable hard drive or solid state drive (1823) , legacy
magnetic media such as tape and floppy disc (not depicted) ,
specialized ROM / ASIC / PLD based devices such as security
dongles (not depicted) , and the like .
[0265] Those skilled in the art should also understand that
term “ computer readable media ” as used in connection with
the presently disclosed subject matter does not encompass
transmission media , carrier waves , or other transitory sig
nals .

[0266] Computer system (1800) can also include a net
work interface (1854) to one or more communication net
works (1855) . The one or more communication networks
(1855) can for example be wireless , wireline , optical . The
one or more communication networks (1855) can further be
local , wide - area , metropolitan , vehicular and industrial , real
time , delay - tolerant , and so on . Examples of the one or more
communication networks (1855) include local area networks
such as Ethernet , wireless LANs , cellular networks to
include GSM , 3G , 4G , 5G , LTE and the like , TV wireline or
wireless wide area digital networks to include cable TV ,
satellite TV , and terrestrial broadcast TV , vehicular and
industrial to include CANBus , and so forth . Certain net
works commonly require external network interface adapt
ers that attached to certain general purpose data ports or
peripheral buses (1849) (such as , for example USB ports of
the computer system (1800)) ; others are commonly inte
grated into the core of the computer system (1800) by
attachment to a system bus as described below (for example
Ethernet interface into a PC computer system or cellular
network interface into a smartphone computer system) .
Using any of these networks , computer system (1800) can
communicate with other entities . Such communication can
be uni - directional , receive only (for example , broadcast
TV) , uni - directional send - only (for example CANbus to
certain CANbus devices) , or bi - directional , for example to
other computer systems using local or wide area digital
networks . Certain protocols and protocol stacks can be used
on each of those networks and network interfaces as
described above .
[0267] Aforementioned human interface devices , human
accessible storage devices , and network interfaces can be
attached to a core (1840) of the computer system (1800) .
[0268] The core (1840) can include one or more Central
Processing Units (CPU) (1841) , Graphics Processing Units
(GPU) (1842) , specialized programmable processing units
in the form of Field Programmable Gate Areas (FPGA)
(1843) , hardware accelerators for certain tasks (1844) , and
so forth . These devices , along with Read - only memory
(ROM) (1845) , Random - access memory (1846) , internal
mass storage such as internal non - user accessible hard
drives , SSDs , and the like (1847) , may be connected through
the system bus (1848) . In some computer systems , the
system bus (1848) can be accessible in the form of one or
more physical plugs to enable extensions by additional
CPUs , GPU , and the like . The peripheral devices can be
attached either directly to the core's system bus (1848) , or
through a peripheral bus (1849) . Architectures for a periph
eral bus include PCI , USB , and the like .
[0269] CPUs (1841) , GPUs (1842) , FPGAs (1843) , and
accelerators (1844) can execute certain instructions that , in
combination , can make up the aforementioned computer
code . That computer code can be stored in ROM (1845) or
RAM (1846) . Transitional data can be also be stored in
RAM (1846) , whereas permanent data can be stored for
example , in the internal mass storage (1847) . Fast storage
and retrieve to any of the memory devices can be enabled
through the use of cache memory , that can be closely
associated with one or more CPU (1841) , GPU (1842) , mass
storage (1847) , ROM (1845) , RAM (1846) , and the like .
[0270] The computer readable media can have computer
code thereon for performing various computer - implemented
operations . The media and computer code can be those
specially designed and constructed for the purposes of the

US 2022/0272369 A1 Aug. 25 , 2022
28

present disclosure , or they can be of the kind well known and
available to those having skill in the computer software arts .
[0271] As an example and not by way of limitation , the
computer system having architecture (1800) , and specifi
cally the core (1840) can provide functionality as a result of
processor (s) (including CPU , GPUs , FPGA , accelerators ,
and the like) executing software embodied in one or more
tangible , computer - readable media . Such computer - readable
media can be media associated with user - accessible mass
storage as introduced above , as well as certain storage of the
core (1840) that are of non - transitory nature , such as core
internal mass storage (1847) or ROM (1845) . The software
implementing various embodiments of the present disclo
sure can be stored in such devices and executed by core
(1840) . A computer - readable medium can include one or
more memory devices or chips , according to particular
needs . The software can cause the core (1840) and specifi
cally the processors therein (including CPU , GPU , FPGA ,
and the like) to execute particular processes or particular
parts of particular processes described herein , including
defining data structures stored in RAM (1846) and modify
ing such data structures according to the processes defined
by the software . In addition or as an alternative , the com
puter system can provide functionality as a result of logic
hardwired or otherwise embodied in a circuit (for example :
accelerator (1844) , which can operate in place of or
together with software to execute particular processes or
particular parts of particular processes described herein .
Reference to software can encompass logic , and vice versa ,
where appropriate . Reference to a computer - readable media
can encompass a circuit (such as an integrated circuit (IC))
storing software for execution , a circuit embodying logic for
execution , or both , where appropriate . The present disclo
sure encompasses any suitable combination of hardware and
software .
[0272] While this disclosure has described several exem
plary embodiments , there are alterations , permutations , and
various substitute equivalents , which fall within the scope of
the disclosure . It will thus be appreciated that those skilled
in the art will be able to devise numerous systems and
methods which , although not explicitly shown or described
herein , embody the principles of the disclosure and are thus
within the spirit and scope thereof .

a

[0291] GPUs : Graphics Processing Units
[0292] GSM : Global System for Mobile communications
[0293] HEVC : High Efficiency Video Coding
[0294] HRD : Hypothetical Reference Decoder
[0295] IBC : Intra Block Copy
[0296] IC : Integrated Circuit
[0297] JEM : Joint Exploration Model
[0298] LAN : Local Area Network
[0299] LCD : Liquid - Crystal Display
[0300) LTE : Long - Term Evolution
[0301] MV : Motion Vector
[0302] OLED : Organic Light - Emitting Diode
[0303] PBs : Prediction Blocks
[0304] PCI : Peripheral Component Interconnect
[0305] PLD : Programmable Logic Device
[0306] PUs : Prediction Units
[0307] RAM : Random Access Memory
[0308] ROM : Read - Only Memory
[0309] SCC : Screen Content Coding
[0310] SEI : Supplementary Enhancement Information
[0311] SNR : Signal Noise Ratio
[0312] SSD : Solid - state Drive
[0313] TUs : Transform Units
[0314] USB : Universal Serial Bus
[0315] VUI : Video Usability Information
[0316) VVC : Versatile Video Coding
What is claimed is :
1. A method for video encoding , the method comprising :
determining , by processing circuitry of a video encoder ,

whether a part of a current block is outside a current
picture that is being encoded ;

determining , by the processing circuitry , whether one of a
binary split , a ternary split , or a quaternary split is
allowed for the current block in response to the part of
the current block being outside the current picture ;

in response to none of the binary split , the ternary split ,
and the quaternary split being allowed , determining , by
the processing circuitry , whether a partition from an
implicit binary split is across a virtual pipeline data unit
boundary ; and

applying , by the processing circuitry , the implicit binary
split to the current block in response to the partition
from the implicit binary split not being across the
virtual pipeline data unit boundary .

2. The method of claim 1 , wherein the determining
whether the part of the current block is outside the current
picture comprises at least one of :

determining whether a sum of an x - axis position of the
current block and a width of the current block is greater
than a width of the current picture ; and

determining whether a sum of a y - axis position of the
current block and a height of the current block is greater
than a height of the current picture .

3. The method of claim 1 , further comprising :
determining an initial value of a multi - type tree depth

offset as a first value in response to the part of the
current block being outside the current picture ; and

determining the initial value of the multi - type tree depth
offset as a second value in response to the part of the
current block not being outside the current picture .

4. The method of claim 3 , wherein the first value is 1 and
the second value is 0 .

APPENDIX A : ACRONYMS

a

[0273] AMVP : Advanced Motion Vector Prediction
[0274] ASIC : Application - Specific Integrated Circuit
[0275] ATMVP : Alternative Advanced Temporal Motion

Vector Prediction
[0276] BMS : Benchmark Set
[0277] BV : Block Vector
[0278] CANBus : Controller Area Network Bus
[0279] CB : Coding Block
[0280] CD : Compact Disc
[0281] CPR : Current Picture Referencing
[0282] CPUs : Central Processing Units
[0283] CRT : Cathode Ray Tube
[0284] CTBs : Coding Tree Blocks
[0285] CTUs : Coding Tree Units
[0286] CU : Coding Unit
[0287] DPB : Decoder Picture Buffer
[0288] DVD : Digital Video Disc
[0289] FPGA : Field Programmable Gate Areas
[0290] GOPs : Groups of Pictures

US 2022/0272369 A1 Aug. 25 , 2022
29

a

5. The method of claim 4 , further comprising :
determining a maximum multi - type tree depth of the

implicit binary split based on the multi - type tree depth
offset .

6. The method of claim 5 , further comprising determining
whether the binary split is allowed based on the determined
maximum multi - type tree depth .

7. The method of claim 1 , further comprising intra coding
the current block , wherein luma and chroma components of
the current block are associated with two separate coding
tree structures .

8. An encoding apparatus , comprising :
processing circuitry configured to :

determining whether a part of a current block is outside
a current picture that is being encoded ;

determine whether one of a binary split , a ternary split ,
or a quaternary split is allowed for the current block
is true in response to the part of the current block
being outside the current picture ;

in response to none of the binary split , the ternary split ,
and the quaternary split being allowed , determine
whether a partition from an implicit binary split is
across a virtual pipeline data unit boundary ; and

apply the implicit binary split to the current block in
response to the partition from the implicit binary
split not being across the virtual pipeline data unit
boundary .

9. The apparatus of claim 8 , wherein the processing
circuitry determines whether the part of the current block is
outside the current picture by determining whether a sum of
an x - axis position of the current block and a width of the
current block is greater than a width of the current picture .

10. The apparatus of claim 8 , wherein the processing
circuitry determines whether the part of the current block is
outside the current picture by determining whether a sum of
a y - axis position of the current block and a height of the
current block is greater than a height of the current picture .

11. The apparatus of claim 8 , wherein the processing
circuitry is further configured to :

determine an initial value of a multi - type tre depth offset
as a first value in response to the part of the current
block being outside the current picture ; and

determine the initial value of the multi - type tree depth
offset as a second value in response to the part of the
current block not being outside the current picture .

12. The apparatus of claim 11 , wherein the first value is
1 and the second value is 0 .

13. The apparatus of claim 12 , wherein the processing
circuitry is further configured to :

determine a maximum multi - type tree depth of the
implicit binary split based on the multi - type tree depth
offset .

14. The apparatus of claim 13 , wherein the processing
circuitry is further configured to determine whether the
binary split is allowed based on the determined maximum
multi - type tree depth .

15. The apparatus of claim 8 , wherein the processing
circuitry is further configured to intra code the current block ,
wherein luma and chroma components of the current block
are associated with two separate coding tree structures .

16. A non - transitory computer - readable storage medium
storing instructions which , when executed by at least one
processor , cause the at least one processor to perform :

determining whether a part of a current block is outside a
current picture that is being encoded ;

determining whether one of a binary split , a ternary split ,
or a quaternary split is allowed for the current block in
response to the part of the current block being outside
the current picture ; in response to none of the binary
split , the ternary split , and the quaternary split being
allowed , determining whether a partition from an
implicit binary split is across a virtual pipeline data unit
boundary , and

applying the implicit binary split to the current block in
response to the partition from the implicit binary split
not being across the virtual pipeline data unit boundary .

17. The non - transitory computer - readable storage
medium of claim 16 , wherein the determining whether the
part of the current block is outside the current picture
comprises at least one of :

determining whether a sum of an x - axis position of the
current block and a width of the current block is greater
than a width of the current picture ; and

determining whether a sum of a y - axis position of the
current block and a height of the current block is greater
than a height of the current picture .

18 . The non - transitory computer - readable storage
medium of claim 16 , wherein the stored instructions cause
the at least one processor to perform :

determining an initial value of a multi - type tree depth
offset as a first value in response to the part of the
current block being outside the current picture ; and

determining the initial value of the multi - type tree depth
offset as a second value in response to the part of the
current block not being outside the current picture .

19. The non - transitory computer - readable storage
medium of claim 18 , wherein the first value is 1 and the
second value is 0 .

20. The non - transitory computer - readable storage
medium of claim 19 , wherein the instructions further cause
the at least one processor to perform :

determining a maximum multi - type tree depth of the
implicit binary split based on the multi - type tree depth
offset .

a

a

