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HAND POSE RECOGNITION USING
BOOSTED LLOOK UP TABLES

BACKGROUND

[0001] Recently, Natural User Interface (NUI) systems
such as the Microsoft Kinect® allow users to control device
interactions using poses and gestures. Recognizing hand
poses from low resolution infrared (IR) and depth images
using very low compute budget is problematic. Many meth-
ods which are used for general object recognition and skel-
eton recognition can be sued to solve this problem, after some
tuning and modification. One example of a method suitable
for pose recognition is based on Random Forest classifica-
tion, which classifies each pixel on the hand either as part of
the hand and its pose.

SUMMARY

[0002] The technology, briefly described, comprises a
method and apparatus for classification of a human hand pose
into one of several hand pose categories from image data. The
sample image data may be provided by a capture device
having one or more input channels. A processing device oper-
ates on the sample image data using a discriminative ferns
ensemble (DFE) classifier having direct indexing to a set of
classification tables, the tables developed using a first set of
training data and optimized by a weighting of the tables using
a Support Vector Machines (SVM) linear classifier config-
ured based on a second set of pose training data. The tables
allow to compute a confidence score per pose class for the
image in the sample data and the processor outputs a deter-
mination of the pose in the sample depth image data. The
determination enables, for example, the manipulation of a
natural user interface.

[0003] Inanother aspect, a computer implemented method
of classifying sample image data to determine a gesture
present in the sample image data is provided. The method
includes creating a discriminative ferns ensemble classifier
having direct indexing to a set of classification tables (or
ferns). The tables are developed using a learned model based
on a first set of pose training data and optimized by a weight-
ing of the tables using an SVM linear classifier based on a
second set of pose training data. The method includes receiv-
ing sample image data to be classified from a capture device.
The capture device may include a first input channel and a
second input channel. The sample image data is analyzed
using the discriminative ferns ensemble classifier. A determi-
nation of the gesture in the depth image data, the determina-
tion enables a manipulation of a natural user interface.
[0004] This Summary is provided to introduce a selection
of concepts in a simplified form that are further described
below in the Detailed Description. This Summary is not
intended to identify key features or essential features of the
claimed subject matter, nor is it intended to be used as an aid
in determining the scope of the claimed subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS

[0005] FIG.11is aflowchart depicting a first embodiment of
a method in accordance with the present technology.

[0006] FIG.2isaflowchart depicting one embodiment of a
classifier in accordance with the present technology.

[0007] FIG. 3 illustrates image data comprising various
hand poses comprising classifications of “Open”, “Closed,”
“Lasso” and “Other” as used herein.
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[0008] FIG. 4A is a table illustrating error for several DFE
and ferns algorithm variations.

[0009] FIG. 4B is a graphillustrating a false negative rate of
the DFE as a function of K.

[0010] FIG. 4Cisagraphillustrating a false negative rate as
a function of M for several training procedures.

[0011] FIG. 5A is a graph illustrating the best results of
false negative rate under constraint of classification CPU time
for various methods and parameters for each method.

[0012] FIG. 5B is a graph illustrating accuracy obtained by
DFE as a function of training sample size where X axis is the
fraction of training set size relative to the full set (420,000
images).

[0013] FIG.5C isagraphillustrating the classification CPU
time, as a function of training sample size.

[0014] FIG. 6 is a block diagram illustrating a capture
device.
[0015] FIG. 7 is a block diagram illustrating a console

processing device.
[0016] FIG. 8 is a block diagram illustrating another
embodiment of a processing device.

DETAILED DESCRIPTION

[0017] Technology for pose and gesture detection and clas-
sification of a human poses and gestures is provided. Sample
image data in one or more channels includes a human image.
A processing device operates on the sample image data using
a discriminative ferns ensemble (DFE) classifier having
direct indexing to a set of classification tables, the tables
developed using a first set of training data and optimized by a
weighting of the tables using an SVM linear classifier con-
figured based on a second set of pose training data. The tables
allow classification of score for the image in the sample data
and the processor outputs a determination of the pose in the
sample depth image data. The determination enables, for
example, the manipulation of a natural user interface. A faster
gesture classifier is obtained through a combination of learn-
ing words composed of binary features, and learning multiple
lookup tables based on histograms of these words. The design
of this combination gives significant boost to run time (low
CPU) while achieving high accuracy. This is highly desirable
in most practical applications of hand pose recognition. The
gesture classifier can be used in or in conjunction with a
capture device operating in conjunction with a processing
device, as described herein.

[0018] In applications using a NUI, the technology allows
one to obtain high recognition accuracy in real time, on low
power platforms. This allows accuracy to be obtained with
only a small fraction of the available CPU resources, reserv-
ing CPU cycles for other operations.

[0019] The technology presented herein allows hand pose
classification using, for example, infra-red (IR) and depth
images from a time of flight depth camera, in the context of a
NUI application. There are dual demands for high accuracy
and a very low computation budget, the latter a fraction of a
millisecond on a low-end CPU.

[0020] The present technology increases speed and accu-
racy using larger training sets by incorporating using three
general principles. First, simple non-invariant features with
sharp non-linearity are used as they are fast to compute. Using
a large enough training set, the task-relevant invariance will
be learned instead of a priori encoded. Second, an architec-
ture with large capacity and minimal computation based on an
ensemble of large tables encoding the end results is used.
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Such table-based classifiers, termed ‘ferns’, have high capac-
ity with a VC-dimension of 2% for a single 2%-entry table, and
close to M2 for a M-tables ensemble. Third, a discriminative
optimization framework for a fern ensemble is used.

[0021] Focusing on speed optimization, spatial aggregates
ot'highly simplistic features, (i.e. pixel-pair comparisons) are
used. A lookup table (fern) is then built from a set of such bit
features. Instead of a huge single table, a fern ensemble is then
learned by the system. Each fern is based on a set of K simple
binary features and a large table of 2%-entries. The binary
features are concatenated into an index, and the correspond-
ing index entry in the table contains a weight contribution,
summed across the ferns to get the final classification. Each
table can be regarded as an efficient codeword dictionary: it
maps a patch into one of 2% words, at the cost of K operations.
The resulting architecture is highly non-linear, and a feed-
forward push of an image through it only uses multiple bit
computations and table access operations.

[0022] Ferns are traditionally formulated generatively, i.e.,
conditional class probabilities are stored at the table entries.
In contrast, the ensemble of the present technology is trained
discriminatively by minimizing the regularized hinge loss,
i.e., the loss minimized by Support Vector Machines (SVM).
Itis done agglomeratively in a boosting-like framework, pro-
moting complementariness between chosen ferns and
between bits in a single fern.

[0023] The technology is alternatively referred to as a Dis-
criminative Ferns Ensemble (DFE) approach. The method is
applied to, for example, hand pose recognition from IR and
depth images, and achieves accuracy comparable or better
than the best known methods while being one to two orders of
magnitude faster. Although the examples herein refer specifi-
cally to hand pose recognition, it should be recognized that
the technology may be applied to alternative forms of visual
category recognition. Specifically, the present technology is
significantly more accurate than a classification based on
deep random trees which have been used for similar tasks, and
considerably more accurate than a more standard ensemble of
random ferns. When compared to other methods combining
fast dense SIFT features, DAISY, random forest dictionaries,
and SVM, the best results achieved were slightly less accurate
than DFE, but classification time was two orders of magni-
tude (i.e. 100 times) slower than DFE.

[0024] Significant improvements in classification speed—
for a given target accuracy—can be achieved by collecting
larger training sets. This is done by optimizing K (log of the
table size) and M (number of ferns) for a given training set
size. In other words, if a DFE classifier is accurate, but not fast
enough, collecting larger training set can be used to accelerate
classification speed. Note that this trade-off is different from
the well-known trade-off between training set size and accu-
racy.

[0025] A capture device is illustrated in FIG. 6. The capture
device 10 and associated processing devices (FIGS. 7 and 8)
may perform the methods described herein. The processing
device (processor 42, computing system 12, console 800 or
computing system 1520) takes as an exemplary input an
image of the hand (palm), of some fixed size (for example,
30x30 pixels). The input may be provided by the capture
device 10. The input image can include multiple channels
(e.g., IR image and depth image), and may optionally have
background removal as a preprocessing stage. (Background
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removal may comprise clearing all pixels which does not
(roughly) match the depth of the hand.) The exact details of
preprocessing may vary.

[0026] The technology includes learning (training) compo-
nent which develops a learned model, and a classifier com-
ponent that uses the learned model to provide a classification
of'the image data.

[0027] FIG. 1 illustrates an overall method in accordance
with the present technology. At step 100, a large set of training
data is gathered. Various references to the size of the training
sets used in various alternatives of the present technology are
referenced herein. At 120, a learning process is performed—
two alternatives of the learning process are discussed in
accordance with the present technology. In both training
alternatives, the learning phase 120 uses a large training set
gathered at 100. In a first embodiment (122, 124), the training
includes: (1) selecting 122 the offsets and channels for each
bit/feature; and (2) assigning 124 weight to each entry of each
lookup table. In a discriminative learning alternative, the
process for selecting input pixels is different. Using the DFE
classifier in equation (5), the method solves for the param-
eters p={ W™, B™, A"}¥ _ from a labeled training set {(T’,
vV _,. At 130, classifier method 130 may be performed
using the learned model developed from the training data to
classify poses in sample data. Sample data to be classified is
gathered at 132 and the classifier applied to determine a hand
gesture at 134.

[0028] Inorder to understand the alternative learning com-
ponent types, the classifier 130 is first described, followed by
a description of the training stage 120. The training 120 and
classification 130 may be performed by any one or more of
the processing devices described herein. In one embodiment,
the method discussed herein is performed on a processing
device receiving data provided by a capture device (discussed
below in FIG. 6), with the classification results provided to
one or more applications utilizing a natural user interface
(NUD.

[0029] Inafirst classifier example, a classifier with a single
lookup table is described. FIG. 2 illustrates an overall classi-
fication method in accordance with the technology. The value
of'pixel at position (x, y) of input channel k is denoted by I,(x,
y). In the below description, input channel 1 (a first input
channel) may refer to IR and input channel 2 (a second input
channel) may refer to depth data.

[0030] At step 152, the method calculates multiple binary
features, where each feature is a simple comparison between
two pixels, returning one or zero, depending on which of the
pair of pixels is larger. The input pixels to each feature is
defined as offsets from reference point. For example, a fea-
ture:

L(X+2, Y-3)>L(X-5, Y+1)

is one for reference point (x, y)=(20, 30) if value of pixel (22,
27) is larger than value of pixel (15, 31) [for channel 2].
[0031] At step 154, the method concatenates the set of
binary features into a word. For example, each word is com-
posed of 14 bits, where each bit is a single binary feature. The
output word in this example is a number between 0 to (2**-1).
[0032] At 155, the method repeats steps 152 and 154 after
shifting the reference point (x, y) to all possible locations
inside some patch.

[0033] At 156, a histogram is built by counting the number
of times each word value appears in the patch. At 157, an
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optional thresholding step is performed by comparing each
bin (or cell) in the histogram to a predefined threshold.
[0034] At 158, a score for a specific lookup table per pose
class is built by summing the weights associated with every
bin in the table belonging to the pose class multiplied by the
word count in it, or (if optional threshold step 157 is used)
summing all weights of bins that crossed the threshold. At
159, an output of the score for a specific lookup table is
provided.

[0035] The winning score among pose class scores for a
given table identifies the gesture or pose in the input sample
data image in sample date 132.

[0036] For a classifier with multiple lookup tables at 151,
the above steps are repeated for each lookup table. If another
table is present at 160, the method steps repeat until each
lookup table is completed, and the scores summed per pose
class at 161. (Each lookup has different input bits to build the
word, and different weights for the histogram bins).

[0037] In another example, the classification method may
be described with precise notation, without the optional
threshold step 157, and using a single channel image for
simplicity. The ferns ensemble classifier 130 operates on an
image patch in the sample data 132, denoted by I, consisting
of P pixels. For a pixel p, its neighborhood is denoted by N(p),
and IN(P) denotes the subpatch which is comprised of the
pixels in p’s neighborhood. 1, is considered as a vector in
R V@', The ferns ensemble consists of M individual ferns,
and its pipeline includes three layers whose structure
described below.

[0038] Bit vector computation, step 152 above, is per-
formed as follows. Given one particular fern m: for each pixel
p, a local descriptor of its neighborhood subpatch Iy, is
computed using computationally-light pairwise pixel com-
parisons of the form:

>, forqy, g5 EN(p) 1

Such a comparison provides a single bit value of 0 or 1. For
convenience of notation, one may rewrite the bit obtained as
o(B” Ly(y)s where B is a IN(p)l-dimensional sparse vector,
with two non-zero values, one equaling 1, the other equaling
-1; and o is the Heaviside function. For each fern m and pixel
P there are K bits computed, and the k? bit is denoted as b”,
=o((B)"] Lvgy)- Collectlng all the bits together, the K- d1-
mensional bit vector b™,

b" =0(B" Iy, )E {0, 1}K )

where the matrix B" has rows (B™,)%, .. ., (B"x)? Next, the the
Heaviside function o is applied element-wise.

[0039] Creation of a histogram of bit vectors, step 156
above, is performed as follows. In order to achieve some
translation invariance, a spatial histogram over codewords is
taken. However, the bit-vectors themselves are the code-
words, as such an intermediate clustering step need not be
utilized. Initially, the histogram for the m” fern is denoted by
H™(b), where bit vector b € {0, 1}%; then:

H™(b) = Z S —b) 3
pe A
where § is a discrete delta function, and A™ = {1, ..., P} is

the spatial aggregation region for fern m. Note that H” is a
sparse vector, with at most P non-zero entries.
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[0040] Histogram concatenation, step 154 above, is per-
formed as follows. The final decision is made by a linear
classifier applied to the concatenation of the M fern histo-
grams:

L y @
FO=WTHD= " > wH"®)
m={2) b=lo,)(D

@indicates text missing or illegible when filed

where HD=[H'(1), . . . , H*(D)] € N X and W=[W*, . . .,
WM €R *2X is a weight vector.

[0041] Combining Steps 152, 154 and 156 in the pipeline
provides the Discriminative Ferns Ensemble classifier:

M (5)

1@r= 3 0w Y, dolpig,)-0)

5y
m=(3) beto, 1D @

@ indicates text missingor illegiblewhen filed

with the parameters p={W™, B", A"} _
[0042] The following Algorithm 1 summarizes the classi-
fication algorithm:

Algorithm 1 Ferns Ensemble: Classification

Input: An image I of size S, x S,,,

classifier parameters (B™,A™,W™), ™ threshold t

B gl Bddm am < {1,.8,} x {1,...8,}, W €% 2

Output: A classifier decision in {0, 1}

Initialization: Score=0

For all fernsm = 1,..M

For all pixels p E A™

Compute a k-bit index = 6(B™Ly,,))
Score=score+W™[index]

Return (Score>t)

The above Algorithm 1 describes the operation of a DFE
during an analysis of an image of sample data 132. For each
fern and each pixel in the fern’s aggregation region, the bit
vector is computed and considered as a codeword index. The
fern table is then accessed with the computed index, and the
obtained weight is added to the classification score. The com-
plexity is O(MAK) where A is the average number of pixels
per aggregation region: AI/M X |A™.

[0043] The classifier architecture is designed to optimize
both classification speed and accuracy when a large training
set is available. Speed is obtained using simple binary fea-
tures and direct indexing into a set of tables, and accuracy by
using a large capacity model and careful discriminative opti-
mization. The proposed framework is applied to the problem
of'hand pose recognition in depth and infra-red images, using
a very large training set. Both the accuracy and the classifi-
cation time obtained are considerably superior to relevant
competing methods, allowing one to reach accuracy targets
with run times orders of magnitude faster than the competi-
tion. Using DFE, one can significantly reduce classification
time by increasing training sample size for a fixed target
accuracy.
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Training/Learning

[0044] Training or learning 120 is illustrated in FIG. 1 and
is described below. The learning phase uses a large training
set. The training includes two parts: (1) at 122, selecting the
offsets and channels for each bit/feature as well as the spatial
aggregation region (where, in the above example, for the first
bit channel 2, and offsets (+2, -3) (-5, +1), were selected);
and (2) at 124, assigning weight to each entry of each lookup
table (to associate with a cell of the histogram, as described
above). More precisely, the training phase solves for the vari-
ables in the DFE classifier, described above. Unlike prior
work on ferns, a discriminative rather than generative formu-
lation is used. The variables are chosen in a discriminative
manner. That is, the variables in part (1) are chosen so as to
help the variables that are later chosen in part (2) to reach the
best classification accuracy. Two learning strategies that solve
parts (1) and (2) are presented and detailed in the following
sections. The first strategy is based on info-gain and boosted
Naive Bayes. The second strategy, is based on the predictive
features selection (PFS) algorithm for part (1) and SVM for
part (2).

[0045] A sequence of lookup tables is used. As described
above, every image may have multiple channels and may be
mapped to a binary vector (step 156 above). This mapping is
denoted by X(D)=(x,, . . ., X,,). (If each word is composed of
14 bits then n=2"*). This mapping is defined by the following
parameters: (1) Pixel comparison binary features: two (2)
offsets and source channel for each feature (step 154 above);
(2) A set of reference points that binary features are evaluated
at (step 156 above); and (3) an optional threshold for every
histogram bin (step 157 above). Thresholds are integers
belonging to a finite group, for example 1, 2, 3 or 4.

[0046] Every hand image in the training set is also associ-
ated with a label y taking two possible values. For example,
y=0 for closed hand and y=1 for open hand.

[0047] Boosted Naive Bayes with info-gain training strat-
egy: The goal of this training is to choose the parameters
determining the mapping X(I) so as to maximize the info-gain
criterion, defined as the following sum of mutual information:

maximize IG(X, y)=2I(x; y)

[0048] Where I(x;y) denotes the mutual information
between x and y.

[0049] Next, maximizing the objective is done using
greedy randomized approach: (A) randomize reference
points by selecting at random a patch out of a predefined
group of patches within the image (e.g. whole image, top-left
quarter etc.), and setting reference points to be all locations in
the selected patch, or a subset of them; (B) perform a pixel
comparison of binary features which is initialized by setting
all binary features to return O constantly; and (C) repeat, for
every binary feature f;:

[0050] (c1) Randomize a set of candidate features. For
example: Every candidate consists of 2 offsets where each
coordinate is selected at random between —10 and 10, and a
random source channel index—IR\Depth\RGB image.
[0051] (c2)Forevery candidate: set current binary feature f;
to candidate. Then, consider all possible combinations of
thresholds for histogram bins and evaluate the corresponding
X mappings for all images in the training set. Compute IG(X;
y) for the best X.

[0052] (c3)Setcurrent binary feature f; to the candidate that
achieved maximal information-gain IG(X; y).

[0053] In one alternative, step C3 may be repeated to
improve the objective further.
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[0054] This optimizes for the mapping X, and now weights
are assigned to each entry of the lookup table (used in step 158
above). Using a fresh training set (or by splitting the training
set initially) train an SVM linear classifier with X(I) as input
features and set the weights to the resulting model.

[0055] Multiple tables are learned in a boosted manner. The
procedure above is repeated for every lookup table but this
time every image in the training set is associated with a weight
which is accounted for when computing IG(X; y) in C2 above
and when training SVM.

[0056] To set the weights, the training set is classified as
described in algorithm #1 using all lookup tables previously
learned. Weights are assigned based on margin. The higher
the margin, the higher the weight. For example, one can
assign weight O (i.e. exclude from training of next fern) to all
instances which are not support vectors (margin>1), and
weight 1 to all support vectors.

[0057] Inthe procedure above, every image was assumed to
have a binary label associated with it. It is possible to extend
the algorithm to support multiclass labels by reducing to
several binary 1-vs-all problems. (open vs. non-open, closed
vs. non-closed etc.)

[0058] Learning and classification consist of performing
the procedure above simultaneously for each 1-vs-all prob-
lem, while sharing the mapping X. The objective in the learn-
ing part is then the average info-gain, that is:

maximize IG(X; y)+IG(X; y)+IGXC ya)+ . ..

PFS and SVM Training Strategy

[0059] In another alternative learning embodiment (steps
126, 128), given the DFE classifier f(I; p) in Equation (5), one
can solve for the parameters p={ W™, B™, A"} _ from a
labeled training set {(I’, y*)},_,. Unlike prior work on ferns,
a discriminative rather than a generative formulation is used.
[0060] Specifically, the problem is posed as regularized
Hinge-loss minimization, similar to standard SVM:

| ) )
@020+ 0@ -D /@O ND
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where [-], indicates the hinge loss, i.e. [z],=max{z, 0}.
Rewriting Equation (4) above with explicit parameter and
image dependence obtains:
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[0061] Iffis linear in W, so optimizing equation (6) with
respect to W for fixed {B™, A"} _, is a standard SVM
optimization. However, optimizing for the latter parameters is
challenging, specifically since they are to be chosen from a
large discrete set of possibilities. Hence, an agglomerative
approach is used in which ferns are greedily added, one at the
time. As can be seen from Equation (51), adding a single fern
amounts to an addition of 2% new features to the classifier. In
order to do that in a sensible manner, known results are
extended for the case of a single feature addition.
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[0062] Let fI)=>*"'~1wIxI(I) be a linear classifier opti-
mized with SVM and L(f, {1, y,}?Y,_,) the hinge loss obtained
for it (Eq. (6)) over a training set. Assume one adds a single
feature x* to this classifier *(1)=f"“(T)+w,x*(I), with small
lw;|=€. Theorem 1 in the work of A. Bar-Hillel, D. Levi, E.
Krupka, and C. Goldberg. Part-based feature synthesis for
human detection. (In ECCV, 2010. 1, 3.3, 3.3, 3.3) gives a
linear approximation of the loss under these conditions:

@)=L -GOB® +@@) ®
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where o, are the example weights obtained as a solution to the
dual SVM problem. The weights c, € [0, C] are only non-zero
for support vectors. For a candidate feature x;, the approxi-
mated loss is best reduced by choosing w,=C-sign
(ZY._ayx"), and the reduction obtained is R(x;)
23V _ o,y x",|. The PFS algorithm (Bar-Hillel, et al., supra)]
is based on training SVM using a small number of features,
followed by computing the score R(x) for a large number of
unseen features; this allows one to add/replace existing fea-
tures with promising feature candidates. Note that the score
R(x) of a feature column x can be seen as the correlation
R_(x)=x-Z, where 7=(z,, . . . , 7,)) with z,=y,a, is the vector of
signed example weights.

[0063] The aforementioned idea is extended to a set of
features, as introduced by a single fern. Assuming one has
trained an SVM classifier over a fern ensemble £/~(I) with
M-1 ferns, and extension to an additional fern is desired.
Assume further that the new weight vector is small with with
Iw"|l..<E. Then, one has:

EO=RO+EOREB.®) )
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with [w”, <1 for all b. Treating the new fern contribution as a
single feature, one can apply the theorem stated above and
get:

LO@N=L®)- 10
PORRRQL.ODLD-RROOQG®)
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where the approximation in the first equation is due to omis-
sion of O(E?) terms. To minimize the approximated loss, the
optimal choice for w™, is w™,=sign(Z”",_,a,y,H"(b,1,)), in an
analogous way to the single feature case. With these w”,, one
obtains:

L@@ =000 -000Q @@ an
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[0064] Hence, the algorithm for fern ensemble grows based
on iterating between SVM training and building the next fern
based on Equation (11). This procedure is described in Algo-
rithm 2:

Algorithm 2 Ferns Ensemble: Training

Input: A labeled Training set {L,y;},_ "
Parameters M,K,C,N_{A™} M
Output: A classifier (B, A™W™), _™, threshold t
Initialization: Z[i] = 1/[{Lly;=1}] if y; =1,
Z[i] = -V[{Lly;=-1}] if y; = -1

Form=1,..M
Fork=1,.K
Forc=1,.N,
Sample a candidate column f3; ™ € RIV@I
Fori=1,.N

Compute H™(b,I;,c) = H"(b,I;B.™)
with B.™ = [By"™,...Br1™ B "]
Forb € {0, 1}X
Compute Rx(c) = Zpeqo0,1y™ RZ(H™(0:Br..™)
Choose winning candidate ¢* = argmax_R(c),
and set B" = By ™"
Train an SVM with m2% features W - [H,..,H"] - t
Set Z[i] = y;a, fori =1,..,N with a; SVM dual variables
Set {W},,_ Mt based on the last SVM training.
Return (B™,A™W™),_ M threshold t.

[0065] Ateach fern addition step, an SVM classifier trained
onthe previous ferns is used to get signed example weights, in
a manner similar to boosting. The ensemble score p;, < (o,
1FR,(H™(b)) is used to grow the fern bit-by-bit in a greedy
fashion. At each bit addition stage, N, candidates are ran-
domly selected for the mask 3™, termed B™, _; each candi-
date is chosen by randomly drawing the two pixels needed for
the comparison. The winning bit is chosen as the one produc-
ing the highest ensemble score. In one embodiment, the inte-
gration area variables {A ,}™ _, . arenotoptimized, however
several optimization choices are presented below. The algo-
rithm is presented for a single binary problem, but is easily
extended to training of several classes with shared A™, B” and
separate W”'. During optimization, multiple SVMs are
trained at each fern addition, and R(c) scores of all of them are
summed to make the bit choice.

Classification Speed

[0066] In comparing the CPU time of a single fern to a
single tree with the depth K, from a pure computational
complexity perspective, the number of operations for both is
K. Nevertheless, reveals large differences in expected run
time between these techniques exists. First, a tree needs to
store the bit computation parameters for 2% internal nodes.
More importantly, during tree traversal, the working set is
accessed K times in an unpredictable manner. A fern’s opera-
tion requires only a single access to its large working set (W™)
as the index computation is done using a small amount of
memory, O(K) in size, which fits in the cache without a
problem.

[0067] Second, the usage of fixed pixel pairs in a fern
enables computation of the K-bit index without indirection
and with an unrolled loop. More importantly, ferns are ame-
nable to vectorization using Single Instruction, Multiple Data
(SIMD) operations, while trees are not. Applying a fern
operation to several examples at the same time (i.e. vectoriz-
ing the loop over p in Algorithm 1) is straightforward. Doing
so for a tree is likely to be extremely inefficient since each
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example require a different sequence of memory accesses,
and gathering such scattered data cannot be done in parallel in
a SIMD framework.

[0068] Experimental results using the test data were devel-
oped, tested and compared to alternatives on a very large data
set for hand shape recognition.

[0069] The task considered is to recognize three different
hand shapes, and to discriminate between them and other
undefined hand states. The recognition results are used as part
of'a NUI. The shapes are termed “Open”, “Closed,” “Lasso”
and “Other,” as illustrated in FIG. 3. The class ‘Other’
includes a large variation in hand poses, including hands
holding objects. Hand detection is achieved by tracking the
skeleton in a sequence of depth+IR images.

[0070] The imagesused for recognition are cropped around
the extracted hand position, rotated and scaled to two 36x36
images of the depth and IR channels. A simple pre-processing
rejects IR and depth pixels where the depth is clearly far
beyond the hand, thereby removing some of the background.
The alignment and rotation of the hand is based on estimated
wrist position and is sometimes inaccurate, making the rec-
ognition task harder.

[0071] A dataset of 519,000 images was collected and
labeled from video sequences of different people. Images
have considerable variability in terms of viewpoints, hand
poses, distances and imaging conditions. The images were
taken at distances of up to ~4 meters from the camera, where
the quality of image drops, and the depth measurement of
fingers may be missing. Data was divided into training and
test sets with 420,000 and 99,000 images respectively, such
that persons from the training set do not appear in test images
and vice versa. The data was collected to give over-represen-
tation to hard cases. Given the properties of data, the goal was
to achieve 2-5% false negative rate, at a false positive rate of
2%. Since the test data is hard, the error rate in real usage
scenarios is expected to be much lower.

[0072] The number of bits per fern K, and the number of
ferns Al in were tested. At each bit addition step N_=40 pixel
comparison features were randomly generated for evaluation.
The spatial aggregation area of the fern A, was randomly
chosen to be one of the 4 standard quadrants of the image
patch, and the neighborhood AV) is 17x17 pixels. In an addi-
tional embodiment, one may limit the aggregation area A,
further by imposing a virtual checkerboard on the quadrant
pixels: for odd bit indices features are only computed for
‘white’ pixels, and for even indices features are computed
only for ‘black’ ones. This policy was found to be useful in
terms of accuracy-speed trade-offs.

[0073] Inthe experimental data, the LibLinear package (an
open source library for large-scale linear classification) for
sparse SVM training of models. The classifier was imple-
mented in C and running times are reported on Intel core i7,
2.6 GHz CPU, using a single thread. Computation time is
reported for a single image in milliseconds, without usage of
SIMD optimizations. Accuracy of a single binary classifier,
i.e. one hand pose versus all, is computed as the false negative
error rate at the working point providing a false positive (FP)
rate of 2%. Accuracy figures reported here are averaged over
the three classes.

[0074] FIGS. 4A-4C illustrates the contribution to perfor-
mance of various algorithm components.

[0075] Complexity of layers 1: At the first layer (step 152
above), patches are encoded into codeword indices, and its
complexity is controlled by the number of bits K used for the
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encoding. In FIG. 4B the classifier accuracy is plotted as a
function of K for fixed M=50. Based on this graph, the value
of K=13 was selected in subsequent experiments, as it is the
minimal value which yet provide close to optimal accuracy.
[0076] Complexity of layers 2: Atthe second, spatial aggre-
gation layer, complexity is controlled by several algorithmic
choices. First, multiple aggregation areas, or a single aggre-
gation area containing the whole image for all ferns can be
used. Second, the checkerboard technique for computational
saving can be optionally used or not used. Results are reported
in FIG. 4A. Baseline DFE uses M=50 ferns with quadrant
ferns, checkerboard policy. The number of ferns used in the
conditions ‘single area’ and ‘no checkerboard’ are reduced by
afactor 4 and 2 to get classifiers with approximately the same
speed as the baseline. The results show the advantage of
baseline DFE over alternatives, hence led to its definition as
‘baseline’.

[0077] Complexity of layer 3, optimization policy: FIG. 4A
shows the accuracy for several ensemble training strategies.
The simpler alternatives uses Naive Bayes, where the leaf
weights are based on class posterior probabilities. The ferns
are trained independently, with bits chosen at random (Naive
Bayes, Rand bits) or by maximization of information gain
(Naive Bayes, MI). For these alternatives, the false negative
rate is high. Note that FN is measured at false positive rate of
2%. Hence, FN near 50% is far better than random. At
FP=10% the false negative rates of Naive Bayes MI bits and
Rand bits drops to 11% and 18% respectively. Also, further
increasing of the number ferns does not help as much as in the
DFE or boosting framework, as the ferns are learned inde-
pendently. Another alternative is training complementary
ferns by boosting, with bits chosen to maximize the informa-
tion gain on the boosting-reweighted sample (Naive Bayes
Boosting). This significantly improves accuracy relative to
MI and random selection, but is still less accurate than DFE.
FIG. 4C shows the effect of number of ferns, M, on the false
negative rate for selected methods.

[0078] From the above results, it is noted that using dis-
criminative (SVM) approach for both the final classifier and
selecting of the fern bits, significantly improves accuracy.
[0079] The table in FIG. 4A also shows that IR and depth
are not redundant, and using both of them significantly
improves accuracy relative to using only one of them.
[0080] FIGS. SA-5C show the results of a comparison of
the fern ensemble method to several alternative architectures,
in terms of a speed-accuracy trade-off. The methods com-
pared are:

[0081] Random forest applied to pixel comparisons as
suggested by R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X .-R.
Wang, and C.-J. Lin. Liblinear: A library for large linear
classification. Journal of Machine Learning Research,
9:1871-1874, 2008.

[0082] A 3-stages pipeline: a) Fast dense SIFT features
computation using the VLFeat library: A. Bar-Hillel, D.
Levi, E. Krupka, and C. Goldberg. Part-based feature
synthesis for human detection. In ECCV, 2010. b)
Encoding into a bag of features using a random forest
dictionary P. Doll’ar, S. Belongie, and P. Perona. The
fastest pedestrian detector in the west. In BMVC, 2010,
¢) SVM classification with a linear approximation of the
histogram intersection kernel, according to A. Bar-Hil-
lel, D. Hanukaev, and D. Levi. Fusing visual and range
imaging for object class recognition. In ICCV, 2011. The
same pipeline was also tried with replacing the fast SIFT
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with dense Daisy features as in J. Shotton, T. Sharp, A.
Kipman, A. W. Fitzgibbon, M. Finocchio, A. Blake, M.
Cook, and R. Moore. Real-time human pose recognition
in parts from single depth images. Commun. ACM,
56(1)116-124, 2013.
[0083] All the methods were implemented in C/C++, using
the original author’s code when possible. They were chosen
for comparison as each of them was developed with the aim of
obtaining a good balance of speed and accuracy. Multiple
working points were tested for each of these methods, repre-
senting various optimization for speed and accuracy. For the
fast SIFT method, shifting between speed and accuracy was
done by changing the stride parameter, controlling the density
of the SIFT greed. The Daisy complexity was chosen to
optimize speed/accuracy, as recommended in Shotten et al,
above.
[0084] The (CPU time, accuracy) of the best working
points obtained by each of the algorithms, including DFE, are
plotted together in FIG. 4 A. A random forest can achieve
similar classification time to that of DFE, but is significantly
less accurate (FN=10.6% vs. FN=2% for DFE, for the same
CPU budget). The best accuracy is achieved by training on a
small number of deep trees, with little improvement when
increasing the number of trees. There are several reasons why
using 50 ferns DFE is about as fast as using two trees. First,
each fern operates on relatively small number of pixels (50),
which is only ~4% of the image. Second, calculating the ferns
bits requires less operations than forest with the same depth.
Third, the number of bit per fern is 13, while the depth of tree
is 21. Also, the memory size of the forest is in order of 80 MB
vs. 2.5 MB of ferns. Since 80 MB cannot fit into a standard
cache, more cache misses may result.
[0085] The accuracy of with fast SIFT and Daisy alterna-
tives, can approach the accuracy of the DFE. However, their
classification time is two order of magnitudes longer.
[0086] In addition to high accuracy and fast classification,
DFE approach enable significant flexibility for various trade-
offs of speed, accuracy, memory size and generalization from
various sizes of training set. As discussed before, the fern
ensemble architecture trades speed and accuracy for sample
size and memory. For each training set size, given constraints
on memory and classification time, accuracy is optimized by
tuning M and K. Increasing the training set size enables not
only improved accuracy, but also to significantly reductions
the classification time.
[0087] FIG. 5B shows the effect of increasing the training
set size on FN, for fixed M and K. The training set size is
modified from ~0.2% of the full set (820 images) to the full
training set (420,000 images). The subset of training set is
selected randomly. As expected, the false negative rate
reduces with increase of training set size.
[0088] Even with a training set size of ~30,000 samples
(0.07 in x-axis of FIG. 5B) the accuracy met minimum
requirements for the product. However, even after full code
optimization, the classification time significantly exceeded
the target budget.
[0089] FIG. 5C shows the classification time as a function
of the of training set size, relative to the full set, for various
target false negative rates. For a fixed target accuracy, the
classification time can be reduced by an order of magnitude,
if the training set size is increased by an order of magnitude.
In general, as training set size increases, K is slightly
increased and significantly reduces M to achieve same target
accuracy with lower classification time. This can be explained

May 21, 2015

by the effect of K on the capacity of each fern, and hence
should be adapted to the training set size. On the other hand,
the accuracy can be improved by increasing M, but at a
significant cost of classification time.

[0090] Finally, the tradeoff between memory and accuracy
is shown below. Table 1 (below) presents false negative rate
versus memory consumption for a fern ensemble. Memory
consumption can be reduced by lowering either M or K, and
in the table optimal M, K parameters are chosen for each
memory limit point. From table 1, it is noted that adding a
memory constraint leads to significant reduction in the num-
ber of bits per fern, and increasing the number of ferns. The
result is very different from the case of optimizing for clas-
sification time, where optimal number of bits is high. This is
not surprising, as the memory size increases exponentially
with number of bits, but classification time increases only
linearly. The result classification time is about 5-10 larger
when optimizing for memory instead of for speed. Note,
however, that in a baseline implementation, with 50 ferns and
13 bits the memory size is about 2.5 MB, which still fits into
the cache.

TABLE 1
LUT entries Ferns # (M) Bits # (K) % FN @ FP =2%
768 48 4 10.7
1536 96 4 7.78
3072 96 5 6.07
6144 192 5 5.42
12288 384 5 4.21
24576 384 6 2.97
49152 768 6 2.32
[0091] Table 1 illustrates the accuracy obtained by DFE

under memory limits. LUT entries is the total number of
entries in all the lookup tables (ferns) together, which is 2XM.
In one implementation, each LUT entry requires 6 bytes—
two bytes per class, representing the SVM weights.

[0092] The discriminative fern ensemble framework
enables significantly pushing of the accuracy-speed envelope
for visual recognition in IR+depth images. Thin, efficient
architecture, and discriminative optimization were found
important for this purpose. In terms of architecture, the table-
based approach to deeper models with more table layers.
[0093] FIG. 6 illustrates one embodiment of a capture
device 20 and computing environment 12 that may be used in
the target recognition, analysis and tracking system 10 to
recognize human and non-human targets in a capture envi-
ronment 100 (without special sensing devices attached to the
subjects), uniquely identify them and track them in three
dimensional space. According to one embodiment, the cap-
ture device 20 may be configured to capture video with depth
information including a depth image that may include depth
values via any suitable technique including, for example,
time-of-flight, structured light, stereo image, or the like.
According to one embodiment, the capture device 20 may
organize the calculated depth information into “Z layers,” or
layers that may be perpendicular to a Z-axis extending from
the depth camera along its line of sight.

[0094] As shown in FIG. 6, the capture device 20 may
include an image camera component 32. According to one
embodiment, the image camera component 32 may be a depth
camera that may capture a depth image of a scene. The depth
image may include a two-dimensional (2-D) pixel area of the
captured scene where each pixel in the 2-D pixel area may
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represent a depth value such as a distance in, for example,
centimeters, millimeters, or the like of an object in the cap-
tured scene from the camera.

[0095] As shown in FIG. 6, the image camera component
32 may include an IR light source 34, a three-dimensional
(3-D) camera 36, and an RGB or IR camera 38, that may be
used to capture the respective first and second channels
including a depth image of a capture area. For example, in
time-of-flight analysis, the IR light source 34 of the capture
device 20 may emit an infrared light onto the capture area and
may then use sensors to detect the backscattered light from
the surface of one or more targets and objects in the capture
area using, for example, the 3-D camera 36 and/or the RGB
camera 38. In some embodiments, pulsed infrared light may
beused such that the time between an outgoing light pulse and
a corresponding incoming light pulse may be measured and
used to determine a physical distance from the capture device
20 to a particular location on the targets or objects in the
capture area. Additionally, the phase of the outgoing light
wave may be compared to the phase of the incoming light
wave to determine a phase shift. The phase shift may then be
used to determine a physical distance from the capture device
to a particular location on the targets or objects.

[0096] According to one embodiment, time-of-flight analy-
sis may be used to indirectly determine a physical distance
from the capture device 20 to a particular location on the
targets or objects by analyzing the intensity of the reflected
beam of light over time via various techniques including, for
example, shuttered light pulse imaging.

[0097] In another example, the capture device 20 may use
structured light to capture depth information. In such an
analysis, patterned light (i.e., light displayed as a known
pattern such as grid pattern or a stripe pattern) may be pro-
jected onto the capture area via, for example, the IR light
source 34. Upon striking the surface of one or more targets or
objects in the capture area, the pattern may become deformed
in response. Such a deformation of the pattern may be cap-
tured by, for example, the 3-D camera 36 and/or the RGB
camera 38 and may then be analyzed to determine a physical
distance from the capture device to a particular location on the
targets or objects.

[0098] According to one embodiment, the capture device
20 may include two or more physically separated cameras
that may view a capture area from different angles, to obtain
visual stereo data that may be resolved to generate depth
information. Other types of depth image sensors can also be
used to create a depth image.

[0099] The capture device 20 may further include a micro-
phone 40. The microphone 40 may include a transducer or
sensor that may receive and convert sound into an electrical
signal. According to one embodiment, the microphone 40
may be used to reduce feedback between the capture device
20 and the computing environment 12 in the target recogni-
tion, analysis and tracking system 10. Additionally, the
microphone 40 may be used to receive audio signals that may
also be provided by the user to control applications such as
game applications, non-game applications, or the like that
may be executed by the computing environment 12.

[0100] In one embodiment the microphone 40 comprises
array of microphone with multiple elements, for example four
elements. The multiple elements of the microphone can be
used in conjunction with beam forming techniques to achieve
spatial selectivity In one embodiment, the capture device 20
may further include a processor 42 that may be in operative
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communication with the image camera component 32. The
processor 42 may include a standardized processor, a special-
ized processor, a microprocessor, or the like that may execute
instructions that may include instructions for storing profiles,
receiving the depth image, determining whether a suitable
target may be included in the depth image, converting the
suitable target into a skeletal representation or model of the
target, or any other suitable instruction.

[0101] Processor 42 may include an imaging signal proces-
sor capable of adjusting color, brightness, hue, sharpening,
and other elements of the captured digital image.

[0102] The capture device 20 may further include a
memory component 44 that may store the instructions that
may be executed by the processor 42, images or frames of
images captured by the 3-D camera or RGB camera, user
profiles or any other suitable information, images, or the like.
According to one example, the memory component 44 may
include random access memory (RAM), read only memory
(ROM), cache, Flash memory, a hard disk, or any other suit-
able storage component. As shown in FIG. 6, the memory
component 44 may be a separate component in communica-
tion with the image capture component 32 and the processor
42. In another embodiment, the memory component 44 may
be integrated into the processor 42 and/or the image capture
component 32. In one embodiment, some or all of the com-
ponents 32, 34, 36, 38, 40, 42 and 44 of the capture device 20
illustrated in FIG. 6 are housed in a single housing.

[0103] The capture device 20 may be in communication
with the computing environment 12 via a communication link
46. The communication link 46 may be a wired connection
including, for example, a USB connection, a Firewire con-
nection, an Ethernet cable connection, or the like and/or a
wireless connection such as a wireless 802.11 b, g, a, or n
connection. The computing environment 12 may provide a
clock to the capture device 20 that may be used to determine
when to capture, for example, a scene via the communication
link 46.

[0104] The capture device 20 may provide the depth infor-
mation and images captured by, for example, the 3-D camera
36 and/or the RGB camera 38, including a skeletal model that
may be generated by the capture device 20, to the computing
environment 12 via the communication link 46. The comput-
ing environment 12 may then use the skeletal model, depth
information, and captured images to, for example, create a
virtual screen, adapt the user interface and control an appli-
cation such as a game or word processor.

[0105] A motion tracking system 191 uses the skeletal
model and the depth information to provide a control output
to an application on a processing device to which the capture
device 20 is coupled. The depth information may likewise be
used by a gestures library 192, structure data 198, gesture
recognition engine 190, depth image processing and object
reporting module 194 and operating system 196. Depth image
processing and object reporting module 194 uses the depth
images to track motion of objects, such as the user and other
objects. The depth image processing and object reporting
module 194 may report to operating system 196 an identifi-
cation of each object detected and the location of the object
for each frame. Operating system 196 will use that informa-
tion to update the position or movement of the user relative to
objects or application in the display or to perform an action on
the provided user-interface. To assist in the tracking of the
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objects, depth image processing and object reporting module
194 uses gestures library 192, structure data 198 and gesture
recognition engine 190.

[0106] The computing environment 12 may include one or
more applications 300 which utilize the information collected
by the capture device for use by user 18. Structure data 198
includes structural information and skeletal data for users and
objects that may be tracked. For example, a skeletal model of
a human may be stored to help understand movements of the
user and recognize body parts. Structural information about
inanimate objects may also be stored to help recognize those
objects and help understand movement.

[0107] Gestures library 192 may include a collection of
gesture filters, each comprising information concerning a
gesture that may be performed by the skeletal model (as the
user moves). A gesture recognition engine 190 may compare
the data captured by the cameras 36, 38 and device 20 in the
form of the skeletal model and movements associated with it
to the gesture filters in the gesture library 192 to identify when
a user (as represented by the skeletal model) has performed
one or more gestures. Those gestures may be associated with
various controls of an application. Thus, the computing envi-
ronment 12 may use the gestures library 192 to interpret
movements of the skeletal model and to control operating
system 196 or an application (not shown) based on the move-
ments.

[0108] A dynamic display engine 302 interacts with appli-
cations 300 to provide an output to, for example, display 16 in
accordance with the technology herein. The dynamic display
engine 302 utilizes interaction state definitions 392 and lay-
out display data 394 to determine dynamic display states on
the output display device in accordance with the teachings
herein.

[0109] In general, the dynamic display engine 302 deter-
mines a user interaction state based on a number of data
factors as outlined herein, then uses the state to determine an
application layout state for information provided on the dis-
play. Transitions between different interaction states, or
movements from an application state are also handled by the
dynamic display engine. The application layout state may
include an optimal layout state—the developer’s desired dis-
play when a user is in a “best” interaction state as defined by
the developer—as well as numerous other application layout
states based on specific interaction states or based on changes
(or movements) by a user relative to previous states of the
user.

[0110] FIG. 7 is a block diagram of one embodiment of a
computing system that can be used to implement a hub com-
puting system like that of FIG. 6 at 12. In this embodiment,
the computing system is a multimedia system 800, such as a
gaming console. As shown in FIG. 7, the multimedia system
800 has a central processing unit (CPU) 801, and a memory
controller 802 that facilitates processor access to various
types of memory, including a flash Read Only Memory
(ROM) 803, a Random Access Memory (RAM) 806, a hard
disk drive 808, and portable media drive 806. In one imple-
mentation, CPU 801 includes a level 1 cache 810 and a level
2 cache 812, to temporarily store data and hence reduce the
number of memory access cycles made to the hard drive 808,
thereby improving processing speed and throughput.

[0111] CPU 801, memory controller 802, and various
memory devices are interconnected via one or more buses
(not shown). The details of the bus that is used in this imple-
mentation are not particularly relevant to understanding the
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subject matter of interest being discussed herein. However, it
will be understood that such a bus might include one or more
of serial and parallel buses, a memory bus, a peripheral bus,
and a processor or local bus, using any of a variety of bus
architectures. By way of example, such architectures can
include an Industry Standard Architecture (ISA) bus, a Micro
Channel Architecture (MCA) bus, an Enhanced ISA (EISA)
bus, a Video Electronics Standards Association (VESA) local
bus, and a Peripheral Component Interconnects (PCI) bus
also known as a Mezzanine bus.

[0112] Inone implementation, CPU 801, memory control-
ler 802, ROM 803, and RAM 806 are integrated onto a com-
mon module 814. In this implementation, ROM 803 is con-
figured as a flash ROM that is connected to memory controller
802 via a PCI bus and a ROM bus (neither of which are
shown). RAM 806 is configured as multiple Double Data
Rate Synchronous Dynamic RAM (DDR SDRAM) modules
that are independently controlled by memory controller 802
via separate buses (not shown). Hard disk drive 808 and
portable media drive 805 are shown connected to the memory
controller 802 via the PCI bus and an AT Attachment (ATA)
bus 816. However, in other implementations, dedicated data
bus structures of different types can also be applied in the
alternative.

[0113] A graphics processing unit 820 and a video encoder
822 form a video processing pipeline for high speed and high
resolution (e.g., High Definition) graphics processing. Data
are carried from graphics processing unit (GPU) 820 to video
encoder 822 via a digital video bus (not shown). Lightweight
messages generated by the system applications (e.g., pop ups)
are displayed by using a GPU 820 interrupt to schedule code
to render popup into an overlay. The amount of memory used
for an overlay depends on the overlay area size and the over-
lay preferably scales with screen resolution. Where a full user
interface is used by the concurrent system application, it is
preferable to use aresolution independent of application reso-
Iution. A scaler may be used to set this resolution such that the
need to change frequency and cause a TV resync is elimi-
nated.

[0114] An audio processing unit 824 and an audio codec
(coder/decoder) 826 form a corresponding audio processing
pipeline for multi-channel audio processing of various digital
audio formats. Audio data are carried between audio process-
ing unit 824 and audio codec 826 via a communication link
(not shown). The video and audio processing pipelines output
data to an A/V (audio/video) port 828 for transmission to a
television or other display. In the illustrated implementation,
video and audio processing components 820-828 are
mounted on module 214.

[0115] FIG. 7 shows module 814 including a USB host
controller 830 and a network interface 832. USB host con-
troller 830 is shown in communication with CPU 801 and
memory controller 802 via a bus (e.g., PCI bus) and serves as
host for peripheral controllers 804(1)-804(4). Network inter-
face 832 provides access to a network (e.g., Internet, home
network, etc.) and may be any of a wide variety of various
wire or wireless interface components including an Ethernet
card, a modem, a wireless access card, a Bluetooth module, a
cable modem, and the like.

[0116] Intheimplementation depictedin FIG. 7 system 800
includes a controller support subassembly 840 for supporting
four controllers 804(1)-804(4). The controller support subas-
sembly 840 includes any hardware and software components
needed to support wired and wireless operation with an exter-
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nal control device, such as for example, a media and game
controller. A front panel I/O subassembly 842 supports the
multiple functionalities of power button 8124, the eject button
813, as well as any LEDs (light emitting diodes) or other
indicators exposed on the outer surface of console 800. Sub-
assemblies 840 and 842 are in communication with module
814 via one or more cable assemblies 844. In other imple-
mentations, system 800 can include additional controller sub-
assemblies. The illustrated implementation also shows an
optical /O interface 835 that is configured to send and receive
signals that can be communicated to module 814.

[0117] MUs 840(1) and 840(2) are illustrated as being con-
nectable to MU ports “A” 830(1) and “B” 830(2) respectively.
Additional MUs (e.g., MUs 840(3)-840(6)) are illustrated as
being connectable to controllers 804(1) and 804(3), i.e., two
MU s for each controller. Controllers 804(2) and 804(4) can
also be configured to receive MUs (not shown). Each MU 840
offers additional storage on which games, game parameters,
and other data may be stored. In some implementations, the
other data can include any of a digital game component, an
executable gaming application, an instruction set for expand-
ing a gaming application, and a media file. When inserted into
system 800 or a controller, MU 840 can be accessed by
memory controller 802. A system power supply module 850
provides power to the components of gaming system 800. A
fan 852 cools the circuitry within system 800. A microcon-
troller unit 854 is also provided.

[0118] An application 860 comprising machine instruc-
tions is stored on hard disk drive 808. When system 800 is
powered on, various portions of application 860 are loaded
into RAM 806, and/or caches 810 and 812, for execution on
CPU 801, wherein application 860 is one such example.
Various applications can be stored on hard disk drive 808 for
execution on CPU 801.

[0119] Gamingand media system 800 may be operated as a
standalone system by simply connecting the system to a dis-
play 16, a television, a video projector, or other display
device. In this standalone mode, gaming and media system
800 enables one or more players to play games, or enjoy
digital media, e.g., by watching movies, or listening to music.
However, with the integration of broadband connectivity
made available through network interface 832, gaming and
media system 800 may further be operated as a participant in
a larger network gaming community.

[0120] The system described above can be used to add
virtual images to a user’s view such that the virtual images are
mixed with real images that the user see. In one example, the
virtual images are added in a manner such that they appear to
be part of the original scene.

[0121] FIG. 8 illustrates another example embodiment of a
computing system 1520 that may be the computing environ-
ment 12 shown in FIG. 6 used to track motion and/or animate
(or otherwise update) an avatar or other on-screen object
displayed by an application. The computing system environ-
ment 1520 is only one example of a suitable computing sys-
tem and is not intended to suggest any limitation as to the
scope of use or functionality of the presently disclosed sub-
ject matter. Neither should the computing system 1520 be
interpreted as having any dependency or requirement relating
to any one or combination of components illustrated in the
exemplary operating system 1520. In some embodiments the
various depicted computing elements may include circuitry
configured to instantiate specific aspects of the present dis-
closure. For example, the term circuitry used in the disclosure
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can include specialized hardware components configured to
perform function(s) by firmware or switches. In other
examples embodiments the term circuitry can include a gen-
eral purpose processing unit, memory, etc., configured by
software instructions that embody logic operable to perform
function(s). In example embodiments where -circuitry
includes a combination of hardware and software, an imple-
menter may write source code embodying logic and the
source code can be compiled into machine readable code that
can be processed by the general purpose processing unit.
Since one skilled in the art can appreciate that the state of the
art has evolved to a point where there is little difference
between hardware, software, or a combination of hardware/
software, the selection of hardware versus software to effec-
tuate specific functions is a design choice left to an imple-
menter. More specifically, one of skill in the art can appreciate
that a software process can be transformed into an equivalent
hardware structure, and a hardware structure can itself be
transformed into an equivalent software process. Thus, the
selection of a hardware implementation versus a software
implementation is one of design choice and left to the imple-
menter.

[0122] Computing system 1520 comprises a computer
1541, which typically includes a variety of computer readable
media. Computer readable media can be any available media
that can be accessed by computer 1541 and includes both
volatile and nonvolatile media, removable and non-remov-
able media. The system memory 1522 includes computer
storage media in the form of volatile and/or nonvolatile
memory such as read only memory (ROM) 1523 and random
access memory (RAM) 1560. A basic input/output system
1524 (BIOS), containing the basic routines that help to trans-
fer information between elements within computer 1541,
such as during start-up, is typically stored in ROM 1523.
RAM 1560 typically contains data and/or program modules
that are immediately accessible to and/or presently being
operated on by processing unit 1559. By way of example, and
not limitation, FIG. 8 illustrates operating system 1525, appli-
cation programs 1526, other program modules 1527, and
program data 1528.

[0123] The computer 1541 may also include other remov-
able/non-removable, volatile/nonvolatile computer storage
media. By way of example only, FIG. 8 illustrates a hard disk
drive 1538 that reads from or writes to non-removable, non-
volatile magnetic media, a magnetic disk drive 1539 that
reads from or writes to a removable, nonvolatile magnetic
disk 1554, and an optical disk drive 1540 that reads from or
writes to a removable, nonvolatile optical disk 1553 such as a
CD ROM or other optical media. Other removable/non-re-
movable, volatile/nonvolatile computer storage media that
can be used in the exemplary operating environment include,
but are not limited to, magnetic tape cassettes, flash memory
cards, digital versatile disks, digital video tape, solid state
RAM, solid state ROM, and the like. The hard disk drive 1538
is typically connected to the system bus 1521 through an
non-removable memory interface such as interface 1534, and
magnetic disk drive 1539 and optical disk drive 1540 are
typically connected to the system bus 1521 by a removable
memory interface, such as interface 1535.

[0124] The drives and their associated computer storage
media discussed above and illustrated in FIG. 8, provide
storage of computer readable instructions, data structures,
program modules and other data for the computer 1541. In
FIG. 8, for example, hard disk drive 1538 is illustrated as
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storing operating system 1558, application programs 1557,
other program modules 1556, and program data 1555. Note
that these components can either be the same as or different
from operating system 1525, application programs 1526,
other program modules 1527, and program data 1528. Oper-
ating system 1558, application programs 1557, other program
modules 1556, and program data 1555 are given different
numbers here to illustrate that, at a minimum, they are differ-
ent copies. A user may enter commands and information into
the computer 1541 through input devices such as a keyboard
1551 and pointing device 1552, commonly referred to as a
mouse, trackball or touch pad. Other input devices (not
shown) may include a microphone, joystick, game pad, sat-
ellite dish, scanner, or the like. These and other input devices
are often connected to the processing unit 1559 through a user
input interface 1536 that is coupled to the system bus, but may
be connected by other interface and bus structures, such as a
parallel port, game port or a universal serial bus (USB). The
cameras 226, 228 may define additional input devices for the
computing system 1520 that connect via user input interface
1536. A monitor 1542 or other type of display device is also
connected to the system bus 1521 via an interface, such as a
video interface 1532. In addition to the monitor, computers
may also include other peripheral output devices such as
speakers 1544 and printer 1543, which may be connected
through a output peripheral interface 1533.

[0125] The computer 1541 may operate in a networked
environment using logical connections to one or more remote
computers, such as a remote computer 1546. The remote
computer 1546 may be a personal computer, a server, a router,
a network PC, a peer device or other common network node,
and typically includes many or all of the elements described
above relative to the computer 1541, although only a memory
storage device 1547 has been illustrated in FIG. 8. The logical
connections depicted include a local area network (LAN)
1545 and a wide area network (WAN) 1549, but may also
include other networks. Such networking environments are
commonplace in offices, enterprise-wide computer networks,
intranets and the Internet.

[0126] When used in a LAN networking environment, the
computer 1541 is connected to the LAN 1545 through a
network interface or adapter 1537. When used in a WAN
networking environment, the computer 1541 typically
includes a modem 1550 or other means for establishing com-
munications over the WAN 1549, such as the Internet. The
modem 1550, which may be internal or external, may be
connected to the system bus 1521 via the user input interface
1536, or other appropriate mechanism. In a networked envi-
ronment, program modules depicted relative to the computer
1541, or portions thereof, may be stored in the remote
memory storage device. By way of example, and not limita-
tion, FIG. 8 illustrates application programs 1548 as residing
on memory device 1547. It will be appreciated that the net-
work connections shown are exemplary and other means of
establishing a communications link between the computers
may be used.

Exemplary Embodiments

[0127] In accordance with the description, the technology
includes a gesture recognition system, comprising: a capture
device receiving image data including at least depth data; and
a processor operably coupled to the capture device including
code operable to instruct the processor to classify a gesture of
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a human body in sample image data received by the capture
device using a classifier based on a discriminative ferns
ensemble.

[0128] Embodiments include a system as in any of the
aforementioned embodiments wherein the classifier uses a
learned model based on a first set of training data, the learned
model comprises at least one optimized fern based on binary
features calculated for the image data, the optimized fern
being weighted based on comparison to a support vector
machine classifier trained using a second set of training data.
[0129] Embodiments include a system as in any of the
aforementioned embodiments wherein the classifier com-
prises code operable to instruct a processor to: select a patch
in an image in the sample image data; calculate multiple
binary features of the image in the sample image data; con-
catenate a set of binary features for the image into a word;
repeat the calculate and concatenate steps after shifting a
reference point for the calculate and concatenate steps to all
possible points in the image; build a histogram comprising a
count of a number of times each word appears in the image;
and sum all weights of cells of the histogram thereby provid-
ing a score for the fern.

[0130] Embodiments include a system as in any of the
aforementioned embodiments wherein the processor is oper-
able to compare each cell of the histogram to a threshold and
wherein the sum of all weights comprises all weights of all
cells over the threshold.

[0131] Embodiments include a system as in any of the
aforementioned embodiments wherein for the classifier
includes multiple lookup ferns, calculation of multiple binary
features and concatenation of the set of binary features is
repeated for each lookup fern, and wherein a sum the weights
of the multiple lookup ferns scores is provided.

[0132] Embodiments include a system as in any of the
aforementioned embodiments wherein the sample image data
may include multiple channels, a first channel comprising
said depth data and a second channel comprising IR data, and
wherein the learned model is provided by analysis of the first
set of training data including a plurality of training images,
the processor operable to: select an offsets and channels for
each bit in each training image; and assign a weight to each
entry of each lookup fern for the training image.

[0133] Embodiments include a system as in any of the
aforementioned embodiments wherein, for a single lookup
fern, the processor is operable to create a binary vector for
each training image by: comparing binary features of each
pixel in each training image of two offsets and the first or
second channel for each feature; evaluating the binary fea-
tures by shifting a set of reference points; and comparing the
binary features to a threshold for every histogram bin.
[0134] Embodiments include a system as in any of the
aforementioned embodiments wherein the learned model is
adapted to maximize an information gain criterion, the
learned model created by: randomizing reference points by
selecting at random a patch from a group of patches within the
first set of training data and setting reference points to at least
a subset of locations within the patch selected; comparing
binary features of pixels within the patch by setting all binary
features to return O constantly; for every binary feature, ran-
domizing a set of candidate binary features and for every
candidate, setting a current binary feature to a candidate and
consider possible combinations of thresholds for histogram
bins and evaluate corresponding binary mappings for all
images in the training set; calculate the maximum informa-
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tion gain for binary features mappings of each candidate; and
set current binary feature to the candidate that achieved maxi-
mum information gain.

[0135] Embodiments include a system as in any of the
aforementioned embodiments wherein a plurality of lookup
ferns is provided and the randomizing reference points, com-
paring binary features and randomizing a set of candidate
binary features is repeated for every lookup fern where every
image in the first training set is associated with a weight
which is accounted for when computing maximum informa-
tion gain.

[0136] Embodiments include a system as in any of the
aforementioned embodiments wherein a weight is assigned to
each fern by using a second set of training data to train an
SVM linear classifier with the binary features and assign
weights to a resulting learned model.

[0137] Embodiments ofthe technology include a computer
implemented method of classifying sample image data to
determine a gesture present in the sample image data, the
method comprising: creating a discriminative ferns ensemble
classifier having direct indexing to a set of classification
tables, the tables developed using a learned model based on a
first set of training data and optimized by a weighting of the
tables using an SVM linear classifier based on a second set of
training data; receiving sample image data to be classified
from a capture device, the capture device including a first
input channel and a second input channel; analyzing the
sample image data using the discriminative ferns ensemble
classifier; and outputting a determination of the gesture in the
sample image data, the determination enabling a manipula-
tion of a natural user interface.

[0138] Embodiments include a method as in any of the
aforementioned embodiments wherein the classifier per-
forms a method of: calculating multiple binary features of an
image in the sample image data; concatenating a set of binary
features for the image into a word; repeating said calculating
and said concatenating after shifting a reference point in the
sample image data to all possible points in the sample image
data; creating a histogram comprising a count of a number of
times each word appears in the image; and summing all
weights in cells of the histogram thereby providing a score for
the fern.

[0139] Embodiments include a method as in any of the
aforementioned embodiments wherein the sample image data
may include multiple channels, a first channel comprising
depth data and a second channel comprising IR data, and
wherein the learned model is provided by analysis of the first
set of training data including a plurality of training images,
the method including steps: selecting a offsets and channels
for each bit in each training image; and assigning a weight to
each entry of each lookup fern for the training image.
[0140] Embodiments include a method as in any of the
aforementioned embodiments wherein for a single lookup
fern, the method creates a binary vector for each training
image by: comparing binary features of each pixel in each
training image of two offsets and the first or second channel
for each feature; evaluating the binary features by shifting a
set of reference points; and comparing the binary features to
a threshold for every histogram bin.

[0141] Embodiments include a method as in any of the
aforementioned embodiments wherein the learned model is
further created to maximize an information gain criterion by:
randomizing reference points by selecting at random a patch
from a group of patches within the first set of training data and
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setting reference points to at least a subset of locations within
the patch selected; comparing binary features of pixels within
the patch by setting all binary features to return O constantly;
for every binary feature, randomizing a set of candidate
binary features and for every candidate, setting a current
binary feature to a candidate and consider possible combina-
tions of thresholds for histogram bins and evaluate corre-
sponding binary mappings for all images in the training set;
calculating a maximum information gain for binary features
mappings of each candidate; and assigning the current binary
feature to the candidate that achieved maximum information
gain,

[0142] Additional embodiments include A pose detection
and classification system adapted to classify human poses in
sample image data, comprising: a capture device including a
first input channel and a second input channel, each channel
providing sample image data; a processing device operable
on the sample image data using a discriminative ferns
ensemble classifier having direct indexing to a set of classi-
fication tables, the tables developed using a first set of training
data and optimized by a weighting of the tables using an SVM
linear classifier configured based on a second set of training
data, the processing device a outputting a determination of the
pose in the sample image data, the determination enabling a
manipulation of a natural user interface.

[0143] Embodiments include a pose detection and classifi-
cation system as in any of the aforementioned embodiments
wherein the ensemble classifier comprises code operable to
instruct a processor to: select a patch in an image in the
sample image data; calculate multiple binary features of the
image in the sample image data; concatenate a set of binary
features for the image into a word; repeat the calculate and
concatenate steps after shifting a reference point for the cal-
culate and concatenate steps to all possible points in the
image; build a histogram comprising a count of a number of
times each word appears in the image; and sum all weights of
cells of the histogram thereby providing a score for the fern.
[0144] Embodiments include a pose detection and classifi-
cation system as in any of the aforementioned embodiments
further including wherein the processor is operable to com-
pare each cell of the histogram to a threshold and wherein the
sum of all weights comprises a sum of all weights of all cells
over the threshold.

[0145] Embodiments include a pose detection and classifi-
cation system as in any of the aforementioned embodiments
wherein for the classifier includes multiple lookup ferns, cal-
culation of multiple binary features and concatenation of the
set of binary features is repeated for each lookup fern, and
wherein a sum of weights of multiple lookup ferns scores is
provided.

[0146] Embodiments include a pose detection and classifi-
cation system as in any of the aforementioned embodiments
wherein the classification tables are adapted to maximize an
information gain criterion, the classification tables created
by: randomizing reference points by selecting at random a
patch from a group of patches within the first set of training
data and setting reference points to at least a subset of loca-
tions within the patch selected; comparing binary features of
pixels within the patch by setting all binary features to return
0 constantly; for every binary feature, randomizing a set of
candidate binary features and for every candidate, setting a
current binary feature to a candidate and consider possible
combinations of thresholds for histogram bins and evaluate
corresponding binary mappings for all images in the training
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set; calculate the maximum information gain for binary fea-
tures mappings of each candidate; and set current binary
feature to the candidate that achieved maximum information
gain.

[0147] Although the subject matter has been described in
language specific to structural features and/or methodologi-
cal acts, it is to be understood that the subject matter defined
in the appended claims is not necessarily limited to the spe-
cific features or acts described above. Rather, the specific
features and acts described above are disclosed as example
forms of implementing the claims.

What is claimed is:

1. A gesture recognition system, comprising:

a capture device receiving image data including at least

depth data; and

aprocessor operably coupled to the capture device includ-

ing code operable to instruct the processor to classify a
gesture of a human body in sample image data received
by the capture device using a classifier based on a dis-
criminative ferns ensemble.

2. The system of claim 1 wherein the classifier uses a
learned model based on a first set of training data, the learned
model comprises at least one optimized fern based on binary
features calculated for the image data, the optimized fern
being weighted based on comparison to a support vector
machine classifier trained using at least one of the first set of
training data and a second set of training data.

3. The system of claim 1 wherein the classifier comprises
code operable to instruct a processor to:

select a patch in an image in the sample image data;

calculate multiple binary features of the image in the

sample image data;

concatenate a set of binary features for the image into a

word,;

repeat the calculate and concatenate steps after shifting a

reference point for the calculate and concatenate steps to
all possible points in the image patch;

build a histogram comprising a count of a number of times

each word appears in the image; and

sum all weights of cells of the histogram thereby providing

a score for the fern.

4. The system of claim 3 further including wherein the
processor is operable to compare each cell of the histogram to
a threshold and wherein the sum of all weights comprises all
weights of all cells over the threshold.

5. The system of claim 3 wherein for the classifier includes
multiple lookup ferns, calculation of multiple binary features
and concatenation of the set of binary features is repeated for
each lookup fern, and wherein a sum the weights of the
multiple lookup ferns scores is provided.

6. The system of claim 2 wherein the sample image data
may include multiple channels, a first channel comprising
said depth data and a second channel comprising IR data, and
wherein the learned model is provided by analysis of the first
set of training data including a plurality of training images,
the processor operable to:

select an offsets and channels for each bit in each fern for

the training image; and

assign a weight to each entry of each lookup fern for the

training image.

7. The system of claim 6 wherein, for a single lookup fern,
the processor is operable to create a binary vector for each
training image by:
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extracting binary features comparing pairs of pixels in each
training image with one or more data channels based on
two offsets and a channel for each feature;

evaluating the binary features by shifting a set of reference

points; and

comparing the count of binary features to a threshold for

every histogram bin.
8. The system of claim 6 wherein the learned model is
adapted to maximize an information gain criterion, the
learned model created by:
randomizing reference points by selecting at random a
patch from a group of patches within the first set of
training data and setting reference points to at least a
subset of locations within the patch selected;
constructing binary features that compare pixels within
the patch by, first, setting all binary features to return
0 constantly;
then, for every binary feature, randomizing a set of can-
didate binary features and for every candidate, setting
a current binary feature to a candidate and consider
possible combinations of thresholds for histogram
bins and evaluate corresponding binary mappings for
all images in the training set;
calculate the maximum information gain for binary fea-
tures mappings of each candidate; and
set current binary feature to the candidate that achieved
maximum information gain.
9. The system of claim 8 wherein a plurality of lookup ferns
is provided and the randomizing reference points, comparing
binary features and randomizing a set of candidate binary
features is repeated for every lookup fern where every image
in the first training set is associated with a weight which is
accounted for when computing maximum information gain.
10. The system of claim 3 wherein a weight is assigned to
each fern lookup table entry by using at least a first set or a
second set of training data to train an SVM linear classifier
with the binary features and assign weights to a resulting
learned model.
11. A computer implemented method of classifying sample
image data to determine a gesture present in the sample image
data, the method comprising:
creating a discriminative ferns ensemble classifier having
direct indexing to a set of classification tables, the tables
developed using a learned model based on a first set of
training data and optimized by a weighting of the tables
using an SVM linear classifier based on at least one of
one of the first set and a second set of training data;

receiving sample image data to be classified from a capture
device, the capture device including one or more input
channels;

analyzing the sample image data using the discriminative

ferns ensemble classifier; and

outputting a determination of the gesture in the sample

image data, the determination enabling a manipulation
of a natural user interface.

12. The computer implemented method of claim 11
wherein the classifier performs a method of:

calculating multiple binary features of an image in the

sample image data;

concatenating a set of binary features for the image into a

word,;

repeating said calculating and said concatenating after

shifting a reference point in the sample image data to all
possible points in the sample image data;
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creating a histogram comprising a count of a number of
times each word appears in the image; and

summing all weights in cells of the histogram thereby
providing a score for the fern.

13. The method of claim 1 wherein the sample image data
may include multiple channels, a first channel comprising
depth data and a second channel comprising IR data, and
wherein the learned model is provided by analysis of the first
set of training data including a plurality of training images,
the method including steps:

selecting a offsets and channels for each bit in each training
image; and

assigning a weight to each entry of each lookup fern for the
training image.

14. The method of claim 13 wherein, for a single lookup
fern, the method creates a binary vector for each training
image by:

counting binary words composed of binary features
obtained from each training image by comparing pairs
of pixels at two offsets within the image channels;

evaluating the binary words by shifting a set of reference
points; and

comparing the count of binary words to a threshold for
every histogram bin.

15. The method of claim 12 wherein the learned model is

further created to maximize an information gain criterion by:

randomizing reference points by selecting at random a
patch from a group of patches within the first set of
training data and setting reference points to at least a
subset of locations within the patch selected;

comparing binary features of pixels within the patch by
setting all binary features to return 0 constantly;

for every binary feature, randomizing a set of candidate
binary features and for every candidate, setting a current
binary feature to a candidate and consider possible com-
binations of thresholds for histogram bins and evaluate
corresponding binary mappings for all images in the
training set;

calculating a maximum information gain for binary fea-
tures mappings of each candidate; and

assigning the current binary feature to the candidate that
achieved maximum information gain.

16. A pose detection and classification system adapted to

classify human poses in sample image data, comprising:

a capture device including a first input channel and a sec-
ond input channel, each channel providing sample
image data;

a processing device operable on the sample image data
using a discriminative ferns ensemble classifier having
direct indexing to a set of classification tables, the tables
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developed using a first set of training data and optimized
by a weighting of the tables using an SVM linear clas-
sifier configured based on a second set of training data,
the processing device a outputting a determination of the
pose in the sample image data, the determination
enabling a manipulation of a natural user interface.

17. The system of claim 16 wherein the ensemble classifier
comprises code operable to instruct a processor to:

select a patch in an image in the sample image data;

calculate multiple binary features of the image in the

sample image data;

concatenate a set of binary features for the image into a

word,;

repeat the calculate and concatenate steps after shifting a

reference point for the calculate and concatenate steps to
all possible points in the image;

build a histogram comprising a count of a number of times

each word appears in the image; and

sum all weights of cells of the histogram thereby providing

a score for the fern.

18. The system of claim 17 further including wherein the
processor is operable to compare each cell of the histogram to
a threshold and wherein the sum of all weights comprises a
sum of all weights of all cells over the threshold.

19. The system of claim 18 wherein for the classifier
includes multiple lookup ferns, calculation of multiple binary
features and concatenation of the set of binary features is
repeated for each lookup fern, and wherein a sum of weights
of multiple lookup ferns scores is provided.

20. The system of claim 19 wherein the classification tables
are adapted to maximize an information gain criterion, the
classification tables created by:

randomizing reference points by selecting at random a

patch from a group of patches within the first set of

training data and setting reference points to at least a

subset of locations within the patch selected;

learning binary features based on pixel comparisons
within the patch by first setting all binary features to
return zero constantly;

for every binary feature, randomizing a set of candidate
binary features and for every candidate, setting a cur-
rent binary feature to a candidate and consider pos-
sible combinations of thresholds for histogram bins
and evaluate corresponding binary mappings for all
images in the training set;

calculate the maximum information gain for binary fea-
tures mappings of each candidate; and

set current binary feature to the candidate that achieved
maximum information gain.
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