US 20160134696A1

a9 United States

a2y Patent Application Publication o) Pub. No.: US 2016/0134696 A1

Datuashvili et al.

43) Pub. Date: May 12, 2016

(54)

(71)

(72)

@
(22)

(63)

(60)

ASYNCHRONOUS DISTRIBUTED
DE-DUPLICATION FOR REPLICATED
CONTENT ADDRESSABLE STORAGE
CLUSTERS

Applicant: GOOGLE INC., MOUNTAIN VIEW,
CA (US)

Inventors: Gia Datuashvili, Cupertino, CA (US);
Alexander Kesselman, San Jose, CA
(US); Alexandre Drobychev, San Jose,
CA (US)

Appl. No.: 14/995,171
Filed: Jan. 13, 2016

Related U.S. Application Data

Continuation of application No. 14/265,298, filed on
Apr. 29,2014, now abandoned, which is a continuation
of'application No. 12/644,693, filed on Dec. 22, 2009,
now Pat. No. 8,712,974.

Provisional application No. 61/139,857, filed on Dec.
22, 2008.

100
_\‘

CLIENT
110-1

CLENT |sg—
110-2

CLIENT
110-N

Publication Classification

(51) Int.CL
HO4L 29/08 (2006.01)
GOGF 17/30 (2006.01)
(52) US.CL

CPC ... HO4L 67/1095 (2013.01); GO6F 1730575
(2013.01); GOGF 17/30489 (2013.01); GO6F
17/30371 (2013.01)

(57) ABSTRACT

A method is performed by a device of a group of devices in a
distributed data replication system. The method includes stor-
ing an index of objects in the distributed data replication
system, the index being replicated while the objects are stored
locally by the plurality of devices in the distributed data
replication system. The method also includes conducting a
scan of at least a portion of the index and identifying a redun-
dant replica(s) of the at least one of the objects based on the
scan of the index. The method further includes de-duplicating
the redundant replica(s), and updating the index to reflect the
status of the redundant replica.

FILE SYSTEM
140

STORAGE
CLUSTER
120-1

I

I

I

I

I

I

I

I

I

I

STORAGE :
ey 7 CLUSTER |
120-2 |
I

I

I

I

I

I

I

I

I

I

STORAGE
CLUSTER
120-M

US 2016/0134696 Al

May 12,2016 Sheet1 of 11

Patent Application Publication

e

_ WOzt

_ ¥31sN1o N-OL

_ 19vHO0LS IN3ND

|

_ [] []

| L Y

| ° Y

[

_ z-0Zl =TT
d431sN1o IM, INIITD

_ I9VHOLS

[

[

| L-0cl -0l 1

_ 431SN10 I IN3ITD

_ 19vHO0LS _

[[

[[

[- [

_ ot |

_ INJLSAS 3114 |

||||||||||| 4//11 001

US 2016/0134696 Al

May 12,2016 Sheet 2 of 11

Patent Application Publication

¢ Old

I
| _
| _
| _
_ coch < > A _
_ 431SN710 IDVHOLS uoljesldey d31SN70 IDVHOLS |

I
| _
[uonesidey _
| _
_ uoneoldoy uonesldey _
| Uoneoljdey _
| _
| _
_ A4 < > i) _
_ H31SN1I IDVHOLS uonesldey d31SN710 39VHO1S |
| _
| _
_ W3L1SAS 3114 |

¢ Old

US 2016/0134696 Al

- 8¢ JA3 ooe
Yo
3 =RV ANEIN 201A3d
< NOILYDINNIWINOD 1NdLNO 301A3d LNdNI
[-P]
[-P]
7 oLe
= \ sng
Yo
(=]
o
o
>
«®
=
0%e o == ~
320IA3d AHOWNIN
HOVMOLS oY NTe ¥0SS$300¥d

W W/mmm v/loﬁ

Patent Application Publication

US 2016/0134696 Al

May 12,2016 Sheet 4 of 11

Patent Application Publication

¥ "Old

ocy

319071 NOILVIITdNad-3d

457
34018

X3AdNI d3LvOIT1d3d

viv
34018
193rgo 1vo01
Ol¥
34018 v1ivd

(/|o§

Patent Application Publication = May 12,2016 Sheet S of 11 US 2016/0134696 A1

—
[72]
Q
2 3
s § g
cun:_g
o 98 3
L N
Q o
M
a e}
C :
S ™ .
S O
o
SN —
0 LL

Cluster ID
510 J

500
\‘

US 2016/0134696 Al

May 12,2016 Sheet 6 of 11

Patent Application Publication

49 'Old

3714 313730 404
HOL1VYNDIS3IA .LSINDIYF1L3T13A.
X3ANI Tv9OTD OL ‘TLI¥M

089 | +
1S3N0D3Y 3137340 JLVILINI
0.9 1 *
314
099 -1 d31313d 40 3011ON 3AIFD3H

4/ 059

V9 "OId

3714 d3Av0O1dN 404 JHOLVYNOIS3A
ogg «1 «V1Va. X3AANI TvF0T1D OL ‘TLIHM
3714 d3Avo1dn 3401S
029 *
IN3ITO
019 -] WO¥d 31714 d3avO1dN JAIF03d

v(009

L 'Old

US 2016/0134696 Al

¢1SIX3 SYOI1d3d

(S)¥211d3d INVANNd3IYd IAONIY INYANNa3Y

05/ 1 S3A

¢1S3N03Y 313734

1S3ND3Y 313173A SS300dd YILNNOONI

gL 1 S3A

May 12,2016 Sheet 7 of 11

0cs

X3ANI
oL] va019 40 NVYOS LONANOD

v(00.

Patent Application Publication

US 2016/0134696 Al

May 12,2016 Sheet 8 of 11

Patent Application Publication

8 'Old

X3IANI Tv4019 31vddn ANV
H431SNTO JOVHOLS INFH3I44Id
vV 0L 1S3N03d 313730 IHL
ONILVILINI 4315070 3OVHOLS

09g ~1____FHLINO¥4 103r80 AdOD

0€8

X3IANI
V8019 NI SAH0O3d d31v13d
ANV v¥OI1d3yd 31v3I1dNd-3d

£183N03Y
313734 IAVH SvII1d3d
1V

A

é¥YOld3y

JAITYIHLONY
or8

¢S1SIX3 HO1VYNDIS3AA

S3A NOILYQ17dNd-3d

0c8

123rd0 404

018~ 1S3ND3Y 31373A ¥YILNNOONI

(/l 0ss

US 2016/0134696 Al

May 12,2016 Sheet 9 of 11

Patent Application Publication

6 'Old

0€6 71

.d3dNa3d, sy (S)valnd3d
a3LvoIdna-3a 3LvNoIS3A
0L X3AANI 1v9019 31vadn

3

026 71

a31voildna-3a 39 ol (S)vdild3ay
ININYILAA OL VIHILIED AlddY

)

016 1

S1S3ND3d 3137340 ON HLIM
SVYOITd3d J1dILTNIN AJILN3AI

v(0SZ

US 2016/0134696 Al

May 12,2016 Sheet 10 of 11

Patent Application Publication

0L 'Old

NOILYO0OT1 d3IdILN3Al
WOY4 103rg0 In3idL3y

ov0lL *
NOILYOO1
0s01] VOIld3d .1S39, AdILN3AI
X3AdNI TvE019
0zol -1 NI'SNOILYDO01.103rd0 dN MO0

3

0L0L

103rgo J04 1S3N03Y 3IAIF03N

1/88

US 2016/0134696 Al

May 12,2016 Sheet 11 of 11

Patent Application Publication

Ll "OId

padnpa:zQuoneso].zZ
‘1senbayele|aq:FQUONEI0 T AA
‘e1eq :QUONBIO T AA

1senbayeleleq: L QuUONE20T:ZZ
‘eje(:|QuUoNes0T:ZZ
‘1senbayele|e:COUCIIBI0OTAA
‘B}JR(Q:SOUCHBOOTAA

1s8nbay 81919 ZOUCIEO0 T AA
‘eJe:z0uUoNeI0 XX

EjeQ: L QUONEI0TAA
‘eJeq: | QUOIEa0T XX

l¥oIPueH

les|pueH

L ZoIpueH

L1S|pueH

pJo2a. uoneubisep uonesijdnp-aqg

a|pueH juajuo)

ocll

A

J

<
oLl

v/oo:

US 2016/0134696 Al

ASYNCHRONOUS DISTRIBUTED
DE-DUPLICATION FOR REPLICATED
CONTENT ADDRESSABLE STORAGE

CLUSTERS

RELATED APPLICATIONS

[0001] This application is a continuation of U.S. patent
application Ser. No. 14/265,298 filed Apr. 29, 2014, which is
a continuation of U.S. patent application Ser. No. 12/644,693
filed on Dec. 22, 2009 (now U.S. Pat. No. 8,712,974), which
claims priority under 35 U.S.C. §119 based on U.S. Provi-
sional Patent Application No. 61/139,857, filed Dec. 22,
2008, the disclosures of which are all incorporated by refer-
ence herein in their entirety.

BACKGROUND

[0002] The enterprise computing landscape has undergone
a fundamental shift in storage architectures in that central-
service architecture has given way to distributed storage clus-
ters. As businesses seek ways to increase storage efficiency,
storage clusters built from commodity computers can deliver
high performance, availability and scalability for new data-
intensive applications at a fraction of the cost compared to
monolithic disk arrays. To unlock the full potential of storage
clusters, the data is replicated across multiple geographical
locations, thereby increasing availability and reducing net-
work distance from clients.

[0003] Data de-duplication can identify duplicate objects
and reduce required storage space by removing duplicates. As
aresult, data de-duplication is becoming increasingly impor-
tant for a storage industry and is being driven by the needs of
large-scale systems that can contain many duplicates.

SUMMARY

[0004] According to one implementation, a method may be
performed by a device of a group of devices in a distributed
data replication system. The method may include storing an
index of objects in the distributed data replication system, the
index being replicated while the replicas of objects are stored
locally by the plurality of devices in the distributed data
replication system. The method may also include conducting
a scan of at least a portion of the index and identifying a
redundant replica of the at least one of the objects based on the
scan of the index. The method may further include de-dupli-
cating the redundant replica by writing a de-duplication
record to a portion of the index.

[0005] According to another implementation, a device, ofa
group of devices in a distributed data replication system, may
include means for storing an index of objects in the distrib-
uted data replication system; means for writing changes to the
index to designate a status of a replica of one of the objects;
means for replicating the changes to the index to the plurality
of devices in the distributed data replication system; means
for conducting a scan of at least a portion of the index; means
for identifying a redundant replica of the one of the objects
based on the scan of the index; and means for de-duplicating
the redundant replica.

[0006] According to yet another implementation, a system
may include a memory to store instructions, a data store of
objects and an index of the objects in the data store; and a
processor. The processor may execute instructions in the
memory to identify a status of an object in the data store, the
status relating to whether the object has a replica and whether

May 12, 2016

a delete request is associated with the object, write a de-
duplication designation record to the index based on the status
of'the object, replicate the index with the de-duplication des-
ignation record to one or more devices, and receive, from one
of the one or more devices, other de-duplication designation
records associated with the object, where the de-duplication
designation record and the other de-duplication designation
records provide a basis for deletion of one or more replicas of
the object.

[0007] According to still another implementation, a
method performed by one or more devices may include stor-
ing an index of objects in multiple devices within a distributed
data replication system and replicating the index throughout
the distributed data replication system while storing the
objects locally, where each device is responsible for de-du-
plication of the objects within a particular subset of the index;
conducting a scan of each of the subsets of the index to
identify redundant replicas based on the scan; de-duplicating
the redundant; and automatically copying an object from a
device with a replica having an ongoing delete request to a
device with a replica having been previously de-duplicated.
[0008] According to a further implementation, a computer-
readable memory may include computer-executable instruc-
tions. The computer-readable memory may include one or
more instructions to conduct a scan of a portion of a index of
objects in a distributed data replication system; one or more
instructions to identify a redundant replica of one of the
objects based on the scan of the portion of the index; one or
more instructions to de-duplicate the redundant replica.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] The accompanying drawings, which are incorpo-
rated in and constitute a part of this specification, illustrate
one or more embodiments described herein and, together with
the description, explain these embodiments. In the drawings:
[0010] FIG. 1 is a diagram of an exemplary network in
which systems and methods described herein may be imple-
mented;

[0011] FIG. 2is adiagram of an exemplary configuration of
the file system of FIG. 1;

[0012] FIG. 3 is a diagram of exemplary components of a
storage cluster of FIG. 1;

[0013] FIG. 4 is a functional block diagram of an exem-
plary storage cluster of FIG. 1;

[0014] FIG.5is a diagram of an exemplary record structure
that may be used within an index of a distributed multi-master
data replication system;

[0015] FIGS. 6A-6B areflowcharts of exemplary processes
for managing client-initiated upload/delete operations;
[0016] FIG. 7 is a flowchart of exemplary process for per-
forming de-duplication in a distributed multi-master data rep-
lication system;

[0017] FIG. 8 is a flowchart of exemplary process for man-
aging a delete request;

[0018] FIG. 9 is a flowchart of exemplary process for
removing duplicate replicas;

[0019] FIG. 10 is a flowchart of exemplary process for
optimizing bandwidth consumption and reducing latency in a
distributed multi-master data replication system; and

[0020] FIG. 11 is a diagram illustrating a portion of an
exemplary global index according to an implementation
described herein.

US 2016/0134696 Al

DETAILED DESCRIPTION

[0021] The following detailed description refers to the
accompanying drawings. The same reference numbers in dif-
ferent drawings may identify the same or similar elements.
Also, the following detailed description does not limit the
invention.

[0022] Systems and/or methods described herein may pro-
vide an asynchronous distributed de-duplication algorithm
for replicated storage clusters that provides availability, live-
ness and consistency guarantees for immutable objects.
Implementations described herein may use the underlying
replication layer of a distributed multi-master data replication
system to replicate a content addressable index (also referred
to herein as a “global index”) between different storage clus-
ters. Each object of the global index may have a unique
content handle (e.g., a hash value or digital signature). In
implementations described herein, the removal process of
redundant replicas may keep at least one replica alive.

Exemplary Network Configuration

[0023] FIG. 1is a diagram of an exemplary system 100 in
which systems and methods described herein may be imple-
mented. System 100 may include clients 110-1 through
110-N (referred to collectively as clients 110, and individu-
ally as client 110) and storage clusters 120-1 through 120-M
(referred to collectively as storage clusters 120, and individu-
ally as storage cluster 120) connected via a network 130.
Storage clusters 120 may form a file system 140 (as shown by
the dotted line in FIG. 1).

[0024] Network 130 may include one or more networks,
such as a local area network (LAN), a wide area network
(WAN), a telephone network (e.g., the Public Switched Tele-
phone Network (PSTN)), an intranet, the Internet, a similar or
dissimilar network, or a combination of networks. Clients
110 and storage clusters 120 may connect to network 130 via
wired and/or wireless connections.

[0025] Clients 110 may include one or more types of
devices, such as a personal computer, a wireless telephone, a
personal digital assistant (PDA), a lap top, or another type of
communication device, and/or a thread or process running on
one of these devices. In one implementation, a client 110
includes, or is linked to, an application on whose behalf client
110 communicates with storage cluster 120 to read or modity
(e.g., write) file data.

[0026] Storage cluster 120 may include one or more server
devices, or other types of computation or communication
devices, that may store, process, search, and/or provide infor-
mation in a manner described herein. In one implementation,
storage cluster 120 may include one or more servers (e.g.,
computer systems and/or applications) capable of maintain-
ing a large-scale, random read/write-access data store for
files. The data store of storage cluster 120 may permit an
indexing system to quickly update portions of an index if a
change occurs. The data store of storage cluster 120 may
include one or more tables (e.g., a document table that may
include one row per uniform resource locator (URL), auxil-
iary tables keyed by values other than URLs, etc.). In one
example, storage cluster 120 may be included in a distributed
storage system (e.g., a “Bigtable” as set forth in Chang et al.,
“Bigtable: A Distributed Storage System for Structured
Data,” Proc. of the 7th OSDI, pp. 205-218 (November 2006))
for managing structured data (e.g., a random-access storage

May 12, 2016

cluster of documents) that may be designed to scale to a very
large size (e.g., petabytes of data across thousands of servers).
[0027] Although not shown in FIG. 1, system 100 may
include a variety of other components, such as one or more
dedicated consumer servers or hubs. A consumer server, for
example, may store a read-only copy of a data store from one
or more storage clusters 120 for access by clients 110. A hub,
for example, may store a read-only copy of a data store from
one or more storage clusters 120 for distribution to one or
more consumer servers.

Exemplary Storage Cluster Configuration

[0028] FIG. 2 is adiagram of an exemplary configuration of
the file system 140. As shown in FIG. 2, file system 140 may
include storage clusters 120-1, 120-2, 120-3, and 120-4. In
one implementation, file system 140 may be a distributed
multi-master data replication system, where each of storage
clusters 120-1, 120-2, 120-3, and 120-4 may act as a master
server for the other storage clusters. In file system 140, data
may be replicated across storage clusters 120-1,120-2,120-3,
and 120-4 (e.g., in multiple geographical locations) to
increase data availability and reduce network distance from
clients (e.g., clients 110). Generally, distributed objects and
references may be dynamically created, mutated, cloned and
deleted in different storage clusters 120 and an underlying
data replication layer (not shown) maintains the write-order
fidelity to ensure that all storage clusters 120 will end up with
the same version of data. Thus, the data replication layer
respects the order of writes to the same replica for a single
object.

[0029] A global index of all of the objects in the distributed
multi-master data replication system may be associated with
each storage cluster 120. Each stored object may be listed by
a unique content handle (such as a hash value, digital signa-
ture, etc.) in the global index. Selected storage clusters may
each be assigned to be responsible for a distinct range of the
content handles in the global index. For example, a single
storage cluster 120 may be responsible for de-duplication of
objects associated with particular content handles. Changes
to the global index made by one storage cluster may be
replicated to other storage clusters.

[0030] Although FIG. 2 shows exemplary functional com-
ponents of file system 140, in other implementations, file
system 140 may contain fewer, additional, different, or dif-
ferently arranged components than depicted in FIG. 2. In still
other implementations, one or more components of file sys-
tem 140 may perform one or more tasks described as being
performed by one or more other components of file system
140.

[0031] FIG. 3 is a diagram of exemplary components of
storage cluster 120. Storage cluster 120 may include a bus
310, a processor 320, a main memory 330, a read-only
memory (ROM) 340, a storage device 350, an input device
360, an output device 370, and a communication interface
380. Bus 310 may include one or more conductors that permit
communication among the components of storage cluster
120.

[0032] Processor 320 may include any type of processor or
microprocessor that may interpret and execute instructions.
Main memory 330 may include a random access memory
(RAM) or another type of dynamic storage device that may
store information and instructions for execution by processor
320. ROM 340 may include a ROM device or another type of
static storage device that may store static information and

US 2016/0134696 Al

instructions for use by processor 320. Storage device 350 may
include a magnetic and/or optical recording medium and its
corresponding drive. For example, storage device 350 may
include one or more local disks 355 that provide persistent
storage. In one implementation, storage cluster 120 may
maintain metadata, for objects stored in file system 140,
within one or more computer-readable mediums, such as
main memory 330 and/or storage device 350. For example,
storage cluster 120 may store a global index within storage
device 350 for all the objects stored within a distributed
multi-master data replication system.

[0033] Input device 360 may include one or more mecha-
nisms that permit an operator to input information to storage
cluster 120, such as a keyboard, a keypad, a button, a mouse,
a pen, etc. Output device 370 may include one or more
mechanisms that output information to the operator, includ-
ing a display, a light emitting diode (LED), etc. Communica-
tion interface 380 may include any transceiver-like mecha-
nism that enables storage cluster 120 to communicate with
other devices and/or systems. For example, communication
interface 380 may include mechanisms for communicating
with other storage clusters 120 and/or clients 110.

[0034] FIG. 4 illustrates a functional block diagram of stor-
age cluster 120. As shown in FIG. 4, storage cluster 120 may
include data store 410 and de-duplication logic 420. In one
implementation, as illustrated in FIG. 4, data store 410 may
be provided within storage cluster 120. In other implementa-
tions, some or all of data store 410 may be stored within one
or more other devices of system 100 in communication with
storage cluster 120, such as external memory devices or
devices associated with an indexing system (not shown).
[0035] Data store 410 may include a replicated index store
412 and a local object store 414. Replicated index store 412
may be included as part of the replication layer of the distrib-
uted multi-master data replication system. Replicated index
store 412 may store information associated with the global
index. At least a portion of replicated index store 412 may be
replicated on multiple storage clusters 120. The number of
replicas for each replicated index store 412 may be user-
configurable. Local object store 414 may store objects locally
within storage cluster 120. Local object store 414 may
include files, such as images or videos uploaded by clients
(e.g., clients 110).

[0036] De-duplication logic 420 may include logic to
remove redundant replicas from storage clusters within the
distributed multi-master data replication system (e.g., storage
clusters 120-1, 120-2, 120-3, and 120-4). De-duplication
logic 420 for each participating storage cluster may be
assigned to be responsible for a particular section of the
global index. For example, de-duplication logic 420 may be
assigned to a particular range of content handles for the global
index. Thus, only one storage cluster within the distributed
multi-master data replication system may be able to perform
destructive operations (e.g., deletion of replicas) on a repli-
cated object within the system.

[0037] To facilitate de-duplication, records may be gener-
ated by de-duplication logic 420 and appended to a portion of
the global index associated with a particular content handle.
Records may include, for example, a “Data” designator for
initiating a live replica, a “DeleteRequest” designator for
indicating an ongoing delete request for a replica, and a
“Deduped” designator for indicating a replica that has been
selected for de-duplication. Record formats and uses are
described in more detail below.

May 12, 2016

[0038] Although FIG. 4 shows exemplary functional com-
ponents of storage cluster 120, in other implementations,
storage cluster 120 may contain fewer, additional, different,
or differently arranged functional components than depicted
in FIG. 4. In still other implementations, one or more func-
tional components of storage cluster 120 may perform one or
more other tasks described as being performed by one or more
other functional components.

Exemplary Record Structure

[0039] FIG. 5 provides an illustration of an exemplary
record structure 500 for a de-duplication designation record
that may be written to the global index in an exemplary
implementation. The de-duplication designation record may
be associated in the global index with a particular content
handle of an object replica. As shown in FIG. 5, record struc-
ture 500 may include storage cluster identifier (“ID”) section
510, a storage location section 520, and designation section
530. Storage cluster identification section 510 may include a
unique identification (e.g., “Cluster ID”) for the storage clus-
ter 120 that is storing the object replica for which the record
is being written. Location section 520 may include an address
for the location of the replica within storage cluster 120 that is
identified by storage cluster identification section 510. Des-
ignation section 530 may include, for example, a “Data”
designator, a “DeleteRequest” designator, or a “Deduped”
designator.

[0040] Record structure 500 may be listed in the form of
“ClusterID:Location:Designation.” For example, a record for
a replica may be added to the global index by storage cluster
120-1 with the record “01:234523/2000:DeleteRequest,”
where “01” is the cluster ID for storage cluster 120-1,
“234523/2000” is the location, within storage cluster 120-1 at
which the replica is stored, and “DeleteRequest” is the des-
ignator. A record for another replica of the same object in
storage cluster 120-2 may be “02:234544/1000:Data,” where
“02” is the cluster ID for storage cluster 120-2, “234544/
1000 is the location within storage cluster 120-2, and “Data”
is the designator.

Exemplary Process Flows

[0041] FIGS. 6A and 6B are flowcharts of exemplary pro-
cesses for managing client-initiated upload/delete operations.
FIG. 6 A depicts a flowchart for an exemplary process 600 of
uploading an object from a client. FIG. 6B depicts a flowchart
for an exemplary process 650 of removing an object deleted
by a client. In one implementation, processes 600 and 650
may be performed by one of storage clusters 120. Processes
600 and 650 may be implemented in response to client (e.g.,
client 110) activities. For particular examples of processes
600 and 650 described below, reference may be made to
storage cluster 120-1 of file system 140, where storage cluster
120-1 includes a cluster ID of “01.”

[0042] Referring to FIG. 6A, process 600 may begin when
an uploaded file is received from a client (block 610). For
example, storage cluster 120-1 may receive a new file from
one of clients 110. The uploaded file may be stored (block
620) and a “Data” designator for the uploaded file may be
written to the global index (block 630). For example, storage
cluster 120-1 may store the uploaded file in a memory (e.g.,
storage device 350) and add a content handle for the object to
the global index. Storage cluster 120-1 may also write a data

US 2016/0134696 Al

record (e.g., “Ol:Location:Data™) to the replicated global
index addressed by the content handle of the object.

[0043] Referring to FIG. 6B, process 650 may begin when
anotice of a deleted file is received (block 660). For example,
storage cluster 120-1 may receive an indication that one of
clients 110 has deleted afile. A delete request may be initiated
(block 670) and a “DeleteRequest” designator for the deleted
file may be written to the global index (block 680). For
example, storage cluster 120-1 may initiate a delete requestto
asynchronously remove the delete file from file system 140.
Storage device 120-1 may also write a “DeleteRequest”
record (e.g., “01:Location:DeleteReqeust”) to the replicated
global index addressed by the content handle of the object.
[0044] FIG. 7 is a flowchart of an exemplary process 700
for performing de-duplication in a distributed multi-master
data replication system (e.g., file system 140). In one imple-
mentation, process 700 may be performed by one of storage
clusters 120. In another implementation, some or all of pro-
cess 700 may be performed by another device or a group of
devices, including or excluding storage cluster 120. Process
700 may be implemented periodically in each storage cluster
120 and may include a scan of all or a portion of the objects in
the storage cluster 120. For particular examples of process
700 described below, reference may be made to storage clus-
ters 120-1 and 120-2 of file system 140, where storage cluster
120-1 includes a cluster ID of “01” and storage cluster 120-2
includes a cluster ID of “02.”

[0045] As illustrated in FIG. 7, process 700 may begin with
conducting a scan of the global index (block 710). For
example, storage cluster 120-1 (using, e.g., de-duplication
logic 420) may conduct a scan of all or a portion of the objects
listed in the global index. The scan may identify, for example,
multiple replicas and/or objects marked for deletion.

[0046] It may be determined if a delete request is encoun-
tered (block 720). For example, storage cluster 120-1 may
encounter an object in the global index that includes a delete
request designator (e.g., “02:Location:DeleteReqeust”) from
another storage cluster (e.g., from storage cluster 120-2). If it
is determined that a delete request is encountered (block
720-YES), then the delete request may be processed (block
730). For example, storage cluster 120-1 may process the
delete request as described in more detail with respect to FIG.
8.

[0047] Ifitis determined that a delete request is not encoun-
tered (block 720-NO), then it may be determined if redundant
replicas exist (block 740). Redundant replicas may be repli-
cated objects in different locations that have no outstanding
delete requests for the object. For example, storage cluster
120-1 may identify multiple replicas for the same object that
correspond to a content handle for which storage cluster
120-1 is responsible. The multiple replicas may be stored, for
example, in different storage clusters (e.g., storage cluster
120-1 and storage cluster 120-2) or in different locations
within the same storage cluster.

[0048] If it is determined that redundant replicas exist
(block 740-YES), then the redundant replicas(s) may be
removed (block 750). For example, storage cluster 120-1 may
remove the redundant replica(s) as described in more detail
with respect to FIG. 9. If it is determined that redundant
replicas do not exist (block 740-NO), then the process may
return to block 710, where another scan of the global index
may be conducted (block 710).

[0049] FIG. 8 illustrates exemplary operations associated
with the processing of a delete request of block 730 of FIG. 7.

May 12, 2016

A delete request may be encountered for an object (block
810). For example, a scan being conducted by storage cluster
120-1 may identify a content handle in the global index with
adelete request designator previously written by storage clus-
ter 120-1 to delete a replica in a certain storage cluster (e.g.,
“02:Location:DeleteRequest™). Assuming that storage clus-
ter 120-1 is responsible for the content handle, storage cluster
120-1 may apply operations to determine if the replica can
now be de-duplicated.

[0050] It may be determined if a de-duplication designator
exists (block 820). For example, storage cluster 120-1 may
review other records in the global index associated with the
content handle to determine if a de-duplication designator
exists (e.g., 02:Location:Deduped”). If it is determined that a
de-duplication designator exists (block 820—YES), then the
replica and the related records in the global index may be
de-duplicated (block 830). For example, storage cluster
120-1 may initiate a delete request to delete the replica in
storage cluster 120-2 (if any) and delete any records (e.g.,
“02:Location:*”, where “*” may be any designator) from the
global index that relate to the content handle for the deleted
replica.

[0051] Ifit is determined that a de-duplication designator
does not exists (block 820—NO), then it may be determined
if another live replica exists (block 840). For example, storage
cluster 120-1 may review the content handle for the global
index to determine whether another live replica exists for the
object. The global index may include, for example, a data
record for that content handle from another storage cluster
(e.g., “03:Location:Data”).

[0052] If another live replica exists (block 840—YES),
then the replica may be de-duplicated as described above with
respect to block 830. If another live replica does not exist
(block 840—NO), then it may be determined if all replicas
have delete requests (block 850). For example, storage cluster
120-1 may review the content handle for the global index to
determine whether all the replicas associated with the content
handle have an outstanding delete request (e.g., “*:*:Del-
eteRequest”, where “*”” may be any ClusterID and any loca-
tion, respectively).

[0053] If it is determined that all replicas have delete
requests (block 850—YES), then the replica may be de-
duplicated as described above with respect to block 830. Ifit
is determined that all replicas do not have delete requests
(block 850—NO), then the object may be copied from a
storage cluster that initiated a delete request to a different
storage cluster and the global index may be updated (block
860). For example, in response to the record “02:Location:
DeleteRequest,” storage cluster 120-1 may copy the object
from storage cluster 120-2 to another storage cluster 120-3
for which there is a de-duplication record (e.g., “03:Location:
Deduped”) and no outstanding delete request. Storage cluster
120-1 may delete the previous de-duplication record (e.g.,
“03:Location:Deduped”) associated with the replica and
write a data designator (e.g., “03:Location:Data”) to the cor-
responding content handle of the object in the global index.

[0054] FIG. 9 illustrates exemplary operations associated
with the removing of duplicate references of block 750 of
FIG. 7. Multiple replicas with no delete requests may be
identified (block 910). For example, storage cluster 120-1
may review the global index and identify two or more replicas
that have no outstanding delete requests corresponding to a
content handle for which storage cluster 120-01 is respon-
sible.

US 2016/0134696 Al

[0055] Criteria to determine replica(s) to be de-duplicated
may be applied (block 920). For example, storage cluster
120-1 may apply criteria to de-duplicate the redundant replica
that may be stored within storage cluster 120-1. The criteriato
de-duplicate redundant replicas may be based on a variety of
factors, such as geographic proximity of the replicas, avail-
able storage capacity at a storage cluster, or other factors.
Storage cluster 120-1 (e.g., using de-duplication logic 420)
may apply the criteria to the two or more replicas that have no
outstanding delete requests identified above. In some imple-
mentations, multiple replicas may be identified to be de-
duplicated. In other implementations, storage cluster 120-1
may leave more than one live replica (e.g., a replica not
marked for de-duplication).

[0056] The global index may be updated to designate de-
duplicated replica(s) as “Deduped” (block 930). For example,
for each de-duplicated replica, storage cluster 120-1 may
delete the previous data record (e.g., “02:Location:Data”)
associated with the replica and write a de-duplication desig-
nator (e.g., “02:Location:Deduped”) to the corresponding
content handle in the global index.

[0057] De-duplication of the redundant replicas may be
accomplished using de-duplication messages that are repli-
cated as a part of the global index. The replicas marked for
de-duplication may be stored within storage cluster 120-1 or
within another storage cluster (e.g., storage cluster 120-2,
120-3, 120-4, etc.). In one implementation, storage cluster
120-1 may delete locally-stored replicas and the correspond-
ing “01:Location:Data” record from the global index and add
“01:Location:Deduped” to the global index. Storage cluster
120-1 may also initiate delete messages, using the replicated
global index, to delete replicas stored in other clusters.
[0058] FIG. 10 provides a flowchart of an exemplary pro-
cess 1000 for optimizing bandwidth consumption and reduc-
ing latency in a distributed multi-master data replication sys-
tem (e.g., file system 140). In one implementation, process
1000 may be performed by one of storage clusters 120. In
another implementation, some or all of process 1000 may be
performed by another device or group of devices, including or
excluding storage cluster 120. For particular examples of
process 1000 described below, reference may be made to
storage cluster 120-1 of file system 140, where the storage
cluster 120-1 includes a cluster ID of “01.”

[0059] Asillustrated in FIG. 1000, process 1000 may begin
with receiving a request for an object (block 1010). For
example, storage cluster 120-1 may receive a request from a
client (e.g., client 110-1) to obtain an object.

[0060] Object locations may be looked up in the global
index (block 1020). For example, storage cluster 120-1 may
look up the replica location(s) for the object in the replicated
global index using the content handle of the object.

[0061] The “best” replica location may be identified (block
1030). For example, assuming that more than one replica is
available, storage cluster 120-1 may determine the “best”
replica to retrieve to minimize network resources. For
example, the “best” replica may be the replica that has the
closest geographic location to storage cluster 120-1. In other
implementations, the “best” replica may be based on a com-
bination of available network connectivity, geographic loca-
tion, and/or other criteria. Thus, in some implementations, the
“best” replica for the object may be stored locally within
storage cluster 120-1.

[0062] Theobject may beretrieved from the identified loca-
tion (block 1040). For example, storage cluster 120-1 may

May 12, 2016

request the “best” replica from the closest available storage
cluster and receive the replica to satisfy the client request.
Storage cluster 120-1 may then send the replica to the client.

EXAMPLES

[0063] FIG. 11 provides a portion 1100 of an exemplary
global index according to an implementation described
herein. The index may include, among other information, a
content handle column 1110 and a De-duplication designa-
tion record column 1120. Assume, in exemplary index por-
tion 1100, a distributed multi-master data replication system
includes three storage clusters, XX, Y'Y, and ZZ. A de-dupli-
cation algorithm may run periodically in each of storage
clusters XX, YY, and ZZ and may scan all or a portion of the
global index. Also, records (e.g., Data, DeleteRequest, and
Deduped) may be written by one of storage clusters XX, YY,
or 77 to the global index associated with a particular object
content handle. Modifications to the global index may be
replicated to all other participating clusters (e.g., the remain-
ing of storage clusters XX, YY, and Z7).

[0064] As shown in FIG. 11, index portion 1100 includes
content handles and associated delete designation records for
four objects. “Handlel1” has records indicating replicas are
stored at storage cluster XX (“XX:Location01:Data”) and
storage cluster YY (“YY:Location01:Data™), respectively.
“Handle21” has a record indicating a replica is stored at
storage cluster XX (“XX:Location02:Data”) and another rep-
lica at storage cluster YY has an ongoing delete request (“YY:
Location:02:DeleteRequest™). “Handle31” has records indi-
cating replicas are stored at storage cluster YY (“XX:
Location03:Data”) and storage cluster ZZ (“ZZ:Location01:
Data”), respectively. “Handle31” also has two records
indicating the replicas have ongoing delete requests at storage
cluster YY (“YY:Location03:DeleteRequest™) and storage
cluster ZZ (“7ZZ:Location01:DeleteRequest”). “Handle41”
has records indicating a replica is stored at storage cluster YY
(“XX:Location04:Data”) and a record indicating the replica
with an ongoing delete request at storage cluster YY (“YY:
Location04:DeleteRequest”). Handle41 also has one record
indicating de-duplication of a replica has occurred (“ZZ:
Location02:Deduped”). The de-duplication algorithm used
by the storage clusters can operate using guidelines consistent
with the principles described herein. Assume storage cluster
XX 1is assigned responsibility for the portion of the global
index including “Handlel1,” “Handle21,” “Handle31,” and
“Handle41.”

[0065] Whenan objectis fully uploaded in a storage cluster,
the storage cluster may write a data record (e.g., “ClusterID:
Location:Data”) to the replicated global index addressed by
the content handle of the object. For example, “XX:Loca-
tion01:Data” and “YY:Location0l:Data” illustrate data
records for replicas of “Handlel1.” Also, “XX:Location02:
Data” illustrates a data record for a replica of “Handle21.”
Similar data records can be seen for “Handle31” and “Handle
41>

[0066] When an object is requested in a storage cluster, the
storage cluster may look up the replica locations in the repli-
cated global index using the content handle of the object and
fetch the replica from the “best” (e.g., closest) cluster. For
example, assuming an object corresponding to “Handle11” is
requested at storage cluster ZZ and that storage cluster YY is
closer to storage cluster ZZ than is storage cluster XX, storage
cluster ZZ may request the object replica corresponding to
“Handle11” from storage cluster YY.

US 2016/0134696 Al

[0067] When an object is deleted in a storage cluster, the
storage cluster may write “ClusterID:Location:DeleteRe-
quest” to the replicated global index addressed by the content
handle of the object. For example, “YY:Location02:Del-
eteRequest” illustrates a record for a deleted replica of
“Handle21” in storage cluster YY. Similarly, “YY:Loca-
tion03:DeleteRequest” and “ZZ:Location:01:DeleteRe-
quest” illustrate records for deleted replicas of “Handle31”
for storage clusters YY and ZZ, respectively.

[0068] If the scan in a storage cluster encounters multiple
replicas that have no outstanding delete requests correspond-
ing to a content handle the storage cluster is responsible for,
the storage cluster may delete redundant replicas of the object
(possibly leaving more than one live replica). For each
deleted replica in another storage cluster, the storage cluster
may delete the data record and write a de-duplication record.
For example, the scan in storage cluster XX may identify that
“Handle11” has records indicating replicas are stored at stor-
age cluster XX (“XX:Location01:Data”) and storage cluster
YY (“YY:Location01:Data™), respectively. Based on criteria
provided for removing redundant references, storage cluster
XX may initiate deletion of the replica at storage cluster YY.
Storage cluster XX may delete the record “YY:Location01:
Data” shown in FIG. 11 and write “YY:Location01:
Deduped” instead.

[0069] Ifthe scan in storage cluster XX encounters a delete
request (e.g., “ClusterID:Location:DeleteRequest™) for a rep-
lica in another storage cluster (e.g., storage cluster YY or Z7)
corresponding to a content handle that storage cluster XX is
responsible for, storage cluster XX may apply the following
analysis. If there is a “Deduped” record for the same storage
cluster and location as the delete request, if there exists
another live replica of the object, or if all replicas have out-
standing delete requests, the storage cluster XX can delete the
replica of the object in storage cluster YY or ZZ (if any) and
delete the records “YY:Location:*” or “ZZ:Location:*.” For
example, the replica for “Handle21” in storage cluster YY and
the record “YY:Location02:DeleteRequest” may be deleted
by storage cluster XX since another live object (indicated by
the record “XX:Location02:Data”) exists. Similarly, the rep-
lica for “Handle31” in storage cluster YY and the record
“YY:Location:03:DeleteRequest” may be deleted by storage
cluster XX since both replicas in storage cluster YY and
storage cluster ZZ have outstanding delete requests.

[0070] Ifstorage cluster XX cannot delete the replica of the
object in storage cluster YY or ZZ (e.g., there is not a
“Deduped” record or another live replica of the object, and all
replicas do not have outstanding delete requests), storage
cluster XX can copy the object from YY or ZZ to another
storage cluster for which there is a de-duplication record and
no outstanding delete request, deleting the de-duplication
record and writing a data record. For example, the replica for
“Handle41” in storage cluster YY (“YY:Location04:Del-
eteRequest”) may trigger storage cluster XX to copy the
object associated with “Handle41” to storage cluster ZZ.
Storage cluster XX may update the global index to change
“ZZ:Location02:Deduped” to “ZZ:Location02:Data.”

[0071] The correctness of the algorithm is straightforward
as all deletion operations on the object are performed only by
the scan process in the storage cluster responsible for its
content handle. The algorithm also transparently deals with
multiple object replicas in the same cluster that have different
locations (e.g. XX:Locationl and XX:Location2).

May 12, 2016

CONCLUSION

[0072] Systems and/or methods described herein may store
a global index of objects in a distributed data replication
system and replicate the global index and some of the objects
throughout the distributed data replication system. A storage
cluster may be assigned as the responsible entity for de-
duplication within a particular subset of the global index. The
storage cluster may conduct a scan of the subset of the global
index and identify redundant replicas based on the scan. The
storage cluster may de-duplicate the redundant replicas
stored locally or in a remote storage cluster.

[0073] The foregoing description of implementations pro-
vides illustration and description, but is not intended to be
exhaustive or to limit the invention to the precise form dis-
closed. Modifications and variations are possible in light of
the above teachings or may be acquired from practice of the
invention.

[0074] For example, in another implementation a synchro-
nous version of the de-duplication algorithm may be used in
which different storage clusters communicate directly rather
than using the replication layer within a distributed data rep-
lication system.

[0075] Also, while series of blocks have been described
with regard to FIGS. 6 A-10, the order of the blocks may be
modified in other implementations. Further, non-dependent
blocks may be performed in parallel.

[0076] It will be apparent that embodiments, as described
herein, may be implemented in many different forms of soft-
ware, firmware, and hardware in the implementations illus-
trated in the figures. The actual software code or specialized
control hardware used to implement embodiments described
herein is not limiting of the invention. Thus, the operation and
behavior of the embodiments were described without refer-
ence to the specific software code—it being understood that
software and control hardware may be designed to implement
the embodiments based on the description herein.

[0077] Further, certain implementations described herein
may be implemented as “logic” or a “component” that per-
forms one or more functions. This logic or component may
include hardware, such as a processor, microprocessor, an
application specific integrated circuit or a field programmable
gate array, or a combination of hardware and software (e.g.,
software executed by a processor).

[0078] It should be emphasized that the term “comprises”
and/or “comprising” when used in this specification is taken
to specify the presence of stated features, integers, steps, or
components, but does not preclude the presence or addition of
one or more other features, integers, steps, components, or
groups thereof.

[0079] Eventhough particular combinations of features are
recited in the claims and/or disclosed in the specification,
these combinations are not intended to limit the disclosure of
the invention. In fact, many of these features may be com-
bined in ways not specifically recited in the claims and/or
disclosed in the specification.

[0080] No element, act, or instruction used in the descrip-
tion of the present application should be construed as critical
or essential to the invention unless explicitly described as
such. Also, as used herein, the article “a” is intended to
include one or more items. Where only one item is intended,
the term “one” or similar language is used. Further, the phrase
“based on,” as used herein is intended to mean “based, at least
in part, on” unless explicitly stated otherwise.

US 2016/0134696 Al

What is claimed is:

1. A computer-implemented method comprising:

at a first device of a plurality of devices of a distributed

storage system, wherein the first device includes one or

more processors and memory storing programs for

execution by the one or more processors:

accessing a global index of objects stored in the distrib-
uted storage system, wherein the global index speci-
fies which of the plurality of devices store replicas of
each object stored in the distributed storage system;

scanning a first portion of the global index;

in response to the scanning, identifying a redundant
replica of one of the objects, wherein the redundant
replica is at a second device of the plurality of devices;

writing a new record to the first portion of the global
index corresponding to the redundant replica,
wherein the new record designates the redundant rep-
lica for de-duplication; and

subsequent to the writing, replicating the first portion of
the global index to the plurality of devices for de-
duplication of the redundant replica at the second
device.

2. The method of claim 1, wherein the first device is des-
ignated as the sole device of the plurality of devices for
selecting redundant replicas of objects identified in the first
portion of the global index.

3. The method of claim 2, wherein a second device is
designated as the sole device of the plurality of devices for
selecting redundant replicas of objects identified in a second
portion of the global index, wherein the second portion is
distinct from the first portion.

4. The method of claim 1, wherein identifying the redun-
dant replica comprises identifying two or more replicas
marked for deletion and selecting one of the records marked
for deletion as the redundant replica.

5. The method of claim 1, wherein identifying the redun-
dant replica comprises identifying two or more replicas not
marked for deletion and selecting one of the records as the
redundant replica based on storage capacity at devices where
the replicas are stored.

6. The method of claim 1, wherein the global index is a
content addressable index.

7. A distributed storage system, comprising a plurality of
devices, each device including:

one or More processors;

memory; and

one or more programs stored in the memory configured for

execution by the one or more processors, the one or more
programs comprising instructions for:

at a first device of the plurality of devices:

accessing a global index of objects stored in the distrib-
uted storage system, wherein the global index speci-
fies which of the plurality of devices store replicas of
each object stored in the distributed storage system;

scanning a first portion of the global index;

in response to the scanning, identifying a redundant
replica of one of the objects, wherein the redundant
replica is at a second device of the plurality of devices;

writing a new record to the first portion of the global
index corresponding to the redundant replica,
wherein the new record designates the redundant rep-
lica for de-duplication; and

May 12, 2016

subsequent to the writing, replicating the first portion of
the global index to the plurality of devices for de-
duplication of the redundant replica at the second
device.

8. The distributed storage system of claim 7, wherein the
first device is designated as the sole device of the plurality of
devices for selecting redundant replicas of objects identified
in the first portion of the global index.

9. The distributed storage system of claim 8, wherein a
second device is designated as the sole device of the plurality
of devices for selecting redundant replicas of objects identi-
fied in a second portion of the global index, wherein the
second portion is distinct from the first portion.

10. The distributed storage system of claim 7, wherein the
instructions for identifying the redundant replica comprise
instructions for identifying two or more replicas marked for
deletion and selecting one of the records marked for deletion
as the redundant replica.

11. The distributed storage system of claim 7, wherein the
instructions for identifying the redundant replica comprise
instructions for identifying two or more replicas not marked
for deletion and selecting one of the records as the redundant
replica based on storage capacity at devices where the repli-
cas are stored.

12. The distributed storage system of claim 7, wherein the
global index is a content addressable index.

13. A non-transitory computer readable storage medium
storing one or more programs configured for execution by a
plurality of devices in a distributed storage system, each
having one or more processors and memory, the one or more
programs comprising instructions for:

at a first device of the plurality of devices:

accessing a global index of objects stored in the distrib-
uted storage system, wherein the global index speci-
fies which of the plurality of devices store replicas of
each object stored in the distributed storage system;

scanning a first portion of the global index;

in response to the scanning, identifying a redundant
replica of one of the objects, wherein the redundant
replica is at a second device of the plurality of devices;

writing a new record to the first portion of the global
index corresponding to the redundant replica,
wherein the new record designates the redundant rep-
lica for de-duplication; and

subsequent to the writing, replicating the first portion of
the global index to the plurality of devices for de-
duplication of the redundant replica at the second
device.

14. The computer readable storage medium of claim 13,
wherein the first device is designated as the sole device of the
plurality of devices for selecting redundant replicas of objects
identified in the first portion of the global index.

15. The computer readable storage medium of claim 14,
wherein a second device is designated as the sole device of the
plurality of devices for selecting redundant replicas of objects
identified in a second portion of the global index, wherein the
second portion is distinct from the first portion.

16. The computer readable storage medium of claim 13,
wherein the instructions for identifying the redundant replica
comprise instructions for identifying two or more replicas
marked for deletion and selecting one of the records marked
for deletion as the redundant replica.

17. The computer readable storage medium of claim 13,
wherein the instructions for identifying the redundant replica

US 2016/0134696 Al May 12, 2016

comprise instructions for identifying two or more replicas not
marked for deletion and selecting one of the records as the
redundant replica based on storage capacity at devices where
the replicas are stored.

18. The computer readable storage medium of claim 13,
wherein the global index is a content addressable index.

#* #* #* #* #*

