US 20180129683A1

a9 United States
a2y Patent Application Publicati

Tran et al.

On (10) Pub. No.: US 2018/0129683 A1l
43) Pub. Date: May 10, 2018

(54) MERGING DATA FROM A SOURCE
LOCATION INTO A TARGET LOCATION

(71) Applicant: EntIT Software LL.C, Sunnyvale, CA
(US)

(72) Inventors: Hoa Binh Nga Tran, Andover, MA
(US); Andrew Allinson Lamb, Boston,
MA (US); Matthew Steven Fuller,
Medfield, MA (US)

(21) Appl. No.: 15/864,246

(22) Filed: Jan. 8, 2018

Related U.S. Application Data

(63) Continuation of application No. 14/398,249, filed on
Oct. 31, 2014, now Pat. No. 9,864,763, filed as
application No. PCT/US2012/040505 on Jun. 1,
2012.

Publication Classification

(51) Int. CL
GOGF 17/30

(52) US.CL
CPC .. GOGF 17/30292 (2013.01); GOGF 17/30563
(2013.01); GOGF 17/30345 (2013.01); GO6F
17/30678 (2013.01)

(2006.01)

(57) ABSTRACT

In an example, data from a source location is merged into a
target location containing existing data, in which the source
location and the target location contain tuples of data. For
each tuple in the source location, during a single operation,
a determination is made as to whether there is a matched
tuple in the target location that satisfies a predetermined
condition. For each matched tuple that satisfies the prede-
termined condition, the matched tuple in the target location
is updated with a count value that is equal to a count of the
matched tuple in the source location and the target location.
In addition, for each tuple that does not have a matched tuple
that satisfies the predetermined condition, the unmatched
tuple is inserted into the target location.

00

FOR EACH TUPLE IN THE SOURCE LOCATION,
DETERMINE WHETHER THERE IS A MATCHED
TUPLE IN THE TARGET LOCATION THAT
SATISFIES A PREDETERMINED CONDITION
302

A

y

FOR EACH MATCHED TUPLE THAT SATISFIES
THE PREDETERMINED CONDITION, UPDATE
THE MATCHED TUPLE IN THE TARGET
LOCATION WITH A COUNT VALUE THAT IS
EQUAL TO THE COUNT IN THE SOQURCE
LOCATION AND THE TARGET LOCATION
304

A 4

FOR EACH TUPLE IN THE SOURCE LOCATION
THAT DOES NOT HAVE A MATCHED TUPLE
THAT SATISFIES THE PREDETERMINED
CONDITION, INSERT THE UNMATCHED TUPLE
INTO THE TARGET LOCATION
308

US 2018/0129683 Al

May 10,2018 Sheet 1 of 12

Patent Application Publication

1INS3y
giueineisay| | Ll L'y ¢ ovl
USEAA JED L 6. L'g z [eel
giueinelsay| | Ll Ly z [l
giueineysey| | Ll Ly L pvel
viueinessy| 2 2z | Lol L el
SN WINGD A X auesn
0E1 NOILYOOT Q3ony3an
001

g UBINEISOY L L4 L'y Z ——0&1
g ueinejssy L Ll L'y b L~ 7]
Y jueineisay L LZ Lo L L ~771

SWeN wunoon A X auesn

0CL NOILYDOT 139dvL
OLN!
JOHIN

g jueinejsey L Ll 4 € ~9L
USBAA JBD b 6L LG Z ~—~vil
Y uginejsay b LT Lol b ~ZLL

SWeN unoo A X auesn

011 NOLLYDOT 308N0S

US 2018/0129683 Al

May 10, 2018 Sheet 2 of 12

Patent Application Publication

90¢
30V4H31NI

¢ 9Ol

1Ndino
{11dNI

9z¢C glz
JINAOW IINACK
ONISSINON ONIHOLYIN 31dNL
¥Ze 4
JINAOW ITNAON
ONIOHIN ONINNVDS
NOILY201 L394VL
Y44
ERipleiol! e
ONIATddY IINAOI
SERRIE ONINNYDS
NOILYDO1 30HN0S
0¢e
ONIATIY 7
HOLYHIdO F1Naon
LNdLNO/LNdNI

0iZ

HIDVYNVYIN ONIOHIN VIV

A

Y

20C
HOSS300¥d

00C
ANIHOVIA

Y

80c
HA0IAEd
HHOMIEN

Patent Application Publication = May 10, 2018 Sheet 3 of 12 US 2018/0129683 A1

0o

FOR EACH TUPLE IN THE SOURCE LOCATION,
DETERMINE WHETHER THERE IS A MATCHED
TUPLE IN THE TARGET LOCATION THAT
SATISFIES A PREDETERMINED CONDITION
302

l

FOR EACH MATCHED TUPLE THAT SATISFIES
THE PREDETERMINED CONDITION, UPDATE
THE MATCHED TUPLE IN THE TARGET
LOCATION WITH A COUNT VALUE THAT IS
EQUAL TO THE COUNT IN THE SOURCE
LOCATION AND THE TARGET LOCATION
304

l

FOR EACH TUPLE IN THE SOURCE LOCATION
THAT DOES NOT HAVE A MATCHED TUPLE
THAT SATISFIES THE PREDETERMINED
CONDITION, INSERT THE UNMATCHED TUPLE
INTO THE TARGET LOCATION
306

FIG. 3

Patent Application Publication = May 10, 2018 Sheet 4 of 12 US 2018/0129683 A1

400
SCAN THE SOURCE SCAN THE TARGET
LOCATION LOCATION
402 404

1 P

RIGHT OUTER JOIN THE SOURCE
LOCATION AND THE TARGET LOCATION
406

MATCHED l
TUPLES

APPLY VALUES
r 408

FILTER MATCHED

TUPLES FILTER TUPLES
414 410
INSERT MATCHED INSERT TUPLES
TUPLES INTO A INTO TARGET
DELETEVECTOR LOCATION
416 412

FIG. 4

Patent Application Publication = May 10, 2018 Sheet 5 of 12 US 2018/0129683 A1

200
SCAN THE SOURCE SCAN TARGET
LOCATION PROJECTIONZ
202 504

1 I

RIGHT OUTER MERGE JOIN THE SOURCE
LOCATION AND THE TARGET PROJECTION2

506
MATCHED l
TUPLES

APPLY VALUES
508

FILTER MATCHED FILTER TUPLES
TUPLES 510
516 —

INSERT MATCHED INSERT TUPLES
TUPLES INTO A
INTO TARGET
DELETEVECTOR FOR PROJECTIONA
TARGET PROJECTION1
512
518
4 \ 4
INSERT MATCHED INSERT TUPLES
TUPLES INTO A
INTO TARGET
DELETEVECTOR FOR PROJECTION2
TARGET PRCOJECTIONZ
520 214

FIG. 5

Patent Application Publication May 10, 2018 Sheet 6 of 12

SCAN THE SOURCE
LOCATION
602

_l

o2}
e
[}

US 2018/0129683 Al

604

SCAN TARGET
PROJECTIONZ

l_I

RIGHT OUTER MERGE JOIN THE SOURCE

LOCATION AND THE TARGET PROJECTION? SCAN
606 DIMENSION
TABLE1
608
A 4
MATCHED Jéi‘g@
TUPLES £10 SCAN
DIMENSION
TABLE2
612
JOIN
\ 4
FILTER MATCHED 814
TUPLES \
== APPLY
616
INSERT MATCHED
TUPLES INTO A F‘LTEzggUPLES
DELETEVECTOR FOR 618
TARGET PROJECTION1
626
v |]
INSERT MATCHED
TSUPLES ,N% A INSERT TUPLES INSERT TUPLES
INTO TARGET INTO TARGET
DELETEVECTOR FOR INTO TARGET
TARGET PROJECTIONZ PROJECTION1 JEC
628 620 622

FIG. 6

Patent Application Publication

May 10, 2018 Sheet 7 of 12

OPERATOR A
702

OPERATOR A
702

REDISTRIBUTE DATA AS

NEEDED

A

OPERATORB
704

OPERATORB
704

FIG. 7A

FIG. 7B

OPERATOR A
702

OPERATOR A
702

BROADCAST

RESEGMENT

OPERATORB
704

OPERATOR B
104

FIG. 7C

FIG. 7D

US 2018/0129683 Al

US 2018/0129683 Al

May 10, 2018 Sheet 8 of 12

Patent Application Publication

08 9ld

¥0.
g J0LVY3dO

¢ JdON
OLAN3S

i 300N
OL dN3IS

207
V 401LVYy3d0O

g8 9ld

¥0Z
8 Hd01lve3do

¢ 34A0ON
OL1 dNIS

L 3G0ON
OL dN3IS

20z
Y d01Lved3do

v8 Old

¥0Z
g H0LVvH3dO

¢ 3dON
OL aN3S

¢ 400N
OLONIS

20z
YV HOLVE3dO

US 2018/0129683 Al

May 10,2018 Sheet 9 of 12

Patent Application Publication

06 Ol

(A
8 ¥O.Lv¥3d0

A 4

{(NOISSINAXH
a3i4103dS NO)

g6 Old

¥0Z
8 ¥0.LVd3dO

h

(NOISSTHIXH
g3141034S NOJ
Yiva LINIWOISIY

v6 Ol

¥0Z
8 ¥0LVH3dO

A 4

(NOISSTHAEXE
d3i4103dS NO)
Y1va LINIWOISTY

viva LINFWOIS3
3AONOL L 3AONOL
2948 ON=S LOES ANES
v

dn €938 IAOW

204
¥ HOLYHEd0

€ 3dONOL
€048 ANES

L 3A0ON O1
1948 dN=S

dN 2938 IAOW

z0Z

¥V HOLYH3d0

£ 300N OL
€948 AN3S

Z3dONOL
2038 dNES

dN 1938 IAON

0L

YV HOLYHEdO

Patent Application Publication = May 10, 2018 Sheet 10 of 12 US 2018/0129683 A1
JOIN
(hash/merge)
06
Redistribute data as Redistribute data as
needed needed
OPERATOR A OPERATORB
702 704
JOIN JOIN
{hash/merge) (hash/merge)
706 708
Resegment on
Join Keys
OPERATOR A OPERATORB QOPERATOR A OPERATORB
702 704 702 704

FIG. 10B

FIG. 10C

Patent Application Publication

JOIN
(hash/merge)
706

Resegment on
Join Keys

May 10, 2018 Sheet 11 of 12

JOIN
(hash/merge)
706

Resegment on
Join Keys

Resegment on
Join Keys

OPERATOR A OPERATOR B
702 704

OPERATOR A OPERATCOR B
702 704

FIG. 10D

FIG. 10E

US 2018/0129683 Al

JOIN JOIN
(hash/merge) (hash/merge)
706 708
\ /
OPERATOR A OPERATOR B OPERATOR A OPERATORB
702 704 702 704

FIG. 10F

FIG. 10G

US 2018/0129683 Al

May 10, 2018 Sheet 12 of 12

Patent Application Publication

L Ol

L8

808

FOVAHILNI
HHOMLAN

snd

¥08
AV1dSIA

818
NOILYOIddVY
ONIDYIN Vivd

o8
SNOILVOITddV XHOMLIEN

vig
W3 LSAS ONILVHAd0

018
WNId3IN
F18vaAvId 431NdNGD

208
H0OSS3004dd

US 2018/0129683 Al

MERGING DATA FROM A SOURCE
LOCATION INTO A TARGET LOCATION

CROSS REFERENCE TO RELATED
APPLICATION

[0001] This is a continuation of U.S. application Ser. No.
14/398,249, having a national entry date of Oct. 31, 2014,
which is a national stage application under 35 U.S.C. § 371
of PCT/US2012/040505, filed Jun. 1, 2012, which are both
hereby incorporated by reference in their entirety.

BACKGROUND

[0002] Loading new data into existing tables is an impor-
tant process in most analytic databases. New data is typically
loaded into existing tables to ensure that the data contained
in the tables is up to date. The new data often includes both
data that is new and data that is an update to existing data.
Existing methods for loading the data typically employ two
separate operations, one operation to load updated data and
another operation to load new data.

BRIEF DESCRIPTION OF THE DRAWINGS

[0003] Features of the present disclosure are illustrated by
way of example and not limited in the following figure(s), in
which like numerals indicate like elements, in which:
[0004] FIG. 1 shows a diagram of a merge operation
between a source location and a target location, according to
an example of the present disclosure;

[0005] FIG. 2 shows a block diagram of a machine that
may implement the merge operation of FIG. 1, according to
an example of the present disclosure;

[0006] FIGS. 3-6, respectively, show flow diagrams of
methods for merging data from a source location into a
target location containing existing data, in which both the
source location and the target location contain tuples of data,
according to examples of the present disclosure;

[0007] FIGS. 7A-7D, 8A-8C, 9A-9C, and 10A-10G,
respectively, depict diagrams of manners in which data may
be redistributed among a plurality of projections, according
to examples of the present disclosure; and

[0008] FIG. 11 illustrates a schematic representation of a
computing device, which may be employed to perform
various functions of the machine depicted in FIG. 2, accord-
ing to an example of the present disclosure.

DETAILED DESCRIPTION

[0009] For simplicity and illustrative purposes, the present
disclosure is described by referring mainly to an example
thereof. In the following description, numerous specific
details are set forth in order to provide a thorough under-
standing of the present disclosure. It will be readily apparent
however, that the present disclosure may be practiced with-
out limitation to these specific details. In other instances,
some methods and structures have not been described in
detail so as not to unnecessarily obscure the present disclo-
sure.

[0010] As used throughout the present disclosure, the term
“includes” means includes but not limited to, the term
“including” means including but not limited to. The term
“based on” means based at least in part on. In addition, the
terms “a” and “an” are intended to denote at least one of a
particular element.

May 10, 2018

[0011] Disclosed herein is a method for merging data from
a source location into a target location containing existing
data, in which both the source location and the target
location contain tuples of data. Also disclosed herein are an
apparatus for implementing the method and a non-transitory
computer readable medium on which is stored machine
readable instructions that implement the method. According
to an example, the method for merging data disclosed here
comprises a Merge statement, which is implemented or
invoked in a Vertica™ column-stored database.

[0012] As discussed in greater detail herein below, in the
method, the merge operation of the present disclosure per-
forms both an update to existing data and an insertion of new
data in the target location during a single merge operation.
As such, compared with conventional data loading opera-
tions, which require separate update and loading operations,
the merge operation of the present disclosure provides a
relatively more efficient manner of loading data containing
both updates and new data into an existing location. Par-
ticularly, in conventional data loading operations, a first
operation is required to update the existing tuples with
changed tuples, and a second operation is required to insert
new tuples. In the second operation, an anti-join operation in
the insert query (NOT IN) is required, thus causing the
second operation to be very slow. In contrast, the merge
operation of the present disclosure is relatively faster
because its query plan does not include anti-join operations
as discussed in greater detail herein.

[0013] With reference first to FIG. 1, there is shown a
diagram 100 of a merge operation between a source location
and a target location, according to an example of the present
disclosure. It should be understood that the data depicted in
FIG. 1 is for purposes of illustration only. In addition, the
data depicted in FIG. 1 is used in various examples through-
out the present disclosure to provide an understanding of the
merge operation of the present disclosure. The merge opera-
tion of the present disclosure may comprise, for instance, a
MERGE statement in an analytic database, such as Ver-
tica™.

[0014] As shown in FIG. 1, the data contained in a source
location 110 is to be merged into the data contained in a
target location 120 to generate a merged location 130.
According to an example, the source location 110, the target
location 120, and the merged location 130 comprise separate
tables or other arrangements stored in separate nodes, e.g.,
databases, memories, disks, servers, client devices, etc.
Alternatively, the source location 110 and the target location
120 comprise data stored in the same node. In any regard,
because the target location 120 typically contains a larger
amount of data than the source location 110, the data
contained in the source location 110 may be merged into the
target location 120. In this regard, the merged location 130
may comprise an updated version of the data contained in
the target location 120.

[0015] Although the source location 110 and the target
location 120 have been depicted as having the same number
of columns, it should be understood that various aspects of
the present disclosure may be implemented in source loca-
tions and target locations having different numbers of col-
umns and data types. In one regard, therefore, various
aspects of the present disclosure may be implemented with
source and target tables that are not the same schema.
[0016] The data contained in each of the source location
110 and the target location 120 is depicted as being arranged

US 2018/0129683 Al

in tables formed of respective tuples, in which, each of the
tuples includes a user identification (UserID), two-dimen-
sional geographic coordinates (X, Y), a count, and a name of
a business. In the example of FIG. 1, one of the tuples 112
in the source location 110 is depicted as matching one of the
tuples 122 in the target location 120. In addition, the
remaining two tuples 114 and 116 in the source location 110
are depicted as not matching any of the tuples 122-126 in the
target location 120. In this regard, the tuple 122 in the target
location 120 is to be updated and the tuples 114 and 116 in
the source location 110 are to be inserted into the target
location 120 during the merge operation.

[0017] As discussed in greater detail herein, both the
updating and the inserting of the data from the source
location 110 into the target location 120 are performed
during a single merge operation. Particularly, the single
merge operation of the present disclosure requires only a
single scan to be performed on the source location 110 and
a single scan to be performed on the target location 120. In
addition, the single merge operation of the present disclosure
does not require an anti-join operation. In contrast, conven-
tional operations that seek to load new data into an existing
table require that a first scan be performed to update modi-
fied data and that a second scan, which includes an anti-join
operation, be performed to insert new data. As such, the
merge operation of the present disclosure may generally be
more efficient as compared with conventional loading opera-
tions.

[0018] Turning now to FIG. 2, there is shown a block
diagram of a machine 200 that may implement the merge
operation of FIG. 1, according to an example of the present
disclosure. It should be understood that the machine 200
may include additional components and that one or more of
the components described herein may be removed and/or
modified without departing from a scope of the machine
200.

[0019] The machine 200 is depicted as including a pro-
cessor 202, a data store 204, an input/output interface 206,
and a data merging manager 210. The machine 200 com-
prises any of, for instance, a server, a computer, a laptop
computer, a tablet computer, a personal digital assistant, a
cellular telephone, or other electronic apparatus that is to
perform a method for merging data from a source location
into a target location disclosed herein. The machine 200 may
store the target location and/or may manage the storage of
data in a target location stored in a separate machine, for
instance, through a network device 208, which may com-
prise, for instance, a router, a switch, a hub, etc.

[0020] The data merging manager 210 is depicted as
including an input/output module 212, a source location
scanning module 214, a target location scanning module
216, a tuple matching module 218, an operator applying
module 220, a filter applying module 222, a merging module
224, and a processing module 226. The processor 202,
which may comprise a microprocessor, a micro-controller,
an application specific integrated circuit (ASIC), or the like,
is to perform various processing functions in the machine
200. One of the processing functions includes invoking or
implementing the modules 212-226 of the data merging
manager 210 as discussed in greater detail herein below.
[0021] According to an example, the data merging man-
ager 210 comprises a hardware device, such as a circuit or
multiple circuits arranged on a board. In this example, the
modules 212-226 comprise circuit components or individual

May 10, 2018

circuits. According to another example, the data merging
manager 210 comprises a volatile or non-volatile memory,
such as dynamic random access memory (DRAM), electri-
cally erasable programmable read-only memory (EE-
PROM), magnetoresistive random access memory
(MRAM), Memristor, flash memory, floppy disk, a compact
disc read only memory (CD-ROM), a digital video disc read
only memory (DVD-ROM), or other optical or magnetic
media, and the like. In this example, the modules 212-226
comprise software modules stored in the data merging
manager 210. According to a further example, the modules
212-226 comprise a combination of hardware and software
modules.

[0022] The input/output interface 206 comprises a hard-
ware and/or a software interface. In any regard, the input/
output interface 206 may be connected to a network, such as
the Internet, an intranet, etc., through the network device
208, over which the data merging manager 210 may receive
and communicate information, for instance, the data con-
tained in the source location 110 and data contained in other
locations. The processor 202 may store information received
through the input/output interface 206 in the data store 204
and may use the information in implementing the modules
212-226. The data store 204 comprises volatile and/or
non-volatile memory, such as DRAM, EEPROM, MRAM,
phase change RAM (PCRAM), Memristor, flash memory,
and the like. In addition, or alternatively, the data store 204
comprises a device that is to read from and write to a
removable media, such as a floppy disk, a CD-ROM, a
DVD-ROM, or other optical or magnetic media.

[0023] Various manners in which the modules 212-226
may be implemented are discussed in greater detail with
respect to the methods 300-600 depicted in FIGS. 3-6. FIGS.
3-6, respectively depict flow diagrams of methods 300-600
for merging data from a source location into a target location
containing existing data, according to examples of the
present disclosure. It should be apparent to those of ordinary
skill in the art that the methods 300-600 represent general-
ized illustrations and that other operations may be added or
existing operations may be removed, modified or rearranged
without departing from the scopes of the methods 300-600.
Although particular reference is made to the data merging
manager 210 depicted in FIG. 2 as comprising an apparatus
and/or a set of machine readable instructions that may
perform the operations described in the methods 300-600, it
should be understood that differently configured apparatuses
and/or machine readable instructions may perform the meth-
ods 300-600 without departing from the scopes of the
methods 300-600. The methods 400-600 are related to the
method 300 in that the methods 400-600 include operations
in addition to those included in the method 300. Thus, the
methods 400-600 may be construed as including all of the
features discussed with respect to the method 300.

[0024] Generally speaking, the methods 300-600 may
separately be implemented to merge data from a source
location into a target location containing existing data, in
which both the source location and the target location
contain tuples of data. In addition, the data from the source
location may be merged with the data contained in the target
location with during a single operation. In one regard,
therefore, the methods 300-600 may be implemented to
merge the data in a relatively more efficient manner than is
possible with current data loading operations.

US 2018/0129683 Al

[0025] With reference first to FIG. 3, at block 302, for each
tuple in the source location, a determination is made as to
whether there is a matched tuple in the target location that
satisfies a predetermined condition, for instance, by the tuple
matching module 218. The determination as to whether there
is a matched tuple in the target location for each tuple in the
source location may be made during a scan of each of the
source location and the target location. In addition, the
predetermined condition may comprise that the data con-
tained in selected ones of the columns match. Thus, for
instance, in instances where the source location contains a
different number of columns than the target location, tuples
may be considered as matching when less than all of the data
contained in the columns of the source location and the
target location match, so long as the data contained in
predetermined ones of the columns match each other.
[0026] As discussed above with respect to the diagram 100
depicted in FIG. 1, the predetermined condition comprises
that the UserID and the X and Y of a tuple in the source
location 110 be the same as the UserID and the X and Y of
a tuple in the target location 120 for the tuple in the source
location 110 to be determined as matching a tuple in the
target location 120. In addition, the operation at block 302
results in a determination that the tuple 112 in the source
location 110 matches the tuple 122 in the target location 120.
The operation at block 302 also results in a determination
that the tuples 114 and 116 in the source location 110 do not
match any of the tuples in the target location 120.

[0027] At block 304, for each matched tuple that satisfies
the predetermined condition, the matched tuple in the target
location is updated with a count value that is equal to the
count of the matched tuple in the source location and the
target location, for instance, by the merging module 224. In
addition, at block 306, for each tuple in the source location
that does not have a matched tuple in the target location that
satisfies the predetermined condition, the unmatched tuple is
inserted into the target location, for instance, by the merging
module 224.

[0028] As discussed above with respect to the diagram 100
depicted in FIG. 1, in the tuple 132 in the merged location
130, the count value has been increased to “2”, which is an
example of a matched tuple existing in the target location
being updated at block 304. In addition, tuples 138 and 140
have been inserted into the merged location 130, which is an
example of unmatched tuples being inserted into the target
location at block 306.

[0029] Turning now to FIG. 4, at block 402, the source
location is scanned, for instance, by the source location
scanning module 214. In addition, at block 404, the target
location is scanned, for instance, by the target location
scanning module 216. The source location and the target
location are scanned to identify the tuples of data contained
in each of the source location and the target location. By way
of example, the outcome of the scanning of the source
location and the target location may be a determination that
the source location 110 contains the tuples 112-116 and that
the target location 120 contains the tuples 122-126.

[0030] At block 406, the source location and the target
location are right outer joined, for instance, by the tuple
matching module 218. The outcome of the right outer join at
block 406 is a determination as to which tuples from the
source location are to be inserted into the target location and
which tuples in the target location are to be updated. The
output tuples of the right outer join operation include both

May 10, 2018

source and target data for the matched tuples, and the source
data for the unmatched tuples. According to an example,
during implementation of the right outer join, a matching
boolean (M) is added to each output tuple, for instance, as
a new column (M), to mark whether the tuple is new
(M=false) or existing (M=true).

[0031] In the diagram 100 depicted in FIG. 1, there is one
matched tuple 112, 122 that includes data of the join
attributes: userld (1), X (10.1), Y (2.7); other data from the
source table: count(1), name (‘Restaurant A’), and other data
from the target table: count(1), and name(‘Restaurant A’).
The remaining two unmatched tuples 114, 116 include only
data from the source location 110.

[0032] At block 408, the values of the matched tuples and
the unmatched tuples are applied, for instance, by the
operator applying module 220. Particularly, the operator
applying module 220 may apply an APPLY operator on the
matched tuples and the unmatched tuples to apply appro-
priate expressions for the matched and unmatched tuples.
For example, the count of the matched tuple in the target
location may be updated to be the computed value
(count=tgt.count+src.count). In addition, an appropriate
expression for adding the unmatched tuples may be applied.
[0033] At block 410, the values of the matched tuples and
the unmatched tuples are filtered, for instance, by the filter
applying module 222. Particularly, the filter applying mod-
ule 222 may apply a filter that outputs the correct update
and/or insert tuples depending upon whether the tuples are
matched or unmatched. By way of example, the filter may
perform a doUpdate when the tuples are matched and a
dolnsert when the tuples are not matched.

[0034] At block 412, the filtered tuples are inserted into
the target location, for instance, by the merging module 224.
Particularly, the updated tuples and the new tuples are
inserted in the target location.

[0035] At block 414, the tuples in the source location that
have been determined as having a matched tuple in the target
location are filtered, for instance, by the filter applying
module 222. Particularly, the filter applying module 222
filters the matched tuples to output the data of the updated
(matched) tuples that are to be inserted into a DeleteVector.
In addition, at block 416, the filtered tuples are inserted into
the DeleteVector.

[0036] As described with respect to the method 400, when
an update is performed, data is neither physically updated
nor removed from the target location. Instead, the existing
tuples are marked removed in the DeleteVector and the
updated tuples are not updated but newly inserted into the
target location.

[0037] According to an example, a Sideways Information
Passing (SIPS) operation is performed at blocks 402 and
404, for instance, by the source location scanning module
214 and the target location scanning module 216. The target
location may be much larger than the source location
because only a small part of the data may need to be updated
and inserted. This means that the target location may contain
a relatively large number of tuples that are unmatched with
the tuples in the source location, and thus joining the
unmatched tuples with the source location may be unnec-
essary and wasteful. In one regard, therefore, the SIPS
operation may be performed to eliminate unmatched tuples
from the outer input before the join operation at block 406.
Particularly, the join first gets data from the inner input
(source location), which is usually small, and sends their

US 2018/0129683 Al

join attributes (e.g., from FIG. 1, the userID, X and Y) down
to the outer input (target location). In the diagram 100 of
FIG. 1, there are three such tuples 112-116. The outer input
operator then eliminates data whose join attributes do not
match with those tuples and sends the remaining tuples to
the join. In the diagram 100 of FIG. 1, the tuples 124 and 126
would not be sent to the join. In this example, at block 406,
the right outer join is implemented on the source location
and the target location following implementation of the SIPS
operation.

[0038] Turning now to FIG. 5, there is shown a flow
diagram of a method 500 for merging data from a source
location into a target location, according to another example.
The method 500 differs from the method 400 depicted in
FIG. 4 in that the method 500 pertains to merging data from
a source location into a plurality of target projections.
Particularly, the method 500 pertains to the merging of data
from the source location into two target projections, target
projectionl and target projection2. It should, however, be
understood that the method 500 may pertain to any number
of target projections, including one target projection.
Although not shown, the source location may also be a
projection.

[0039] A projection is a set of columns that are either from
a table or a join of different tables. In an analytic database,
column data is usually stored redundantly in various pro-
jections with different column sort orders or data segmen-
tation. This storage mechanism ensures that queries still
work when one or more nodes are down, and improves the
performance of many different queries. Hence, in the
method 500, the data in the source location is merged into
target projectionl and target projection2.

[0040] At block 502, the source location is scanned as
discussed above with respect to block 402 in FIG. 4. In
addition, at block 504, target projection2 is scanned, for
instance, in a manner similar to that discussed above with
respect to block 404 in FIG. 4. The selection of which of
target projectionl and target projection? that is to be scanned
at block 504 may be based upon any of a variety of factors.
For instance, the selection of the target projection may be
made by an optimization operation that uses any of heuris-
tics and a complex custom-built cost model, based on
compression aware 1/0, CPU and Network transfer costs,
etc. By way of particular example, target projection2 may
differ from target projectionl in that target projectionl is not
sorted on the query’s join attributes, e.g., UserID, X, Y,
whereas target projection? is sorted on the query’s join
attributes. In this regard, target projection2 may be scanned
at block 504 so that a fast merge join may be used to find
matched and unmatched tuples between the source location
and the target projection2.

[0041] At block 506, the source location and the target
projection? are right outer merge joined, for instance, by the
tuple matching module 218, to determine which tuples from
the source location are to be inserted into the target projec-
tion2 and which tuples in the target projection2 are to be
updated. The right outer merge join implemented at block
506 is similar to the right outer join discussed above with
respect to block 406 in FIG. 4.

[0042] According to an example, a SIPS operation is
performed at blocks 502 and 504, for instance, by the source
location scanning module 214 and the target location scan-
ning module 216, prior to block 506, as also discussed
above.

May 10, 2018

[0043] At block 508, the values of the matched tuples and
the unmatched tuples are applied, for instance, by the
operator applying module 220, to apply appropriate expres-
sions for the matched and unmatched tuples. Block 508 is
similar to block 408 in FIG. 4. In addition, at block 510, the
values of the matched tuples and the unmatched tuples are
filtered, for instance, by the filter applying module 222, as
also discussed above with respect to block 410 in FIG. 4.

[0044] At block 512, the filtered tuples are inserted into
target projectionl, for instance, by the merging module 224.
In addition, at block 514, the filtered tuples are inserted into
target projection2. Particularly, the updated tuples and the
new tuples are inserted into both target projectionl and
target projection2.

[0045] At block 516, the tuples in the source location that
have been determined as having a matched tuple in the target
projection?2 are filtered, for instance, by the filter applying
module 222. Particularly, the filter applying module 222
filters the matched tuples to output the data of the updated
(matched) tuples that are to be inserted into a DeleteVector.
In addition, at block 518, the filtered tuples are inserted into
the DeleteVector for target projectionl and at block 520, the
filtered tuples are inserted into the DeleteVector for target
projection2.

[0046] As described with respect to the method 500, when
an update is performed, data is neither physically updated
nor removed from either of the target projections. Instead,
the existing tuples are marked removed in the DeleteVectors
of the target projections and the updated tuples are not
updated but newly inserted into the target projections.

[0047] With reference now to FIG. 6, there is shown a flow
diagram of a method 600 for merging data from a source
location into a target location, according to another example.
The method 600 differs from the method 500 depicted in
FIG. 5 in that the method 600 also pertains to a pre-join
projection, which is a projection used to store the results of
a join between a single large fact table, containing attributes
of events, with one or more dimension tables, containing
descriptive attributes of the events. Although two pre-join
operations are described with respect to the method 600, it
should be clearly understood that any number of pre-join
operations using any number of dimension tables may be
implemented without departing from a scope of the method
600.

[0048] According to an example in which the single large
fact table comprises the target location 120 depicted in FIG.
1, a first dimension tablel includes the names associated
with the Userlds. Thus, for purposes of illustration, Userld1
may be associated with the name “John”, Userld2 may be
associated with the name “Sydney”, and Userld3 may be
associated with the name “Emily”. In addition, a second
dimension table2 includes the cities associated with the X
and Y coordinates. Thus, for purposes of illustration, the
coordinates (4.1, 7.7) may correspond to the city “Andover”,
the coordinates (5.1, 7.9) may correspond to the city “Cam-
bridge”, and the coordinates (10.1, 2.7) may correspond to
the city “Boston.”

[0049] Blocks 602-606 are similar to blocks 502-506,
respectively. In addition, and according to an example, a
SIPS operation is performed at blocks 602 and 604, for
instance, by the source location scanning module 214 and
the target location scanning module 216, prior to block 606,
as also discussed above.

US 2018/0129683 Al

[0050] At block 608, a dimension tablel is scanned, for
instance, by the target scanning module 216. In addition, at
block 610, a join, e.g., a hash/merge join, is performed on
the output of the right outer merge join performed at block
606 and the data contained in the dimension tablel, for
instance, by the processing module 226. The join at block
610 generally joins the data contained in the dimension
tablel with the data contained in right outer merge joined
source location and the target projection2. By way of
particular example, and with reference to the diagram 100 in
FIG. 1, the join at block 610 may add the identification data,
i.e., names, associated with the Userlds.

[0051] At block 612, a dimension table2 is scanned, for
instance, by the target scanning module 216. In addition, at
block 614 a join, e.g., a hash/merge join, is performed on the
output of the join performed at block 610 and the data
contained in the dimension table2, for instance, by the
processing module 226. The join at block 614 generally
joins the data contained in the dimension table2 with the data
contained in the source location, the target projection2, and
the dimension tablel. By way of particular example, and
with reference to the diagram 100 in FIG. 1, the join at block
610 may add the city information associated with the X and
Y coordinates in the target location 120.

[0052] Blocks 616-628, respectively, are similar to blocks
508-520 in FIG. 5 and are thus not described in greater detail
herein.

[0053] In various instances, data is distributed across
different nodes of a database cluster. According to an
example, a process of data redistribution is performed before
insert and join operators in any of the methods 300-600
discussed above to substantially ensure that the appropriate
data reaches the appropriate operators. Particularly, a deter-
mination is made that data is to be redistributed among
multiple ones of the plurality of projections (or target
locations). In addition, the data is redistributed among
multiple ones of the plurality of projections in response to a
determination that data is to be redistributed among multiple
ones of the plurality of projections.

[0054] Generally speaking, redistributing data to an
INSERT operator is a unary redistribution because the
source of the data is from a single operator, FILTER. To
generalize this process, and for purposes of example, the
INSERT operator has been named ‘Operator A* and the
FILTER operator has been named ‘Operator B’ in FIGS.
TA-7D, 8A-8C, 9A-9C, and 10A-10G, which respectively
depict diagrams of manners in which data may be redistrib-
uted among a plurality of projections, according to a plu-
rality of examples. FIG. 7A shows a general redistribution of
data from Operator B 704 to Operator A 702.

[0055] According to a first example, using the heuristics
that the less data transferred the faster the plan, the data may
be redistributed according to any of the following manners.
In a first manner, and as shown in FIG. 7B, if each node of
the cluster of Operator A 702 is expecting data on the same
node of Operator B 704, no redistribution is needed. Instead,
data is moved up locally from Operator B 704 to Operator
A 702. This occurs, for instance, when data from Operator
B 704 is already segmented as required by Operator A 702.
[0056] In a second manner, if each node of the cluster of
Operator A 702 is expecting all of the data, the data at each
node of Operator B 704 must be broadcast (sent all) to all
nodes of Operator A 702, as shown in FIG. 7C, and
described further in detail below with respect to the FIGS.

May 10, 2018

8A-8C. This occurs when data from Operator B 704 is
segmented while Operator A 702 requires all the data.
[0057] In a third manner, if each node of the cluster of
Operator A 702 is expecting a segment/range of the data that
is different from the segment/range of the data of Operator
B 704 on the same node, the data at each node of Operator
B 704 must be resegmented to the same segment/range with
Operator A 702 and then sent to Operator A 702 as shown in
FIG. 7D, and described further in detail below with respect
to FIGS. 9A-9C. This occurs when data from Operator B
704 is segmented but on different segment/range required by
Operator A 702.

[0058] FIGS. 8A-8C, respectively, show the broadcasting
process from Operator B 704 to Operator A 702 on a
three-node cluster. Particularly, FIG. 8A shows the process
at node 1, where the output data of Operator B 704 is moved
directly up to Operator A 702, and sent to Operator A 702 on
node 2 and node 3. The Operator A 702 at node 1, besides
getting data from Operator B 702 on its own node, also waits
to receive data sent from Operator B 702 on node 2 and node
3. A similar process is performed on node 2 and node 3 as
illustrated in FIGS. 8B and 8C, respectively.

[0059] FIGS. 9A-9C, respectively, show resegmentation
processes for a three-node cluster, which include two main
steps: (1) resegment the output data of the Operator B 704
on the expression specified in Operator A 702, and (2) send
the right data segments to the corresponding nodes of
Operator A 702. FIG. 9A demonstrates the process at node
1, where the output data of Operator B 704 is first segmented
on the expression specified in Operator A 702 to three
segments: segl, seg2, and seg3. Then segl is moved up to
the node’s Operator A 702, while seg2 and seg3 are sent to
Operator A 702 of node 2 and node 3, respectively. The
Operator A 702 at node 1, besides getting segl from Opera-
tor B 704 on its own node, also waits to receive the
remaining data of segl sent from Operator B on node 2 and
node 3. A similar process is performed on node 2 and node
3 and illustrated in FIGS. 9B and 9C, respectively.

[0060] The data segmentation expression required from
the INSERT operator in the MERGE plan is the data
segmentation of the target location. Depending on the data
segmentation of the INSERT operators (or target location)
and the data segmentation of their input operators (FILTER
in this case), the corresponding data redistribution on-the-fly
(none or broadcast or resegment) will be chosen.

[0061] Redistributing data to a JOIN operator 706 is said
to be a binary redistribution because the source of the data
is from two input operators, as shown in FIG. 10A. In
general, at each node, the JOIN operator 706 will join certain
segments/ranges of data from the outer input and the inner
input such that its result will be a subset of the whole join
result. In other words, the union of all per-node join results
will be the final join results, and the intersection of per-node
join results will be empty. Thus, redistributing data to a join
is dependent upon the data segmentation of the two join
inputs and also based on the basic heuristic, that the less data
transferred the faster the plan. As such, the data distribution
is classified into six categories as depicted in FIGS. 10B-
10G.

[0062] Particularly, as shown in FIG. 10B, redistribution is
not needed if the data of the two join inputs are co-located
by either (1) both being already segmented on their join
attributes, or (2) by one being segmented on the join
attributes, while the other is replicated (full copy of data is

US 2018/0129683 Al

stored at each node), or (3) both inputs are replicated.
Resegmenting data of the outer input on the join attributes
if the data of the inner input is already segmented on the join
attributes, as shown in FIG. 10C. Resegmenting data of the
inner input on the join attributes if the data of the outer input
is already segmented on the join attributes, as shown in FIG.
10D. Resegmenting both inner and outer data on the join
attributes if neither are segmented on the join attributes yet,
as shown in FIG. 10E. Broadcasting data from the outer to
the inner if both are segmented but not on the join attributes
and the outer’s data is much smaller than the inner’s, as
shown in FIG. 10F. Broadcasting data from the inner to the
outer if both are segmented but not on the join attributes and
the inner’s data is much smaller than the outer’s, as shown
in FIG. 10G.

[0063] According to an example, an optimizer selects one
of the choices described in FIGS. 10B-10G to redistribute
the data for a join based on a custom-built cost model. In
addition, there is a restriction in the outer-join in that data of
the outer side cannot be broadcast. This is because the outer
join does not eliminate tuples of the outer side and would
lead to duplicate tuples when a union of the results of all
nodes is later created. As the join between the source and
target tables in the MERGE plan is a right-outer-join, the
data redistribution that broadcasts the inner input to outer
input as shown in FIG. 10G cannot be used.

[0064] Some or all of the operations set forth in the
methods 300-600 may be contained as a utility, program, or
subprogram, in any desired computer accessible medium. In
addition, the methods 300-600 may be embodied by com-
puter programs, which may exist in a variety of forms both
active and inactive. For example, they may exist as machine
readable instructions, including source code, object code,
executable code or other formats. Any of the above may be
embodied on a non-transitory computer readable storage
medium. Examples of non-transitory computer readable
storage media include conventional computer system RAM,
ROM, EPROM, EEPROM, and magnetic or optical disks or
tapes. It is therefore to be understood that any electronic
device capable of executing the above-described functions
may perform those functions enumerated above.

[0065] Turning now to FIG. 11, there is shown a schematic
representation of a computing device 800, which may be
employed to perform various functions of the machine 200
depicted in FIG. 2, according to an example. The computing
device 800 includes a processor 802, such as but not limited
to a central processing unit; a display device 804, such as but
not limited to a monitor; a network interface 808, such as but
not limited to a Local Area Network LAN, a wireless 802.11
LAN, a 3G/4G mobile WAN or a WiMax WAN; and a
computer-readable medium 810. Each of these components
is operatively coupled to a bus 812. For example, the bus
812 may be an EISA, a PCI, a USB, a FireWire, a NuBus,
or a PDS.

[0066] The computer readable medium 810 comprises any
suitable medium that participates in providing instructions to
the processor 802 for execution. For example, the computer
readable medium 810 may be non-volatile media, such as
memory. The computer-readable medium 810 may also store
an operating system 814, such as but not limited to Mac OS,
MS Windows, Unix, or Linux; network applications 816;
and a data merging application 818. The operating system
814 may be multi-user, multiprocessing, multitasking, mul-
tithreading, real-time and the like. The operating system 814

May 10, 2018

may also perform basic tasks, such as but not limited to
recognizing input from input devices, such as but not limited
to a keyboard or a keypad; sending output to the display 804;
keeping track of files and directories on medium 810;
controlling peripheral devices, such as but not limited to disk
drives, printers, image capture device; and managing traffic
on the bus 812. The network applications 816 include
various components for establishing and maintaining net-
work connections, such as but not limited to machine
readable instructions for implementing communication pro-
tocols including TCP/IP, HTTP, Ethernet, USB, and
FireWire.

[0067] The data merging application 818 provides various
components for merging data from a source location into a
target location (projection(s)) as discussed above with
respect to the methods 300-600 in FIGS. 3-6. The data
merging application 818 may thus comprise the input/output
module 212, the source location scanning module 214, the
target location scanning module 216, the tuple matching
module 218, the operator applying module 220, the filter
applying module 222, the merging module 224, and the
processing module 226. In this regard, the data merging
application 818 may include modules for performing at least
one of the methods 300-600.

[0068] In certain examples, some or all of the processes
performed by the application 818 may be integrated into the
operating system 814. In certain examples, the processes
may be at least partially implemented in digital electronic
circuitry, or in computer hardware, machine readable
instructions (including firmware and software), or in any
combination thereof, as also discussed above.

[0069] What has been described and illustrated herein are
examples of the disclosure along with some variations. The
terms, descriptions and figures used herein are set forth by
way of illustration only and are not meant as limitations.
Many variations are possible within the scope of the disclo-
sure, which is intended to be defined by the following
claims—and their equivalents—in which all terms are meant
in their broadest reasonable sense unless otherwise indi-
cated.

What is claimed is:

1. A method executed by a system comprising a processor
of merging data from a source location into a target location
containing existing data, wherein the source location and the
target location contain tuples of data, the method compris-
ing:

for each tuple in the source location, during a single

operation,

determining whether there is a matched tuple in the
target location that satisfies a predetermined condi-
tion;

for the matched tuple that satisfies the predetermined
condition, updating the matched tuple in the target
location with a count value that is equal to a count of
a number of times the matched tuple appears in the
source location and in the target location; and

for each tuple that does not have a matched tuple that
satisfies the predetermined condition, inserting the
unmatched tuple into the target location.

2. The method of claim 1, further comprising:

associating a first indicator with the matched tuple in the

target location, the first indicator indicating that the
matched tuple in the target location is an existing tuple;
and

US 2018/0129683 Al

associating a second indicator with the unmatched tuple
inserted into the target location, the second indicator
indicating that the unmatched tuple is new in the target
location.

3. The method of claim 1, wherein the updating com-
prises:

inserting the matched tuple into a delete vector;

marking the matched tuple in the delete vector as removed

from the target location, without physically removing
the matched tuple from the target location;

inserting the updated matched tuple into the target loca-

tion.

4. The method of claim 1, further comprising:

scanning the source location and the target location to

determine the tuples contained in each of the source
location and the target location,

wherein determining whether there is a matched tuple in

the target location that satisfies the predetermined con-
dition comprises right outer joining the source location
and the target location to determine which tuples from
the source location are to be inserted into the target
location and which tuples in the target location are to be
updated.

5. The method of claim 4, wherein right outer joining the
source location and the target location comprises adding a
matching indicator to each output tuple of the right outer join
to mark whether the output tuple is new or existing.

6. The method of claim 1, wherein the target location
comprises a projection, the method further comprising:

scanning the source location and the projection to deter-

mine the tuples contained in each of the source location
and the projection,

wherein determining whether there is a matched tuple in

the target location that satisfies the predetermined con-
dition comprises determining whether there is a
matched tuple in the projection by right outer merge
joining the source location and the projection to deter-
mine which tuples from the source location are to be
inserted into the projection and which tuples in the
projection are to be updated.

7. The method of claim 6, wherein the target location
comprises a plurality of projections, the method further
comprising:

selecting one of the plurality of projections to scan based

upon a factor, wherein the scanning comprises scanning
both the source location and the selected one of the
plurality of projections.

8. The method of claim 7, further comprising:

scanning a dimension table containing descriptive attri-

butes of events;

joining the descriptive attributes of events in the dimen-

sion table with data contained in an additional projec-
tion with the right outer merge joined source location
and the selected one of the plurality of projections;
inserting unmatched tuples from the right outer merge
join into each of the plurality of projections; and
updating the matched tuples from the right outer merge
join in each of the plurality of projections.

9. The method of claim 8, wherein the existing data of the
target location is distributed across different nodes, the
method further comprising:

determining that the distributed existing data is to be

redistributed among the different nodes; and

May 10, 2018

redistributing the distributed existing data among the
different nodes in response to a determination that the
distributed existing data is to be redistributed among
the different nodes.

10. An apparatus for merging data from a source location
into a target location containing existing data, wherein the
source location and the target location contain tuples of data,
the apparatus comprising:

a processor; and

a non-transitory storage medium storing instructions

executable on the processor to:

scan the source location and the target location to
determine the tuples contained in each of the source
location and the target location;

right outer join the source location and the target
location to determine unmatched tuples from the
source location to be inserted into the target location,
and matched tuples in the target location to be
updated;

for each of the matched tuples in the target location that
are to be updated, update the matched tuple in the
target location with a count value that is equal to a
count of a number of times the matched tuple
appears in the source location and in the target
location; and

for each of the unmatched tuples in the source location
that are to be inserted into the target location, insert
the unmatched tuple into the target location.

11. The apparatus of claim 10, wherein the instructions are
executable on the processor to:

add a matching indicator to each output tuple of the right

outer join to mark whether the tuple is new or existing;
insert existing tuples into a delete vector; and

insert new tuples and existing tuples into the target

location.

12. The apparatus of claim 11, wherein the instructions are
executable on the processor to:

apply a first filter to output the new tuples into the delete

vector;

apply expressions for the existing and new tuples; and

apply a second filter to output the new tuples and the

existing tuples prior to inserting the new tuples and the
existing tuples into the target location.

13. The apparatus of claim 12, wherein the instructions
are executable on the processor to:

implement a sideways information passing operation that

eliminates new tuples from the target location before
performance of the right outer join.

14. The apparatus of claim 10, wherein the instructions
are executable on the processor to:

associate a first indicator with the matched tuple in the

target location, the first indicator indicating that the
matched tuple in the target location is an existing tuple;
and

associate a second indicator with the unmatched tuple

inserted into the target location, the second indicator
indicating that the unmatched tuple is new in the target
location.

15. The apparatus of claim 10, wherein the updating
comprises:

inserting the matched tuple into a delete vector;

marking the matched tuple in the delete vector as removed

from the target location, without physically removing
the matched tuple from the target location;

US 2018/0129683 Al

inserting the updated matched tuple into the target loca-
tion.

16. A non-transitory computer readable storage medium
storing machine readable instructions that when executed
cause a system to merge data from a source location into a
target location containing existing data, wherein the source
location and the target location contain tuples of data, the
machine readable instructions when executed causing the
system to:

scan the source location and the target location to deter-
mine the tuples contained in each of the source location
and the target location;

right outer join the source location and the target location
to determine unmatched tuples from the source location
to be inserted into the target location, and matched
tuples in the target location to be updated;

for each of the matched tuples in the target location that
are to be updated, update the matched tuple in the target
location with a count value that is equal to a count of
a number of times the matched tuple appears in the
source location and in the target location; and

May 10, 2018

for each of the unmatched tuples in the source location
that are to be inserted into the target location, insert the
unmatched tuple into the target location.

17. The non-transitory computer readable storage medium
of claim 16, wherein the instructions when executed cause
the system to:

associate a first indicator with the matched tuple in the

target location, the first indicator indicating that the
matched tuple in the target location is an existing tuple;
and

associate a second indicator with the unmatched tuple

inserted into the target location, the second indicator
indicating that the unmatched tuple is new in the target
location.

18. The non-transitory computer readable storage medium
of claim 16, wherein the updating comprises:

inserting the matched tuple into a delete vector;

marking the matched tuple in the delete vector as removed

from the target location, without physically removing
the matched tuple from the target location;

inserting the updated matched tuple into the target loca-

tion.

