US 20190129732A1

a9y United States

a2y Patent Application Publication (o) Pub. No.: US 2019/0129732 Al

Sivertson 43) Pub. Date: May 2, 2019
(54) METHODS, SYSTEMS, AND COMPUTER (52) US. CL
PROGRAM PRODUCT FOR CPC ... GOG6F 9744521 (2013.01); GO6N 99/005
IMPLEMENTING SOFTWARE (2013.01)
APPLICATIONS WITH DYNAMIC
CONDITIONS AND DYNAMIC ACTIONS
57 ABSTRACT
(71) Applicant: INTUIT INC., Mountain View, CA
(US)
Disclosed are techniques for implementing software prod-
(72) Inventor: Matthew L. Sivertson, San Diego, CA ucts or services with dynamic conditions and dynamic
(as) actions. These techniques identify a plurality of flow nodes
for a software application. One or more dynamic conditions
ppl. NoO.: o ma ¢ 1dentified or determined for the plurality of tlow
(21) Appl. No.: 15/796,301 y be identified or d ined for the plurality of fl
) nodes; and one or more dynamic actions may be identified
(22) Filed: Oct. 27, 2017 or determined for the one or more dynamic conditions. A
Publication Classification dynamic flow may be determmed Wlth Fhe plurality of flow
nodes, the one or more dynamic conditions, and the one or
(51) Int. CL more dynamic actions, without hard coded inter-dependency
GO6F 9/445 (2006.01) between two or more flow nodes of the plurality of flow
GO6N 99/00 (2006.01) nodes.
230A 222A 220A NAV. 224A
RUNTIME DATA || PRIORITY LisT ENGINE INTELLIGENCE 226A
e
ENGINE(s) REPOSITORIES
202A
DynamiC
APPLICATION

216A ACTIONS
- FalL ACTION(S)
- SUCCEED ACTION(S)

|

]

|

|

|

|

214A FLow NODES :
- OBJECT MODEL(S) |
|

|

|

|

]

|

]

- Torpic(s), ETC.

218A DyNAMIC
CONDITION(S)

Patent Application Publication @ May 2, 2019 Sheet 1 of 45 US 2019/0129732 A1

102A
BURGER?
CHEESEBURGER?

104A
CHOCOLATE?
VANILLA?
STRAWBERRY
SHAKE?

108A
REGULAR?
FRENCH?

110A
ALBION?
FLORENCE?

106A
DARK? MiLK?

112A
FRIES

114A
TELL FRIENDS

116A
EXECUTE ORDER

118A

ORDER STATUS

FIG. 1A

Patent Application Publication @ May 2, 2019 Sheet 2 of 45 US 2019/0129732 A1

102A
BURGER?
CHEESEBURGER?

104A
CHOCOLATE?
VANILLA?
STRAWBERRY
SHAKE?

108A
REGULAR?
FRENCH?

110A
ALBION?
FLORENCE?

106A
DARK? MiLK?

112A
FRIES

114A
TELL FRIENDS

116A Pl
EXECUTE ORDER

118A

ORDER STATUS

FIG. 1B

Patent Application Publication @ May 2, 2019 Sheet 3 of 45 US 2019/0129732 A1

102A
BURGER?
CHEESEBURGER?

104A
CHOCOLATE?
VANILLA?
STRAWBERRY
SHAKE?

1064 RE]él)Jng\\R? Al 10Ap
Dark? Mux? ! LBION?
FRENCH? FLORENCE?

XK X R X% XX

Fries i

104C

1028
ALREADY 114A
SHOWN TELL TELL FRIENDS

FRIENDS?

116A
EXeECUTE ORDER

118A
ORDER STATUS

FIG. 1C

Patent Application Publication @ May 2, 2019 Sheet 4 of 45 US 2019/0129732 A1

102A
BURGER?
CHEESEBURGER?
*R 106D
104A
104D CHOCOLATE?
SHAKE IN VANILLA?
STRAWBERRY
SHAKE?
106A REle%?:\R? Aisllgﬁ?
DARK? MILK? ')
FRENCH? FLORENCE?
N A
AZC 112A
FRIES IN
‘ STOCK? FRIES
|
102B
ALREADY 114A
SHOWN TELL TELL FRIENDS

FRIENDS?

116A
EXecUTE ORDER

118A

ORDER STATUS

FIG. 1D

Patent Application Publication @ May 2, 2019 Sheet 5 of 45 US 2019/0129732 A1

224A

230A 222A | 2204 Nav.
RUNTIME DATA || PRIORITY LIST ENGINE INTELLIGENCE 226A
JREROMAAS :
= ENGINE(S) |4 | REPOSITORIES

202A
Dynamic
APPLICATION

216A ACTIONS
- FAIL ACTION(S)
- SUCCEED ACTION(S)

|

|

|

|

|

214A FLow NODES :
- OBJECT MODEL(S) |
]

|

]

|

]

]

|

- Toric(s), Etc.

218A DyYNAMIC

CONDITION(S)

FIG. 2A

Patent Application Publication

May 2, 2019 Sheet 6 of 45

2048 IF
BURGERS ARE IN
STOCK

202B
BURGER?
CHEESEBURGER?

208B IF
SHAKES ARE IN
STOCK

206B WHiCH
SHAKE?

2128 [F SHAKE
IS CHOCOLATE

\-/_—-

2108 DARK OR
MiLk
CHOCOLATE?

2168 IF SHAKE
IS VANILLA

__/_—-

214B REGULAR
OR FRENCH
VANILLA?

220B [F SHAKE
IS STRAWBERRY

__//—_—

218B ALBION OR |

FLORENCE?

224B IF FRIES
ARE IN STOCK

___/—

222B FRIES?

228B ALWAYS
& SHow ONCE

__/—-—

226B TELLA
FRIEND

232B ALWAYS
\/_—

230B EXECUTE
THE ORDER

236B ALways

234B ORDER
STATUS

US 2019/0129732 Al

Patent Application Publication = May 2, 2019 Sheet 7 of 45

"id":"burger-or-cheeseburger”,
"type":"VIEW",

"condition": ["INSTOCK"],
"bindings": ["burgers"]

"id": "shake-type",
"type": "VIEW",
"condition": ["INSTOCK"],
"bindings": ["shakes"]

2

{

"id": "dark-or-milk-chocolate-shake",
"type": "VIEW",
"condition": {{

"id": "EQUALS",

"args": {"left":
"@dataStore[USER_SELECTION}.shake", "right":
"chocolate"}

1l
2
{

"id": "regular-or-french-vanilla-shake",
"type": "VIEW",
"condition": {

"id": "EQUALS",

"args": {"left":
"@dataStore[USER_SELECTION}.shake", "right":
"vanilla"}

1l
2

F1G. 2C

US 2019/0129732 Al

Patent Application Publication @ May 2, 2019 Sheet 8 of 45 US 2019/0129732 A1

{
"id": "albion-or-florence-strawberry-shake”,
thpell: IIV'EWII’
"condition™: [{
"idll: HEQUALSII'
"args": {"left":
"@dataStore[USER_SELECTION].shake", "right":
"strawberry"}

1
|2
{
"id": "want-fries",
"type": "VIEW",
"condition": ["INSTOCK"],
"bindings": ["fries"]
|2
{
"id": "tell-a-friend",
"type": "VIEW",
"condition": ["ALWAYS", "SHOW_ONCE"]
2
{
"id": "place-order”,
"type": "ACTION",
"condition": ["ALWAYS"],
"args": {"actionld": "executeOrder"}

}I
{

"id": "order-status",

lltypell: IIV!EWH’

"condition": ["ALWAYS"]
!

FIG. 2D

Patent Application Publication

204E

04B IF
BURGER ARE IN
STOCK

May 2, 2019 Sheet 9 of 45

2028
BURGER?

208B Ir
SHAKES ARE IN
Stock

206B WHICH
SHAKE?

212B IF SHAKE
Is CHOCOLATE

210B DARK OR
MiLk
CHOCOLATE?

__/———

216B IF SHAKE
IS VANILLA

_/—-

214B REGULAR
OR FRENCH
VANILLA?

220B IF SHAKE
Is STRAWBERRY

218B ALBION OR
FLORENCE?

___./

224B IF FRIES
ARE IN 5TOCK

2228 FRIES?

228B ALWAYS
& SHow ONCE

__/_—

226B TELLA
FRIEND

232B ALwWAYS
_/——

230B EXECUTE
THE ORDER

236B ALWAYS

234B ORDER
STATUS

2E

US 2019/0129732 Al

202E

Patent Application Publication

224B IF FRIES
ARE IN STOCK

208B If
SHAKES ARE IN
STOCK

212B IF SHAKE
Is CHOCOLATE

_//’__

216B IF SHAKE
IS VANILLA

/—

220B [F SHAKE
IS STRAWBERRY ||

048 If
BURGER ARE IN
STOCK

2288 ALWAYS
& SHow ONCE

___/

232B ALWAYS
\/_—

236B ALwaAys

May 2, 2019 Sheet 10 of 45

2228 Frigs?

206B WHICH
SHAKE?

210B DARK OR
MiILK
CHOCOLATE?

214B REGULAR
OR FRENCH
VANILLA?

218B ALBION OR
FLORENCE?

2028 Frigs?
CHEESEBURGER

226B TELLA
FRIEND

230B EXecute
THE ORDER

234B ORDER
STATUS

.2F

US 2019/0129732 Al

Patent Application Publication = May 2, 2019 Sheet 11 of 45

"globalEntries™: |
{

"id": "swap-burgers-and-fries",

"type":"SWAP_ENTRIES_MODIFIER",

"condition™: |

{

"id": "EQUALS",
"args":
{

“left":

US 2019/0129732 Al

"@dataStore[ABTESTS].getValue('friesFirstTest')",

"right": "true"
}

}

1,

"args": {
"entryl": "burger-or-cheeseburger”,
"entry2": "want-fries"

!

!
]

F1G. 2G

Patent Application Publication @ May 2, 2019 Sheet 12 of 45 US 2019/0129732 A1l

public enum ConditionAction {
/**

* Include the element, pending
following conditions, which could still change it to
exclude

*/

Include,

/**

* Exclude the element, pending
following conditions, which could still change it to
include

*/

Exclude,

/**

* Include the element absolutely,
once this is issued it cannot be changed

*/

includeAbsolutely,

/**

* Exclude the element absolutely,
once this is issued it cannot be changed

*/

ExcludeAbsolutely,

/**

* Don't change it at all, leave as is.

*

/

NoChange,

Suppress,

Unsuppress

F1G. 2H

Patent Application Publication @ May 2, 2019 Sheet 13 of 45 US 2019/0129732 A1l

public AlwaysCondition{ConditionAction action, ConditionAction
failAction) {

this.action = action;

this.failAction = failAction;

}

@Override
public boolean test(PriorityListEntry entry) {
return true;

}

@Override
public ConditionAction action() {
return this.action;

}

@OQverride
public ConditionAction failAction() {
return this.failAction;

}

FIG. 21

Patent Application Publication @ May 2, 2019 Sheet 14 of 45 US 2019/0129732 A1l

public StateCondition{Optional<String> stateld, List<String> fieldsInState,
ConditionAction action, ConditionAction
failAction) {
this.stateld = stateld;
this.fieldsinState = fieldsinState;
this.action = action;
this.failAction = failAction;

}

@OQverride
public boolean test({final PriorityListEntry entry) {
return fieldsinState.stream().anyMatch(
fieldState ->
entry.bindings().contains(fieldState));
!

@Override
public ConditionAction action({) {
return this.action;

}

@OQverride
public ConditionAction failAction() {
return this.failAction;

}

FIG. 2J

Patent Application Publication @ May 2, 2019 Sheet 15 of 45 US 2019/0129732 A1l

public class OnlyBetween2And4AMCondition extends
AbstractNavCondition {

@OQOverride

public boolean test{PriorityListEntry entry) {
int hour = LocalDateTime.now(}.getHour();
return hour >= 2 && hour < 4;

}

@Override
public ConditionAction action() {
return ConditionAction.NoChange;

}

@0Override
public ConditionAction failAction() {
return ConditionAction.Exclude;

}

FIG. 2K

Patent Application Publication @ May 2, 2019 Sheet 16 of 45 US 2019/0129732 A1l

public interface NavOperation {
List<NavCondition> getAddedConditions();

int getNextEntryindex(final List<PriorityListEntry>
relevantSet, Optionalint cursorindex);

Optionalint getindexForBlankCursor(final
List<PriorityListEntry> relevantSet);

NavOperationDirection getDirection();

FIG. 2L

Patent Application Publication @ May 2, 2019 Sheet 17 of 45 US 2019/0129732 A1l

public class NavOperationNext extends AbstractNavOperation {

public static final NavOperationNext INSTANCE = new
NavOperationNext();

@Override
public int getNextEntryindex(final List<PriorityListEntry>
relevantSet, final Optionalint cursorindex) {
return cursorindex.getAsint() + 1;

}

@Override
public Optionalint
getindexForBlankCursor{List<PriorityListEntry> relevantSet) {
return Optionalint.of{0);

}

@Override
public NavOperationDirection getDirection() {
return NavOperationDirection.Forward;

}
F1G. 2M

Patent Application Publication @ May 2, 2019 Sheet 18 of 45 US 2019/0129732 A1l

public class NavOperationBack extends AbstractNavOperation {

public static final NavOperationBack INSTANCE = new
NavOperationBack();

@Override
public int getNextEntryindex{final List<PriorityListEntry>
relevantSet, final Optionalint cursorindex) {
return cursorindex.getAsint{) - 1;

}

@Override
public Optionalint
getindexForBlankCursor({List<PriorityListEntry> relevantSet) {
return Optionalint.offrelevantSet.size() - 1);

}

@Override
public NavOperationDirection getDirection() {
return NavOperationDirection.Backward;

}
} FIG. 2N

Patent Application Publication

LEARNING
DATA

May 2, 2019 Sheet 19 of 45

304 TerRm
EMBEDDING
MODULES

_/—-
P

TRAINING

302 DATA MODEL
CREATION MODULES

TRAINING
MODULES ki

|
|
|
|
: 314
|
|

354 CLIENT

356

INTERVIEW
MODULE(S)

364 Tax
MODULE(S)

———_L___

316 DATtA -
MODELS

1

370 HiER.
Data
STRUCTU

372
REPOSITORIES

RECOMMEND.

1

ey ’
350 1
|
MODULES :

COMPLETION

320 Dvn.
CONDITIONS

Decision

324 Dvyn.
ACTIONS

336 DvN.

| APPLICATION

328 DvN.
CODE GEN.
MODULES

MODELS

FI1G.3

US 2019/0129732 Al

Patent Application Publication @ May 2, 2019 Sheet 20 of 45 US 2019/0129732 A1l

402A IDENTIFY A PLURALITY OF FLOW NODES OR OBJECT MODELS

v

404A IDENTIFY OR CONSTRUCT DYNAMIC CONDITION(S) FOR FLOW NODE(S)

!

406A IDENTIFY OR CONSTRUCT DYNAMIC ACTION(S) FOR THE FLOW NODE(S)

408A DEeTERMINE A DYNAMIC FLOW FOR THE PLURALITY OF FLOW NODES WITHOUT
UsiNG HARD CODED FLOW NAVIGATION SEQUENCE(S)

4

410A EXECUTE THE DYNAMIC FLOW BY INDEPENDENTLY EVALUATING DYNAMIC
CONDITIONS AND EXECUTING DYNAMIC ACTIONS BASED ON EVALUATION RESULTS OF
DynaMiC CONDITIONS

A 4

412A INCREMENTALLY REDUCE THE PLURALITY OF FLOW NODES INTO A REDUCE SET
BASED ON RUNTIME DATA

414A PERFORM A MODIFICATION PERTAINING TO ONE OR MORE FLOW NODE(S)

I}

416A TRANSFORM THE DYNAMIC FLOW INTO A MODIFIED DYNAMIC FLOW TO
ACCOMMODATE THE MODIFICATION WITHOUT AFFECTING OR MODIFYING REMAINING
NoDEe(s) IN THE DYNAMIC FLOW

FIG. 4A

Patent Application Publication @ May 2, 2019 Sheet 21 of 45 US 2019/0129732 A1l

410A
v

402B OpT. IDENTIFY A PRIORITY LIST FOR THE DYnamiC FLOW

v

404B IDENTIFY 157 RUNTIME DATA AT RELEVANCE MODULE(S)

v

406B PERFORM RELEVANCE ANALYSIS FOR THE 1°7 RUNTIME DATA

V!

408B DeTERMINE 15T DyN, CONDITION EVALUATION RESULT BY EVALUATING 157
DYNAMIC CONDITION(S) IN OR ASSOCIATED WITH A CURRENT FLOW NODE

v

4108 {DENTIFY COMPLETION GRAPH(S) AND/OR DECISION TABLE(S)

v

412B UprDATE COMPLETION GRAPH(S) OR DECISION TABLE(S) BASED ON THE 157
Dyn. CONDITION EVAL. RESULT

414B UprpATE COMPLETION GRAPH(S) OR DECISION TABLE(S) BASED ON THE 157
DYN. CONDITION EVAL. RESULT

416B EXECUTE A 15T DYNAMIC ACTION EMBEDDED IN OR ASSOCIATED WITH THE
CURRENT FLOW NODE BASED ON THE 157 DYN. CONDITION EVALUATION RESULT

v

418B REDUCE THE PLURALITY OF FLOw NODES OR OBJECT MODELS INTO A 157
REDUCED SET BY DETERMINING A 15T RELEVANT SET OF FLOw NODES OR OBJECT
MODELS BASED ON THE 157 DyN. CONDITION EvAL. RESULT

v

420B REDUCE THE PLURALITY OF FLOW NODES OR OBIECT MODELS INTO A 157
REDUCED SET BY FILTERING OUT 157 [RRELEVANT RULE-OBJECT MODEL PAIR(S) IN THE
DEeCISION TABLE(S) BASED ON THE 157 DYN. CONDITION EVAL. RESULT

v

4228

FIG. 4B

Patent Application Publication @ May 2, 2019 Sheet 22 of 45 US 2019/0129732 A1l

4208

v
422B IpeNTIFY A NexT FLow NODE OR OBJECT MODEL FROM THE 157 REDUCED
Set

v
424B IDENTIFY OR DETERMINE A 2NP DyNAMIC CONDITION FOR THE NEXT FLOW
Nope

v
426B IDenTIFY RUNTIME DATA AT RELEVANCE MODULE(S)

v

428B DETERMINE 2NP Dyn. CONDITION EVAL. RESULT BY EVALUATING THE DYNAMIC
CONDITION OPTIONALLY BASED UPON THE RUNTIME DATA

v

430B EXECUTE A DYN. ACTION BASED ON THE 2NP DYN. CONDITION EVAL. RESULT

v

432B UpDATE COMPLETION GRAPH(S) OR DECISION TABLE(S) BASED ON THE 2NP
DYN. CONDITION EVAL. RESULT AND/OR THE RUNTIME DATA

¢

434B REDUCE THE 157 REDUCED SET OF FLOW NODES OR OBIECT MODELS INTO A
2ND REDUCED SET BY DETERMINING A 2NP RELEVANT SET OF FLOw NODES OR
OBIECT MIODELS BASED ON THE 2ND DyN. CONDITION EVAL. RESULT

FIG. 4C

Patent Application Publication @ May 2, 2019 Sheet 23 of 45 US 2019/0129732 A1l

4068

502A IDENTIFY THE RUNTIME DATA FOR CLASSIFICATION AND
A SET OF TRAINING DATA

S504A GeNERATE / IDENTIEY ONE OR MORE CLASSIFIERS FOR
CLASSIFYING TERMS IN THE RUNTIME DATA WITH MACHINE
LEARNING

506A CLASSIFY AND ANNOTATE TERMS IN THE RUNTIME
DATA WITH AT LEAST ONE CLASSIFIER

508A IDENTIFY AND LINK A HELPER ITEM WITH A CLASSIFIED
+ TERM FROM THE RUNTIME DATA USING THE AT LEAST ONE
CLASSIFIER

510A CONTINUOUSLY IMPROVE ACCURACY OR
COMPLETENESS OF CLASSIFICATION USING ACTIVE LEARNING
TECHNIQUES

FIG. 5A

Patent Application Publication @ May 2, 2019 Sheet 24 of 45 US 2019/0129732 A1l

504A GENERATE / IDENTIFY ONE OR MORE CLASSIFIERS FOR
CLASSIFYING TERMS IN THE SET OF DIGITAL CONTENTS WITH
MACHINE LEARNING

502B IDENTIFY A PLURALITY OF CLASSIFICATION MEASURES
OR METRICS

504B DETERMINE ONE OR MORE LEARNING CLASSIFICATION
SCHEMES WITH THE PLURALITY OF CLASSIFICATION MEASURES
OR METRICS

506B CREATE THE ONE OR MORE CLASSIFIERS WITH THE ONE
OR MORE LEARNING CLASSIFICATION SCHEMES

508B RETRAIN THE ONE OR MORE LEARNING CLASSIFICATION
SCHEMES WITH ACTIVE LEARNING DATA

5108 IMPROVE THE ONE OR MORE CLASSIFIERS WITH THE
RETRAINED LEARNING CLASSIFICATION SCHEMES

FIG. 5B

Patent Application Publication

560C

May 2,2019 Sheet 25 of 45 US 2019/0129732 Al

580C
comm,
512C 518C MOoDEL(s)
514C 520C
516C
' |
508C 504C
Darta SETS MACHINE
LEARNING
MODULE
I
> 510C
ACTIVE
LEARNING
DaTaA

506C
CLASSIFIER(S)

FIG. 5C

Patent Application Publication @ May 2, 2019 Sheet 26 of 45 US 2019/0129732 A1l

500D
LABELED DATA

502D
UNLABELED
Data

U A,

g ™

T 5 506C

50D CLASSIFIER(S) 550C
TR

e 504D
LABELED DATA

v
506D

USER
INTERFACE

FIG. 5D

Patent Application Publication @ May 2, 2019 Sheet 27 of 45 US 2019/0129732 A1l

504D >02D 502
UNLABELED
LABELED DATA D TERMS

ATA

|

506E
CLASSIFIER(S)

504t
MAPPING DATA
STRUCTUR

508t
ANNOTATION
MODULE

FIG. 5E

Patent Application Publication @ May 2, 2019 Sheet 28 of 45 US 2019/0129732 A1l

504C >02F 502E

LABELED DATA ACTIVE TERMS
LEARNING Data

504F
VALIDATION
MODULE(S)

506F
VALIDATED
LEARNING DaTA

—1

504C
MACHINE
LEARNING
MODULE(S)

508F

NEXT
GENERATION
CLASSIFIER(S)

FIG. 5F

Patent Application Publication @ May 2, 2019 Sheet 29 of 45 US 2019/0129732 A1l

500G COMPUTER

506G RUNTIME 508G VECTOR SPACE
Data, PRIOR DATA REPRESENTATIONS

502G WORD EMBEDDING
MODULES

- NORMALIZATION

- VECTORIZATION / EMBEDDING
- MuLTI-STAGE CLUSTERING

- MACHINE LEARNING / Al

510G "% 514G

502G WORD EMBEDDING
MODULES

- RECOMMENDATIONS

- Custom FLow(s)

b

518G
FIG. 5G N

Patent Application Publication @ May 2, 2019 Sheet 30 of 45 US 2019/0129732 A1l

602 [DENTIFY A DATA SET REPRESENTING A PLURALITY OF OBJECT MODELS INTO A
WORD EMBEDDING MODULE

604 IDENTIFY / DETERMINE A PLURALITY OF OBIECT MODEL CLUSTERS &
RESPECTIVE PLURALITY OF CHARACTERISTIC CLUSTERS FOR THE DATA SET USING
WORD EMBEDDING TECHNIQUES

606 IDENTIFY RUNTIME DATA FROM A USER IN A SOFTWARE APPLICATION FLOW

608 DETERMINE ONE OR MORE RUNTIME DATA CLUSTERS & ONE OR MORE
CHARACTERISTIC CLUSTERS FOR AT LEAST ONE RUNTIME DATA CLUSTER FOR THE
RunTiME DATA

610 PRESENT AT LEAST ONE CHARACTERISTIC CLUSTER TO A FLow MODULE OR
Cobe MODULE FOR COMPLETING THE DYNAMIC FLOW

FIG. 6A

Patent Application Publication @ May 2, 2019 Sheet 31 of 45 US 2019/0129732 A1l

604

602B IDENTIFY A DATA SET FOR A PLURALITY OF OBJECT MODELS INTO A WORD
EMBEDDING MODULE

6048 NORMALIZE THE DATA SET INTO A NORMALIZED DATA SET

606B OprTiONALLY REDUCE THE DATA SET SizE UsING ONE OR MORE REDUCTION
MODULES

608B GENERATE, AT THE WORD EMBEDDING MODULE, A DICTIONARY

610B TRrAIN THE WORD EMBEDDING MODULE WiTH ONE OR MORE TRAINING
INSTANCES (ANALOGICAL TASKS)

612B Mapr TOKENS IN THE DICTIONARY TO A SET OF VECTORS IN A VECTOR SPACE

614B IMPROVE / OPTIMIZE THE WORD EMBEDDING MODULE

FIG. 6B

Patent Application Publication @ May 2, 2019 Sheet 32 of 45 US 2019/0129732 A1l

610B TRAIN THE WORD EMBEDDING MODULE(S) WiTH ONE OR MORE
TRAINING INSTANCES (ANALOGICAL TASKS)

602C INnvOKE A WORD EMBEDDING MODEL

604C PRUNE THE DICTIONARY

606C DETERMINE TRAINING INSTANCES & DEGREES OF FREEDOM FOR
TRAINING INSTANCES BASED ON PERFORMANCE AND ACCURACY BALANCE

608C DETERMINE CUSTOMIZABLE WEIGHT STRUCTURES FOR THE WORD
EMBEDDING MODULE BASED ON HEURISTICS

610C EXeCUTE ONE OR MORE TRAINING INSTANCES AT THE WORD
EMBEDDING MODEL

612C GENERATE VECTORS AS A DISTRIBUTION OF WEIGHTS OF TOKENS IN THE
DICTIONARY WITH THE CUSTOMIZABLE WEIGHT DATA STRUCTURES

614C OPTIONALLY ADJUST THE CUSTOMIZABLE WEIGHT STRUCTURE(S)

616C OPTIONALLY IMPROVE [/ OPTIMIZE TRAINING BY REDUCING VECTOR
UPDATE FOR EACH TRAINING INSTANCE

FIG. 6C

Patent Application Publication @ May 2, 2019 Sheet 33 of 45 US 2019/0129732 A1l

602C Invoke A WORD EMBEDDING MODEL

602D IDENTIFY A FOocus TOKEN IN A COLLECTION OF TOKENS

604D IpenTIFY CONTEXT TOKENS IN THE COLLECTION OF TOKENS AS INPUT VECTORS

606D IDENTIFY THE SIZE OF THE DICTIONARY

608D [DENTIFY THE DEGREES OF FREEDOM

610D IDENTIFY 15T CusTOMIZABLE WEIGHT DATA STRUCTURE

612D TRANSFORM INPUT VECTORS INTO AN ARRAY WITH THE 157 CUSTOMIZABLE
WEIGHT DATA STRUCTURE

614D IDeEnTIFY 2NP CusTOMIZABLE WEIGHT DATA STRUCTURE

v

616D TRANSFORM THE ARRAY INTO AN QUTPUT VECTOR WiTH 2NP CUSTOMIZABLE
WEIGHT DATA STRUCTURE

618D tmMPROVE / OPTIMIZE THE WORD EMBEDDING MODULE BY ITERATIVELY
MAXIMIZING AN OBJECTIVE FUNCTION WITH REGARD TO THE OUTPUT VECTOR AND
THE 157 AND / OR 2NP WEIGHT DATA STRUCTURES

FIG. 6D

Patent Application Publication @ May 2, 2019 Sheet 34 of 45 US 2019/0129732 A1l

602C INVOKE A WORD EMBEDDING MODULE

602E IDENTIFY A FOCUS TOKEN IN A COLLECTION OF TOKENS AS AN INPUT VECTOR

604E IDENTIFY CONTEXT TOKENS IN THE COLLECTION OF TOKENS

606E IDENTIFY THE SIZE OF THE DICTIONARY

608E IDENTIFY THE DEGREES OF FREEDOM

610E 1DENTIFY 157 CUSTOMIZABLE WEIGHT DATA STRUCTURE

612E TRANSFORM THE INPUT VECTOR INTO AN INTERMEDIATE REPRESENTATION
WITH THE 157 CUSTOMIZABLE WEIGHT DATA STRUCTURE

v

614E IDENTIFY 2ND CUSTOMIZABLE WEIGHT DATA STRUCTURE

v

616E TRANSFORM THE INTERMEDIATE REPRESENTATION INTO A PLURALITY OF
QUTPUT VECTORS WiTH 2ND CUSTOMIZABLE WEIGHT DATA STRUCTURE

618E IMPROVE / OPTIMIZE THE WORD EMBEDDING MODULE BY ITERATIVELY
MINIMIZING AN OBIECTIVE FUNCTION WITH REGARD TO THE CONTEXT TOKENS AND
THE 157 AND / OR 2N2 WEIGHT DATA STRUCTURES

FIG. 6E

Patent Application Publication = May 2, 2019 Sheet 35 of 45

US 2019/0129732 Al

Intuit

Tax Réturn Software

Apple

Mobile phones

-2 2
602F
Intuit
Apple
7
/" 604F
:;;//;.ul\/lobﬂe phones
2

FIG. 6F

Patent Application Publication @ May 2, 2019 Sheet 36 of 45 US 2019/0129732 A1l

1 0 0 0 0
0 1 0 0 0
0 0 1 0 604G 608G 0
0 0 0 0 W1 {VxN] W2 [NxV] 0
0 0 0 0 0
0 0 0 1 1
602G 610G
606G

FIG. 6G

Patent Application Publication @ May 2, 2019 Sheet 37 of 45 US 2019/0129732 A1l

0 1 0 0 0

0 1 0 0

0 0 1 0

1 0 0 0 0

0 604H 608H 0 0 o | 0
W1 {Vx N] W1{[NxV]

610H

602H T

606H

FIG. 6H

Patent Application Publication @ May 2, 2019 Sheet 38 of 45 US 2019/0129732 A1l

750H

FIG. 7A

Patent Application Publication @ May 2, 2019 Sheet 39 of 45 US 2019/0129732 A1l

700B \/

FIG. 7B

Patent Application Publication @ May 2, 2019 Sheet 40 of 45 US 2019/0129732 A1l

FIG. 7C

Patent Application Publication @ May 2, 2019 Sheet 41 of 45 US 2019/0129732 A1l

700D \/

FIG. 7D

Patent Application Publication @ May 2, 2019 Sheet 42 of 45 US 2019/0129732 A1l

802A DETERMINE A PLURALITY OF INTERVIEW SCREEN MODELS FOR AN INTERVIEW

!}

804A IDENTIFY OR CONSTRUCT DYNAMIC CONDITION{S) FOR INTERVIEW SCREEN
MODEL(S)

806A IDENTIFY OR CONSTRUCT DYNAMIC ACTION(S) FOR THE INTERVIEW SCREEN
MODEL(S)

808A DETERMINE A DYNAMIC FLOW FOR THE PLURALITY OF INTERVIEW SCREEN
MODBELS WITHOUT USING HARD CODED FLOW NAVIGATION SEQUENCE(S)

Y

810A PRESENT THE INTERVIEW TO A USER BY INDEPENDENTLY EVALUATING DYnNAMIC
CONDITIONS AND EXECUTING DYNAMIC ACTIONS BASED ON RUNTIME DATA

v

812A INCREMENTALLY REDUCE THE PLURALITY OF INTERVIEW SCREEN MODELS INTO
A REDUCE SET BASED ON EVALUATION RESULTS OF DyNamiC CONDITIONS

}

814A PERFORM A MODIFICATION PERTAINING TO ONE OR MORE INTERVIEW
SCREEN MODEL(S)

Y
816A TRANSFORM THE DYNAMIC FLOW INTO A MODIFIED DYNAMIC FLOW TO
ACCOMMODATE THE MODIFICATION WITHOUT AFFECTING REMAINING NODE(S) IN
THE DYNAMIC FLOW

FIG. 8A

Patent Application Publication @ May 2, 2019 Sheet 43 of 45 US 2019/0129732 A1l

810A
v

802B OpT. IDENTIFY A PRIORITY LIST FOR THE DYNAMIC FLOW

v

804B IDENTIFY 157 RUNTIME DATA AT RELEVANCE MODULE(S)

v

806B PERFORM RELEVANCE ANALYSIS FOR THE 157 RUNTIME DATA

\2

808B DeTerMiINE 157 DYN. CONDITION EVALUATION RESULT 8Y EVALUATING 157
DynamiC CONDITION(S) IN OR ASSOCIATED WITH A CURRENT INTERVIEW SCREEN
MODEL

810B IDENTIFY COMPLETION GRAPH(S) AND/OR DECISION TABLE(S)

v

814B UpDATE COMPLETION GRAPH(S) OR DECISION TABLE(S) BASED ON THE 157
Dyn. CONDITION EVAL. RESULT

816B EXECUTE A 15T DYNAMIC ACTION EMBEDDED IN OR ASSOCIATED WITH THE
CURRENT INTERVIEW SCREEN MODEL BASED ON THE 157 DyYN. CONDITION
EVALUATION RESULT

818B REDUCE THE PLURALITY OF INTERVIEW SCREEN MODELS INTO A 157 REDUCED
SET BY DETERMINING A 157 RELEVANT SET OF INTERVIEW SCREEN MODELS BASED ON
THE 157 DYN. CONDITION EVAL. RESULT

¥
8208

FIG. 8B

Patent Application Publication @ May 2, 2019 Sheet 44 of 45 US 2019/0129732 A1l

818B
v

820B REDUCE THE PLURALITY OF INTERVIEW SCREEN MODELS INTO A 157 REDUCED
SET BY FILTERING OUT 157 [RRELEVANT RULE-OBJECT MODEL PAIR(S) IN THE DECISION
TABLE(S) BASED ON THE 157 DYN. CONDITION EVAL. RESULT

v

822B IDENTIFY A NEXT INTERVIEW SCREEN MODEL FROM THE 157 REDUCED SET

v

824B IDENTIEY OR DETERMINE A 2NP DynamiC CONDITION FOR THE NEXT
INTERVIEW SCREEN MODEL

826B IDENTIFY RUNTIME DATA AT RELEVANCE MODULE(S)

v

828B DeTERMINE 2NP DYN. CONDITION EVAL, RESULT BY EVALUATING THE DYNAMIC
CONDITION WITH RUNTIME DATA

v

830B ExecUTE A DYN. ACTION BASED ON THE 2NP DYN. CONDITION EVAL. RESULT

v

832B UprpATE COMPLETION GRAPH(S) OR DECISION TABLE(S) BASED ON THE 2NP
Dyn. CONDITION EVAL. RESULT

834B UPDATE COMPLETION GRAPH{S) OR DECISION TABLE(S) BASED ON THE
EXECUTION RESULT OF THE PREVIOUS INTERVIEW SCREEN MODEL

v

8368 RepuUce THE 157 REDUCED SET OF FLOW NODES OR OBIECT MODELS INTO A
2ND RepUCED SET BY DETERMINING A 2NP RELEVANT SET Of FLOow NODES OR
OBIECT MODELS BASED ON THE 2N DyN. CONDITION EVAL, RESULT

v

838B Repuce THE 157 REDUCED SET OF FLow NODES OR OBJECT MODELS INTO A
2ND REDUCED SET BY FILTERING OUT 2NP IRRELEVANT RULE-OBIECT MODEL PAIR(S)
IN THE DECISION TABLE(S) BASED ON THE 2NP DyN. CONDITION EVAL. RESULT

FIG. 8C

US 2019/0129732 Al

932

Patent Application Publication = May 2, 2019 Sheet 45 of 45
300
\ FIG.9
Main Storage
) Memory ROM Device
Display 908 909 910
911 'y r X
h4 Y A4
A BAPS 906 h
y Y A 4
Input Data Processor(s) / Communications
Device Interface Core(s) Interface
912 933 907 914
ﬁ 915
Communications
Link
931 X D 900
DB

US 2019/0129732 Al

METHODS, SYSTEMS, AND COMPUTER
PROGRAM PRODUCT FOR
IMPLEMENTING SOFTWARE
APPLICATIONS WITH DYNAMIC
CONDITIONS AND DYNAMIC ACTIONS

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] The present application is related to U.S. patent
application Ser. No. , entitled “METHODS, SYS-
TEMS, AND COMPUTER PROGRAM PRODUCT FOR
IMPLEMENTING AN INTELLIGENT SYSTEM WITH
DYNAMIC CONFIGURABILITY” under Attorney Docket
Number INT-339US1(1710533US) and filed concurrently.
The contents of the aforementioned patent applications are
hereby expressly incorporated by references in their entire-
ties for all purposes.

COPYRIGHT NOTICE

[0002] A portion of the disclosure of this patent document
contains material which is subject to copyright protection.
The copyright owner has no objection to the facsimile
reproduction by anyone of the patent document or the patent
disclosure, as it appears in the Patent and Trademark Office
patent file or records, but otherwise reserves all copyright
rights whatsoever.

BACKGROUND

[0003] Conventional software products and services often
include a hard coded software program with inter-depen-
dencies among various blocks of code in the hard coded
software program flow. Such a hard coded software program
is difficult to code with complex relations and/or dependen-
cies and is not amenable to modifications, especially in
software products and services providing customized user
experiences in response to user inputs. Conventionally, the
flow sequence is hard coded in the software program, and
thus any modifications disturbing the flow sequence neces-
sarily involves breaking up one or more edges (when the
software program is viewed as a directed graph), modifying
one or more nodes (e.g., adding or removing one or more
nodes or changing the locations of two or more nodes) in the
flow, and re-establishing one or more new edges to accom-
modate the modified one or more nodes.

[0004] Software programs with a flow sequence or navi-
gation algorithm that is hard-coded in the software programs
also cause inefficiencies during execution. Such hard-coded
flow sequences, navigation algorithms, or their correspond-
ing graphs or data structures often need to be traversed
hierarchically or a large number of configurable objects and
sometimes even through nodes or objects that may be
irrelevant to a specific user and thus consume unnecessary
computational resources. These conventional software pro-
grams with hard-coded flow sequences or navigation algo-
rithms are also more difficult to present customizable or
personal experiences for different users. For example, in an
electronic tax return preparation and filing software appli-
cation (both the hosted and the stand-alone versions), a user
is often presented with a series of interview screens to
collect sufficient information about the user and to determine
which sections of a tax form may be pertinent to the user’s
tax filing. Modern electronic tax return preparation and
filing software applications attempt to streamline the inter-

May 2, 2019

view by selecting relevant interview screens from a large
number of interview screens stored in a repository and
presenting only the selected interview screens to a specific
user.

[0005] Although some logic or even intelligence may be
built into such conventional software programs, these mod-
ern software applications still suffer from the same problems
with having to traverse a tree- or table-like structure (e.g., a
directed graph, a tabular structure, a navigation algorithm,
etc.) to identify the relevant object models (e.g., interview
screens for an electronic tax preparation and filing software
product or service delivery model). Also, such a tree- or
table-like structure, once hard coded, is not amenable to
modifications that alter the logic flow therein. These prob-
lems are further exacerbated by the sheer amount of inter-
view screens often exceeding 50,000 interview screens
and/or interview questions in modern electronic tax return
preparation and filing software application.

[0006] The inter-dependencies or inter-relations among at
least some of these interview screens further hinder the
development of such software applications. For example,
more computational resources will be expended during the
prototyping, designing, implementation, testing, verifica-
tion, integration, etc. of software products or services simply
because of the complexities and hence modifications (e.g.,
by removing a part of the original logic flow, introducing
changes to one or more blocks or sections of the underlying
code, and re-establishing a new logic and connections
involving the one or more blocks or sections of code) of the
underlying logic of a modern software application and
further because of the sheer number of various object
models and/or code modules that have to be parsed through
and thus accommodated in the memory of a computing
system and processed with processor cycles.

[0007] To address at least these technological challenges
and difficulties, there is therefore a need for methods,
systems, and computer program products for implementing
software products or services with dynamic conditions and
dynamic actions as well as a need for methods, systems, and
computer program products for implementing intelligent
systems with dynamic configurability.

SUMMARY

[0008] Disclosed are method(s), system(s), and article(s)
of manufacture for implementing software products or ser-
vices with dynamic conditions and dynamic actions in some
embodiments. Some other embodiments are directed to
method(s), system(s), and article(s) of manufacture for
implementing intelligent systems with dynamic configu-
rability.

[0009] Some embodiments are directed to a method for
implementing software applications with dynamic condi-
tions and actions. In these embodiments, these techniques
identify a plurality of flow nodes for a software application.
One or more dynamic conditions may be identified or
determined for the plurality of flow nodes; and one or more
dynamic actions may be identified or determined for the one
or more dynamic conditions. A dynamic flow may be
determined with the plurality of flow nodes, the one or more
dynamic conditions, and the one or more dynamic actions,
without hard coded inter-dependency between two or more
flow nodes of the plurality of flow nodes.

[0010] In some embodiments, a dynamic condition asso-
ciated with or included in a flow node in the dynamic flow

US 2019/0129732 Al

is independently evaluated to generate a dynamic evaluation
result during an execution of the dynamic flow. In some of
these embodiments, a dynamic action associated with or
included in a flow node in the dynamic flow is independently
performed based in part or in whole upon the dynamic
evaluation result of the dynamic condition.

[0011] In some of the immediately preceding embodi-
ments, the dynamic flow for the software application may be
executed at least by independently evaluating one or more
dynamic conditions during execution of a first flow node in
the dynamic flow and at least by independently executing
one or more dynamic actions based in part or in whole upon
dynamic evaluation results of the one or more dynamic
conditions. During the execution of the dynamic flow,
runtime data that is acquired during the execution of the first
flow node in the dynamic flow may be identified; and the
plurality of flow nodes may be reduced into a reduced set of
flow nodes having a fewer number of flow nodes than a total
number of the plurality of flow nodes based in part or in
whole upon the runtime data.

[0012] In addition or in the alternative, the dynamic flow
may be modified at least by performing a modification
pertaining to one or more flow nodes in the dynamic flow;
and the dynamic flow may be transformed into a modified
dynamic flow based in part or in whole upon the modifica-
tion. In some of these embodiments, moditying the dynamic
flow may include adding a new flow node to the dynamic
flow to transform the dynamic flow into the modified
dynamic flow, where the new flow node is added to the
dynamic flow without modifying the plurality of flow nodes
in the dynamic flow.

[0013] In addition or in the alternative, modifying the
dynamic flow may include removing an existing flow node
from the dynamic flow to transform the dynamic flow into
the modified dynamic flow, where the existing flow node is
removed from the dynamic flow without modifying the
plurality of flow nodes in the dynamic flow. In some
embodiments, modifying the dynamic flow may include
identifying a first flow node in the dynamic flow; identifying
a second flow node in the dynamic flow; and swapping
locations of the first flow node and the second flow node in
the dynamic flow, where the locations are swapped in the
dynamic flow without modifying the plurality of flow nodes
in the dynamic flow.

[0014] Insome embodiments, executing the dynamic flow
may include identifying first runtime data during an execu-
tion of the dynamic flow; and one or more relevance
analyses may be performed for the first runtime data. In
some of these embodiments, a first dynamic evaluation
result may be determined at least by evaluating one or more
first dynamic conditions included in or associated with a
current flow node that is executing; and one or more first
dynamic actions of the one or more dynamic actions may be
executed based in part or in whole upon the first dynamic
evaluation result of the one or more first dynamic conditions.
[0015] Insome of these embodiments, the plurality of flow
nodes for the dynamic flow may be reduced into a first
reduced set at least by determining a first relevant set of flow
nodes based in part or in whole upon the first runtime data
or the first dynamic evaluation result of the one or more first
dynamic conditions or by determining a first irrelevant set of
flow nodes based in part or in whole upon the first runtime
data or the first dynamic evaluation result of the one or more
first dynamic conditions.

May 2, 2019

[0016] In addition or in the alternative, a next flow node
may be identified for the dynamic flow from the first reduced
set for execution after the current flow node; and one or
more second dynamic conditions included in or associated
with the next flow node may be identified or determined.
Moreover, a second dynamic evaluation result may be
determined at least by evaluating the one or more first
dynamic conditions included in or associated with the next
flow node that is executing; and the one or more second
dynamic actions may be executed based in part or in whole
upon the second dynamic evaluation result of the one or
more second dynamic conditions.

[0017] In some of these embodiments, second runtime
data may be identified during an execution of the dynamic
flow; and the first reduced set may be again reduced into a
second reduced set for the dynamic flow at least by deter-
mining a second relevant set of flow nodes based in part or
in whole upon the second runtime data or the second
dynamic evaluation result of the one or more second
dynamic conditions or by determining a second irrelevant
set of flow nodes based in part or in whole upon the second
runtime data or the second dynamic evaluation result of the
one or more second dynamic conditions.

[0018] Some embodiments are directed to a method for
implementing intelligent systems with dynamic configu-
rability. In these embodiments, these techniques identifying
a plurality of flow nodes for a software application and
determine a dynamic flow for executions of the intelligent
system with the plurality of flow nodes, one or more
dynamic conditions, and one or more dynamic actions,
without hard coded inter-dependency between two or more
flow nodes of the plurality of flow nodes. The intelligent
system is transformed into a dynamically configured intel-
ligent system at least by performing a modification pertain-
ing to one or more flow nodes in the dynamic flow, without
affecting remaining flow nodes in the dynamic flow.
[0019] In some embodiments, a dynamic condition asso-
ciated with or included in a flow node in the dynamic flow
is independently evaluated to generate a dynamic evaluation
result during an execution of the dynamic flow; and a
dynamic action associated with or included in a flow node in
the dynamic flow is independently performed based in part
or in whole upon the dynamic evaluation result of the
dynamic condition.

[0020] In some embodiments, runtime data may be iden-
tified during an execution of at least one flow node for the
intelligent system; one or more classification modules may
be identified for classifying one or more terms in the runtime
data with machine learning; and the one or more terms may
be classified with at least one classification module. In some
of these embodiments, a helper item may be identified and
linked with a classified term from the runtime data using the
at least one classification module; and the accuracy or
completeness of the at least one classification module may
be improved.

[0021] In addition or in the alternative, a plurality of
classification metrics or measures may be identified; one or
more learning classification schemes may be determined
with the plurality of classification metrics or measures; and
the one or more classification modules may be identified or
determined with the one or more learning classification
schemes. In some of these embodiments, the one or more
learning classification schemes may be retrained into one or
more retrained learning classification schemes with active

US 2019/0129732 Al

learning data; and the one or more classification modules
may be improved with at least the one or more retrained
learning classification schemes.

[0022] In some embodiments, a data set corresponding to
the plurality of flow nodes may be identified into a word or
term embedding module that is stored at partially in the
memory and including or coupled with the at least one
microprocessor; a plurality of object model clusters and a
plurality of characteristic clusters may be identified or
determined for the data set with word or term embedding
techniques; and runtime data may be identified from a user
during an execution of the intelligent system.

[0023] In some of these embodiments, one or more run-
time data clusters and one or more characteristic clusters
may be determined for at least one runtime data cluster for
the runtime data; and at least one characteristic cluster or the
at least one runtime data cluster may be presented or
forwarded to a data model or a code generation module for
completing the dynamic flow.

[0024] In some of the immediately preceding embodi-
ments, the data set may be normalized into a normalized data
set; the data set or the normalized data set may be reduced
into a reduced data set at least by performing a reduction
process on the data set or the normalized data set; a
dictionary may be generated for the reduced data set; the
word or term embedding module may be trained with one or
more training instances comprising one or more analogical
tasks; and a plurality of tokens in the dictionary may be
mapped to a set of vectors in a vector space.

[0025] Inaddition or in the alternative, the dictionary may
be pruned; the one or more training instance and multiple
degrees of freedom may be determined for the one or more
training instances based in part or in whole upon a balance
between performance and accuracy of the intelligent system;
and customizable weight structures may be determined for
the word or term embedding module.

[0026] Moreover, the one or more training instances may
be executed at the word or term embedding module; and the
set of vectors may be generated as a distribution of weights
of tokens in the dictionary with the customizable weight
structures.

[0027] In some embodiments, one or more completion
graphs may be identified; one or more decision tables may
be determined based in part or in whole upon the one or
more completion graphs; the dynamic flow may be deter-
mined based at least in part upon the one or more decision
tables; and a first flow node in the dynamic flow may be
executed at least by independently evaluating one or more
first dynamic conditions included in or associated with the
first flow node and by executing one or more first dynamic
actions based in part or in whole upon evaluating the one or
more first dynamic conditions.

[0028] In some of these embodiments, first runtime data
may be identified during an execution of the first flow node;
and at least one decision table may be updated into a first
reduced decision table at least by discarding, ignoring, or
filtering out or more first entries in the at least one decision
table from further processing based in part or in whole upon
the first runtime data. Furthermore, a second flow node in the
dynamic flow may be executed at least by independently
evaluating one or more second dynamic conditions included
in or associated with the second flow node and by executing

May 2, 2019

one or more second dynamic actions based in part or in
whole upon evaluating the one or more second dynamic
conditions.

[0029] Second runtime data may be identified during an
execution of the second flow node; and the first reduced
decision table may be further updated into a second reduced
decision table at least by discarding, ignoring, or filtering out
or more second entries in the first reduced decision table
from further processing based in part or in whole upon the
second runtime data.

[0030] Some embodiments are directed at one or more
hardware modules that include and/or function in conjunc-
tion with at least one microprocessor as well as other related
components or architectures of one or more computing
systems and may be invoked to perform any of the methods,
processes, or sub-processes disclosed herein. The hardware
system may include, for example, a normalization module,
one or more word embedding modules or term embedding
modules, one or more multi-stage clustering modules, a
profiler module, an analytics module, an anonymization
module, one or more machine learning or artificial intelli-
gence (A.L) modules, and/or an anomaly check module in
some embodiments.

[0031] Each of these modules may include or function in
tandem with electrical circuitry and one or more micropro-
cessors each having one or more processor cores to perform
its intended functions. The hardware system may further
include one or more forms of non-transitory machine-
readable storage media or persistent storage devices to
temporarily or persistently store various types of data or
information, various design rules, various libraries, selected
and selectable targets, or any other suitable information or
data, etc. A module may be initialized in a computing system
so that the software portion of the module is stored in
memory (e.g., random access memory) to be executed by
one or more processors or processor cores off the computing
system to perform at least a part of the functionality of the
module. Some illustrative modules or components of the
hardware system may be found in the description below.
[0032] Some embodiments are directed at an article of
manufacture that includes a non-transitory machine-acces-
sible storage medium having stored thereupon a sequence of
instructions which, when executed by at least one micro-
processor or at least one processor core, causes the at least
one microprocessor or the at least one processor core to
perform any of the methods, processes, or sub-processes
disclosed herein. Some illustrative forms of the non-transi-
tory machine-readable storage media may also be found in
the System Architecture Overview section below.

[0033] More details of various aspects of the methods,
systems, or articles of manufacture for implementing soft-
ware products or services with dynamic conditions and
dynamic actions are described below with reference to
FIGS. 1-9.

BRIEF DESCRIPTION OF THE DRAWINGS

[0034] The drawings illustrate the design and utility of
various embodiments of the invention. It should be noted
that the figures are not drawn to scale and that elements of
similar structures or functions are represented by like ref-
erence numerals throughout the figures. In order to better
appreciate how to obtain the above-recited and other advan-
tages and objects of various embodiments of the invention,
a more detailed description of the present inventions briefly

US 2019/0129732 Al

described above will be rendered by reference to specific
embodiments thereof, which are illustrated in the accompa-
nying drawings. Understanding that these drawings depict
only typical embodiments of the invention and are not
therefore to be considered limiting of its scope, the invention
will be described and explained with additional specificity
and detail through the use of the accompanying drawings in
which:

[0035] FIGS. 1A-1D illustrate schematic examples of a
software product or service to demonstrate the advantages of
software products or services with dynamic conditions and
dynamic actions in one or more embodiments.

[0036] FIG. 2A illustrates a high level block diagram for
implementing software products or services with dynamic
conditions and dynamic actions in one or more embodi-
ments.

[0037] FIG. 2B illustrates some examples of individual,
independent object models with respective dynamic condi-
tions in one or more embodiments.

[0038] FIGS. 2C-2D jointly illustrate some code or
pseudo-code for the examples of the individual, independent
object models with respective dynamic conditions illustrated
in FIG. 2B in one or more embodiments.

[0039] FIG. 2E illustrates an example of modifying an
existing software flow by swapping the locations of two
individual, independent object models with respective
dynamic conditions in one or more embodiments.

[0040] FIG. 2F illustrates the outcome of the example of
modifying the existing software flow illustrated in FIG. 2E
in one or more embodiments.

[0041] FIG. 2G illustrates some code or pseudo-code for
the example of modifying an existing software flow illus-
trated in FIGS. 2E-2F in one or more embodiments.
[0042] FIG. 2H illustrates some code or pseudo-code for
implementing an object model with dynamic condition(s)
and dynamic actions that may be used in the examples
illustrated in FIGS. 2B, 2E, and 2F in one or more embodi-
ments.

[0043] FIG. 21 illustrates some code or pseudo-code for an
example of a dynamic condition and dynamic actions that
may be used in the examples illustrated in FIGS. 2B-2G in
one or more embodiments.

[0044] FIG. 2] illustrates some code or pseudo-code for an
example of a dynamic condition and dynamic actions that
may be used in the examples illustrated in FIGS. 2B-2G in
one or more embodiments.

[0045] FIG. 2K illustrates some code or pseudo-code for
an example of a custom dynamic condition and dynamic
actions in one or more embodiments.

[0046] FIG. 2L illustrates some code or pseudo-code for
an example of a navigation operation interface that may be
used in implementing software products or services with
dynamic conditions and dynamic actions in one or more
embodiments.

[0047] FIG. 2M illustrates some code or pseudo-code for
an example of a navigation operation that may be used in
implementing software products or services with dynamic
conditions and dynamic actions in one or more embodi-
ments.

[0048] FIG. 2N illustrates some code or pseudo-code for
an example of another navigation operation that may be used
in implementing software products or services with dynamic
conditions and dynamic actions in one or more embodi-
ments.

May 2, 2019

[0049] FIG. 3 illustrates a high level process or system
block diagram for implementing software products or ser-
vices with dynamic conditions and dynamic actions or for
implementing intelligent systems with dynamic configu-
rability in one or more embodiments.

[0050] FIG. 4A illustrates a high level block diagram for
implementing software products or services with dynamic
conditions and dynamic actions in one or more embodi-
ments.

[0051] FIGS. 4B-4C illustrate more details about a portion
of the high level block diagram illustrated in FIG. 4A in one
or more embodiments.

[0052] FIG. 5A illustrates more details about a portion of
the block diagram illustrated in FIG. 4B in one or more
embodiments.

[0053] FIG. 5B illustrates more details about a portion of
the block diagram illustrated in FIG. 5A in one or more
embodiments.

[0054] FIG. 5C illustrates a high level block diagram for
a portion of the process or system block diagram illustrated
in FIG. 3 in one or more embodiments.

[0055] FIG. 5D illustrates more details about a portion of
the high level block diagram illustrated in FIG. 5C in one or
more embodiments.

[0056] FIG. SE illustrates more details about a portion of
the high level block diagram illustrated in FIG. 5C in one or
more embodiments.

[0057] FIG. 5F illustrates more details about a portion of
the high level block diagram illustrated in FIG. 5C in one or
more embodiments.

[0058] FIG. 5G illustrates a high level block diagram of a
relevance module in one or more embodiments.

[0059] FIG. 6A illustrates a high level block diagram for
performing a relevance or irrelevance analysis to identify or
determine one or more relevant or irrelevant entities in one
or more embodiments.

[0060] FIG. 6B illustrates a more detailed block diagram
for a portion of the high level block diagram illustrated in
FIG. 6A in one or more embodiments.

[0061] FIG. 6C illustrates a more detailed block diagram
for a portion of the high level block diagram illustrated in
FIG. 6B in one or more embodiments.

[0062] FIG. 6D illustrates a more detailed block diagram
for a portion of the high level block diagram illustrated in
FIG. 6C in one or more embodiments.

[0063] FIG. 6F illustrates another more detailed block
diagram for a portion of the high level block diagram
illustrated in FIG. 6C in one or more embodiments.

[0064] FIG. 6F illustrates a simplified example of rel-
evance determination with the techniques illustrated in one
or more of FIGS. 6A-6F in one or more embodiments.
[0065] FIG. 6G illustrates an example of the process
illustrated in FIG. 6D.

[0066] FIG. 6H illustrates an example of the process
illustrated in FIG. 6E.

[0067] FIG. 7A illustrates an example of a directed graph
or a completion graph in one or more embodiments.
[0068] FIG. 7B illustrates an example of a decision table
that is based on or derived from a directed graph or a
completion graph in one or more embodiments.

[0069] FIG. 7C illustrates another example of a decision
table that incorporates statistical data and is based on or
derived from a directed graph or a completion graph to

US 2019/0129732 Al

determine likelihood or probability of an answer to a ques-
tion of the decision table in one or more embodiments.

[0070] FIG. 7D illustrates an example of incremental
processing of a decision table based at least in part upon
some runtime data to identify relevant entries or to filter out
irrelevant entries in one or more embodiments.

[0071] FIG. 8A illustrates a block diagram for implement-
ing intelligent systems with dynamic configurability in one
or more embodiments.

[0072] FIGS. 8B-8C jointly illustrates more details about
a portion of the block diagram illustrated in FIG. 8A for
implementing intelligent systems with dynamic configu-
rability in one or more embodiments.

[0073] FIG. 9 illustrates an example of a computing sys-
tem that is configured with specific modules to perform
various techniques described herein in one or more embodi-
ments.

DETAILED DESCRIPTION

[0074] Some embodiments are directed to a method, sys-
tem, and computer program product for implementing soft-
ware applications with dynamic conditions and actions in
one or more embodiments. Other objects, features, and
advantages of the invention are described in the detailed
description, figures, and claims.

[0075] In some embodiments, a plurality of flow nodes
may be identified into a software application flow. Unlike
conventional techniques with hard coded navigation algo-
rithm, a hard coded flow sequence, or a fixed series of state
transitions controlling the order or sequence in which the
plurality of flow nodes are executed (e.g., a directed graph,
a finite state machine, etc.), the plurality of flow nodes are
disconnected from each other, and each flow node may be
independently executed.

[0076] A flow node may be self-contained and include or
may be associated with one or more dynamic conditions that
are evaluated at runtime and/or one or more dynamic actions
that are performed according to the evaluation results of the
one or more corresponding dynamic conditions. For
example, a success action may be performed when a
dynamic condition is evaluated to be “true”; or a failure
action may be performed when a dynamic condition is
evaluated to be “false”.

[0077] A flow node may thus be considered as a dynamic
application, a dynamic object model, or a dynamic code
module that may be independently executed almost any-
where in the software application flow without altering the
final result of the execution of the software application. A
software application flow thus defined is amenable to modi-
fications that may include, for example, adding one or more
flow nodes to the software application flow, removing one or
more flow nodes from the software application flow, swap-
ping the locations of two or more flow nodes, or any
combinations thereof.

[0078] Unlike conventional techniques with hard coded
logic or navigation algorithm, a hard coded flow sequence,
or a fixed series of state transitions controlling the order or
sequence in which the plurality of flow nodes are executed
(e.g., a directed graph, a finite state machine, etc.), these
embodiments dynamically identify or determine a plurality
of flow nodes for a flow of a software application product or
service; and the plurality of flow nodes may be initiated with

May 2, 2019

individual object models (or code modules) that are inde-
pendent from each other with no hard-coded inter-depen-
dency relations in between.

[0079] Moreover, an individual module may be generated
with a condition handler and an action handler. The condi-
tion handler executes to determine how one or more condi-
tions are evaluated. The evaluation results of these one or
more conditions are provided to the action handler to
determine and execute the corresponding dynamic action.
Both the dynamic conditions and the dynamic actions may
be predetermined or may be custom generated, even on the
fly during the execution and/or modification of the flow of
such a software application with dynamic conditions and
actions.

[0080] In addition to the flexibility of and minimal
changes in modifying a software application or a flow
therefor without breaking or having to break up the original
logic in the original software application or the flow therefor,
one of the advantages of these embodiments is the conser-
vation of computational resources during, for example, the
prototyping, designing, implementation, testing, verifica-
tion, integration, etc. of software products or services
[0081] Some embodiments are directed to a method, sys-
tem, and computer program product for implementing intel-
ligent systems with dynamic configurability in one or more
embodiments. Other objects, features, and advantages of the
invention are described in the detailed description, figures,
and claims.

[0082] In some of these embodiments, an intelligent sys-
tem or software application product or service may integrate
the dynamic applications with dynamic conditions and
dynamic actions with built-in intelligence (e.g., artificial
intelligence or Al, machine learning capabilities, computa-
tional neuroscience, logic-based knowledge representation/
planning/learning, knowledge-based learning and recogni-
tion, etc.) The built-in intelligence provides the “brain
power” for the software application product or service to
make unassisted decisions, predictions, and/or recommen-
dations, and the implementation with dynamic conditions
and dynamic actions transforms such a system or software
application product or service into one with dynamic con-
figurability.

[0083] One example of such intelligent systems or pro-
cesses with dynamic configurability includes an intelligent
electronic tax preparation and filing software product or
service where the built-in intelligence autonomously and
intelligently determines one or more flow nodes for at least
a part of the flow of the software product or service, and the
dynamic configurability allows the flow to be dynamically
and autonomously modified to accommodate the inputs,
operations, and outputs of the built-in intelligence.

[0084] Insome embodiments, integrate the above dynamic
conditions and dynamic actions with an intelligent system
that determines the relevancy of various dynamic conditions
and actions based on incrementally gathered user input data.
This intelligent system or process with dynamic configu-
rability may invoke one or more independent or embedded
data models that use the user input or other inputs from other
sources to generate the initial batch of dynamic actions with
respective dynamic conditions. The intelligent system deter-
mines the relevancy of each dynamic action in the initial
batch.

[0085] One or more dynamic condition and action mod-
ules may use either a default flow or generate a custom flow

US 2019/0129732 Al

with an initial set of individual dynamic blocks. The intel-
ligent system may further incrementally evaluate additional
inputs (user inputs or other inputs collected during the
execution of a software application (e.g., Turbotax®) driven
by the intelligent system and the dynamic conditions and
dynamic actions module(s) to determine which ones of the
initial set of dynamic blocks or nodes are relevant, when one
dynamic block or node depends upon one or more other
blocks, and how the generated flow is going to proceed
based on the incrementally collected inputs.

[0086] One of the advantages of such intelligent systems
or processes with dynamic configurability includes the expe-
dient access (e.g., identification, retrieval, etc.) of various
blocks or sections of software code, various object models
(e.g., a large number of potential interview questions and/or
interview screens in excess of 50,000) because the built-
intelligence more quickly discards irrelevant ones or iden-
tifies relevant ones without processing, traversing, or parsing
or having to process, traverse, or parse through, for example,
the decision logic (e.g., a directed graph, a decision table,
etc. in its entirety). In addition, such intelligent systems or
processes inherit all the advantages of the software appli-
cations with dynamic conditions and actions mentioned
above.

[0087] Various embodiments will now be described in
detail with reference to the drawings, which are provided as
illustrative examples of the invention so as to enable those
skilled in the art to practice the invention. Notably, the
figures and the examples below are not meant to limit the
scope of the present invention. Where certain elements of
the present invention may be partially or fully implemented
using known components (or methods or processes), only
those portions of such known components (or methods or
processes) that are necessary for an understanding of the
present invention will be described, and the detailed descrip-
tions of other portions of such known components (or
methods or processes) will be omitted so as not to obscure
the invention. Further, various embodiments encompass
present and future known equivalents to the components
referred to herein by way of illustration.

[0088] FIGS. 1A-1D illustrate schematic examples of a
software product or service to demonstrate the advantages of
software products or services with dynamic conditions and
dynamic actions in one or more embodiments. FIG. 1A
illustrates a simple software application flow presenting a
series of screens to a user for ordering food items. In this
example, a question or interview screen 102A may be
presented to ask the user whether the user would like to
order a burger or a cheeseburger. Of course, this first
question or interview screen 102A may also allow the user
to skip this particular selection although this aspect is not
illustrated in FIG. 1A. Another question or interview screen
104A may be presented to ask the user which milkshake
flavor the user would like to order, and the selections may
include “chocolate,” “vanilla,” and “strawberry” (and per-
haps “skip” allowing the user to skip the milkshake alto-
gether).

[0089] For chocolate milkshakes, an addition screen or
object model 106 A may be executed and presented to ask the
user whether the user would like to have dark chocolate or
milk chocolate milkshake. For vanilla milkshakes, an addi-
tional screen or object model 108A may be executed and
presented to ask the user whether the user would like to have
regular vanilla or French vanilla milkshake. For strawberry

May 2, 2019

milkshakes, an additional screen or object model 110A may
be executed and presented to ask the user whether the user
would like to have Albion or Florence milkshake.

[0090] Another question or interview screen 112A may be
presented to ask the user whether the user would like to
order fries. It is supposed that after the screen 112A inquir-
ing into fries, the software flow proceeds to screen 114A to
ask the user to tell his or her friend(s) about the experience
for the store or the order and further proceeds to 116A to
confirm the placement and execution of the order and to
provide order status (118A). The following FIGS. 1B-1D
illustrate some simple modifications to this simple flow.
[0091] FIG. 1B illustrates an example of adding a flow
node to the flow illustrated in FIG. 1A. More specifically,
FIG. 1B illustrates adding a decision block 102B to inquire
into whether a user has already been asked about telling his
or her friends about the user’s experience about the store or
the order. This new decision block 102B is to be added after
block 112A. As a result, the original connection (edge)
between 112A and 114A needs to be removed as illustrated
by the “X’s” 106B in FIG. 1B. When the decision result at
102B is affirmative, the flow is to be modified to proceed to
116A to place and execute the order. Otherwise, the flow is
to be modified to proceed to 114A to ask the user to tell his
or her friend(s) about the experience for the store or the
order.

[0092] With conventional approaches, this simple modi-
fication would require removing the connection or edge
between flow node 112 A and flow node 114 A, adding a new
block (102B), re-establish three new connections—between
112A and 102B, between 102B and 116 A for the affirmative
determination result, and between 102B and 114A for nega-
tive determination result. Such a simple modification can be
done even when this example of software application is hard
coded, although such a modification requires tampering with
the original logic with the aforementioned modifications that
need to be performed manually. If done conventionally, this
modification essentially require expending more computa-
tional resources in loading the original flow, making modi-
fications to the original flow, and then proceeding through
the regular coding, testing, etc. Nonetheless, some of the
computational resources that would be expended with con-
ventional approaches may be conserved with the dynamic
applications described below.

[0093] FIG. 1C illustrates another example of modifying
adding another flow node to the flow illustrated in FIG. 1B.
More specifically, FIG. 1C illustrates adding another deci-
sion block 102C to inquire into whether fries are in stock.
This new decision block 102C is to be added after blocks
106 A, 108A, and 110A. As a result, the original connections
(edge) between 106A and 108A, between 108A and 112A,
and between 110A and 112A need to be removed as illus-
trated by the “X’s” 104C in FIG. 1C. The decision block
102C may be added to the flow, and new connections or
edges need to be re-established between the newly added
102C and the original blocks 106A, 108A, and 110A. When
the decision result at 102C is affirmative, the flow is to be
modified to proceed to 112A to inquire into whether a user
would like to order fries. Otherwise, the flow is to be
modified to proceed to 102B added in FIG. 1B to ask the
user to tell his or her friend(s) about the experience for the
store or the order.

[0094] Similar to the modifications in FIG. 1B, such
modifications illustrated in FIG. 1C can be done even when

US 2019/0129732 Al

this example of software application is hard coded, although
such a modification requires tempering with the original
logic with the aforementioned modifications that need to be
performed manually or even programmatically if such pro-
grammatic approaches ever exist. If done conventionally,
this modification also requires expending more computa-
tional resources as that illustrated and described in FIG. 1B.

[0095] FIG. 1D illustrates another example of modifying
adding two additional flow nodes to the flow illustrated in
FIG. 1C. More specifically, FIG. 1D illustrates adding a new
decision block 102D to inquire into whether burgers are in
stock as well as adding another new decision block 104D to
inquire into whether milkshakes are in stock. The new
decision block 102D is to be added before block 102A; and
the new decision block 102D is to be added before block
104A. Moreover, when the determination result at 102D is
affirmative, the flow proceeds to present the screen 102A
asking a user whether the user would like to order a burger
or a cheeseburger. When the determination result at 102D is
negative, the flow proceeds to 104D to determine whether
milkshakes are in stock (the newly added 104D).

[0096] In addition, when the determination result at 104D
is affirmative, the flow proceeds to present the screen 104A
asking a user whether the user would like to order a
chocolate, vanilla, or strawberry milkshake. Otherwise, the
flow proceeds to 102C to determine whether fries are in
stock.

[0097] As a result of these modifications of the flow, the
original connection (edge) between 102A and 104A needs to
be removed as illustrated by the “X” 106D in FIG. 1D. The
decision blocks 102D and 104D may be added to the flow,
and new connections or edges need to be re-established
between the newly added 102D and the original block 102A,
between the new blocks 102D and 104D, between the new
block 104D and the original block 104A, between the new
block 104D and block 102C for the negative determination
result at 104D.

[0098] Similar to the modifications in FIGS. 1B and 1C,
such modifications illustrated in FIG. 1D can be done even
when this example of software application is hard coded,
although such modifications also require manipulating the
original logic with the aforementioned modifications that
need to be performed manually or even programmatically if
such programmatic approaches ever exist. If done conven-
tionally, these modifications also require expending more
computational resources as those illustrated and described in
FIGS. 1B and 1C.

[0099] FIG. 2A illustrates a high level block diagram for
implementing software products or services with dynamic
conditions and dynamic actions in one or more embodi-
ments. In these embodiments, a flow for a dynamic software
application 202 A may be generated by identifying a plurality
of flow nodes (e.g., 204A, 206A, 208A, 210A, and 212A
illustrated in FIG. 2A) from, for example, one or more
repositories 226 A and adding the plurality of flow nodes into
the flow. A dynamic software application 202A may option-
ally operate in tandem with a navigation engine 220A having
one or more navigation algorithms, although the navigation
engine 220A or navigation algorithms are entirely optional
because these flow nodes have the capability of independent
executions. These one or more repositories 226 A may store,
for example, rules, questions, inquiries, queries, data mod-

May 2, 2019

els, code modules, contents, topics, screens presented to
users, pages, etc. or any other suitable data or information in
any suitable forms.

[0100] In some of these embodiments, a flow for a
dynamic software application may be generated by simply
identifying a plurality of flow nodes (e.g., 204A, 206A,
208A, 210A, and 212A illustrated in FIG. 2A) from one or
more repositories (e.g., 226A) and adding the plurality of
flow nodes into the flow, without any navigation hard-coded
algorithms or sequences between at least two of the plurality
of flow nodes. In some other embodiments, a flow for a
dynamic software application may be generated by identi-
fying and adding a plurality of flow nodes into the flow with
a general guidance that describe one or more soft rules that
generally indicate how a flow is to proceed at a high level
without specifying any specific sequences or orders to
proceed from a specific node. For example, the guidance
may indicate that one set of flow nodes is preferred (but may
or may not necessarily be required) to execute before
another set of flow nodes, although it shall be noted that such
a general guidance may be entirely optional in some of these
embodiments.

[0101] A dynamic software application 202A may operate
in tandem with one or more relevance or intelligence mod-
ules or data models 224A (collectively intelligence module
for singular or intelligence modules for plural) that may
execute in parallel with the dynamic software application
202A to determine whether certain flow nodes are relevant
to the flow sequence of the dynamic software application
202A and/or whether certain other flow nodes are irrelevant
to the flow. A dynamic software application 202A may also
receive runtime data 230A as inputs. Such runtime data
230A includes, for example, information or data provided by
a user (e.g., user’s answer to a question or inquiry via a user
interface) in some embodiments. In addition or in the
alternative, runtime data 230A may include data generated
by the execution of one or more flow nodes.

[0102] A flow node may be implemented in a variety of
different forms (214A) such as an object model, a code
module, a specific content or a presentation thereof (e.g., an
interview screen or a specific screen presented in a user
interface), a question awaiting user’s answer, etc. A flow
node may include a dynamic application or a portion thereof
and may include or may be associated with its own dynamic
condition(s) (218A) and/or dynamic action(s) (216A). It
shall be noted that although some of the dynamics dynamic
conditions or the dynamic actions appear to be binary in the
examples illustrated in, for example, FIGS. 1A-1D, these
examples are provided herein for the ease of explanation and
illustration and are not intended to limit the scope of
dynamic conditions, dynamic applications, and dynamic
applications. In some embodiments, a dynamic condition
may include much more complex logic than a binary deci-
sion; and depending upon the evaluation results of a
dynamic condition, one or more dynamic actions of various
complexities may be identified and executed than what is
illustrated in these figures.

[0103] In some embodiments, these flow nodes may be
added to the flow in any arbitrary order because each flow
node of the plurality of flow nodes may be individually and
independently executed without awaiting another flow node
to complete its execution although the execution result may
sometimes affect one or more other flow nodes. In some
other embodiments, a priority list 222A may be provided to

US 2019/0129732 Al

the dynamic software application 202A to provide, for
example, some general guidance as to which flow nodes or
which groups of flow nodes may be performed before (or
after) some other flow nodes or groups of flow nodes.
[0104] For example, in the example illustrated in FIGS.
1A-1D, the priority list 222A may include the specification
that “execute order 116A” precedes “order status 118A”, and
that the group of ordering flow nodes (e.g., 102A, 104A,
106A, 108A, 110A, 112A, etc.) precedes “execute order
116A” and “order status 118A”. It shall be noted that a
priority list 222A merely provides general guidance without
imposing hard constraints and is optional due to the capa-
bility of independent evaluation of dynamic conditions and
independent execution of dynamic actions of the flow nodes.
[0105] Inthe example illustrated in FIGS. 1A-1D, if a flow
node’s execution result indicates that milkshakes are not in
stock (e.g., 104D in FIG. 1D) the flow node asking a user
whether the user would like to order milkshake (e.g., 104A)
or which flavor of milkshake the user would like to order
(e.g., 106A, 108A, and 110A) would be ignored, discarded,
or bypassed in the flow.

[0106] In this example, the flow node 104D may be
implemented as an object model having or associated with
a dynamic condition of whether milkshake is in stock. This
flow node 104D may further include or be associated with a
plurality dynamic actions such as a success action (216A),
which is executed when the dynamic condition is evaluated
true (e.g., in stock), and a failure action (216A), which is
executed when the dynamic condition is evaluated false
(e.g., out of stock or sold out). The flow node 108A (regular
vanilla or French vanilla?) may also be implemented as a
dynamic application or a portion thereof and further include
or be associated with a first dynamic condition that deter-
mines whether 104D has been executed, a second dynamic
condition determining whether milkshake is in stock
(104D), and (logical AND) a third dynamic condition deter-
mining whether a user has selected vanilla milkshake
(104A).

[0107] If the dynamic conditions are evaluated true the
success action(s) associated with the flow node 108A may be
executed. For example, a first success action may add the
selected milkshake flavor to the order; and a second success
action may direct the navigation algorithm to proceed to
102C to determine whether fries are in stock. On the other
hand, a failure action may be executed if the dynamic
conditions in this example are evaluated false (inventory
status of the milkshake is not determined yet, milkshake is
out of stock at 104D, the user did not select the vanilla flavor
at 104A, or one or more of the above).

[0108] In some embodiments, all of the dynamic condi-
tions will be evaluated for a dynamic application (or a flow
node in this example). In some other embodiments, depend-
ing upon the logical structure of the dynamic conditions
(e.g., logical AND or logical OR), one or more dynamic
conditions may be omitted. For example, in the aforemen-
tioned example where the dynamic conditions are linked
with logical AND, the remaining dynamic conditions that
have not been evaluated will be skipped or ignored if a
dynamic condition is evaluated false. Depending on which
dynamic condition is evaluated false, the flow node may
further include or may be further associated with another
dynamic action to instruct the navigation algorithm to redi-
rect the flow accordingly. For example, if it is determined
that the inventory status of milkshake has not yet been

May 2, 2019

determined (e.g., 104D has not been executed when 104A
executes), a dynamic action may redirect the navigation
algorithm to proceed to 104D rather than continuing with the
execution of 104A. The aforementioned dynamic examples
and dynamic actions are merely provided as examples for
the example flow illustrated in FIGS. 1A-1D and are thus not
intended to limit other implementations of dynamic condi-
tions and dynamic actions.

[0109] FIG. 2B illustrates some examples of individual,
independent object models with respective dynamic condi-
tions in one or more embodiments. More specifically, FIG.
2B illustrates some examples of some individual object
models or code modules to implement the dynamic appli-
cation the examples illustrated in FIGS. 1A-1D in a dynamic
application. FIG. 2B may also represent a simplified
example flow having the screens presented to users for
ordering food items with the dynamic conditions and
dynamic actions. In this example flow, the flow may pro-
ceed, for example, from the top (e.g., 202B) to the bottom
(e.g., 234B) although other flow sequences may also be
used. For example, a first object model 202B determining
whether a user would like to order a burger or a cheeseburger
may include or may be associated with a dynamic condition
204B determining whether burgers are in stock. A second
object model 204B determining which flavor of milkshake a
user would like to order may include or may be associated
with a dynamic condition 208B determining whether milk-
shakes are in stock.

[0110] Moreover, a third object model 210B determining
whether a user would like to order dark or milk chocolate
milkshake may include or may be associated with a dynamic
condition 212B determining whether the user has ordered a
chocolate milkshake. A fourth object model 214B determin-
ing whether a user would like to order a regular vanilla or
French vanilla milkshake may include or may be associated
with a dynamic condition 216B determining whether the
user has ordered a vanilla milkshake. A fifth object model
218B determining whether a user would like to order an
Albion or Florence strawberry milkshake may include or
may be associated with a dynamic condition 220B deter-
mining whether the user has ordered a strawberry milkshake.

[0111] A sixth object model 222B determining whether a
user would like to order fries may include or may be
associated with a dynamic condition 224B determining
whether fries are in stock. A seventh object model 226B
determining whether a user would like to tell his or her
friends about his experience with the store may include or
may be associated with a first dynamic condition 228B that
controls that this object model 226B is always presented to
users regardless of what the other flow nodes or runtime data
may be as well as a second dynamic condition requiring that
this object model 226B is executed and thus presented to a
user only once per session.

[0112] An eighth object model 230B determining whether
to place and execute the order may include or may be
associated with a dynamic condition 232B that controls this
object model 230B is always presented to users regardless of
what the other flow nodes or runtime data may be. An ninth
object model 234B presenting the status of the order may
include or may be associated with a dynamic condition 236B
that controls this object model 234B is always presented to
users regardless of what the other flow nodes or runtime data
may be. These examples illustrate some examples of

US 2019/0129732 Al

dynamic conditions that may be included in or associated
with a flow node (or a code module, an object model, etc.)
in a dynamic application.

[0113] Although several examples described here with
reference to FIG. 2B are concerning with presenting a screen
to a user (in a form of a dynamic action such as a success
action), much more complex dynamic conditions and
dynamic actions may also be included in the example of the
flow or in any other flows of dynamic software applications.
Also, each flow node may be composed at runtime. More-
over, each flow node may be interpreted or executed (de-
pending on whether the programming language used in
implementing dynamic applications) at runtime. Further-
more, flow nodes may be stored in a repository (e.g., 226A
in FIG. 2A) and reused in one or more other flows of the
same dynamic application or in one or more other dynamic
applications.

[0114] FIGS. 2C-2D jointly illustrate some code or
pseudo-code for the examples of the individual, independent
object models with respective dynamic conditions illustrated
in FIG. 2B in one or more embodiments. More specifically,
FIG. 2C illustrates an example of computer program code or
pseudo code for the example illustrated in FIG. 2B. This
example computer program code includes the identifications
of the object models (e.g., 202B, 206B, etc.) as well as the
associated or included dynamic conditions that are refer-
enced by their synonyms or reference designators (e.g.,
“INSTOCK,” “ALWAYS,” “SHOW_ONCE”, etc.) It shall
be noted that the dynamic conditions and dynamic actions
are presented in a single block of computer program code
although a dynamic code module or dynamic condition-
action pair (e.g., 202B-204B, 206B-208B, etc. in FIG. 2B)
may be implemented in its own block of computer program
code having its own unique identifier that may be referenced
by, for example, application programming interface(s) (API
(s)), function calls, etc.

[0115] FIG. 2E illustrates an example of modifying an
existing software flow by swapping the locations of two
individual, independent object models with respective
dynamic conditions in one or more embodiments. In this
example of modifying the flow illustrated in FIG. 2B, the
developer intends to swap the locations (or the order of
execution or screen presentations) of 202B and 222B. That
is, rather than executing the object model presenting the
choice between burger and cheeseburger (202B), the devel-
oper would like to first inquire into whether a user would
like to order fries (222B). By swapping the dynamic actions
of 202B and 222B as illustrated by the arrowhead 202E,
their included or associated dynamic conditions are also
swapped as illustrated by the arrowhead 204E.

[0116] FIG. 2F illustrates the outcome of the example of
modifying the existing software flow illustrated in FIG. 2E
in one or more embodiments. More particularly, FIG. 2F
illustrates the ease of modifying the sequence or order of
execution of the flow of swapping two flow nodes (202B and
222B). Compared to FIG. 2E, the modified flow now illus-
trated in FIG. 2F shows that the locations of 202B and 222B
have been swapped in the flow illustrated in FIG. 2F. FIG.
2F illustrates the ease of swapping locations of flow nodes
simply by rearranging the sequence of the flow nodes. There
are not edges (when viewing a flow as a graph) or connec-
tions between code modules to break; and there are no new
connections or edges to re-establish. This modification may
thus be implemented much more quickly to conserve com-

May 2, 2019

putational resources due to the capability of independent
execution and the incorporation of dynamic condition(s)
and/or dynamic action(s) in an object model.

[0117] FIG. 2G illustrates some code or pseudo-code for
the example of modifying an existing software flow illus-
trated in FIGS. 2E-2F in one or more embodiments. More
specifically, FIG. 2G illustrates an example of computer
program code or pseudo code for the example illustrated in
FIG. 2F that can be implemented much more quickly due to
the capability of independent execution and the incorpora-
tion of dynamic condition(s) and/or dynamic action(s) in an
object model.

[0118] FIG. 2H illustrates some code or pseudo-code for
implementing an object model with dynamic condition(s)
and dynamic actions that may be used in the examples
illustrated in FIGS. 2B, 2E, and 2F in one or more embodi-
ments. More specifically, FIG. 2H illustrates some examples
of computer program code or pseudo code for some dynamic
actions that may be referenced in FIG. 2B or 2F. In these
examples, the dynamic actions may include, for example,
“Include” which, when executed, includes an order screen
(e.g., for ordering fries) from the flow. The dynamic actions
may also include “Exclude”, which, when executed,
excluded an order screen (e.g., for ordering fries) from the
flow. The dynamic actions may also include “NoChange”,
which, when executed, does not change the current state of
an object model.

[0119] FIG. 21 illustrates some code or pseudo-code for an
example of a dynamic condition that may be used in the
examples illustrated in FIGS. 2B, 2E, and 2F in one or more
embodiments. More specifically, FIG. 21 illustrates some
examples of computer program code or pseudo code for the
“Always” dynamic condition which always present an
object model (e.g., the order screen for burger or cheese-
burger or the screen to ask the user to tell his or her friends)
to the users.

[0120] FIG. 2] illustrates some code or pseudo-code for an
example of a dynamic condition and dynamic actions that
may be used in the examples illustrated in FIGS. 2B, 2E, and
2F in one or more embodiments. More specifically, FIG. 2]
illustrates an example of computer program code or pseudo
code for the “StateCondition” dynamic condition which,
when executed, may be used to indicate a specific state of a
flow or a portion thereof (e.g., a flow node) and to bind the
flow or the portion thereof to the specified success dynamic
action and the specified failure dynamic action.

[0121] FIG. 2K illustrates some code or pseudo-code for
an example of a custom dynamic condition and dynamic
actions in one or more embodiments. More specifically, FIG.
2K illustrates an example of computer program code or
pseudo code for a custom dynamic condition. In this
example, the custom condition constrains the dynamic
actions to the specified success dynamic action (“No-
Change” in this example) and the specified dynamic failure
action (“failAction” in this example) between a specific time
period (between 2 AM and 4 AM local time in this example).

[0122] FIG. 2L illustrates some code or pseudo-code for
an example of a navigation operation interface that may be
used in implementing software products or services with
dynamic conditions and dynamic actions in one or more
embodiments. More specifically, FIG. 2L illustrates an
example of computer program code or pseudo code for a
simplified navigation operation interface for controlling the

US 2019/0129732 Al

flow in the examples illustrated in, for example, FIGS. 2B
and 2E-2F in some embodiments.

[0123] FIG. 2M illustrates some code or pseudo-code for
an example of a navigation operation that may be used in
implementing software products or services with dynamic
conditions and dynamic actions in one or more embodi-
ments. More specifically, FIG. 2M illustrates an example of
computer program code or pseudo code for a simplified
navigation operation (“NavOperationNext” in this example)
for navigating the flow to the next flow node in the examples
illustrated in, for example, FIGS. 2B and 2E-2F in some
embodiments.

[0124] FIG. 2N illustrates some code or pseudo-code for
an example of another navigation operation that may be used
in implementing software products or services with dynamic
conditions and dynamic actions in one or more embodi-
ments. More specifically, FIG. 2N illustrates an example of
computer program code or pseudo code for a simplified
navigation operation (“NavOperationBack™ in this example)
for navigating the flow to the previous flow node in the
examples illustrated in, for example, FIGS. 2B and 2E-2F in
some embodiments. It shall be noted that these examples
illustrated in FIGS. 2L.-2N may be individually implemented
as separate code modules that may be referenced by a
dynamic application or a portion thereof (e.g., a flow node)
in some embodiments or incorporated in the dynamic appli-
cation, a portion thereof, or a master navigation algorithm
guiding the flow of a software application.

[0125] FIG. 3 illustrates a high level process or system
block diagram for implementing software products or ser-
vices with dynamic conditions and dynamic actions as well
as for implementing intelligent systems with dynamic con-
figurability in one or more embodiments. At a high level, the
high level block diagram illustrated in FIG. 3 includes
module group 300 that use various artificial intelligence
techniques to determine, for example, various data models,
relevance (or irrelevance) between one data model and one
or more other data models, relevance between one piece of
data (e.g., a user input, an object model description, etc.) and
one or more other pieces of data, relevance between one
object model and one or more object models (e.g., flow
nodes), or any other determinations referenced herein, etc.
Some or all of the modules and data models in FIG. 3 may
be collectively referred to as dynamic application modules.

[0126] A dynamic application 336 may be formed with
these relevant object models 330 (e.g., a code module or an
object model 330 generated by the dynamic code generation
module(s) 328) or flow nodes 334 generated and/or managed
by a flow module 332, wherein a flow node 334 may include
or may be associated with its own dynamic condition(s) 320
and/or dynamic action(s) 324 providing independent execu-
tion capability. While the dynamic application 336 (e.g., an
electronic tax return preparation and filing software appli-
cation), runtime data 356 (e.g., a user’s answer to an
interview question) may be acquired and referenced by a
data model (316 or 322) that may further determine which
other data models (e.g., flow nodes) have become relevant or
irrelevant based on the acquired runtime data 356. A rec-
ommendation module (e.g., 350) may recommend a recom-
mended object model 326 (e.g., a flow node, an interview
screen, etc.) to an interview module 366 that may present the
recommended object model 326 to the client 354. One or
more tax modules 364 may be invoked to identify relevant

May 2, 2019

tax form(s) 368 or even to populate one or more entries into
the one or more relevant tax forms 368.

[0127] Regarding the execution of such a dynamic appli-
cation without hard coded sequences or orders for naviga-
tion, some embodiments utilize one or more completion
graphs 352 and decision tables 360 to quickly determine
relevant items or irrelevant items (e.g., flow nodes) to more
efficiently navigate through a large number of candidate flow
nodes for a dynamic software application. Some other
embodiments utilize the data models (316 and/or 322)
created by the module group 300 or even the module group
300 itself to quickly determine relevant items or irrelevant
items (e.g., flow nodes) to more efficiently navigate through
a large number of candidate flow nodes for a dynamic
software application. In yet another embodiment, both the
decision table(s) 360 (and/or completion graph(s) 352) and
the data model(s) (316 and/or 322) or some of the module
group 300 may be invoked to quickly determine relevant
items or irrelevant items (e.g., flow nodes) to more effi-
ciently navigate through a large number of candidate flow
nodes for a dynamic software application.

[0128] The module group 300 may also classify an input
(e.g., a piece of data, a data model, an object model, etc.)
into one or more appropriate classes to determine the
relevance, similarity, or closeness of this input with other
similar inputs in some embodiments. In some other embodi-
ments, the module group 300 generates one or more data
models (e.g., 316, 322, etc.) that classify an input (e.g., a
piece of data, a data model, an object model, etc.) into one
or more appropriate classes to determine the relevance,
similarity, or closeness of this input with other similar inputs
in some other embodiments.

[0129] These modules in the module group 300, the data
models 316, or the real-time data models 322 created by the
module group may be further invoked to create or to help
create one or more dynamic applications 336 each of which
includes a plurality of object models so that an object model
may be associated with or includes its own one or more
dynamic conditions 320 and/or its own one or more dynamic
actions 324. These data models 316, real-time data models
322, and/or recommendation modules 350 may further func-
tion in conjunction with other data sources 362 (e.g., prior
tax returns, online resources like social media sites, third-
party information from financial institutions, etc.) and one or
more decision tables 360 that may be created by, for
example, a data model 316 from a completion graph 352.
More details about completion graphs and decision tables
will be described below with reference to FIGS. 7A-7D.

[0130] A dynamic application may start execution by
referencing, for example, a priority list and selection one
flow node from a plurality of flow nodes in some embodi-
ments. In these embodiments, a priority list provides general
guidance to the flow sequence without hard coded “links” or
“connections” between at least some of the flow nodes. For
example, a priority list may simply provide the guidance as
which flow nodes or which groups of flow nodes may be
performed before (or after) some other flow nodes or groups
of flow nodes. In some other embodiments, a dynamic
application may start execution from an arbitrary flow node
of the plurality of flow node. A dynamic application or a
portion thereof (e.g., an included or associated dynamic
action or dynamic condition) may further function in con-
junction with one or more data models 316, one or more
real-time data models 322, one or more recommendation

US 2019/0129732 Al

modules 350, and/or even the module group 300 to generate
one or more recommendations (e.g., recommended inter-
view screen(s), recommended interview question(s), recom-
mended flow navigation sequence, recommended flow node
(s) at a particular point during the execution of a dynamic
application, etc.)

[0131] These one or more recommendations 326 (e.g., the
next flow node) may be identified based on, for example, the
classification, clustering, or relevance determination
described above based on, for example, generally applicable
rules. For example, a general rule may indicate that infor-
mation about the spouse of a married tax payer is also
required in the tax return and may thus invoke one or more
object models that ask the user to provide the information
about the spouse.

[0132] In addition or in the alternative, these one or more
recommendations 326 (e.g., the next flow node) may be
identified based on, for example, the classification, cluster-
ing, or relevance determination described above based on,
for example, information obtained from the other data
sources 362. For example, information from a banking
institution may indicate dividend income for a particular
user to invoke the object model concerning I.R.S. Form
1099-DIV.

[0133] These one or more recommendations 326 may be
forwarded to one or more dynamic code generation modules
328 to generate one or more code modules (e.g., a specific
block of software program code for a particular screen to be
presented in a user interface) or one or more object models
330 (e.g., a flow node such as an object model defining a
specific interview screen to be presented in a user interface
of a software, a specific flow node in a flow of a software
application, etc.)

[0134] A code module or object model 330 generated by
the one or more dynamic code generation modules 328 may
be completely independent of the other code modules or
object models 330 so that its execution (e.g., by evaluating
a dynamic condition and performing the corresponding
dynamic action(s) included or associated with the code
module or object model) results in the same outcome,
regardless of the location of the code module or object
model in a flow.

[0135] A flow construction module (not shown) may be
invoked to identify one or more such code modules and/or
object models to construct flow for a software application. It
shall be noted that the flow referenced herein provides a
guidance for progressing through the plurality of flow nodes
in a dynamic application, without hard coded navigation
algorithms, state machines, or graphs to traverse. Rather, a
flow node may execute independently and individually so
that the outcome of the execution depends solely on the
evaluation result of the one or more dynamic conditions
included in or associated with the flow node that may be
implemented as an object model. In terms of graph theory,
a flow referenced herein includes a plurality of nodes
wherein at least two nodes in such a graph are not connected
by any edges (e.g., directed edges) or ordered pairs of
vertices so that the flow node may be freely relocated in such
a graph without affecting the outcome of the software
application represented by the flow.

[0136] FIG. 3 further illustrates that one or more users or
client applications 354 (e.g., an electronic tax preparation
and filing software product or service) may further interact
with the software product or service. More specifically, the

May 2, 2019

flow or the identified flow nodes may be presented in a
sequential manner that may be incrementally determined,
fine-tuned, or funneled based on the runtime data 356 that is
identified at runtime during the execution of the flow or the
plurality of flow nodes. For example, the flow or the
plurality of flow nodes may be executed in such a way and
order by guiding a user through a much larger number of
possible flow nodes via acquiring runtime data, performing
one or more relevance analyses or classification, and incre-
mentally eliminating irrelevant flow nodes or incrementally
identifying more or most relevant flow node(s) based on the
results of relevance analyses or classification runtime.
[0137] The module group 300 may include one or more
data models or data model creation modules 302 that may be
invoked to generate one or more data models 316 with
various different techniques. The data model creation mod-
ules 302 may include or function in conjunction with, for
example, one or more word embedding modules or term
embedding modules 304 that apply word embedding tech-
niques or term embedding techniques to various data and/or
one or more data or recognition modules that may be a part
of the one or more term embedding modules 304 and are
configured or devised to identify or recognize terms in a data
set (e.g., a corpus of descriptions of various entities such as
object models, screens, metadata, etc.)

[0138] The word embedding or term embedding modules
and/or the data modules created by the data model creation
module(s) 302 are responsible for creating software appli-
cation code modules (e.g., data models 316) that classify
and/or cluster data such as user inputs, object model descrip-
tions, metadata, etc. (e.g., a string of characters, word, a
plurality of words, phrases, sentences, etc.) expressed in
natural language in one or more data sets. Some or all of
these data model creation modules may be used in tandem
with one or more additional modules or data sets to generate
the data models 316. These one or more additional modules
or data sets may include, for example, a plurality of artificial
intelligence (Al) or machine learning modules 308 provid-
ing built-in intelligence for various applications, data mod-
els, object models, etc., one or more training modules 310
for training and fine-tuning data models, object models, etc.,
one or more active and/or passive learning data sets 312 that
may be used as inputs for the training modules 310, or one
or more training or re-training data sets 314 for the training
modules 310, etc. More details about the word embedding or
term embedding modules are described below.

[0139] Regarding the data models 316 and the real-time
data models 322, the data models 316 may include a
plurality of rules, constraints, and/or requirements (herein-
after “rules” for plural or “a rule” for singular) and may be
executed to classify one or more sets of data into predeter-
mined classes in some embodiments. In some other embodi-
ments, these data models 316 may not include any rules, yet
a set of rules may nevertheless be inferred from these data
models 316. For example, some data models 316 may be
built upon word embedding techniques or term embedding
techniques or other data classification or clustering tech-
niques and thus does not contain any explicit rules.

[0140] In this example, various techniques described
herein may nevertheless derive or infer a set of rules from
these data models. These predetermined classes, rules, etc.
determined by the data models 316 or the classes or classi-
fication results may be arranged and stored hierarchically in
one or more hierarchical data structures 324. It shall be

US 2019/0129732 Al

noted that the verbs “classify” and “cluster” as well as their
corresponding variants and equivalents are used inter-
changeably to refer to the determination of a class or a group
of similar data for a specific piece of data.

[0141] Regarding the other modules that may be invoked
in a system or process for implementing software products
or services with dynamic conditions and dynamic actions or
for implementing intelligent systems with dynamic configu-
rability, the module 300 may also interact with various data
structures including, for example, one or more hierarchical
data structures 370, one or more repositories 372, one or
more completion graphs 352, and/or one or more decision
tables 358, etc. These one or more hierarchical data struc-
tures 324 may be further arranged to include or correspond
to an index data structure that may be further used to skip a
portion of the rules or a portion of the classes during
classification, determination of recommendations, etc. in
order to facilitate and expedite the manipulation (e.g.,
access, retrieval, storage, etc.) of these classes and/or rules.
[0142] These one or more data models 316 may be pro-
vided to a converter (not shown) as an input for the converter
320 to generate a corresponding real-time data model 322 in
a selectable or configurable target programming language.
In some embodiments, each pair of a data model (316) in a
source programming language and a real-time data model
(322) in a target programming language may correspond to
a converter. In some other embodiments, a converter may be
used to transform a plurality of pairs of data models 316 and
real-time data models 322, especially in the cases where the
source programming languages and/or the target program-
ming languages have certain degree of similarity or com-
monality.

[0143] The real-time data models 322 may be deployed to
a server for execution on the server in some embodiments or
to individual user computing systems for execution on these
individual user computing systems in some other embodi-
ments. For example, a data model 316 generated by a
plurality of Al (artificial intelligence) or machine learning
modules 308A may be transformed by a converter into a
real-time data model in an interpretive language (e.g.,
JavaScript, etc.), and this real-time data model 322 may then
be deployed to client computing systems, rather than on one
or more remote servers or host computers, for local execu-
tion of the real-time data model 322 by the browsers on the
client computing systems to classify terms entered into the
browser by the end users during the sessions of a software
licensing or delivery model (e.g., an electronic tax return
preparation software licensing or delivery model).

[0144] The real-time data models 322 may also be opera-
tively connected to one or more recommendation modules
350 that determine and furnish one or more recommenda-
tions to the inquiring users based in part or in whole upon the
results of the real-time data models 322. One of the advan-
tages of these real-time data models 322 is that these
real-time data models are constructed with reactive comput-
ing techniques or real-time computing techniques so that
these transformed data models may classify and cluster live,
real-time data (e.g., runtime data 356) at runtime and return
recommended actions in real-time or substantially real-time,
instead of in a batch mode processing as conventional
approaches often employ.

[0145] During the interactions between a plurality of users
and a software application, these users may often encounter
issues and thus submit runtime data 356 (e.g., inquiries,

May 2, 2019

users provided answers to interview questions, etc.) that may
be digitally transmitted to, for example, one or more data
models 316, one or more real-time data models 322, and/or
one or more word or term embedding modules 304. Such
runtime data may be classified, or the relevance of such
runtime data may be determined. Based on the classification
results and/or the relevance, a recommendation 326 may be
generated by, for example a recommendation module 350. A
recommendation may be referred to as an action and may
also be efficiently stored in a repository 326 (e.g., an action
repository) that may further include or correspond to a link
structure that delineates the association or links between an
action stored in the action repository 372 and one or more
classes associated with the action.

[0146] A system thus illustrated in FIG. 3 may be used to
generate data models for classifying or clustering data in a
large corpus (e.g., descriptions of various object models,
data models, data items, etc.), transforming the generated
data models into classifying or clustering code modules in
various configurable programming languages, determining
relevance or irrelevance of one or more entities (e.g., flow
nodes, object models, etc.) with these generated data models
based on some runtime data that may be incrementally
acquired during the execution of an application, and gener-
ating one or more recommendations to the users or to the
system (e.g., recommended next flow node, recommenda-
tions to the users, etc.) These data models may be con-
structed in such a way to provide fast and accurate prediction
and description of the data in the corpus as well as data that
are not contained in the corpus. These data models (316
and/or 322) or at least some of the modules in the module
group 300 may then be used to determine relevant object
models for a dynamic application and further function in
conjunction with one or more other modules described
herein to more efficiently guide the flow of execution of a
dynamic application based on runtime data acquired during
the execution of the dynamic application.

[0147] Some embodiments described herein perform vari-
ous tasks comprising classification, determination, and pre-
sentation of recommendations, etc. in real-time (RT) or
nearly real-time (NRT). It shall be noted that the term
“real-time” does not necessarily refer to generating instan-
taneous responses and may refer to the scenarios that include
a brief time delay introduced by, for example, data trans-
mission, executions of instructions by various processors
(e.g., central processing units, graphic processors, etc.), etc.
Nonetheless, these real-time data models guarantee the
responses within a pre-specified temporal constraint or time-
frame (e.g., in the order of one millisecond, one microsec-
ond, or less).

[0148] Nearly real-time refers to the amount of temporal
delay introduced by these modules and/or models described
herein between the occurrence of an event (e.g., the receipt
of a user inquiry) and the completion of processing (e.g.,
presentation of a recommended action in a user interface) is
insignificant or within a relatively small threshold limit. The
amount of temporal delay in nearly real-time is slightly
larger than that in real-time although either approach guar-
antees that the temporal delay is not greater than a corre-
sponding temporal constraint or timeframe.

[0149] In other words, a real-time data model receives an
input data, processes the input data to generate a result, and
returns the result within the pre-specified, guaranteed tem-
poral constraint or timeframe where missing a temporal

US 2019/0129732 Al

constraint or timeframe may either downgrade the service of
the real-time data model or even cause a system error or
failure in some embodiments. In some other embodiments,
infrequently missing the temporal constraint or timeframe
may be tolerated, especially in the scenarios involving terms
that cannot be successfully clustered or classified.

[0150] A real-time data model (322) may be stored on a
user’s computing device or communication device (e.g.,
laptops, smart phones, tablets, etc.) and executed locally to
perform real-time clustering or classification of data entered
by the user in some embodiments. In some other embodi-
ments, a transformed data model may be stored on a remote
computing node (e.g., a server) on which a subscribed or
hosted software application runs. In these latter embodi-
ments, the remote computing node receives inquiries from
user computing nodes that are connected to the remote
computing node via computing networks, processes the
inquiries by executing the transformed real-time data model,
and returns the processing result to the requesting user
computing nodes in real-time.

[0151] As asimplified example with reference to FIG. 1A,
an initial screen 102A may be presented to and ask a user
whether the user would like to order a chocolate, vanilla, or
strawberry milkshake. The user may select, for example, a
strawberry milkshake. This user’s input is regarded as the
runtime data that is acquired during the execution of the
software application. This piece of runtime data may then be
provided to a data model (316) or a real-time data model
(322) that may, for example, reference a decision table
listing whether a set of rules apply to a set of questions, each
of which may be the subject of a screen that may be further
deemed as an object model.

[0152] The data model (316 or 322) may determine, based
on this runtime data (user’s selection of a strawberry milk-
shake), which other flow nodes (e.g., subsequent screens
with corresponding questions) are still applicable. For
example, the data model may identify that flow node 110A
is relevant based on the relevance analyses performed on the
description of various flow nodes in some embodiments. In
addition or in the alternative, the data model may determine
that flow nodes 106A and 108A are irrelevant based on this
piece of runtime data (user’s selection of a strawberry
milkshake) and scratch these two flow nodes from the flow
so that the data model or the other modules no longer need
to consider these two flow nodes in the remainder of the
execution. More details about the operations of various
modules described above are described in the remaining
portion of this application.

[0153] FIG. 4A illustrates a high level block diagram for
implementing software products or services with dynamic
conditions and dynamic actions in one or more embodi-
ments. In these embodiments, a plurality of flow nodes,
object models, or code modules may be identified at 402A.
These plurality of flow nodes may be identified based on, for
example, various requirements or intended functions or
purposes of an underlying dynamic software application of
a portion thereof. For example, a plurality of interview
screens, each of which may include or may be implemented
as an object model concerning one or more interview
questions, may be identified for a dynamic interview module
of an electronic tax return preparation and filing software
product or service.

[0154] It shall be noted that the terms “flow node,” “object
model,” and “code module” may be used interchangeably in

May 2, 2019

this application to represent a block of computer program
code in various suitable forms to facilitate the execution of
the underlying software application. An object model thus
may include or may be associated with its own one or more
dynamic conditions and/or one or more dynamic actions to
provide the capability of individual, self-contained, and/or
independent execution and thus facilitate the ease of modi-
fication of the dynamic software application of which the
object model is a part.

[0155] One or more dynamic conditions may be optionally
identified (if already existing) from a condition repository
(e.g., 372 in FIG. 3) or determined (if non-existing) at 404 A
for at least one object model of the plurality of object models
identified at 402A. A dynamic condition may include a
stand-alone code module with a unique identifier to be
referenced by or incorporated into an object model in some
embodiments. In some other embodiments, a dynamic con-
dition may be incorporated into an object model directly.
Optionally, one or more dynamic actions may also be
identified (if already existing) from an action repository
(e.g., 372 in FIG. 3) or determined (if non-existing) at 406 A
for at least one object model of the plurality of object models
identified at 402A. An object model may include one or
more dynamic conditions alone, one or more dynamic
actions alone, or a combination of one or more dynamic
conditions and one or more dynamic actions.

[0156] A dynamic flow for a dynamic software application
may be determined at 408 A with the plurality of flow nodes,
without hard coded inter-relations or inter-dependencies
between at least two flow nodes of the plurality of flow
nodes. In some embodiments, none of the plurality of flow
nodes correspond to any hard coded navigation or execution
algorithm of any forms. The at least two flow nodes can be
independently executed in any order without altering the
final outcome of the dynamic flow in some embodiments.
The dynamic flow may be executed at 410A by indepen-
dently executing one or more flow nodes in the dynamic
flow. In some embodiments, the dynamic flow may be
executed by executing any flow node in the plurality of flow
nodes when the plurality of flow nodes are independent of
each other. A flow node may be devised to terminate or exit
its execution when, for example, a dynamic condition cannot
be evaluated at the time of execution. For example, if the
regular vanilla or French vanilla screen (108A in FIG. 1A)
is executed first or before the screen 104 A is executed, the
flow node 108 A may exit or terminate execution and call the
flow control or execution module to identify another flow
node for execution.

[0157] Of course, the aforementioned example of execut-
ing the flow node 108A first or before the execution of 104A
is to demonstrate the flexibility of the dynamic software
application. To improve the efficiency and conserve com-
putational resources, a dynamic flow may be executed based
on the general applicability that may be determined for the
plurality of flow nodes. For example, the word embedding or
term embedding module 304 may determine the relevance or
classifications among the plurality of flow nodes by analyz-
ing their respective descriptions or metadata with word or
term embedding techniques. The applicability or relevance
of the plurality of flow nodes with respect to other charac-
teristics may also be similarly determined. In an example of
interview screens, for example, the relevance of each inter-
view screen to users may be determined similarly. For
example, it may be determined that the interview screen

US 2019/0129732 Al

inquiring whether a user is married is relevant to most, if not
all users, and may thus be assessed with a higher general
applicability score, and the plurality of flow nodes may thus
be ranked accordingly.

[0158] In some of these embodiments, the first flow node
or the first few flow nodes for a dynamic flow may be
identified based on such general applicability scores so that
the dynamic flow initiates its execution with a flow node
having higher or even the highest general applicability
scores. If two or more flow nodes are assessed with the
same, highest general applicability score, any of these two or
more flow nodes may be identified to initiate the dynamic
flow execution in some embodiments. In some other
embodiments, a tie breaker among these two or more flow
nodes may be determined by, for example, which flow
node’s execution result further curtails or filters out more
flow nodes from further consideration.

[0159] For example, a flow node whose execution result is
determined to reduce the extent of the state space of the
remaining flow nodes may be identified from multiple flow
nodes having the same general applicability. Of course,
general applicability score is just one way to determine
where to start the flow execution, and other criteria or factors
may also be used. This general applicability or such other
criteria or factors may be referenced or included in, for
example, a priority list described above or may be provided
as an input to a data model (316 or 322) or a navigation
model that identifies flow nodes for execution in conjunction
with the functioning of one or more other modules (e.g., a
data model that manipulates the decision table based on
runtime data).

[0160] In some embodiments, a flow node may be
executed by evaluating the one or more dynamic conditions,
if available and included in or associated with the flow node,
and by executing the dynamic action corresponding to the
evaluation result of the one or more dynamic conditions, if
the flow node includes or is associated with such one or
more dynamic actions. The plurality of flow nodes or the
remainder thereof may thus be incrementally reduced at
412A into a reduced set of flow nodes based at least in part
upon some runtime data obtained during the execution of the
dynamic flow. In some embodiments where additional run-
time data is acquired during or after the execution of the flow
node, the plurality of flow nodes or the remainder thereof
may be reduced into the reduced set based at least in part
upon the runtime data.

[0161] In some of these embodiments illustrated in FIG.
4A, a modification to the dynamic flow may be optionally
performed at 414A. Modifications to a flow may include, for
example, adding one or more flow nodes into the dynamic
flow, removing one or more flow nodes from the dynamic
flow, or changing the location of a flow node in the dynamic
flow. The dynamic flow may then be transformed into a
modified dynamic flow at 416A to accommodate the modi-
fication performed at 414A, without affecting or modifying
the other flow nodes that are not affected by the modification
in the dynamic flow. That is, the modification may be
implemented in such a way to exert minimal or even no
impact on a dynamic flow due to the independent execution
of at least one flow node that is not hard coded with any
inter-relation or inter-dependency in the dynamic flow or
elsewhere (e.g., in a navigation algorithm, flow control, etc.)
[0162] FIGS. 4B-4C illustrate more details about a portion
of'the high level block diagram illustrated in FIG. 4A in one

May 2, 2019

or more embodiments. More specifically, FIGS. 4B-4C
illustrate more details about executing a dynamic flow at
410A in FIG. 4A. It shall be noted that the execution of a
dynamic flow illustrated in FIGS. 4B-4C may or may not
necessarily start from the beginning. That is, the following
description applies to the flow execution that starts from the
beginning when the dynamic flow is first initialized or from
an intermediate stage where the dynamic flow has started
execution and proceeded through one or more flow nodes. In
these embodiments, a priority list may be optionally iden-
tified at 402B. A priority list may provide, for example, some
general guidance as to which flow nodes or which groups of
flow nodes may be performed before (or after) some other
flow nodes or groups of flow nodes. A priority may also
include some rules indicating flow nodes having one or more
characteristics (e.g., higher general applicability) may be
executed before other flow nodes. Nonetheless, a priority list
does not indicate a fixed sequence or order from one flow
node to a specific next flow node in the plurality of flow
nodes.

[0163] First runtime data may be identified 404B at a
relevance module such as a data model (316 or 322 of FIG.
3). The first runtime data may include, for example, infor-
mation or data provided by a user during runtime. For
example, a user may provide an input (e.g., an answer to an
interview screen); and the input provided by the user may be
identified as the first runtime data. One or more relevance
analyses may be performed for the first runtime data at
406B. These one or more relevance analyses determine
which flow nodes are relevant and/or which flow nodes are
irrelevant based at least in part upon the execution results of
the previous flow node and/or the runtime data, if available.
More details about relevant analyses at 406B are described
below with reference to FIGS. 5A-5G.

[0164] A first dynamic condition evaluation result may be
determined at 408B at least by evaluating one or more first
dynamic conditions included in or associated with the cur-
rent flow node that is executing. In some embodiments, one
or more completion graphs and/or one or more decision
tables may be optionally identified at 410B. As described
above, some embodiments determine relevant flow nodes
and/or irrelevant flow nodes in the remaining flow nodes of
the plurality of flow nodes by using one or more data models
that operate upon one or more completion graphs and/or one
or more decision tables that may be derived from the one or
more completion graphs. Some other embodiments may
determine relevant flow nodes and/or irrelevant flow nodes
by using one or more data models (e.g., 316 and/or 322) that
apply word embedding or term embedding techniques to, for
example, the descriptions, metadata, etc. of the plurality of
flow nodes. Therefore, 4106 is performed when one or more
data models reference such completion graphs and/or deci-
sion tables in determining relevant and/or irrelevant flow
nodes.

[0165] The one or more completion graphs and/or the one
or more may be updated at 4146 based at least in part upon
the evaluation results of the one or more first dynamic
conditions generated at 408B. In the example illustrates in
FIG. 1A, if the execution results of 104 A is that a user selects
chocolate milk shake, the entries corresponding to 108A
(regular vanilla or French vanilla) and 110A (Albion or
Florence strawberry) may be labeled as irrelevant for the
remainder of the dynamic flow.

US 2019/0129732 Al

[0166] If the currently executing flow node is associated
with or includes one or more dynamic actions, at least one
of the one or more dynamic actions corresponding to the
evaluation results of the one or more dynamic conditions is
executed at 416B. For example, if a dynamic condition is
evaluated to be false, the failure dynamic action correspond-
ing to this dynamic condition is executed at 416B. On the
other hand, if a dynamic condition is evaluated to be true, the
success dynamic action corresponding to this dynamic con-
dition is executed at 416B.

[0167] The plurality of flow nodes or the remainder
thereof may be reduced into a first reduced set at 418B at
least by determining a first relevant set of flow nodes that has
been determined to be relevant to the currently executing,
next flow node based in part or in whole upon the evaluation
of the one or more dynamic conditions. In addition or in the
alternative, the plurality of flow nodes or the remainder
thereof may be reduced at 420B into the first reduced set at
least by discarding, ignoring, or filtering out one or more
irrelevant flow nodes that have been determined to be
irrelevant to the currently executing, next flow node based in
part or in whole upon the evaluation of the one or more
dynamic conditions. Once a flow node is discarded, ignored,
or filtered out, the included or associated dynamic condi-
tions will no longer be evaluated, and the included or
associated dynamic actions will not be executed in some
embodiments, unless a dynamic action is labeled as always
executed.

[0168] A next flow node may be identified at 422B from
the first reduced set. In some embodiments, a next flow node
may be identified based at least in part upon the execution
of the previous flow node. For example, a flow node that is
identified to be closest to the previous flow node may be
identified at 422B. The closeness between two flow nodes
may be determined by, for example, applying the word
embedding or term embedding techniques to the descrip-
tions, metadata, or any other available information, etc. of or
associated with these two flow nodes. For example, a word
or term embedding module may determine the vector rep-
resentations of the descriptions of various flow nodes includ-
ing the previous flow node.

[0169] Taking an electronic tax return preparation and
filing software application delivery model as an example of
the application of word or embedding techniques, a devel-
oper accessing an electronic tax return preparation and filing
software application delivery model may provide various
pieces of information in the form of natural language via an
input device (e.g., a keyboard, a microphone, etc.) of a
computing device.

[0170] The electronic tax return preparation and filing
software application delivery model may be a standalone
installation that locally executes on the computer in some
embodiments. In some other embodiments, the electronic
tax return preparation and filing software application deliv-
ery model may be hosted on a remote computer, on an
Internet-based computing environment providing shared
computer processing resources and data to computers and
other devices on demand (e.g., in a cloud computing envi-
ronment) for a plurality of developers working toward a
release of the software application. In these latter embodi-
ments, the developer may access the electronic tax return
preparation and filing software application delivery model
during various stages of a release via, for example, a browser

May 2, 2019

on a developer computing device operatively connected to
the remote host via a computer network component.

[0171] A developer for the electronic tax return prepara-
tion and filing software application delivery model may be
operating on or connected to a computing system that
includes or operatively connects to one or more word
embedding or term embedding modules. This computing
system may be the computing device when the electronic tax
return preparation and filing software application delivery
model is a standalone installation. The word embedding or
term embedding modules included or associated with the
computer may perform various word embedding or term
embedding processes on various inputs in the form of a
natural language, free text, or one or more computer pro-
gramming languages (e.g., source code, description of an
object model or a code module, metadata, header informa-
tion, release notes, etc.) for the electronic tax return prepa-
ration and filing software application delivery model. These
inputs may be provided by a plurality of developers devel-
oping the electronic tax return preparation and filing soft-
ware application delivery model.

[0172] These word embedding or term embedding pro-
cesses may include, for example, normalization of the inputs
into normalized tokens such as characters, words, phrase,
sentences, or even documents. These normalized tokens may
be further embedded into a vector space. More specifically,
one or more word embedding or term embedding processes
may transform these normalized tokens into corresponding
vector representations where closer vector representations
correspond to more similar normalized tokens and hence
more similar inputs.

[0173] These word embedding or term embedding mod-
ules may further classify the inputs into a plurality of
clusters. These classification processes may be performed
independently of each other or in a hierarchical manner. In
the aforementioned examples, the business clusters and
expense categories may be performed independently of one
another to determine the clusters for a plurality of develop-
ers in some embodiments. In some other embodiments, such
clustering may be performed in a hierarchical, multi-stage
manner where a plurality of descriptions of businesses or
professions may be first clustered into a plurality of business
clusters.

[0174] The normalization, vectorization, and clustering
processes may be performed offline in some embodiments
due to the vast amount of natural language inputs to process
and thus may not be suitable for storage or processing on a
developer computing device. The results of the normaliza-
tion, vectorization, and clustering processes may neverthe-
less be stored locally on a developer’s computing device in
some embodiments. In some other embodiments, the results
of the normalization, vectorization, and clustering may be
stored remotely (e.g., on a computer server hosting the
portal) for developer computing devices to access via one or
more computer networks.

[0175] With these vector representations determined,
these processing results of the one or more word embedding
or term embedding modules may be further utilized by a
software application licensing or delivery model. In the
aforementioned example involving tax returns, a specific
developer may access an electronic tax return preparation
and filing software application delivery model and submit a
particular input via an input device (e.g., a computer mouse,

US 2019/0129732 Al

a touch interface, a virtual or physical keyboard, a micro-
phone, etc.) of the computing device.

[0176] This specific input may be similarly processed by
one or more word embedding or term embedding modules
that execute locally in a standalone installation or remotely
in a hosted or cloud environment. For example, this specific
input may be normalized into normalized description which
may be further transformed into a specific vector represen-
tation in the same vector space that now includes the specific
vector representation with other vector representations for
the descriptions from a plurality of developers of the elec-
tronic tax return preparation and filing software application
licensing or delivery model. This specific input of the
specific developer may then be classified into one or more
classes. One or more actions (in one or more classes)
corresponding to these one or more classes may also be
identified. These one or more actions may include, for
example, the action that are associated with the one or more
classes.

[0177] At least one of these one or more actions may be
presented to the specific developer in a variety of different
manners such as a corresponding screen or link in the portal.
A more complex, automated task such as initiating one or
more modules in response to the at least one action may also
be constructed for the specific developer. Because these one
or more actions are identified from one or more classes to
which the specific developer is determined to belong based
on the specific input provided by the specific developer,
these one or more actions may thus represent recommended
actions or candidate actions in response to the specific input
submitted by the specific developer. If the specific developer
also provides additional inputs, these additional natural
language inputs may also be similarly normalized, vector-
ized, and clustered. A data model may then classify the
specific inquiry while referencing these additional inputs as
described above.

[0178] The flow node whose vector representation is
determined to be closest to that of the previous flow node
may be identified as the next flow node for execution in
some embodiments. In some of these embodiments where
two or more flow nodes whose vector representations are
determined to be equidistant to that of the previous flow
node, or whose vector representations are determined to be
within certain proximity of the vector representation of the
previous flow node, a tie break may be determined among
these flow nodes based on one or more criteria. For example,
the flow node which, when executed, causes the most
number of remaining flow nodes, provides least restrictions
or constraints to the remainder of the dynamic flow, provides
the maximum flexibility to the identification of subsequent
flow nodes, or best facilitates the designed purposes or
functions of the dynamic software application may be iden-
tified as the next flow node at 422B.

[0179] One or more second dynamic conditions may be
identified (if already existing) or determined (if not yet
existing) at 424B for the next flow node. In some embodi-
ments, a custom dynamic condition may be generated for
these one or more second dynamic conditions. In some of
these embodiments, such custom dynamic conditions may
even be generated on the fly during the execution of the flow
when the situation merits the generation of such custom
dynamic conditions. For example, if an artificial intelligence
module or a machine learning module determines that
during the execution of a flow node, an additional dynamic

May 2, 2019

condition and hence the corresponding success dynamic
action and the failure dynamic action need to be generated
to better facilitate the functions of the dynamic application
or to better serve the user’s experience or inquiries, a
dynamic code generation module may be invoked via an
inter-process function call to dynamically create such
dynamic condition and actions.

[0180] Runtime data may further be identified at 426B
during or after the execution of the previous flow node. For
example, a user may provide additional inputs (e.g., an
additional answer to a new interview question presented in
the previous flow node), and these addition inputs may be
identified as runtime data at 426B. This runtime data may be
analyzed by one or more data models and/or the word
embedding or term embedding modules to determine its
relevance to or impact on one or more remaining flow nodes.
[0181] A second evaluation result may be determined at
428B at least by evaluating the one or more second dynamic
conditions. In some embodiments, the second evaluation
result may be determined based upon the runtime data
identified at 426B when the runtime data is determined to be
relevant to the currently executing flow node or the one or
more second dynamic conditions.

[0182] A dynamic action corresponding to the second
evaluation result may be executed at 430B. For example, if
a second dynamic condition is evaluated to be false, the
failure dynamic action corresponding to this dynamic con-
dition is executed at 430B. On the other hand, if a second
dynamic condition is evaluated to be true, the success
dynamic action corresponding to this dynamic condition is
executed at 430B.

[0183] The one or more completion graphs and/or the one
or more decision tables may be updated at 432B in an
identical or substantially similar manner as that described at
414B. In some embodiments, one or more completion
graphs and/or the one or more decision tables may be
updated at 432B based in part or in whole upon the execu-
tion result of the next flow node and/or the second evaluation
result. In addition or in the alternative, these one or more
completion graphs and/or the one or more decision tables
may be updated at 432B based in part or in whole upon the
runtime data identified at 426B. In the example described
with reference to 4146 above, if the execution result of the
next flow node is that the fries are not in stock (“false” for
102C), then the entries corresponding to 112A (asking a user
whether the user would like to order fries) will be discarded,
ignored, or filtered out in the one or more completion graphs
or one or more decision tables.

[0184] The first reduced set may be reduced at 434B into
a second reduced set at least by determining a second
relevant set of flow nodes based in part or in whole on the
execution result of the next flow node and/or the second
evaluation result of the one or more second dynamic con-
ditions. In addition or in the alternative, the first reduced set
may be reduced at 434B into a second reduced set at least by
discarding, ignoring, or filtering out one or more flow nodes
that have been determined to be irrelevant based in part or
in whole on the execution result of the next flow node and/or
the second evaluation result of the one or more second
dynamic conditions.

[0185] FIG. 5A illustrates more details about a portion of
the block diagram illustrated in FIG. 4B in one or more
embodiments. More specifically, FIG. 5A illustrates more
details about performing one or more relevance analyses at

US 2019/0129732 Al

406B in FIG. 4B. In some embodiments, a set of digital
contents may be identified at 502A for a software application
licensing or delivery model. In some of these embodiments,
a set of training data may also be identified at 502A. This set
of training data may be used to train one or more machine
learning modules prior to employing these one or more
machine learning modules to process the set of digital
contents. The software model may include a software appli-
cation or suite hosted on a remote server or in a cloud-based
or Internet-based platform, a software application or suite
separately and independently installed on a computing sys-
tem (e.g., a client computing system), or a software model
that is centrally hosted and licensed on a subscription basis
such as a software as a service (SaaS). The set of digital
contents may include unlabeled digital data, labeled digital
data, partially labeled data, or any combinations thereof.

[0186] The software model may include the functionalities
of preparing and filing electronic tax returns in some
embodiments or the functionalities of fulfilling accounting
needs or purposes in some other embodiments. The set of
digital contents may include any presentations or views of
the software model presented in a user interface interacting
with users, online and/or offline documentation, help files,
various data from database queries and/or inquiries, various
data provided by customer feedback modules, customer
retention modules, and/or customer development modules,
data from crowdsourcing, data from past or real-time usage
of the software model by users, etc. The set of digital
contents may be in various different formats that are not
intended to limit the scope of this disclosure and may
include, for example, one or more characters, one or more
symbols, one or more words, one or more phrases, one or
more sentences, one or more paragraphs, audio streams,
images, or any combinations thereof, etc. More details about
identifying digital contents are described below.

[0187] One or more data models may be identified or
generated at 504A for identification of terms of interest
and/or helper items with machine learning techniques and
the set of digital contents identified at 502A. For example,
if these one or more data models have been previously
generated, these one or more previously generated data
models may be identified at 504A. Otherwise, these one or
more data models may be generated anew at 504A. These
one or more data models may be subsequently employed to
identify terms of interest in some embodiments. In some of
these embodiments, these one or more data models may be
further employed to identify helper items for the identified
terms of interest, whereas one or more additional data
models may be generated for identifying helper items for the
identified terms of interest. More details about generating
one or more data models are described below.

[0188] One or more terms of interest may be classified at
506A from at least a portion of the set of digital contents
with at least one data model of the one or more data models
generated at 504 A. In some embodiments, these one or more
terms identified as one or more terms of interest may be
further annotated or labeled in the set of digital contents at
506A. For example, one or more data models may be
employed to process and identify terms of interest from
digital contents that may be presented in a user interface to
users of the software application licensing or delivery
model. Because these digital contents may be presented to
users of the software model, the identification of terms of
interest that may hinder the user experience with the soft-

May 2, 2019

ware model and the subsequent identification of helper items
and linking between these terms of interest and their corre-
sponding helper items may improve the user experience as
well as the functioning (e.g., the correctness of the func-
tioning and results of the software model). In some embodi-
ments, a term of interest in a digital content may also be
annotated with one or more measures or metrics that are
described below.

[0189] One of the advantages of these techniques
described herein is the use of data models to identify terms
of interest as well as helper items through machine learning
techniques such that no subjective determinations by
humans are needed in the identification of terms of interest
or the identification of helper items from the received set of
digital contents. This advantage is especially beneficial
because a term may be considered as a term of interest to one
user but not to another user due to different backgrounds of
the two users (e.g., different education, different professions,
etc.) Also, one person may classify a term as a term of
interest when, for example, the person is not familiar with
the term, whereas another person may not classify the same
term as such. These techniques described herein not only
eliminate the subjective determinations by humans but also
identify terms of interest as well as their corresponding
helper items dynamically while accounting for variations in
the characteristics of users. As described elsewhere in the
application, these data models may be subsequently trans-
formed into real-time data models that are employed to
classify digital contents (e.g., users’ inquiries) in real-time or
nearly real-time.

[0190] One or more helper items for an identified term of
interest may be identified at 508A from the set of digital
contents using at least one of the data models generated at
504A. As described above, the identification of terms of
interest and the identification of helper items utilize different
techniques to process different sets of inputs in order to
generate different outputs and may be performed with the
same one or more data models in some embodiments or with
different data models in some other embodiments. The one
or more identified helper items may be linked with the
corresponding term of interest at 508A, and a data structure
may be used to store information about the links and to
facilitate the construction of views or presentations of the
software model to the users.

[0191] In some embodiments, helper items are identified
only from the set of digital contents that are with the control
of the entity developing or hosting the software model but
not from any external sources such as any third-parties. In
some of these embodiments where no helper items may be
identified from such set of digital contents for a term of
interest, the system described herein may flag and forward
this term of interest to, for example, a domain expert. The
feedback from the domain expert may then be transformed
into a part of the set of digital contents, also without
referencing external contents from sources outside the
entity. In some other embodiments, these techniques may
separately generate or invoke one or more different models
to access external sources, instead of using the one or more
data models to access these external sources although these
one or more data models are nevertheless capable of access-
ing such external sources to retrieve the needed information
for helper items.

[0192] The flow illustrated in FIG. SA may return to 506 A
if there are more terms of interest for which helper items

US 2019/0129732 Al

have not been identified. Otherwise, the accuracy or com-
pleteness of the one or more data models may be continu-
ously improved at 510A by using active learning techniques.
In some embodiments, a data model may be processed by a
conversion or transformation module into a real-time data
model every time the data model is updated. A data model
may have previously identified a term as a term of interest
and provided one or more helper items therefor. During
subsequent usage of the software model, the usage patterns
from users nevertheless show that this term of interest has a
relatively lower click-on rate. That is, relatively fewer users
have accessed the one or more helper items for this term of
interest to gain further information. In this example, the
usage pattern information, the information about the users
who actually accessed the one or more helper items, or any
other pertinent information may be group as active learning
data that may be further forwarded to the machining learning
modules to adjust the data model generation processes.

[0193] FIG. 5B illustrates more details about a portion of
the block diagram illustrated in FIG. 5A in one or more
embodiments. More specifically, FIG. 5B illustrates more
details about generating one or more data models (504A) of
FIG. 5A. In these embodiments illustrated in FIG. 5B, a
plurality of classification measures or metrics may be iden-
tified at 502B. These classification measures or metrics may
include, for example, the frequency of a word appearing
within N words of another word, the frequency of appear-
ance or familiarity of a term in the corpus generated from the
set of digital contents or from another corpus (e.g., SUB-
TLEX corpus, the Brown corpus by Francis and Kucera, the
American Heritage Word Frequency Book, etc.), or any
other suitable measures or metrics.

[0194] These classification measures or metrics may
optionally include the number of definitions of a term from
one or more dictionaries. For example, a term having more
different definitions may be associated with a higher score
for its complexity status because such a term may require
users to become aware of more definitions and to discern one
possible definition from the other definitions and is thus
more likely to cause confusion or understanding issues.

[0195] These complexity measures or metrics may option-
ally include the context in which a term appears. The same
term appearing in a more familiar context is less likely to
raise confusion or understanding issues and hence classifi-
cation issues than the same term appearing in a less familiar
context. This contextual measure or metric may thus be tied
to the general familiarity of a term in a specific context. For
example, a term with M preceding words or characters
and/or N following words or characters that corresponds to
a higher probability or frequency (e.g., a frequency value
generate by an n-gram model) may indicate that this specific
context in which the term is in may reduce the probability of
the term being incorrectly classified. Consequently, the
context may be associated with a higher confidential level or
score for the classification status of the term.

[0196] These classification measures or metrics may
optionally include the morphology or the number of mor-
phemes of a term. For example, a term having fewer
morphemes may be may be associated with a relatively
lower confidential level or score for its classification status
than a term having more morphemes because the general
meanings of morphemes are often understood, and more
morphemes in a term may thus provide more information for

May 2, 2019

users to piece the general meanings of these morphemes
together to derive the meaning of the term.

[0197] These classification measures or metrics may
optionally include one or more of the number of synonyms,
the number of antonyms, the number of hypernyms, the
number of hyponyms, or any combinations thereof. For
example, a term corresponding to a larger number of syn-
onyms having different meanings may be associated with a
lower confidential level or score for its classification status
because such a term may be more likely to cause classifi-
cation issues than other terms having a smaller number of
synonyms due to more synonyms for users to correlate with
the term.

[0198] The aforementioned classification measures or
metrics are provided as non-limiting examples, and each
measure or metric may be assigned with a range of scores to
accommodate the possible variations in a single classifica-
tion measure or metric. In addition or in the alternative,
classification measures or metrics may or may not be
independent of each other. For example, one classification
measure or metric of a term may also influence another
classification measure or metric the same term. In some
embodiments, the machine learning modules may construct
a data model while assuming that the considered classifica-
tion measures or metrics are independent of each other. In
some other embodiments, the machine learning modules
construct a data model while considering the non-linearity or
dependency of the considered classification measures or
metrics.

[0199] With the plurality of classification measures or
metrics identified at 502B, one or more learning classifica-
tion schemes may be determined with one or more of the
plurality of classification measures or metrics at 504B. The
machine learning modules may account for one or several of
the aforementioned classification measures or metrics in the
determination of the one or more learning classification
schemes in a variety of ways. For example, the machine
learning modules may account for multiple classification
measures or metrics on an individual basis where each
classification measure or metric individually indicates
whether the term is to be classified in a certain way. The final
determination may be based on, for example, the majority of
the individual determinations of the plurality of classifica-
tion measures or metrics.

[0200] As another example, the machine learning modules
may construct a first data model by arranging a first number
of classification measures or metrics in a linear combination
where each classification measure or metric corresponds to
its own coefficient or weight. As another example, the
machine learning modules may construct a first data model
by arranging a first number of classification measures or
metrics in a non-linear combination where one classification
measure or metric may exhibit a non-linear behavior or may
affect one or more other classification measures or metrics.
The coefficients, weights, and/or the non-linear behaviors of
the classification measures or metrics are the targets of the
machine learning techniques that iteratively use the set of
digital contents and/or active learning data to refine or fine
tune the coefficients, weights, and/or the non-linear behav-
iors of the classification measures or metrics for one or more
data models to improve the accuracy and/or completeness of
the one or more data models.

[0201] With the one or more learning classification
schemes determined at 504B, one or more data models may

US 2019/0129732 Al

be generated at 506B with the one or more learning classi-
fication schemes. These one or more data models may then
be executed to identify and classify terms from the set of
digital contents. The identification and classification of a
term involves the computation of classification confidence
levels or scores of the accommodated classification mea-
sures or metrics.

[0202] To reduce the consumption of computational
resources, the machine learning modules may optionally
reduce the set of digital contents or the corpus into a reduced
set of digital contents or reduced corpus by using at least one
of the plurality of classification measures or metrics. For
example, the machine learning modules may adopt various
filtering processes and/or tweak the hierarchical application
of rules while skipping a plurality of rules, etc. These
reduction techniques will be described in greater details
below, to reduce the amount of data to be processed. As
another example, the machine learning modules may iden-
tify any terms that correspond to a sufficiently high fre-
quency of appearance (e.g., the definite article “the”, the
indefinite article “a” or “an”, certain pronouns such as “he”,
“she”, “I”, etc.) and prohibit these terms from being classi-
fied. In these embodiments, the size of the corpus or the set
of digital contents and hence the number of terms are
effectively reduced to conserve processor cycles for identi-
fying complex terms and memory footprint to accommodate
the terms to be processed.

[0203] In some other embodiment, the machine learning
modules may reduce the corpus or the set of digital contents
by identifying terms to be classified, rather than eliminating
terms that will not be further processed. For example, the
machine learning modules may identify terms that have low
frequency of occurrence or appearance below a predeter-
mined threshold value. As another example, the machine
learning modules may identify terms that have their respec-
tive numbers of definitions below a threshold number. In
these aforementioned embodiments, a data model simply
look up the classes for these terms, rather than performing
classification tasks on these terms. In some other embodi-
ments, the machine learning modules may reduce the corpus
or the set of digital contents by both eliminating terms not
to be further processed and by identifying terms that will be
further processed.

[0204] The one or more learning classification schemes
may be retrained at 508B with active learning data. In these
embodiments, the active learning data may be acquired by
flagging and forwarding some terms that one or more data
models cannot classity or cannot classify with sufficiently
high confidence level or score to domain experts and further
by funneling the opinions of the domain experts into a digital
form of the active learning data. The machine learning
modules may then adjust one or more of the classification
schemes to better fit the active learning data. The one or
more data models may be continuously improved at 5108
with the retrained learning classification schemes.

[0205] FIG. 5C illustrates a high level block diagram for
a portion of the process or system block diagram illustrated
in FIG. 3 in one or more embodiments. In these embodi-
ments illustrated in FIG. 5C, a computing system 500C may
include or may be operatively coupled to a machine learning
module 504C. In some embodiments, the computing system
500C is located in an isolated environment and is thus not
connected to the Internet 560C although the computing
system 100 may nevertheless be connected to the Internet

May 2, 2019

560C via a separate communication layer or communication
module 580C in some other embodiments.

[0206] In these embodiments, the computing system on
which term of interest and helper item identification are
identified is not connected to the Internet without at least the
separate communication layer or communication module
580C. The computing system S500C may nevertheless
include a separate communication layer or module 580C to
interface with one or more other computing systems on the
intranet 570C. For example, the computing system 100 may
interact with one or more other computing system on the
intranet to obtain at least some of the plurality of data sets
508C for constructing data models. The plurality of data sets
108 forms the corpus for the software model of interest for
the purposes of term of interest identification and helper
item determination.

[0207] A data model may use various inputs such as one
or more predetermined patterns, rules, constraints, require-
ments, or algorithms, information about terms from, for
example, databases or data structures, etc. but is merely a set
of patterns, rules, constraints, requirements, or algorithms or
simply a database or data structure of information. Instead,
a data model may include a software object that is stored at
least partially in memory during execution and includes, for
example, one or more formulae or logic, one or more sets of
vectors, etc. that are executed or used to generate desired or
required results. Moreover, a data model may be trained
(e.g., with active learning data, historical data, etc.) to
generate more accurate results by using artificial intelligence
techniques such as machine learning techniques and is thus
different from a set of hard coded or predetermined patterns,
rules, constraints, requirements, or algorithms or a database
or data structure of information.

[0208] The computing system 500C includes or functions
in tandem with a machine learning module 504C. The
machine learning module 504C receives a plurality of data
sets 508C and processes the plurality of data sets 508C to
generate one or more data models 506C for the identification
of terms of interest and helper items. The plurality of data
sets 508C may include, for example, generic term of interest
identification data from generic term of interest identifica-
tion modules 512C (e.g., term of interest or word of interest
identification results from third-parties or from entities that
are not the developers of or are not hosting the software
model).

[0209] The plurality of data sets 508C may also include
query results sets or query log records generated by one or
more database engines 514C, customer specific data, cus-
tomer retention data, and/or customer development data
collected from one or more customer retention or develop-
ment modules 516C. The plurality of data sets S08C may
further include any online and/or offline documentation
518C (e.g., technical specification, help files, etc.) generated
or maintained by a documentation module 520C for the
software model for which identification of terms of interest
and helper items is performed.

[0210] The plurality of data sets 508C may also include
data generated by or collected from one or more crowd-
sourcing modules 520C that represent specific sourcing
models where the entity (e.g., the entity that hosts or
develops the software model for which identification of
terms of interest and helper items is performed) uses an open
call to obtain services from the parallel contributions of a
large, specifically defined or named network of Internet

US 2019/0129732 Al

participants (e.g., individual users including domain experts,
groups of individuals, institutions, etc.), instead of any
undefined segments of the public or employees or contrac-
tors of the entity. The plurality of data sets S08C may be
persistently or non-persistently stored in a non-transitory
storage medium 550C.

[0211] These data sets 508C may include digital contents
of various formats including, for example, textual format,
images, audio streams (e.g., speech data), etc. In some
embodiments, the machine learning module 504C may
process at least some of the plurality of data sets 508C to
form the corpus for term of interest and helper item identi-
fication. For example, the machine learning module 508C
may parse some textual data in the plurality of data sets
508C and tokenize the textual data into a plurality of tokens
including, for example, one or more characters, one or more
symbols, one or more words, one or more phrases, one or
more sentences, one or more paragraphs, or any combina-
tions thereof, etc. For example, a description of an object
model or code module may be tokenized a plurality of
tokens including, for example, one or more characters, one
or more symbols, one or more words, one or more phrases,
one or more sentences, one or more paragraphs, or any
combinations thereof, etc.

[0212] The plurality of tokens may further include
n-grams (e.g., unigrams, bigrams, trigrams, four-grams,
five-grams, etc.) extracted from the data of interest in some
embodiments. An n-gram is a contiguous sequence of n
terms from a sequence of text or speech data. In these
embodiments, the statistical properties of the plurality of
tokens may be used in one or more probabilistic computa-
tional linguistics models for predicting certain item(s) in a
sequence in the context of one or more preceding and/or
following items or tokens. Some embodiments may further
utilize various recognition and extraction techniques to
recognize pertinent contents of digital images or audio
streams in tokenizing these digital images or audio streams
for the purpose of identification of terms of interest and
helper items therefor.

[0213] The machine learning module 504C may use one or
more different techniques including, for example, super-
vised learning techniques (e.g., support vector machines,
decision trees, artificial neural network, inductive logic
programming, statistical relational leaning, etc.) and/or
unsupervised learning techniques (e.g., clustering, expecta-
tion-maximization techniques, multivariate analysis, etc.)
for various pattern recognition and identification of terms of
interest as well as helper items. In some embodiments,
various techniques identify a term of interest and one or
more helper items for the term of interest without even
understanding the semantics or meanings of the term of
interest or the one or more helper items. Rather, these
techniques employ specific classification processes to iden-
tify terms of interest and pattern recognition techniques to
identify the helper items, without understanding the mean-
ings or semantics or performing any semantic analyses for
the identification of terms of interest and helper items.
[0214] The machine learning module 504C may further be
supplemented with active learning data 510C to adjust or
fine tune one or more data models that are subsequently used
in processing the plurality of data sets 508C for identifica-
tion of terms of interest. The active learning data 510C may
be acquired automatically by, for example, the machine
learning module 504C in resolving or determining undeter-

May 2, 2019

mined terms or terms associated with relatively lower accu-
racy measures (e.g., confidence scores, confidence intervals,
or any other appropriate measures or metrics) in some
embodiments. In some other embodiments, the active learn-
ing data 510C may be acquired by flagging and forwarding
some terms that one or more data models cannot classify as
terms of interest or cannot classify as terms of interest with
sufficiently low accuracy measures to domain experts and
further by funneling the opinions of the domain experts into
a digital form of the active learning data 510C accessible by
the machine learning module 504C. Like the plurality of
data sets 508C, the active learning data 510C may also be
persistently or non-persistently stored in a non-transitory
storage medium 550C.

[0215] FIG. 5D illustrates more details about a portion of
the high level block diagram illustrated in FIG. 5C in one or
more embodiments. More specifically, FIG. 5D illustrates
the high level block diagram for one or more data models
that identify terms of interest. In these embodiments, the one
or more data models may identify unlabeled data 502D
from, for example, the plurality of data sets 508A in FIG. 5A
stored in the non-transitory computer accessible storage
medium 550A or in another non-transitory computer acces-
sible storage medium 550D. Unlabeled data includes the
data in the plurality of data sets for which terms of interest
have not been identified in some of these embodiments.
[0216] Insome embodiments, labeled data 500D may also
be provided to the one or more data models for the purpose
of term of interest identification. Such labeled data 500D
may be produced by, for example, outputs of one or more
prior versions (e.g., before training) of one or more data
models, domain experts, etc. The labeled data 500D may be
generated by human reviewers or one or more generations of
the one or more data models. For example, domain experts
may manually identify and label some terms of interest from
a set of digital contents of a software model to form labeled
data (e.g., a partially labeled set of digital contents) in some
embodiments. The labeled data 500D may include data that
has been completely labeled with identified terms of interest
and/or even the corresponding helper items in some embodi-
ments and/or data that has only been partially labeled with
some but not all of the identified terms of interest and/or
even the corresponding helper items in some other embodi-
ments.

[0217] This labeled data may be provided to one or more
data models that further process the unlabeled portion of the
labeled data based on the labeled portion provided by
domain experts in these embodiments. In some of these
embodiments, the one or more data models may process the
labeled portion of the labeled data 500D to validate one or
more previously identified terms of interest. For example,
the labeled data 500D that was previously labeled by a first
generation (e.g., a previous generation) of a data model may
be processed by a second generation (e.g., a next generation)
data model to validate whether the identified terms have
been identified correctly as respective terms of interest by
the first generation.

[0218] Insome embodiments, a training data set (e.g., a set
of data labeled with terms of interest), instead of domain
expert inputs in the aforementioned example, may be pro-
vided to train the machine learning modules so that the
machine learning modules may adjust its algorithms to
generate one or more data models that further process the
training data set to identify terms that match with those

US 2019/0129732 Al

already labeled as terms of interest in the training data set.
Once these one or more data models have been validated to
generate accurate results for the training set, these one or
more data models may receive unlabeled data 502D as
inputs and process the unlabeled data 502D to identify terms
of interest therefrom and to label the unlabeled data 502D
into labeled data 504B.

[0219] In some other embodiments involving active train-
ing that is described below with greater details with refer-
ence to FIG. 5D, a first data model may also receive labeled
data 500D that was processed by a prior version of the first
data model or by another data model of the one or more data
models. This first data model may be generated with some
active training data (e.g., domain expert review results of
prior identification results) to correct or fine tune the clas-
sification scheme of the prior version of the first data model.
This first data model may then be used to process the labeled
data 500D to identify one or more new terms of interest
and/or to reclassify one or more terms of interest identified
by the prior version of the first data model or the another data
model as terms not of interest.

[0220] These one or more data models may then perform
a term of interest identification process or analysis to iden-
tify terms of interest in the unlabeled data. More details
about the term of interest identification process or analysis
are described below. Upon or shortly after the identification
of the terms of interest from the unlabeled data 502D, at least
some of the unlabeled data 502D may be annotated, labeled,
or associated (collectively labeled) with the identified terms
to transform the unlabeled data 502D into labeled data
504D. For example, the terms identified as terms of interest
may be assigned to or associated with a label indicative of
their status as the terms of interest. A label may be a binary
label indicative of whether a term is of interest in some
embodiments and thus may need only one bit to store the
label. In some other embodiments, a label may include or
may be associated with some other information such as the
accuracy measure, or any other pertinent information, etc.
and thus may require multiple bits to store the label. The
labeled data may be further processed (e.g., through the
identification and linking of helper items) and presented to
a user interface 506D.

[0221] FIG. 5E illustrates more details about a portion of
the high level block diagram illustrated in FIG. 5C in one or
more embodiments. More specifically, FIG. 5E illustrates a
high level block diagram of a portion of a computing system
to identify helper items for terms of interest and to link the
terms of interest with their corresponding helper items. In
these embodiments, one or more data models or classifiers
(e.g., data models) may receive and process the identified
terms of interest 502E, the unlabeled data 502D, and/or the
labeled data 504D as inputs to identify one or more helper
items for an identified term of interest.

[0222] It shall be noted that one or more sets of the
aforementioned data (e.g., the labeled data 504D) may be
entirely optional in this block diagram illustrated in FIG. 5E,
and that the labeled data 504D may include data that is
completely or partially labeled with, for example, identified
terms of interest, identified helper items, or one or more
accuracy measures or metrics, etc. The one or more data
models or classifiers may then link or associate the one or
more helper items with the term of interest and store the
information about the link in a mapping data structure S04E.
The information about the link or the mapping data structure

May 2, 2019

504E may be further processed by an annotation module
508E to label at least some of the unlabeled data 502D
and/or the labeled data 504D.

[0223] It shall be noted that the one or more data models
506F may be identical to or different from the one or more
data models or classifiers in FIG. 5D. In FIG. 5D, a data
model (e.g., classifier, a data model, a transformed data
model, etc.) receives and processes input data (e.g., the
unlabeled data 502D) and identifies terms of interest from
the inputs and optionally label the unlabeled data to form the
partially or completely labeled data 504D. In FIG. 5E, a data
model receives and processes inputs (e.g., the identified
terms of interest 502E, the unlabeled data 502D, and/or the
labeled data 504D) and generates outputs including helper
items for the terms of interest. The data model in FIG. 5E
may also generate or update the mapping data structure
504E including the information about the links between
terms of interest and their corresponding one or more helper
items. In some embodiments, a data model may be config-
ured in such a way to perform both functions at different
stages of the process flow. In some other embodiments, two
different data models may be used for the identification of
terms of interest (e.g., in the flow illustrated in FIG. 5D) and
the identification of helper items (e.g., in the flow illustrated
in FIG. 5E).

[0224] Strictly as a simplified example, a data model 506E
may identify the term “imputed interest” as a term of interest
in a Web page presented to users of an electronic tax return
preparation and filing software model. A data model 506E
may then process the inputs (e.g., the identified terms of
interest 502E, the unlabeled data 502D, and/or the labeled
data 504D) to identify a helper item for the identified term
of interest “imputed interest” for an electronic tax return
preparation and filing software model. For example, the data
model 506E may process the inputs and find that one of the
inputs includes a sentence “imputed interest refers to a
portion of a future payment that is treated as interest if
parties to the transaction do not provide a stated amount of
interest at a rate acceptable to the IRS” by using, for
example, pattern matching techniques. The data model may
then identify the definition for the term of interest “imputed
interest” to be “a portion of a future payment that is treated
as interest if parties to the transaction do not provide a stated
amount of interest at a rate acceptable to the IRS”. This
identified definition may be stored as a helper item object
and may be further linked to the term of interest “imputed
interest”.

[0225] As another example, a data model 506E may
identify the term “VAT” as a term of interest in a Web page
presented to users of an accounting software model. A data
model 106E may then process the inputs (e.g., the identified
terms of interest 502E, the unlabeled data 502D, and/or the
labeled data 504D) to identify a helper item for the identified
term of interest “VAT™. For example, the data model 506E
may process the inputs and find that one of the inputs
includes a sentence stating “VAT simply stands for Value
Added Tax, a tax that is charged on most business transac-
tions and is added by businesses in the price they charge for
goods and services to the consumer” by using, for example,
pattern matching techniques. The data model may then
identify the definition for the term of interest “VAT™ to be
“Value Added Tax that is charged on most business trans-
actions and is added by businesses in the price they charge
for goods and services to the consumer”. This identified

US 2019/0129732 Al

definition may be again stored as a helper item object and
may be further linked to the term of interest “VAT”.
[0226] In the aforementioned examples, the helper items
are generated from a portion of the contents in digital objects
(e.g., files) by extracting the pertinent information from the
digital objects and creating helper items therefor. In some
other embodiments, the digital objects including the perti-
nent information may be identified as the helper items, and
the terms of interest may be linked to these digital objects.
In some other embodiments, the digital objects may be
further textually or graphically annotated or emphasized so
that when the terms of interest are clicked upon, the perti-
nent portion of the digital objects are automatically pre-
sented to the user with graphical or textual emphasis.
[0227] Strictly as an example of the process flows illus-
trated in FIGS. 5D-5E, a set of digital contents (e.g., files,
Web pages, images, audio streams, etc.) may be identified
for an electronic tax return preparation and filing software
model. In some embodiments, only a smaller portion of the
set such as the Web pages, help files, etc. presented to users
will be processed with, for example, the flow illustrated in
FIG. 5D to identify terms of interest therein. With the terms
of interest identified from this smaller portion of the set of
digital contents, the process flow illustrated in FIG. SE may
be executed to identify one or more helper items for an
identified term of interest. In this flow for identification of
helper items, the entire set of digital contents may poten-
tially be processed.

[0228] For example, the specification, white papers, etc.
that may not be exposed to users of the software model may
be processed to identify helper items for the identified terms
of interest. This process flow may exclude any digital
contents from external sources (e.g., sources other than the
entity developing or hosting the software model) in some
embodiments. One of the purposes of processing the entire
set of digital contents of a software model but not digital
contents from external sources is to ensure the completeness
of the set of digital contents for the software model.
[0229] In these embodiments, both the labeled data 504D
(e.g., the smaller portion of the set of digital contents
processed and hence labeled by the term of interest identi-
fication process) and the unlabeled data 502D (e.g., the
remaining portion of the set of digital contents) may be
provided to the one or more data models S06E in FIG. 5E.
The identified terms of interest S02E that have been deter-
mined either by the process flow illustrated in FIG. 5D or by
domain experts may also be provided to the one or more data
models 506 so that the one or more data models 506E may
reference these identified terms of interest in identifying
their corresponding helper items and in linking a term of
interest with its one or more helper items in the mapping
data structure 504E.

[0230] FIG. 5F illustrates more details about a portion of
the high level block diagram illustrated in FIG. 5E in one or
more embodiments.

[0231] FIG. 5F illustrates another high level block dia-
gram for training term classification modules for software
licensing or delivery models in one or more embodiments.
In these embodiments, one or more sets of active learning
data 502F, labeled data 504F, and a set of identified terms of
interest 502F identified from the labeled data 504C may be
identified. These one or more sets of data may be used by
one or more machine learning modules (e.g., 504C in FIG.
5C) for retraining one or more data models (e.g., the data

May 2, 2019

models or classifiers 506C for identifying terms of interest
and/or the data models or classifiers 506C for identifying
helper items) to improve their accuracy and/or completeness
of coverage.

[0232] In some embodiments, these one or more sets of
data may be validated before they are used for training or
retraining data models. One of the purposes of validating
these one or more sets of data is to reduce less relevant or
less useful data that, when used for training or retraining
data models, may waste unnecessary computational
resources or may skew or worsen the accuracy or coverage
completeness of the data models. The validation process
thus discards certain information or data pertaining to the
identification of a term of interest and maintains the perti-
nent information or data as the validated learning data 506D.
[0233] Strictly as an example, the validation process may
filter the one or more sets of data by ignoring data or
information pertaining to terms of interest associated with
sufficiently high confidence scores (e.g., larger than or equal
to 0.75 on a 0 to 1 scale) as well as terms of interest with
sufficiently low confidence scores (e.g., below 0.4 on the 0
to 1 scale). Terms of interest associated with sufficiently low
confidence scores are more likely not of interest, whereas
terms associated with sufficiently high confidence scores are
more likely terms of interest. As a result, the information or
data pertaining to these two categories of terms of interest
has marginal values when used as learning data. The one or
more validation modules 504F may retain the data or
information pertaining to terms of interest associated with
confidence scores between 0.4 and 0.75 to form the vali-
dated learning data S06F.

[0234] The validated learning data 506F may then be
provided to one or more machine learning modules (e.g.,
504C in FIG. 5C) that train or retrain one or more data
models for the identification of terms of interest and/or for
the identification of helper items therefor. For example, the
machine learning modules (e.g., 504C in FIG. 5C) may use
domain expert review results, user feedback, identification
results generated by previous generations of data models,
etc. to tweak the algorithms, formulae, rules, constraints,
patterns, or any other suitable information referenced in the
generation of the one or more data models into improved
schemes that correctly identify certain terms as terms of
interest or not of interest as reflected in the validated
learning data 506F. These one or more machine learning
modules (e.g., 504C in FIG. 5C) may then generate one or
more next generation data models S08F with such improved
schemes from machine learning with at least the active
learning data 502F.

[0235] FIG. 5G illustrates a high level block diagram of a
relevance module in one or more embodiments.

[0236] FIG. 5G illustrates another high level block dia-
gram for classification of data for software licensing or
delivery models in one or more embodiments. In these
embodiments, a user 504G accessing an electronic tax return
preparation and filing software application delivery model
may provide various pieces of information and/or inputs
(e.g., answers to interview questions, selections, etc.) 516G
in the form of natural language via an input device (e.g., a
keyboard, a microphone, etc.) of a computing device 505G.
[0237] The electronic tax return preparation and filing
software application delivery model may be a standalone
installation that locally executes on the computer 500G in
some embodiments. In some other embodiments, the elec-

US 2019/0129732 Al

tronic tax return preparation and filing software application
delivery model may be hosted on a remote computer, on an
Internet-based computing environment providing shared
computer processing resources and data to computers and
other devices on demand (e.g., in a cloud computing envi-
ronment), or provided as a software licensing and delivery
model in which software is licensed on a subscription basis
and is centrally hosted (e.g., software as a service or SaaS).
In these latter embodiments, the user 504G may access the
electronic tax return preparation and filing software appli-
cation delivery model via, for example, a browser on a user
computing device operatively connected to the remote host
via a computer network component.

[0238] The user 504G may be operating on or connected
to a computing system 500G that includes or operatively
connects to one or more word embedding or term embed-
ding modules 502G. This computing system may be the
computing device 505G when the electronic tax return
preparation and filing software application delivery model is
a standalone installation. The word embedding or term
embedding modules 502G included or associated with the
computer 500G may perform various word embedding or
term embedding processes on runtime data 506G (e.g.,
user’s answers to interview questions, prior data acquired
during runtime of the same user or different users, etc.) of a
software application delivery model. These runtime data or
prior data records 506G may be provided by a plurality of
users accessing the software application delivery model. For
example, the runtime data or prior data records 506G may
include answers or selections in response to interview ques-
tions presented in one or more interview screens. This prior
data may also include any suitable information or data about
the functions, purposes, etc. of various object models, code

modules, dynamic applications, dynamic conditions,
dynamic actions, etc.
[0239] These word embedding or term embedding pro-

cesses may include, for example, normalization of the
runtime data or prior data records into normalized tokens
such as characters, words, phrase, sentences, or even docu-
ments. These normalized tokens may be further embedded
into a vector space. More specifically, one or more word
embedding or term embedding processes may transform
these normalized tokens into corresponding vector repre-
sentations 508G where closer vector representations corre-
spond to more similar normalized tokens and hence more
similar runtime data or prior data records (506G).

[0240] These word embedding or term embedding mod-
ules 502G may further classify the runtime data or prior data
records 506G into a plurality of clusters. These classification
processes may be performed independently of each other or
in a hierarchical manner. The normalization, vectorization,
and clustering processes may be performed offline at least
initially in some embodiments due to the vast amount of
runtime data or prior data records (506G) to process (e.g.,
nearly a hundred thousand object models for interview
screens, etc.) and thus may not be suitable for storage or
processing on a user computing device. The results of the
normalization, vectorization, and clustering processes may
nevertheless be stored locally on a user’s computing device
for a locally executing software applications such as an
electronic tax return preparation and filing software appli-
cation delivery model in some embodiments. In some other
embodiments, the results of the normalization, vectorization,

May 2, 2019

and clustering may be stored remotely for user computing
devices to access via one or more computer networks.
[0241] With these vector representations determined,
these processing results of the one or more word embedding
or term embedding modules 502G may be further utilized by
a software application licensing or delivery model. In the
aforementioned example involving tax returns, a specific
user 504G may access an electronic tax return preparation
and filing software application delivery model and submit a
particular input 516G (e.g., an answer or selection to an
interview question in an interview screen) via an input
device (e.g., a computer mouse, a touch interface, a virtual
or physical keyboard, a microphone, etc.) of the computing
device 505G.

[0242] This specific runtime data 516G may be similarly
processed, if it has been processed, by one or more word
embedding or term embedding modules 502G that execute
locally in a standalone installation or remotely in a hosted or
cloud environment. For example, this specific runtime data
516G may be normalized into normalized description which
may be further transformed into a specific vector represen-
tation in the same vector space 514G that now includes the
specific vector representation with other vector representa-
tions for the descriptions from a plurality of users of the
electronic tax return preparation and filing software appli-
cation licensing or delivery model.

[0243] This specific runtime data 516G of the specific user
504G may then be classified into one or more classes 510G.
One or more recommendations 512G (in one or more
classes) corresponding to these one or more classes 510G
may also be identified. These one or more recommendations
512G may include, for example, one or more recommended
flow nodes, object models, code modules, etc. (e.g., one or
more subsequent interview screens) that are associated with
the one or more classes 510G or that are closer to the
vectorized representation of the specific runtime data 516G.
Of course, in the examples of dynamically presenting cus-
tomized interview screens to a user, the vast number of
interview screens may have already been processed with the
word embedding or term embedding techniques and thus
vectorized and classified.

[0244] At least one of these one or more recommendations
512G may be presented directly or indirectly through a code
generation module to the specific user 504G in a variety of
different manners such as a customized sub-flow 518G in the
overall flow of the specific user’s interaction with the
software application licensing or delivery model. A custom-
ized or personalized software application flow may also be
constructed with one or more of these one or more recom-
mendations (e.g., customized, personalized dynamic inter-
view screens, etc.) for the specific user 504G. Because these
one or more recommendations 512G are identified from one
or more classes 510G that are determined to be closer to the
runtime data 506G based on the vectorized representation of
the specific runtime data 516G acquired during the execu-
tion of a current flow node from the specific user 504G, these
one or more recommendations may thus deemed to be
relevant to the specific runtime data 516G for the specific
user 504G.

[0245] FIG. 6A illustrates a high level block diagram for
performing a relevance or irrelevance analysis to identify or
determine one or more relevant or irrelevant entities in one
or more embodiments. A relevance or irrelevance analysis
may be performed on a set of flow nodes (e.g., object

US 2019/0129732 Al

models) in some embodiments to cluster similar flow nodes
having one or more similar characteristics into the same
cluster. The results of such a relevance or irrelevance
analysis may be further used in, for example, prioritizing
which flow nodes are to be considered or even executed first
in a flow for a dynamic application. For example, one or
more clusters of similar flow nodes may be first or even
solely considered and processed during the generation of a
flow for a dynamic software application delivery model in
some embodiments. As a practical working example, flow
nodes that are in the same cluster as the current flow node
may be first or solely considered to be the next flow node for
execution, rather than seeking and determining the next flow
node from the entire set of flow nodes. Of course, the
clustering of flow nodes or object models does not prohibit
the identification of flow nodes or object models from the
entire set of flow nodes in some other embodiments.

[0246] In these embodiments, a data set or corpus for a
plurality of users may be identified at 602 as an input of a
word embedding module. The data set includes information
about or provided by the plurality of users. For example, a
user may manually enter a data item during the use of a
software application delivery model. As another example,
another user may provide such data item via a microphone
as a voice input to a software application delivery model that
may utilize voice recognition and voice transcription mod-
ules to transcribe the voice input into a data item.

[0247] A plurality of object model clusters and the respec-
tive plurality of characteristic clusters (e.g., dynamic con-
dition cluster, dynamic action cluster, one or more subse-
quent data models, etc.) may be identified (if already
existing) or determined (if not existing) at 604 for the data
set at one or more word embedding modules. These one or
more word embedding modules vectorize tokens in the data
set (or corpus) into multi-dimensional vector representations
in a multi-dimension vector space using word embedding
techniques that transform two similar tokens into corre-
sponding vector representations in closer proximity to each
other. Prior to vectorization of tokens, these one or more
word embedding modules may optionally normalize the data
set into normalized tokens that have a smaller size than the
original data set.

[0248] With the vector representations determined, these
one or more word embedding modules may perform multi-
stage clustering tasks to cluster the users represented in the
data set into a set of user clusters where similar users are
clustered into the same user cluster. With a user cluster, these
one or more word embedding modules may further cluster a
plurality of characteristics corresponding to the users in the
user cluster into one or more characteristic clusters where
similar characteristics are clustered into the same character-
istic cluster. In the aforementioned example involving
expense types, the expense types of “performance wear,”
“performance attire,” “yoga pants,” “clothes,” “clothing,”
“uniforms”, etc. may be clustered into, for example, the
characteristic cluster of “clothing”.

[0249] A input from a specific user in a software applica-
tion flow of a software application delivery model may be
identified at 606. The one or more word embedding modules
may determine one or more user clusters at 608 for the
specific user. For example, the input (e.g., descriptions,
metadata, etc. of data models) identified at 606 may be
transformed into a specific vector representation in the same
vector space and may be further clustered into one or more

2 2

May 2, 2019

user clusters at 608. For each user cluster of the one or more
identified user clusters, one or more characteristic clusters
that have been determined for the data set may also be
identified at 608 for the user.

[0250] For example, the one or more word embedding
modules may determine that the input may be clustered into
a data model cluster of “marriage” and identify a number of
characteristic clusters (e.g., spouse information inquiry clus-
ter) corresponding to the “marriage” data model cluster. The
number of characteristic clusters may be ranked based in
part or in whole upon the percentage or number of separate
data models in the data model cluster associated with these
characteristic clusters, etc. in some embodiments. In some
other embodiments, one or more specific characteristic clus-
ters may be identified in addition to or in the alternative of
the standard characteristic clusters associated with the data
model cluster for a specific user based on, for example, the
runtime data (e.g., information provided by the specific
user).

[0251] A data model (e.g., an interview screen) corre-
sponding to at least one characteristic cluster of the one or
more characteristic clusters may be presented to the specific
user at 610 in a user interface of the software application
delivery model to aid the user to complete the software
application flow. This data model may be identified by, for
example, identifying one or more vector representations of
the descriptions of respective data model. These vector
representations may be further compared to the vector
representation associated with the current flow node (e.g.,
the vectorized representation of the description of the cur-
rent data model associated with the current flow node)
and/or to the vector representation of runtime data acquired
during the execution of the software application flow (e.g.,
during the execution of the current flow node and optionally
of one or more previously executed flow node in the
software application flow).

[0252] One of the advantages of these techniques
described herein is the scalability of these techniques for
software application products or services. More specifically,
these techniques utilize word embedding techniques to pro-
cess a targeted corpus that may potentially include any
number of natural language descriptions of various entities
(e.g., data models, code modules, etc.) in an effective and
efficient manner to determine a plurality of data model
clusters. A targeted corpus includes not only natural lan-
guage descriptions of object models, code modules, etc.
from commonly available corpora such as Google corpora
but also specific words, phrases, sentences, etc. that that are
utilized in various computer programming languages as well
as various terms or candidate user’s answers to interview
questions concerning a set of specific forms (e.g., .R.S. tax
forms). Experiments have demonstrated processing speeds
in the range of tens of thousands to hundreds of thousands
words per second so the initial clustering of data models into
data model clusters for a target corpus including billions of
descriptions may take only about an hour. Once the initial
clustering is completed, the vectorizations and the clustering
are determined and can be reused in similar software appli-
cation products or services. For any new descriptions, meta-
data, etc. that may arise during the execution of a software
application flow may be quickly processed due to the much
smaller number of such new descriptions, metadata, etc.,

US 2019/0129732 Al

without hindering the execution of the underlying software
application flow or user experiences with the underlying
software application flow.

[0253] Moreover, the computational intensity may be the
highest in applying the word embedding techniques to the
corpus to determine various clusters. Nonetheless, this
intense computation only occurs when processing the corpus
for the first time. Moreover, once these various clusters, once
determined, may simply be referenced in subsequent deter-
mination of a new data model cluster with a new description
provided by a user in a software delivery model. Embedding
such a new description and determining one or more can-
didate data model clusters as well as the corresponding
characteristic clusters (e.g., dynamic condition cluster,
dynamic action cluster, one or more subsequent data models,
etc.) involve simple arithmetic operations that are completed
in less than a split of a second. As a result, these predeter-
mined data model clusters may be efficiently deployed to
process individual descriptions of individual data models in
less than a split of a second to determine the respective
candidate data model clusters as well as their corresponding
characteristic clusters (e.g., dynamic condition cluster,
dynamic action cluster, one or more subsequent data models,
etc.) and thus may be implemented in any software appli-
cation delivery models (e.g., standalone installation, hosted,
etc.)

[0254] Another advantage of these techniques described
herein is that these techniques handle large corpora and
small corpora in an identical or substantially similar manner,
and the difference lies in the initial processing of the corpora
to determine various clusters based on vectorization. In
other words, these techniques apply to both large and small
corpora with full and equal effects and are thus much more
scalable than conventional techniques. Once these various
clusters have been determined, these techniques can be
ported to any software delivery models with the same or
substantial similar effectiveness, regardless of, for example,
whether there exist merely a few distinct user clusters or
millions of distinct user clusters (and/or their respective
corresponding characteristic clusters).

[0255] FIG. 6B illustrates a more detailed block diagram
for a portion of the high level block diagram illustrated in
FIG. 6A in one or more embodiments. More specifically,
FIG. 6B illustrates more details about the normalization and
vectorization aspects of a word embedding module. In these
embodiments, a data set including a plurality of tokens (e.g.,
characters, words, phrases, sentences, paragraphs, and/or
documents) for data or information (e.g., descriptions, meta-
data, computer programming language elements, etc.) con-
cerning a plurality of data models, code modules, etc. may
be identified as an input to a word embedding module at
602B.

[0256] The example flow illustrated in FIG. 6B transforms
the data set or a reduced version thereof into vector repre-
sentations in a vector space where more similar tokens are
transformed into vector representations in closer proximity
of each other in the vector space having a plurality of
dimensions. The data set may include a large number of
tokens (e.g., billions of words, millions of phrases, etc.)
some of which may not necessarily be useful even when
transformed into vector representations. On the other hand,
vectorizing the data set requires computational resources
that are proportional to the product of the number of tokens
to be vectorized and the degrees of freedom. The data set

May 2, 2019

may thus be normalized at 6048 into a normalized data set
and optionally reduced in size at 6068 by using one or more
reduction modules.

[0257] Normalization of the data set transforms the tokens
in the data set into a normal, canonical, or standard (collec-
tively standard) form that uniquely represents the token as
well as one or more other equivalent tokens. For example, all
characters in the data set may be mapped to the Unicode
expression; letters may be transformed into the lower case;
different tenses of the same verb (e.g., fly, flies, flew, flown)
may be converted into the same tense (e.g., fly); and/or
singular and plurality tokens may be transformed into the
same form (e.g., singular); etc. Normalization not only
transforms tokens into standard forms but also reduces the
size of the data set due to, for example, the transformation
of various tenses of verbs into the same tense and transfor-
mation of plural nouns into singular forms.

[0258] One or more reduction techniques may be applied
to the data set or the normalized data set to further reduce the
size at 606B. For example, punctuations may be removed. In
some embodiments, one or more stop or function words or
phrases (e.g., auxiliary verbs, some pronouns such as which,
what, I, you, she, he, we, etc.) and/or one or more lexical
words or lexical phrases that have little or ambiguous
meaning may be filtered out from subsequent processes such
as vectorization and clustering. Names of named entities
(e.g., New York Times as the newspaper) may also be
optionally extracted although the subsequent word embed-
ding processing may nevertheless learn these names. These
filtered out words or phrases may be determined not to add
value or usefulness. Stop or function words and phrases
contribute primarily to the grammatical structures of tokens,
rather than the meanings or contents thereof.

[0259] For example, a word embedding module may cus-
tomize a set of stop and/or function words and phrases to
include auxiliary verbs (e.g., be verbs, can, must, need, etc.),
articles (e.g., the, a, an, etc.), and/or some pronouns (e.g.,
which, what, etc.) These words primarily contribute to the
grammatical meaning of a phrase or sentence but have
limited or no usefulness in determining the semantic mean-
ing of the phrase or sentence. In some other embodiments,
a word embedding module may iteratively customize the set
of stop and/or function words to fit the intended functions of
the underlying software application delivery model so as not
to mistakenly filtering out words that may actually contrib-
ute to determining the similarity of tokens.

[0260] A dictionary or a data structure including unique
tokens may be optionally generated at 608B. The unique
tokens in this dictionary or data structure will be sent to a
word embedding module that transform these unique tokens
into corresponding vector representations. Prior to actually
transforming these unique tokens, the word embedding
module or the artificial intelligence modules therein may be
trained with one or more training instances at 6106.

[0261] A training instance may include one or more ana-
logical reasoning tasks that include words, phrases, etc. as
well as vector arithmetic and/or additive compositionality to
iteratively calibrate the word embedding module in a super-
vised, unsupervised, or reinforcement learning environment.
An example of an analogical task is “Ais to B as C is to D”
such as “man is to woman as king is to queen”, “man is to
woman as uncle is to aunt”, etc. Another example of an

analogical reasoning task involving vector arithmetic is

US 2019/0129732 Al

“king-man+woman=?""; and the word embedding module is
trained to determine the answer to be “queen”.

[0262] In some embodiments, predictive models such as
the continuous skip-gram model, continuous-bag-of-words
(CBOW), non-linear sigmoidal recurrent neural networks,
distributed memory (DM), distributed bag of words
(DBOW), etc. may be used with non-uniform, adjustable
weight matrices, instead of uniform weight matrices assign-
ing an equal weight to all tokens, may be used in a word
embedding module at 610B, and the training at 610B adjusts
the weights of tokens so that the word embedding module
correctly determines the answers to the analogical reasoning
tasks in the training instances. The word embedding mod-
ules may be derived from Word2vec algorithm, the Doc2vec
algorithm, the locally linear embedding (LLE), etc. with
adjustable weight matrices that assign lower weights to
tokens that are known to cause incorrect or imprecise
clustering results and/or assign higher weights to tokens that
are known to cause more correct or precise clustering
results, whereas the aforementioned algorithms have been
proven to cause incorrect or imprecise clustering results for
financial management software application delivery models.
[0263] Once the word embedding modules are trained to
achieve desired accuracy with the one or more training
instances at 610B, the tokens in the dictionary, the normal-
ized data set, or the reduced, normalized data set may be
transformed at 612B into corresponding vector representa-
tions where more similar tokens are transformed into vector
representations that are in closer proximity to each other in
the vector space. The vector representations may be stored
with the or associated with the corresponding tokens in the
same or in a different data structure; and an individual vector
representation may be access by, for example, “model
[‘computer’] # raw NumPy vector of a word with the
returned result of “array([-0.00449447, -0.00310097,
0.02421786, . . .], dtype=float32)”.

[0264] The word embedding modules may further be
optionally improved or optimized at 614B using techniques
such as the hierarchical softmax technique, the negative
sampling technique, the softmax technique, the noise con-
trastive estimation (NSE) technique, the subsampling of
frequent words technique, etc. As described above, the data
set or corpus may include an enormously large number of
tokens and hence vector representations, the improvement or
optimization is to reduce the number of updates per training
instance or per training task. For example, the data set may
include billions of words, tens of millions of phrases, and
millions of sentences, each of which may be transformed
into a vector representation having hundreds of dimensions.
[0265] These improvement or optimization techniques
thus further reduce the utilization of computational
resources. For example, a word embedding module may
invoke the hierarchical softmax technique that uses a Huft-
man tree to reduce computation intensity, especially target-
ing infrequent tokens. As another example, a word embed-
ding module may invoke the negative sampling technique
that minimizes the log-likelihood of sampled negative
instances, especially for frequent tokens. In addition or in
the alternative, sub-sampling of frequent words during train-
ing may also be utilized to result in speedup and improve
accuracy of the vector representations of less frequent
tokens.

[0266] The dimensionality of the vector space may also be
improved or optimized. Generally, the quality of word

May 2, 2019

embedding increases as the dimensionality of the vector
space increases. Nonetheless, the increase in quality of word
embedding slows down as the dimensionality of the vector
space reaches a threshold number beyond which the accu-
racy results in a limited return that is disproportional to the
increase in dimensionality and hence in computational inten-
sity. Therefore, the word embedding module may impose a
threshold limit on the dimensionality of the vector space to
further conserve computational resources. The word embed-
ding modules may also impose a limit on the context for the
aforementioned predictive models. The context imposes a
limit on a number of tokens before and a number of tokens
after a given token for predictions. For example, a word
embedding module may limit the context to 10 when con-
tinuous skip-gram is utilized and to 5 when CBOW is
utilized.

[0267] FIG. 6C illustrates a more detailed block diagram
for a portion of the high level block diagram illustrated in
FIG. 6B in one or more embodiments. More specifically,
FIG. 6C illustrates more details about training one or more
word embedding modules at 610B of FIG. 6B. In these
embodiments, a word embedding model (a software model)
may be invoked at 602C. As described above, the word
embedding model may include one or more processes
including, for example, continuous skip-gram model, con-
tinuous-bag-of-words (CBOW), non-linear sigmoidal recur-
rent neural networks, etc. The dictionary or data structure, if
generated at 608B, may be pruned at 604C. For example,
tokens having a predetermined number of times of occur-
rences in the dictionary, tokens that are equivalent to each
other, etc. may be pruned from the dictionary or data
structure. As described above, the computational resource
requirement (e.g., memory footprint, processor cycles, etc.)
is roughly proportional to the product of the number of
tokens to be vectorized and the degrees of freedom. Pruning
the dictionary at 604C may thus further conserve computa-
tional resources.

[0268] One or more training instances and the degrees of
freedom for these one or more training instances may be
determined at 606C based in part or in whole upon a balance
between performance of training and/or the word embedding
modules in training and the desired accuracy of the word
embedding modules in generating vector representations in
closer proximity for tokens that are more similar to each
other. The degrees of freedom are associated with the
number of layers utilized in the word embedding that
generate the vector representations and will be described
below in greater details.

[0269] Customizable, adjustable weight data structures
may be determined at 608C for the word embedding module
under training. One of the advantages of these techniques
described herein is that unlike conventional approaches that
assign an equal weight to all the tokens and thus often lead
to incorrect or imprecise vectorization and clustering results,
these techniques assign unequal weights to certain tokens to
achieve more accurate and precise results and to enhance the
computers’ ability to truly understand the natural language
input from users. For example, a word embedding module
may assign lower weights to tokens that are known to cause
incorrect or imprecise clustering results and/or assign higher
weights to tokens that are known to cause more correct or
precise clustering results during training. Another advantage
of the word embedding modules is that, unlike conventional
approaches that focus on individual words (unigrams), these

US 2019/0129732 Al

modules also provide the learning and hence embedding
functionalities for multi-grams (e.g., phrases, sentences, and
even documents) that include more than just the unigrams.
[0270] These one or more training instances may be
executed at these one or more word embedding module
under training at 610C. More specifically, a training instance
may include one or more analogical reasoning tasks that
include words, phrases, etc. as well as vector arithmetic
and/or additive compositionality. These analogical reason-
ing tasks iteratively calibrate the word embedding modules
under training in a supervised, unsupervised, or reinforce-
ment learning environment until the desired accuracy is
achieved. For example, the weights in the weight data
structures may be iteratively adjusted until the word embed-
ding modules produce correct answers to the one or more
training instances.

[0271] More specifically, a vector representation for a
token may be generated at 612C as a distribution of weights
of the tokens in the dictionary. The resulting vector repre-
sentation of the token may be checked to determine whether
the resulting vector representation correctly answers the
analogical reasoning tasks in a supervised, unsupervised, or
reinforcement learning environment. A word embedding
module is determined to have correctly answered an ana-
logical reasoning task if the vector operations results in the
vector of the result. In the example illustrated in FIG. 6F, if
a word embedding module vectorizes the tokens “Intuit,”
“tax return software,” “apple,” and “mobile phones” in the
simplified vector space as shown in 602F.

[0272] The word embedding module is determined to have
correctly answered the analogical reasoning tasks of “Intuit—
tax return software+apple=?" if the result determined by the
word embedding module of the vector operations is the same
as the vector “mobile phones”. For example, 602F repre-
sents the vector operation of subtracting the vector “tax
return software” from the vector “Intuit”. If the resulting
vector of the vector operation that adds the resulting vector
604F to the vector “apple” is the same as the vector “mobile
phones” then the word embedding module is determined to
have correctly answered the analogical reasoning task.
[0273] If an answer is not entirely correct, one or more
weights for one or more corresponding tokens in the dic-
tionary may be optionally adjusted at 614C; and the process
returns to 610C to repeat the acts of 610C through 614C
until the word embedding module is determined to answer
the analogical reasoning tasks with satisfactory accuracy.
The training of the word embedding modules may be
optionally improved or optimized at 616C in an identical or
substantially similar manner as that described above with
reference to 614B in FIG. 6B.

[0274] FIG. 6D illustrates a more detailed block diagram
for a portion of the high level block diagram illustrated in
FIG. 6C in one or more embodiments. More specifically,
FIG. 6D illustrates an example of using a predictive model
to predict a focus token from a window of surrounding
tokens. In these embodiments, a focus token may be iden-
tified at 602D from a collection of tokens (e.g., a phrase, a
sentence, a set of tokens, etc.) An objective of the flow
illustrated in FIG. 6D is to predict the focus word from the
surrounding tokens in a window encompassing the focus
token. The window may encompass only one side (e.g., to
the right of the focus token or to the left of the focus token)
or both sides of the focus token. In some embodiments, the
size of the window may be determined to be around five (5)

May 2, 2019

to achieve a balance between the amount of time for the
training and the accuracy of the output of the word embed-
ding module.

[0275] One or more context tokens may be identified at
604D; and the one or more corresponding context vector
representations of these one or more context tokens may be
provided as input vector representations at 604D. The size of
the dictionary may be identified at 606D. For example, the
total number of unique tokens or the vocabulary size (V) in
the dictionary may be identified at 606D; and the degrees of
freedom (N) may be determined at 608D. As described
above, the computational resources required are propor-
tional to the product of the number of tokens to be vectorized
and the degrees of freedom, the input vector is thus a [1xV]
vector, where V denotes the number of unique tokens (or the
vocabulary size). Each token is expressed as a distribution of
all the unique tokens in the dictionary and may thus be
represented as a [1xV] array with a “1” in the field repre-
senting the token and “0” in the remaining fields of the
[1xV] array to simplifying operations although values other
that “0” and “1” may also be used.

[0276] The distribution coefficients or the weights of these
tokens may be captured in a weight data structure. These
embodiments illustrated in FIG. 6D include two weight data
structures that successively transform the input [1xV] vec-
tors representing the unique tokens in the dictionary into the
vector representations where vector representations in closer
proximity represent more similar tokens.

[0277] The first customizable weight data structure may be
determined at 610D. The first weight data structure deter-
mined at 610D is to transform an [1xV] input vector into an
intermediate representation while encompassing the degrees
of freedom (N) and is thus a [VxN] array structure based on
fundamentals of linear algebra. This intermediate represen-
tation may be called a hidden layer and is thus a [1xN]
vector representation as a result of the product of the [1xV]
input vector of a token and the [VxN] array. This [1xN]
intermediate representation is further transformed via the
second weight data structure into the final output vector
representation for the input token. The output vector repre-
sentation is also a [1xV] vector. As a result, the second
weight data structure is a [NxV] array.

[0278] With these introductory remarks, the input vectors
each representing a unique token in the dictionary may be
transformed at 612D into an intermediate array with the first
weight data structure. The second weight data structure may
be identified at 614D; and the intermediate array generated
at 614D may be further transformed into an output vector at
616D with the second weight data structure. As described
above, the objective of these one or more training instances
is to predict the focus token using the context tokens. The
process may thus iteratively adjust the first and/or the second
weight data structure via the application of a plurality of
analogical reasoning tasks until the word embedding module
under training produces output vectors with desired accu-
racy. That is, until the word embedding module can correctly
predict the focus token by using its surrounding tokens with
sufficient accuracy.

[0279] The word embedding modules may be improved or
optimized at 618D by iteratively maximizing an objective
function with regard to the output vector representations and
the first and/or the second weight data structures. More
specifically, the process may iterate through every token in
the dictionary and compute each input probability prediction

US 2019/0129732 Al

as well as the prediction error and use the prediction error to
update the corresponding output vector representation.
Using the prediction error to update the corresponding
output vector representation may be further improved or
optimized by using one or more optimization techniques
such as the aforementioned hierarchical softmax technique,
the negative sampling technique, the softmax technique, the
noise contrastive estimation (NSE) technique, the subsam-
pling of frequent words technique, etc. The objective func-
tion may be constructed so that tokens occurring in similar
contexts have similar embeddings (as measured by cosine
similarity); and capturing the multiple degrees of similarity
between tokens may be further enhanced by using the
aforementioned analogical reasoning tasks.

[0280] For example, the hierarchical softmax technique
may be used to estimate the overall probability distribution
using an output layer that is proportional to log(unigram.
perplexity(V)) instead of V (the vocabulary size described
above) to reduce utilization of computational resources.
Moreover, the weight data structures may be tuned during
the iteration or independently of the iteration by adjusting
one or more weights in either or both weight data structures.
Another improvement or optimization technique involves
the use of different techniques to process different tokens.
More particularly, a word embedding module may establish
a threshold frequency of appearances for the tokens and use
one technique for frequent tokens and another technique for
infrequent tokens. For example, a word embedding module
may use the hierarchical softmax that utilizes a Huffman tree
to reduce computation for infrequent tokens and negative
sampling that minimizes the log-probability of sampled
negative instances for frequent tokens.

[0281] This process flow illustrated in FIG. 6D may be
applied to tokens more than just unigrams. For example, a
similar approach may be adopted to multi-grams or n-grams
(e.g., phrases, sentences, etc.) rather than unigrams (e.g.,
single words) to train the word embedding modules. In
doing so, tokens that frequently appear together may be
identified as a focus token (an n-gram). The focus token may
be similarly predicted in one or more similar training
instances using surrounding tokens where the analogical
reasoning tasks may be revised to encompass n-grams,
rather than just unigrams. In some embodiments, a word
embedding module may be trained with all the n-grams
(unigrams, bi-grams, etc.) This approach requires more
computational resources than an alternative approach that
train a word embedding module using just some of the
n-grams (e.g., using just the unigrams, bi-grams, etc. but not
all the n-grams).

[0282] FIG. 6G illustrates an example of the process
illustrated in FIG. 6D. In this example, a plurality of input
vectors 602G may be determined for each of the tokens in
a dictionary. As FIG. 6G shows, each input vector contains
a “1” in the field representing the token in the dictionary, and
the other fields are filled with “0”. If the vocabulary size is
V, each input vector is a [1xV] array as shown in FIG. 6G.
Each input vector is then transformed into the intermediate
representation 606G via the first weight data structure 604G
which is a [VxN] array where V denotes the vocabulary size,
and N denotes the degrees of freedom. As a result, the
intermediate representation 606G is a [1xN] array.

[0283] This intermediate representation 606G is again
transformed via the second weight data structure 608G into
the output vector 610G for the input vector so both the input

May 2, 2019

vector 602G and the output vector 610G are [1xV] arrays.
As a result, the second weight data structure 608G is a
[NxV] array. Unlike conventional approaches that assign an
equal weight to all tokens (and hence input vectors), these
techniques described herein use adjustable, variable weights
for at least some of the tokens in the dictionary. As a result,
conventional approaches merely amount to summing the
non-zero entries in the first weight data structure and divid-
ing the sum by the number of input vectors to obtain the
average, whereas the word embedding modules described
herein utilize adjustable, variable weights. Although the
word embedding modules may need more time for training
due to more complex computations, the word embedding
modules nevertheless produce more accurate and useful
results.

[0284] FIG. 6E illustrates more details of a part of the
block diagram illustrated in FIG. 6C in some embodiments.
More specifically, FIG. 6E illustrates an example of using
another predictive model to predict surrounding tokens from
a target token. Compared with the approach illustrated in
FIG. 6D that predicts the focus token by using surrounding
tokens in a defined window encompassing the focus token,
the approach illustrated in FIG. 6E predicts the surrounding
tokens by using the focus token. In other words, the
approach in FIG. 6D predicts the focus token from its
context, and the approach in FIG. 6E predicts the context
from the focus token. A token may include, for example, one
or more characters, one or more symbols, one or more
words, one or more phrases, one or more sentences, one or
more paragraphs, or any combinations thereof, etc. of a
description of an object model or a code module such as that
for an interview screen of an electronic tax preparation and
filing software application product or service.

[0285] In these embodiments, a focus token may be iden-
tified at 602F from a collection of tokens as an input vector
to a word embedding module. For training purposes, the
context tokens may also be identified at 604E from the
collection of tokens. These identified context tokens may be
used to evaluate the prediction errors of the word embedding
module during training. The size of the dictionary (V) and
the degrees of freedom (N) may be respectively identified at
606FE and 608E. The dictionary may be normalized and
optionally reduced to include unique tokens as described
above.

[0286] The degrees of freedom determine the size of the
intermediate representation after the transformation with the
first weight data structure. Generally, higher degrees of
freedom result in better accuracy but require more compu-
tational resources because the memory footprint is propor-
tional to the product of the size of the dictionary and the
degrees of freedom. Therefore, a threshold limit may be
established (e.g., several hundreds) for the degrees of free-
dom to achieve a balance between training performance and
accuracy of the trained word embedding modules.

[0287] The first customizable, variable weight data struc-
ture may be identified at 610E. The input vector may then be
transformed into an intermediate representation at 612E
using the first customizable, variable weight data structure.
The input vector for the focus token may be similarly
constructed as that in FIG. 6D and may include a [1xV]
array. Theoretically, there may be V input vectors for a
dictionary having V unique tokens. The first customizable,

US 2019/0129732 Al

variable weight data structure thus includes a [VxN] array to
transform a [1xV] input vector into a [1xN] array for the
intermediate representation.

[0288] Because the output vector is also in the same vector
space as the input vector, the output vector thus includes a
[1xV] vector representation. As a result, a second customi-
zable, variable weight data structure, a [NxV] array, may be
identified at 614E. The first and/or the second customizable,
variable weight data structure are to be adjusted with vari-
able weights to optimize an objective probability function
(e.g., a log probability based on the training context and the
size of the dictionary, a stochastic gradient descent object
function, etc.) The intermediate representation may then be
transformed into the corresponding output vector represen-
tation at 616E.

[0289] More specifically, with the objective function iden-
tified, the loss or error may be computed for a pair of
observed and noisy examples. At least one weight in the first
or the second weight data structure may be updated to
improve the objective function by, for example, determining
the gradient of the loss or error with respect to the weights
and by updating the weights by taking a small step in the
direction of the gradient that moves the output vectors
around for each token until the word embedding model
correctly discriminating real tokens from noise tokens. The
learned output vectors may be projected to a two-dimen-
sional space using a dimensionality reduction technique.
[0290] Similar to the word embedding module in FIG. 6D,
the word embedding modules trained in FIG. 6E may also be
improved or optimized at 618E by iteratively optimizing an
objective function with regard to the context tokens and the
first and/or the second weight data structure. The context
tokens identified at 604E may be compared with the results
of the word embedding module during training to compute
the prediction errors that may be further used to calibrate the
first and/or the second weight data structures until the word
embedding module under training produce correct predic-
tions of the context tokens with desired accuracy.

[0291] In addition or in the alternative, a data set including
natural language or computer programming language tokens
(e.g., characters, words, phrases, sentences, paragraphs, and/
or documents) for a plurality of developers may be identified
as an input to a word embedding or term embedding module.
As described above, developers may include natural per-
sons, entities such as corporate entities, or a combination of
one or more natural persons and one or more entities.
[0292] The data set or a reduced version thereof is thus
transformed into vector representations in a vector space
where more similar language tokens are transformed into
vector representations in closer proximity of each other in
the vector space having a plurality of dimensions. The data
set may include a large number of tokens (e.g., billions of
words, millions of phrases, etc.) some of which may not
necessarily be useful even when transformed into vector
representations. On the other hand, vectorizing the data set
requires computational resources that are proportional to the
product of the number of tokens to be vectorized and the
degrees of freedom. The data set may thus be normalized
into a normalized data set and optionally reduced in size by
using one or more reduction modules.

[0293] Normalization of the data set transforms the tokens
in the data set into a normal, canonical, or standard (collec-
tively standard) form that uniquely represents the token as
well as one or more other equivalent tokens. For example, all

May 2, 2019

characters in the data set may be mapped to the Unicode
expression; letters may be transformed into the lower case;
different tenses of the same verb (e.g., fly, flies, flew, flown)
may be converted into the same tense (e.g., fly); and/or
singular and plurality tokens may be transformed into the
same form (e.g., singular); etc. Normalization not only
transforms tokens into standard forms but also reduces the
size of the data set due to, for example, the transformation
of various tenses of verbs into the same tense and transfor-
mation of plural nouns into singular forms.

[0294] One or more reduction techniques may be applied
to the data set or the normalized data set to further reduce the
size. For example, punctuations may be removed. In some
embodiments, one or more stop or function words or phrases
(e.g., auxiliary verbs, some pronouns such as which, what,
1, you, she, he, we, etc.) and/or one or more lexical words or
lexical phrases that have little or ambiguous meaning may
be filtered out from subsequent processes such as vector-
ization and clustering. Names of named entities (e.g., New
York Times as the newspaper) may also be optionally
extracted although the subsequent word embedding or term
embedding processing may nevertheless learn these names.
These filtered out words or phrases may be determined not
to add value or usefulness. Stop or function words and
phrases contribute primarily to the grammatical structures of
tokens, rather than the meanings or contents thereof.
[0295] For example, a word embedding or term embed-
ding module may customize a set of stop and/or function
words and phrases to include auxiliary verbs (e.g., be verbs,
can, must, need, etc.), articles (e.g., the, a, an, etc.), and/or
some pronouns (e.g., which, what, etc.) These words pri-
marily contribute to the grammatical meaning of a phrase or
sentence but have limited or no usefulness in determining
the semantic meaning of the phrase or sentence. In some
other embodiments, a word embedding or term embedding
module may iteratively customize the set of stop and/or
function words to fit the intended functions of the underlying
software application delivery model so as not to mistakenly
filtering out words that may actually contribute to determin-
ing the similarity of tokens.

[0296] A dictionary or a data structure including unique
tokens may be optionally generated. The unique tokens in
this dictionary or data structure will be sent to a word
embedding or term embedding module that transform these
unique tokens into corresponding vector representations.
Prior to actually transforming these unique tokens, the word
embedding or term embedding module or the artificial
intelligence modules therein may be trained with one or
more training instances.

[0297] A training instance may include one or more ana-
logical reasoning tasks that include words, phrases, etc. as
well as vector arithmetic and/or additive compositionality to
iteratively calibrate the word embedding or term embedding
module in a supervised, unsupervised, or reinforcement
learning environment. An example of an analogical task is
“Ais to B as C is to D” such as “man is to woman as king
is to queen”, “man is to woman as uncle is to aunt”, etc.
Another example of an analogical reasoning task involving
vector arithmetic is “king-man+woman=?""; and the word
embedding or term embedding module is trained to deter-
mine the answer to be “queen”.

[0298] In some embodiments, predictive models such as
the continuous skip-gram model, continuous-bag-of-words
(CBOW), non-linear sigmoidal recurrent neural networks,

US 2019/0129732 Al

distributed memory (DM), distributed bag of words
(DBOW), etc. may be used with non-uniform, adjustable
weight matrices, instead of uniform weight matrices assign-
ing an equal weight to all tokens, may be used in a word
embedding or term embedding module, and the training
adjusts the weights of tokens so that the word embedding or
term embedding module correctly determines the answers to
the analogical reasoning tasks in the training instances. The
word embedding or term embedding modules may be
derived from Word2vec algorithm, the Doc2vec algorithm,
the locally linear embedding (LLE), etc. with adjustable
weight matrices that assign lower weights to tokens that are
known to cause incorrect or imprecise clustering results
and/or assign higher weights to tokens that are known to
cause more correct or precise clustering results, whereas the
aforementioned algorithms have been proven to cause incor-
rect or imprecise clustering results for financial management
software application delivery models.

[0299] Once the word embedding or term embedding
modules are trained to achieve desired accuracy with the one
or more training instances, the tokens in the dictionary, the
normalized data set, or the reduced, normalized data set may
be transformed into corresponding vector representations
where more similar tokens are transformed into vector
representations that are in closer proximity to each other in
the vector space. The vector representations may be stored
with the or associated with the corresponding tokens in the
same or in a different data structure; and an individual vector
representation may be access by, for example, “model
[‘computer’] # raw NumPy vector of a word with the
returned result of “array([-0.00449447, -0.00310097,
0.02421786, . . .], dtype=float32)”.

[0300] The word embedding or term embedding modules
may further be optionally improved or optimized using
techniques such as the hierarchical softmax technique, the
negative sampling technique, the softmax technique, the
noise contrastive estimation (NSE) technique, the subsam-
pling of frequent words technique, etc. As described above,
the data set or corpus may include an enormously large
number of tokens and hence vector representations, the
improvement or optimization is to reduce the number of
updates per training instance or per training task. For
example, the data set may include billions of words, tens of
millions of phrases, and millions of sentences, each of which
may be transformed into a vector representation having
hundreds of dimensions.

[0301] These improvement or optimization techniques
thus further reduce the utilization of computational
resources. For example, a word embedding or term embed-
ding module may invoke the hierarchical softmax technique
that uses a Huffman tree to reduce computation intensity,
especially targeting infrequent tokens. As another example,
a word embedding or term embedding module may invoke
the negative sampling technique that minimizes the log-
likelihood of sampled negative instances, especially for
frequent tokens. In addition or in the alternative, sub-
sampling of frequent words during training may also be
utilized to result in speedup and improve accuracy of the
vector representations of less frequent tokens.

[0302] The dimensionality of the vector space may also be
improved or optimized. Generally, the quality of word
embedding or term embedding increases as the dimension-
ality of the vector space increases. Nonetheless, the increase
in quality of word embedding or term embedding slows

May 2, 2019

down as the dimensionality of the vector space reaches a
threshold number beyond which the accuracy results in a
limited return that is disproportional to the increase in
dimensionality and hence in computational intensity. There-
fore, the word embedding or term embedding module may
impose a threshold limit on the dimensionality of the vector
space to further conserve computational resources. The
word embedding or term embedding modules may also
impose a limit on the context for the aforementioned pre-
dictive models. The context imposes a limit on a number of
tokens before and a number of tokens after a given token for
predictions. For example, a word embedding or term embed-
ding module may limit the context to 10 when continuous
skip-gram is utilized and to 5 when CBOW is utilized.
[0303] The following illustrates an example of using a
predictive model to predict a focus token from a window of
surrounding tokens in some embodiments. In these embodi-
ments, a focus token may be identified from a collection of
tokens (e.g., a phrase, a sentence, a set of tokens, etc. in an
artifact, a source code module, etc.) An objective of the this
process is to predict the focus word from the surrounding
tokens in a window encompassing the focus token. The
window may encompass only one side (e.g., to the right of
the focus token or to the left of the focus token) or both sides
of the focus token. In some embodiments, the size of the
window may be determined to be around five (5) to achieve
a balance between the amount of time for the training and
the accuracy of the output of the word embedding or term
embedding module.

[0304] One or more context tokens may be identified; and
the one or more corresponding context vector representa-
tions of these one or more context tokens may be provided
as input vector representations. The size of the dictionary
may be identified. For example, the total number of unique
tokens or the vocabulary size (V) in the dictionary may be
identified; and the degrees of freedom (N) may be deter-
mined. As described above, the computational resources
required are proportional to the product of the number of
tokens to be vectorized and the degrees of freedom, the input
vector is thus a [1xV] vector, where V denotes the number
of unique tokens (or the vocabulary size). Each token is
expressed as a distribution of all the unique tokens in the
dictionary and may thus be represented as a [1xV] array with
a “1” in the field representing the token and “0” in the
remaining fields of the [1xV] array to simplifying operations
although values other that “0” and “1” may also be used.
[0305] The distribution coefficients or the weights of these
tokens may be captured in a weight data structure. These
embodiments may include two weight data structures that
successively transform the input [1xV] vectors representing
the unique tokens in the dictionary into the vector represen-
tations where vector representations in closer proximity
represent more similar tokens.

[0306] The first customizable weight data structure may be
determined. The first weight data structure determined is to
transform an [1xV] input vector into an intermediate repre-
sentation while encompassing the degrees of freedom (N)
and is thus a [VxN] array structure based on fundamentals
of linear algebra. This intermediate representation may be
called a hidden layer and is thus a [1xN] vector represen-
tation as a result of the product of the [1xV] input vector of
a token and the [VxN] array. This [1xN] intermediate
representation is further transformed via the second weight
data structure into the final output vector representation for

US 2019/0129732 Al

the input token. The output vector representation is also a
[1xV] vector. As a result, the second weight data structure is
a [NxV] array.

[0307] With these introductory remarks, the input vectors
each representing a unique token in the dictionary may be
transformed into an intermediate array with the first weight
data structure. The second weight data structure may be
identified; and the intermediate array generated may be
further transformed into an output vector with the second
weight data structure. As described above, the objective of
these one or more training instances is to predict the focus
token using the context tokens. The process may thus
iteratively adjust the first and/or the second weight data
structure via the application of a plurality of analogical
reasoning tasks until the word embedding or term embed-
ding module under training produces output vectors with
desired accuracy. That is, until the word embedding or term
embedding module can correctly predict the focus token by
using its surrounding tokens with sufficient accuracy.
[0308] The word embedding or term embedding modules
may be improved or optimized by iteratively maximizing an
objective function with regard to the output vector repre-
sentations and the first and/or the second weight data struc-
tures. More specifically, the process may iterate through
every token in the dictionary and compute each input
probability prediction as well as the prediction error and use
the prediction error to update the corresponding output
vector representation. Using the prediction error to update
the corresponding output vector representation may be fur-
ther improved or optimized by using one or more optimi-
zation techniques such as the aforementioned hierarchical
softmax technique, the negative sampling technique, the
softmax technique, the noise contrastive estimation (NSE)
technique, the subsampling of frequent words technique, etc.
The objective function may be constructed so that tokens
occurring in similar contexts have similar embeddings (as
measured by cosine similarity); and capturing the multiple
degrees of similarity between tokens may be further
enhanced by using the aforementioned analogical reasoning
tasks.

[0309] For example, the hierarchical softmax technique
may be used to estimate the overall probability distribution
using an output layer that is proportional to log(unigram.
perplexity(V)) instead of V (the vocabulary size described
above) to reduce utilization of computational resources.
Moreover, the weight data structures may be tuned during
the iteration or independently of the iteration by adjusting
one or more weights in either or both weight data structures.
Another improvement or optimization technique involves
the use of different techniques to process different tokens.
More particularly, a word embedding or term embedding
module may establish a threshold frequency of appearances
for the tokens and use one technique for frequent tokens and
another technique for infrequent tokens. For example, a
word embedding or term embedding module may use the
hierarchical softmax that utilizes a Huffman tree to reduce
computation for infrequent tokens and negative sampling
that minimizes the log-probability of sampled negative
instances for frequent tokens.

[0310] This process flow described in this example may be
applied to tokens more than just unigrams. For example, a
similar approach may adopt multi-grams or n-grams (e.g.,
phrases, sentences, etc.) rather than unigrams (e.g., single
words) to train the word embedding or term embedding

May 2, 2019

modules. In doing so, tokens that frequently appear together
may be identified as a focus token (an n-gram). The focus
token may be similarly predicted in one or more similar
training instances using surrounding tokens where the ana-
logical reasoning tasks may be revised to encompass
n-grams, rather than just unigrams. In some embodiments, a
word embedding or term embedding module may be trained
with all the n-grams (unigrams, bi-grams, etc.) This
approach requires more computational resources than an
alternative approach that train a word embedding or term
embedding module using just some of the n-grams (e.g.,
using just the unigrams, bi-grams, etc. but not all the
n-grams).

[0311] FIG. 6H illustrates an example of the process
illustrated in FIG. 6E. In this example, an input vectors
602K may be determined for a focus token in a dictionary.
As FIG. 6H shows, the input vector contains a “1” in the
field representing the focus token in the dictionary, and the
other fields are filled with “0”. If the vocabulary size is V,
each input vector is a [1xV] array as shown in FIG. 6H. The
input vector 602H is then transformed into the intermediate
representation 606H via the first weight data structure 604H
which is a [VxN] array where V denotes the vocabulary size,
and N denotes the degrees of freedom. As a result, the
intermediate representation 606H produced by the first
transformation is a [1xN] array. This intermediate represen-
tation 606H is again transformed via the second weight data
structure 608H into output vectors 610H each of which is
also a [1xV] array. As a result, the second weight data
structure 608H is a [NxV] array.

[0312] With the vector representations determined for a
corpus including natural language inputs, the corpus may be
clustered based on the close proximity of the vector repre-
sentations. As a practical example including an electronic
tax return preparation software delivery model, a first corpus
may be identified for the runtime data or other data records
provided by users in response to one or more interview
screens for Section A “Principal business or profession,
including product or service” of Schedule C, Form 1040.
The first corpus may be normalized and vectorized into first
vector representations using the approaches illustrated in
FIGS. 6B-6E so that the first vector representations in closer
proximity indicate tokens that are more similar to each other.
These “principal business or profession” in the first natural
language inputs may be clustered into a plurality of user
clusters based on the proximity of the first vector represen-
tations. A plurality of data models (e.g., interview screens)
may thus be clustered into the same data model cluster if the
respective data records (e.g., the descriptions, metadata, or
computer programming language code) are transformed into
first vector representations that are within a threshold prox-
imity to each other.

[0313] In preparing electronic tax returns, a user may
provide second runtime data as additional inputs. For
example, a user may further provide additional answers or
selections in response to one or more interview screens
seeking information to determine whether Part V “Other
Expenses” in L.R.S. Form 1040 is to be included to indicate
the expenses for prepare an electronic tax return. This
second runtime data may be acquired as a part of the second
corpus for the user. This second runtime data may be
normalized and vectorized into one or more second vector
representations, if it has not been done, and may be further
clustered into one or more characteristic clusters based on

US 2019/0129732 Al

the proximity of these second vector representations. These
second vector representations may be used to determine
which additional data models (e.g., interview screens) may
be selected as the next flow nodes. For example, a second
vector representation of a piece of runtime data provided by
a user may be used to identify one or more additional data
models whose vector representations of their respective
descriptions are determined to be within certain proximity of
the second vector representation. These one or more addi-
tional data models may then be used for the one or more
subsequent flow nodes for a dynamic flow of the software
application product or service delivery model.

[0314] FIG. 7A illustrates an example of a directed graph
or a completion graph in one or more embodiments. FIG. 7A
generally illustrates completion graph 700A in the form of a
tree structure including nodes (750A, 750B, 750C, 750D,
750E, 750F, 750G, 750H), in which node 750A is a begin-
ning or start node, a “Yes” or termination node 750H
indicating completion, and arcs (752A, 752B, 752C, 752D,
752E, 752F, 752G, 752H, 7521, 752]) representing different
possible answers and the relationship between different
nodes 750A or questions depend on a basic or general
version of a completion graph 700A for the particular topic,
such as determining whether a child qualifies as a dependent
for federal income tax purposes. A more complete flow
chart-based representation of questions related to determin-
ing a “qualified child” may be found in U.S. patent appli-
cation Ser. No. 14/097,057, which is incorporated by refer-
ence herein.

[0315] Each node (750A-H) includes a condition that in
this example is expressed as a Boolean expression that, in
the illustrated embodiment, can be answered in the affirma-
tive or negative. Arcs (752A-H) that connect each node
(750A-H) illustrate the answers and dependencies between
nodes (750A-H), and the combination of arcs (752A-H) in
completion graph 700A illustrates the various pathways to
completion. A single arc (752A-H) or combination of arcs
(752A-H) that result in a determination of “Done” represent
a pathway to completion. As generally shown in FIG. 7A,
there are several pathways to completion.

[0316] More specifically, FIG. 7A generally illustrates
completion or directed graph 700A that includes beginning
node (Node A) 750A, intermediate nodes (Nodes B-G)
750B-G and a termination node (Node “Yes” or “Done”)
750H. Each of the beginning node 750H, and intermediate
nodes 750B-H represents a question. Inter-node connections
or arcs (752A-H) represent response options. In the illus-
trated embodiment, each inter-node connection (752A-H)
represents an answer or response option in binary form
(Y/N), for instance, a response to a Boolean expression. It
will be understood, however, that embodiments are not so
limited, and that a binary response form is provided as a
non-limiting example. In the illustrated example, certain
nodes, such as nodes A, B and E, have two response options,
whereas other nodes, such as nodes D, G and F, have one
response option.

[0317] As a specific example, one pathway to completion
is where an affirmative (True) answer is given to the question
of whether you or a spouse can be claimed on someone
else’s tax return. If such a condition is true, a user’s child is
not a qualifying dependent because under IRS rules the user
cannot claim any dependents if someone else can claim the
user as a dependent. In another example, if a user had a child
and that child did not live with the user for more than 6

May 2, 2019

months of the year, then your child is not a qualifying
dependent. Again, this is a separate IRS requirement for a
qualified dependent.

[0318] As will be understood, given the complexities and
nuances of the tax code, many tax topics may contain
completion graphs 700A that have many nodes (750A-H)
with a large number of pathways to completion. However,
by many branches or lines within the completion graph
700A can be ignored, for example, when certain questions
internal to the completion graph 700A are answered that
eliminate other pathways, or other nodes (750A-H) and arcs
(752A-H), within the completion graph 700A. The depen-
dent logic expressed by the completion graph 700A utilized
according to embodiments allows one to minimize subse-
quent questions based on answers given to prior questions,
which allows for generation of a reduced or minimized
question set that is presented to a user as explained herein,
thus providing for more efficient, meaningful and user
friendly tax return preparation experience.

[0319] FIG. 7B illustrates an example of a decision table
that is based on or derived from a directed graph or a
completion graph in one or more embodiments. FIG. 7C
illustrates another example of a decision table that incorpo-
rates statistics (718B and/or 720B) for the corresponding
rules and is based on or derived from a directed graph or a
completion graph to determine likelihood or probability of
an answer to a question of the decision table in one or more
embodiments. Moreover, the decision table illustrated in
FIG. 7B includes the question-and-answer flow of the
completion or directed graph 700A. In the illustrated
example, rows of decision table 700B define rules (718B,
720B, 722B, 724B, and 726B), and columns of the decision
table 700B indicate questions A-G (702B, 704B, 706B,
708B, 710B, 712B, 714B) as well as the respective goals
716B. A goal may be the expected or default response to a
corresponding rule in some embodiments. During process-
ing, decision table 700B s scanned by tax module 364 to
determine which answers or which aspects of a rule or
condition elements are included in received runtime data. A
tax module determines how much the runtime data (e.g., a
user’s answer to an interview question) completes decision
table 700B, or which conditions or questions remain unan-
swered or unsatisfied, and determines or selects candidate
questions to be presented to user.

[0320] A completion or directed graph and hence a deci-
sion table derived therefrom may be created for a topic or a
sub-topic of a topic (e.g., a “marriage” topic including one
or more sub-topics). Tax module uses one or more decision
tables 700B to analyze the runtime data (e.g., a user’s
response to an interview question) and determine whether a
tax return is complete as far as the pertinent topic or
sub-topic is concerned. A decision table 700B created for
each topic or sub-topic is scanned or otherwise analyzed or
processed to determine completeness for each particular
topic or sub-topic. In the event that completeness has been
determined with respect to each decision table 700B, then a
data model outputs a “DONE” instruction to the data model.
If the data model does not output a “DONE” instruction, this
means that there are one or more topics or sub-topics that are
not complete, which presents interview questions to a user
for answer. Tax module identifies decision table 700B cor-
responding to one of the non-complete topics or sub-topics
and, using the data model, identifies one or more non-
binding suggestions or recommendations to present to data

US 2019/0129732 Al

model. Non-binding suggestions or recommendations may
include a listing of compilation of one or more questions
from one or more decision tables 700B.

[0321] In one embodiment, as shown in FIG. 7B, statis-
tical data 720B (which may be appended as columns to the
rule-question decision table 700B shown in FIG. 7A, may be
received from or based on data collected from various
historical or prior data records (e.g., prior tax returns, prior
dynamic flow sequences of other users or similar users, etc.)
indicates how likely an interview question or topic is to be
relevant to a user given a set of runtime data and may be
utilized by a data model when determining which candidate
question(s) or topic(s) to select.

[0322] Instead of, or in addition to, statistical data (718B
and/or 720B), embodiments may also involve tax module
executing one or more predictive models included in the one
or more tax modules, in the AI. or machine learning
modules, or in one or more data models for purposes of
determining how likely a question or topic is to be relative
to a given user based on input runtime data. Examples of
predictive models that may be utilized for this purpose
include predictive modeling techniques selected from the
group consisting of: logistic regression; naive Bayes;
k-means classification; K-means clustering; other clustering
techniques; k-nearest neighbor; neural networks; decision
trees; random forests; boosted trees; k-nn classification; kd
trees; generalized linear models; support vector machines;
and substantial equivalents thereof.

[0323] For example, in embodiments that utilize statistical
data, decision table 700B may include columns that contain
statistical data (718B and/or 720B) in the form of percent-
ages. Column (STAT1 718B shown in FIG. 7B) may contain
a percentage value that indicates taxpayers under the age of
thirty-five where Ruler is satisfied. Another column (STAT2
720B shown in FIG. 7B) may contain a percentage value
that indicates taxpayers over the age of thirty-five where
Ruler is satisfied. Any number of additional columns could
be added to the decision table 700B and the statistics (718B
and/or 720B) do not have to relate to an age threshold or
grouping.

[0324] Statistical data (718B and/or 720B) may be used,
as explained in more detail below, by the tax return prepa-
ration application to determine which of the candidate
questions (Qa-Qg) should be selected by tax module for
presentation to or asked of user. Statistical data (718B and/or
720B) may be compared to one or more known taxpayer
data fields (e.g., age, income level, tax filing status, geo-
graphic location, or the like) such that the question that is
presented to the user is most likely to lead to a path to
completion.

[0325] Candidate questions may also be excluded or
grouped together and then presented to the user to efficiently
minimize tax interview questions during the data acquisition
process. For example, questions that are likely to be
answered in the negative can be grouped together and
presented to the user in a grouping and asked in the
negative—for example, “we think these question do not
apply to you, please confirm that this is correct.” This
enables the elimination of many pathways to completion that
can optimize additional data requests of the taxpayer.
[0326] Tax module 364 may also receive or otherwise
incorporate information pertaining to statistical or probabi-
listic data that is related to the current user or other users of
the electronic tax return preparation application and/or other

May 2, 2019

taxpayers. For example, the information may indicate that
taxpayers residing within a particular zip code are more
likely to be homeowners than renters. Tax module 364 may
use this knowledge to weight particular topics or questions
related to these topics when processing rules and questions
and generating non-binding suggestions or recommenda-
tions.

[0327] Non-binding suggestions or recommendations gen-
erated by the recommendation module 350 may include, for
example, a question, declarative statement, identification of
a topic and may include a ranked listing of suggestions or
recommendations. Ranking may be weighted in order of
importance, relevancy, confidence level, or the like. Accord-
ing to one embodiment, statistical data or results generated
by predictive models may be incorporated by the tax module
364 or the recommendation module 350 to be used as part
of the candidate question ranking which, in turn, may be
used by tax module 364 or the recommendation module 350
to assign a ranking to the non-binding suggestions or rec-
ommendations generated by tax module 364 or the recom-
mendation module 350.

[0328] The decision tables illustrated in FIGS. 7B-7C may
be derived from the completion or directed graph 700A.
Moreover, the data value “Yes” in FIGS. 7B-7C indicates
that the corresponding rule applies when a user’s answer to
the corresponding interview question is affirmative. On the
other hand, the data value “No” in FIGS. 7B-7C indicates
that the corresponding rule applies when a user’s answer to
the corresponding interview question is negative. A question
mark “?” in the decision table indicates that the correspond-
ing rules are irrelevant to corresponding questions. That is,
a rule that corresponds to a question with a question mark
“? indicates that the question belongs to a don’t-care space
for the rule, and that the rule also belongs to the don’t-care
space for the question.

[0329] FIG. 7D illustrates an example of incremental
processing of a decision table 700D based at least in part
upon some runtime data to identify relevant entries or to
filter out irrelevant entries in one or more embodiments. In
this example, assuming a user’s answer to interview ques-
tion Q, 702B is “Yes”. As a result, rules 722B, 724B, and
726B that apply when the answer to Q, 702B is “No” no
longer apply. Consequently, the three rows corresponding to
722B, 724B, and 7268 are discarded, ignored, or filtered out
from further processing for this decision table (and its
corresponding completion or directed graph.

[0330] In addition, the four columns that include “?”
(704B, 708B, 7106, and 712B) may also be discarded,
ignored, or filtered out from further processing because these
four columns correspond to the don’t-care space for the only
remaining rules 718B and 720B. On the other hand, the
column corresponding to 714B remains because rule 720B
applies when the answer to question 7146 is affirmative,
although rule 718B and question 714B are irrelevant to each
other. As such, the original decision table 700B may be
significantly reduced to the reduced decision table 700D as
illustrated in FIG. 7D with three columns and four columns
being crossed out from the original decision table 700A.
[0331] FIG. 8Aillustrates a block diagram for implement-
ing intelligent systems with dynamic configurability in one
or more embodiments. In these embodiments, a plurality of
interview screens, topics, or the corresponding data models
or code modules therefor (collectively interview screens for
plural or interview screen for singular) may be identified at

US 2019/0129732 Al

802A. These plurality of interview screens may be identified
based on, for example, various requirements or intended
functions or purposes of an underlying dynamic software
application of a portion thereof from a set of interview
screens. For example, a plurality of interview screens, each
of which may include or may be implemented as an object
model or a code module concerning one or more interview
questions, may be identified for a dynamic interview module
of an electronic tax return preparation and filing software
product or service.

[0332] It shall be noted that the terms “flow node,” “object
model,” and “code module” may be used interchangeably in
this application to represent a block of computer program
code in various suitable forms to facilitate the execution of
the underlying software application. An object model thus
may include or may be associated with its own one or more
dynamic conditions and/or one or more dynamic actions to
provide the capability of individual, self-contained, and/or
independent execution and thus facilitate the ease of modi-
fication of the dynamic software application of which the
object model is a part.

[0333] One or more dynamic conditions may be optionally
identified (if already existing) from a condition repository
(e.g., 372 in FIG. 3) or determined (if non-existing) at 804A
for at least one interview screen of the plurality of interview
screens identified at 802A. A dynamic condition may
include a stand-alone code module with a unique identifier
to be referenced by or incorporated into an object model in
some embodiments. In some other embodiments, a dynamic
condition may be incorporated into an object model directly.
Optionally, one or more dynamic actions may also be
identified (if already existing) from an action repository
(e.g., 372 in FIG. 3) or determined (if non-existing) at 806 A
for at least one interview screen of the plurality of interview
screens identified at 802A. An object model may include one
or more dynamic conditions alone, one or more dynamic
actions alone, or a combination of one or more dynamic
conditions and one or more dynamic actions.

[0334] A dynamic flow for a dynamic software application
may be determined at 808A with the plurality of interview
screens, without hard coded inter-relations or inter-depen-
dencies between at least two flow nodes of the plurality of
flow nodes. In some embodiments, none of the plurality of
flow nodes correspond to any hard coded navigation or
execution algorithm of any forms. The dynamic flow for an
interview or a topic may be executed and presented to a user
at 810A by independently executing one or more interview
screens in the dynamic flow. In some embodiments, the
dynamic flow may be executed by executing any interview
screen in the plurality of flow nodes when the plurality of
flow nodes are independent of each other. A interview screen
may be devised to terminate or exit its execution when, for
example, a dynamic condition cannot be evaluated at the
time of execution. For example, if the regular vanilla or
French vanilla screen (108A in FIG. 1A) is executed first or
before the screen 104A is executed, the flow node 108 A may
exit or terminate execution and call the flow control or
execution module to identify another flow node for execu-
tion.

[0335] Of course, the aforementioned example of execut-
ing the flow node 108A first or before the execution of 104A
is to demonstrate the flexibility of the dynamic software
application. To improve the efficiency and conserve com-
putational resources, a dynamic flow may be executed based

May 2, 2019

on the general applicability that may be determined for the
plurality of flow nodes. For example, the word embedding or
term embedding module 304 may determine the relevance or
classifications among the plurality of flow nodes by analyz-
ing their respective descriptions or metadata with word or
term embedding techniques. The applicability or relevance
of the plurality of flow nodes with respect to other charac-
teristics may also be similarly determined. In an example of
interview screens, for example, the relevance of each inter-
view screen to users may be determined similarly. For
example, it may be determined that the interview screen
inquiring whether a user is married is relevant to most, if not
all users, and may thus be assessed with a higher general
applicability score, and the plurality of flow nodes may thus
be ranked accordingly.

[0336] In some of these embodiments, the first flow node
or the first few flow nodes for a dynamic flow may be
identified based on such general applicability scores so that
the dynamic flow initiates its execution with a flow node
having higher or even the highest general applicability
scores. If two or more flow nodes are assessed with the
same, highest general applicability score, any of these two or
more flow nodes may be identified to initiate the dynamic
flow execution in some embodiments. In some other
embodiments, a tie breaker among these two or more flow
nodes may be determined by, for example, which flow
node’s execution result further curtails or filters out more
flow nodes from further consideration.

[0337] For example, a flow node whose execution result is
determined to reduce the extent of the state space of the
remaining flow nodes may be identified from multiple flow
nodes having the same general applicability. Of course,
general applicability score is just one way to determine
where to start the flow execution, and other criteria or factors
may also be used. This general applicability or such other
criteria or factors may be referenced or included in, for
example, a priority list described above or may be provided
as an input to a data model (316 or 322) or a navigation
model that identifies flow nodes for execution in conjunction
with the functioning of one or more other modules (e.g., a
data model that manipulates the decision table based on
runtime data).

[0338] In some embodiments, a interview screen may be
executed and presented to a user by evaluating the one or
more dynamic conditions, if available and included in or
associated with the flow node, and by executing the dynamic
action corresponding to the evaluation result of the one or
more dynamic conditions, if the flow node includes or is
associated with such one or more dynamic actions.

[0339] The plurality of interview screens or the remainder
thereof may thus be incrementally reduced at 812A into a
reduced set of interview screens based at least in part upon
the execution results of the interview screen or the object
model therefor at 810A. This reduction of the original set of
interview screens to a reduced set is advantageous and
renders the interview flow smoother, especially considering
the vast number of interview screens in modern software
applications (e.g., in excess of 50,000). In some embodi-
ments where additional runtime data is acquired during or
after the execution of an interview screen, the plurality of
interview screens or the remainder thereof may be reduced
into the reduced set based at least in part upon the runtime
data.

US 2019/0129732 Al

[0340] In some of these embodiments illustrated in FIG.
8A, a modification to the dynamic flow may be optionally
performed at 814A. Modifications to a flow may include, for
example, adding one or more interview screens into the
dynamic interview flow, removing one or more interview
screens from the dynamic interview flow, or changing the
location of an interview screen in the dynamic interview
flow. The dynamic flow may then be transformed into a
modified dynamic flow at 816A to accommodate the modi-
fication performed at 814 A, without affecting the other flow
nodes or interview screens that are not affected by the
modification in the dynamic interview flow. That is, the
modification may be implemented in such a way to exert
minimal or even no impact on a dynamic interview flow due
to the independent execution of at least one flow node (e.g.,
an interview screen) that is not hard coded with any inter-
relation or inter-dependency in the dynamic interview flow
or elsewhere (e.g., in a navigation algorithm, flow control,
etc.).

[0341] FIGS. 8B-8C jointly illustrates more details about
a portion of the block diagram illustrated in FIG. 8A for
implementing intelligent systems with dynamic configu-
rability in one or more embodiments. More specifically,
FIGS. 8B-8C illustrate more details about executing a
dynamic flow at 810A in FIG. 8A. It shall be noted that the
execution of a dynamic flow illustrated in FIGS. 8B-8C may
or may not necessarily start from the beginning. That is, the
following description applies to the flow execution that
starts from the beginning when the dynamic flow is first
initialized or from an intermediate stage where the dynamic
flow has started execution and proceeded through one or
more flow nodes. In these embodiments, a priority list may
be optionally identified at 802B.

[0342] A priority list may provide, for example, some
general guidance as to which flow nodes or which groups of
flow nodes may be performed before (or after) some other
flow nodes or groups of flow nodes. A priority may also
include some rules indicating flow nodes having one or more
characteristics (e.g., higher general applicability) may be
executed before other flow nodes. Nonetheless, a priority list
does not indicate a fixed sequence or order from one flow
node to a specific next flow node in the plurality of flow
nodes.

[0343] First runtime data may be identified 804B at a
relevance module such as a data model (316 or 322 of FIG.
3). The first runtime data may include, for example, infor-
mation or data provided by a user during runtime. For
example, a user may provide an input (e.g., an answer to an
interview screen); and the input provided by the user may be
identified as the first runtime data. One or more relevance
analyses may be performed for the first runtime data at
806B. These one or more relevance analyses determine
which flow nodes are relevant and/or which flow nodes are
irrelevant based at least in part upon the execution results of
the previous flow node and/or the runtime data, if available.
More details about relevant analyses at 8068 are described
above with reference to FIGS. 5A-5G.

[0344] A first dynamic condition evaluation result may be
determined at 808B at least by evaluating one or more first
dynamic conditions included in or associated with the cur-
rent flow node that is executing. In some embodiments, one
or more completion graphs and/or one or more decision
tables may be optionally identified at 810B. As described
above, some embodiments determine relevant interview

May 2, 2019

screens and/or irrelevant interview screens in the remaining
interview screens of the plurality of interview screens by
using one or more data models that operate upon one or
more completion graphs and/or one or more decision tables
that may be derived from the one or more completion
graphs. Some other embodiments may determine relevant
flow nodes and/or irrelevant flow nodes by using one or
more data models (e.g., 316 and/or 322) that apply word
embedding or term embedding techniques to, for example,
the descriptions, metadata, etc. of the plurality of interview
screens. Therefore, 106 is performed when one or more data
models reference such completion graphs and/or decision
tables in determining relevant and/or irrelevant interview
screens.

[0345] The one or more completion graphs and/or the one
or more may be updated at 814B based at least in part upon
the evaluation results of the one or more first dynamic
conditions generated at 808B. In the example illustrates in
FIG. 1A, if the execution results of 104 A is that a user selects
chocolate milk shake, the entries corresponding to 108A
(regular vanilla or French vanilla) and 110A (Albion or
Florence strawberry) may be labeled as irrelevant for the
remainder of the dynamic flow.

[0346] If the currently executing flow node is associated
with or includes one or more dynamic actions, at least one
of the one or more dynamic actions corresponding to the
evaluation results of the one or more dynamic conditions is
executed at 816B. For example, if a dynamic condition is
evaluated to be false, the failure dynamic action correspond-
ing to this dynamic condition is executed at 816B. On the
other hand, if a dynamic condition is evaluated to be true, the
success dynamic action corresponding to this dynamic con-
dition is executed at 816B.

[0347] The plurality of interview screens or the remainder
thereof may be reduced into a first reduced set at 818B at
least by determining a first relevant set of interview screens
based in part or in whole upon the evaluation of the one or
more dynamic conditions. In addition or in the alternative,
the plurality of interview screens or the remainder thereof
may be reduced at 820B into the first reduced set at least by
discarding, ignoring, or filtering out one or more irrelevant
interview screens based in part or in whole upon the evalu-
ation of the one or more dynamic conditions. Once a flow
node is discarded, ignored, or filtered out, the included or
associated dynamic conditions will no longer be evaluated,
and the included or associated dynamic actions will not be
executed in some embodiments, unless a dynamic action is
labeled as always executed.

[0348] A next interview screen model may be identified at
822B from the first reduced set. In some embodiments, a
next interview screen model may be identified based at least
in part upon the execution of the previous interview screen
model. For example, an interview screen model that is
identified to be closest to the previous interview screen
model may be identified as the next interview screen model
at 822B. The closeness between two interview screen mod-
els may be determined by, for example, applying the word
embedding or term embedding techniques to the descrip-
tions, metadata, or any other available information, etc. of or
associated with these two interview screen models. For
example, a word or term embedding module may determine
the vector representations of the descriptions of various
interview screen models including the previous interview
screen model.

US 2019/0129732 Al

[0349] The interview screen model whose vector repre-
sentation is determined to be closest to that of the previous
interview screen model may be identified as the next inter-
view screen model for execution in some embodiments. In
some of these embodiments where two or more interview
screen models whose vector representations are determined
to be equidistant to that of the previous interview screen
model, or whose vector representations are determined to be
within certain proximity of the vector representation of the
previous interview screen model, a tie break may be deter-
mined among these interview screen models based on one or
more criteria. For example, the interview screen model
which, when executed, causes the most number of remaining
interview screen models, provides least restrictions or con-
straints to the remainder of the dynamic flow, provides the
maximum flexibility to the identification of subsequent
interview screen models, or best facilitates the designed
purposes or functions of the dynamic software application
may be identified as the next flow node at 822B.

[0350] One or more second dynamic conditions may be
identified (if already existing) or determined (if not yet
existing) at 824B for the next flow node. In some embodi-
ments, a custom dynamic condition may be generated for
these one or more second dynamic conditions. In some of
these embodiments, such custom dynamic conditions may
even be generated on the fly during the execution of the flow
when the situation merits the generation of such custom
dynamic conditions. For example, if an artificial intelligence
module or a machine learning module determines that
during the execution of a flow node, an additional dynamic
condition and hence the corresponding success dynamic
action and the failure dynamic action need to be generated
to better facilitate the functions of the dynamic application
or to better serve the user’s experience or inquiries, a
dynamic code generation module may be invoked via an
inter-process function call to dynamically create such
dynamic condition and actions.

[0351] Runtime data may further be identified at 826B
during or after the execution of the previous interview
screen model. For example, a user may provide additional
inputs (e.g., an additional answer to a new interview ques-
tion presented in the previous flow node), and these addition
inputs may be identified as runtime data at 826B. This
runtime data may be analyzed by one or more data models
and/or the word embedding or term embedding modules to
determine its relevance to or impact on one or more remain-
ing interview screen models.

[0352] A second evaluation result may be determined at
828B at least by evaluating the one or more second dynamic
conditions. In some embodiments, the second evaluation
result may be determined based upon the runtime data
identified at 826B when the runtime data is determined to be
relevant to the currently executing interview screen model or
the one or more second dynamic conditions.

[0353] A dynamic action corresponding to the second
evaluation result may be executed at 830B. For example, if
a second dynamic condition is evaluated to be false, the
failure dynamic action corresponding to this dynamic con-
dition is executed at 830B. On the other hand, if a second
dynamic condition is evaluated to be true, the success
dynamic action corresponding to this dynamic condition is
executed at 830B.

[0354] The one or more completion graphs and/or the one
or more decision tables may be updated at 832B in an

May 2, 2019

identical or substantially similar manner as that described at
814B. In some embodiments, one or more completion
graphs and/or the one or more decision tables may be
updated at 832B based in part or in whole upon the execu-
tion result of the next interview screen model and/or the
second evaluation result. In addition or in the alternative,
these one or more completion graphs and/or the one or more
decision tables may be updated at 832B based in part or in
whole upon the runtime data identified at 826B. In the
example described with reference to 814B above, if the
execution result of the next interview screen model is that
the fries are not in stock (“false” for 102C), then the entries
corresponding to 112A (asking a user whether the user
would like to order fries) will be discarded, ignored, or
filtered out in the one or more completion graphs or one or
more decision tables. In addition or in the alternative, the
one or more completion graphs and/or the one or more
decision tables may be updated at 834B based in part or in
part upon the execution result of the previous interview
screen model.

[0355] The first reduced set may be reduced at 836B into
a second reduced set at least by determining a second
relevant set of flow nodes that is relevant to the currently
executing, next interview screen model based in part or in
whole on the execution result of the next interview screen
model and/or the second evaluation result of the one or more
second dynamic conditions. In addition or in the alternative,
the first reduced set may be reduced at 838B into a second
reduced set at least by discarding, ignoring, or filtering out
one or more interview screen models that have been deter-
mined to be irrelevant to the currently executing, next
interview screen model based in part or in whole on the
execution result of the next interview screen model and/or
the second evaluation result of the one or more second
dynamic conditions.

[0356] To implement an intelligent system with dynamic
configurability, at least some or all of the techniques
described above with reference to FIGS. 5A-5G, 6 A-6H, and
7A-7D may also apply to the approaches described above
with reference to FIGS. 8A-8C, especially to the determi-
nation of the dynamic flow, identification of flow nodes or
the sequence of execution, etc. in identical or substantially
manners as those described above with reference the afore-
mentioned figures. For example, the word embedding or
term embedding techniques described herein or the tech-
niques involving the user of completion or directed graphs
and/or decision tables may apply with full and equal effects
to, for example, the determination of a dynamic flow for an
intelligent system (e.g., 808A in FIG. 8A), the presentation
of'an interview to a user of the intelligent system (e.g., 810A
in FIG. 8A), in the reduction of a plurality of flow nodes
(e.g., interview screens at 812A in FIG. 8A), etc. in identical
or substantially manners as those described above with
reference the aforementioned FIGS. 5A-5G, 6A-6H, and
7A-7D.

System Architecture Overview

[0357] FIG. 9 illustrates a block diagram of an illustrative
computing system 900 suitable for implementing various
processes as described in the preceding paragraphs with
reference to various figures. The illustrative computing
system 900 may include an Internet-based computing plat-
form providing a shared pool of configurable computer
processing resources (e.g., computer networks, servers, stor-

US 2019/0129732 Al

age, applications, services, etc.) and data to other computers
and devices in a ubiquitous, on-demand basis via the Inter-
net.

[0358] For example, the computing system 900 may
include or may be a part of a cloud computing platform in
some embodiments. Computer system 900 includes a bus
906 or other communication module for communicating
information, which interconnects subsystems and devices,
such as processor 907, system memory 908 (e.g., RAM),
static storage device 909 (e.g., ROM), disk drive 910 (e.g.,
magnetic or optical), communication interface 914 (e.g.,
modem or Ethernet card), display 911 (e.g., CRT or LCD),
input device 912 (e.g., keyboard), and cursor control (not
shown).

[0359] According to one embodiment, computing system
900 performs specific operations by one or more processor
or processor cores 907 executing one or more sequences of
one or more instructions contained in system memory 908.
Such instructions may be read into system memory 908 from
another computer readable/usable storage medium, such as
static storage device 909 or disk drive 910. In alternative
embodiments, hard-wired circuitry may be used in place of
or in combination with software instructions to implement
the invention. Thus, embodiments of the invention are not
limited to any specific combination of hardware circuitry
and/or software. In one embodiment, the term “logic” shall
mean any combination of software or hardware that is used
to implement all or part of the invention.

[0360] Various actions or processes as described in the
preceding paragraphs may be performed by using one or
more processors, one or more processor cores, or combina-
tion thereof 907, where the one or more processors, one or
more processor cores, or combination thereof executes one
or more threads. For example, various acts of identifying,
various acts of determining, various acts of classifying,
various acts of implementing, various acts of performing,
various acts of transforming, various acts of decomposing,
various acts of updating, various acts of presenting, various
acts of modifying, etc. may be performed by one or more
processors, one or more processor cores, or combination
thereof.

[0361] A modules described herein may also be imple-
mented as a pure hardware module (e.g., a block of elec-
tronic circuit components, electrical circuitry, etc.) or a
combination of a hardware module and a software block that
jointly perform various tasks to achieve various functions or
purposes described herein or equivalents thereof. For
example, a module described herein may be implemented as
an application-specific integrated circuit (ASIC) in some
embodiments.

[0362] In these embodiments, a module may thus include,
for example, a microprocessor or a processor core and other
supportive electrical circuitry to perform specific functions
which may be coded as software or hard coded as a part of
an application-specific integrated circuit, ROM (read only
memory), PROM (programmable read only memory),
EPROM (erasable programmable read only memory), etc.
despite the fact that these microprocessor, processor core,
and electrical circuitry may nevertheless be shared among a
plurality of module. A module described herein or an equiva-
lent thereof may perform its respective functions alone or in
conjunction with one or more other modules. A module
described herein or an equivalent thereof may thus invoke
one or more other modules by, for example, issuing one or

May 2, 2019

more commands or function calls. The invocation of one or
more other modules may be fully automated or may involve
one or more user inputs.

[0363] The term “computer readable storage medium” or
“computer usable storage medium” as used herein refers to
any non-transitory medium that participates in providing
instructions to processor 907 for execution. Such a medium
may take many forms, including but not limited to, non-
volatile media and volatile media. Non-volatile media
includes, for example, optical or magnetic disks, such as
disk drive 910. Volatile media includes dynamic memory,
such as system memory 908. Common forms of computer
readable storage media includes, for example, electrome-
chanical disk drives (such as a floppy disk, a flexible disk,
or a hard disk), a flash-based, RAM-based (such as SRAM,
DRAM, SDRAM, DDR, MRAM, etc.), or any other solid-
state drives (SSD), magnetic tape, any other magnetic or
magneto-optical medium, CD-ROM, any other optical
medium, any other physical medium with patterns of holes,
RAM, PROM, EPROM, FLASH-EPROM, any other
memory chip or cartridge, or any other medium from which
a computer can read.

[0364] In an embodiment of the invention, execution of
the sequences of instructions to practice the invention is
performed by a single computer system 900. According to
other embodiments of the invention, two or more computer
systems 900 coupled by communication link 915 (e.g.,
LAN, PTSN, or wireless network) may perform the
sequence of instructions required to practice the invention in
coordination with one another.

[0365] Computer system 900 may transmit and receive
messages, data, and instructions, including program, i.e.,
application code, through communication link 915 and
communication interface 914. Received program code may
be executed by processor 907 as it is received, and/or stored
in disk drive 910, or other non-volatile storage for later
execution. In an embodiment, the computing system 900
operates in conjunction with a data storage system 931, e.g.,
a data storage system 931 that includes a database 932 that
is readily accessible by the computing system 900. The
computing system 900 communicates with the data storage
system 931 through a data interface 933. A data interface
933, which is coupled with the bus 906, transmits and
receives electrical, electromagnetic or optical signals that
include data streams representing various types of signal
information, e.g., instructions, messages and data. In
embodiments of the invention, the functions of the data
interface 933 may be performed by the communication
interface 914.

[0366] In the foregoing specification, the invention has
been described with reference to specific embodiments
thereof. It will, however, be evident that various modifica-
tions and changes may be made thereto without departing
from the broader spirit and scope of the invention. For
example, the above-described process flows are described
with reference to a particular ordering of process actions.
However, the ordering of many of the described process
actions may be changed without affecting the scope or
operation of the invention. The specification and drawings
are, accordingly, to be regarded in an illustrative rather than
restrictive sense.

US 2019/0129732 Al

We claim:

1. A computer implemented method for implementing
software products or services with dynamic conditions and
dynamic actions, comprising:

identifying, by one or more dynamic application modules

comprising computer-executable instructions stored at
partially in memory and executed by at least one
microprocessor, a plurality of flow nodes for a software
application;

identifying or determining one or more dynamic condi-

tions for the plurality of flow nodes;
identifying or determining one or more dynamic actions
for the one or more dynamic conditions; and

generating a dynamic flow with the plurality of flow
nodes, the one or more dynamic conditions, and the one
or more dynamic actions, without hard coded inter-
dependency between two or more flow nodes of the
plurality of flow nodes.
2. The computer implemented method of claim 1, wherein
a dynamic condition associated with or included in a flow
node in the dynamic flow is independently evaluated to
generate a dynamic evaluation result during an execution of
the dynamic flow.
3. The computer implemented method of claim 2, wherein
a dynamic action associated with or included in a flow node
in the dynamic flow is independently performed based in
part or in whole upon the dynamic evaluation result of the
dynamic condition.
4. The computer implemented method of claim 3, further
comprising:
executing the dynamic flow for the software application at
least by independently evaluating one or more dynamic
conditions during execution of a first flow node in the
dynamic flow and at least by independently executing
one or more dynamic actions based in part or in whole
upon dynamic evaluation results of the one or more
dynamic conditions.
5. The computer implemented method of claim 4, further
comprising:
identifying runtime data that is acquired during the execu-
tion of the first flow node in the dynamic flow; and

reducing the plurality of flow nodes into a reduced set of
flow nodes having a fewer number of flow nodes than
a total number of the plurality of flow nodes based in
part or in whole upon the runtime data.

6. The computer implemented method of claim 4, further
comprising:

modifying the dynamic flow at least by performing a

modification pertaining to one or more flow nodes in
the dynamic flow; and

transforming the dynamic flow into a modified dynamic

flow based in part or in whole upon the modification.

7. The computer implemented method of claim 6, modi-
fying the dynamic flow comprising:

adding a new flow node to the dynamic flow to transform

the dynamic flow into the modified dynamic flow,
where the new flow node is added to the dynamic flow
without modifying the plurality of flow nodes in the
dynamic flow.

8. The computer implemented method of claim 6, modi-
fying the dynamic flow comprising:

removing an existing flow node from the dynamic flow to

transform the dynamic flow into the modified dynamic
flow, where the existing flow node is removed from the

May 2, 2019

dynamic flow without modifying the plurality of flow
nodes in the dynamic flow.
9. The computer implemented method of claim 6, modi-
fying the dynamic flow comprising:
identifying a first flow node in the dynamic flow;
identifying a second flow node in the dynamic flow; and
swapping locations of the first flow node and the second
flow node in the dynamic flow, where the locations are
swapped in the dynamic flow without modifying the
plurality of flow nodes in the dynamic flow.
10. The computer implemented method of claim 4,
executing the dynamic flow further comprising:
identifying first runtime data during an execution of the
dynamic flow; and
performing one or more relevance analyses for the first
runtime data.
11. The computer implemented method of claim 10,
executing the dynamic flow further comprising:
determining a first dynamic evaluation result at least by
evaluating one or more first dynamic conditions
included in or associated with a current flow node that
is executing based in part or in whole upon results of
the one or more analyses; and
executing one or more first dynamic actions of the one or
more dynamic actions based in part or in whole upon
the first dynamic evaluation result of the one or more
first dynamic conditions.
12. The computer implemented method of claim 11,
executing the dynamic flow further comprising:
reducing the plurality of flow nodes for the dynamic flow
into a first reduced set at least by determining a first
relevant set of flow nodes based in part or in whole
upon the first runtime data or the first dynamic evalu-
ation result of the one or more first dynamic conditions
or by determining a first irrelevant set of flow nodes
based in part or in whole upon the first runtime data or
the first dynamic evaluation result of the one or more
first dynamic conditions.
13. The computer implemented method of claim 12,
executing the dynamic flow further comprising:
identifying a next flow node for the dynamic flow from
the first reduced set for execution after the current flow
node; and
identifying or determining one or more second dynamic
conditions included in or associated with the next flow
node.
14. The computer implemented method of claim 13,
executing the dynamic flow further comprising:
determining a second dynamic evaluation result at least
by evaluating the one or more first dynamic conditions
included in or associated with the next flow node that
is executing; and
executing the one or more second dynamic actions based
in part or in whole upon the second dynamic evaluation
result of the one or more second dynamic conditions.
15. The computer implemented method of claim 14,
executing the dynamic flow further comprising:
identifying second runtime data during an execution of
the dynamic flow; and
reducing the first reduced set into a second reduced set for
the dynamic flow at least by determining a second
relevant set of flow nodes based in part or in whole
upon the second runtime data or the second dynamic
evaluation result of the one or more second dynamic

US 2019/0129732 Al

conditions or by determining a second irrelevant set of
flow nodes based in part or in whole upon the second
runtime data or the second dynamic evaluation result of
the one or more second dynamic conditions.

16. An article of manufacture comprising a non-transitory
computer accessible storage medium having stored there-
upon a sequence of instructions which, when executed by at
least one processor or at least one processor core executing
one or more threads, causes the at least one processor or the
at least one processor core to perform a set of acts for
implementing software products or services with dynamic
conditions and dynamic actions, the set of acts comprising:

identifying, by one or more dynamic application modules
comprising computer executable instructions stored at
partially in memory and executed by at least one
microprocessor, a plurality of flow nodes for a software
application;

identifying or determining one or more dynamic condi-
tions for the plurality of flow nodes;

identifying or determining one or more dynamic actions
for the one or more dynamic conditions; and

determining a dynamic flow with the plurality of flow
nodes, the one or more dynamic conditions, and the one
or more dynamic actions, without hard coded inter-
dependency between two or more flow nodes of the
plurality of flow nodes.

17. The article of manufacture of claim 16, the set of acts

further comprising:

executing the dynamic flow for the software application at
least by independently evaluating one or more dynamic
conditions during execution of a first flow node in the
dynamic flow and at least by independently executing
one or more dynamic actions based in part or in whole
upon dynamic evaluation results of the one or more
dynamic conditions.

18. The article of manufacture of claim 17, the set of acts

further comprising:

identifying runtime data that is acquired during the execu-
tion of the first flow node in the dynamic flow; and

reducing the plurality of flow nodes into a reduced set of
flow nodes having a fewer number of flow nodes than
a total number of the plurality of flow nodes based in
part or in whole upon the runtime data.

19. The article of manufacture of claim 17, the set of acts

further comprising:

modifying the dynamic flow at least by performing a
modification pertaining to one or more flow nodes in
the dynamic flow; and

transforming the dynamic flow into a modified dynamic
flow based in part or in whole upon the modification.

20. The article of manufacture of claim 19, the set of acts
further comprising at least one of:

a first act comprising adding a new flow node to the
dynamic flow to transform the dynamic flow into the
modified dynamic flow, where the new flow node is
added to the dynamic flow without modifying the
plurality of flow nodes in the dynamic flow;

a second act comprising removing an existing flow node
from the dynamic flow to transform the dynamic flow
into the modified dynamic flow, where the existing flow
node is removed from the dynamic flow without modi-
fying the plurality of flow nodes in the dynamic flow;
or

May 2, 2019

a third act comprising:
identifying a first flow node in the dynamic flow;
identifying a second flow node in the dynamic flow;
swapping locations of the first flow node and the

second flow node in the dynamic flow, where the
locations are swapped in the dynamic flow without
modifying the plurality of flow nodes in the dynamic
flow.

21. A system for implementing software products or
services with dynamic conditions and dynamic actions,
comprising:

a plurality of modules, at least one of which is stored at
least partially in memory and comprises at least one
microprocessor including one or more processor cores
executing one or more threads;

a non-transitory computer accessible storage medium
storing thereupon program code that includes a
sequence of instructions that, when executed by the at
least one microprocessor, causes the at least one micro-
processor at least to:

identify, by one or more dynamic application modules
comprising computer executable instructions stored at
partially in memory and executed by the at least one
microprocessor, a plurality of flow nodes for a software
application;

identify or determine one or more dynamic conditions for
the plurality of flow nodes;

identify or determine one or more dynamic actions for the
one or more dynamic conditions; and

determine a dynamic flow with the plurality of flow
nodes, the one or more dynamic conditions, and the one
or more dynamic actions, without hard coded inter-
dependency between two or more flow nodes of the
plurality of flow nodes.

22. The system of claim 21, wherein the program code
includes further instructions that, when executed by the at
least one microprocessor or processor core, cause the at least
one processor or processor core at least further to:

identify first runtime data during an execution of the
dynamic flow; and

perform one or more relevance analyses for the first
runtime data.

23. The system of claim 22, wherein the program code
includes further instructions that, when executed by the at
least one microprocessor or processor core, cause the at least
one processor or processor core at least further to:

determine a first dynamic evaluation result at least by
evaluating one or more first dynamic conditions
included in or associated with a current flow node that
is executing; and

execute one or more first dynamic actions of the one or
more dynamic actions based in part or in whole upon
the first dynamic evaluation result of the one or more
first dynamic conditions.

24. The system of claim 23, wherein the program code
includes further instructions that, when executed by the at
least one microprocessor or processor core, cause the at least
one processor or processor core at least further to:

reduce the plurality of flow nodes for the dynamic flow
into a first reduced set at least by determining a first
relevant set of flow nodes based in part or in whole
upon the first runtime data or the first dynamic evalu-
ation result of the one or more first dynamic conditions
or by determining a first irrelevant set of flow nodes

US 2019/0129732 Al

based in part or in whole upon the first runtime data or
the first dynamic evaluation result of the one or more
first dynamic conditions.

25. The system of claim 24, wherein the program code
includes further instructions that, when executed by the at
least one microprocessor or processor core, cause the at least
one processor or processor core at least further to:

identify a next flow node for the dynamic flow from the
first reduced set for execution after the current flow
node;

identify or determine one or more second dynamic con-
ditions included in or associated with the next flow
node;

determine a second dynamic evaluation result at least by
evaluating the one or more first dynamic conditions
included in or associated with the next flow node that
is executing; and

May 2, 2019

execute the one or more second dynamic actions based in
part or in whole upon the second dynamic evaluation
result of the one or more second dynamic conditions.
26. The system of claim 25, wherein the program code
includes further instructions that, when executed by the at
least one microprocessor or processor core, cause the at least
one processor or processor core at least further to:
identify second runtime data during an execution of the
dynamic flow; and
reduce the first reduced set into a second reduced set for
the dynamic flow at least by determining a second
relevant set of flow nodes based in part or in whole
upon the second runtime data or the second dynamic
evaluation result of the one or more second dynamic
conditions or by determining a second irrelevant set of
flow nodes based in part or in whole upon the second
runtime data or the second dynamic evaluation result of
the one or more second dynamic conditions.

#* #* #* #* #*

