wo 2012/087946 A1 I} 1A 0000 OO0 N O OO

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2012/087946 A1l

(51

eay)

(22)

(25)
(26)
(30)

1

(72)
(73)

28 June 2012 (28.06.2012) WIPO I PCT
International Patent Classification:
GO6F 17/00 (2006.01)
International Application Number:
PCT/US2011/065869
International Filing Date: (74)
19 December 2011 (19.12.2011)
Filing Language: English
Publication Language: English (81)
Priority Data:
12/975,269 21 December 2010 (21.12.2010) US
Applicant (for all designated States except US):
AMAZON TECHNOLOGIES, INC. [US/US]; P.O. Box
8102, Reno, Nevada 89507 (US).
Inventors; and
Inventors/Applicants (for US only): CERTAIN, Tate,
Andrew [US/US]; 1200 12th Avenue South, Suite 1200,
Seattle, Washington 98144-2734 (US). JAIN, Sachin 84)

[US/US]; 1200 12th Avenue South, Suite 1200, Seattle,
California 98144-2734 (US). HAMILTON, James, R.
[US/US]; 1200 12th Avenue South, Suite 1200, Seattle,
Washington 98144-2734 (US). CATTANEO, Fiorenzo
[US/US]; 1200 12th Avenue South, Suite 1200, Seattle,

Washington 98144-2734 (US). WEIL, Danny [US/US];
1200 12th Avenue South, Suite 1200, Seattle, Washington
98144-2734 (US). SUNDERLAND, David, N. [US/US];
1200 12th Avenue South, Suite 1200, Seattle, Washington
98144-2734 (US).

Agents: ADAMS, Scott, S. et al.; Kilpatrick, Townsend
and Stockton LLP, Two Embarcadero Center, FEighth
Floor, San Francisco, California 94111-3834 (US).

Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD,
SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,

[Continued on next page]

(54) Title: TECHNIQUES FOR CAPTURING DATA SETS

306

(57) Abstract: Techniques, including systems and methods, for capturing

'/ 300

306 -
Partition
b Driver n

308
- 1 Server n

Partition 306 Partition
Driver 1 Driver 2

-

S B

Physical Physical
Volume Volume

data sets include performing a client-side two-phase commit to ensure one or
more data consistency conditions. A logical volume may represent a data set
that is distributed among a plurality of physical storage devices. One or
more client devices are instructed to block at least acknowledgment of write
operations. When the one or more client devices have blocked at least ac-
knowledgment of write operations, one or more servers in communication
with the physical storage devices are instructed to capture corresponding
portions of the data set. When the servers have been instructed to capture
corresponding portions of the data set, the client devices are instructed to re-
sume at least acknowledgment of write operations.

WO 2012/087946 A1 |IIIHAT 00N 0O OO

DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, Published:

LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, __ P .

SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA. with international search report (Art. 21(3))

GN, GQ, GW, ML, MR, NE, SN, TD, TG). — before the expiration of the time limit for amending the

. claims and to be republished in the event of receipt of
Declarations under Rule 4.17: amendments (Rule 48.2(h))

— as to applicant’s entitlement to apply for and be granted
a patent (Rule 4.17(ii))

10

15

20

25

30

WO 2012/087946 PCT/US2011/065869
1 PATENT

Attorney Docket No.: 90204-826794 (018400PC)
Client Reference No.: REG103177 2010 PT-WO

TECHNIQUES FOR CAPTURING DATA SETS

BACKGROUND
[0001] Networked computing environments continue to grow in terms of both the number
and type of computing components, as well as the complexity of component arrangements in
the computing environments. Some such computing environments offer virtualized
computing services decoupled to various degrees from the underlying computing hardware
that ultimately implement the computing services. There are various advantages to such
virtualization for both users and providers of virtualized computing services. For example,
virtualized computing service users may quickly (e.g., on the order of minutes or seconds)
add virtual computing resources in response to increased demand and, just as quickly, release
the virtual computing resources for other purposes if demand falls. Such flexibility for users
of virtualized computing services can entail both challenges and opportunities for providers

of virtualized computing services.

[0002] A virtualized block device is an example of a virtualized computing service. Users
of virtualized file system volumes (“virtual volumes”) may create, delete, resize and
otherwise reconfigure virtual volumes without concern for the details of how underlying
computing resources are allocated. Users may also capture data sets stored in a virtual file
system, where a capture of a data set is a representation of a data set at a moment in time.
Multiple captures of a particular data set may be taken at various moments in time, and later
captures may depend on one or more earlier captures. For example, an initial capture of the
data set may involve making a full copy of the data set, whereas a later capture of the data set
may involve copying data that has changed since an earlier capture. When needed for various
reasons, captures may be reconstituted into volumes. Often, in order for a capture to be
useful when reconstituted into a volume, it must satisfy certain properties with respect to an
input/output request pattern. For example, captures may only be useful if it can be
guaranteed or at least assured that, if a write is present in a capture, all writes that were
confirmed before that write was submitted are also be in the capture. In some instances, such
conditions may be relatively straightforward to implement. In other instances, such as when
partitioning a volume across multiple servers, care must be taken to maintain this property if

the two writes in question are going to different servers.

10

15

20

25

30

WO 2012/087946 PCT/US2011/065869
2

BRIEF DESCRIPTION OF THE DRAWINGS
[0003] Various embodiments in accordance with the present disclosure will be described

with reference to the drawings, in which:

[0004] Figure 1 is a schematic diagram illustrating aspects of an example environment for

implementing aspects in accordance with an embodiment;

[0005] Figure 2 is a schematic diagram depicting aspects of an example program execution

service in accordance with an embodiment;

[0006] Figure 3 is a diagrammatic representation of an illustrative example of a
configuration of a system that may be used to implement embodiments of the present

disclosure;

[0007] Figure 4 is a representation of a timeline illustrating write operations and capture of

a distributed data set;

[0008] Figure 5 is a representation of another timeline illustrating write operations and

capture of a distributed data set;

[0009] Figure 6 is a representation of yet another timeline illustrating write operations and

capture of a distributed data set;

[0010] Figure 7 is a representation of yet another timeline illustrating write operations and

capture of a distributed data set; and

[0011] Figure 8 is a flowchart for an illustrative example of a process that may be used to

implement various embodiments of the present disclosure.

DETAILED DESCRIPTION
[0012] Techniques described and suggested herein include systems and methods for
managing aspects of data set capture. In an embodiment, a logical volume is partitioned
among a plurality of physical volumes, where the logical volume is a representation of a data
set that is physically stored in a distributed manner among the physical volumes. The
physical volumes may be stored by corresponding physical storage devices, such as hard
drives or other storage devices, and may be accessed through communication with a plurality
of servers. Each physical volume, for example, may be served by at least one corresponding
server. A client application executing on a client device may send instructions for accessing
data to the servers and the servers may access the data according to the instructions. For
example, the client may send an instruction to perform a write operation and a server that

receives the instruction may cause the write operation to be performed, and send an

10

15

20

25

30

WO 2012/087946 PCT/US2011/065869
3

acknowledgment that the operation was performed to the client operation. Communications
between the client device and each of the servers may travel through one or more
intermediate computing or networking devices. For example, the client device may send
instructions for performing data operations to another device which operates at least as a
multiplexer, receiving instructions from the client device and transmitting the instructions to
appropriate servers. In this manner, the client application and client device may operate
without maintaining a record of where among the physical volumes particular portions of the

data set are stored.

[0013] In an embodiment, captures of the data set are taken, where, as noted, a capture of a
data set is a representation of the data set at a moment in time. Multiple captures of a
particular data set may be taken at various moments in time, and later captures may depend
on one or more earlier captures. For example, an initial capture of the data set may involve
making a full copy of the data set, whereas a later capture of the data set may involve copying
data that has changed since an earlier capture. In various embodiments described herein,
captures of the data set are taken in a manner that guarantees that if a write is present in a
capture, then all writes that were confirmed or acknowledged before that write was submitted
are also in the capture. In this manner, captures are taken in a manner that ensures that, if a
write is dependent on an earlier write and the write is in a capture, then both the write and the
carlier write will be in the capture. In other words, if an application made two writes, one
dependent on the other, a capture will either include both writes or neither of the writes,
thereby avoiding a logical inconsistency where a write is in a capture but not another write

from which the write depends.

[0014] In an embodiment, the above guarantee is provided using a client-side two-phase
commit. At a time when a capture is to be taken of the data set, such as upon receipt of an
instruction to perform a capture, one or more client devices are instructed to block
acknowledgments of completion of write operations. Blocking acknowledgment of
completion of write operations may be performed in any suitable manner including, but not
limited to, suspending issuance of information acknowledgment of write operations and/or
postponing issuing write requests. Blocking acknowledgment of completion of write
operations may also include blocking acknowledgment of other operations, such as read
operations, by suspending issuance of acknowledgments and/or postponing issuance of new
requests to perform the operations. The one or more client devices may be any device that
communicates with any of the servers serving physical volumes among which the logical

volume is distributed. For example, a client device may be a device that receives instructions

10

15

20

25

30

WO 2012/087946 PCT/US2011/065869
4

from an application executing on another device and that distributes the instructions to
appropriate servers. A client device may also be the device on which the application is
executing or, generally, any device involved in communication with one or more servers that
serve one or more physical volumes in order to participate in processing and/or
acknowledgment of write operations for data in the logical volume. The one or more client
devices may also be instructed to suspend other activities, such as all operations on data in

the data set.

[0015] When the one or more client devices have suspended activities as instructed, servers
serving physical volumes of the logical volume are instructed to take a capture of
corresponding portions of the data set. In an embodiment, instructing the servers is
accomplished by inserting a token into a request stream to each of the servers, where a
request stream is a sequence of requests to perform operations in the data set that informs a
corresponding server to perform requested operations according to the sequence. A token is
any information that informs a server to perform a capture of a portion of a data set in a
volume served by the server. In embodiments where requests to perform data operations
generated by execution of an application pass through multiple devices before reaching an
appropriate server, the token may be inserted into a request stream of requests sent from any
of the devices. In an embodiment, the token is inserted into a request stream of requests sent
from a multiplexer that sends instructions to appropriate servers. When each server receives
the token (or other indication that a capture should be taken), the server takes a capture of a
physical volume that the server serves. The server may send the capture to another data store
for storage. Also, in an embodiment, when each server receives the token (or other indication
that a capture should be taken), the one or more client devices are instructed to resume

processing of the suspended activities.

[0016] Various approaches may be implemented in various environments for various
applications. For example, Figure 1 illustrates aspects of an example environment 100 for
implementing aspects in accordance with various embodiments. As will be appreciated,
although a Web-based environment may be utilized for purposes of explanation, different
environments may be utilized, as appropriate, to implement various embodiments. The
environment 100 shown includes both a testing or a development portion (or side) and a
production portion. The production portion includes an electronic client device 102, which
may include any appropriate device operable to send and receive requests, messages, or
information over an appropriate network 104 and convey information back to a user of the

device 102. Examples of such client devices include personal computers, cell phones,

10

15

20

25

30

WO 2012/087946 PCT/US2011/065869
5

handheld messaging devices, laptop computers, tablet computers, set-top boxes, personal data

assistants, electronic book readers, and the like.

[0017] The network 104 may include any appropriate network, including an intranet, the
Internet, a cellular network, a local area network, a wide area network, a wireless data
network, or any other such network or combination thereof. Components utilized for such a
system may depend at least in part upon the type of network and/or environment selected.
Protocols and components for communicating via such a network are well known and will
not be discussed herein in detail. Communication over the network may be enabled by wired
or wireless connections, and combinations thercof. In this example, the network 104 includes
the Internet, as the environment includes a Web server 106 for receiving requests and serving
content in response thereto, although for other networks an alternative device serving a

similar purpose could be utilized as would be apparent to one of ordinary skill in the art.

[0018] The illustrative environment 100 includes at least one application server 108 and a
data store 110. It should be understood that there may be several application servers, layers,
or other elements, processes, or components, which may be chained or otherwise configured,
which may interact to perform tasks such as obtaining data from an appropriate data store.
As used herein the term “data store” refers to any device or combination of devices capable
of storing, accessing, and/or retrieving data, which may include any combination and number
of data servers, databases, data storage devices, and data storage media, in any standard,

distributed, or clustered environment.

[0019] The application server 108 may include any appropriate hardware and software for
integrating with the data store as needed to execute aspects of one or more applications for
the client device 102, and may even handle a majority of the data access and business logic
for an application. The application server 108 provides access control services in cooperation
with the data store 110, and is able to generate content such as text, graphics, audio, and/or
video to be transferred to the user, which may be served to the user by the Web server 106 in

the form of HTML, XML, or another appropriate structured language in this example.

[0020] The handling of all requests and responses, as well as the delivery of content
between the client device 102 and the application server 108, may be handled by the Web
server 106. It should be understood that the Web and application servers 106, 108 are not
required and are merely example components, as structured code discussed herein may be
executed on any appropriate device or host machine as discussed elsewhere herein. Further,
the environment 100 may be architected in such a way that a test automation framework may

be provided as a service to which a user or application may subscribe. A test automation

10

15

20

25

30

WO 2012/087946 PCT/US2011/065869
6

framework may be provided as an implementation of any of the various testing patterns
discussed herein, although various other implementations may be utilized as well, as

discussed or suggested herein.

[0021] The environment 100 may also include a development and/or testing side, which
includes a user device 118 allowing a user such as a developer, data administrator, or tester to
access the system. The user device 118 may be any appropriate device or machine, such as is
described above with respect to the client device 102. The environment 100 may also include
a development server 120, which functions similar to the application server 108 but typically
runs code during development and testing before the code is deployed and executed on the
production side and becomes accessible to outside users, for example. In some embodiments,
an application server may function as a development server, and separate production and

testing storage may not be utilized.

[0022] The data store 110 may include several separate data tables, databases, or other data
storage mechanisms and media for storing data relating to a particular aspect. For example,
the data store 110 illustrated includes mechanisms for storing production data 112 and user
information 116, which may be utilized to serve content for the production side. The data
store 110 also is shown to include a mechanism for storing testing data 114, which may be
utilized with the user information for the testing side. It should be understood that there may
be many other aspects that are stored in the data store 110, such as for page image
information and access right information, which may be stored in any of the above listed

mechanisms as appropriate or in additional mechanisms in the data store 110.

[0023] The data store 110 is operable, through logic associated therewith, to receive
instructions from the application server 108 or development server 120, and obtain, update, or
otherwise process data in response thereto. In one example, a user might submit a search
request for a certain type of item. In this case, the data store 110 might access the user
information 116 to verify the identity of the user, and may access the catalog detail
information to obtain information about items of that type. The information then may be
returned to the user, such as in a results listing on a Web page that the user is able to view via
a browser on the user device 102. Information for a particular item of interest may be viewed

in a dedicated page or window of the browser.

[0024] Each server typically will include an operating system that provides executable
program instructions for the general administration and operation of that server, and typically
will include a computer-readable medium storing instructions that, when executed by a

processor of the server, allow the server to perform its intended functions. Suitable

10

15

20

25

30

WO 2012/087946 PCT/US2011/065869
7

implementations for the operating system and general functionality of the servers are known
or commercially available, and are readily implemented by persons having ordinary skill in

the art, particularly in light of the disclosure herein.

[0025] The environment 100 in one embodiment is a distributed computing environment
utilizing several computer systems and components that are interconnected via
communication links, using one or more computer networks or direct connections. However,
it will be appreciated by those of ordinary skill in the art that such a system could operate
equally well in a system having fewer or a greater number of components than are illustrated
in Figure 1. Thus, the depiction of the system 100 in Figure 1 should be taken as being

illustrative in nature, and not limiting to the scope of the disclosure.

[0026] In at least one embodiment, one or more aspects of the environment 100 may
incorporate and/or be incorporated into a distributed program execution service. Figure 2
depicts aspects of an example distributed program execution service 200 in accordance with
at least one embodiment. The distributed program execution service 200 provides virtualized
computing services, including a virtual computer system service 202 and a virtual data store
service 204, with a wide variety of computing resources interlinked by a relatively high speed
data network. Such computing resources may include processors such as central processing
units (CPUs), volatile storage devices such as random access memory (RAM), nonvolatile
storage devices such as flash memory, hard drives and optical drives, servers such as the Web
server 106 and the application server 108 described above with reference to Figure 1, one or
more data stores such as the data store 110 of Figure 1, as well as communication bandwidth
in the interlinking network. The computing resources managed by the distributed program
execution service 200 are not shown explicitly in Figure 2 because it is an aspect of the
distributed program execution service 200 to emphasize an independence of the virtualized

computing services from the computing resources that implement them.

[0027] The distributed program execution service 200 may utilize the computing resources
to implement the virtualized computing services at least in part by executing one or more
programs, program modules, program components and/or programmatic objects (collectively,
“program components”) including and/or compiled from instructions and/or code specified
with any suitable machine and/or programming language. For example, the computing
resources may be allocated, and reallocated as necessary, to facilitate execution of the
program components, and/or the program components may be assigned, and reassigned as
necessary, to the computing resources. Such assignment may include physical relocation of

program components, for example, to enhance execution efficiency. From a perspective of a

10

15

20

25

30

WO 2012/087946 PCT/US2011/065869
8

user of the virtualized computing services, the distributed program execution service 200 may
supply computing resources elastically and/or on-demand, for example, associated with a per

resource unit commodity-style pricing plan.

[0028] The distributed program execution service 200 may further utilize the computing
resources to implement a service control plane 206 configured at least to control the
virtualized computing services. The service control plane 206 may include a service
administration interface 208. The service administration interface 208 may include a Web-
based user interface configured at least to enable users and/or administrators of the
virtualized computing services to provision, de-provision, configure and/or reconfigure
(collectively, “provision”) suitable aspects of the virtualized computing services. For
example, a user of the virtual computer system service 202 may provision one or more virtual
computer system instances 210, 212. The user may then configure the provisioned virtual
computer system instances 210, 212 to execute the user’s application programs. The ellipsis
between the virtual computer system instances 210 and 212 indicates that the virtual
computer system service 202 may support any suitable number (e.g., thousands, millions, and

more) of virtual computer system instances although, for clarity, only two are shown.

[0029] The service administration interface 208 may further enable users and/or
administrators to specify and/or re-specify virtualized computing service policies. Such
policies may be maintained and enforced by a service policy enforcement component 214 of
the service control plane 206. For example, a storage administration interface 216 portion of
the service administration interface 208 may be utilized by users and/or administrators of the
virtual data store service 204 to specify virtual data store service policies to be maintained
and enforced by a storage policy enforcement component 218 of the service policy
enforcement component 214. Various aspects and/or facilities of the virtual computer system
service 202 and the virtual data store service 204 including the virtual computer system
instances 210, 212, the low latency data store 220, the high durability data store 222, and/or
the underlying computing resources may be controlled with interfaces such as application
programming interfaces (APIs) and/or Web-based service interfaces. In at least one
embodiment, the control plane 206 further includes a workflow component 246 configured at
least to interact with and/or guide interaction with the interfaces of the various aspects and/or
facilities of the virtual computer system service 202 and the virtual data store service 204 in

accordance with one or more workflows.

[0030] In at least one embodiment, service administration interface 208 and/or the service

policy enforcement component 214 may create, and/or cause the workflow component 246 to

10

15

20

25

30

WO 2012/087946 PCT/US2011/065869
9

create, one or more workflows that are then maintained by the workflow component 246.
Workflows, such as provisioning workflows and policy enforcement workflows, may include
one or more sequences of tasks to be executed to perform a job, such as provisioning or
policy enforcement. A workflow, as the term is used herein, is not the tasks themselves, but a
task control structure that may control flow of information to and from tasks, as well as the
order of execution of the tasks it controls. For example, a workflow may be considered a
state machine that can manage and return the state of a process at any time during execution.
Workflows may be created from workflow templates. For example, a provisioning workflow
may be created from a provisioning workflow template configured with parameters by the
service administration interface 208. As another example, a policy enforcement workflow
may be created from a policy enforcement workflow template configured with parameters by

the service policy enforcement component 214.

[0031] The workflow component 246 may modify, further specify and/or further configure
established workflows. For example, the workflow component 246 may select particular
computing resources of the distributed program execution service 200 to execute and/or be
assigned to particular tasks. Such selection may be based at least in part on the computing
resource needs of the particular task as assessed by the workflow component 246. As another
example, the workflow component 246 may add additional and/or duplicate tasks to an
established workflow and/or reconfigure information flow between tasks in the established
workflow. Such modification of established workflows may be based at least in part on an
execution efficiency analysis by the workflow component 246. For example, some tasks may
be efficiently performed in parallel, while other tasks depend on the successful completion of

previous tasks.

[0032] The virtual data store service 204 may include multiple types of virtual data store
such as a low latency data store 220 and a high durability data store 222. For example, the
low latency data store 220 may maintain one or more data sets 224, 226 which may be read
and/or written (collectively, “accessed”) by the virtual computer system instances 210, 212
with relatively low latency. The ellipsis between the data sets 224 and 226 indicates that the
low latency data store 220 may support any suitable number (e.g., thousands, millions, and
more) of data sets although, for clarity, only two are shown. For each data set 224, 226
maintained by the low latency data store 220, the high durability data store 222 may maintain
a set of captures 228, 230. Each set of captures 228, 230 may maintain any suitable number
of captures 232, 234, 236 and 238, 240, 242 of its associated data set 224, 226, respectively,
as indicated by the ellipses. Each capture 232, 234, 236 and 238, 240, 242 may provide a

10

15

20

25

30

WO 2012/087946 PCT/US2011/065869
10

representation of the respective data set 224 and 226 at a particular moment in time. Such
captures 232, 234, 236 and 238, 240, 242 may be utilized for later inspection including
restoration of the respective data set 224 and 226 to its state at the captured moment in time.
Although each component of the distributed program execution service 200 may
communicate utilizing the underlying network, data transfer 244 between the low latency
data store 220 and the high durability data store 222 is highlighted in Figure 2 because the
contribution to utilization load on the underlying network by such data transfer 244 can be

significant.

[0033] For example, the data sets 224, 226 of the low latency data store 220 may be virtual
file system volumes. The low latency data store 220 may include a low overhead
virtualization layer providing access to underlying data storage hardware. For example, the
virtualization layer of the low latency data store 220 may be low overhead relative to an
equivalent layer of the high durability data store 222. Systems and methods for establishing
and maintaining low latency data stores and high durability data stores in accordance with at
least one embodiment are known to those of skill in the art, so only some of their features are
highlighted herein. In at least one embodiment, the sets of underlying computing resources
allocated to the low latency data store 220 and the high durability data store 222,

respectively, are substantially disjoint.

[0034] The low latency data store 220 and/or the high durability data store 222 may be
considered non-local and/or independent with respect to the virtual computer system
instances 210, 212. For example, physical servers implementing the virtual computer system
service 202 may include local storage facilities such as hard drives. Such local storage
facilities may be relatively low latency but limited in other ways, for example, with respect to
reliability, durability, size, throughput and/or availability. Furthermore, data in local storage
allocated to particular virtual computer system instances 210, 212 may have a validity
lifetime corresponding to the virtual computer system instance 210, 212, so that if the virtual
computer system instance 210, 212 fails or is de-provisioned, the local data is lost and/or
becomes invalid. In at least one embodiment, data sets 224, 226 in non-local storage may be
efficiently shared by multiple virtual computer system instances 210, 212. For example, the
data sets 224, 226 may be mounted by the virtual computer system instances 210, 212 as

virtual file system volumes.

[0035] Data stores in the virtual data store service 204, including the low latency data store
220 and/or the high durability data store 222, may be facilitated by and/or implemented with
a block data storage (BDS) service 248, at least in part. The BDS service 248 may facilitate

10

15

20

25

30

WO 2012/087946 PCT/US2011/065869
11

the creation, reading, updating and/or deletion of one or more block data storage volumes,
such as file system volumes, with a set of allocated computing resources including multiple
block data storage servers. A block data storage volume, and/or the data blocks thereof, may
be distributed and/or replicated across multiple block data storage servers to enhance volume
reliability, latency, durability and/or availability. As one example, the multiple server block
data storage systems that store block data may in some embodiments be organized into one or
more pools or other groups that each has multiple physical server storage systems co-located
at a geographical location, such as in each of the one or more geographically distributed data
centers, and the program(s) that uses a block data volume stored on a server block data
storage system in a data center may execute on one or more other physical computing

systems at that data center.

[0036] The BDS service 248 may facilitate and/or implement local caching of data blocks
as they are transferred through the underlying computing resources of the distributed program
execution service 200 including local caching at data store servers implementing the low
latency data store 220 and/or the high durability data store 222, and local caching at virtual
computer system servers implementing the virtual computer system service 202. In at least
one embodiment, the high durability data store 222 is an archive quality data store
implemented independent of the BDS service 248. The high durability data store 222 may
work with sets of data that are large relative to the data blocks manipulated by the BDS
service 248. The high durability data store 222 may be implemented independent of the BDS

service 248. For example, with distinct interfaces, protocols and/or storage formats.

[0037] Each data set 224, 226 may have a distinct pattern of change over time. For
example, the data set 224 may have a higher rate of change than the data set 226. However,
in at least one embodiment, bulk average rates of change insufficiently characterize data set
change. For example, the rate of change of the data set 224, 226 may itself have a pattern
that varies with respect to time of day, day of week, seasonally including expected bursts
correlated with holidays and/or special events, and annually. Different portions of the data
set 224, 266 may be associated with different rates of change, and each rate of change
“signal” may itself be composed of independent signal sources, for example, detectable with
Fourier analysis techniques. Any suitable statistical analysis techniques may be utilized to

model data set change patterns including Markov modeling and Bayesian modeling.

[0038] As described above, an initial capture 232 of the data set 224 may involve a
substantially full copy of the data set 224 and transfer 244 through the network to the high
durability data store 222 (may be a “full capture”). The data set 224 may be associated with

10

15

20

25

30

WO 2012/087946 PCT/US2011/065869
12

various kinds of metadata. Some, none or all of such metadata may be included in a capture
232,234, 236 of the data set 224 depending on the type of the data set 224. For example, the
low latency data store 220 may specify metadata to be included in a capture depending on its
cost of reconstruction in a failure recovery scenario. Captures 234, 236 beyond the initial
capture 232 may be “incremental”, for example, involving a copy of changes to the data set
224 since one or more previous captures. Captures 232, 234, 236 may be arranged in a
hierarchy of classes, so that a particular capture may be incremental with respect to a sub-
hierarchy of capture classes (e.g., a capture scheduled weekly may be redundant with respect
to daily captures of the past week, but incremental with respect to the previous weekly
capture). Depending on the frequency of subsequent captures 234, 236, utilization load on
the underlying computing resources can be significantly less for incremental captures

compared to full captures.

[0039] For example, a capture 232, 234, 236 of the data set 224 may include read access of
a set of servers and/or storage devices implementing the low latency data store 220, as well as
write access to update metadata, for example, to update a data structure tracking “dirty” data
blocks of the data set 224. For the purposes of this description, data blocks of the data set
224 are dirty (with respect to a particular class and/or type of capture) if they have been
changed since the most recent capture (of the same class and/or type). Prior to being
transferred 244 from the low latency data store 220 to the high durability data store 222,
capture 232, 234, 236 data may be compressed and/or encrypted by the set of servers. At the
high durability data store 222, received capture 232, 234, 236 data may again be written to an
underlying set of servers and/or storage devices. Thus each capture 232, 234, 236 involves a

load on finite underlying computing resources including server load and network load.

[0040] Captures 232, 234, 236 of the data set 224 may be manually requested, for example,
utilizing the storage administration interface 216. In at least one embodiment, the captures
232,234, 236 may be automatically scheduled in accordance with a data set capture policy.
Data set capture policies in accordance with at least one embodiment may be specified with
the storage administration interface 216, as well as associated with one or more particular
data sets 224, 226. The data set capture policy may specify a fixed or flexible schedule for
data set capture. Fixed data set capture schedules may specify captures at particular times of
day, days of the week, months of the year, and/or any suitable time and date. Fixed data set
capture schedules may include recurring captures (e.g., every weekday at midnight, every

Friday at 2am, 4am every first of the month) as well as one-off captures.

10

15

20

25

30

WO 2012/087946 PCT/US2011/065869
13

[0041] Flexible data set capture policies may specify that a capture is to occur within a
particular time window (e.g., 2am-6am everyday, sometime on Sunday, after close of
business on the last day of the month) or with a particular frequency (e.g., once per hour,
twice per day, once per week, once per month). In at least one embodiment, flexible data set
capture policies may specify that captures be scheduled to meet suitable goals, targets and/or
conditions (collectively, “capture conditions”). For example, each capture 232, 234, 236 may
have an associated cost, financially and/or in terms of computational resources, and the
flexible data set capture policy may specify a cost target and/or cost cap for the capture 232,
234, 236 or set of captures 228 including a budget per time period and/or an average cost per
capture. As another example, in at least one embodiment, a probability of data loss of a
portion of a data set 224 is a function at least of an amount of uncaptured data in the data set
224 at a given time. Accordingly, a flexible data set capture policy may specify a target
probability of data loss of a portion of the data set 224, and the storage policy enforcement
component 218 may schedule captures of the data set 224 to meet the target by keeping the
amount of uncaptured data in the data set 224 below an associated uncaptured data target

and/or cap.

[0042] Data set capture policies may specify any suitable combination of fixed schedules,
flexible schedules, and capture conditions. Data set capture policies may further specify
capture lifetimes and/or capture retention goals, targets and/or conditions. For example, a
seven day lifetime may be specified for daily captures, a four week lifetime may be specified
for weekly captures, and/or an annual lifetime may be specified for monthly captures.
Captures may have an unspecified and/or unlimited lifetime, thus requiring manual deletion.
Furthermore, particular captures may be protected, for example, may require manual deletion
by a designated set of authenticated users. Captures 232, 234, 236 and/or capture sets 228,
230 may be associated with costs (e.g., a periodic fee for storage per gigabyte), and the data
set capture policy may specify that captures 232, 234, 236 be automatically deleted to meet a
cost target and/or cap. Enforcement of data capture retention policies may analyze associated
capture sets 228, 230 to prioritize deletion of redundant captures and/or prohibit deletion of a
capture that would prevent restoration of the data set 224 to its state in time corresponding to

the most recent capture 232.

[0043] Figure 3 shows a schematic diagram 300 of an environment in which captures may
be recorded, in accordance with an embodiment. In this example, a client 302 operates in
accordance with a set of executable instructions. The client may be a computing device, such

as a computing device described above, or a module operating on a computing device. In an

10

15

20

25

30

WO 2012/087946 PCT/US2011/065869
14

embodiment, the client 302 utilizes, creates, and otherwise uses data in its operations. In an
embodiment, as the client 302 operates, the client generates a plurality of requests for
performing data operations, such as creation operations, reading operations, updating
operations, and deletion operations in connection with data stored in a logical volume, where
a logical volume is a representation of a data set that is physically stored in one or more
physical storage devices. In this example, as discussed more below, the local volume used by
the client device 302 is served by a plurality of physical volumes. The physical storage
devices may be block storage devices or other storage devices. Also, when the data set is
stored in multiple physical storage devices, the physical storage devices may be distributed
among a plurality of locations, such as locations in a common data center and/or different
geographic locations. Thus, from the point of view of the client 302, requests to perform data
operations are made with respect to a logical volume regardless or how many physical
volumes are used to store the data set. The client 302 may or may not be able to identify

and/or specify information identifying the physical storage devices themselves.

[0044] As the client 302 makes various requests to perform data operations, the client sends
a plurality of requests to a multiplexer 304, where a multiplexer is a computing device or
module operable to distribute requests from the client 302 appropriately so that the requests
may be fulfilled, as described below. In this example, the requests are represented by boxes
containing the letter “r”. The requests may be web service requests made to the multiplexer
304 or intermediate system between the multiplexer 304 and the client 302, although,
generally, the requests may be made in any suitable manner according to any suitable

protocol.

[0045] In an embodiment, when the multiplexer 304 receives a request from the client 302,
the multiplexer 304 distributes the request to an appropriate partition driver 306, where a
partition driver may be a module operable to communicate the request to a server 308 that has
access to a physical data store 310. The multiplexer 304 and partition drivers 306 may be
executed as part of a common device such that communications between the multiplexer 304
and partition drivers 306 are performed in memory and, therefore, relatively quickly.
However the multiplexer 304 and one or more partition drivers 306 may be distributed on a
network. In addition, while, for the purpose of illustration, requests at each level in the
diagram 300 are shown identically, requests may be translated into different formats to
accommodate different components receiving the requests. For example, a request from the
client 302 to the multiplexer 304 may be in one format while information corresponding to

that request from the multiplexer 304 to a partition driver 306 may be in another format.

10

15

20

25

30

WO 2012/087946 PCT/US2011/065869
15

[0046] In an embodiment, when data operations requested by the client 302 are performed,
the acknowledgments of completion of the operation are sent from a physical volume 310
where the operation was performed to the client 302, as shown in the diagram 300 by a box
containing the letter “a”. As with the requests, acknowledgements may be in different
formats when being communicated from one component to another. Also, while, for the
purpose of illustration, the diagram 300 shows each server 308 communicating with a single
physical volume 310, a server may communicate with multiple physical volumes and
portions of a data set accessed by the client 302 and may be stored in one or more physical

volumes in communication with a server.

[0047] As discussed, captures of data sets may be taken for various reasons. In many
instances, captures may be taken in accordance with one or more guarantees concerning the
accuracy of which capture represents a data set at a period in time. Guarantees may relate to
requests to perform data operations near the time the process of capturing a data set was
initiated. For example, captures may be taken in a manner that guarantees that a capture will
include all writes which were acknowledged before a capture was initiated, such as before a
request to take a capture was sent and/or received, and that the capture will not include any
writes which were submitted after the capture was initiated (i.e. after we return success).
Such guarantees may leave indeterminacy about the writes which were submitted before or
during initiation and were acknowledged during or after initiation. There are several options
for handling such writes, including providing some form of strong consistency guarantee, a

weaker guarantee, or no guarantee at all.

[0048] With a strong consistency guarantee, for some time t (which may be between the
time the customer sends the request and the time the customer receives the response), a
capture may be guaranteed to include all writes which were submitted before t (including
some which were acknowledged after t) or no writes which were acknowledged after t
(including some which were submitted before t). In instances where a logical volume is
served by multiple servers, a strong consistency guarantee generally requires any clients of
the logical volume to be acquiesced and flushed, resulting in a potentially significant
performance penalty. Moreover, a strong consistency guarantee may be insufficient to satisfy
some customer use cases, which require an even stronger guarantee where the capture is
guaranteed to include all writes that were both submitted and acknowledged before t. Such
an additional guarantee may require compliance of the customer application. For example,
the application may choose a checkpoint, stop writing, wait for all writes to be

acknowledged, and then resume writes. In general, all of these approaches require imposing

10

15

20

25

30

WO 2012/087946 PCT/US2011/065869
16

constraints which the customers may not need and potentially at the cost of high latency to

resolve writes.

[0049] However, even though it improves latency, not providing additional capture
consistency guarantees may lead to undesirable results, as illustrated by Figure 4. Figure 4
shows an illustrative example of a timeline that includes write and capture-related events. In
particular, Figure 4 shows a situation in which a logical volume is served by two servers,
referred to as Server A and Server B in the figure. In the example shown in Figure 4,
captures of partitions corresponding to each server are initiated at approximately the same
time without other coordination of the capture among the servers. In this timeline, (in which
time progresses from left to right), the client issues two writes, Write 0 and Write 1, one after
the other. Also in this example, the client waits for the acknowledgment of Write 0 before
submitting Write 1, resulting in three possible consistent situations: the capture containing
neither Write 0 nor Write 1, the capture containing Write 0, or the capture containing both
Write 0 or Write 1. However, in the situation illustrated in Figure 4, it is possible to take an
inconsistent capture in which only Write 1 is present, since the capture with respect to Server
A was initiated before acknowledgment of Write 0. If an application executing on the client
depends on the order of Write 0 and Write 1, then if the logical volume (or a portion thereof)
was restored from the capture, the data in the logical volume may be nonsensical (corrupt),
perhaps causing malfunction of the client and any applications depending from the data in the

logical volume.

[0050] To avoid such consequences, a guarantee about the consistency of the capture may
be given that is weaker than the strong consistency described above, but which nonetheless
provides a strict ordering guarantee where, for some time t (during capture initialization): the
capture will include all writes which were acknowledged before t; and the capture will
include no writes which were submitted after t. In other words, for all writes Write 0 and
Write 1, if Write 1 was submitted after Write 0 was acknowledged, then, if Write 1 is in the
capture, then Write 0 must also be in the capture. This is simply a tighter version of the
original set guarantees, which is sufficient to provide the guarantee that a causal link between
two writes may not be broken. In an embodiment, this is implemented by deferring the
acknowledgment of write requests until after initialization of a capture; that is, when the
capture of a partition is initiated, that partition stops acknowledging write requests until it is
instructed to resume acknowledgments. During that time, a server may continue to process
incoming write requests, but the server defers (blocks) acknowledgment of those requests

until an appropriate time, such as when a capture that has been initiated with respect another

10

15

20

25

30

WO 2012/087946 PCT/US2011/065869
17

server (or all other servers) has been acknowledged. If every server blocks until the last one

has started blocking, then the above guarantee can be met.

[0051] Figure 5 shows a timeline similar to the timeline illustrated in Figure 4. In this
example, an algorithm for maintaining the weaker condition described above is implemented.
In this scenario, the client blocks, waiting for the acknowledgment of Write 0. Meanwhile,
the Server A and Server B proceed with starting the capture on their respective partitions of
the logical volume. Once all of the captures have been initiated, the client resumes waiting
for acknowledgement of Write 0 and the servers release write acknowledgments. As shown,
Server A acknowledges Write 0 to the client, and the client then proceeds to issue write 1,
which is then acknowledged by Server B. It should be noted that there is a difference from
the strong guarantee in that the client does not need to wait for acknowledgments to all
pending requests before the capture may proceed, thereby causing the resulting latency to be

significantly less.

[0052] Nevertheless, this weaker guarantee results in some behavior which may be
considered unusual. For example, Figure 6 illustrates a situation where out-of-order packet
delivery causes Write 1, which is acknowledged after write 0, to be included in a capture
which does not include write 0. In this case, Write 1 is in the capture, but Write 0 is not. It
should be noted that this does not violate the weaker consistency guarantee described above,
as Write 1 was submitted before write 0 was acknowledged, and therefore the two writes do
not have any causal link. In fact, in this instance, the order in which the two writes were
submitted does not matter; this situation also arises with modern input/output (I/0) schedulers
which are free to reorder writes as appropriate. Such a principle may take the following
negative form: for any two writes, Write 0 and Write 1, if Write 1 was submitted after Write

0 was acknowledged and if Write 1 is in the capture, then Write 0 must also be in the capture.

[0053] One way of guaranteeing that this set of conditions is satisfied is to perform a two-
phase commit on servers (server-side two-phase commit) serving physical storage devices on
which partitions of a logical volume are stored. With a server-side two-phase commit, upon
receiving a request to perform a capture, each server is instructed to stop accepting new
writes. After all of the servers have stopped, the servers are instructed to take a capture and
then start accepting new writes once again. This ensures that all writes confirmed
(acknowledged) before the last write that made it into the capture will also be in the capture,
thereby avoiding logical inconsistencies in the capture by including writes that depend from

other writes but not including the writes from which those writes depend.

10

15

20

25

30

WO 2012/087946 PCT/US2011/065869
18

[0054] Performance of a server-side two-phase commit, while useful for the above reasons,
can create operational problems. If, for example, there is difficulty in one server processing a
start phase of the commit (for example, the server is unable to acknowledge that the server
has stopped accepting new writes), the capture process cannot continue until the difficulty is
overcome. In other words, one or more servers may be idle while a response by one or more
other servers is awaited. Thus, a problem with one server may cause a delay in many servers.
Moreover, as the number of physical storage devices into which a volume is partitioned
increases, the chances that the snapshot will take a longer time to initiate are increased. Such

delay by servers may cause poor application performance and/or malfunction.

[0055] Figure 7 illustrates an illustrative example in accordance with an embodiment of a
process being implemented that ensures that the above-stated weaker condition can be
guaranteed. In this example diagram 700, a client-side two-phase commit is performed. In
particular, as shown in the drawing, a client communicates requests for performing data
operations to two servers, identified in the drawing as Server A and Server B. The client, for
example, may be requesting performance of operations on data stored in a virtual volume that
is distributed among two physical volumes served by Server A and Server B. Client requests
may be made pursuant to an application executing on the client or in another computing
device in communication with the client. In the example provided in the drawing, the client
communicates to the servers through a driver layer 702. The driver layer 702 may be one or
more computing devices or may be implemented on one or more computing devices. The
driver layer may comprise a plurality of drivers or, generally, other storage interfaces, such as
the drivers discussed above in connection with Figure 3. While not shown, a multiplexer
may receive requests from the client and forward the requests to an appropriate driver of the
driver layer. In this example, the driver layer may have two drivers, one for each of Server A

and Server B.

[0056] In the illustrated embodiment shown in Figure 7, when the client sends a request,
the request is received by the driver layer 702 and forwarded to an appropriate server. For
example, if the client requests that an operation be performed on one or more blocks of data,
the driver layer, in an embodiment, determines the server(s) having access to the applicable
blocks of data and sends the request to each applicable server. As an example, as shown in
Figure 7, the client sends a write request illustrated as Write 0, which is received by the
driver layer 702. The driver layer 702 determines that Write 0 applies to a block of data
stored on a physical storage device served by Server A and accordingly forwards the request

to Server A which then performs the requested operation and sends an acknowledgment that

10

15

20

25

30

WO 2012/087946 PCT/US2011/065869
19

the operation was performed to the driver layer 702, which forwards the acknowledgment to

the client.

[0057] As shown in the example, the client submits another write request, Write 1, to the
driver layer 702, which determines that Write 1 applies to data accessible by Server B and,
therefore, forwards the request to Server B. When the requested operation is performed,
Server B sends acknowledgment of the operation’s performance to the driver layer 702,
which forwards the acknowledgment to the client. In this example, Write 2 was sent by the
client before the client received acknowledgement that Write 1 was performed, thereby
indicating that Write 2 does not depend on Write 1. Therefore, according to the weaker
guarantee discussed above, if Write 2 is in a capture, Write 1 does not necessarily need to be
in the capture, although it may. As noted, requests from the client may specify operations on
data that is stored in multiple physical storage devices. As an example, a request may specify
operations for several blocks of data, some blocks stored in a physical storage device served
by Server A and others stored in a physical storage device served by Server B. In such an
embodiment, the driver layer 702 may send a request applicable to the physical storage
device served by Server A to Server A and another request applicable to the physical storage
device served by Server B to Server B. In other words, the driver layer 702 may split the
client’s request into multiple requests and send each of the multiple requests to an appropriate

SCIver.

[0058] Also shown in Figure 7, the client submits yet another request to perform an
operation, identified in the drawing as Write 2. The driver layer 702 receives the request,
determines that Write 2 applies to data stored in a physical storage device served by Server B,
and forwards Write 2 to Server B. In the example, however, a request to take a capture of the
logical volume distributed among physical storage devices served by Server A and Server B
is sent and received before the driver layer receives acknowledgment that Write 2 was
received. The capture request may be sent by the client or by another device, such as a
device that sends capture requests according to a schedule, a user-submitted request for a
capture, or in any other manner. In an embodiment, when the driver layer 702 receives the
capture request, the driver layer 702 stops processing acknowledgments and/or requests. The
driver layer 702 then inserts a capture token into a request stream from the driver layer 702 to
cach server. For example, referring to Figure 3, each driver may insert a capture token into a
request stream from the driver to a corresponding server. Acknowledgments and/or requests

received by the driver layer 702 may be held in memory until the tokens have been inserted

10

15

20

25

30

WO 2012/087946 PCT/US2011/065869
20

into the request streams. Further, instructing one or more drivers of the driver layer 702 to

stop processing requests may be an in-memory operation and, therefore, relatively quick.

[0059] A capture token, in an embodiment, is any information that, when received by a
server, indicates to the server that the server should perform a capture of a portion of a logical
volume stored in a corresponding physical storage device before processing additional
requests originating from the client. The token may be an explicit instruction to the server or
may be other information. As an example, requests in the request stream from the driver
layer to a server may include a number or other identifier that changes each time a capture of
the logical volume is taken. A server may detect a change of the identifier and, in response,
capture a portion of the logical volume before processing additional requests originating from
the client, generally, any information that indicates to the server to take a capture.
Additionally, the information inserted into the request stream may vary, such as, depending

on which guarantees for a particular capture are being ensured.

[0060] As shown in the drawing, the capture request is received by the driver layer 702
after having forwarded requests to perform Write 1 and Write 2 to the server and before
receiving acknowledgments from Server B that Write 1 and Write 2 were performed. In
addition, as illustrated, the driver layer receives acknowledgment of Write 1 and Write 2 after
inserting a capture token in the request stream from the driver layer 702 to Server A, but
before inserting a capture token into the request stream from the driver layer 702 to Server B.
In order to comply with the set of conditions discussed above, the driver layer 702 delays
forwarding acknowledgment of Write 1 and Write 2 to the client 702. The driver layer 702
may hold the acknowledgments of Write 1 and Write 2 in memory until capture tokens have
been inserted into all appropriate request streams and then forwarding the acknowledgements
to the client. Other operations may be delayed by the driver layer 702, such as forwarding of
requests to appropriate servers. In this manner, unlike with a server-side two-phase commit,
Server A and Server B are able to process requests when able, rather than having to wait for
other servers. Moreover, because instructing the driver layer 702 to stop processing requests
until inserting a capture token into request streams to the servers may be an in-memory
request that is quicker than instructing servers to stop processing requests, one or more
servers are able to again begin processing requests and/or acknowledgments sooner than with

a server-side two-phase commit.

[0061] It should be noted that Figure 7 provides an illustrative example of a specific
occurrence of a client-side two phase commit and that various variations are contemplated as

being within the scope of the present disclosure. For example, Figure 7 illustrates a logical

10

15

20

25

30

WO 2012/087946 PCT/US2011/065869
21

volume partitioned among two physical volumes, each being served by a corresponding
server. However, a logical volume may be partitioned among more than two physical
volumes and the driver lawyer may, accordingly communicate with more than two servers for
the purpose of performing data operations. Further, Figure 7 illustrates a particular
configuration where a client device communicates with servers through a driver layer.
However, as noted, the principles described herein are applicable to variations of this
configuration and other configurations including, generally, any configuration where a client
communicates with a server, directly or indirectly, in order to perform operations on data in a

data set that is stored in a distributed manner.

[0062] Figure 8 shows a flowchart for an illustrative example of a process 800 for
recording information. The process 800 may, for example, be used to implement the
principles illustrated above in Figure 7. Portions of the process 800 (or any other processes
described herein, or variations and/or combinations thereof) may be performed under the
control of one or more computer systems configured with executable instructions and may be
implemented as code (e.g., executable instructions, one or more computer programs, or one
or more applications) executing collectively on one or more processors, by hardware, or
combinations therecof. The code may be stored on a computer-readable storage medium, for
example, in the form of a computer program comprising a plurality of instructions executable

by onc or more proccssors.

[0063] In an embodiment, a capture request is received 802. A capture request, as
discussed above, is any information that indicates to a recipient that a data set should be
captured. The capture request may be, for example, an executable instruction for capturing
the data set. The capture request may also be information that is used by the recipient to
apply processing logic in order to determine whether the data set should be captured. The
capture request may be received from any suitable source, such as a computing device on
which an application that uses the data set is executing or another computing device, such as
a computing device that schedules captures of data sets. The capture request may also be
generated internally in a computing device performing at least a portion of the process 800, or
variations thereof. For instance, a computing device that manages storage devices that store
at least the data set may determine based on a schedule or other factors that a capture should
be taken and may operate accordingly. In other words, the capture request may originate
dependent from or independently of an application that uses the information stored in the data

set.

10

15

20

25

30

WO 2012/087946 PCT/US2011/065869
22

[0064] When the capture request is received, in an embodiment, a first client device is
instructed to suspend one or more data processing activities. The instruction to suspend one
or more data processing activities may be or include an instruction to suspend
acknowledgments of data set operations that were performed and/or instructions to forward
requests from an application to one or more servers. Referring to Figure 3 as an illustrative
example, the client device may be a driver or computing device on which multiple drivers are
executing. The client device may also be the client 302 depicted in the drawing or another
device. Generally, the client device that is instructed to suspend one or more data processing
activities may be any device that communicates with a server that operates in connection with
a data store. When the first client device has been instructed to suspend one or more data
processing activities, a determination may then be made 806 whether there are additional
client devices that need the instruction and, if there are, then the next client device is
instructed 808 to suspend one or more data processing activities in the data set and once again
a determination is made 806 whether there are additional client devices that need to be

instructed to suspend processing of requests.

[0065] When all of the client devices have been instructed to suspend one or more data
processing activities, and a determination that there are no additional client devices that
should be instructed to suspend one or more data processing activities, accordingly, in an
embodiment, a set of servers serving partitions of the data set is instructed to capture
corresponding portions of the data set. Instructing the servers to capture corresponding
portions of the data set may include instructing 810 a first server to capture a corresponding
portion of a data set and making a determination 812 whether there are additional servers that
should be instructed to capture the data set. In an embodiment, instructing the first server is
performed responsive to receipt of an acknowledgment from the client devices that the client
devices have suspended processing of one or more data processing activities. If there are
additional servers that should be instructed to capture the data set, the next server may be
instructed 814 to capture a corresponding portion of the data set, and the determination of
whether there are additional servers that should be instructed to capture a corresponding

portion of the data set may be made 812 again.

[0066] When all servers have been instructed to capture corresponding portions of the data
set, a determination may be made 812 that there are no additional servers that should be
instructed to capture a corresponding portion of the data set, and the client devices may be
instructed to resume processing of the one or more data processing activities. Instructing the

client devices to resume processing the one or more data processing activities may include

10

15

20

25

30

WO 2012/087946 PCT/US2011/065869
23

instructing 816 a first client device to resume the one or more data processing activities,
determining 818 whether additional client devices should be instructed to resume processing
of the one or more data processing activities and, if there are additional client devices that
should be instructed to resume processing of the one or more data processing activities,
instructing 820 client device to resume processing of the one or more data processing

activities until all client devices have been instructed.
[0067] Clauses:

Clause 1. A compute-implemented method for capturing a data set, the data set being
distributed among a plurality of physical storage devices each accessible by at least one
corresponding server operable to receive instructions from one or more storage interfaces to
cause corresponding operations for data in the data set to be performed, the method
comprising:
under the control of one or more computer systems configured with executable instructions,
receiving an instruction to capture the data set;
responsive to the instruction to capture the data set:
issuing, to the one or more storage interfaces, a first command to suspend at
least acknowledgment of completion of the write operations to an application;
for each of the one or more storage interfaces, receiving a first notification that
the storage interface has suspended processing of at least acknowledgment of
completion of the write operations;
at a time after receiving the first notification for each of the one or more
storage interfaces, instructing each of the servers storage interfaces to enqueue an
instruction to capture a portion of the data set stored in a corresponding physical
storage device and subsequently resume acknowledging completion of write
operations; and
storing representation of the data set, the representation comprising the

captured portions of the data set.

Clause 2. The computer-implemented method of clause 1, further comprising:
receiving the requests to perform write operations from the application;

for each of the requests, selecting a physical storage device in which to perform a
corresponding operation and performing the corresponding operation in the selected physical

storage device.

Clause 3. The computer-implemented method of claim 1, wherein the application

executes on a computer system different from the one or more storage interfaces.

10

15

20

25

30

WO 2012/087946 PCT/US2011/065869
24

Clause 4. The computer-implemented method of clause 1, wherein instructing each of
the storage interfaces to enqueue an instruction to capture a portion of the data set stored in a
corresponding physical storage device and subsequently resume acknowledging completion
of write operations includes, for each server of the servers, inserting a token into a request

stream from the one or more storage interfaces to the server.

Clause 5. The computer-implemented method of clause 1, wherein the one or more
storage interfaces include a plurality of storage interfaces, communicating the requests to
perform the data operations includes:

receiving the requests from the application;

for each request of the requests, selecting a storage interface of the plurality of storage
interfaces, wherein each of the one or more storage interfaces are configured to instruct a
corresponding server to cause, in a corresponding physical storage device, completion of an

operation corresponding to the request.

Clause 6. The computer-implemented method of clause 1, wherein at least one of the
one or more storage interfaces is configured to cause completion of one or more data
operations while suspending acknowledgment of at least acknowledgement of performance of

data operations.

Clause 7. A computer-implemented method for capturing a data set, comprising:

under the control of one or more computer systems configured with executable instructions,
instructing one or more applications to suspend at least acknowledgment of completion of
data operations, the data operations including manipulation of a data set that is distributed
among a plurality of partitions, each of the partitions being operated in accordance with
operation of a corresponding server of a plurality of servers, the one or more applications
being in communication with the servers for at least writing to the data set;

responsive to suspension by the applications of acknowledgment of completion of the data
operations, instructing the servers to capture corresponding portions of the data set stored in
corresponding partitions of the data set; and

at a time after instructing the servers to capture the corresponding portions of the data set,
instructing the one or more applications to resume at least acknowledgment of completion of

the data operations.

Clause 8. The computer-implemented method of clause 7, wherein requests to perform
the data operations originate on a computing device different from the one or more

applications.

10

15

20

25

30

WO 2012/087946 PCT/US2011/065869
25

Clause 9. The computer-implemented method of clause 7, wherein the plurality of

partitions are stored on a plurality of physical storage devices.

Clause 10. The computer-implemented method of clause 7, wherein instructing the
servers to capture corresponding portions of the data set includes inserting a token into

request streams to the servers.

Clause 11. The computer-implemented method of clause 7, further comprising
generating, independently of operation of a user application from which requests to perform
the data operations originate, an instruction to capture the data set and wherein instructing
one or more clients of a plurality of servers to suspend at least acknowledgment to the user
application of completion of data operations performed responsive to the instruction to

capture the data set.

Clause 12. The computer-implemented method of clause 7, wherein at least one of the
one or more storage interfaces is configured to cause completion of one or more data
operations while suspending acknowledgment of at least acknowledgement of performance of

data operations.

Clause 13. The computer-implemented method of clause 7, wherein instructing one or
more applications to suspend at least acknowledgment of completion of data operations
includes instructing the one or more applications to suspend issuing acknowledgments of

completions of write operations.

Clause 14. The computer-implemented method of clause 7, wherein instructing one or
more applications to suspend at least acknowledgment of completion of data operations

includes instructing the one or more applications to postpone issuance of write requests.

Clause 15. A system operable to direct capture of a data set, comprising;:

one or more processors; and

memory including executable instructions that, when executed by the one or more processors,
cause the system to:

instruct one or more applications to suspend at least acknowledgment of completion of data
operations, the data operations including manipulation of a data set that is distributed among
a plurality of partitions, each of the partitions being operated in accordance with operation of
a corresponding server of a plurality of servers, the one or more applications being in

communication with the servers for at least writing to the data set;

10

15

20

25

30

WO 2012/087946 PCT/US2011/065869
26

responsive to suspension by the applications of completion of the data operations, instruct the
servers to capture corresponding portions of the data set stored in corresponding partitions of
the data set; and

at a time after instructing the servers to capture the corresponding portions of the data set,
instruct the one or more applications to resume at least acknowledgment of completion of the

data operations.

Clause 16. The system of clause 15, wherein the plurality of partitions are stored on a

plurality of physical storage devices.

Clause 17. The system of clause 15, wherein instructing the servers to capture
corresponding portions of the data set includes inserting a token into request streams to the

SCrvers.

Clause 18. The system of clause 15, wherein requests to perform the data operations
originate from a user application executing on a computing device different from the one or

more applications.

Clause 19. The system of clause 18, wherein the memory includes executable instructions
that, when executed by the one or more processors, cause the system to generate,
independently of operation of the user application, an instruction to capture the data set and
wherein instructing one or more clients of a plurality of servers to suspend at least
acknowledgment to the user application of completion of data operations performed

responsive to the instruction to capture the data set.

Clause 20. One or more computer-readable storage media having collectively stored
thereon instructions that, when executed by one or more processors, cause the one or more
processors to:

instruct one or more storage interfaces to suspend processing of one or more activities in
connection with the data set;

at a time after the one or more storage interfaces suspend processing of the one or more
activities, insert a token into a plurality of request streams, each of the plurality of request
streams from the one or more storage interfaces to a server of a plurality of servers, each of
the plurality of servers being operable to cause completion of a data operation in a data set
partition according to requests in a corresponding request stream, each token being an
indication for performing a capture of a data set partition of the plurality of data set partitions;

and

10

15

20

25

30

WO 2012/087946 PCT/US2011/065869
27

at a time after inserting the token into the one or more request streams, instruct the one or

more storage interfaces to resume processing of the one or more activities.

Clause 21. The one or more computer-readable storage media of clause 20, wherein the

data set partitions are distributed among a plurality of physical storage devices.

Clause 22. The one or more computer-readable storage media of clause 20, wherein each
request stream comprises a collection of requests for performing data operations from a
corresponding computing device of the one or more storage interfaces to a corresponding

server of the plurality of servers.

Clause 23. The one or more computer-readable storage media of clause 20, wherein, for
cach server, the request stream comprises a plurality of requests for performing a data

operation from the one or more storage interfaces.

Clause 24. The one or more computer-readable storage media of clause 20, further
comprising instructions that, when executed by one or more processors, cause the one or
more processors to:

receive requests for performing data operations from the application; and

for each of the request from the application:

select an appropriate server for performing a requested operation; and

instruct the selected server to cause completion of the requested operation.

Clause 25. A computer-implemented method for capturing a data set, comprising:

under the control of one or more computer systems configured with executable instructions,
using a plurality of servers to perform data set operations in a plurality of distributed data set
partitions;

instructing one or more storage interfaces in communication with the plurality of servers to
block acknowledgment of at least completion of one or more activities in connection with the
data set; and

at a time after the one or more storage interfaces blocks acknowledgment of at least the one
or more activities, inserting a token into one or more request streams from the one or more
storage interfaces to the servers, each token being an indication to a server that receives the
token for performing a capture of a data set partition of the plurality of data set partitions
upon processing the token during processing of a corresponding request stream into which

the token has been inserted.

Clause 26. The computer-implemented method of clause 25, wherein the data set

partitions are distributed among a plurality of physical storage devices.

10

15

20

25

30

WO 2012/087946 PCT/US2011/065869
28

Clause 27. The computer-implemented method of clause 25, wherein each request stream
comprises a collection of requests for performing data operations from a corresponding
computing device of the one or more storage interfaces to a corresponding server of the

plurality of servers.

Clause 28. The computer-implemented method of clause 25, wherein, for each server, the
request stream comprises a plurality of requests from the one or more storage interfaces for

performing a data operation.

Clause 29. The computer-implemented method of clause 25, further comprising:
receiving requests for performing data operations from the application; and

for each of the request from the application:

selecting an appropriate storage interface that communicates with an appropriate server for
causing completion of a requested operation; and

causing the selected storage interface to communicate with the appropriate server to complete

the requested operation.

The various embodiments further can be implemented in a wide variety of operating
environments, which in some cases can include one or more user computers, computing
devices, or processing devices which can be used to operate any of a number of applications.
User or client devices can include any of a number of general purpose personal computers,
such as desktop or laptop computers running a standard operating system, as well as cellular,
wireless, and handheld devices running mobile software and capable of supporting a number
of networking and messaging protocols. Such a system also can include a number of
workstations running any of a variety of commercially-available operating systems and other
known applications for purposes such as development and database management. These
devices also can include other electronic devices, such as dummy terminals, thin-clients,

gaming systems, and other devices capable of communicating via a network.

[0068] Most embodiments utilize at least one network that would be familiar to those
skilled in the art for supporting communications using any of a variety of commercially-
available protocols, such as TCP/IP, OSI, FTP, UPnP, NFS, CIFS, and AppleTalk. The
network can be, for example, a local area network, a wide-area network, a virtual private
network, the Internet, an intranet, an extranet, a public switched telephone network, an

infrared network, a wireless network, and any combination thereof.

[0069] In embodiments utilizing a Web server, the Web server can run any of a variety of

server or mid-tier applications, including HTTP servers, FTP servers, CGI servers, data

10

15

20

25

30

WO 2012/087946 PCT/US2011/065869
29

servers, Java servers, and business application servers. The server(s) also may be capable of
executing programs or scripts in response to requests from user devices, such as by executing
one or more Web applications that may be implemented as one or more scripts or programs
written in any programming language, such as Java®, C, C# or C++, or any scripting
language, such as Perl, Python, or TCL, as well as combinations therecof. The server(s) may
also include database servers, including without limitation those commercially available from

Oracle®, Microsoft®, Sybase®, and IBM®,

[0070] The environment can include a variety of data stores and other memory and storage
media as discussed above. These can reside in a variety of locations, such as on a storage
medium local to (and/or resident in) one or more of the computers or remote from any or all
of the computers across the network. In a particular set of embodiments, the information may
reside in a storage-area network (“SAN”) familiar to those skilled in the art. Similarly, any
necessary files for performing the functions attributed to the computers, servers, or other
network devices may be stored locally and/or remotely, as appropriate. Where a system
includes computerized devices, each such device can include hardware elements that may be
electrically coupled via a bus, the elements including, for example, at least one central
processing unit (CPU), at least one input device (e.g., a mouse, keyboard, controller, touch
screen, or keypad), and at least one output device (e.g., a display device, printer, or speaker).
Such a system may also include one or more storage devices, such as disk drives, optical
storage devices, and solid-state storage devices such as random access memory (“RAM”) or
read-only memory (“ROM?”), as well as removable media devices, memory cards, flash cards,

etc.

[0071] Such devices also can include a computer-readable storage media reader, a
communications device (e.g., a modem, a network card (wireless or wired), an infrared
communication device, etc.), and working memory as described above. The computer-
readable storage media reader can be connected with, or configured to receive, a computer-
readable storage medium, representing remote, local, fixed, and/or removable storage devices
as well as storage media for temporarily and/or more permanently containing, storing,
transmitting, and retrieving computer-readable information. The system and various devices
also typically will include a number of software applications, modules, services, or other
elements located within at least one working memory device, including an operating system
and application programs, such as a client application or Web browser. It should be
appreciated that alternate embodiments may have numerous variations from that described

above. For example, customized hardware might also be used and/or particular elements

10

15

20

25

30

WO 2012/087946 PCT/US2011/065869
30

might be implemented in hardware, software (including portable software, such as applets),
or both. Further, connection to other computing devices such as network input/output

devices may be employed.

[0072] Storage media and computer-readable media for containing code, or portions of
code, can include any appropriate media known or used in the art, including storage media
and communication media, such as, but not limited to, volatile and non-volatile, removable
and non-removable media implemented in any method or technology for storage and/or
transmission of information such as computer-readable instructions, data structures, program
modules, or other data, including RAM, ROM, EEPROM, flash memory or other memory
technology, CD-ROM, digital versatile disk (DVD) or other optical storage, magnetic
cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any
other medium which can be used to store the desired information and which can be accessed
by the a system device. Based on the disclosure and teachings provided herein, a person of
ordinary skill in the art will appreciate other ways and/or methods to implement the various

embodiments.

[0073] The specification and drawings are, accordingly, to be regarded in an illustrative
rather than a restrictive sense. It will, however, be evident that various modifications and
changes may be made thereunto without departing from the broader spirit and scope of the

invention as set forth in the claims.

[0074] Other variations are within the spirit of the present disclosure. Thus, while the
disclosed techniques are susceptible to various modifications and alternative constructions,
certain illustrated embodiments thereof are shown in the drawings and have been described
above in detail. It should be understood, however, that there is no intention to limit the
invention to the specific form or forms disclosed, but on the contrary, the intention is to cover
all modifications, alternative constructions, and equivalents falling within the spirit and scope

of the invention, as defined in the appended claims.

[0075] The use of the terms “a” and “an’ and “the” and similar referents in the context of
describing the disclosed embodiments (especially in the context of the following claims) are
to be construed to cover both the singular and the plural, unless otherwise indicated herein or
clearly contradicted by context. The terms “comprising,” “having,” “including,” and
“containing” are to be construed as open-ended terms (i.e., meaning “including, but not
limited to,”) unless otherwise noted. The term “connected” is to be construed as partly or
wholly contained within, attached to, or joined together, even if there is something

intervening. Recitation of ranges of values herein are merely intended to serve as a shorthand

10

15

20

WO 2012/087946 PCT/US2011/065869
31

method of referring individually to each separate value falling within the range, unless
otherwise indicated herein, and each separate value is incorporated into the specification as if
it were individually recited herein. All methods described herein can be performed in any
suitable order unless otherwise indicated herein or otherwise clearly contradicted by context.
The use of any and all examples, or exemplary language (e.g., “such as”) provided herein, is
intended merely to better illuminate embodiments of the invention and does not pose a
limitation on the scope of the invention unless otherwise claimed. No language in the
specification should be construed as indicating any non-claimed element as essential to the

practice of the invention.

[0076] Preferred embodiments of this disclosure are described herein, including the best
mode known to the inventors for carrying out the invention. Variations of those preferred
embodiments may become apparent to those of ordinary skill in the art upon reading the
foregoing description. The inventors expect skilled artisans to employ such variations as
appropriate, and the inventors intend for the invention to be practiced otherwise than as
specifically described herein. Accordingly, this invention includes all modifications and
equivalents of the subject matter recited in the claims appended hereto as permitted by
applicable law. Moreover, any combination of the above-described elements in all possible
variations thereof is encompassed by the invention unless otherwise indicated herein or

otherwise clearly contradicted by context.

[0077] All references, including publications, patent applications, and patents, cited herein
are hereby incorporated by reference to the same extent as if each reference were individually
and specifically indicated to be incorporated by reference and were set forth in its entirety

herein.

N R R N =) T Ve L S N S B

e S Y
AW NN = O

N W W N =

—_—

WO 2012/087946 PCT/US2011/065869
32

WHAT IS CLAIMED I8S:

1. A computer-implemented method for capturing a data set, comprising:
under the control of one or more computer systems configured with executable

instructions,

instructing one or more applications to suspend at least acknowledgment of
completion of data operations, the data operations including manipulation of a data set that is
distributed among a plurality of partitions, each of the partitions being operated in accordance
with operation of a corresponding server of a plurality of servers, the one or more
applications being in communication with the servers for at least writing to the data set;

responsive to suspension by the applications of acknowledgment of
completion of the data operations, instructing the servers to capture corresponding portions of
the data set stored in corresponding partitions of the data set; and

at a time after instructing the servers to capture the corresponding portions of
the data set, instructing the one or more applications to resume at least acknowledgment of

completion of the data operations.

2. The computer-implemented method of claim 1, wherein requests to
perform the data operations originate on a computing device different from the one or more

applications.

3. The computer-implemented method of claim 1, wherein the plurality of

partitions are stored on a plurality of physical storage devices.

4. The computer-implemented method of claim 1, wherein instructing the
servers to capture corresponding portions of the data set includes inserting a token into

request streams to the servers.

5. The computer-implemented method of claim 1, further comprising
generating, independently of operation of a user application from which requests to perform
the data operations originate, an instruction to capture the data set and wherein instructing
one or more clients of a plurality of servers to suspend at least acknowledgment to the user
application of completion of data operations performed responsive to the instruction to

capture the data set.

6. The computer-implemented method of claim 1, wherein at least one of

the one or more storage interfaces is configured to cause completion of one or more data

AW NN =

AW NN =

N e R N =) T ¥ R L O R S

[S e T —
SN b AW =D

[\

[\

WO 2012/087946 PCT/US2011/065869
33

operations while suspending acknowledgment of at least acknowledgement of performance of

data operations.

7. The computer-implemented method of claim 1, wherein instructing
one or more applications to suspend at least acknowledgment of completion of data
operations includes instructing the one or more applications to suspend issuing

acknowledgments of completions of write operations.

8. The computer-implemented method of claim 1, wherein instructing
one or more applications to suspend at least acknowledgment of completion of data
operations includes instructing the one or more applications to postpone issuance of write

requests.

9. A system operable to direct capture of a data set, comprising:
one or more processors; and
memory including executable instructions that, when executed by the one or
more processors, cause the system to:
instruct one or more applications to suspend at least acknowledgment
of completion of data operations, the data operations including manipulation of a data
set that is distributed among a plurality of partitions, each of the partitions being
operated in accordance with operation of a corresponding server of a plurality of
servers, the one or more applications being in communication with the servers for at
least writing to the data set;
responsive to suspension by the applications of completion of the data
operations, instruct the servers to capture corresponding portions of the data set stored
in corresponding partitions of the data set; and
at a time after instructing the servers to capture the corresponding
portions of the data set, instruct the one or more applications to resume at least

acknowledgment of completion of the data operations.

10. The system of claim 9, wherein the plurality of partitions are stored on

a plurality of physical storage devices.

11. The system of claim 9, wherein instructing the servers to capture
corresponding portions of the data set includes inserting a token into request streams to the

SCrvers.

AN D AW N

WO 2012/087946 PCT/US2011/065869
34

12. The system of claim 9, wherein requests to perform the data operations
originate from a user application executing on a computing device different from the one or

more applications.

13. The system of claim 12, wherein the memory includes executable
instructions that, when executed by the one or more processors, cause the system to generate,
independently of operation of the user application, an instruction to capture the data set and
wherein instructing one or more clients of a plurality of servers to suspend at least
acknowledgment to the user application of completion of data operations performed

responsive to the instruction to capture the data set.

WO 2012/087946 PCT/US2011/065869

1/7

FIG. 1

Client Web Application
Device

102 106

\ Server Server

Network
104

User
Information
116

I

I

I

I

I Production Testing
| 112 114

I

I

Data Store 110
User Development ‘3
Device Server

100

WO 2012/087946 PCT/US2011/065869

217

FIG. 2

N
N

Virtual Computer System Service

Virtual Virtual
Computer System " Computer System
Instance Instance
210 212
r--—-———~~>~~""~"""~>""~>""~""~""~™""~™""™""™™—"= 1
228

N
f
7

< Data Transfer > gy ,
244 J

226 N 238 || 240 242
(b e e e e e e o]
Low Latency 230 . -
Data Store High Durability Data Store
220 222
BDS Service 248 Virtual Data Store Service
204
208 214
Service Admin. Service Policy Workflow
Interface Enforcement
246
Storage ,
Administration Storage Policy
Enforcement
Interface
216 218

N
(o)}

A\/200 Distributed Program Execution Service

WO 2012/087946

Gl

PCT/US2011/065869

/ 300

306
L

Partition
Driver 1

5 g

308
_\-

Server 1

310

ég ITI
Physical
Volume

3/7
FIG. 3
~_ 302
Client
A @
(=]
(=] Y
~_ 304
Multiplexer

306
L

Partition
Driver 2

5

308
_\-

Server 2

EE] fr
Physical
Volume

Partition
Driver n

5

Server n

5 g

Physical
Volume

PCT/US2011/065869

WO 2012/087946

4/7

G 'Old

So1M (300]q pue)
th.mo aimden q Joniag
d -7 Veis
gl (3o01q pue)
SOIIM alniden 1OMB
\ \. awWnNsay —e yes v S
pabpamouoe paniwgns pabpsjmouoe paniugns sl
T L8l L SILIA 0 SJM 0 SIUAA 1eIo
¥ 'Old
aJniden
® NEYNE)
ues d S
aJniden \ JOAIOS
V\. pels
pabpajmouoe paniwgns pabpajmouoe panIugns .
| SIIM | SIIM 0 SIIM 0 S MO

PCT/US2011/065869

WO 2012/087946

SI7

9 'Old
(30iq pue)
SalIM alnyde) g JanIag
BUWINS?Y \\ ues
\\
Py (300Iq pue)
_ SOJlIM ° oumded VLY NETS
\ \ awNsay / / Hels
pabpomousoe Pabpaimousioe PORWANs ~ peRIWAnS 5
— L ewm 0 I | SIUM 0 M .

PCT/US2011/065869

WO 2012/087946

6/7

pPalIOSUI SUSY0)
Jaye juswbpajmouy
Sasea|al JaALQg

L'Old

004
N

vomvo_\sos_om vmmvm_\sos_om

¢ SMIM

L SMIM

1sanbay
aimden

paniwgns pabpsmoudoe papiwgns papiwgns
¢ DIIM 0 S1JAA | SIIA 0 91A

< % q Jonieg
usY0}
aimden
< \ + v JoAISS
usY0}
alniden
I
JoAuQg _

_

NE | v\ /O /
|

< _ JusIID
|
|
|
|
|

WO 2012/087946 PCT/US2011/065869

717

FIG. 8

'/ 800

~_ 802

| Receive Capture Request

+ ~_ 804
Instruct first client device to suspend request
data processing activities

Additiona 806

Client
Devices?

No

808

Instruct next client device to suspend request
data processing activities

~_ 810

Instruct first server to capture corresponding
portion of data set

812
Additional

Servers?

No

814

Instruct next server to capture corresponding
portion of data set

~~_ 816

Instruct first client device to resume request
data processing activities

818
Additiona

Client
Devices?

No

820

Instruct next client device to resume request
data processing activities

END

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US 11/65869

A. CLASSIFICATION OF SUBJECT MATTER
IPC(8) - GOBF 17/00 (2012.01)
USPC - 707/690

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

USPC: 707/630

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
USPC: 707/687, 690, 704, 999.1, 999.201; 711/100, 173 (keyword limited; terms below)

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
Electronic Database Searched: PubWEST(PGPB, USPT, EPAB, JPAB), Google Scholar

Search Terms Used: suspend, defer, lock, postpone, post, pone, halt,
operation, transfer, action, instruction, read, write, request, stream, instruct, order, command, direct, instruction, request, app, etc.

pause, stop, interrupt, data, store, read, write, load, save,

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X 1-3, 5-10, 12-13
- US 2008/0162812 A1 (Stroberger et al.) 03 July 2008 (03.07.2008), see entire document;
Y especially abstract, para [0014]-[0018], [0022]-{0025), [0039]-[0044], [0047]-[0054], Fig. 1-7 4,11
Y US 2008/0140910 A1 (Flynn et al.) 12 June 2008 (12.06.2008), see especially para [0008]- 4.1
[0012], [0134], [0137], [0232])-[0237]
A US 2006/0161732 A1 (Murotani et al.) 20 July 2006 (20.07.2006), see entire document 1-13
A US 2005/0240632 A1 (Wong et al.) 27 October 2005 (27.10.2005), see entire document 1-13
A US 2004/0073831 A1 (Yanai et al.) 15 April 2004 (15.04.2004), see entire document 1-13

D Further documents are listed in the continuation of Box C.

[

* Special categories of cited documents:

“A” document defining the general state of the art which is not considered
to be of particular relevance

“E” earlier application or patent but published on or after the international
filing date

“L” document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

“O” document referring to an oral disclosure, use, exhibition or other
means

“P” document published prior to the international filing date but later than

the priority date claimed

“T” later document published after the international filing date or priority
date and not in conflict with the application but cited to understand

the principle or theory underlying the invention

“X” document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

“Y” document of particular relevance; the claimed invention cannot be

considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

“&” document member of the same patent family

Date of the actual completion of the international search

09 April 2012 (09.04.2012)

Date of mailing of the international search report

2 0APR 2012

Name and mailing address of the ISA/US

Mail Stop PCT, Attn: ISA/US, Commissioner for Patents
P.O. Box 1450, Alexandria, Virginia 22313-1450

Facsimile No. 571.273-3201

Authorized officer:
Lee W. Young

PCT Helpdesk: 571-272-4300
PCT OSP: 571-272-7774

Form PCT/ISA/210 (second sheet) (July 2009)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - claims
	Page 35 - claims
	Page 36 - claims
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - wo-search-report

