US 20190129982A1

a9y United States

a2y Patent Application Publication (o) Pub. No.: US 2019/0129982 A1l

Wei et al. 43) Pub. Date: May 2, 2019
(54) JUST-IN-TIME MULTI-INDEXED TABLES IN Publication Classification
A SHARED LOG (51) Int. CL
(71) Applicant: Nicira, Inc., Palo Alto, CA (US) GO6F 17/30 (2006.01)
(52) US.CL
(72) Inventors: Michael Wei, Palo Alto, CA (US); CPC .. GOG6F 17/30321 (2013.01); GOG6F 17/30339
Dahlia Malkhi, Palo Alto, CA (US); (2013.01)
Medhavi Dhawan, Cupertino, CA
(US); Maithem Munshed, Palo Alto, 7 ABSTRACT
CA (US); Anny Martinez Manzanilla, A shared log system can provide a key-index structure (main
Santa Clara, CA (US); Roger Michoud, map) that allows clients (users) to access the state of objects
Menlo Park, CA (US) stored in the shared log system. The client can define
secondary indices on the main map to provide access to the
(21) Appl. No.: 15/798,073 data that are tailored to the client’s data needs. Each client
can generate their own customized set of secondary indices
(22) Filed: Oct. 30, 2017 different from other clients.

204 ~N 204 ~ 204 ~

204\ 204\ 204\

ID name phone # #onloan | # overdue total fees
1 Gabby 555-0003 4 0 $0.00 ~202
2 Joan 617-9889 5 3 $3.00 ~202
3 James 889-9291 1 1 $1.00 ~202
4 Nancy 721-5371 0 4 $4.00
5 Gregg 841-0023 5 0 $0.00

o

°®

[]

library user DB table, 200

| B4

US 2019/0129982 A1

h 201 ‘Bo| paseus u

— 1 ‘(s)oslgo [enpia
PO

— ' {

rm 4 ., /

— 901 'einpow PO P .“ !

= JabBeuew Bo o IR doeaes 1

& ~ ' ZIT 'spselqo .ﬂ,

wn e L a S suonoesue)

oS - —

T m
> FOT'sinpow | . ¢l
2a Jeousnbas Hwiwo
N \.
>
]

M vl
001 ‘weisAs Bo| paleys

suoijoesue)

suoloesuRl}

t
1
\

O
-

Patent Application Publication
o

May 2, 2019 Sheet 2 of 11 US 2019/0129982 A1

Patent Application Publication

¢ 9l
00¢ ‘slqe) gq Jesn AJelq|

[]

[]

@
00'0$ 0 g £200-1¥8 B6aio G
00 ¥$ 14 0 LLES-LZL foueN 14
20C~ 00'L$ L L 1626-688 sewer €
20C~ 00'¢$ € G 6986-219 ueor r4
20C~ 00'0$ 0 14 £000-G5S Aqges L
S99] |B)0] 9NPJAAO # | UBO| UO # # auoyd aweu al

//vom //vom //vom //vom //vom ,/vom

May 2,2019 Sheet 3 of 11 US 2019/0129982 A1

Patent Application Publication

¢ b4
e e
(s)aoinsp 1ndut (s)@01n8p INdINO
o ‘ebeuo)s
BlED [BUIBIXD ﬂ L—v
e
adeuaiul O/}
< pZS ‘sng welsAs H
0ce ‘eoeiaul g1¢ ‘ebeiols ¥1¢ ‘Alowsw Zic
UORBOIUNWILWOD Blep [eusslul (urew) waysAs Hun Buissecold

sajnpow wojsAs

(
“ H 8ET w ﬁ 5T ‘elep u ﬁﬂ_mconmo_aamu ﬁ ZEE ‘SO u L~oee
|

Patent Application Publication = May 2, 2019 Sheet 4 of 11 US 2019/0129982 A1

log indices ("time")
404

shared log <
102 L 3

Object ID log entries, 402

Member ID
operation(s)
object data
client ID ——~log entry, 402a
etc.

storage cluster

<>
siwaga suser

d ™)
log manager module, 106

{ write buffer, 502]

Fig. 5

Patent Application Publication = May 2, 2019 Sheet 5 of 11 US 2019/0129982 A1

~ ™
sequencer module, 104

latest time counter, 602
604a—] data object ID last 1 604p
modified time
OBJ-abc 18
OBJ-jkl 28
OBJ-xyz 12
OBJ-abc.member1 18
OBJ-abc.member2 4
OBJ-jkl.member2 28
OBJ-xyz.member6 7
OBJ-xyz.member4 12
data objects table, 604

Fig. 6

Patent Application Publication = May 2, 2019 Sheet 6 of 11 US 2019/0129982 A1

702
/

perform computations |«

l / 704

verify correctness
with sequencer

708
-

706
/

commit write objects
COMMIT? Y to log manager A
N
path I
C
A
path 11 path II1
722
v /

verify conflict
window(s) using
Tretumed from sequencer

732
v [~

retry: read objects using
Tretumed from sequencer

actual
conflict?

retry: verify correctness
using VERIFIED parameter

FIG. 7

Patent Application Publication = May 2, 2019 Sheet 7 of 11 US 2019/0129982 A1

receive verify request

from client 802

806
I

scan shared log, 102

804
VERIFIED
parameter?
N
808
is the read set N
in memory?
Y

compare snapshot time
with last-modified times, 604b

810
~

signal FAIL, return latest
time counter (602) as Tewmed

812

820
I

signal FAIL, return last
modified time (604b) as Trewmed

814
any conflicts Y
in the read set?
N

increment latest time counter
and update data objects table

816

A 4

signal COMMIT and return 818
latest time counter, 602

Fig. 8

Patent Application Publication

May 2, 2019 Sheet 8 of 11

receive and buffer transaction
from client

902

l

log manager writes
write buffer to the shared log

904

Fig. 9

1002~

receive read request

l

1004

access state information
in data objects table

l

1006

access log entry in
shared log

l

1008

return data state from
log entry

Fig. 10

US 2019/0129982 A1

Patent Application Publication

May 2, 2019 Sheet 9 of 11

US 2019/0129982 A1

P virtual objects, 14

primary key
1122 value component, 1124
v A N object
data field 1 data field 2 datafield 3 datafield4 datafieds #1112
PK name phone # #on loan | #overdue | total fees
primary key
1122 value component, 1124
A~ A N
data field 1 data field 2 datafield 3 datafield4 datafield 5
PK name phone # #onloan | #overdue | total fees
1M14a~1 1 Gabby 650 555-0003 4 o] $0.00
1114bA 2 Joan 408 617-9889 5 3 $3.00 rows
3 James 65 889-9291 1 1 $1.00 1114
4 Nancy 312 721-5371 0 4 $4.00
5 Gregg 408 841-0023 5 4] $0.00
°
[
°
main map, 1102
index key (D1) primary keys index key (D3) primary keys
1142 1144 1142 1144
ﬁ‘A—Y A A A
N I'e N
data field 3 data field 4
0 4 0 1,5
1 3 1 3
5 2,5 3 2
secondary index, 1104 secondary index, 1104

1104a

1104b

FIG. 11

Patent Application Publication @ May 2, 2019 Sheet 10 of 11 US 2019/0129982 A1

receive "get" operation |-—~1202

Y

determine time range 1204

1206
v /

for each increment in time
< within the time range DONE

Y

read an update
from the shared log ~—1208
\ 4
store updateq target object _~1210
in main map

1212
v ///

, < . \
for each index table
/

Y

generate index key using

index-generating function ~—1214

A 4

identify entry in the index table

using generated index key ~1216

A 4

store primary key of the
update in the identified entry

—~1218

FIG. 12

Patent Application Publication = May 2, 2019 Sheet 11 of 11

receive add index operation
for target object

1302

A 4

sync main map with all updates
made to the target object

1304

A 4

create index table

1306

A 4

associate client-provided
index-generating function

1308

A 4

1310
v ~

US 2019/0129982 A1

load index table with each \
entry in the main map /

generate index key using
index-generating function

1312

Y

insert primary key of the
entry in the index table
using generated index key

1314

Y

{ DONE)

FIG. 13

US 2019/0129982 Al

JUST-IN-TIME MULTI-INDEXED TABLES IN
A SHARED LOG

CROSS REFERENCE TO RELATED
APPLICATIONS

[0001] This application is related to the following com-
monly owned co-pending U.S. applications for patent, the
content of each of which is incorporated herein by reference
in its entirety for all purposes:

[0002] U.S. application Ser. No. 15/652,981, filed Jul.
18, 2017
[0003] U.S. application Ser. No. 15/791,257, filed Oct.

23, 2017, titled “Direct Access to Object State in a
Shared Log”

[0004] U.S. application Ser. No. 15/791,280, filed Oct.
23, 2017, titled “Fine-Grained Conflict Resolution in a
Shared Log”

BACKGROUND

[0005] Shared (distributed) logs enable multiple clients to
access and modify data in a scalable yet consistent manner.
However, programmers need to access data in an abstraction
familiar to them. Commonly, shared log implementations
provide a map abstraction which gives programmers a
key-value like interface to access data. Programmers, how-
ever, often need to make queries against multiple indexes.
Shared logging does not lend itself to indexing its data that
efficiently supports individualized indexed searching.

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] With respect to the discussion to follow and in
particular to the drawings, it is stressed that the particulars
shown represent examples for purposes of illustrative dis-
cussion, and are presented in the cause of providing a
description of principles and conceptual aspects of the
present disclosure. In this regard, no attempt is made to show
implementation details beyond what is needed for a funda-
mental understanding of the present disclosure. The discus-
sion to follow, in conjunction with the drawings, makes
apparent to those of skill in the art how embodiments in
accordance with the present disclosure may be practiced.
Similar or same reference numbers may be used to identity
or otherwise refer to similar or same elements in the various
drawings and supporting descriptions. In the accompanying
drawings:

[0007] FIG. 1 shows a system comprising a shared log in
accordance with the present disclosure.

[0008] FIG. 2 shows an example to illustrate objects and
members of an object.

[0009] FIG. 3 shows an illustrative example of a computer
system in accordance with the present disclosure.

[0010] FIG. 4 shows a simplified representation of a
shared log.
[0011] FIG. 5 shows a simplified representation of data

that can be used in some embodiments of a log manager
module in accordance with the present disclosure.

[0012] FIG. 6 shows a simplified representation of data
that can be used in some embodiments of a sequencer
module in accordance with the present disclosure.

[0013] FIG. 7 depicts an operational flow in a client in
accordance with the present disclosure.

[0014] FIG. 8 depicts an operational flow in a sequencer
module in accordance with the present disclosure.

May 2, 2019

[0015] FIG. 9 depicts an operational flow in a log manager
module in accordance with the present disclosure.

[0016] FIG. 10 depicts an operational flow for processing
a read request in accordance with the present disclosure.
[0017] FIG. 11 shows details of a memory map and
secondary index tables in accordance with the present dis-
closure.

[0018] FIG. 12 depicts an operational flow in accordance
with the present disclosure for processing secondary index
tables.

[0019] FIG. 13 depicts an operational flow in accordance
with the present disclosure to add secondary index tables.

DETAILED DESCRIPTION

[0020] The present disclosure is directed to distributed
transactional systems in which the transactions can be stored
in a shared log. The shared log system can provide users
with a map abstraction that gives users a key-value like
interface to access data, referred to herein as a main map.
The system allows users to further define additional second-
ary indices on the main map to support their data access
needs. Users can choose to represent and project their
secondary indexes however they would like. The secondary
indices can be stored locally in each client’s respective
(main) memory. Moreover, each user can define secondary
indices that are specific to their data access needs, thus
avoiding the system from having to create, maintain, and
otherwise support multiple indices. Since all secondary
indexes are in the memory of the client machine, secondary
index lookup becomes an efficient local requests. By shifting
the index tables into each user’s system, performance of the
shared log system can be significantly improved in terms of
memory (each client maintains indices its own memory) and
processing load (each client machine directly accesses their
own indices).

[0021] In the following description, for purposes of expla-
nation, numerous examples and specific details are set forth
in order to provide a thorough understanding of embodi-
ments of the present disclosure. Particular embodiments as
expressed in the claims may include some or all of the
features in these examples, alone or in combination with
other features described below, and may further include
modifications and equivalents of the features and concepts
described herein.

[0022] FIG. 1 shows an example of a distributed system 10
comprising a shared log system 100 in accordance with the
present disclosure. The shared log system 100 represents
objects 112 that clients 12 can access (read and write);
objects 112 can be shared among the clients 12. In some
embodiments, for example, the shared log system 100
comprises a shared log 102 (also referred to as a distributed
log) that maintains the data state of objects 112 by storing
transactions made on those objects 112 by clients 12. Clients
12 can append entries to the shared log 102. Clients 12 can
read (e.g., a get operation) an entry at a particular offset in
the shared log 102. Clients 12 can interact with the shared
log 102 via transactions. Transactions can include operations
such as create, read, update, delete, various arithmetic
operations, and so on.

[0023] The “data state” of an object 112 at a given point
in time refers to the value or values of the object at that time,
namely the state of the data that comprises the object 112.
For example, if the object 112 is a numerical object, then at
time t, its data state might be the value 1.4142, and at

US 2019/0129982 Al

another time t, its data state might be the value 3.14159, and
so on. Likewise, if the object 112 is a textual object its data
state can be a particular sequence of text at one time, and a
different sequence of text at another time.

[0024] In shared log systems, such as depicted in FIG. 1,
objects 112 typically are not persisted but rather exist only
in terms of the history of client transactions performed on
the objects 112. A client 12 can instantiate and maintain its
own copies of the objects 112 as virtual objects 14. The most
current data state of a virtual object 14, for example, can be
obtained by accessing individual transactions (updates)
stored in the shared log 102 that were made on an object 112
of interest, and replaying those transactions by sequentially
applying the sequence of computations and/or operations
made on the object 112.

[0025] In accordance with the present disclosure, the
shared log system 100 can include a sequencer module 104
and a log manager module 106. To append a transaction to
the shared log 102, the sequencer module 104 can provide
the client 12 with the next free offset in the shared log 102.
The client 12 can complete the append operation by directly
issuing write request (e.g., put operation) to the log manager
module 106. The log manager module 106 provides buffer-
ing of data associated with transactions to be committed to
the shared log 102. These aspects of the present disclosure
are discussed in more detail below.

[0026] In some embodiments, objects 112 can comprise
structured data. Merely to illustrate this point, consider the
database table 200 of a library database shown in FIG. 2. The
database table 200 may be a database table of users of the
library. Each record (row) 202 in the library user database
table can include data fields 204 such as record 1D, name,
city of residence, phone number, number of books on loan,
number of overdue books, total overdue fees, and so on.
Each row 202 in the database table 200 can be considered an
object 112, and each data field 204 in a row 202 can be
referred to as an “object member” of that object. In some
specific embodiments, objects 112 may be referred to as
“maps” and object members may be referred to a “keys.”
However, the more general terms “object” and “object
member” will be used throughout.

[0027] In some embodiments, where an object comprises
multiple separate object members, it may be desirable to
allow two or more transactions to concurrently access dif-
ferent object members within the same object without con-
flict. Referring to the database table 200 in FIG. 2 to
illustrate this point, for example, a first client can access the
record (object) for Gabby to update the “number of books on
loan” data field (object member), while a second concurrent
client can access the same record to update Gabby’s phone
number. Although both clients access Gabby’s record, there
is no conflict since the clients access different data fields in
Gabby’s record. On the other hand, if the first and second
clients target the same data field, then a conflict can arise.
Thus, at the object level a conflict may be indicated, but at
the level of the object members, there may not be actual
conflict. The discussion will now turn to a description of
various embodiments in accordance with the present disclo-
sure to resolve “fine-grained” (i.e., at the resolution of object
members of an object) conflicts as compared to “coarse-
grained” (at the resolution of the objects themselves) con-
flicts, which can improve system performance by allowing

May 2, 2019

transactions from multiple clients to concurrently access
and/or modify (update) a given object, but different mem-
bers in that given object.

[0028] FIG. 3 is a simplified block diagram of an illustra-
tive computing system 302 for implementing one or more of
the embodiments described herein. For example, the com-
puting system 302 can perform and/or be a means for
performing, either alone or in combination with other ele-
ments, operations in the shared log system 100 in accor-
dance with the present disclosure. Computing system 302
can also perform and/or be a means for performing any other
steps, methods, or processes described herein.

[0029] Computing system 302 can include any single or
multi-processor computing device or system capable of
executing computer-readable instructions. Examples of
computing system 302 include, for example, workstations,
laptops, client-side terminals, servers, distributed computing
systems, handheld devices, or any other computing system
or device. In a basic configuration, computing system 302
can include at least one processing unit 312 and a system
(main) memory 314.

[0030] Processing unit 312 can comprise any type or form
of processing unit capable of processing data or interpreting
and executing instructions. The processing unit 312 can be
a single processor configuration in some embodiments, and
in other embodiments can be a multi-processor architecture
comprising one or more computer processors. In some
embodiments, processing unit 312 can receive instructions
from program and data modules 330. These instructions can
cause processing unit 312 to perform operations in accor-
dance with the present disclosure.

[0031] System memory 314 (sometimes referred to as
main memory) can be any type or form of volatile or
non-volatile storage device or medium capable of storing
data and/or other computer-readable instructions. Examples
of system memory 314 include, for example, random access
memory (RAM), read only memory (ROM), flash memory,
or any other suitable memory device. In some embodiments
computing system 302 can include both a volatile memory
unit (such as, for example, system memory 314) and a
non-volatile storage device (e.g., data storage 316, 346).
[0032] In some embodiments, computing system 302 can
also include one or more components or elements in addition
to processing unit 312 and system memory 314. For
example, as illustrated in FIG. 3, computing system 302 can
include internal data storage 316, a communication interface
320, and an I/O interface 322 interconnected via a system
bus 324. System bus 324 can include any type or form of
infrastructure capable of facilitating communication
between one or more components comprising computing
system 302. Examples of system bus 324 include, for
example, a communication bus (such as an ISA, PCI, PCle,
or similar bus) and a network.

[0033] Internal data storage 316 can comprise non-transi-
tory computer-readable storage media to provide nonvolatile
storage of data, data structures, computer-executable
instructions, and so forth to operate computing system 302
in accordance with the present disclosure. For instance, the
internal data storage 316 can store various program and data
modules 330, including for example, operating system 332,
one or more application programs 334, program data 336,
and other program/system modules 338. In some embodi-
ments, for example, the internal data storage 316 can store
one or more of the sequencer module 104, and the log

US 2019/0129982 Al

manager module 106 shown in FIG. 1, which can then be
loaded into system memory 314. In some embodiments,
internal data storage 316 can serve as the shared log 102.

[0034] Communication interface 320 can include any type
or form of communication device or adapter capable of
facilitating communication between computing system 302
and one or more additional devices. For example, in some
embodiments communication interface 320 can facilitate
communication between computing system 302 and a pri-
vate or public network including additional computing sys-
tems. Examples of communication interface 320 include, for
example, a wired network interface (such as a network
interface card), a wireless network interface (such as a
wireless network interface card), a modem, and any other
suitable interface.

[0035] In some embodiments, communication interface
320 can also represent a host adapter configured to facilitate
communication between computing system 302 and one or
more additional network or storage devices via an external
bus or communications channel. Examples of host adapters
include, for example, SCSI host adapters, USB host adapt-
ers, IEEE 1394 host adapters, SATA and eSATA host adapt-
ers, ATA and PATA host adapters, Fibre Channel interface
adapters, Ethernet adapters, or the like.

[0036] Computing system 302 can also include at least one
output device 342 (e.g., a display) coupled to system bus 324
via I/O interface 322. The output device 342 can include any
type or form of device capable of visual and/or audio
presentation of information received from I/O interface 322.

[0037] Computing system 302 can also include at least one
input device 344 coupled to system bus 324 via I/O interface
322. Input device 344 can include any type or form of input
device capable of providing input, either computer or human
generated, to computing system 302. Examples of input
device 344 include, for example, a keyboard, a pointing
device, a speech recognition device, or any other input
device.

[0038] Computing system 302 can also include external
data storage 346 coupled to system bus 324. In some
embodiments, external data storage 346 can provide a stor-
age cluster (e.g., 40, FIG. 4) for the shared log 102. In some
embodiments, for example, the external data storage 346 can
comprise storage units with both server-attached SATA
SSDs (a pair of SSDs attached to a server accepting network
commands), and also networked-attached flash with a cus-
tom FPGA implementation (server functionality and net-
work protocols entirely in hardware).

[0039] FIG. 4 shows a simplified representation of a
shared log 102 in accordance with the present disclosure. In
some embodiments, for example, the shared log 102 can be
built on top a distributed storage system (e.g., storage cluster
40). The shared log 102 can comprise a set of log entries
402, one such entry for each transaction. Each log entry
402a can map to one or more pages of storage on the storage
cluster 40 and store the details of its corresponding trans-
action, including an object identifier that identifies the target
object of the transaction, a member identifier that identifies
the object member in the target object, current values of the
objects, operations specified in the transaction, any data
associated with the operations, an identifier of the client 12
that requested the transaction, and so on. A log entry 402a
can store multiple target objects if the transaction updates
multiple target objects.

May 2, 2019

[0040] Each log entry 402 can be identified by a log index
(offset) 404 that represents its ordinal position in the shared
log 102. Since log entries 402 are sequentially appended, the
log index 404 can represent the “time” of a log entry 402
relative to other log entries in the shared log 102. For
example, a log entry 402 having a log index of n occurs
earlier in time than a log entry having a log index of n+1, and
later in time than a log entry having a log index of n-1. The
log index 404 can be referred to variously as an offset, an
address, sequence number, version number, timestamp, time
reference, and so on. The remainder of the present disclosure
can use these various terms interchangeably.

[0041] FIG. 5 shows s simplified representation of data
that can be used by the log manager module 106. In some
embodiments, for example, the log manager module 106 can
include a transaction write buffer 502. The transaction write
buffer 502 can serve as an intermediate area to hold a
transaction received from a client 12 before the transaction
is written to the shared log 102. In some embodiments, for
example, the transaction write buffer 502 can provide a
caching function.

[0042] FIG. 6 shows a simplified representation of com-
ponents in the sequencer module 104 to manage fine-grained
conflict resolution in accordance with the present disclosure.
The conflict resolution is “fine-grained” in that conflict
resolution occurs at with respect to object members in
structured objects rather than at the level of the objects
themselves (course-grain). In some embodiments, the
sequencer module 104 can include a time reference called
the latest time counter 602, which can be an integer value of
suitable size (e.g., a 64-bit value). The latest time counter
602 can represent a sense of time in the shared log system
100. In some embodiments, the latest time counter 602 can
be the log index 404 of the most recent entry (the tail) in the
shared log 102. The latest time counter 602 can be incre-
mented each time a transaction is committed to the shared
log 102.

[0043] The sequencer module 104 can include a data
objects table 604 that stores information relating to each
object member of each object 112 in the shared log system
100. As used herein, the term “data object” will refer to a
particular object member of a particular object; although in
some embodiments where object 112 does not comprise
structured data, the term “data object” can refer to the entire
object 112 such as disclosed in commonly owned U.S.
application Ser. No. 15/652,981.

[0044] The data objects table 604 include information for
each data object that can be collectively referred to as state
information, metadata, and the like for that data object. The
data objects table 604, for example, can include a column of
data object identifiers 604a that identify the data objects in
the shared log system 100. In some embodiments, for
example, a data object identifier 604a can be formed by
computing a hash value using a name (e.g., a text string) of
the object and a name of the object member in that object.
The computed hash values can be used to as an index to the
data objects table 604.

[0045] The data objects table 604 can include a column of
last-modified times that stores a last-modified time 6045 for
each data object. The last-modified time of a data object is
a time reference (e.g., using the latest time counter 602) of
when the data object was last updated/modified. In some
embodiments, the last-modified time can be the log index
404 of the log entry 402 that contains the transaction for the

US 2019/0129982 Al

data object. Merely to illustrate this point, FIG. 6 shows
three objects OBJ-abc, OBJ-ghi, OBJ-xyz and respective
members of those objects. For example, the data objects
table 604 shows that “memberl” of object OBJ-abc was last
modified at time reference 18. In other words, 18 is the log
index of the log entry that contains the transaction that last
updated the data object OBJ-abc.memberl. Likewise, for
“member2” of object OBJ-abc (last modified at time refer-
ence 6) and “member2” of object OBJ-jkl (last modified at
time reference 28).

[0046] In some embodiments, the data objects table 604
can include entries for the object s themselves. In some
embodiments, for example, the last-modified time field 6045
for the entire object can represent the time that any member
of that object was last modified. FIG. 6, for example, shows
that the entry for OBJ-abc has a last-modified time of 18
because its member member] was last modified at that time.
[0047] The discussion will now turn to a description of
various operational flows in the shared log system 100 for
processing a transaction in accordance with the present
disclosure, beginning with processing in a client. A basic
flow in the shared log system 100 can begin with a client
writing a transaction to the shared log 102. The client can
obtain from the sequencer module 104 an offset into the
shared log 102. The offset (e.g., log index 404) identifies a
log entry 402 in the shared log into which the transaction can
be stored. In accordance with the present disclosure, the
sequencer module 104 can verify the correctness of the
transaction before issuing an offset. Refer now to FIG. 7, in
conjunction with the previous figures, for a high level
operational flow in a client (e.g., 12a).

[0048] At operation 702, a client 12a can perform a series
of operations and/or computations on one or more data
objects in the shared log system 100 to produce data for a
transaction (transaction result). The operations and/or com-
putations that comprise the transaction can include a set of
data objects that serve as the source of data for the trans-
action (call these the “source data objects™). The transaction
can include a set of data objects that are to be modified with
the results of the operations and/or computations (call these
the “target data objects”).

[0049] The source data objects can come from the client’s
local copy (e.g., virtual objects 14 stored in the client’s
memory) of the data, rather than from the shared log 102.
Maintaining a local copy of the source data objects can
reduce the processing overhead that can be incurred when
having to access the shared log 102 for the data. Maintaining
a local copy of the source data objects can become outdated
if other client, however, incurs the risk that the source data
objects are outdated due to other clients making updates to
those data objects.

[0050] At operation 704, when the client 124 has com-
pleted its computations and is ready to submit a transaction
to the shared log 102, the client 12a can communicate with
the sequencer module 104 to obtain the log index 404 of the
next free log entry in the shared log 102. In accordance with
the present disclosure, the sequencer module 104 can verify
the correctness of that transaction as a pre-condition of
issuing the log index 404. Recall from FIG. 1 that each client
stores a copy of data objects from the shared log 102 in their
own virtual objects 14. Accordingly, computations made by
client 12a using source data objects from its virtual objects
14 may be incorrect if the same source data objects have
been subsequently updated by other clients; this is referred

May 2, 2019

to as a “conflict.” Verification of correctness in accordance
with the present disclosure can be performed to determine
whether a conflict exists or not. Accordingly, in some
embodiments, the client 12a can send a verity request to the
sequencer module 104 to verify whether there is a conflict in
the transaction and obtain the next free log index. The verify
request can include a set of identifiers (the “write set”) for
each of the target data objects to be updated, a set of
identifiers (the “read set”) for each of the source data
objects, and a snapshot time. The “snapshot time” is a time
reference that indicates the most recent data state of the
source data objects as stored in the virtual objects 14 of
client 12a.

[0051] In accordance with the present disclosure, the
information load in the verify request that is provided to the
sequencer module 104 can be kept to a minimum. In other
words, the verify request can contain the minimum amount
of information that the sequencer module 104 needs to do its
job. For example, parameters for the verify request can
comprise only identifiers of the target data objects and
identifiers of the source data objects. In some embodiments,
for example, the client 124 can compute hash values (e.g.,
8-byte values) as identifiers of the target and source data
objects. For instance hash values can be computed using the
text string of the name of the object and of the name of the
member in that object. An 8-byte hash value of a data object
can be much more compact than a lengthy textual identifier
of the data object.

[0052] Since verification in accordance with the present
disclosure does not require the actual data associated with
the source and target data objects, the verify request can omit
such data. Likewise, the verify request can omit the opera-
tions and/or computations used to compute the data for the
target data objects, further reducing the overhead in com-
municating with the sequencer module 104. These can be
important considerations because all clients 12 in the system
10 go through the sequencer module 104 to verify the
correctness of their respective transactions, and so the appli-
cation programming interface (API) to the sequencer mod-
ule 104 should be kept as “lightweight” as possible by
omitting any extraneous information in the verify request
APl to minimize communication overhead with the
sequencer module 104.

[0053] For illustrative purposes only, an example of a
verify request can include the following parameters:

[0054] source data objects in read set:
[0055] A.memberl (i.e., object A and object member
memberl)
[0056] A.member3
[0057] B.memberl
[0058] target data objects in write set:
[0059] A.member6
[0060] C.member5
[0061] C.member9
[0062] snapshot time: 15

This example illustrates various points. The transaction read
set (source data objects) can comprise more than one data
object to make the computation. The transaction write set
can target several data objects; e.g., different members in
different objects, different members within the same object,
different members in one of the source objects (e.g., a
member in object A can be a source data object and a
different member in object A can be a target data object), and
O on.

US 2019/0129982 Al

[0063] In accordance with some embodiments, the verify
request can include only a single snapshot time (in keeping
with the goal of achieving a lightweight interface to the
sequencer module 104), despite that the read set can com-
prise several data objects. In some embodiments, the snap-
shot time can be the time reference of the source data object
that was most recently updated. Recall that each client
maintains its own virtual copy of data objects. Accordingly,
each client will maintain its own time references for when
those data objects were most recently updated. Using the
example above, for instance, suppose the virtual objects 14
in client 12a includes the following state information for the
read set:

[0064] A.memberl—most recently updated at time ref-
erence 12

[0065] A.member3—most recently updated at time ref-
erence 15

[0066] B.memberl—most recently updated at time ref-
erence 11

Client 12a would use time reference 15 as the snapshot time
in the verify request (as shown in the example above)
because A.member3 is the most recently updated data object
among the source data objects stored among the virtual
objects 14 of client 12a.

[0067] At operation 706, the client 12a can receive a
response to the verify request indicating whether the trans-
action can be committed (COMMIT) or should be aborted
(FAIL). For example, in response to the client 12a receiving
a COMMIT from the sequencer module 104, processing in
the client 124 can proceed to operation 708 to commit the
transaction. On the other hand, in response to the client 124
receiving a negative response (e.g., FAIL), the client 12a can
proceed along processing paths I, II, III explained below.
[0068] At operation 708, the client 12a can respond to a
COMMIT from the sequencer module 104. A COMMIT
response indicates that the data states of the source data
objects as stored in the client 12¢ matches the sequencer
module’s data states of the same source data objects.
Accordingly, the computation can be deemed to be correct
with respect to those source data objects. In addition to
receiving a COMMIT from the sequencer module 104, the
client 12a can receive the value of the latest time counter
602 from the sequencer module 104, which identifies the log
index 404 of the next free log entry 402 in the shared log
102.

[0069] In response to receiving a COMMIT from the
sequencer module 104, the client 12a can commit the
transaction. In some embodiments, for example, the client
12a can submit a write transaction to the log manager
module 106 to update the target data objects. The write
transaction can include the value of the latest time counter
602, which identifies the log entry 402 in the shared log 102
to store the transaction. Client 12a can send a message to the
log manager module 106 to buffer the transaction in the log
manager module’s transaction write buffer 502 to be written
to the shared log 102. The value of the latest time counter
602 from the sequencer module 104 can also be used to
update the local time references of the target data objects
stored in the client 12a. Processing can return to operation
702 to process another transaction.

[0070] Returning to operation 706, the client 124 in the
alternative can receive a FAIL response from the sequencer
module 104. In some instances, a FAIL response can indi-
cate that not all the source data objects used to make the

May 2, 2019

computations for the transaction were at their latest data
state; in other words, there was a conflict between the data
state of at least one of the source data objects in the client
12a versus the data state of that source data object in the
shared log 102. Consequently, the computations performed
by client 12a may be incorrect. This is an example of an
“actual conflict.”

[0071] In other instances, a FAIL response can indicate a
failure in the sequencer module 104, whereby access to state
information (e.g., last-modified time 60454, FIG. 6) for one
or more of the source data objects identified in the verify
request is not possible or available. This is an example of
false indication of a conflict (a “non-conflict”). This aspect
of the present disclosure is discussed in more detail below.
[0072] Inresponse to receiving a FAIL from the sequencer
module 104, the client 12¢ in some embodiments can
proceed along any one of three processing paths I, II, III. The
client 12a does not know whether the FAIL is due to an
actual conflict or is a non-conflict failure in the sequencer
module 104 (e.g., a collision in the hash function used to
generate object identifiers). Accordingly, in some instances,
the client 12a can abort the transaction and return to opera-
tion 702 to process another transaction (processing path I).
In other instances, the client 12a can proceed to operation
722 (processing path II) or to operation 732 (processing path
1IT) and attempt to retry the verification. Processing paths 11
and III are discussed next.

Processing Path 11

[0073] At operation 722, the client 124 can respond to the
FAIL indication by scanning entries in the shared log 102,
and manually determining whether or not an actual conflict
exists. In some embodiments, the sequencer module 104 can
return a time reference T, ,,,,,..; to the client 124 along with
the FAIL indication. Depending on the nature of the FAIL
condition, T, , ..., can be the log index 404 of the log entry
402 in the shared log 102 of the source data object, among
all the source data objects in the read set, that was most
recently updated (in the case of an actual conflict). In the
case of a non-conflict failure in the sequencer module 104,
T, . nomea €2l be the value of the latest time counter 602 (i.e.,
the log index 404 of the log entry 402 at the tail of the shared
log 102).

[0074] In accordance with some embodiments, the client
124 can scan the shared log 102 for each source data object
for any updates made within a conflict window, to determine
whether or not an actual conflict exists. In some embodi-
ments, the “conflict window” for a data object can be defined
as the window of time between T,,,,,,,,.; (the time reference
returned by the sequencer module 104) and the client’s time
reference for that data object, keeping in mind that each
client in the system maintains its own virtual copy of data
objects and corresponding time references. Using the
examples above, for instance, the conflict window for the
data object A.member] is the time between time reference
12 (the client side time reference) and T,.,,,,....- The conflict
window for the data object A.member3 is the time between
time reference 15 and T,_,,,,.» and for the data object
B.memberl the conflict window is between time reference
11and T,,,,.cq

[0075] Consider the scanning for data object A.memberl,
for example. In some embodiments, the client 12a can query
the shared log 102, for each increment in time within the
conflict window (from time reference 12to T,,,,,,..;) to look

US 2019/0129982 Al

for any updates to A.memberl. Thus, client 12a can query
the shared log 102 for any updates to A.memberl made at
time reference 13 (e.g., read the log entry at log index=13),
then at time reference 14, and soonup to T,_,,,,..,- If an
update has been made to data object A.member] at any time
between 12 and T,,,,,.,» then an actual conflict of data
object A.memberl exists; in other words, the copy of
A.memberl held by client 124 is older than the current state
of A.memberl in the shared log 102. Otherwise, there is no
actual conflict with A.memberl.

[0076] At operation 724, in response to detecting an actual
conflict with any one of the source data objects, client 124
can proceed to operation 732. If no actual conflict is
detected, processing in the client 12a can proceed to opera-
tion 726.

[0077] At operation 726, the client 12a can retry verifying
the transaction and obtaining a log index when no actual
conflict exists. In accordance with the present disclosure, the
client 12a can include an additional parameter, referred to
herein as a VERIFIED flag, in the verify request. The
VERIFIED flag can serve to indicate to the sequencer
module 104 that the client 12a has verified that the source
data objects are not in conflict with the shared log 102 as of
time reference T,,,,,,...- Accordingly, the client 12a can use
the time reference T,,,,,,,,.; as the snapshot time parameter in
the verity request.

[0078] Since a source data object can be updated by
another client subsequent to verifying the conflict windows
(operation 722) and prior to receiving confirmation from the
sequencer module 104 to commit the transaction, the
sequencer module 104 may respond with another FAIL
indication. Accordingly, processing in the client 12a can
continue at operation 706 to repeat the process.

Processing Path 111

[0079] At operation 732, the client 12a can respond to the
FAIL indication by re-computing the transaction. In accor-
dance with some embodiments, the client 12a can use the
time reference T,,,,,,..; returned by the sequencer module
104 to obtain the latest data state of the source data objects
used in computing the transaction. For example, using
T,ermeas the client 12a can replay transactions from the
shared log 102 up to T,,.,,,..s for each data object, thus
updating the data state of the source data objects to the time
reference of T,,,,,,,..- The client 12a can then recompute the
transaction beginning at operation 702 with the updated
source data objects.

[0080] The discussion will now turn to a description of
additional detail in the sequencer module 104 in accordance
with some embodiments. As noted above, the sequencer
module 104 can indicate FAIL as a result of an actual
conflict, where the data state in the shared log 102 of a
source data object is more current than the data state in the
client. In some embodiments, for example, an actual conflict
can exist when the log index 404 of the most recent entry
402 of a source data object in the shared log 102 is greater
than the time reference for that source data object in the
client.

[0081] It is further noted that the sequencer module 104
can indicate FAIL where there is no actual conflict (a
non-conflict). In some embodiments, a non-conflict FAIL
can arise if the data objects table 604 does not contain an
entry for a source data object. In some embodiments, for
example, it may not be practical to store the entire data

May 2, 2019

objects table 604 in main memory. In specific instances, for
example, the data objects table 604 can contain thousands to
hundreds of thousands to millions of entries. Accordingly,
only portions of the data objects table 604 may be stored in
main memory, for example, in a cache. Being a cache
memory, portions of the cache can be evicted from main
memory, for example, due to memory pressure, or during the
course of normal memory management in the computer
system (e.g., 302, FIG. 3), and so on. It is therefore possible
that information for a source data object of a verify request
is in a part of the data objects table 604 that is not presently
cached in main memory, in which case the sequencer
module 104 can indicate a FAIL.

[0082] In some embodiments, a non-conflict FAIL can
arise due to a hash collision. As noted above, in some
embodiments, a data object in the data objects table 604 can
be indexed according to a hash value (hash code) computed
from the identifier of the object and the identifier of the
member in that object. Clients can transmit hash codes to
identify data objects in the read set and data objects in the
write set in order to minimize 1/O with the sequencer module
104. In the case of a hash collision for a data object, the
sequencer module 104 can respond with a FAIL because the
data object cannot be identified due to the collision.
[0083] Referring to FIG. 8, the discussion will now turn to
a description of processing in the sequencer module 104 in
accordance with some embodiments of the present disclo-
sure. FIG. 8, in conjunction with previous figures, shows a
high level operational flow in the sequencer module 104 for
verifying the correctness of a transaction in accordance with
the present disclosure. In some embodiments, for example,
the sequencer module 104 can include computer executable
program code, which when executed by a computer system
(e.g., 302, FIG. 3), can cause the computer system to
perform processing in accordance with FIG. 8. The opera-
tion and processing blocks described below are not neces-
sarily executed in the order shown, and can be allocated for
execution among one ore more concurrently executing pro-
cesses and/or threads.

[0084] At operation 802, the sequencer module 104 can
receive a verify request from a client (see operations 704,
726, FIG. 7, for example). As explained above, the verify
request can include identifiers of data objects in the read set
(source data objects) and data objects in the write set (target
data objects) of the verity request, and a snapshot time. The
client can provide any suitable time reference as the snap-
shot time. For example, the client can provide a snapshot
time that it believes represents the latest state of the data in
the source data objects. As noted above, the verify request
does not include (nor does it require) the data or operations
used to compute the transaction. In this way, the sequencer
module 104 can be quickly invoked and executed (light-
weight process).

[0085] At operation 804, the sequencer module 104 can
determine if the verify request includes the VERIFIED
parameter (see operation 726, FIG. 7). As explained above,
this parameter can be used when the client receives a FAIL
from the sequencer module 104. The parameter can serve to
indicate that the client has manually verified the source data
objects up to the time indicated by the snapshot time
(operation 726). In response to the verify request having a
VERIFIED parameter, the sequencer module 104 can pro-
ceed to operation 806; otherwise, the sequencer module can
proceed to operation 808.

US 2019/0129982 Al

[0086] At operation 806, the sequencer module 104 can
verify each source data object by scanning the shared log
102. As explained above, inclusion of the VERIFIED
parameter in the verify request indicates the client has
manually verified the data objects up to the snapshot time
provided in the verify request in response to a FAIL indi-
cation. Accordingly, the sequencer module 104 needs only to
scan that portion of the shared log 102 from the time of the
snapshot time to the latest entry in the shared log 102 (e.g.,
pointed to by the latest time counter 602) to verify the source
data objects, instead of having to scan the entire shared log
102. If none of the data objects appear in the shared log 102
subsequent to the snapshot time, the data objects can be
deemed to be verified; i.e., no conflict. If one of the data
objects appears in shared log 102 subsequent to the snapshot
time, this can be deemed to be a conflict. The sequencer
module 104 can proceed to operation 814.

[0087] At operation 808, the sequencer module 104 can
determine if all the source data objects are in memory. As
explained above, only portions of the data objects table 604
may be cached in main memory. As such, it is possible that
portion(s) of the data objects table 604 that contain one or
more of the source data objects may not be in main memory.
Accordingly, in response to a determination that one or more
of the source data objects are not in main memory, the
sequencer module 104 can proceed to operation 810; oth-
erwise, the sequencer module 104 can proceed to operation
812.

[0088] At operation 810, the sequencer module 104 can
signal a FAIL to the client since the portion(s) of the data
objects table 604 that contains one or more source data
objects are not in main memory. As such, the sequencer
module 104 does not have the last-modified times (6045,
FIG. 6) for those data objects, and cannot determine if they
are current with respect to the snapshot time provided in the
verify request. The sequencer module 104 can return a value
for T,.,meq to the client. In this situation, the value for
T,.nomeq can be the time reference of the latest entry in the
shared log 102; for example, the sequencer module 104 can
return the value of the latest time counter 602 as T,
Since the sequencer module 104 does not have state infor-
mation for one or more of the source data objects, the client
can rescan a portion of the shared log 102 using T, ,,,,,.. 10
manually determine if a conflict exists (see N branch of
operation 706, FIG. 7). This shifting of the rescanning
process from the sequencer module 104 to the clients
reduces the burden of rescanning in the sequencer module
104 to enable efficient processing of verify requests from
other clients as a lightweight process. Accordingly, the
sequencer module 104 can return to operation 802 to process
the next verify request.

[0089] At operation 812, the sequencer module 104 can
verify the actual state of the source data objects against the
snapshot time provided in the verify request, for example, by
comparing the snapshot time to time references of the source
data objects’ most recent updates in the shared log 102 to
determine whether the snapshot time represents the most
current data state of the source data objects. In some
embodiments, for instance, the sequencer modules 104 can
compare the last-modified time 6045 of each source data
object in the data objects table 604 against the snapshot time
received in the verify request.

[0090] A data object is deemed to be “verified” if its
last-modified time 6045 is less than or equal to the snapshot

May 2, 2019

time; in other words, when the snapshot time is not earlier
in time than any of the data object’s most recent update.
Stated differently, a data object is deemed to be verified if the
snapshot time represents the most current data state of the
data object.

[0091] Conversely, if the last-modified time 6045 of the
data object is greater than the snapshot time, then that data
object can be deemed to be at a state that is more recent than
indicated by the snapshot time; in other words, there is a
conflict. Stated differently, a conflict can exist when the most
current data state of the data object occurs later in time than
the snapshot time.

[0092] In accordance with the present disclosure, the
sequencer module 104 can consider the last-modified times
of the object members of an object, rather than the last-
modified time of the object itself. Recall that a data object
refers to an object (source object) and an object member
(source object members) in that object; e.g., a record 202 in
database table 200 in FIG. 2 can be viewed as an object, and
the data fields 204 can be viewed as object members. A
source data object can be deemed verified with respect to the
snapshot time, even though other members in that object
may have been updated later than the snapshot time. Con-
sider the transaction example discussed above in FIG. 7:

[0093] source data objects in read set:
[0094] A.memberl (i.e., object A and object member
memberl)
[0095] A.member3
[0096] B.memberl
[0097] target data objects in write set:
[0098] A.member6
[0099] C.member5
[0100] C.member9
[0101] snapshot time: 15

If an object member called member2 in object A was
updated at time reference 16, the source data objects com-
prising the read set are still deemed verified because A.mem-
ber2 is not part of the read set, even though the most current
data state of A.member2 occurs later in time than the
snapshot time. By comparison, if object A itself was the
basis for verification, then verification of the read set can fail
because object A would have an update time no earlier than
time reference 16, which is subsequent to the snapshot time.
[0102] At operation 814, if no conflicts were detected in
operation 812 (or operation 806), then the computations/
operations made using the source data objects can be
deemed to be “correct” and the sequencer module 104 can
continue processing at operation 816. On the other hand, if
at least one conflict was detected in operation 812 (or
operation 806), then whatever computations were made
using the source data objects can be deemed to be “incor-
rect” and the sequencer module 104 can process a FAIL at
operation 820.

[0103] At operation 816, the sequencer module 104 has
determined that the transaction is “correct” in terms of the
data objects used to compute the transaction, and can allow
the transaction to be committed. In accordance with some
embodiments of the present disclosure, for example, the
sequencer module 104 can increment the latest time counter
602 to point to the next (new) free entry in the shared log 102
in which the transaction will be stored (FIG. 9).

[0104] The sequencer module 104 can update the data
objects table 604 with respect to the target data objects. For
example, the sequencer module 104 can find one or more

US 2019/0129982 Al

entries in the data objects table 604 that contain that target
data objects. If a target data object is not already in the data
objects table 604, the sequencer module 104 can create a
new entry. For each target data object in the data objects
table 604, the sequencer module 104 can update its last-
modified time field 6045 with the value of the latest time
counter 602 to indicate the log entry 402 in the shared log
102 that contains the operation(s) applied to the target data
objects. The data objects table 604, therefore, provides
information (e.g., via the last-modified time field 604a) of
the latest updates to data objects in the shared log 102.
[0105] At operation 818, the sequencer module 104 can
signal the client to COMMIT the transaction. The sequencer
module 104 can also provide the latest time counter 602 (see
operation 708, FIG. 7) to the client. This allows the client to
update the last modified times of its local copy of the target
data objects.

[0106] At operation 820, the sequencer module 104 can
signal a FAIL to the client in response to detecting a conflict,
where the client can retry sending the verify request (see N
branch of operation 706, FIG. 7). The sequencer module 104
can return a value for T,,,,,,,.; to the client. In this situation,
the value for T,,,,,,,..- can be the time reference of the source
data object in the read set that was most recently updated,
rather than using the most recent log entry 402 in the shared
log 102 (operation 810). For example, the sequencer module
104 can scan the data objects table 604 and return the largest
value of the last-modified time 6045 among the source data
objects as T,,.,,..a- As €xplained above, shifting the rescan-
ning process from the sequencer module 104 to the clients
keeps the sequencer module a lightweight process so that it
can quickly process verify requests from other clients in the
system. Accordingly, the sequencer module 104 can return
to operation 802 to process the next verify request.

[0107] As noted above, processing in accordance with the
present disclosure allows the client to verify correctness of
the transaction in a single roundtrip message, without having
to employ time consuming heavyweight mechanisms such
as locking, write-logging, and the like. Processing by the
sequencer module 104 is efficient; it needs only to maintain
a counter (last-modified time) per data object, and do simple
in-memory comparisons to assess correctness of the trans-
action without the need for the source data objects or the
operations and/or computations of the transaction. This
lightweight interface to the sequencer module 104 allows
clients in the shared log system 100 to quickly access the
sequencer module 104. The lightweight processing in the
sequencer module 104 allows all clients to perform conflict
resolution with greatly reduced loading on the system as
compared to conventional approaches.

[0108] FIG. 9, in conjunction with the previous figures,
shows a high level operational flow in the log manager
module 106 for committing a transaction in accordance with
the present disclosure. In some embodiments, for example,
the log manager module 106 can include computer execut-
able program code, which when executed by a computer
system (e.g., 302, FIG. 3), can cause the computer system to
perform processing in accordance with FIG. 9.

[0109] At operation 902, the log manager module 106 can
receive a transaction from a client 12 (see operation 708,
FIG. 7, for example) to be committed to the shared log 102.
The transaction can include the log index (provided by the
sequencer module 104, operation 816) of the log entry 402
in the shared log 102 to store the transaction. The received

May 2, 2019

transaction can include one or more target data objects to be
written. Each target data object can include, among other
things, an object identifier, an identifier of a member in the
object, the data associated with the transaction, and so on.
The log manager module 106 can buffer the received trans-
action in its transaction write buffer 502.

[0110] At operation 904, the log manager module 106 can
write the received transaction stored in the transaction write
buffer 502 to the shared log 102. In some embodiments, for
example, the log manager module 106 can allocate space for
another log entry 402 in the shared log 102 to store the target
data objects. The write buffer 502 can retain the target data
objects for subsequent read operations on the target data
objects, and thus act as a caching mechanism.

[0111] The present disclosure will now turn to a discussion
of accessing the most recent update to a data object stored
in a shared log 102. Conventionally, a client 12 can generate
the latest state of a data object by replaying all the transac-
tions made to that object from the time of its instantiation.
The idea of “replay” is a well known and understood
concept. Briefly, to replay a given object the client 12 issues
individual read operations to offsets in the shared log 102 to
access log entries 402 for transactions made to the object of
interest. The client 12 serially applies those transactions to
the object starting from the time of the object’s instantiation.
It can be appreciated that replaying the shared log 102 can
greatly increase latency, especially when the client 12 is just
interested in a single update. Some systems improve on this
brute force approach by separating the log into per-object
streams. However, this alternative still requires playback of
a “stream,” which although smaller than the log, still can
contain many updates that the client may not be interested in
but has to replay in order to access the most recent update.
[0112] FIG. 10, in conjunction with previous figures,
shows a high level operational flow in the computer system
302 for accessing the most recent update of a data object in
accordance with the present disclosure. In some embodi-
ments, for example, the computer system 302 can include
computer executable program code, which when executed
by a processing unit (e.g., 312, FIG. 3), can cause the
processing unit to perform operations in accordance with
FIG. 10. The operation and processing blocks described
below are not necessarily executed in the order shown, and
can be allocated for execution among one ore more concur-
rently executing processes and/or threads.

[0113] At operation 1002, the computer system 302 can
receive a read request from a client to access the most recent
data state of a (target) data object. The read request can
include an identifier that identifies the target data object. In
some embodiments, the identifier can be a hash value
computed by the client using a name (e.g., a text string) of
the object and a name of the object member in that object
that constitute the target data object.

[0114] At operation 1004, the computer system 302 can
use the identifier of the target data object to access an entry
in the data objects table 604 corresponding to the target
object. In some embodiments, for example, the hash value
that identifies the target data object can be used to index into
the data objects table 604.

[0115] At operation 1006, the computer system 302 can
access a log entry 402 in the shared log 102. In some
embodiments, for example, the last-modified time 6045 of
the entry in the data objects table 604 that corresponds to the
target data object can be used as a log index 404 into the

US 2019/0129982 Al

shared log 102 to access the log entry 402. A transaction
stored in the accessed log entry 402 can include the most
recent operations performed on the target data object and
thus represents the most recent update made to the target
data object.

[0116] At operation 1008, the computer system 302 can
provide information relating to the most current data state of
the target object to the client. Processing in the sequencer
module 104 can continue at operation 1002 to process the
next read request.

[0117] The discussion will now turn to a description of
providing for multiple index tables in a shared log in
accordance with the present disclosure. As explained above
in connection with FIG. 1, clients 12 can instantiate and
maintain their own copies of the objects 112 as virtual
objects 14. Referring to FIG. 11, an example of an object
1112 is provided for discussion purposes. A client’s virtual
objects 14 can include structures for maintaining object
1112. In some embodiments, the object 1112 can comprise a
set of data fields. One data field can serve as a primary key
1122, and the remaining data fields can be collectively
referred to as the value component 1124 of the object 1112.
The example object 1122 illustrated in FIG. 11 is based on
the library database shown in FIG. 2, where the value
component 1124 includes a name data field (1), a phone
number data field (2), a number of books on loan data field
(3), and so on.

[0118] In some embodiments, the client’s virtual objects
14 can include a map abstraction (referred to herein as a
main map 1102) that gives users a key-value like interface
to access states (or instances) of the object 1112 stored in the
shared log 102. It will be appreciated that the client’s virtual
objects 14 can include several main map structures 1102,
one for each of several objects of interest to the client.

[0119] In accordance with the present disclosure, the client
can define one or more secondary index tables (indices)
1104 to be included among its virtual objects 14. The
secondary indices 1104 can serve as an index to the main
map 1102 based on keys (index keys) other than the primary
key 1122. The use of secondary indices 1104 allow the client
12a to view information in the main map 1102 in different
ways.

[0120] The secondary indices 1104 can be based on any
suitable indexing data structure, such as hash tables, search
trees, and so on. In some embodiments, for example, the
secondary indices 1104 can be hash tables. Each secondary
index 1104 can include rows of data, with each row com-
prising an index key 1142 and a primary keys field 1144. The
index key 1142 can be defined based on any one or more of
the data fields of the main map 1102, depending on how the
user wants to view the main map 1102. The primary keys
field 1144 in a given secondary index (e.g., 1104a) can be a
list of primary keys 1122 (from the main map 1102) that
correspond to the index key 1142.

[0121] Consider secondary index 1104aq, for instance. The
secondary index 1104¢ indexes the main map 1102 based on
data field 3 (number of books on loan, in our example). The
primary keys field 1144 lists the primary keys 1122 in main
map 1102 that contain the index key in data field 3. For
example, the index key 0 appears in a row of the main map
1102 having primary key 4, and so the primary keys field
1144 is “1, 5.” Likewise, for index key 1 (primary keys field

May 2, 2019

is 3), and for index key 5 (primary index field is 2, 5). A
secondary index 11045 indexes the main map 1102 based on
data field 4.

[0122] In some embodiments, the index key 1142 can be
based on portions of a data field in the main map 1102. For
example, an index key for a secondary index (not shown)
may be based on the first three digits of data field 2 in the
main map 1102 (e.g., area code). In other embodiments, the
index key can be based on combinations of multiple data
fields and/or portions of the data fields, computations per-
formed on the data fields (e.g., a hash code), and so on.

[0123] Using the example shown in FIG. 11, the discus-
sion will now turn to a description of various operational
flows in the shared log system 100 for processing a second-
ary index in accordance with the present disclosure, begin-
ning with processing in a client. A basic flow in the shared
log system 100 can include the client writing (e.g., a put
operation) a transaction to the shared log 102 that makes an
update to the object 1112. The write operation can proceed
as discussed above, including a verification step to verify
correctness of the transaction. Read operations can subse-
quently be made to read object updates written to the shared
log. The discussion will now turn to the secondary indices
1104.

[0124] Referring to FIG. 12, in conjunction with previous
figures, the discussion will turn to a description of various
operational flows in the shared log system 100 for process-
ing secondary indices 1104 in accordance with the present
disclosure when processing read operations (e.g., get opera-
tions) on the shared log 102. In some embodiments, for
example, the shared log system can include computer
executable program code, which when executed by a com-
puter system (e.g., 302, FIG. 3) in the client, can cause the
computer system to perform processing in accordance with
FIG. 12. The operation and processing blocks described
below are not necessarily executed in the order shown, and
can be allocated for execution among one ore more concur-
rently executing processes and/or threads.

[0125] At operation 1202, the system can receive a read
operation from a client that identifies a target object to read
the current state of the target object.

[0126] At operation 1204, the system can determine a
range of time references between the last read operation or
update operation on the target object made by the client and
the most current time reference in the shared log. In some
embodiments, for example, the client can store a local time
reference that indicates the time of the last update made to
the target object by the client, or the time of the last read
from the shared log. In some embodiments, the most current
time reference in the shared log can be the log index (e.g.,
404, FIG. 4) of the latest log entry (tail) in the shared log
102. In other embodiments, the shared log system can
maintain a table (e.g., data objects table 604, FIG. 6) that
identifies the last modified time for each object in the shared
log 102, which can serve as the most current time reference.

[0127] At operation 1206, the system can read the shared
log for any updates to the target object made within the time
range determined at operation 1204, since updates to the
target object can be made by other clients subsequent to
when the target object was last read or updated by the client.
For each time increment (index) within the time range, the
system can perform the following operations:

US 2019/0129982 Al

[0128] At operation 1208, the system can read an update,
if any, to the target object from the shared log for that time
increment.

[0129] At operation 1210, the system can store the
updated target object to the main map (e.g., 1102), thus
updating the main map. Referring to FIG. 11, for example,
row 1114a in main map 1102 can represent an update to
object 1112 in which the primary key 1122 was set to 1 and
the data fields were set Gabby, 650 555-0003, 4, 0, and
$0.00. Likewise, row 11145 can represent another update to
object 1112 in which the primary key 1122 was set to 2, and
the data fields were set Joan, 408 617-9889, 5, 3, and $3.00,
and so on. The updated target object can be inserted into the
main map using its primary key 1122 to index into the main
map, and storing the value component 1124 in the data fields
of the main map.

[0130] At operation 1212, the system can update each
secondary index table (e.g., 1104) defined on the main map
that is associated with the updated target object. In accor-
dance with the present disclosure, the secondary index tables
can be incrementally built up each time the client reads an
object into the main map; the secondary index tables can be
dynamically built using a just-in-time approach. In this way,
building the secondary index tables can be done with little
to no additional I/O load on the shared log. Moreover, since
the main map and the secondary index tables are maintained
in the memory (e.g., virtual objects 14) of the client, the
building process largely takes place within the client
machine and thus does not incur any processing load on the
shared log to support a secondary index. Each secondary
index table in the client that is associated with the target
object can be updated using information the updated target
object by the following operations:

[0131] At operation 1214, the system can generate an
index key by processing the updated target object using an
index-generating function that is associated with the given
secondary index table. Since the updated target object is
already inserted in the main map at operation 1210, in some
embodiments, the row in the main map that contains the
updated target object can be an input parameter to the
index-generating function. The index key (e.g., 1142, FIG.
11) can be used to index the given secondary index table.
The index-generating function can be a function this is
defined by the client (explained in more detail below). In
accordance with the present disclosure, the index-generating
function can use any part of the updated target object to
produce the index key.

[0132] At operation 1216, the system can use the index
key generated at operation 1214 to identify an entry (e.g.,
row) in the given secondary index table, which can be an
already existing entry or a new entry.

[0133] At operation 1218, the system can store the pri-
mary key 1122 of the updated target object into the primary
keys field (e.g., 1144, FIG. 11) of the identified entry in the
secondary index table. Processing can return to the top of the
inner loop (operation 1212) to update the next secondary
index table with the updated target object. When all sec-
ondary index tables have been updated, processing can
return to the top of the outer loop (operation 1206) to read
in the next update made to the target object from the shared
log.

[0134] Referring to FIG. 13, in conjunction with previous
figures, the discussion will turn to a description of various
operational flows in the shared log system 100 for adding a

May 2, 2019

secondary index table to a client’s virtual objects 14 in
accordance with the present disclosure. In some embodi-
ments, for example, the shared log system can include
computer executable program code, which when executed
by a computer system (e.g., 302, FIG. 3) in the client, can
cause the computer system to perform processing in accor-
dance with FIG. 13. The operation and processing blocks
described below are not necessarily executed in the order
shown, and can be allocated for execution among one ore
more concurrently executing processes and/or threads.

[0135] At operation 1302, the system can receive an add
index operation from a client to create a secondary index
table in the memory space of that client. The add index
operation can identify the object (target object) that the new
secondary index table is associated with. The add index
operation can further include a name for the new secondary
index table, and can include or otherwise identify an index-
generating function that is used to generate index keys (e.g.,
1142, FIG. 11) to index into the new secondary index table.

[0136] At operation 1304, the system can synchronize the
main map with the shared log to read all updates made the
target object into the main map. In some embodiments, for
example, the client can store a local time reference that
indicates the time of the last update made to the target object
by the client, or the time of the last read from the shared log.
The client can then read all updates made on the target object
from the shared log from that time reference up to the most
recent time in the shared log. Each update to the target object
can be added to the main map, for example, using the
primary key (e.g., 1122, FIG. 11) in each update to index the
main map.

[0137] At operation 1306, the system can create a second-
ary index table in its memory space that is associated with
the target object.

[0138] At operation 1308, the system can associate the
index-generating function with the newly created secondary
index. In accordance with the present disclosure, the index-
generating function can be defined by the client. This allows
the client to specify how they want to index the main map.
Referring for example to FIG. 11, one client can define a
secondary index table on the name data field. Another client
can define a secondary index table on the phone number data
field. Yet another client can define a secondary index table
on the area code portion of phone number data field, and so
on. The index-generating function can be written to extract
information from the value component 1124 of its associated
object to suit the needs of the client.

[0139] At operation 1310, the system can load the newly
created secondary index table with data contained in the
main map. This process does not require any processing
capacity from the shared log system since the main map and
the secondary index table are in the client’s memory space.
All the processing for initially loading the newly created
secondary index table can be performed by the client. In
some embodiments, for example, each row (e.g., 1114, FIG.
11) in the main map can be processed according to the
following:

[0140] At operation 1312, the system can use the index-
generating function provided in the add index operation to
process a row from the main map to generate an index key.
As explained above, the index-generating function can pro-
cess any portion of the value component (e.g., 1124, FIG.
11) of the row. In some embodiments, the index-generating

US 2019/0129982 Al

function can produce a hash code based on one or more data
fields (or portions thereof) of the value component to serve
as the index key.

[0141] At operation 1314, the system can index into the
newly created secondary index table using the index key
generated at operation 1312, and insert the primary key 1122
component of the row. Processing can return to the top of the
loop at operation 1310 to process the next row in the main
map. Processing concludes when all the rows in the main
map have been processed.

[0142] Embodiments in accordance with the present dis-
closure allow each client to create their own set of secondary
indices that tailored to their specific data access needs,
resulting different sets of secondary indices among clients.
Although not shown, each client can access their secondary
indices via a suitable API that takes a name of a secondary
index (e.g., the index name provided by the client in the add
index operation) and looks up data contained in the identi-
fied secondary index.

[0143] These and other variations, modifications, addi-
tions, and improvements may fall within the scope of the
appended claims(s). As used in the description herein and
throughout the claims that follow, “a”, “an”, and “the”
includes plural references unless the context clearly dictates
otherwise. Also, as used in the description herein and
throughout the claims that follow, the meaning of “in”
includes “in” and “on” unless the context clearly dictates
otherwise.

[0144] The above description illustrates various embodi-
ments of the present disclosure along with examples of how
aspects of the present disclosure may be implemented. The
above examples and embodiments should not be deemed to
be the only embodiments, and are presented to illustrate the
flexibility and advantages of the present disclosure as
defined by the following claims. Based on the above dis-
closure and the following claims, other arrangements,
embodiments, implementations and equivalents may be
employed without departing from the scope of the disclosure
as defined by the claims.

1. A method comprising:
concurrently receiving, by a computer system, put opera-
tions from a plurality of clients to store objects in a
shared log, each object comprising a primary key and
a value component;
receiving, by the computer system, a get operation from
a first client to read a target object stored in the shared
log;
reading, by the computer system, in response to the get
operation, the target object from the shared log; and
updating, by the computer system, a plurality of index
tables associated with the target object, including for
each index table:
generating an index key by processing the value com-
ponent of the target object using an index-generating
function that is associated with said each index table;
and
storing the primary key of the target object in a location
in said each index table that is indexed by the
generated index key.
2. The method of claim 1, further comprising replaying
updates made to the target object, including:
reading updates made to the target object from the shared
log;

May 2, 2019

processing the updates using index-generating functions
associated with the plurality of index tables to generate
a plurality of index keys; and

storing primary keys of the updates at locations in the
plurality of index tables indexed by the plurality of
generated index keys.
3. The method of claim 1, further comprising receiving a
plurality of index-generating functions from the first client,
wherein each received index function is associated with one
of the plurality of index tables.
4. The method of claim 1, further comprising defining the
(first) plurality of index tables for the first client and defining
a different (second) plurality of index tables for a second
client.
5. The method of claim 4, wherein index-generating
functions associated with the first plurality of index tables
are different from the index-generating functions associated
with the second plurality of index tables.
6. The method of claim 1, wherein the value component
comprises a plurality of data fields, wherein the index-
generating function processes one or more of the data fields
of the value component.
7. The method of claim 1, further comprising receiving an
add index operation from the first client that specifies an
object in the shared log, the add index operation further
specifying an index name and an index-generating function
provided by the first client, and in response to receiving the
add index operation updating a main map of the object by
reading updates to the object from the shared log and
populating the created index table by processing the updated
main map using the index-generating function provided by
the first client.
8. The method of claim 7, wherein populating the created
index table includes processing each row in the main map,
including generating an index key by processing a value
component of said each row using the index-generating
function provided by the first client, and inserting a primary
key of said each row into the created index using the
generated index key.
9. A non-transitory computer-readable storage medium
having stored thereon computer executable instructions,
which when executed by a computer device, cause the
computer device to:
concurrently receive put operations from a plurality of
clients to store objects in a shared log, each object
comprising a primary key and a value component;

receive a get operation from a first client to read a target
object stored in the shared log;

read, in response to the get operation, the target object

from the shared log; and

update a plurality of index tables associated with the

target object, including for each index table:

generating an index key by processing the value com-
ponent of the target object using an index-generating
function that is associated with said each index table;
and

storing the primary key of the target object in a location
in said each index table that is indexed by the
generated index key.

10. The non-transitory computer-readable storage
medium of claim 9, wherein the computer executable
instructions, which when executed by the computer device,
further cause the computer device to replay updates made to
the target object, including:

US 2019/0129982 Al

reading updates made to the target object from the shared

log;
processing the updates using index-generating functions
associated with the plurality of index tables to generate
a plurality of index keys; and

storing primary keys of the updates at locations in the
plurality of index tables indexed by the plurality of
generated index keys.

11. The non-transitory computer-readable storage
medium of claim 9, wherein the computer executable
instructions, which when executed by the computer device,
further cause the computer device to receive a plurality of
index-generating functions from the first client, wherein
each index function is associated with one of the plurality of
index tables.

12. The non-transitory computer-readable storage
medium of claim 9, wherein the (first) plurality of index
tables in the first client are different from a (second) plurality
of index tables for a second client.

13. The non-transitory computer-readable storage
medium of claim 12, wherein index-generating functions
associated with the first plurality of index tables are different
from the index-generating functions associated with the
second plurality of index tables.

14. The non-transitory computer-readable storage
medium of claim 9, wherein the computer executable
instructions, which when executed by the computer device,
further cause the computer device to receive an add index
operation from the first client that specifies an object in the
shared log, the add index operation further specifying an
index name and an index-generating function provided by
the first client, and

in response to receiving the add index operation, update

a main map of the object by reading updates to the
object from the shared log and populate the created
index table by processing the updated main map using
the index-generating function provided by the first
client.

15. The non-transitory computer-readable storage
medium of claim 14, wherein populating the created index
table includes processing each row in the main map, includ-
ing generating an index key by processing a value compo-
nent of said each row using the index-generating function
provided by the first client, and inserting a primary key of
said each row into the created index using the generated
index key.

16. An apparatus comprising:

one or more computer processors; and

a computer-readable storage medium comprising instruc-

tions for controlling the one or more computer proces-
sors to be operable to:
concurrently receive put operations from a plurality of
clients to store objects in a shared log, each object
comprising a primary key and a value component;

receive a get operation from a first client to read a target
object stored in the shared log;

read, in response to the get operation, the target object

from the shared log; and

12

May 2, 2019

update a plurality of index tables associated with the

target object, including for each index table:

generating an index key by processing the value com-
ponent of the target object using an index-generating
function that is associated with said each index table;
and

storing the primary key of the target object in a location
in said each index table that is indexed by the
generated index key.

17. The apparatus of claim 16, wherein the computer-
readable storage medium further comprises instructions for
controlling the one or more computer processors to be
operable to replay updates made to the target object, includ-
ing:

reading updates made to the target object from the shared

log;
processing the updates using index-generating functions
associated with the plurality of index tables to generate
a plurality of index keys; and

storing primary keys of the updates at locations in the
plurality of index tables indexed by the plurality of
generated index keys.

18. The apparatus of claim 16, wherein the computer-
readable storage medium further comprises instructions for
controlling the one or more computer processors to be
operable to receive a plurality of index-generating functions
from the first client, wherein each index function is associ-
ated with one of the plurality of index tables.

19. The apparatus of claim 16, wherein the (first) plurality
of'index tables in the first client are different from a (second)
plurality of index tables for a second client, and wherein
index-generating functions associated with the first plurality
of index tables are different from the index-generating
functions associated with the second plurality of index
tables.

20. The apparatus of claim 16, wherein the computer-
readable storage medium further comprises instructions for
controlling the one or more computer processors to be
operable to receive an add index operation from the first
client that specifies an object in the shared log, the add index
operation further specifying an index name and an index-
generating function provided by the first client, and

in response to receiving the add index operation, update

a main map of the object by reading updates to the
object from the shared log and populate the created
index table by processing the updated main map using
the index-generating function provided by the first
client,

wherein populating the created index table includes pro-

cessing each row in the main map, including generating
an index key by processing a value component of said
each row using the index-generating function provided
by the first client, and inserting a primary key of said
each row into the created index using the generated
index key.

