
US008719760B1

(12) United States Patent (10) Patent No.: US 8,719,760 B1
HO (45) Date of Patent: May 6, 2014

(54) VALIDATING INTEGRATED CIRCUIT (58) Field of Classification Search
SIMULATION RESULTS USPC .. 71.6/101, 111, 136

(75) I t William Wai Yan Ho Cupertino, CA See application file for complete search history.
VO IIIlam Wa Yan 10, UuperL1no,

(US) p (56) References Cited

(73) Assignee: Worldwide Pro Ltd., Hong Kong (CN) U.S. PATENT DOCUMENTS
5,379,231 A 1/1995 P.11 tal.

(*) Notice: Subject to any disclaimer, the term of this 5,446,676 A 8, 1995 E. s
patent is extended or adjusted under 35 6,807,520 B1 * 10/2004 Zhou et al. TO3/14
U.S.C. 154(b) by 0 days. 7,827,016 B1 * 1 1/2010 Ho TO3, 13

k .
(21) Appl. No.: 13/340,329 cited by examiner

Primary Examiner — Thuan Do
(22) Filed: Dec. 29, 2011 (74) Attorney, Agent, or Firm — Aka Chan LLP

Related U.S. Application Data (57) ABSTRACT
A technique validates results from a circuit simulation esti

(60) SNES, pris Ni. : : s SO mation program. The technique determines whether the esti
O E. lication No 11 1279 39 filed on Apr. 11, 2006 mated results satisfy Kirchhoffs current law (KCL), Kirch
ER No. 74 61 360 s- - us pr. 11, s hoff's voltage laws (KVL), and power conservation for the

vs. is - ww. original circuit. A reporting tool shows the validation results

(51) Int. Cl and may be customized by the user. The tool can show in the
Go,F i7/50 (2006.01) original circuitry where the estimated results may be inaccu

(52) U.S. Cl. rate.
USPC 716/136; 716/101; 716/111 20 Claims, 9 Drawing Sheets

System Flow

From Figure 4

Calc KVL 531

Calc Power Conservation 534

Output Error 539

U.S. Patent May 6, 2014 Sheet 1 of 9 US 8,719,760 B1

9 Figure 1

A-1

2O6 204 2O2 22O

1-222

208
Display
Adapter

Network Serial Port Keyboard Mass Storage

212 7 28

Figure 2

US 8,719,760 B1 Sheet 2 of 9 May 6, 2014 U.S. Patent

9 ?un61–

#7 I9 deo

O/I

US 8,719,760 B1 Sheet 3 of 9 May 6, 2014 U.S. Patent

§ 9.InãIA O L OO

Os)

No.

9 ?un6|-

US 8,719,760 B1 Sheet 5 Of 9 May 6, 2014 U.S. Patent

U.S. Patent May 6, 2014 Sheet 6 of 9 US 8,719,760 B1

i

US 8,719,760 B1 Sheet 7 Of 9 May 6, 2014 U.S. Patent

9 ?un61–

6 ?un61–

US 8,719,760 B1 Sheet 8 of 9 May 6, 2014 U.S. Patent

U.S. Patent May 6, 2014 Sheet 9 Of 9 US 8,719,760 B1

s f

US 8,719,760 B1
1.

VALIDATING INTEGRATED CIRCUIT
SIMULATION RESULTS

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of U.S. patent applica
tion Ser. No. 12/238,880, filed Sep. 26, 2008, which is a
divisional of U.S. patent application Ser. No. 1 1/279,391,
filed Apr. 11, 2006, issued as U.S. Pat. No. 7,461,360 on Dec.
2, 2008, which are incorporated by reference.

BACKGROUND OF THE INVENTION

The present invention relates to the field of electronic
design automation for electronic circuits, and more specifi
cally to techniques of validating simulation results for elec
tronic circuits, especially when simulated using an approxi
mation or reduction method.
The age of information and electronic commerce has been

made possible by the development of electronic circuits and
their miniaturization through integrated circuit technology.
Integrated circuits are sometimes referred to as “chips. Some
type of integrated circuits include digital signal processors
(DSPs), amplifiers, dynamic random access memories
(DRAMs), static random access memories (SRAMs), eras
able programmable read only memories (EPROMs), electri
cally erasable programmable read only memories (EE
PROMs), Flash memories, microprocessors, application
specific integrated circuits (ASICs), and programmable logic

Integrated circuits have been widely adopted and are used
in many products in the areas of computers and other pro
grammed machines, consumer electronics, telecommunica
tions and networking equipment, wireless network and com
munications, industrial automation, and medical instruments,
just to name a few. Electronic circuits and integrated circuits
are the foundation of the Internet and other on-line technolo
gies including the World Wide Web (WWW).

There is a continuing demand for electronic products that
are easier to use, more accessible to greater numbers of users,
provide more features, and generally address the needs of
consumers and customers. Integrated circuit technology con
tinues to advance rapidly. With new advances in technology,
more of these needs are addressed. Furthermore, new
advances may also bring about fundamental changes in tech
nology that profoundly impact and greatly enhance the prod
ucts of the future.

To meet the challenges of building more complex and
higher performance integrated circuits, Software tools are
used. These tools are in an area commonly referred to as
computer aided design (CAD), computer aided engineering
(CAE), or electronic design automation (EDA). There is a
constant need to improve these electronic automatic tools in
order to address the desire for higher integration and greater
complexity, and better performance in integrated circuits.

Large modern day integrated circuits have millions of
devices including gates and transistors, and are very complex.
As process technology improves, more and more devices may
be fabricated on a single integrated circuit, so integrated
circuits will continue to become even larger and more com
plex with time. In the past, many parasitic effects may not
have been considered because they were less significant or
insignificant compared to other factors.
As lithography and miniaturization techniques advance,

on-chip devices and line widths become Smaller, frequencies
increase. As a consequence, many more impedances such as
parasitic resistances, inductances, and capacitances and para

10

15

25

30

35

40

45

50

55

60

65

2
sitic effects need to be considered. If these parasitics and
effects are not taken into account, poor simulation results will
result, and possible the electronic circuits will not work as
expected after the circuit is fabricated. As more and more
parasitic and other effects are accounted for, the circuit net
works to be simulated become larger and much more com
plex. Further, electronic systems at the board level are becom
ing more complex, thus increasing circuit network simulation
size and complexity. As network size and complexity
increases, simulating the network takes significantly more
computing resources and computation time.

Simulating large, complex networks to obtain an exact
Solution is time consuming. Such simulations can take may
take many hours, days, or even weeks. Circuit simulation is an
order n-cubed problem. So, as the number of nodes increases,
the time increases significantly. Therefore, to reduce the
simulation time, approximation or reduction methods are
used to simulate the networks. Some of these techniques are
known as fast-Spice or fast-MOS techniques.

These techniques estimate the simulation results, and do
not provide an exact solution. In an approximation method
approach, certain circuit information is thrown away or not
considered. The approach may be iterative. By reducing the
amount of information to consider, the estimated simulation
results may be obtained much faster than trying to find the
exact Solution. For example, an exact solution for a circuit
with 600,000 nodes may be obtained in 38 hours with Spice,
but using an approximation method, the results may be
obtained in 10 minutes.

There are shortcomings to the approximation or reduction
approaches to circuit simulation because they trade off accu
racy for performance. Accuracy is reduced because the esti
mated simulation results are estimates rather than an exact
solution. Further, even though the developer of the circuit
simulation estimation Software markets the estimated results
as being accurate, the user will not know the degree of accu
racy of the simulation results. For Some circuit networks, an
approach may provide results which are within 1 percent of
the exact Solution, which may be acceptable depending on the
circuitry. But for Some circuit networks, the same approach
may give results that are more than 5 percent off, which may
be unacceptable.

Therefore, there is a need for techniques of validating the
results from circuit simulation estimation Software.

SUMMARY OF THE INVENTION

A technique validates results from a circuit simulation
estimation program. The technique determines whether the
estimated results satisfy Kirchhoffs current law (KCL),
Kirchhoff's voltage laws (KVL), and power conservation for
the original circuit. A reporting tool shows the validation
results and may be customized by the user. The tool can show
in the original circuitry where the estimated results may be
inaccurate.

In an implementation, the invention provides a method
including providing a first database of a circuit, where a
Voltage is associated with each node of the circuit; identifying
independent loops of the circuit; Summing the Voltages for
each identified loop and storing the loop Sum results in a
second database; Summing the currents at each node of the
circuit and storing the node sum results in the second data
base; Summing power consumption of each branch of the
circuit and storing the total branch power in the second data
base; and storing input power to the circuit in the second
database.

US 8,719,760 B1
3

The method further includes providing for display on a
display the loop Sum for each loop of the circuit; providing for
display on the display the node sum for each node of the
circuit; and providing for display on the display the input
power to the circuit and the total branch power.

In another implementation, the invention provides a
method including providing a circuit network specified in a
netlist format and input sources associated with the circuit;
providing a simulation output for the circuit, where the simu
lation output includes node Voltages for each node of the
circuit; building a graph data structure from the circuit netlist;
using the node Voltages, determining branch Voltages for
branches in the graph; identifying a tree and links in the
graph; and identifying independent loops in the graph.
The method further includes summing the voltages for

each independent loop in the graph; Summing the currents at
each node in the graph; Summing power consumed for each
branch in the graph to obtain a total power consumed; deter
mining a total input power to the circuit network using the
input sources associated with the circuit; and Subtracting the
total power consumed from the total input power to obtain a
total power difference.

The method further includes indicating a not validated
condition when at least one of the loops in the graph has a
nonzero Sum; indicating a not validated condition when at
least one of the nodes in the graph has a nonzero Sum; and
indicating a not validated condition when the total power
difference is not zero.

In another implementation, the invention provides a
method including a method including providing a netlist of a
circuit; providing simulation results for the circuit; using the
simulation results, evaluating Kirchhoff's current law for
each node of the circuit; using the simulation results, evalu
ating Kirchhoff's voltage law for each independent loop of
the circuit; and determining whether input power to the circuit
equals power consumed by the circuit. The simulation results
may be obtained by using an approximation technique or
reduction approach. The simulation results will be indicated
as valid only when Kirchhoffs current law is satisfied, Kirch
hoff's Voltage law is satisfied, and input power equals power
consumed.

Other objects, features, and advantages of the present
invention will become apparent upon consideration of the
following detailed description and the accompanying draw
ings, in which like reference designations represent like fea
tures throughout the figures.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a system of the present invention for perform
ing integrated circuit simulation.

FIG. 2 shows a simplified system block diagram of a com
puter system used to execute Software of the invention.

FIG.3 shows a typical modeling of an integrated circuit for
circuit simulation.

FIGS.4 and 5 show a system flow diagram of the invention.
FIG. 6 shows an example of branch format data.
FIG. 7 shows building a graph from a network.
FIG. 8 shows transforming node voltages to branch volt

ageS.
FIG. 9 shows finding a tree and links.
FIG. 10 shows a graph of a tree and links.

DETAILED DESCRIPTION

FIG. 1 shows an electronic design automation (EDA) sys
tem of the present invention for validating circuit simulation

10

15

25

30

35

40

45

50

55

60

65

4
results when designing an electronic circuit or integrated
circuit, including circuit simulations of the entire integrated
circuit, portions of the integrated circuit, or circuit blocks. In
an embodiment, the invention is software that executes on a
computer workstation system, such as shown in FIG. 1. FIG.
1 shows a computer system 1 that includes a monitor 3, Screen
5, cabinet 7, keyboard 9, and mouse 11. In some implemen
tations, however, electronic design automation systems are
operated headless, which means these systems will not a
mouse, keyboard, display, and so forth.
Mouse 11 may have one or more buttons such as mouse

buttons 13. Cabinet 7 houses familiar computer components,
Some of which are not shown, Such as a processor, memory,
mass storage devices 17, and the like. Mass storage devices 17
may include mass disk drives, floppy disks, magnetic disks,
optical disks, fixed disks, hard disks, CD-ROMs, recordable
CDs, DVDs, DVD-ROMs, recordable DVDs, Flash and other
nonvolatile solid-state storage, tape storage, reader, and other
similar media, and combinations of these. A binary machine
executable version of the software of the present invention
may be stored or reside on mass storage devices 17. Further
more, the source code of the software of the present invention
may also be stored or reside on mass storage devices 17 (e.g.,
magnetic disk, tape, CD-ROM, or DVD).

Further, FIG. 2 shows a system block diagram of computer
system 1 used to execute software of the present invention. As
in FIG. 1, computer system 1 includes monitor 3, keyboard 9.
and mass storage devices 17. Computer system 1 further
includes Subsystems such as central processor 202, System
memory 204, input/output (I/O) controller 206, display
adapter 208, serial or universal serial bus (USB) port 212,
network interface 218, and speaker 220. The invention may
also be used with computer systems with additional or fewer
Subsystems. For example, a computer system could include
more than one processor 202 (i.e., a multiprocessor system)
or the system may include a cache memory.
The processor may be a dual core or multicore processor,

where there are multiple processor cores on a single inte
grated circuit. The system may also be part of a distributed
computing environment. In a distributed computing environ
ment, individual computing systems are connected to a net
work and are available to lend computing resources to another
system in the network as needed. The network may be an
internal ethernet network, Internet, or other network. Some
examples of distributed computer systems for Solving prob
lems over the Internet include Folding(a)home, SETI(a home,
and the Great Internet Mersenne Prime Search (GIMPS).

Arrows such as 222 represent the system bus architecture
of computer system 1. However, these arrows are illustrative
of any interconnection scheme serving to link the Subsystems.
For example, speaker 220 could be connected to the other
Subsystems through a port or have an internal connection to
central processor 202. Computer system 1 shown in FIG. 1 is
but an example of a computer system suitable for use with the
present invention. Other configurations of Subsystems Suit
able for use with the present invention will be readily apparent
to one of ordinary skill in the art.
Computer software products may be written in any of

various Suitable programming languages, such as C, C++,
Pascal, Fortran, Perl, MatLab (from MathWorks, Inc.), SAS,
SPSS, Java, and AJAX. The computer software product may
be an independent application with data input and data dis
play modules. Alternatively, the computer software products
may be classes that may be instantiated as distributed objects.
The computer Software products may also be component
software such as Java Beans (from Sun Microsystems) or
Enterprise Java Beans (EJB from Sun Microsystems).

US 8,719,760 B1
5

An operating system for the system may be one of the
Microsoft Windows(R family of operating systems (e.g., Win
dows 95, 98, Me, Windows NT, Windows 2000, Windows XP,
Windows XP x64 Edition, Windows Vista), Linux, HP-UX,
UNIX, SunOS, Solaris, Mac OSX, Alpha OS, AIX, IRIX32,
or IRIX64, or combinations of these. Other operating systems
may be used. Each computer in a distributed computing envi
ronment may use a different operating system.

Furthermore, the computer may be connected to a network
and may interface to other computers using this network. For
example, each computer in the network may perform part of
the task of the many series of circuit simulation steps in
parallel. Furthermore, the network may be an intranet, inter
net, or the Internet, among others. The network may be a
wired network (e.g., using copper), telephone network,
packet network, an optical network (e.g., using optical fiber),
or a wireless network, or any combination thereof. For
example, data and other information may be passed between
the computer and components (or steps) of a system of the
invention using a wireless network using a protocol such as
Wi-Fi (IEEE standards 802.11, 802.11a, 802.11b, 802.11e,
802.11g, 802.11i, and 802.11n, just to name a few examples).
For example, signals from a computer may be transferred, at
least in part, wirelessly to components or other computers.
A specific type of electronic design automation tool is a

circuit simulation program or system. A circuit simulation
program performs analysis of circuits containing resistors,
capacitors, inductors, mutual inductors, independent Voltage
and current sources, dependent sources, transmission lines,
and semiconductor devices including diodes, bipolar junction
transistors (BJTs), junction field effect transistors (JFETs),
and metal over semiconductor field effect transistors (MOS
FETs). A circuit simulator may perform nonlinear DC, non
linear transient, linear AC, and other analyses.
One circuit simulation program is SPICE, originating from

the University of California, Berkeley. SPICE stands for
“Simulation Program Integrated Circuits Especially
Despite the success of SPICE and other circuit simulation
programs, existing circuit simulation programs use method
ology and computational techniques not suitable for use in
distributed computing environment and determining real or
exact solutions.

FIG. 3 shows a typical modeling of a circuit or integrated
circuit for circuit simulation. The model uses resistance,
capacitance, inductance, and nonlinear devices. The model
has two supply networks, VDD 301 and ground (GND) 304,
and a substrate network 307. VDD, GND, and the substrate
may be more specifically modeled using a resistance-capaci
tance-inductance (RCL) network. A power Supply or other
input-output (I/O) 310 are connected to the VDD, GND, and
Substrate. The power Supply may be modeled using a resis
tance-capacitance-inductance (RCL) network. There may be
more supplies then VDD and ground, and these would be
modeled similarly to VDD, GND, and substrate.

Between VDD and GND, there may be various compo
nents or devices including decoupling capacitors 314, devices
nonlinear circuits, gates linear and nonlinear, interconnect
RCL, and clock tree RCL. Examples of devices nonlinear
circuits include transistors, BJT and MOS, and diodes.
Examples of gates linear and nonlinear include NAND, NOR,
OR, AND, logic blocks, intellectual property (IP) blocks, and
others.
Any one or more components or devices may be connected

to VDD and GND, and in any combination. For example, one
or more transistors may be connected between the Supplies.
The transistors may form an amplifier, NAND gate, or other
circuit that is to be simulated according to this model.

10

15

25

30

35

40

45

50

55

60

65

6
In circuit simulation, a circuit or component is represented

using an RCL network and Sources. For example, a bipolar
junction transistor (BJT) may be represented using a hybrid
pi model, which has resistances, capacitances, and a depen
dent current source. A MOSFET transistor may be modeled
using, for example, a BSIM or other model. The model rep
resentation of a device or other component may be referred to
as its equivalent circuit. It can be appreciated as an electronic
circuit has more and more transistors, gates, and other com
ponents, the equivalent model of the electronic circuit
becomes a much more complicated RCL network with
Sources. As a circuit gets larger and there are more nodes and
branches, the simulation of the circuit becomes more compli
cated, taking more time, memory, and CPU resources in
determining a solution.

Using a circuit simulator Such as Spice, the simulation
involves performing numerous calculations including matrix
inversions and other linear algebra operations. The results
from these calculations will be an exact solution. Circuit
simulation, especially for very large circuit networks, is time
consuming because many calculations need to be performed
and the types of calculations are generally computationally
complex.
An approximation or reduction method of circuit simula

tion may be used obtain an estimated Solution instead of an
exact solution. These types of Software programs may be
referred to as circuit estimators. Circuit estimators obtain
simulation results faster than a circuit simulator like Spice by
throwing away circuit information. What particular informa
tion gets thrown away will vary depending on the approach
used. Throwing away information reduces the amount of the
information that needs to be considered in the calculations
and speeds up the calculations. The results, however, are an
estimate rather than an exact Solution of the network.
Compared to a circuit simulator like Spice, a circuit esti

mator obtains results generally faster. The estimated Solution
is expected to be close to the exact solution, but the degree of
closeness is not quantified for the user. This invention pro
vides a technique to evaluate or validate the results of an
estimated solution of a network simulation. The invention
answers the question, “How much is the estimated result off
by?”

In an implementation, a validation method of the invention
includes:
(1) Build graph.
(2) Find tree and links.
(3) Find loops.
(4) Calculate KCL.
(5) Calculate KVL.
(6) Calculate power conservation.
(7) Provide error output.
KCL refers to Kirchhoff's current law: The algebraic sum

of all the instantaneous currents leaving (or entering) any
node of a circuit is identically zero for all time. KVL refers to
Kirchhoff's voltage law: The algebraic sum of all of the
instantaneous Voltage drops or rises encountered in traversing
any loop of a circuit (network) is identically zero for all time.
Power conservation refers to the algebraic sum of all of
instantaneous power input into the whole network is identi
cally total Sum of power consuming in the whole circuit
(network). In other words, input power is equal to consumed
power of the whole network.
The above validation method presents steps in a specific

order. An implementation of the invention performs the steps
in the given order. However, in other implementations of the
invention, they may be other steps includes or some steps may
be omitted, or the order of the steps may be different from

US 8,719,760 B1
7

above. For example, the KCL, KVL, and power steps are
order independent. Therefore, in an embodiment, the calcu
lations for KVL may be performed before the calculations for
KCL. In another embodiment, the calculations for KCL and
KVL may be performed in the same step. Some steps above
may be performed at the same time on different processors or
processor cores in a parallel processing implementation. In
other embodiments, the steps may be (1) KCL, power, KVL.;
(2) KVL, KCL, power; (3) KVL, power, KCL; (4) power,
KCL, KVL.; or (5) power, KVL, KCL. There are many alter
natives and implementations of the invention and any of these
may be used to validate estimated simulation results.

FIGS. 4 and 5 show a system flow diagram of a specific
implementation of the invention. In the system flow, there is a
database db1 which contains the network to be validated. In
an embodiment, database db1 contains the circuitry and
results that will be evaluated. The original circuitry may be
provided by way of a netlist 451 or other suitable technique
for specifying a circuit such as schematic capture. The netlist
may be provided in a format such as DSPF. The netlist may be
generated by extraction from a layout. Input sources 454,
Such as current or Voltage sources, or both, of the original
circuitry are specified too. The sources may include indepen
dent Voltage sources, independent current sources, dependent
Voltage sources, or independent current sources, or any com
bination of these.

The results, such as node Voltages or values, to be validated
may be from Spice, circuit simulator, IR (voltage) drop esti
mator, or other circuit characteristic estimation software 457.
The results from a standard Spice circuit simulator may be
validated, but since this type of Spice circuit simulator pro
vides exact results, there is not truly a need to validate these
results, unless perhaps a person wants to debug the Software.
The results of Spice circuit simulator will validate using the
techniques of the invention, showing that the results are accu
rate. Typically, the results 460 that are validated are from a
circuit simulator providing estimated simulation results
according to an approximation or reduction technique.

In an embodiment, simulation results 460 include node
voltages for the nodes of a circuit of a netlist. The simulation
results may be a listing of node names or node number and
corresponding Voltage value for that node. These results may
be stored in database db1. Circuit estimators may not give
results for each and every node of the circuitry. This is
because in order to speed up the calculations, information
may be thrown away. In an embodiment, in the case there are
missing nodes (i.e., nodes of the original circuitry where no
Voltage value is provided), the validation technique will not
evaluate or validate the simulation results because not enough
data is available. The technique will inform the user that
nodes are missing. The missing nodes may be shown on a
display for the user. The user may be able to rerun the circuit
estimation Software to specify all nodes, and if all nodes are
provided, then the validation technique may be used to Vali
date the results.

These will be put into database db1. In an implementation
of the invention, the node Voltages, netlist, and sources are
held in contained in a single database db1. However, in other
implementations of the invention, the information may be
held in separate databases. For example, node Voltages may
be in a first database, netlist in a second database, and sources
in a third database. There may be any number of databases
and the information may be held in the databases in any
combination.

10

15

25

30

35

40

45

50

55

60

65

8
A conversion routine 402 converts db1 into a branch data

base db2. The branch database has node numbers for each
node, branch impedance for each branch, Voltage sources,
and current sources.

FIG. 6 shows an example of branch format data. The con
version routine may convert a netlist into branch format as
shown, including many numbers of Such branches. Between
two nodes no1 and n02, there is a branch including an imped
ance Z and source 621. Nodes no1 and n02 form a junction
pair. The impedance may include resistance, capacitance, or
inductance. In an alternative implementation of the invention,
admittance may be used. In electrical engineering, the admit
tance Y is the inverse or reciprocal of impedance. Source 621
is an independent Voltage source. There may be another
Source, an independent current source (not shown), in series
with I. Furthermore, there may also be dependent voltage
Sources or independent current source, or combinations of all
the different types of Sources. Each junction pair may have a
current I and Voltage or potential E associate with it.

In the system flow of FIG. 4, from the branch database, the
system flow includes building a graph 406. FIG. 7 shows an
example of building a graph. Building a graph takes the
circuit and builds the circuit connectivity into a graph data
structure. A circuit has nodes and branches. The branches
may have devices, Sources, or other components. FIG. 7 is a
circuit with branches and four nodes n1, m2, n3, and na-.
To build a graph, any node may be selected as a reference

node. For example, node na may be selected as the reference
node. The user may specify the reference node. The reference
node is a node to which other nodes or parts of the circuitry are
referenced. The reference node selected does not need to be
the “ground of the circuit. Nodal voltages for each of the
nodes may be provided or reported as a Voltage in reference to
the reference node. Starting at node na, tracing of the circuit
branches proceeds as follows: b1, b2. b3, b4, b5. b3, and b8.

In an implementation, the graph data structure is stored in
a database. This database has two tables. A first table is a
branch table data structure which points to the two end of a
branch. A second table is a node table which points to
branches connected to the same node. In other implementa
tions, the graph data structure may include more than two
tables. And the tables may be stored in more than one data
base.
A circuit component is represented using a branch Such as

shown in FIG. 6. More specifically, each tree branch repre
sents resistance-capacitance-inductance (RCL) and one or
more sources, such as current source, Voltage source, depen
dent current source, and dependent Voltage source. A device
model for a transistor or other device is a RCL network with
a dependent source. Therefore, each transistor of the circuit
will be a branch in the network graph. The entire graph is a
RCL network with sources.
FIG.10 shows agraph of a tree and links. Tree branches are

shown using solid lines, and links are shown using broken
lines. In a graph, Some information is associated with each
node and edge. For example, a node of the graph may be a
node in the circuit and edge may be a branch in the circuit. A
graph is an abstract data type that consists of a set ofnodes and
a set of edges that establish relationships or connections
between the nodes. A specific technique, among others, to
implement a graph data structure is to use doubly linked lists
over the nodes and the ingoing and outgoing edges of the
nodes. Another technique to implement a graph is to use an
array structure. There are many other approaches to imple
menting a graph data structure in a computer system, and any
of these may be used.

US 8,719,760 B1
9

In the system flow of FIG. 4, after building a graph, the
technique includes transforming the node Voltage to the
branch voltage 411. FIG. 8 shows transforming node voltages
to branch Voltages. Finding branch value includes finding
voltages for each branch. Node voltages 460 are provided.
The branch Voltage is the Voltage across two nodes. For
example, a branch b1 is between two nodes n1 and na, where
a node Voltage at n1 is 5 volts and a node Voltage at n2 is 3
volts. The branch voltage for branch b1 will be n1-n2, which
is 2 volts.

In the system flow of FIG. 4, after transforming the node
value to branch value, the technique includes finding tree and
links 417. FIG. 9 shows finding tree and links. Branches and
links of the tree are identified in a given network.
A tree of a graph is a connected Subgraph that includes all

the nodes of the graph but contains no loops. A loop is a
circular path from a first node through other nodes and return
ing to the first node. A loop has a Voltage drop of Zero. A
Subgraph of a graph is a set of branches and nodes belonging
to a graph. A link forms a loop with one or more tree branches,
and may be referred to as a unit link. A tree branch does not
form a loop. Typically, a circuit or system has one tree and
multiple links. FIG. 10 shows an example of a graph with a
tree, nodes, branches, and links. A circuit network is repre
sented using Such a graph data structure.

There are many techniques to identify trees and links. One
approach is a depth first search. Another technique is a
breadth first search. Either of these may be used or a combi
nation of these two may be used. For example, one technique
of finding a tree involves starting at a starting node. This node
can be any node in the graph. Depending on which node is
selected as the starting node, the tree may be different from a
tree found using a different starting node. Proceeding branch
by branch through the graph, each branch of the graph will be
designated as a tree or link to create a graph, Such as in FIG.
10.

In the circuit network of FIG. 9, the tree is shown using
dashed lines, and the links are shown using dotted lines. The
circuit has nodes n1, m2, n3, and na-. There is a tree including
branches b3, b1, and b2. Branch b3 is from node n3 to na.
Branch b1 is from node nato n1. Branch b2 is from node n1
to n2. There in are three links, b4, b4, and b6.

In the system flow of FIG.4, after finding tree and links, the
technique includes finding loops 422. As discussed above, a
loop is a circular path from a first node through other nodes
and returning to the first node. In an implementation, finding
loops involves finding the fundamental independent loops.
These are loops which do not contain other loops. For a given
network, there may be any number of fundamental indepen
dent loops. Each of the loops found may be stored in a loop
table.

The circuit network in FIG.9 has three loops c1 c2, and c3.
Link ba forms loop c1 with branches b3, b1, and b2. Link b5
forms loop c2 with branches b3, b1, and b2. Link bo forms a
loop c3 with branch b1.

In the system flow of FIGS. 4 and 5, the technique includes
calculating KCL 425, calculating KVL 531, and calculating
power conservation 534. As discussed above, the order of
performing the KCL, KVL, and conservation of power may
vary. In a specific implementation of the invention, the KCL,
KVL, and power conservation are evaluated in order to deter
mine the validity of the simulation results. Calculations for
KCL will not be omitted. Calculations for KVL will not be
omitted. Calculations for power conservation will not be
omitted.

In other implementations of the invention, one or more of
the calculations for KCL, KVL, or power conservation, and

10

15

25

30

35

40

45

50

55

60

65

10
any combination of these, may be performed. These imple
mentations may omit calculations or using calculations for
one or more KCL, KVL, or power conservation. However, the
results including KCL, KVL and power conservation, not
omitting any of these calculations and considering all results,
will provide the greatest level of confidence and correctness
in validating simulation results.
By omitting one or more of the KCL, KVL, or power

conservation calculations or results, validation may not be
proper. In particular, for Some estimated simulation results,
the KCL calculations validate without errors, but the KVL
calculations have errors. This means that the estimated simu
lation results are not simulating the proper circuit. There is
Some error in the approximation made. If the validating tech
nique omits the KVL calculation, this error would not have
been noticed. This is similarly the case for KCL and power
conservation.

FIG. 4 shows calculating or evaluating Kirchhoff's current
law (KCL) in step 425. One technique of evaluating KCL is
Summing the currents into each node of the network. The Sum
for each node may be referred to as a node Sum for a particular
node.

For the example in FIG.9, the KCL for node n1 would be
a sum of i(b1)+i (b2)+i (b6), where i(bx) is the current through
the branch X. A convention may be used so a current going
into a node is negative, while current going out of a node is
positive. Alternatively, a convention may be used so a current
going into a node is positive, while current going out of a node
is negative. The KCL would be calculated for nodes n1, n2,
n3, and na of the network.
According to Kirchhoff's current law, the sum for each

node should be zero. When the sum of the current for a node
is not equal to Zero, the circuit estimator Software has made an
error at this node. One or more of the currents associated with
this node are incorrect. When a node violates Kirchhoffs
current law, this is a validation error. There may be any
number of nodes that have errors. Any error may be reported
to the user and the node or nodes identified. The currents and
branches may be listed. More detail on the reporting of errors
is discussed below.
The magnitude of the difference between a node sum and

Zero may indicate a degree of error in the estimated simula
tion results. In other words, in an embodiment, the greater a
node sum differs from Zero, the greater the error in the esti
mated calculations. Further, when a greater number of nodes
in the network have errors, this may indicate greater severity
in the errors in the estimated simulation results. The node sum
results for a network may be summarized in an index, such as
from 1 to 10, to indicate the closeness of the results to the
exact results. For example, an index value of 10 would indi
cate exact results, while a 1 would indicate very bad results,
perhaps even random numbers.

FIG. 5 shows calculating or evaluating Kirchhoff's voltage
law (KVL) in step 531. One technique of evaluating KVL is
Summing the branch Voltages for each independent loop of
the network. The branch voltages were determined during
step 411 of FIG. 4. The sum for each loop may be referred to
as a loop Sum for a particular loop.

For the example in FIG.9, the KVL for loop c1 would be
V(b4)+V(b3)+V(b1)+V(b2), where V(bx) is the voltage of
branch x. The KVL would be calculated for the loops of the
circuit, c1 c2, and c3.

According to Kirchhoff's voltage law, the sum for each
loop should be zero. When the sum of the branch voltages for
a loop is not equal to Zero, the circuit estimator Software has
made an error the voltages of this loop. One or more of the
Voltages associated with this loop are incorrect. When a loop

US 8,719,760 B1
11

violates Kirchhoff's voltage law, this is a validation error.
There may be any number of loops that have errors. Any error
may be reported to the user and the loop or loops identified.
The voltages and branches may be listed. More detail on the
reporting of errors is discussed below. 5
The magnitude of the difference between a loop sum and

Zero may indicate a degree of error in the estimated simula
tion results. In other words, in an embodiment, the greater a
loop sum differs from Zero, the greater the error in the esti
mated calculations. Further, when a greater number of loops 10
in the network have errors, this may indicate greater severity
in the errors in the estimated simulation results. The loop sum
results for a network may be summarized in an index, such as
from 1 to 10, to indicate the closeness of the results to the
exact results. For example, an index value of 10 would indi- 15
cate exact results, while a 1 would indicate very bad results,
perhaps even random numbers.

FIG. 5 shows calculating or evaluating whether the net
work satisfies conservation of energy or power conservation
in step 534. Conservation of energy is also known as the first 20
law of thermodynamics. A technique of evaluating power
conservation is finding the total consumed power of the cir
cuit network and comparing this to the total input power to the
circuit network.

Total consumed power may be found by Summing the 25
power consumed by each branch of the circuit network. The
power consumed by each branch is the product of current and
voltage (IV) for a branch. For the example in FIG. 9, the
consumed power will be i(b1)*v(b1)+i (b2)*v(b2)+i (b3)*v
(b3)+i(b4)*v(b4)+i(b5)*v(b5)--i(b6)*v(b6). The total input 30
power will be given provided by sources 454 (see FIG. 4) in
the original circuit specification.

According to power conservation, the total input power
minus the consumed total consumed power should be Zero.
This quantity may be referred to as a power error quantity. In 35
the quantity is not Zero, there is a validation error and the
circuit estimator has made an error. Currents or Voltages, or a
combination, of the one or more branches is incorrect. The
magnitude of the difference between the power error quantity
and Zero may indicate a degree of error in the estimated 40
simulation results. Further, the magnitude of the difference
(e.g., difference, percentage difference, or ratio) between the
consumed power and input power may indicate a degree of
error in the estimated simulation results. For example, if the
consumed power is 50 percent of the input power, there is a 45
clear error is the estimates provided by the circuit estimator.

In the system flow of FIG. 5, the technique includes out
putting error 539. The error output is stored in a database db3.
In another embodiment, instead of storing the error output in
database db3, the results may be stored in database db2. Using 50
database db3, an error report 542 is generated. This error
report may be stored in a database dba. The error report may
be generated using a reporting tool that processes or analyzes
the data stored in database db3. Instead of storing the error
report in database dba, the error report may be stored in 55
database db1, .db2, or db3.

In an embodiment, the error report indicates how close the
results are to the exact results. Results may be provided for
every node and branch, some nodes and branches, or selected
nodes and branches. The degree of closeness may be given as 60
(1) a value. Such as a value difference between the approxi
mate result and the exact result, (2) a percentage, such as a
percentage difference between the approximate result and the
exact result, or (3) whether a relationship between the
approximate result and exact result satisfies a rule, where this 65
rule may be userspecified, or any combinations of these. And
there may any number of rules, such as 1, 2, 3, 4, 5, 6, 7, 8, or

12
more rules. A rule may be specified using Boolean expres
sions, operators, or other expressions, or combinations of
these. A rule may be user defined.
As an example, a rule may be that there is an error if the

percentage difference of a value (e.g., power, quantity asso
ciated with a node, branch, loop) is greater than a specific
value. Such as 5 or 10 percent. An example of a calculation to
give a percentage difference is: ((exact result-approximate
result)/exact result)* 100. For example, the exact result quan
tity may be the input power, and the approximate result quan
tity may be the consumed power.
An absolute value of the percentage difference quantity

may be used so that the quantity is not negative. A rule might
be when ((exact result-approximate result)/exact result) is
greater thana user-selected percentage (e.g., some value from
0 to 1), then highlight this approximate result. For the rule,
any user-selected percentage may be used. Such as 1, 2, 3, 4,
5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,
23, 24, 25, 26, 27, 28, 29, 30, 31, 32, or greater. In an embodi
ment of the invention, the percentage for the rule may be hard
coded, instead of user selected.

In an embodiment, the error report may be generated
according to one or more rules defined by a user. The results
of the validation are stored in database db3, and the reporting
tool processes or analyzes these stored results. A user may
change the rules or specify a different analysis, and then rerun
the reporting tool to obtain new report results, without need
ing to perform the KCL, KVL, and power conservation cal
culations again.
The reporting tool may be run in a batch or interactive

mode. The report tool may provide text output or may have a
graphical user interface, or both. For example, a user may
specify a graphic viewer reporting tool to highlight nodes or
loops, or both, where the approximate results differ from the
actual results by a particular amount or percentage, such as an
approximate result off by more than 25 percent. As discussed
above, any percentage may be used and the percentage may
be user selected. As a further example, the report tool may
highlight the nodes or loops, or both, where the results of the
Summing calculations is not Zero.

In an embodiment, the results of each run of the reporting
tool are stored in database db.4. Therefore, if the user requests
a report with results that have been previously determined, the
reporting tool will determine that this has occurred and
retrieve the previous results and not have to perform analysis
or calculations on the data from database db3 again. This
saves time in the reporting process.

For example, the user may request a listing of all nodes
having a deviation or difference greater thana first value. The
results are generated from database db3 and stored in data
base dba. Then, the user requests a listing of all nodes having
a deviation greater than a second value, which is different
from the first value. These results are generated from database
db3 and stored in db4. Then at a Subsequent time, a user,
which may be different from previous users, requests a listing
of all nodes having a deviation or difference greater than a
first value. The reporting tool recognizes this information is
already available and retrieves it from database dba, without
needing to consult database db3.
The technique for validating simulation results may be

applied to DC or steady simulation or AC or transient simu
lation results. For validating AC simulation results, the above
described approach may be applied incrementally at different
time steps in order to validate the results at each time interval
of the simulated results.

This description of the invention has been presented for the
purposes of illustration and description. It is not intended to

US 8,719,760 B1
13

be exhaustive or to limit the invention to the precise form
described, and many modifications and variations are pos
sible in light of the teaching above. The embodiments were
chosen and described in order to best explain the principles of
the invention and its practical applications. This description
will enable others skilled in the art to best utilize and practice
the invention in various embodiments and with various modi
fications as are Suited to a particular use. The scope of the
invention is defined by the following claims.

What is claimed is:
1. A method comprising:
providing a circuit network stored in a computer-readable

format, wherein the circuit network comprises nodes
and branches;

identifying a plurality of loops in the circuit network;
using at least one computer processor, Summing the Volt

ages for each identified loop and storing loop Sum
results;

using at least one computer processor, Summing the cur
rents at each node of the circuit network and storing node
Sum results;

using at least one computer processor, Summing power
consumption of each branch of the circuit network and
storing a total branch power;

providing an input power to the circuit network; and
providing a validation error indication on a computer dis

play when at least one of the identified loops sums to a
value that is not zero, at least one of the nodes in the
circuit network Sums to a value that is not Zero, or the
input power is different from the total branch power.

2. The method of claim 1 comprising:
providing for display on the computer display the loop Sum

for each loop of the circuit network;
providing for display on the computer display the node Sum

for each node of the circuit network; and
providing for display on the computer display the input
power to the circuit network and the total branch power.

3. The method of claim 1 comprising:
indicating on the computer display each loop where the

loop Sum is not Zero.
4. The method of claim 1 comprising:
indicating on the computer display each node where the

node sum is not Zero.
5. The method of claim 1 comprising:
showing on the computer display a difference between the

input power to the circuit network and the total branch
power.

6. The method of claim 1 wherein the current and voltage
associated with each branch of the circuit network is an esti
mated current and an estimated Voltage provided by a circuit
network estimation program.

7. The method of claim 1 comprising:
showing on the computer display a ratio between the input
power to the circuit network and the total branch power.

8. The method of claim 1 wherein each identified loop is an
independent loop.

9. The method of claim 8 wherein and an independent loop
does not comprise other loops.

10. The method of claim 8 wherein and an independent
loop is a fundamental loop.

11. A method comprising:
providing a circuit in a computer-readable format, wherein

a Voltage is associated with each node of the circuit;
identifying loops of the circuit;
using at least one processor, calculating the Voltages for

each identified loop and storing the loop Sum results;

5

10

15

25

30

35

40

45

50

55

60

65

14
using at least one processor, calculating the currents at each

node of the circuit and storing the node sum results;
using at least one processor, calculating power consump

tion of each branch of the circuit and storing a total
branch power;

determining a first condition has occurred when at least one
of the loops in the circuit has a Sum that is not Zero;

determining a second condition has occurred when at least
one of the nodes in the circuit Sums to a value that is not
Zero;

determining a third condition has occurred when an input
power to the circuit is different from the total branch
power, and

upon determining the first condition has occurred, display
ing an indication of the first condition on a computer
SCC.

12. The method of claim 11 comprising:
upon determining the second condition has occurred, dis

playing an indication of the second condition on the
computer screen.

13. The method of claim 12 comprising:
upon determining the third condition has occurred, dis

playing an indication of the third condition on the com
puter screen.

14. The method of claim 11 comprising:
displaying a representation of the circuit on the computer

Screen; and
highlighting on the computer screen a loop of the repre

sentation of the circuit where the loop Sum is not Zero.
15. The method of claim 11 comprising:
displaying a representation of the circuit on the computer

Screen; and
highlighting on the computer screen a node of the repre

sentation of the circuit where the node sum is not zero.
16. The method of claim 11 wherein each identified loop is

an independent loop, and an independent loop does not com
prise other loops.

17. A method comprising:
providing a computer-readable representation of a circuit,

wherein a Voltage is associated with each node of the
circuit;

identifying loops of the circuit;
using at least one processor, Summing the Voltages for each

identified loop and storing loop Sum results;
using at least one processor, Summing the currents at each

node of the circuit and storing the node sum results;
using at least one processor, calculating power consump

tion of each branch of the circuit and storing a total
branch power;

determining a first condition has occurred when at least one
of the loops in the circuit has a Sum not equal to Zero;

determining a second condition has occurred when at least
one of the nodes in the circuit Sums to a value not equal
to Zero;

determining a third condition has occurred when an input
power to the circuit is different from the total branch
power, and

upon determining at least one of the first, second, or third
conditions has occurred, displaying an indication of a
validation error on a computer screen.

18. The method of claim 17 comprising:
determining a fourth condition has occurred when the loop
Sum results is Zero, the node Sum results is Zero, and the
total branch power is equal to the input power; and

upon determining the fourth condition has occurred, dis
playing an indication of the fourth condition on the
computer screen.

US 8,719,760 B1
15

19. The method of claim 17 wherein the upon determining
one of the first, second, or third conditions has occurred,
displaying an indication of a validation error condition on a
computer Screen comprising:

displaying a difference between the input power to the
circuit and the total branch power on the computer
SCC.

20. The method of claim 17 wherein each identified loop is
an independent loop, and an independent loop does not com
prise other loops.

5

10

16

