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1. 

VALIDATING INTEGRATED CIRCUIT 
SIMULATION RESULTS 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

This application is a continuation of U.S. patent applica 
tion Ser. No. 12/238,880, filed Sep. 26, 2008, which is a 
divisional of U.S. patent application Ser. No. 1 1/279,391, 
filed Apr. 11, 2006, issued as U.S. Pat. No. 7,461,360 on Dec. 
2, 2008, which are incorporated by reference. 

BACKGROUND OF THE INVENTION 

The present invention relates to the field of electronic 
design automation for electronic circuits, and more specifi 
cally to techniques of validating simulation results for elec 
tronic circuits, especially when simulated using an approxi 
mation or reduction method. 
The age of information and electronic commerce has been 

made possible by the development of electronic circuits and 
their miniaturization through integrated circuit technology. 
Integrated circuits are sometimes referred to as “chips. Some 
type of integrated circuits include digital signal processors 
(DSPs), amplifiers, dynamic random access memories 
(DRAMs), static random access memories (SRAMs), eras 
able programmable read only memories (EPROMs), electri 
cally erasable programmable read only memories (EE 
PROMs), Flash memories, microprocessors, application 
specific integrated circuits (ASICs), and programmable logic 

Integrated circuits have been widely adopted and are used 
in many products in the areas of computers and other pro 
grammed machines, consumer electronics, telecommunica 
tions and networking equipment, wireless network and com 
munications, industrial automation, and medical instruments, 
just to name a few. Electronic circuits and integrated circuits 
are the foundation of the Internet and other on-line technolo 
gies including the World Wide Web (WWW). 

There is a continuing demand for electronic products that 
are easier to use, more accessible to greater numbers of users, 
provide more features, and generally address the needs of 
consumers and customers. Integrated circuit technology con 
tinues to advance rapidly. With new advances in technology, 
more of these needs are addressed. Furthermore, new 
advances may also bring about fundamental changes in tech 
nology that profoundly impact and greatly enhance the prod 
ucts of the future. 

To meet the challenges of building more complex and 
higher performance integrated circuits, Software tools are 
used. These tools are in an area commonly referred to as 
computer aided design (CAD), computer aided engineering 
(CAE), or electronic design automation (EDA). There is a 
constant need to improve these electronic automatic tools in 
order to address the desire for higher integration and greater 
complexity, and better performance in integrated circuits. 

Large modern day integrated circuits have millions of 
devices including gates and transistors, and are very complex. 
As process technology improves, more and more devices may 
be fabricated on a single integrated circuit, so integrated 
circuits will continue to become even larger and more com 
plex with time. In the past, many parasitic effects may not 
have been considered because they were less significant or 
insignificant compared to other factors. 
As lithography and miniaturization techniques advance, 

on-chip devices and line widths become Smaller, frequencies 
increase. As a consequence, many more impedances such as 
parasitic resistances, inductances, and capacitances and para 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

2 
sitic effects need to be considered. If these parasitics and 
effects are not taken into account, poor simulation results will 
result, and possible the electronic circuits will not work as 
expected after the circuit is fabricated. As more and more 
parasitic and other effects are accounted for, the circuit net 
works to be simulated become larger and much more com 
plex. Further, electronic systems at the board level are becom 
ing more complex, thus increasing circuit network simulation 
size and complexity. As network size and complexity 
increases, simulating the network takes significantly more 
computing resources and computation time. 

Simulating large, complex networks to obtain an exact 
Solution is time consuming. Such simulations can take may 
take many hours, days, or even weeks. Circuit simulation is an 
order n-cubed problem. So, as the number of nodes increases, 
the time increases significantly. Therefore, to reduce the 
simulation time, approximation or reduction methods are 
used to simulate the networks. Some of these techniques are 
known as fast-Spice or fast-MOS techniques. 

These techniques estimate the simulation results, and do 
not provide an exact solution. In an approximation method 
approach, certain circuit information is thrown away or not 
considered. The approach may be iterative. By reducing the 
amount of information to consider, the estimated simulation 
results may be obtained much faster than trying to find the 
exact Solution. For example, an exact solution for a circuit 
with 600,000 nodes may be obtained in 38 hours with Spice, 
but using an approximation method, the results may be 
obtained in 10 minutes. 

There are shortcomings to the approximation or reduction 
approaches to circuit simulation because they trade off accu 
racy for performance. Accuracy is reduced because the esti 
mated simulation results are estimates rather than an exact 
solution. Further, even though the developer of the circuit 
simulation estimation Software markets the estimated results 
as being accurate, the user will not know the degree of accu 
racy of the simulation results. For Some circuit networks, an 
approach may provide results which are within 1 percent of 
the exact Solution, which may be acceptable depending on the 
circuitry. But for Some circuit networks, the same approach 
may give results that are more than 5 percent off, which may 
be unacceptable. 

Therefore, there is a need for techniques of validating the 
results from circuit simulation estimation Software. 

SUMMARY OF THE INVENTION 

A technique validates results from a circuit simulation 
estimation program. The technique determines whether the 
estimated results satisfy Kirchhoffs current law (KCL), 
Kirchhoff's voltage laws (KVL), and power conservation for 
the original circuit. A reporting tool shows the validation 
results and may be customized by the user. The tool can show 
in the original circuitry where the estimated results may be 
inaccurate. 

In an implementation, the invention provides a method 
including providing a first database of a circuit, where a 
Voltage is associated with each node of the circuit; identifying 
independent loops of the circuit; Summing the Voltages for 
each identified loop and storing the loop Sum results in a 
second database; Summing the currents at each node of the 
circuit and storing the node sum results in the second data 
base; Summing power consumption of each branch of the 
circuit and storing the total branch power in the second data 
base; and storing input power to the circuit in the second 
database. 
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The method further includes providing for display on a 
display the loop Sum for each loop of the circuit; providing for 
display on the display the node sum for each node of the 
circuit; and providing for display on the display the input 
power to the circuit and the total branch power. 

In another implementation, the invention provides a 
method including providing a circuit network specified in a 
netlist format and input sources associated with the circuit; 
providing a simulation output for the circuit, where the simu 
lation output includes node Voltages for each node of the 
circuit; building a graph data structure from the circuit netlist; 
using the node Voltages, determining branch Voltages for 
branches in the graph; identifying a tree and links in the 
graph; and identifying independent loops in the graph. 
The method further includes summing the voltages for 

each independent loop in the graph; Summing the currents at 
each node in the graph; Summing power consumed for each 
branch in the graph to obtain a total power consumed; deter 
mining a total input power to the circuit network using the 
input sources associated with the circuit; and Subtracting the 
total power consumed from the total input power to obtain a 
total power difference. 

The method further includes indicating a not validated 
condition when at least one of the loops in the graph has a 
nonzero Sum; indicating a not validated condition when at 
least one of the nodes in the graph has a nonzero Sum; and 
indicating a not validated condition when the total power 
difference is not zero. 

In another implementation, the invention provides a 
method including a method including providing a netlist of a 
circuit; providing simulation results for the circuit; using the 
simulation results, evaluating Kirchhoff's current law for 
each node of the circuit; using the simulation results, evalu 
ating Kirchhoff's voltage law for each independent loop of 
the circuit; and determining whether input power to the circuit 
equals power consumed by the circuit. The simulation results 
may be obtained by using an approximation technique or 
reduction approach. The simulation results will be indicated 
as valid only when Kirchhoffs current law is satisfied, Kirch 
hoff's Voltage law is satisfied, and input power equals power 
consumed. 

Other objects, features, and advantages of the present 
invention will become apparent upon consideration of the 
following detailed description and the accompanying draw 
ings, in which like reference designations represent like fea 
tures throughout the figures. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 shows a system of the present invention for perform 
ing integrated circuit simulation. 

FIG. 2 shows a simplified system block diagram of a com 
puter system used to execute Software of the invention. 

FIG.3 shows a typical modeling of an integrated circuit for 
circuit simulation. 

FIGS.4 and 5 show a system flow diagram of the invention. 
FIG. 6 shows an example of branch format data. 
FIG. 7 shows building a graph from a network. 
FIG. 8 shows transforming node voltages to branch volt 

ageS. 
FIG. 9 shows finding a tree and links. 
FIG. 10 shows a graph of a tree and links. 

DETAILED DESCRIPTION 

FIG. 1 shows an electronic design automation (EDA) sys 
tem of the present invention for validating circuit simulation 
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4 
results when designing an electronic circuit or integrated 
circuit, including circuit simulations of the entire integrated 
circuit, portions of the integrated circuit, or circuit blocks. In 
an embodiment, the invention is software that executes on a 
computer workstation system, such as shown in FIG. 1. FIG. 
1 shows a computer system 1 that includes a monitor 3, Screen 
5, cabinet 7, keyboard 9, and mouse 11. In some implemen 
tations, however, electronic design automation systems are 
operated headless, which means these systems will not a 
mouse, keyboard, display, and so forth. 
Mouse 11 may have one or more buttons such as mouse 

buttons 13. Cabinet 7 houses familiar computer components, 
Some of which are not shown, Such as a processor, memory, 
mass storage devices 17, and the like. Mass storage devices 17 
may include mass disk drives, floppy disks, magnetic disks, 
optical disks, fixed disks, hard disks, CD-ROMs, recordable 
CDs, DVDs, DVD-ROMs, recordable DVDs, Flash and other 
nonvolatile solid-state storage, tape storage, reader, and other 
similar media, and combinations of these. A binary machine 
executable version of the software of the present invention 
may be stored or reside on mass storage devices 17. Further 
more, the source code of the software of the present invention 
may also be stored or reside on mass storage devices 17 (e.g., 
magnetic disk, tape, CD-ROM, or DVD). 

Further, FIG. 2 shows a system block diagram of computer 
system 1 used to execute software of the present invention. As 
in FIG. 1, computer system 1 includes monitor 3, keyboard 9. 
and mass storage devices 17. Computer system 1 further 
includes Subsystems such as central processor 202, System 
memory 204, input/output (I/O) controller 206, display 
adapter 208, serial or universal serial bus (USB) port 212, 
network interface 218, and speaker 220. The invention may 
also be used with computer systems with additional or fewer 
Subsystems. For example, a computer system could include 
more than one processor 202 (i.e., a multiprocessor system) 
or the system may include a cache memory. 
The processor may be a dual core or multicore processor, 

where there are multiple processor cores on a single inte 
grated circuit. The system may also be part of a distributed 
computing environment. In a distributed computing environ 
ment, individual computing systems are connected to a net 
work and are available to lend computing resources to another 
system in the network as needed. The network may be an 
internal ethernet network, Internet, or other network. Some 
examples of distributed computer systems for Solving prob 
lems over the Internet include Folding(a)home, SETI(a home, 
and the Great Internet Mersenne Prime Search (GIMPS). 

Arrows such as 222 represent the system bus architecture 
of computer system 1. However, these arrows are illustrative 
of any interconnection scheme serving to link the Subsystems. 
For example, speaker 220 could be connected to the other 
Subsystems through a port or have an internal connection to 
central processor 202. Computer system 1 shown in FIG. 1 is 
but an example of a computer system suitable for use with the 
present invention. Other configurations of Subsystems Suit 
able for use with the present invention will be readily apparent 
to one of ordinary skill in the art. 
Computer software products may be written in any of 

various Suitable programming languages, such as C, C++, 
Pascal, Fortran, Perl, MatLab (from MathWorks, Inc.), SAS, 
SPSS, Java, and AJAX. The computer software product may 
be an independent application with data input and data dis 
play modules. Alternatively, the computer software products 
may be classes that may be instantiated as distributed objects. 
The computer Software products may also be component 
software such as Java Beans (from Sun Microsystems) or 
Enterprise Java Beans (EJB from Sun Microsystems). 
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An operating system for the system may be one of the 
Microsoft Windows(R family of operating systems (e.g., Win 
dows 95, 98, Me, Windows NT, Windows 2000, Windows XP, 
Windows XP x64 Edition, Windows Vista), Linux, HP-UX, 
UNIX, SunOS, Solaris, Mac OSX, Alpha OS, AIX, IRIX32, 
or IRIX64, or combinations of these. Other operating systems 
may be used. Each computer in a distributed computing envi 
ronment may use a different operating system. 

Furthermore, the computer may be connected to a network 
and may interface to other computers using this network. For 
example, each computer in the network may perform part of 
the task of the many series of circuit simulation steps in 
parallel. Furthermore, the network may be an intranet, inter 
net, or the Internet, among others. The network may be a 
wired network (e.g., using copper), telephone network, 
packet network, an optical network (e.g., using optical fiber), 
or a wireless network, or any combination thereof. For 
example, data and other information may be passed between 
the computer and components (or steps) of a system of the 
invention using a wireless network using a protocol such as 
Wi-Fi (IEEE standards 802.11, 802.11a, 802.11b, 802.11e, 
802.11g, 802.11i, and 802.11n, just to name a few examples). 
For example, signals from a computer may be transferred, at 
least in part, wirelessly to components or other computers. 
A specific type of electronic design automation tool is a 

circuit simulation program or system. A circuit simulation 
program performs analysis of circuits containing resistors, 
capacitors, inductors, mutual inductors, independent Voltage 
and current sources, dependent sources, transmission lines, 
and semiconductor devices including diodes, bipolar junction 
transistors (BJTs), junction field effect transistors (JFETs), 
and metal over semiconductor field effect transistors (MOS 
FETs). A circuit simulator may perform nonlinear DC, non 
linear transient, linear AC, and other analyses. 
One circuit simulation program is SPICE, originating from 

the University of California, Berkeley. SPICE stands for 
“Simulation Program Integrated Circuits Especially 
Despite the success of SPICE and other circuit simulation 
programs, existing circuit simulation programs use method 
ology and computational techniques not suitable for use in 
distributed computing environment and determining real or 
exact solutions. 

FIG. 3 shows a typical modeling of a circuit or integrated 
circuit for circuit simulation. The model uses resistance, 
capacitance, inductance, and nonlinear devices. The model 
has two supply networks, VDD 301 and ground (GND) 304, 
and a substrate network 307. VDD, GND, and the substrate 
may be more specifically modeled using a resistance-capaci 
tance-inductance (RCL) network. A power Supply or other 
input-output (I/O) 310 are connected to the VDD, GND, and 
Substrate. The power Supply may be modeled using a resis 
tance-capacitance-inductance (RCL) network. There may be 
more supplies then VDD and ground, and these would be 
modeled similarly to VDD, GND, and substrate. 

Between VDD and GND, there may be various compo 
nents or devices including decoupling capacitors 314, devices 
nonlinear circuits, gates linear and nonlinear, interconnect 
RCL, and clock tree RCL. Examples of devices nonlinear 
circuits include transistors, BJT and MOS, and diodes. 
Examples of gates linear and nonlinear include NAND, NOR, 
OR, AND, logic blocks, intellectual property (IP) blocks, and 
others. 
Any one or more components or devices may be connected 

to VDD and GND, and in any combination. For example, one 
or more transistors may be connected between the Supplies. 
The transistors may form an amplifier, NAND gate, or other 
circuit that is to be simulated according to this model. 
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6 
In circuit simulation, a circuit or component is represented 

using an RCL network and Sources. For example, a bipolar 
junction transistor (BJT) may be represented using a hybrid 
pi model, which has resistances, capacitances, and a depen 
dent current source. A MOSFET transistor may be modeled 
using, for example, a BSIM or other model. The model rep 
resentation of a device or other component may be referred to 
as its equivalent circuit. It can be appreciated as an electronic 
circuit has more and more transistors, gates, and other com 
ponents, the equivalent model of the electronic circuit 
becomes a much more complicated RCL network with 
Sources. As a circuit gets larger and there are more nodes and 
branches, the simulation of the circuit becomes more compli 
cated, taking more time, memory, and CPU resources in 
determining a solution. 

Using a circuit simulator Such as Spice, the simulation 
involves performing numerous calculations including matrix 
inversions and other linear algebra operations. The results 
from these calculations will be an exact solution. Circuit 
simulation, especially for very large circuit networks, is time 
consuming because many calculations need to be performed 
and the types of calculations are generally computationally 
complex. 
An approximation or reduction method of circuit simula 

tion may be used obtain an estimated Solution instead of an 
exact solution. These types of Software programs may be 
referred to as circuit estimators. Circuit estimators obtain 
simulation results faster than a circuit simulator like Spice by 
throwing away circuit information. What particular informa 
tion gets thrown away will vary depending on the approach 
used. Throwing away information reduces the amount of the 
information that needs to be considered in the calculations 
and speeds up the calculations. The results, however, are an 
estimate rather than an exact Solution of the network. 
Compared to a circuit simulator like Spice, a circuit esti 

mator obtains results generally faster. The estimated Solution 
is expected to be close to the exact solution, but the degree of 
closeness is not quantified for the user. This invention pro 
vides a technique to evaluate or validate the results of an 
estimated solution of a network simulation. The invention 
answers the question, “How much is the estimated result off 
by?” 

In an implementation, a validation method of the invention 
includes: 
(1) Build graph. 
(2) Find tree and links. 
(3) Find loops. 
(4) Calculate KCL. 
(5) Calculate KVL. 
(6) Calculate power conservation. 
(7) Provide error output. 
KCL refers to Kirchhoff's current law: The algebraic sum 

of all the instantaneous currents leaving (or entering) any 
node of a circuit is identically zero for all time. KVL refers to 
Kirchhoff's voltage law: The algebraic sum of all of the 
instantaneous Voltage drops or rises encountered in traversing 
any loop of a circuit (network) is identically zero for all time. 
Power conservation refers to the algebraic sum of all of 
instantaneous power input into the whole network is identi 
cally total Sum of power consuming in the whole circuit 
(network). In other words, input power is equal to consumed 
power of the whole network. 
The above validation method presents steps in a specific 

order. An implementation of the invention performs the steps 
in the given order. However, in other implementations of the 
invention, they may be other steps includes or some steps may 
be omitted, or the order of the steps may be different from 
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above. For example, the KCL, KVL, and power steps are 
order independent. Therefore, in an embodiment, the calcu 
lations for KVL may be performed before the calculations for 
KCL. In another embodiment, the calculations for KCL and 
KVL may be performed in the same step. Some steps above 
may be performed at the same time on different processors or 
processor cores in a parallel processing implementation. In 
other embodiments, the steps may be (1) KCL, power, KVL.; 
(2) KVL, KCL, power; (3) KVL, power, KCL; (4) power, 
KCL, KVL.; or (5) power, KVL, KCL. There are many alter 
natives and implementations of the invention and any of these 
may be used to validate estimated simulation results. 

FIGS. 4 and 5 show a system flow diagram of a specific 
implementation of the invention. In the system flow, there is a 
database db1 which contains the network to be validated. In 
an embodiment, database db1 contains the circuitry and 
results that will be evaluated. The original circuitry may be 
provided by way of a netlist 451 or other suitable technique 
for specifying a circuit such as schematic capture. The netlist 
may be provided in a format such as DSPF. The netlist may be 
generated by extraction from a layout. Input sources 454, 
Such as current or Voltage sources, or both, of the original 
circuitry are specified too. The sources may include indepen 
dent Voltage sources, independent current sources, dependent 
Voltage sources, or independent current sources, or any com 
bination of these. 

The results, such as node Voltages or values, to be validated 
may be from Spice, circuit simulator, IR (voltage) drop esti 
mator, or other circuit characteristic estimation software 457. 
The results from a standard Spice circuit simulator may be 
validated, but since this type of Spice circuit simulator pro 
vides exact results, there is not truly a need to validate these 
results, unless perhaps a person wants to debug the Software. 
The results of Spice circuit simulator will validate using the 
techniques of the invention, showing that the results are accu 
rate. Typically, the results 460 that are validated are from a 
circuit simulator providing estimated simulation results 
according to an approximation or reduction technique. 

In an embodiment, simulation results 460 include node 
voltages for the nodes of a circuit of a netlist. The simulation 
results may be a listing of node names or node number and 
corresponding Voltage value for that node. These results may 
be stored in database db1. Circuit estimators may not give 
results for each and every node of the circuitry. This is 
because in order to speed up the calculations, information 
may be thrown away. In an embodiment, in the case there are 
missing nodes (i.e., nodes of the original circuitry where no 
Voltage value is provided), the validation technique will not 
evaluate or validate the simulation results because not enough 
data is available. The technique will inform the user that 
nodes are missing. The missing nodes may be shown on a 
display for the user. The user may be able to rerun the circuit 
estimation Software to specify all nodes, and if all nodes are 
provided, then the validation technique may be used to Vali 
date the results. 

These will be put into database db1. In an implementation 
of the invention, the node Voltages, netlist, and sources are 
held in contained in a single database db1. However, in other 
implementations of the invention, the information may be 
held in separate databases. For example, node Voltages may 
be in a first database, netlist in a second database, and sources 
in a third database. There may be any number of databases 
and the information may be held in the databases in any 
combination. 
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8 
A conversion routine 402 converts db1 into a branch data 

base db2. The branch database has node numbers for each 
node, branch impedance for each branch, Voltage sources, 
and current sources. 

FIG. 6 shows an example of branch format data. The con 
version routine may convert a netlist into branch format as 
shown, including many numbers of Such branches. Between 
two nodes no1 and n02, there is a branch including an imped 
ance Z and source 621. Nodes no1 and n02 form a junction 
pair. The impedance may include resistance, capacitance, or 
inductance. In an alternative implementation of the invention, 
admittance may be used. In electrical engineering, the admit 
tance Y is the inverse or reciprocal of impedance. Source 621 
is an independent Voltage source. There may be another 
Source, an independent current source (not shown), in series 
with I. Furthermore, there may also be dependent voltage 
Sources or independent current source, or combinations of all 
the different types of Sources. Each junction pair may have a 
current I and Voltage or potential E associate with it. 

In the system flow of FIG. 4, from the branch database, the 
system flow includes building a graph 406. FIG. 7 shows an 
example of building a graph. Building a graph takes the 
circuit and builds the circuit connectivity into a graph data 
structure. A circuit has nodes and branches. The branches 
may have devices, Sources, or other components. FIG. 7 is a 
circuit with branches and four nodes n1, m2, n3, and na-. 
To build a graph, any node may be selected as a reference 

node. For example, node na may be selected as the reference 
node. The user may specify the reference node. The reference 
node is a node to which other nodes or parts of the circuitry are 
referenced. The reference node selected does not need to be 
the “ground of the circuit. Nodal voltages for each of the 
nodes may be provided or reported as a Voltage in reference to 
the reference node. Starting at node na, tracing of the circuit 
branches proceeds as follows: b1, b2. b3, b4, b5. b3, and b8. 

In an implementation, the graph data structure is stored in 
a database. This database has two tables. A first table is a 
branch table data structure which points to the two end of a 
branch. A second table is a node table which points to 
branches connected to the same node. In other implementa 
tions, the graph data structure may include more than two 
tables. And the tables may be stored in more than one data 
base. 
A circuit component is represented using a branch Such as 

shown in FIG. 6. More specifically, each tree branch repre 
sents resistance-capacitance-inductance (RCL) and one or 
more sources, such as current source, Voltage source, depen 
dent current source, and dependent Voltage source. A device 
model for a transistor or other device is a RCL network with 
a dependent source. Therefore, each transistor of the circuit 
will be a branch in the network graph. The entire graph is a 
RCL network with sources. 
FIG.10 shows agraph of a tree and links. Tree branches are 

shown using solid lines, and links are shown using broken 
lines. In a graph, Some information is associated with each 
node and edge. For example, a node of the graph may be a 
node in the circuit and edge may be a branch in the circuit. A 
graph is an abstract data type that consists of a set ofnodes and 
a set of edges that establish relationships or connections 
between the nodes. A specific technique, among others, to 
implement a graph data structure is to use doubly linked lists 
over the nodes and the ingoing and outgoing edges of the 
nodes. Another technique to implement a graph is to use an 
array structure. There are many other approaches to imple 
menting a graph data structure in a computer system, and any 
of these may be used. 
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In the system flow of FIG. 4, after building a graph, the 
technique includes transforming the node Voltage to the 
branch voltage 411. FIG. 8 shows transforming node voltages 
to branch Voltages. Finding branch value includes finding 
voltages for each branch. Node voltages 460 are provided. 
The branch Voltage is the Voltage across two nodes. For 
example, a branch b1 is between two nodes n1 and na, where 
a node Voltage at n1 is 5 volts and a node Voltage at n2 is 3 
volts. The branch voltage for branch b1 will be n1-n2, which 
is 2 volts. 

In the system flow of FIG. 4, after transforming the node 
value to branch value, the technique includes finding tree and 
links 417. FIG. 9 shows finding tree and links. Branches and 
links of the tree are identified in a given network. 
A tree of a graph is a connected Subgraph that includes all 

the nodes of the graph but contains no loops. A loop is a 
circular path from a first node through other nodes and return 
ing to the first node. A loop has a Voltage drop of Zero. A 
Subgraph of a graph is a set of branches and nodes belonging 
to a graph. A link forms a loop with one or more tree branches, 
and may be referred to as a unit link. A tree branch does not 
form a loop. Typically, a circuit or system has one tree and 
multiple links. FIG. 10 shows an example of a graph with a 
tree, nodes, branches, and links. A circuit network is repre 
sented using Such a graph data structure. 

There are many techniques to identify trees and links. One 
approach is a depth first search. Another technique is a 
breadth first search. Either of these may be used or a combi 
nation of these two may be used. For example, one technique 
of finding a tree involves starting at a starting node. This node 
can be any node in the graph. Depending on which node is 
selected as the starting node, the tree may be different from a 
tree found using a different starting node. Proceeding branch 
by branch through the graph, each branch of the graph will be 
designated as a tree or link to create a graph, Such as in FIG. 
10. 

In the circuit network of FIG. 9, the tree is shown using 
dashed lines, and the links are shown using dotted lines. The 
circuit has nodes n1, m2, n3, and na-. There is a tree including 
branches b3, b1, and b2. Branch b3 is from node n3 to na. 
Branch b1 is from node nato n1. Branch b2 is from node n1 
to n2. There in are three links, b4, b4, and b6. 

In the system flow of FIG.4, after finding tree and links, the 
technique includes finding loops 422. As discussed above, a 
loop is a circular path from a first node through other nodes 
and returning to the first node. In an implementation, finding 
loops involves finding the fundamental independent loops. 
These are loops which do not contain other loops. For a given 
network, there may be any number of fundamental indepen 
dent loops. Each of the loops found may be stored in a loop 
table. 

The circuit network in FIG.9 has three loops c1 c2, and c3. 
Link ba forms loop c1 with branches b3, b1, and b2. Link b5 
forms loop c2 with branches b3, b1, and b2. Link bo forms a 
loop c3 with branch b1. 

In the system flow of FIGS. 4 and 5, the technique includes 
calculating KCL 425, calculating KVL 531, and calculating 
power conservation 534. As discussed above, the order of 
performing the KCL, KVL, and conservation of power may 
vary. In a specific implementation of the invention, the KCL, 
KVL, and power conservation are evaluated in order to deter 
mine the validity of the simulation results. Calculations for 
KCL will not be omitted. Calculations for KVL will not be 
omitted. Calculations for power conservation will not be 
omitted. 

In other implementations of the invention, one or more of 
the calculations for KCL, KVL, or power conservation, and 
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10 
any combination of these, may be performed. These imple 
mentations may omit calculations or using calculations for 
one or more KCL, KVL, or power conservation. However, the 
results including KCL, KVL and power conservation, not 
omitting any of these calculations and considering all results, 
will provide the greatest level of confidence and correctness 
in validating simulation results. 
By omitting one or more of the KCL, KVL, or power 

conservation calculations or results, validation may not be 
proper. In particular, for Some estimated simulation results, 
the KCL calculations validate without errors, but the KVL 
calculations have errors. This means that the estimated simu 
lation results are not simulating the proper circuit. There is 
Some error in the approximation made. If the validating tech 
nique omits the KVL calculation, this error would not have 
been noticed. This is similarly the case for KCL and power 
conservation. 

FIG. 4 shows calculating or evaluating Kirchhoff's current 
law (KCL) in step 425. One technique of evaluating KCL is 
Summing the currents into each node of the network. The Sum 
for each node may be referred to as a node Sum for a particular 
node. 

For the example in FIG.9, the KCL for node n1 would be 
a sum of i(b1)+i (b2)+i (b6), where i(bx) is the current through 
the branch X. A convention may be used so a current going 
into a node is negative, while current going out of a node is 
positive. Alternatively, a convention may be used so a current 
going into a node is positive, while current going out of a node 
is negative. The KCL would be calculated for nodes n1, n2, 
n3, and na of the network. 
According to Kirchhoff's current law, the sum for each 

node should be zero. When the sum of the current for a node 
is not equal to Zero, the circuit estimator Software has made an 
error at this node. One or more of the currents associated with 
this node are incorrect. When a node violates Kirchhoffs 
current law, this is a validation error. There may be any 
number of nodes that have errors. Any error may be reported 
to the user and the node or nodes identified. The currents and 
branches may be listed. More detail on the reporting of errors 
is discussed below. 
The magnitude of the difference between a node sum and 

Zero may indicate a degree of error in the estimated simula 
tion results. In other words, in an embodiment, the greater a 
node sum differs from Zero, the greater the error in the esti 
mated calculations. Further, when a greater number of nodes 
in the network have errors, this may indicate greater severity 
in the errors in the estimated simulation results. The node sum 
results for a network may be summarized in an index, such as 
from 1 to 10, to indicate the closeness of the results to the 
exact results. For example, an index value of 10 would indi 
cate exact results, while a 1 would indicate very bad results, 
perhaps even random numbers. 

FIG. 5 shows calculating or evaluating Kirchhoff's voltage 
law (KVL) in step 531. One technique of evaluating KVL is 
Summing the branch Voltages for each independent loop of 
the network. The branch voltages were determined during 
step 411 of FIG. 4. The sum for each loop may be referred to 
as a loop Sum for a particular loop. 

For the example in FIG.9, the KVL for loop c1 would be 
V(b4)+V(b3)+V(b1)+V(b2), where V(bx) is the voltage of 
branch x. The KVL would be calculated for the loops of the 
circuit, c1 c2, and c3. 

According to Kirchhoff's voltage law, the sum for each 
loop should be zero. When the sum of the branch voltages for 
a loop is not equal to Zero, the circuit estimator Software has 
made an error the voltages of this loop. One or more of the 
Voltages associated with this loop are incorrect. When a loop 
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violates Kirchhoff's voltage law, this is a validation error. 
There may be any number of loops that have errors. Any error 
may be reported to the user and the loop or loops identified. 
The voltages and branches may be listed. More detail on the 
reporting of errors is discussed below. 5 
The magnitude of the difference between a loop sum and 

Zero may indicate a degree of error in the estimated simula 
tion results. In other words, in an embodiment, the greater a 
loop sum differs from Zero, the greater the error in the esti 
mated calculations. Further, when a greater number of loops 10 
in the network have errors, this may indicate greater severity 
in the errors in the estimated simulation results. The loop sum 
results for a network may be summarized in an index, such as 
from 1 to 10, to indicate the closeness of the results to the 
exact results. For example, an index value of 10 would indi- 15 
cate exact results, while a 1 would indicate very bad results, 
perhaps even random numbers. 

FIG. 5 shows calculating or evaluating whether the net 
work satisfies conservation of energy or power conservation 
in step 534. Conservation of energy is also known as the first 20 
law of thermodynamics. A technique of evaluating power 
conservation is finding the total consumed power of the cir 
cuit network and comparing this to the total input power to the 
circuit network. 

Total consumed power may be found by Summing the 25 
power consumed by each branch of the circuit network. The 
power consumed by each branch is the product of current and 
voltage (IV) for a branch. For the example in FIG. 9, the 
consumed power will be i(b1)*v(b1)+i (b2)*v(b2)+i (b3)*v 
(b3)+i(b4)*v(b4)+i(b5)*v(b5)--i(b6)*v(b6). The total input 30 
power will be given provided by sources 454 (see FIG. 4) in 
the original circuit specification. 

According to power conservation, the total input power 
minus the consumed total consumed power should be Zero. 
This quantity may be referred to as a power error quantity. In 35 
the quantity is not Zero, there is a validation error and the 
circuit estimator has made an error. Currents or Voltages, or a 
combination, of the one or more branches is incorrect. The 
magnitude of the difference between the power error quantity 
and Zero may indicate a degree of error in the estimated 40 
simulation results. Further, the magnitude of the difference 
(e.g., difference, percentage difference, or ratio) between the 
consumed power and input power may indicate a degree of 
error in the estimated simulation results. For example, if the 
consumed power is 50 percent of the input power, there is a 45 
clear error is the estimates provided by the circuit estimator. 

In the system flow of FIG. 5, the technique includes out 
putting error 539. The error output is stored in a database db3. 
In another embodiment, instead of storing the error output in 
database db3, the results may be stored in database db2. Using 50 
database db3, an error report 542 is generated. This error 
report may be stored in a database dba. The error report may 
be generated using a reporting tool that processes or analyzes 
the data stored in database db3. Instead of storing the error 
report in database dba, the error report may be stored in 55 
database db1, .db2, or db3. 

In an embodiment, the error report indicates how close the 
results are to the exact results. Results may be provided for 
every node and branch, some nodes and branches, or selected 
nodes and branches. The degree of closeness may be given as 60 
(1) a value. Such as a value difference between the approxi 
mate result and the exact result, (2) a percentage, such as a 
percentage difference between the approximate result and the 
exact result, or (3) whether a relationship between the 
approximate result and exact result satisfies a rule, where this 65 
rule may be userspecified, or any combinations of these. And 
there may any number of rules, such as 1, 2, 3, 4, 5, 6, 7, 8, or 

12 
more rules. A rule may be specified using Boolean expres 
sions, operators, or other expressions, or combinations of 
these. A rule may be user defined. 
As an example, a rule may be that there is an error if the 

percentage difference of a value (e.g., power, quantity asso 
ciated with a node, branch, loop) is greater than a specific 
value. Such as 5 or 10 percent. An example of a calculation to 
give a percentage difference is: ((exact result-approximate 
result)/exact result)* 100. For example, the exact result quan 
tity may be the input power, and the approximate result quan 
tity may be the consumed power. 
An absolute value of the percentage difference quantity 

may be used so that the quantity is not negative. A rule might 
be when ((exact result-approximate result)/exact result) is 
greater thana user-selected percentage (e.g., some value from 
0 to 1), then highlight this approximate result. For the rule, 
any user-selected percentage may be used. Such as 1, 2, 3, 4, 
5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 
23, 24, 25, 26, 27, 28, 29, 30, 31, 32, or greater. In an embodi 
ment of the invention, the percentage for the rule may be hard 
coded, instead of user selected. 

In an embodiment, the error report may be generated 
according to one or more rules defined by a user. The results 
of the validation are stored in database db3, and the reporting 
tool processes or analyzes these stored results. A user may 
change the rules or specify a different analysis, and then rerun 
the reporting tool to obtain new report results, without need 
ing to perform the KCL, KVL, and power conservation cal 
culations again. 
The reporting tool may be run in a batch or interactive 

mode. The report tool may provide text output or may have a 
graphical user interface, or both. For example, a user may 
specify a graphic viewer reporting tool to highlight nodes or 
loops, or both, where the approximate results differ from the 
actual results by a particular amount or percentage, such as an 
approximate result off by more than 25 percent. As discussed 
above, any percentage may be used and the percentage may 
be user selected. As a further example, the report tool may 
highlight the nodes or loops, or both, where the results of the 
Summing calculations is not Zero. 

In an embodiment, the results of each run of the reporting 
tool are stored in database db.4. Therefore, if the user requests 
a report with results that have been previously determined, the 
reporting tool will determine that this has occurred and 
retrieve the previous results and not have to perform analysis 
or calculations on the data from database db3 again. This 
saves time in the reporting process. 

For example, the user may request a listing of all nodes 
having a deviation or difference greater thana first value. The 
results are generated from database db3 and stored in data 
base dba. Then, the user requests a listing of all nodes having 
a deviation greater than a second value, which is different 
from the first value. These results are generated from database 
db3 and stored in db4. Then at a Subsequent time, a user, 
which may be different from previous users, requests a listing 
of all nodes having a deviation or difference greater than a 
first value. The reporting tool recognizes this information is 
already available and retrieves it from database dba, without 
needing to consult database db3. 
The technique for validating simulation results may be 

applied to DC or steady simulation or AC or transient simu 
lation results. For validating AC simulation results, the above 
described approach may be applied incrementally at different 
time steps in order to validate the results at each time interval 
of the simulated results. 

This description of the invention has been presented for the 
purposes of illustration and description. It is not intended to 
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be exhaustive or to limit the invention to the precise form 
described, and many modifications and variations are pos 
sible in light of the teaching above. The embodiments were 
chosen and described in order to best explain the principles of 
the invention and its practical applications. This description 
will enable others skilled in the art to best utilize and practice 
the invention in various embodiments and with various modi 
fications as are Suited to a particular use. The scope of the 
invention is defined by the following claims. 

What is claimed is: 
1. A method comprising: 
providing a circuit network stored in a computer-readable 

format, wherein the circuit network comprises nodes 
and branches; 

identifying a plurality of loops in the circuit network; 
using at least one computer processor, Summing the Volt 

ages for each identified loop and storing loop Sum 
results; 

using at least one computer processor, Summing the cur 
rents at each node of the circuit network and storing node 
Sum results; 

using at least one computer processor, Summing power 
consumption of each branch of the circuit network and 
storing a total branch power; 

providing an input power to the circuit network; and 
providing a validation error indication on a computer dis 

play when at least one of the identified loops sums to a 
value that is not zero, at least one of the nodes in the 
circuit network Sums to a value that is not Zero, or the 
input power is different from the total branch power. 

2. The method of claim 1 comprising: 
providing for display on the computer display the loop Sum 

for each loop of the circuit network; 
providing for display on the computer display the node Sum 

for each node of the circuit network; and 
providing for display on the computer display the input 
power to the circuit network and the total branch power. 

3. The method of claim 1 comprising: 
indicating on the computer display each loop where the 

loop Sum is not Zero. 
4. The method of claim 1 comprising: 
indicating on the computer display each node where the 

node sum is not Zero. 
5. The method of claim 1 comprising: 
showing on the computer display a difference between the 

input power to the circuit network and the total branch 
power. 

6. The method of claim 1 wherein the current and voltage 
associated with each branch of the circuit network is an esti 
mated current and an estimated Voltage provided by a circuit 
network estimation program. 

7. The method of claim 1 comprising: 
showing on the computer display a ratio between the input 
power to the circuit network and the total branch power. 

8. The method of claim 1 wherein each identified loop is an 
independent loop. 

9. The method of claim 8 wherein and an independent loop 
does not comprise other loops. 

10. The method of claim 8 wherein and an independent 
loop is a fundamental loop. 

11. A method comprising: 
providing a circuit in a computer-readable format, wherein 

a Voltage is associated with each node of the circuit; 
identifying loops of the circuit; 
using at least one processor, calculating the Voltages for 

each identified loop and storing the loop Sum results; 
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14 
using at least one processor, calculating the currents at each 

node of the circuit and storing the node sum results; 
using at least one processor, calculating power consump 

tion of each branch of the circuit and storing a total 
branch power; 

determining a first condition has occurred when at least one 
of the loops in the circuit has a Sum that is not Zero; 

determining a second condition has occurred when at least 
one of the nodes in the circuit Sums to a value that is not 
Zero; 

determining a third condition has occurred when an input 
power to the circuit is different from the total branch 
power, and 

upon determining the first condition has occurred, display 
ing an indication of the first condition on a computer 
SCC. 

12. The method of claim 11 comprising: 
upon determining the second condition has occurred, dis 

playing an indication of the second condition on the 
computer screen. 

13. The method of claim 12 comprising: 
upon determining the third condition has occurred, dis 

playing an indication of the third condition on the com 
puter screen. 

14. The method of claim 11 comprising: 
displaying a representation of the circuit on the computer 

Screen; and 
highlighting on the computer screen a loop of the repre 

sentation of the circuit where the loop Sum is not Zero. 
15. The method of claim 11 comprising: 
displaying a representation of the circuit on the computer 

Screen; and 
highlighting on the computer screen a node of the repre 

sentation of the circuit where the node sum is not zero. 
16. The method of claim 11 wherein each identified loop is 

an independent loop, and an independent loop does not com 
prise other loops. 

17. A method comprising: 
providing a computer-readable representation of a circuit, 

wherein a Voltage is associated with each node of the 
circuit; 

identifying loops of the circuit; 
using at least one processor, Summing the Voltages for each 

identified loop and storing loop Sum results; 
using at least one processor, Summing the currents at each 

node of the circuit and storing the node sum results; 
using at least one processor, calculating power consump 

tion of each branch of the circuit and storing a total 
branch power; 

determining a first condition has occurred when at least one 
of the loops in the circuit has a Sum not equal to Zero; 

determining a second condition has occurred when at least 
one of the nodes in the circuit Sums to a value not equal 
to Zero; 

determining a third condition has occurred when an input 
power to the circuit is different from the total branch 
power, and 

upon determining at least one of the first, second, or third 
conditions has occurred, displaying an indication of a 
validation error on a computer screen. 

18. The method of claim 17 comprising: 
determining a fourth condition has occurred when the loop 
Sum results is Zero, the node Sum results is Zero, and the 
total branch power is equal to the input power; and 

upon determining the fourth condition has occurred, dis 
playing an indication of the fourth condition on the 
computer screen. 
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19. The method of claim 17 wherein the upon determining 
one of the first, second, or third conditions has occurred, 
displaying an indication of a validation error condition on a 
computer Screen comprising: 

displaying a difference between the input power to the 
circuit and the total branch power on the computer 
SCC. 

20. The method of claim 17 wherein each identified loop is 
an independent loop, and an independent loop does not com 
prise other loops. 

5 

10 

16 


