a9 United States

US 20160140071A1

a2y Patent Application Publication (o) Pub. No.: US 2016/0140071 A1l

Sanzone et al. 43) Pub. Date: May 19, 2016
(54) ARBITRATED ACCESS TO RESOURCES (52) US.CL
AMONG MULTIPLE DEVICES CPC ........ GOG6F 13/4031 (2013.01); GO6F 13/1642
(2013.01)
(71) Applicant: Cavium, Inc., San Jose, CA (US)
(72) Inventors: Robert A. Sanzone, Hudson, MA (US); &7 ABSTRACT

@
(22)

(1)

Wilson P. Snyder, II, Holliston, MA

(US); Richard E. Kessler,
Northborough, MA (US)

Appl. No.: 14/540,436

An arbiter circuit manages and enforces arbitration and qual-
ity of service (QOS) among multiple devices accessing a
resource, such as a memory. The arbiter circuit receives
requests from a number of devices to use resources of a bridge
connecting to a memory, and maintains a count of bridge

Filed: Nov. 13, 2014 . . .
resources available on a per-device and per-bus basis. The
Publication Classification arbiter circuit operates to select a next one of the requests to
grant a bridge resource based on the device originating the
Int. Cl. request, a count of the per-device resources available, and a
GOG6F 13/40 (2006.01) count of the resources available to the bus connecting the
GOG6F 13/16 (2006.01) device to the bridge.
WNCB ARBITER O
1404
SMMU REQUESTORS 5Rs
DEVD DEVY DEV2 180 186 170
1454 1458 1450
ih if it ; [
4 Yy
0 194 > IOBN sl MRML
110 s 1
1ol 1558 > I B
4
L L L I L2C/CTRL
DEV3 DEVA4 DEV5 oM 1 i
j; : b
i PROCESSOR CP MEM CTRL
NCB ARBITER 1 |=— COREA o yiad
1408 150 — —
e —
I ovewp
OFF-CHIP
OFF-CHIP OFF-CHIP MEMORY
DEVICES DEVICES



May 19, 2016 Sheet 1 of 5 US 2016/0140071 A1

Patent Application Publication

L "Old
S40IA30 S321A30
AHONIN diHO440 AHI 440
;;;;;;;;;;;;;;;; SO ..o .. N
diHING
imwlmm”. [
- g0yl
59 S0
AL AN HOS5300Hd v mmbmmq HN
&
¥
091
| wid0e
ey LICH
aet *
TN P
p— i
— R
Gl |
SHOLSEN03

!

WOVl
0 YILIGHY G0N

¥ ¥
SRRRIRNRRIRRIReRleene

A



Patent Application Publication = May 19, 2016 Sheet 2 of 5 US 2016/0140071 A1

| DATAPROCESSOR | MEMORY
> 2054 215A
Wi P
PN INTERCONNECT
£ 265 |
| DATAPROCESSOR | MEMORY

2@§/
FIG. 2



May 19, 2016 Sheet 3 of 5 US 2016/0140071 A1

Patent Application Publication

051
LT

W

1
H315103

€ Old ,
00¢
\\
INZEO
¥ECL 00l

oy Loy

aarl vor)

LA30 0A30
B T B T T T T T T g T o T o, T T s e, T o o v %3
§ ¥ k1 k4 m
i N {
: 05GE ga5e VEGE |
m — OA4203d | 104410 [04400T ] |
Lo g5/¢ ‘ g
{1 Sua0snd | | | !
] i
m - S m
M e e Uck m
m HILSI9TY 10318 vdligdy m
| i
{ i
I T !

3 N

M S1104d0 A3d YObl  M3LEYY EON |



Patent Application Publication = May 19, 2016 Sheet 4 of 5 US 2016/0140071 A1

ORDER  CREDITS
DEVD o4

DEVY 12

DEVZ 32

NCB ARBITER REGISTER
(340)
105"
FIG. 4A

REGISTER CREDITS
JOBNG _NCBO_CREDITS b4

IOBNG_NCB1_CREDITS 32

IOBN REGISTER
(345)

4@8/

FIG. 4B



Patent Application Publication

May 19, 2016 Sheet 5 of 5

US 2016/0140071 A1

500
r

SET CREDIT COUNTS
505

A

PARSE REQUESTS TO OBTAIN
DEV D
510

'

" RETURNED ™~

NG

INCREMENT
COUNTERS
228

SELECT NEXT REQUEST
CANDIDATE
530

T SURE
< DENCREDITS? >

T SUFE
7 BUSCREDITS? >
~— B0~

GRANT RESOURCE TO REQUEST, |

DECREMENT COUNTERS
560

FIG. 5




US 2016/0140071 Al

ARBITRATED ACCESS TO RESOURCES
AMONG MULTIPLE DEVICES

BACKGROUND

[0001] In certain data processing applications, multiple
devices, such as processor cores and input/output interfaces,
may require access to shared resources such as a memory. A
resource arbiter can be implemented to arbitrate access to the
shared resources. Typically, the arbiter selects a next device to
allow to forward a resource request based on a predetermined
routine, such as a round-robin selection among all of the
devices.

SUMMARY

[0002] Example embodiments of the present disclosure
include a circuit configured to manage and enforce arbitration
and quality of service (QOS) among multiple devices access-
ing a resource, such as a memory. The circuit can include a
device interface for receiving requests from a number of
devices to access a memory, where each of the requests
including a device identifier (ID) identifying the device. A
bridge interface forwards the requests to a bridge, where they
may be sent to the memory. A per-device counter maintains a
resource count allocated to each device, and a bus counter
maintains a resource count for forwarding the requests to the
bridge via the bus. Further, an arbiter circuit operates to select
anext one of the requests to forward to the bridge based on 1)
the device identifier of the request, 2) a count of the per-device
counter corresponding to the device identifier, and 3) a count
of the bus counter.

[0003] Infurther embodiments, the per-device counter may
limit a maximum resource count to a first of the plurality of
devices relative to a second of the plurality of devices. The
arbiter circuit may suspend requests having a given device
identifier in response to detecting that the per-device counter
for the given device identifier indicates a count that is less
than a threshold value. The arbiter circuit may also suspend
requests in response to detecting that the bus counter indicates
a count that is less than a threshold value. For a given request,
the arbiter circuit may suspend the request based on a) an
indication of a resource count required by the request, and b)
a predetermined threshold for per-request resources.

[0004] In still further embodiments, a number of buffers
(e.g., FIFOs) may store the requests received from a respec-
tive device at the device interface. In response to reaching a
threshold storage value, the buffers may generate a backpres-
sure command to limit receipt of further requests to the cir-
cuit. The per-device counter may increment in response to
receiving an indication that an additional resource associated
with a given device identifier is available. Likewise, the bus
counter may increment in response to receiving an indication
that an additional resource associated with the circuit is avail-
able.

[0005] In yet further embodiments, a bridge control circuit
may operate to control a count of the bus counter. In particu-
lar, the bridge control circuit may prevent the return of an
initial given count of resources to the bus counter.

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] The foregoing will be apparent from the following
more particular description of example embodiments of the
disclosure, as illustrated in the accompanying drawings in
which like reference characters refer to the same parts

May 19, 2016

throughout the different views. The drawings are not neces-
sarily to scale, emphasis instead being placed upon illustrat-
ing embodiments of the present disclosure.

[0007] FIG. 1 is a block diagram illustrating a data proces-
sor in which embodiments of the present disclosure may be
implemented.

[0008] FIG. 2 is a block diagram illustrating a system
implementing the data processor of FIG. 1.

[0009] FIG. 3 is a block diagram illustrating an arbiter and
bridge connecting a plurality of devices and a memory in one
embodiment.

[0010] FIGS. 4A-B illustrate example register structures.
[0011] FIG. 5 is a flow chart illustrating arbitration of
requests in one embodiment.

DETAILED DESCRIPTION
[0012] A description of example embodiments follows.
[0013] FIG. 1 is a block diagram illustrating a data proces-

sor 100 in an example embodiment. The processor 100 may
be implemented as a system-on-chip (SOC) and connected to
external devices, resources and communications channels via
a printed circuit board (PCB). Alternatively, the processor
100 may be implemented among a number of discrete circuit
components connected via a PCB, or may comprise a SOC in
combination with one or more discrete circuit components.
[0014] The data processor 100 facilitates operations
between a number of devices and resources, and arbitrates
access to shared resources among the devices. In particular,
the processor cores 150 may include one or more data pro-
cessor cores. In an example embodiment, the processor cores
150 may include a number (e.g., 48) of ARM® processor
cores, such as the ARMvS8 processor cores. The processor
cores 150 are connected, via a coherent memory interconnect
(CMI) 135, to provide shared access to a number of other
devices and resources, including the level-2 cache (I.2C) and
controller 160 (also referred to herein as “L.2C”). The L.2C
further connects to a memory controller 165 for performing
memory access operations to an external memory, such as a
double data rate synchronous dynamic random-access
memory (DDR SDRAM) array. Such a memory (not shown)
may alternatively be located on-chip with the data processor
100. The CMI 135 may also connect to a coherent processor
interconnect (CPI) 155 for communication with off-chip
devices, such as an additional data processor. An example of
one such configuration is described below with reference to
FIG. 2.

[0015] The CMI 135 is further connected to an input/output
bridge (IOBN) 110, which provides an interconnect between
the processor cores 150, CPI 155 and [.2C 160 and additional
devices and resources. In particular, devices 145A-F connect
to the IOBN 110 via input/output interconnects (I0I), IO10
155A and IOI1 155B, which may be non-coherent buses
(NCBs) including passive and/or arbitrated channels. The
devices 145A-F may include a number of different on-chip
devices, such as co-processors, and may include /O inter-
faces (e.g., USB, SATA, PCle, Ethernet) to connect to a
number of external or off-chip devices and interfaces. In order
to arbitrate resources at the IOBN 110 to the devices 145A-F,
NCB arbiters 140A-B receive requests from the devices
145A-F and selectively grant IOBN resources to the devices
145A-B. Once granted, the devices 145A-B may communi-
cate with the processor cores 150, perform a memory access
operation to the L2C 160, or access other components of the
data processor 100.



US 2016/0140071 Al

[0016] In order to facilitate shared memory access among
several different devices (e.g., the processor cores 150 and
devices 145A-F), the data processor 100 may employ virtu-
alization, whereby a memory interconnect (e.g., CMI 135 and
IOBN 110) interfaces with the devices using virtual
addresses, which are translated to a physical address of the
memory. To enable virtualization, a System Memory Man-
agement Unit (SMMU) 180 maintains an index of physical
and virtual addresses. During a memory access operation
where a virtual address is provided, the IOBN 110 forwards
the virtual address to the SMMU 180, which returns a corre-
sponding physical address for accessing the memory (e.g., the
L2C 160 or an external memory via the .2C 160). The IOBN
110 may translate addresses bi-directionally such that the
virtual address is maintained at communications at the
device, and the physical address is indicated in operations at
the memory. The SMMU 180 may be further configured to
support multiple tiers of virtual addresses.

[0017] Control status registers (CSRs) 170 include regis-
ters for maintaining information about the instructions and
operations of the data processor 100. The CSRs may main-
tain, for example, status information regarding a number of
devices, as well as information about ongoing operations and
instructions between devices and/or resources. Devices such
as the processor cores 150 and the devices 145A-B, as well as
other requestors 185 and off-chip devices (via the CPI 155),
may write to and read from the CSRs 170 using a register
master logic (RML). To facilitate the multiple requests from
several different devices, a master RML. (MRML) 120 oper-
ates to arbitrate access to the CSRs 170.

[0018] FIG. 2 is a block diagram illustrating a system 200
implementing a plurality of data processors. The system 200
includes data processors 205A-B, each of which may be
configured comparably to the data processor 100 described
above with reference to FIG. 1. The data processors 205A-B
may be linked by a CPI interconnect 255, which may connect
to a respective CPl interface (e.g., 155 in FIG. 1) of each data
processor 205A-B. The CPI interconnect 255 may provide
shared access to the devices and resources across the data
processors 201A-B. In further embodiments, additional data
processors or other devices may be linked to the data proces-
sors 205A-B via the CPI interconnect 255.

[0019] The data processors 205A-B may be connected to
respective memory arrays (e.g., DDR SDRAM) 215A-B as
shown, and/or may be connected to a common memory array.
The data processors may be further connected to a number of
external devices 245 via a number of devices via respective
1/0 interfaces (e.g., USB, SATA, PCle, Ethernet).

[0020] Turning back to FIG. 1, in some embodiments, mul-
tiple devices, such as the devices 145A-F and processor cores
150, may require access to shared resources such as the L2C
160. For the devices 145 A-F, the NCB arbiters 140A-B can
be implemented to arbitrate access to the L2C 160 and/or
other shared resources. The arbiter 140A, for example, grants
resources to each of the devices 145A-C for forwarding
request to the IOBN 110 via the 1010 155A. To do so, the
arbiter 140A may select a next device to allow to forward a
resource request based on a predetermined routine, such as a
round-robin selection among all of the devices 145A-C.
[0021] However, each of the devices 145A-F may utilize a
different number of IOBN 110 resources, or may require
greater priority over other devices. Further, devices on one
bus (e.g., bus 101 155A) may utilize a different number of
resources, or require greater priority of resources, relative to

May 19, 2016

devices on another bus (e.g., bus 101 155B) As a result,
without proper arbitration, some devices may receive an
insufficient resources to forward requests to the IOBN 110,
while other devices may utilize more resources than neces-
sary.

[0022] NCB arbiters 140A-B, in one embodiment, may be
configured to manages and enforces arbitration and quality of
service (QOS) to the L.2C 160 or other resources by a number
of'devices. The arbiters 140 A-B receive requests from a num-
ber of devices 145A-F to use resources of a bridge IOBN 110
connecting to the [.2C, and maintain a count of bridge
resources available on a per-device and per-bus basis. The
arbiters 140A-B operate to select a next one of the requests to
grant a bridge resource based on the device originating the
request, a count of the per-device resources available, and a
count of the resources available to the bus connecting the
device to the IOBN 110.

[0023] An example NCB arbiter 140A configured to pro-
vide the aforementioned functions is described below with
reference to FIG. 3.

[0024] FIG. 3 is a block diagram illustrating a processing
subsystem 300 including a NCB arbiter 140A and an IOBN
110 connecting a plurality of devices 145A-C and a memory
(L2C 160) in one embodiment. The subsystem 300 may
include one or more components of the data processor 100
described above with reference to FIG. 1, or may be incorpo-
rated into the data processor. For example, the subsystem 300
may also include processor cores 150 and process access
requests from the processor cores 150 as well as from the
devices 145A-C. Further, a second NCB arbiter 140B may be
configured in a manner comparable to the NCB arbiter 140A
as described below.

[0025] The devices 145A-C may forward memory access
requests to the L.2C 160 via the IOBN 110, for example to
read or write to the L.2C 160. The IOBN 110 may have a
limited number of resources (e.g., available slots in a time-
division multiplexing (TDM) channel at the CMI 135) avail-
able for handling such requests. The NCB arbiter 140A oper-
ates to arbitrate these resources among the devices 145A-C.
To do so, the NCB arbiter 140A may receive requests for
IOBN resources from each of the devices 145A-C via a
respective buffer (e.g., FIFO) 355A-C. An arbiter select cir-
cuit 320 may select a nextrequest to grant a resource based on
a number of conditions. In particular, the select circuit 320
may reference a device credit counter 375A and/or a bus
credit counter 375B.

[0026] The device credit counter 375A may maintain a
number of per-device counters indicating a count of IOBN
resources available to a respective device. The count of IOBN
resources may be equivalent to a maximum (or initial) num-
ber of resources allocated to a given device, minus a number
of in-flight requests associated with the device. To maintain
this count, the device credit counter 375A may decrement a
given count when a resource is granted to a corresponding
device, and may increment a given count upon receiving an
indication from the IOBN 110 that a corresponding request
has been completed (e.g., cleared from the IOBN 110 or
fulfilled by the L2C 160). The register 340 may store pro-
grammable values to be used by the device credit counter
375A as the maximum or initial count values for each device.
As a result, the NCB arbiter 140A may configure a specific
number of resources to each device 145A-C, which may
ensure that devices receive a proper number of resources
based on priority or other factors, and that the device requests



US 2016/0140071 Al

from one device do not prevent another device from receiving
a minimum number of resources. Alternatively, the register
340 may be located at the IOBN 110 or another location such
as the control and status registers (CSRs) 170 shown in FIG.
1.

[0027] The bus credit counter 375B may maintain a counter
indicating a count of IOBN resources available to all of the
devices 145A-C connecting to the IOBN 110 via a common
bus (IOI0 155A). The count of IOBN resources may be
equivalent to a maximum (or initial) number of resources
allocated to the IOI0 155A, minus a number of in-flight
requests associated with the 1010 155A. To maintain this
count, the bus credit counter 375B may decrement a given
count when a resource is granted to device on IO10 155A, and
may increment a given count upon receiving an indication
from the IOBN 110 that a corresponding request has been
completed (e.g., cleared from the IOBN 110 or fulfilled by the
L2C160). The register 345 at IOBN 110 may store program-
mable values to be used by the bus credit counter 375B as the
maximum or initial count values for each device. As a result,
the IOBN 110 may configure a specific number of resources
allocated to all devices 145A-C connected to a common bus
1010 155A, which may differ from a number of resources
allocated to devices on another bus (e.g., devices 145D-F on
IOI1 as shown in FIG. 1). Such a configuration can provide
“bus balancing” among a number of buses, whereby each bus
receives a proper number of resources based on priority or
other factors, and that the device requests from one bus do not
prevent devices at another bus from receiving a minimum
number of resources. Alternatively, the register 345 may be
located at the NCB arbiter 140A or another location such as
the control and status registers (CSRs) 170 shown in FIG. 1.

[0028] To provide further bus balancing, the IOBN 110
may be configured to refrain from returning an initial number
of credits to the bus credit counter 375B. For example, for the
first given number (e.g., 8) of credits used by the devices
145A-C on a given bus IO10 155 A, the IOBN 110 may refrain
from returning those credits to the bus credit counter 375B,
while returning all credits following the initial number of
credits. This configuration may be applied to some or all of
the buses (e.g., IOI1 155B). A similar configuration may be
applied to the per-device counts for one or more devices
145A-C.

[0029] FIGS. 4A-B illustrate example register structures.
As shown in FIG. 4A, an NCB arbiter register 405 (e.g.,
register 340 in FIG. 3) may maintain a distinct credit value for
each device. The credit value may be used to set an initial or
maximum value at a respective counter of a device credit
counter (e.g., counter 375A). As shown in FIG. 4B, an IOBN
register 410 (e.g., register 345) may maintain a distinct credit
value foreach bus (e.g., 1010, 1011 155A-B). The credit value
may be used to set an initial or maximum value at a respective
counter of a bus credit counter (e.g., counter 375B).

[0030] FIG. 5 is a flow chart illustrating a process 500
arbitrating requests in one embodiment. With reference to
FIG. 3, upon initialization, the NCB arbiter 140A may set
initial credit counts at the device credit counter 375A and the
bus credit counter 375B based on values at the registers 340,
345, respectively (505). For each request for IOBN resources
received at buffers 355A-C, the NCB arbiter 140 A may parse
the request to obtain a corresponding device identifier (ID)
(510). To update the credit counts, the NCB arbiter 140A may
periodically or continuously check for returned credits from

May 19, 2016

the IOBN 110 (520). If credits are received, then the respec-
tive counter(s) are incremented accordingly (525).

[0031] To determine a next request to grant, the NCB arbi-
ter 140A may first select a next request candidate according to
a selection routine (e.g., a round-robin selection) (530). For
the selected candidate, the NCB arbiter 140A may look up an
associated device credit count (at device credit counters
375A) based on the device ID of the candidate (540), and may
look up an associated bus credit count (at device credit
counter 375B) for the bus (e.g., IOl 155A) connected to the
device (550). If one of the device credit count or bus credits
count does not have a sufficient or threshold number of cred-
its, then the NCB arbiter 140A may suspend the request an
proceed to select a next request candidate (530). If, however,
both the device credit count and the bus credit count have a
sufficient number of credits, the NCB arbiter 140A may grant
a resource to the request and decrement the counters associ-
ated with the request accordingly (560). The NCB arbiter may
then proceed to repeat the operations of updating the credit
counts (520) and selecting a next request candidate to grant
resources (530).

[0032] While this invention has been particularly shown
and described with references to example embodiments
thereof, it will be understood by those skilled in the art that
various changes in form and details may be made therein
without departing from the scope of the invention encom-
passed by the appended claims.

What is claimed is:

1. A circuit comprising:

a device interface for receiving requests from a plurality of
devices to access a memory via a bridge, each of the
requests including a device identifier;

a per-device counter configured to maintain a resource
count allocated to each device;

a bus counter configured to maintain a resource count for
forwarding the requests to the bridge via a bus; and

an arbiter circuit configured to select a next one of the
plurality of requests to forward to the bridge based on 1)
the device identifier of the request, 2) a count of the
per-device counter corresponding to the device identi-
fier, and 3) a count of the bus counter.

2. The circuit of claim 1, wherein the per-device counter is
further configured to limit a maximum resource count to a
first of the plurality of devices relative to a second of the
plurality of devices.

3. The circuit of claim 1, wherein the arbiter circuit is
further configured to suspend requests having a given device
identifier in response to detecting that the per-device counter
for the given device identifier indicates a count that is less
than a threshold value.

4. The circuit of claim 1, wherein the arbiter circuit is
further configured to suspend requests in response to detect-
ing that the bus counter indicates a count that is less than a
threshold value.

5. The circuit of claim 1, wherein the arbiter circuit is
further configured to suspend one of the plurality requests
based on a) an indication of a resource count required by the
request, and b) a predetermined threshold for per-request
resources.

6. The circuit of claim 1, further comprising a plurality of
buffers each configured to store the requests received from a
respective device at the device interface.



US 2016/0140071 Al

7. The circuit of claim 6, wherein each of the plurality of
buffers generates a backpressure command in response to
reaching a threshold storage value.

8. The circuit of claim 1, wherein the per-device counter is
further configured to increment in response to receiving an
indication that an additional resource associated with a given
device identifier is available.

9. The circuit of claim 1, wherein the bus counter is further
configured to increment in response to receiving an indication
that an additional resource associated with the circuit is avail-
able.

10. The circuit of claim 1, further comprising a bridge
control circuit, the bridge control circuit configured to control
a count of the bus counter.

11. The circuit of claim 10, wherein the bridge control
circuit is further configured to prevent return of an initial
given count of resources to the bus counter.

12. A method comprising:

receiving requests from a plurality of devices to access a

memory, each of the requests including a device identi-
fier;

maintaining a per-device resource count allocated to each

device;

maintaining a bus resource count for forwarding the

requests to the bridge via a bus; and

selecting a next one of the plurality of requests to forward

to the bridge based on a) the device identifier of the
request, b) the per-device resource count corresponding
to the device identifier, and ¢) the bus resource count.

13. The method of claim 12, further comprising limiting,
via the per-device resource count, a maximum resource count
to a first of the plurality of devices relative to a second of the
plurality of devices.

May 19, 2016

14. The method of claim 12, further comprising suspend-
ing requests having a given device identifier in response to
detecting that the per-device count for the given device iden-
tifier indicates a count that is less than a threshold value.

15. The method of claim 12, further comprising suspend-
ing requests in response to detecting that the bus counter
indicates a count that is less than a threshold value.

16. The method of claim 12, further comprising suspend
one of the plurality requests based on a) an indication of a
resource count required by the request, and b) a predeter-
mined threshold for per-request resources.

17. The method of claim 12, further comprising storing the
requests received from a respective device at a device inter-
face.

18. The method of claim 17, further comprising generating
a backpressure command in response to reaching a threshold
storage value.

19. The method of claim 12, further comprising increment-
ing the per-device resource count in response to receiving an
indication that an additional resource associated with a given
device identifier is available.

20. The method of claim 12, further comprising increment-
ing the bus resource count in response to receiving an indi-
cation that an additional resource associated with the circuit is
available.

21. The method of claim 12, further comprising controlling
a count of the bus counter via a signal from the bridge.

22. The method of claim 21, further comprising preventing
return of an initial given count of resources to the bus counter.

#* #* #* #* #*



