
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2015/0143354 A1

US 2015O1433.54A1

Mathew et al. (43) Pub. Date: May 21, 2015

(54) ZERO DOWNTIME DEPLOYMENT AND Related U.S. Application Data
ROLLBACK (60) Provisional application No. 61/906.253, filed on Nov.

(71) Applicants: Suresh Mathew, Sunnyvale, CA (US); 19, 2013.
Jigar Chandrakant Desai, Fremont, CA Publication Classification
(US); Kumar Rethinakaleeswaran, San
Jose, CA (US); Narayanan Singaram, (51) Int. Cl.
Fremont, CA (US); Krishnakanth G06F 9/445 (2006.01)
Batta, San Jose, CA (US) (52) U.S. Cl.

CPC. G06F 8/65 (2013.01); G06F 8/61 (2013.01);
(72) Inventors: Suresh Mathew, Sunnyvale, CA (US); G06F 8/67 (2013.01)

Jigar Chandrakant Desai, Fremont, CA
(US); Kumar Rethinakaleeswaran, San (57) ABSTRACT
Jose, CA (US); Narayanan Singaram, A system and method for Zero or near Zero downtime deploy
Fremont, CA (US); Krishnakanth ment and rollback are provided. In an example embodiment,
Batta, San Jose, CA (US) a second application is deployed to an application server that

is running a first application bound to a port of the server
computer. The second application is started without binding

(21) Appl. No.: 14/528,916 the second application to the port. The second application is
bound to the port while the first application is bound to the
port. The first application is then unbound from the port after

(22) Filed: Oct. 30, 2014 the second application is bound to the port.

100

R ARY
SERVER(S)

130
R ARTY

APPLICATION
132

NEFORK
NTERNE)

4

CEN DEVICE
110

WEE CEN
112

CLIENT APPLICATION(S),
114

PROGRAMMATICCLIENT
116

(E.G., THE

PAYMENTSYSTEMS)

IMPLEMENTATIONSYSTEM

SERVER COMPUTER(S)

PUBLICATION SYSTEMS)

— — C D
AABASE

SERVER(S)

WEBSERVER
122 :

4.

144

DATABASES)
124 26

Patent Application Publication

100

R) PARY
SERVERS)

130
RD ARY

APCAON

May 21, 2015 Sheet 1. Of 8 US 201S/O143354 A1

NETWORK (E.G., THE
iNTERNET)

(4.

CEN VC
110

WEE CEN

CLIENT APPLICATIONS)
114

116

AP SERVER SERVER COMPUTER(S)
i40 WEBSERVER

122
PUBLICATION SYSTEMS) : B

142

PAYAAENTSYSTEM (S)
44

IMPLEMENTATION SYSTEM
150

DATABASE
SERVER(S)

124
DATABASES)

Patent Application Publication May 21, 2015 Sheet 2 of 8 US 201S/O143354 A1

VPANAON SYSTEM
150

A

COMMUNICATION
MODULE
20 | BNNG iOE

23
DEPLOYMENT

VODU 8 - 8 - x - W - M - 8 W. W. W. W. & X X X X X W. W. M. - W - W - W - 8 & X X X W. W. M. M. W. W. W. W. W. W. & X & & X - W - M - 8 W. W. W. W. &

& X - W - M - 8 W. W. W. W. & X X X X X W. W. M. M. 8 W. 220 STORAGE MODULE

240

v

FIG 2

Patent Application Publication May 21, 2015 Sheet 3 of 8 US 201S/O143354 A1

300
(
A

NETWORK (E.G., THE
INTERNET)

04.

V

OAO 8AANCER
30

& W & W. W. W. 8 8 W S W - M - 8 - W - M. W. W. W. W. & W M × 8 & A-to

FIRST SERVER SECON SERVER
CO/UER COMPER

FRS ARCAON SECONDAPPLICATION

FIG. 3

Patent Application Publication

REREE A SECON ACAON
410 :

OEOY SCONOAPCAON
N A SERVER COVER

$20

SAR HE SECON ACAN

DISABLE TRAFFIC TO THE SERVER
COi TER

May 21, 2015 Sheet 4 of 8

NBNDA FRST ALCAON FROf
A OR OF HE SERVER CORER

450

BIND THE SECONDAPPLICATION TO
E OR
460

ENABLE TRAFFICTO THE SERVER
CO, ER

47

NEFOY E FRSAPCAON
480

FIG. 4

US 201S/O143354 A1

Patent Application Publication May 21, 2015 Sheet 5 of 8 US 201S/O143354 A1

REREVE A SECOND ACAON
51

DEPOY SECONO APECATION OA
SERVER COWER RNNNGA FRS
APPCAON BON) O A FOR OF HE

SERVER COWER

BIND THE SECONDAPPLICATION TO THE PORT |
54

NBN E FRS AFCAON FROM -
OR
55

JNEPOYE FRS APCAON
380

Patent Application Publication May 21, 2015 Sheet 6 of 8 US 201S/O143354 A1

SETSO_REUSEPORT OPTION FOR A PORT OF A
SERVER COMPER

620

FIG. 6

Patent Application Publication May 21, 2015 Sheet 7 of 8 US 201S/O143354 A1

700s

v

MAN AN A CURRENSAE OF E FRS
APPCAON AFTER NBNDING FROM -

FORT
70

v

BIND THE FIRST APPLICATION TO THE PORT |
WHILE THE SECONDAPPLICATION IS BOUND TO

- FOR 3

FIG. 7

Patent Application Publication

PROCESSOR
802

NSR CONS

MAN MEMORY
804.

NSR CONS
824

SAC MEMORY
806.

NSR CONS
824

NEWORK
NERFACE

EVCE
820

NEWORK

May 21, 2015 Sheet 8 of 8

BS
808

US 201S/O143354 A1

WEO SAY
80

AANERC
N DEVCE

812

CRSOR
CONRO
DEVICE
84

SORAGE N 88

FIG. 8

fAC-NE
READABE VED,

822
NSTRUCTIONS

824

SGNA.
GENERAON

EVCE
848

US 2015/O 143354 A1

ZERO DOWNTIME DEPLOYMENT AND
ROLLBACK

RELATED APPLICATIONS

0001. This application claims the priority benefit of U.S.
Provisional Application No. 61/906.253, entitled “ZERO
DOWNTIME DEPLOYMENT AND ROLLBACK filed
Nov. 19, 2013, which is hereby incorporated by reference in
its entirety.

TECHNICAL FIELD

0002 Embodiments of the present disclosure relate gen
erally to computer technology and, more particularly, but not
by way of limitation, to zero downtime deployment and roll
back.

BACKGROUND

0003 Implementing an application on a server computer
often involves a period of downtime associated with the
server computer. In a typical scenario, a new version of an
application is implemented by disabling network traffic to the
server computer, stopping the current version of the applica
tion, undeploying the current version of the application,
deploying the new version of the application, starting the new
version of the application, and finally enabling network traffic
to the server computer. When implementing an application to
a large number of server computers at a high frequency, the
downtime can be significant and costly.

BRIEF DESCRIPTION OF THE DRAWINGS

0004 Various ones of the appended drawings merely illus
trate example embodiments of the present disclosure and
should not be considered as limiting its scope.
0005 FIG. 1 is a block diagram illustrating a networked
system, according to some example embodiments.
0006 FIG. 2 is a block diagram illustrating an example
embodiment of an implementation system, according to some
example embodiments.
0007 FIG. 3 is a block diagram illustrating communica

tive coupling between a load balancer and a server computer
in an example scenario, according to Some example embodi
mentS.

0008 FIG. 4 is a flow diagram illustrating an example
method for implementing an application on a server com
puter, according to Some example embodiments.
0009 FIG. 5 is a flow diagram illustrating an example
method for implementing an application on a server computer
using simultaneous application binding, according to some
example embodiments.
0010 FIG. 6 is a flow diagram illustrating an example
method for setting binding options for a port of a server
computer, according to some example embodiments.
0011 FIG. 7 is a flow diagram illustrating an example
method for rolling back an implementation of an application
on a server computer, according to some example embodi
mentS.

0012 FIG. 8 illustrates a diagrammatic representation of a
machine in the form of a computer system within which a set
of instructions may be executed for causing the machine to
perform any one or more of the methodologies discussed
herein, according to an example embodiment.

May 21, 2015

0013 The headings provided herein are merely for conve
nience and do not necessarily affect the scope or meaning of
the terms used.

DETAILED DESCRIPTION

0014. The description that follows includes systems,
methods, techniques, instruction sequences, and computing
machine program products that embody illustrative embodi
ments of the disclosure. In the following description, for the
purposes of explanation, numerous specific details are set
forth in order to provide an understanding of various embodi
ments of the inventive subject matter. It will be evident, how
ever, to those skilled in the art, that embodiments of the
inventive subject matter may be practiced without these spe
cific details. In general, well-known instruction instances,
protocols, structures, and techniques are not necessarily
shown in detail.
0015 To serve network traffic on a massive scale, a large
number of servers running a particular version of an applica
tion can be employed. For example, a pool comprising tens of
thousands of servers may be running a particular application
to meet network traffic demands. Traditional techniques to
update or implement a version of an application can cause
downtime. Even a few minutes of downtime per update can
add up to many days of downtime when updating at high
frequency across a large pool of servers.
0016. In an example embodiment, delayed port binding
can be employed to implement one or more applications to
one or more server computers with near Zero downtime. In
this embodiment, a first application is running and bound to a
port on the server computer. A second application is deployed
to the server computer and started without binding to the port.
In this embodiment, network traffic being received at the
server computer is disabled Subsequent to the second appli
cation being deployed and started. The first application is then
unbound from the port. Immediately following the first appli
cation being unbound from the port, the second application is
bound to the port and the network traffic to the server com
puter is enabled. In this way, the downtime for the server is
minimized by first preparing the second application, and then
performing an exchange of applications that are bound to the
port. In various embodiments, this technique can be used
where the server computer or the port of the application is
configured to allow one application to be bound to the port at
a time.
0017. In another example embodiment, an application
may be deployed with Zero downtime using an advanced port
binding technique. In this example embodiment, the first
application is bound to the port of the server computer and
subsequently serves network traffic received at the server
computer. In various embodiments, the first application is
bound to the port using a server computer option allowing for
binding of more than one application to the port at the same
time (e.g., a socket option such as SO REUSEPORT). The
second application may be deployed to the server computer
and started without being bound to the port. Subsequently, the
second application is bound to the same port as the first
application while the first application is serving network traf
fic. Thus, in this embodiment, the first application and the
second application are bound to the port at the same time
while the server computer is serving network traffic. After the
second application is bound to the port, the first application is
unbound and undeployed. In this embodiment, network traf
fic received at the server computer is continuously served

US 2015/O 143354 A1

throughout a deployment lifecycle of the second application
and un-installation of the first application. In this way, the
second application can be deployed on the server computer
with Zero downtime.

0018 With reference to FIG. 1, an example embodiment
of a high-level client-server-based network architecture 100
is shown. A networked system 102 provides server-side func
tionality via a network 104 (e.g., the Internet or wide area
network (WAN)) to a client device 110. In some implemen
tations, a user (e.g., user 106) interacts with the networked
system 102 using the client device 110. FIG. 1 illustrates, for
example, a web client 112 (e.g., a browser, such as the Internet
Explorer(R) browser developed by Microsoft(R) Corporation of
Redmond, Wash. State), client application(s) 114, and a pro
grammatic client 116 executing on the client device 110. The
client device 110 includes the web client 112, the client appli
cation(s) 114, and the programmatic client 116 alone,
together, or in any suitable combination. Although FIG. 1
shows one client device 110, in other implementations, the
network architecture 100 comprises multiple client devices.
0019. In various implementations, the client device 110
comprises a computing device that includes at least a display
and communication capabilities that provide access to the
networked system 102 via the network 104. The client device
110 comprises, but is not limited to, a remote device, work
station, computer, general purpose computer, Internet appli
ance, hand-held device, wireless device, portable device,
wearable computer, cellular or mobile phone, Personal Digi
tal Assistant (PDA), Smartphone, tablet, ultrabook, netbook,
laptop, desktop, multi-processor System, microprocessor
based or programmable consumer electronic, game consoles,
set-top box, network Personal Computer (PC), mini-com
puter, and so forth. In an example embodiment, the client
device 110 comprises one or more of a touch screen, accel
erometer, gyroscope, biometric sensor, camera, microphone,
Global Positioning System (GPS) device, and the like.
0020. The client device 110 communicates with the net
work 104 via a wired or wireless connection. For example,
one or more portions of the network 104 comprises an ad hoc
network, an intranet, an extranet, a Virtual Private Network
(VPN), a Local Area Network (LAN), a wireless LAN
(WLAN), a Wide Area Network (WAN), a wireless WAN
(WWAN), a Metropolitan Area Network (MAN), a portion of
the Internet, a portion of the Public Switched TelephoneNet
work (PSTN), a cellular telephone network, a wireless net
work, a Wireless Fidelity (Wi-FiR) network, a Worldwide
Interoperability for Microwave Access (WiMax) network,
Bluetooth R) networks, another type of network, or any suit
able combination thereof.

0021. In some example embodiments, the client device
110 includes one or more of the applications (also referred to
as “apps') such as, but not limited to, web browsers, book
reader apps (operable to read e-books), media apps (operable
to present various media forms including audio and video),
fitness apps, biometric monitoring apps, messaging apps,
electronic mail (email) apps, and e-commerce site apps (also
referred to as “marketplace apps'). In some implementations,
the client application(s) 114 include various components
operable to present information to the user and communicate
with the networked system 102. In some embodiments, if the
e-commerce site application is included in the client device
110, then this application is configured to locally provide the
user interface and at least some of the functionalities with the
application configured to communicate with the networked

May 21, 2015

system 102, on an as needed basis, for data or processing
capabilities not locally available (e.g., access to a database of
items available for sale, to authenticate a user, to Verify a
method of payment). Conversely, if the e-commerce site
application is not included in the client device 110, the client
device 110 can use its web browser to access the e-commerce
site (or a variant thereof) hosted on the networked system 102.
0022. In various example embodiments, the user (e.g., the
user 106) comprises a person, a machine, or other means of
interacting with the client device 110. In some example
embodiments, the user is not part of the network architecture
100, but interacts with the network architecture 100 via the
client device 110 or another means. For instance, the user
provides input (e.g., touch screen input or alphanumeric
input) to the client device 110 and the input is communicated
to the networked system 102 via the network 104. In this
instance, the networked system 102, in response to receiving
the input from the user, communicates information to the
client device 110 via the network 104 to be presented to the
user. In this way, the user can interact with the networked
system 102 using the client device 110.
0023. An Application Program Interface (API) server 120
and a web server 122 are coupled to, and provide program
matic and web interfaces respectively to, one or more server
computer(s) 140. The server computer(s) 140 hosts one or
more publication system(s) 142, payment system(s) 144, and
a implementation system 150, each of which comprises one
or more modules or applications and each of which can be
embodied as hardware, software, firmware, or any combina
tion thereof. The server computer(s) 140 are, in turn, shown to
be coupled to one or more database server(s) 124 that facili
tate access to one or more information storage repositories or
database(s) 126. In an example embodiment, the database(s)
126 are storage devices that store information to be posted
(e.g., publications or listings) to the publication system(s)
142. The database(s) 126 also stores digital good information
in accordance with some example embodiments.
0024. The web client 112 accesses the various systems of
the networked system 102 (e.g., the publication system(s)
142) via the web interface supported by the web server 122.
Similarly, the programmatic client 116 and client application
(s) 114 accesses the various services and functions provided
by the networked system 102 via the programmatic interface
provided by the API server 120. The programmatic client 116
can, for example, be a seller application (e.g., the Turbo Lister
application developed by eBay(R) Inc., of San Jose, Calif.) to
enable sellers to author and manage listings on the networked
system 102 in an off-line manner, and to perform batch-mode
communications between the programmatic client 116 and
the networked system 102.
0025. Additionally, a third party application 132, execut
ing on third party server(s) 130, is shown as having program
matic access to the networked system 102 via the program
matic interface provided by the API server 120. For example,
the third party application 132, utilizing information retrieved
from the networked system 102, supports one or more fea
tures or functions on a website hosted by the third party. The
third party website, for example, provides one or more pro
motional, marketplace, or payment functions that are Sup
ported by the relevant applications of the networked system
102.

0026. The publication system(s) 142 provides a number of
publication functions and services to the users that access the
networked system 102. The payment system(s) 144 likewise

US 2015/O 143354 A1

provides a number of functions to perform or facilitate pay
ments and transactions. While the publication system(s) 142
and payment system(s) 144 are shown in FIG. 1 to both form
part of the networked system 102, it will be appreciated that,
in alternative embodiments, the payment system(s) 144 may
form part of a payment service that is separate and distinct
from the networked system 102. In some example embodi
ments, the payment system(s) 144 may form part of the pub
lication system(s) 142.
0027. In various embodiments, the implementation sys
tem 150 provides functionality to deploy applications to a
particular server computer. In some embodiments, the imple
mentation system 150 can be part of any of the server com
puters of the server computer(s) 140 or another server com
puter. The implementation system 150 will be discussed
further in connection with FIG. 2 below.

0028. Further, while the client-server-based network
architecture 100 shown in FIG. 1 employs a client-server
architecture, the present inventive Subject matteris, of course,
not limited to Such an architecture, and can equally well find
application in a distributed, or peer-to-peer, architecture sys
tem, for example. The various systems of the applications
server(s) 140 (e.g., the publication system(s) 142 and the
payment system(s) 144) can also be implemented as standa
lone software programs, which do not necessarily have net
working capabilities.
0029 FIG. 2 is a block diagram of the implementation
system 150 that provides functionality to deploy and rollback
applications on a server computer, according to some
example embodiments. For instance, the implementation sys
tem 150 can implement applications on the networked system
102. Example applications include publication applications,
auction applications, fixed-price applications, store applica
tions, reputation applications, personalization applications,
internationalization applications, navigation applications,
imaging applications, listing creation (seller) applications,
listing management (seller) applications, post-listing man
agement applications, dispute resolution applications, fraud
prevention applications, messaging applications, merchan
dizing applications, loyalty promotion applications. That is to
say, in a scenario where a newer version of a particular appli
cation is deployed, and Subsequently a prior version of the
particular application is redeployed in-place of the newer
version, the action of redeployment is referred to as a roll
back. “Deployment as used herein, is intended to include
installing a particular application on a particular server com
puter including steps to configure the server computer to
allow execution of the particular application.
0030. In an example embodiment, the implementation
system 150 includes a communication module 210, a deploy
ment module 220, a binding module 230, and a storage mod
ule 240. All, or some, of the modules 210-240 of FIG. 2,
communicate with each other, for example, via a network
coupling, shared memory, and the like. It will be appreciated
that each of the modules 210-240 can be implemented as a
single module, combined into other modules, or further Sub
divided into multiple modules. Other modules not pertinent to
example embodiments can also be included, but are not
shown.

0031. The communication module 210 provides various
communications functionality. For example, the communica
tion module 210 manages network traffic being received at
the server computer(s) 140 such as enabling or disabling
network traffic to the server computer(s) 140. In example

May 21, 2015

embodiments, the communication module 210 exchanges
network communications with the database server(s) 124, the
client device 110, and the third party server(s) 130 (e.g., to
facilitate access to a particular version of an application).
0032. The deployment module 220 provides functionality
to deploy or install applications on the server computer(s)
140. For example, the deployment module 220 may deploy an
application retrieved from a storage device, Such as databases
126, by storing the application at the server computer(s) 140
or another storage device accessible by the server computer
(s) 140. In some examples, the deployment module 220 con
figures the server computer(s) 140 so that the server computer
(s) 140 is operable to run or execute the application.
0033. The binding module 230 provides functionality to
bind applications to ports or other shared resources on the
server computer(s) 140. For example, the binding module 230
binds a particular application to a particular port of the server
computer(s) 140. In another example, the binding module
230 unbinds the particular application from the particular port
of the server computer(s) 140. In some example embodi
ments, the binding module 230 configures the port with vari
ous settings. For instance, the binding module 230 can bindan
application to the particular port of the particular server com
puter 140 with a port option, socket option, or other port
setting that allows for binding of more than one application to
the port at the same time.
0034. The storage module 240 provides functionality to
receive or retrieve applications (e.g., a new version of a par
ticular server application) and maintain states of a particular
application (e.g., store an application state for Subsequent
use). For example, the storage module 240 retrieves a new
version of a particular application to be deployed on a par
ticular server computer (e.g., server computer(s) 140) from
the databases 126.
0035 FIG. 3 is a block diagram illustrating communica
tive coupling between a load balancer 310 and server com
puters such as one or more of the server computer(s) 140. It
will be appreciated that “server computer as used herein is
intended to include a computer machine communicatively
coupled to a network (also referred to as a node on a network
or network node). The load balancer 310 can be a device
coupled to a first server computer 320 and a second server
computer 330 or a software based load balancer that is imple
mented on a particular server computer. The load balancer
310 can be configured with more than one end point that can
route network traffic to the end points. In this example
embodiment, the first application and the second application
can be on the same server computer or different server com
puters.
0036. In example embodiments, the load balancer 310 is
used, in part, to implement applications with limited or Zero
downtime. In one embodiment, the load balancer 310 is
coupled to the first server computer 320 and the second server
computer 330. In this embodiment, a first application 322 is
running and serving network traffic on the first server com
puter 320, and a second application 332 is deployed on the
second server computer 330. The first application 322 may,
for example, be an old version, and the second application
332 may be a new version of a particular server application.
0037. The second application 332 can be deployed and
started while the first application 322 on the first server com
puter 320 is serving network traffic. After starting the second
application 332, the load balancer 310 can route network
traffic from the first server computer 320 to the second server

US 2015/O 143354 A1

computer 330. In one embodiment, all or some of the network
traffic is routed to the second server computer 330, and the
first application 322 in the first server computer 320 is then
undeployed to conserve resources. In another embodiment,
the first application 322 maintains a current state of the first
application322 and is not undeployed to allow for performing
a rollback (e.g., redeploying the first application). In this
embodiment, the load balancer 310 performs the rollback by
routing network traffic from the second server computer 330
to the first server computer 320 running the first application
322 that has maintained the current state.
0038. In other embodiments, the first application 322 and
the second application 332 are on the same server computer.
In these embodiments, the load balancer 310 distributes the
network traffic between the first application 322 and the sec
ond application 332 on the same server computer.
0039 FIG. 4 is a flow diagram illustrating an example
method 400 for implementing an application on a server
computer (e.g., the server computer(s) 140), also referred to
as a node, according to some example embodiments. At
operation 410, the storage module 240 retrieves, accesses, or
otherwise obtains a second application from a storage device,
such as database(s) 126, or directly loaded from a network
administration. In some embodiments, the communication
module 210 receives the second application via the network
104. In some instances, the second application is a new or
replacement version of a first application.
0040. At operation 420, the deployment module 220
deploys the Second application to the server computer (e.g., a
particular node of the networked system 102). For example,
the deployment module 220 configures the server computer
Such that it is operable to execute or run the second applica
tion.
0041. In an example embodiment, the server computer is
running an operating system that allows two or more versions
of a particular application to run at the same time (e.g.,
Apache Tomcat version 7 or higher). Allowing multiple ver
sions of a particular application to run on a particular server
computer at the same time is referred to herein as parallel
deployment. For instance, a particular server computer can
have prior versions of a particular application with a most
recent version as a default version (e.g., the application that is
designated to serve network traffic).
0042. In a specific example, a particular application on the
server computer with multiple applications can be designated
to serve the network traffic using web applicationarchive files
(also referred to as WAR files) with WAR names separated by
two pound symbols (#). For example, examplewebapphill.
war corresponds to the first application and examplewe
bapplifi2.war corresponds to the second application. The first
application and the second application can coexist within the
same context on a parallel deployment enabled server com
puter. In this example, the examplewebapphi2.war that cor
responds to the second application is designated to server
traffic by default since it is the most recent version of a
particular application (examplewebapp). In an embodiment,
the deployment module 220 deletes or removes the exam
plewebappii 2.war file to perform a rollback (e.g., put into
operation a prior version of the application) to examplewe
bapplit1...war corresponding to the first application.
0043. At operation 430, the deployment module 220 starts
the second application without binding the second applica
tion to a port of the server computer. For example, the deploy
ment module 220 uses delayed port binding to start the second

May 21, 2015

application without first binding to a particular port of the
server computer. In some instances, the deployment module
220 configures the server computer to enable or allow delayed
port binding. Delayed port binding allows applications to
start without first being bound to a particular port. For
instance, delayed port binding can be performed on an par
ticular server, executing Apache Tomcat, by overriding bin
dOnlnit, although other techniques for performing delayed
port binding can be employed.
0044 Subsequent to the deployment module 220 starting
the second application, at operation 440, the communication
module 210 disables the network traffic to the server com
puter. In some implementations, the load balancer of FIG. 3
can be employed to divert the network traffic away from the
server computer while network traffic is disabled.
0045. At operation 450, the binding module 230 unbinds
the first application from the port of the server computer.
After the binding module 230 unbinds the first application, at
operation 460, the binding module 230 binds the second
application to the same port of the server computer.
0046) Subsequently, at operation 470, the communication
module 210 enables network traffic to the server computer. As
a result, the server computer serves network traffic received at
the server computer that is running the second application.
0047. At operation 480, the deployment module 220 unde
ploys the first application. For instance, the deployment mod
ule 220 undeploys or uninstalls the first application by freeing
resources used by the first application or removing or deleting
the first application. Undeploying the first application is per
formed, in Some instances, to conserve resources of the server
computer.
0048. In a further embodiment, the deployment module
220 does not undeploy or uninstall the first application, allow
ing for an expedient rollback (e.g., a rollback where there is
no need to deploy and configure a particular application as it
is already in a state operable to be deployed). In some
instances, the storage module 240 maintains a current state of
the first application after the binding module 230 unbinds the
first application at the operation 460. In this embodiment, the
rollback is performed by the communication module 210
disabling or stopping the network traffic to the server com
puter, the binding module 230 unbinding the second applica
tion from the port of the server computer, the binding module
230 binding the first application to the same port of the server
computer, and the communication module 210 enabling net
work traffic to the server computer.
0049 FIG. 5 is a flow diagram illustrating an example
method 500 for deploying an application on a particular
server computer using simultaneous port binding, according
to some example embodiments. At operation 510, the storage
module 240 retrieves, accesses, or otherwise obtains the sec
ond application. For instance, the storage module 240
retrieves, receives, or otherwise obtains the second applica
tion from a storage device such as database(s) 126. In some
instances, the second application is a new version or replace
ment version of the first application.
0050. At operation 520, the deployment module 220
deploys or installs the second application to the server com
puter, similar to the operation 420 described above. For
example, the deployment module 220 configures the server
computer Such that it is operable to execute or run the second
application or configures the second application Such that it is
operable to execute or run on the server computer. In various
embodiments, the deployment module 220 configures the

US 2015/O 143354 A1

server computer Such that the second application can execute
alongside the first application in a standby mode.
0051. In various embodiments, the server computer is par

allel deployment enabled such that it is operable to run or
execute multiple versions of a particular application at the
same time (e.g., Apache Tomcat version 7 or higher as
described in connection with the operation 420). In these
embodiments, the server computer is running the first appli
cation that is bound to the port of the server computer when
the deployment module 220 deploys the second application to
the server computer. In some embodiments, the second appli
cation is another version or iteration of the first application.
0052 At operation 530, the deployment module 220 starts
or otherwise initiates the second application on the server
computer. In some embodiments, the deployment module
220 starts the second application without binding the second
application to the port of the server computer. For instance,
the binding module 230 can employ delayed port binding, as
described above in connection with operation 430. In alter
native embodiments, the deployment module 220 starts or
initiates the second application while or after the binding
module 230 binds the second application to the port of the
server computer.
0053 At operation 540, the binding module 230 binds the
second application to the port of the server computer after the
second application is started or initiated by the deployment
module 220. In various embodiments, the binding module
230 binds the second application to the port while the first
application is bound to the port. Thus, in these embodiments,
both the first application and the second application are bound
to the port at the same time.
0054. In some instance, binding multiple applications to
the same port triggers an “Address in Use' error. However, the
“Address in Use' error can be avoided when binding two or
more applications to the same port at the same time by using
a server computer option, Socket option, or port setting,
according to some embodiments. For example, the deploy
ment module 220 or the binding module 230 can configure the
port of the server computer with the server computer option
that allows for the two or more applications, servers, pro
cesses, or threads to be bound to the same port at the same
time. In various embodiments, the server computer option
comprises SO REUSEPORT. In an embodiment, employing
SO REUSEPORT allows two or more applications to be
bound to the same port provided that the application that first
bound to the port set this option while binding. In addition,
use of the server computer option can provide fair distribution
of requests in a multithreaded environment.
0055. At operation 550, the binding module 230 unbinds
the first application from the port. In some instances, the
binding module 230 unbinds the first application from the
port after the binding module 230 binds the second applica
tion. Under this scheme, there is no discontinuity, and net
work traffic can be served continuously while the second
application is being implemented and the first application is
being un-implemented from the server computer.
0056 Subsequent to the binding module 230 unbinding
the first application, at operation 560, the deployment module
220 undeploys or uninstalls the first application from the
server computer. The first application may be undeployed to
conserve resources (e.g., memory). For instance, the deploy
ment module 220 deletes or otherwise removes the first appli
cation from the server computer.

May 21, 2015

0057. In other embodiments, the deployment module 220
does not undeploy the first application, and the storage mod
ule 240 maintains the current state of the first application
allowing for an expedient rollback. A rollback from the sec
ond application to the first application can be performed by
binding the first application to the port and unbinding the
second application from the port.
0058. In a specific example, the server computer com
prises an Apache Tomcat server. Apache Tomcat code can be
modified to avoid a connector from binding to the port when
starting up. Later, a JMX or a separate command can be used
to start the connector and bind to the port. If using Linux, the
kernel version 3.9.0 and later can be used. The Apache Tom
cat code can be modified to bind the server socket with the
option SO REUSEPORT. Once these steps are completed,
multiple applications can be bound at the same time to the
same port. Switching between the applications bound to the
same port at the same time can be performed instantly or near
instantly, and produce near Zero downtime or Zero downtime.
0059 FIG. 6 is a flow diagram illustrating an example
method 600 for setting binding options for a port of a server
computer, according to some example embodiments. In one
embodiment, prior to the operations described in connection
with FIG. 5, the operations of FIG. 6 are performed.
0060. At operation 610, the deployment module 220 or the
binding module 230 sets or implements the server computer
option (e.g., a port reuse option). In other words, the deploy
ment module 220 or the binding module 230 configures the
server computer with the server computer option (also
referred to as an operating system option). As discussed
above, once the server computer option is updated, two or
more applications can be bound to the port at the same time.
In various embodiments, the server computer option com
prises SO REUSEPORT.
0061. At operation 620, the binding module 230 binds the

first application to the server computer. In various embodi
ments, the first application is bound to the port with the server
computer option (e.g., SO REUSEPORT) that allows for
multiple applications to be bound to the port at the same time.
In some scenarios, the server computeris configured Such that
the Socket option to allow binding of multiple applications at
the same time is to be set prior to the binding of any applica
tions. That is to say, in some scenarios, once a particular
application is bound to the port, the server computer can no
longer set the option that allows for multiple applications to
be bound to the port at the same time. In these scenarios, the
server computer option to allow multiple applications to be
bound the same port is set when the first application is bound
to the port.
0062 FIG. 7 is a flow diagram illustrating an example
method 700 for performing a rollback of an application on a
server computer, according to some example embodiments.
Subsequent to the operation 550, the operations of FIG. 7 are
performed instead of the operation 560, described above.
0063. At operation 710, the storage module 240 maintains
a current state of the first application after unbinding the first
application from the port. The purpose of maintaining the
current state of the first application is so that the first appli
cation is ready to be bound to the port and serve network
traffic in the event that the second application, currently
bound to the port, is to be removed from service. In other
words, by maintaining the current state of the first application,
redeployment of the first application can be omitted when
performing the rollback.

US 2015/O 143354 A1

0064. At operation 720, the binding module 230 binds the
first application to the port while the second application is
bound to the port in response to a rollback command (e.g.,
initiated by a network administrator or another operator). The
operation 720 is similar to the operation 540, described
above.
0065. At operation 730, the binding module 230 unbinds
the second application from the port in response to the roll
back command (e.g., initiated by a network administrator or
another operator). The operation 730 is similar to the opera
tion 550, described above. Once the first application is bound
to the port (operation 720) and the second application is
unbound from the port (operation 730), the rollback of the
second application is complete. In further embodiments, the
deployment module 220 can undeploy or uninstall the second
application after the second application is unbound to con
serve resources. In alternative embodiments, the second
application is not undeployed or uninstalled and a current
state of the second application is maintained for expedient
redeployment.

Modules, Components, and Logic
0066 FIG. 8 is a block diagram illustrating components of
a machine 800, according to Some example embodiments,
able to read instructions from a machine-readable medium
(e.g., a machine-readable storage medium) and perform any
one or more of the methodologies discussed herein. Specifi
cally, FIG. 8 shows a diagrammatic representation of the
machine 800 in the example form of a computer system,
within which instructions 824 (e.g., Software, a program, an
application, an applet, an app, or other executable code) for
causing the machine 800 to perform any one or more of the
methodologies discussed herein may be executed. In alterna
tive embodiments, the machine 800 operates as a standalone
device or may be connected (e.g., networked) to other
machines. In a networked deployment, the machine 800 may
operate in the capacity of a server machine or a client machine
in a server-client network environment, or as a peer machine
in a peer-to-peer (or distributed) network environment. The
machine 800 may be a server computer, a client computer, a
personal computer (PC), a tablet computer, a laptop com
puter, a netbook, a set-top box (STB), a personal digital
assistant (PDA), a cellular telephone, a Smartphone, a web
appliance, a network router, a network Switch, a network
bridge, or any machine capable of executing the instructions
824, sequentially or otherwise, that specify actions to be taken
by that machine. Further, while only a single machine 800 is
illustrated, the term “machine' shall also be taken to include
a collection of machines 800 that individually or jointly
execute the instructions 824 to performany one or more of the
methodologies discussed herein.
0067. The machine 800 includes a processor 802 (e.g., a
central processing unit (CPU), a graphics processing unit
(GPU), a digital signal processor (DSP), an application spe
cific integrated circuit (ASIC), a radio-frequency integrated
circuit (RFIC), or any suitable combination thereof), a main
memory 804, and a static memory 806, which are configured
to communicate with each other via a bus 808. The machine
800 may further include a video display 810 (e.g., a plasma
display panel (PDP), a light emitting diode (LED) display, a
liquid crystal display (LCD), a projector, or a cathode ray tube
(CRT)). The machine 800 may also include an alphanumeric
input device 812 (e.g., a keyboard), a cursor control device
814 (e.g., a mouse, a touchpad, a trackball, a joystick, a

May 21, 2015

motion sensor, or other pointing instrument), a storage unit
816, a signal generation device 818 (e.g., a speaker), and a
network interface device 820.

0068. The storage unit 816 includes a machine-readable
medium 822 on which is stored the instructions 824 embody
ing any one or more of the methodologies or functions
described herein. The instructions 824 may also reside, com
pletely or at least partially, within the main memory 804,
within the static memory 806, within the processor 802 (e.g.,
within the processor's cache memory), or all three, during
execution thereof by the machine 800. Accordingly, the main
memory 804, static memory 806 and the processor 802 may
be considered as machine-readable media 822. The instruc
tions 824 may be transmitted or received over a network 826
via the network interface device 820.

0069. As used herein, the term “memory” refers to a
machine-readable medium 822 able to store data temporarily
or permanently and may be taken to include, but not be
limited to, random-access memory (RAM), read-only
memory (ROM), buffer memory, flash memory, and cache
memory. While the machine-readable medium 822 is shown
in an example embodiment to be a single medium, the term
“machine-readable medium’ should be taken to include a
single medium or multiple media (e.g., a centralized or dis
tributed database, or associated caches and servers) able to
store instructions 824. The term “machine-readable medium’
shall also be taken to include any medium, or combination of
multiple media, that is capable of storing instructions (e.g.,
instructions 824) for execution by a machine (e.g., machine
800), such that the instructions, when executed by one or
more processors of the machine 800 (e.g., processor 802),
cause the machine 800 to perform any one or more of the
methodologies described herein. Accordingly, a “machine
readable medium” refers to a single storage apparatus or
device, as well as "cloud-based' storage systems or storage
networks that include multiple storage apparatus or devices.
The term “machine-readable medium’ shall accordingly be
taken to include, but not be limited to, one or more data
repositories in the form of a solid-state memory, an optical
medium, a magnetic medium, or any suitable combination
thereof. The term “machine-readable medium’ specifically
excludes non-statutory signals perse.
0070 Furthermore, the machine-readable medium 822 is
non-transitory in that it does not embody a propagating sig
nal. However, labeling the machine-readable medium 822 as
“non-transitory' should not be construed to mean that the
medium is incapable of movement; the medium should be
considered as being transportable from one physical location
to another. Additionally, since the machine-readable medium
822 is tangible, the medium may be considered to be a
machine-readable device.

0071. The instructions 824 may further be transmitted or
received over a communications network 826 using a trans
mission medium via the network interface device 820 and
utilizing any one of a number of well-known transfer proto
cols (e.g., Hypertext Transfer Protocol (HTTP)). Examples of
communication networks include a local area network
(LAN), a wide area network (WAN), the Internet, mobile
telephone networks (e.g. 3GPP 4G LTE, 3GPP2, GSM,
UMTS/HSPA, WiMAX, and others defined by various stan
dard setting organizations), plain old telephone service
(POTS) networks, and wireless data networks (e.g., Wi-Fi
and Bluetooth networks). The term “transmission medium’
shall be taken to include any intangible medium that is

US 2015/O 143354 A1

capable of storing, encoding, or carrying instructions 824 for
execution by the machine 800, and includes digital or analog
communications signals or other intangible medium to facili
tate communication of Such software.
0072 Throughout this specification, plural instances may
implement components, operations, or structures described
as a single instance. Although individual operations of one or
more methods are illustrated and described as separate opera
tions, one or more of the individual operations may be per
formed concurrently, and nothing requires that the operations
be performed in the order illustrated. Structures and function
ality presented as separate components in example configu
rations may be implemented as a combined structure or com
ponent. Similarly, structures and functionality presented as a
single component may be implemented as separate compo
nents. These and other variations, modifications, additions,
and improvements fall within the scope of the subject matter
herein.

0.073 Certain embodiments are described herein as
including logic or a number of components, modules, or
mechanisms. Modules may constitute either software mod
ules (e.g., code embodied on a machine-readable medium 822
or in a transmission signal) or hardware modules. A "hard
ware module' is a tangible unit capable of performing certain
operations and may be configured or arranged in a certain
physical manner. In various example embodiments, one or
more computer systems (e.g., a standalone computer system,
a client computer system, or a server computer system) or one
or more hardware modules of a computer System (e.g., a
processor or a group of processors) may be configured by
Software (e.g., an application or application portion) as a
hardware module that operates to perform certain operations
as described herein.

0074. In some embodiments, a hardware module may be
implemented mechanically, electronically, or any suitable
combination thereof. For example, a hardware module may
include dedicated circuitry or logic that is permanently con
figured to perform certain operations. For example, a hard
ware module may be a special-purpose processor, Such as a
field-programmable gate array (FPGA) or an ASIC. A hard
ware module may also include programmable logic or cir
cuitry that is temporarily configured by software to perform
certain operations. For example, a hardware module may
include Software encompassed within a general-purpose pro
cessor or other programmable processor. It will be appreci
ated that the decision to implement a hardware module
mechanically, in dedicated and permanently configured cir
cuitry, or in temporarily configured circuitry (e.g., configured
by Software) may be driven by cost and time considerations.
0075 Accordingly, the phrase “hardware module' should
be understood to encompass a tangible entity, be that an entity
that is physically constructed, permanently configured (e.g.,
hardwired), or temporarily configured (e.g., programmed) to
operate in a certain manner or to perform certain operations
described herein. As used herein, “hardware-implemented
module” refers to a hardware module. Considering embodi
ments in which hardware modules are temporarily configured
(e.g., programmed), each of the hardware modules need not
be configured or instantiated at any one instance in time. For
example, where a hardware module comprises a general
purpose processor configured by Software to become a spe
cial-purpose processor, the general-purpose processor may
be configured as respectively different special-purpose pro
cessors (e.g., comprising different hardware modules) at dif

May 21, 2015

ferent times. Software may accordingly configure a processor
802, for example, to constitute a particular hardware module
at one instance of time and to constitute a different hardware
module at a different instance of time.

0076 Hardware modules can provide information to, and
receive information from, other hardware modules. Accord
ingly, the described hardware modules may be regarded as
being communicatively coupled. Where multiple hardware
modules exist contemporaneously, communications may be
achieved through signal transmission (e.g., over appropriate
circuits and buses) between or among two or more of the
hardware modules. In embodiments in which multiple hard
ware modules are configured or instantiated at different
times, communications between such hardware modules may
beachieved, for example, through the storage and retrieval of
information in memory structures to which the multiple hard
ware modules have access. For example, one hardware mod
ule may perform an operation and store the output of that
operation in a memory device to which it is communicatively
coupled. A furtherhardware module may then, at a later time,
access the memory device to retrieve and process the stored
output. Hardware modules may also initiate communications
with input or output devices, and can operate on a resource
(e.g., a collection of information).
0077. The various operations of example methods
described herein may be performed, at least partially, by one
or more processors 802 that are temporarily configured (e.g.,
by software) or permanently configured to perform the rel
evant operations. Whether temporarily or permanently con
figured. Such processors 802 may constitute processor-imple
mented modules that operate to perform one or more
operations or functions described herein. As used herein,
“processor-implemented module” refers to a hardware mod
ule implemented using one or more processors 802.
0078 Similarly, the methods described herein may be at
least partially processor-implemented, with a processor 802
being an example of hardware. For example, at least Some of
the operations of a method may be performed by one or more
processors 802 or processor-implemented modules. More
over, the one or more processors 802 may also operate to
Support performance of the relevant operations in a "cloud
computing environment or as a “software as a service'
(SaaS). For example, at least some of the operations may be
performed by a group of computers (as examples of machines
800 including processors 802), with these operations being
accessible via the network 826 (e.g., the Internet) and via one
or more appropriate interfaces (e.g., an application program
interface (API)).
007.9 The performance of certain of the operations may be
distributed among the one or more processors 802, not only
residing within a single machine 800, but deployed across a
number of machines 800. In some example embodiments, the
one or more processors 802 or processor-implemented mod
ules may be located in a single geographic location (e.g.,
withina home environment, an office environment, or a server
farm). In other example embodiments, the one or more pro
cessors 802 or processor-implemented modules may be dis
tributed across a number of geographic locations.
0080. Although an overview of the inventive subject mat
ter has been described with reference to specific example
embodiments, various modifications and changes may be
made to these embodiments without departing from the
broaderscope of embodiments of the present disclosure. Such
embodiments of the inventive subject matter may be referred

US 2015/O 143354 A1

to herein, individually or collectively, by the term “invention
merely for convenience and without intending to Voluntarily
limit the scope of this application to any single disclosure or
inventive concept if more than one is, in fact, disclosed.
0081. The embodiments illustrated herein are described in
sufficient detail to enable those skilled in the art to practice the
teachings disclosed. Other embodiments may be used and
derived therefrom, such that structural and logical substitu
tions and changes may be made without departing from the
scope of this disclosure. The Detailed Description, therefore,
is not to be taken in a limiting sense, and the scope of various
embodiments is defined only by the appended claims, along
with the full range of equivalents to which Such claims are
entitled.
0082. As used herein, the term “or may be construed in
either an inclusive or exclusive sense. Moreover, plural
instances may be provided for resources, operations, or struc
tures described herein as a single instance. Additionally,
boundaries between various resources, operations, modules,
engines, and data stores are somewhat arbitrary, and particu
lar operations are illustrated in a context of specific illustra
tive configurations. Other allocations of functionality are
envisioned and may fall within a scope of various embodi
ments of the present disclosure. In general, structures and
functionality presented as separate resources in the example
configurations may be implemented as a combined structure
or resource. Similarly, structures and functionality presented
as a single resource may be implemented as separate
resources. These and other variations, modifications, addi
tions, and improvements fall within a scope of embodiments
of the present disclosure as represented by the appended
claims. The specification and drawings are, accordingly, to be
regarded in an illustrative rather than a restrictive sense.
What is claimed is:
1. A system comprising:
a deployment module to:

deploy a second application to a server computer that is
running a first application bound to a port of the server
computer;

start the second application without the second applica
tion being bound to the port;

a binding module, implemented by at least one hardware
processor of a machine, to:
bind the second application to the port while the first

application is bound to the port; and
unbind the first application from the port after the second

application is bound to the port.
2. The system of claim 1, wherein the deployment module

is further to undeploy the first application from the server
computer after unbinding the first application from the port.

3. The system of claim 1, wherein the binding module is
further to bind, with a server computer option that allows for
binding of more than one application to the port at the same
time, the first application to the port.

4. The system of claim 3, wherein the server computer
option comprises SO REUSEPORT.

5. The system of claim 1, wherein the binding module is
further to:

maintain a current state of the first application after the first
application is unbound from the port;

in response to a rollback command, bind the first applica
tion to the port while the second application is bound to
the port; and

May 21, 2015

in response to the rollback command, unbind the second
application from the port after the first application is
bound to the port.

6. The system of claim 1, wherein the server computer
receives network traffic while binding the second application
to the port and unbinding the first application from the port.

7. The system of claim 1, wherein two or more applications
are bound to the port simultaneously.

8. A method comprising:
deploying a second application to a server computer that is

running a first application bound to a port of the server
computer;

initiating, by a hardware processor of a machine, the sec
ond application without binding the second application
to the port;

binding the second application to the port while the first
application is bound to the port; and

unbinding the first application from the port after the sec
ond application is bound to the port.

9. The method of claim 8, further comprising:
undeploying the first application from the server computer

after unbinding the first application from the port.
10. The method of claim 8, further comprising:
binding, with a socket option allowing for binding of more

than one application to the port at the same time, the first
application to the port.

11. The method of claim 10, wherein the socket option
comprises SO REUSEPORT.

12. The method of claim 8, further comprising:
maintaining a current state of the first application after

unbinding the first application from the port;
in response to a rollback command, binding the first appli

cation to the port while the second application is bound
to the port; and

in response to the rollback command, unbinding the second
application from the port after the first application is
bound to the port.

13. The method of claim 8, wherein the server computer
receives network traffic while binding the second application
to the port and unbinding the first application from the port.

14. The method of claim 8, wherein two or more applica
tions are bound to the port simultaneously.

15. A machine-readable medium having no transitory sig
nals and storing instructions that, when executed by at least
one processor of a machine, cause the machine to perform
operations comprising:

installing a second application to a server computer that is
running a first application bound to a port of the server
computer;

running the second application without binding the second
application to the port;

binding the second application to the port while the first
application is bound to the port; and

unbinding the first application from the port after the sec
ond application is bound to the port.

16. The machine-readable medium of claim 15, wherein
the operations further comprise:

uninstalling the first application from the server computer
after unbinding the first application from the port.

17. The machine-readable medium of claim 15, wherein
the operations further comprise:

binding, with a server computer setting allowing for bind
ing of more than one application to the port at the same
time, the first application to the port.

US 2015/O 143354 A1

18. The machine-readable medium of claim 17, wherein
the server computer setting comprises SO REUSEPORT.

19. The machine-readable medium of claim 15, wherein
the operations further comprise:

maintaining a current state of the first application after
unbinding the first application from the port;

in response to a rollback command, binding the first appli
cation to the port while the second application is bound
to the port; and

in response to the rollback command, unbinding the second
application from the port after the first application is
bound to the port.

20. The machine-readable medium of claim 15, wherein
the server computer receives network traffic while binding the
second application to the port and unbinding the first appli
cation from the port.

May 21, 2015

