US 20190132211A1

a2y Patent Application Publication o) Pub. No.: US 2019/0132211 Al

a9y United States

Yeung et al. (43) Pub. Date: May 2, 2019
(54) SYSTEM AND METHOD FOR HYBRID AND (52) US. CL
ELASTIC SERVICES CPC HO4L 41/145 (2013.01); HO4L 67/10
(2013.01); HO4L 43/16 (2013.01)
(71) Applicant: Cisco Technology, Inc., San Jose, CA
(Us) (57) ABSTRACT

(72) Inventors: Michael Yeung, Ontario (CA); Elie El
Ajaltouni, Ontario (CA); Andrew
Phillips, Dubai (AE); Peter Andersen,
Ottawa, CA (US)

(21) Appl. No.: 15/794,753

(22) TFiled: Oct. 26, 2017

Publication Classification

(51) Int. CL
HO4L 12/24
HO4L 12/26
HO4L 29/08

(2006.01)
(2006.01)
(2006.01)

ONFAIL

Vi
DEPLOY.
304

VNF/VNFM
ONBOARD.
302

UNDEPLOY.

+/- LOAD
318

DEPLOY.
“_ 308

MONITOR.
312

A network function virtualization (NFV) platform can sup-
port hybrid and elastic scaling and recovery services. In one
example, a system can deploy a cloud virtual network
function manager (VNFM) and one or more cloud virtual
network functions (VNFs) on a cloud. The system can
monitor, via the cloud VNFM, a local VNFM on a local
network, the cloud VNFM, and/or the one or more cloud
VNFs. Based on the monitoring, the system can determine,
via the cloud VNFM, a respective status of the local VNFM,
the cloud VNFM, and/or the one or more cloud VNFs. Based
on the respective status of the local VNFM, the cloud
VNFM, and/or the one or more cloud VNFs, the system can
then scale, via the cloud VNFM, the local VNFM, the cloud
VNFM, and/or the one or more cloud VNFs.

300
ONFAIL VNF/VNFM
DEPLOY.
308
ONFAIL

N,
,/ VNFIVNFM
| POST-DEP.
310

\,

UPDATE
314

ONFAIL

US 2019/0132211 A1l

May 2,2019 Sheet 1 of 13

Patent Application Publication

T

| 0ST ONVIN AdN L _

!]! 7 W pA7) |

| sor | 1] omian JIOVOLS UNANOD | 1,
4 I

: HIOVYNVIN FUNLONHLSVHNI vnLaIA - [1] OFT SI0NNOSTY TUYMANYH ar

_ _ e e e e e e e e —————— _

| | — |

! i 8ET ¥IAVT NOLLYZITVNLAIA |

| __ | !

_ VST e | L L |

" SHADYNYIN ANA | €1 YHOMLIN | | &7 39veolLs || ZET 31ndWoD | |

| N IVNLYIA VNLAIA IVNLYIA |

i o |

! | 0T I™NLONYLSVHANI AdN |

|

M—————mm—————/—— | | == e ieietel Heieieigyieteetel Heetn] |

[PR SFENEN A OV ASNIAIN AT Nzzmana | e | mzEmana || TEEmana |1

_ \\\\il\l.p}/ \l’/ " | “ —

" /‘a“.\.\l\ /{\ | J_ _ i -

H N | || Noztswa | . | @Ocrsna || VozTsma |i

| 091 "LV dANA 8571 "LVO SN b H

“ L T “ ||||| .— lllllllllllllllllllllllllllll |

I /’"I\\\\ /ll.l\\\\\ | .

" — ! ZIT Sy o} !

" Sl HOLVHISHHDYHO Iu..l mi SSH/SSO

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!]

001 WHOHLV1d NOLLVZITVYNLHIA NOILONNA ¥HOMLIN

US 2019/0132211 A1l

May 2, 2019 Sheet 2 of 13

Patent Application Publication

aiel
ANV IA

o.61
JdNiv4
WANAANA

g.61
avon -/+
IA

vi6l
avot-/+

NANA/ANA

S61
"HOLINOW

y61
‘AO1d3d
ANA

dl Old

"AOT43AA A

161

Sal
ANIONE
S3aNd

vl
ANION3T
SOILATTVNY

513
JTNAON
"HOLINOW

Zsl
JTNAON
"OIANOD

087 ¥3IDVNVYIN IT0A034IN

‘NOISIAO¥A

181
FINAOW

971 AJIAYIS ONIDDOT

SZ1 "OAS 'NOW HL1V3IH

YZ1 3ADING3S VH

€1 ¥3IAKA WIA

1 IN9 g3am

TITidv 1S3y ¢

0Z1 IdV ANOOL3N

VPGS HJOVNVYIA ANA

US 2019/0132211 A1l

May 2, 2019 Sheet 3 of 13

Patent Application Publication

v
ove -

|

=
[
[

0eT

LEILE S HHOMLIN

HONYYE
: (74
V¢ Ol X N
HONVYS
€707 \vm WA A S0
gm.\\
(44l
300NN 3N
HONY28
~— wWnm 4 80
PO
44!
// mag/ 4NA
0ce HONYYE
1-20C ™~ .aamm}\ S0
voz -~ |
b 012
HITIOHINGD / SN SHI ANA
. HOLVHLSTHONO TWHINID
§
J {
0sz HIOYNYI TYHINIO Vst
7 WLHOd
0LT

US 2019/0132211 A1l

May 2, 2019 Sheet 4 of 13

Patent Application Publication

" - oo o " - o> "o~ o, oo~ 7 oo

iz 0G1 001
WHO4L1Y1d A4N

d¢ Old

S,

HIOVNYIN IN

= oj7]) —
00T WHO4LYd WaNA-O || 28T ¥oLlvals3HONO
AdN Lo e -
082 AnO10

US 2019/0132211 A1l

May 2, 2019 Sheet 5 of 13

Patent Application Publication

I

|

ggT || gor |

]

SANIONI S3TNY |

IIIIIIIIIIIIIIIIIIIII d

1

| 1 1 __

78l ¥8L ~ 21 T— 78l T .

SN N S !

| _ _STANIONA SOULATYNY “

]

1 |

gor || gor || ey _mﬂ. —

SININOAWOD |

;;;;; MOLINOW _ |

]

-]

zer n

|

SLININOJWOD !

‘OI4NOD |

llllllllllllllllllllll |

|

—_— |

18T ;

"

SLNINOJINOD |

...... NOISINOYd _
T00Z WANA

96¢
AN3AT
LNO/NI
3TVOS

g8l G8l

SIANIONT ST1INY |
lllllllllll 1

RIS

e e e o o e e e o ———

€8l || €8l

[\
-—

SININOdNOD
"HOLINOW !

o o —— .- - " .o o

I

|

zor || zo7 | !

I

SLNINOdNOD “
I

1

"OIANOD

M e o e —— ———— o — o —

SINaINOdJNOD
‘NOISIAOYd

V00Z WANA

I
—_— — |
181 | | 8L | !
|
|
|

¥6¢
HOLINOW

oc¢ Ol

US 2019/0132211 A1l

May 2, 2019 Sheet 6 of 13

Patent Application Publication

€ Ol

TV4NO TVYINO
8le
avo -/+
TVANO
1IVANO
1413 (4%
A1vadn UOLINOW ‘AOTd30NN

90¢
‘AOd=Ea

\

01¢ ¢0¢E

'd30-1S0d | T "ayvodNO
@Ez>tz>)/ WANA/ANAS INANA/ANA
IVANO o VANG FOE
"AOTd3a

"AO0T1d30

WANA/ANA IA

TIVANO

TIVINO

US 2019/0132211 A1l

May 2, 2019 Sheet 7 of 13

Patent Application Publication

€

91¥ SNLVLS NANA

aziv P 74%%
WINA HOLINOW Y | N3NA HOLINOW
Lo
€
0T% WANA JHUNDIINOD
80V WANA >o._n_mo}ﬁg
907 SNLVYIS IA
€
FO¥ SNLVLS IA
3
Z0% IA ILVILNVLSNI |Z0% IA ILVILNVLISNI

AVST vHST arsr 95T
WANA-T INANA-D INANA-T WIA

LY SNLVLS INANA

r4])
HOLYHISIHOHO

\

ooy

Yo
“
Yo
Yo
o
o
e
Yo
(=]
=N
Yo
(=]
o
[99]
= 3
-] 7EF SNLVLS ANA
e
. anA voLinow)
(=
o & N
3 €% 4NA JUNOIANOD |
=] J—
@ Z% ANA AOTd3a)
[I
Yo
S — >
N ZF SNLVLS IA
>
s €
= ¥2F SNLVLS IA
— >
ZZ% IA 1VILNVLSNI
F44" Sl oGl 261
4ANA WANA WIA HOLVH1SIHOHO

Patent Application Publication

gy 'Old

\

0cy

Patent Application Publication = May 2, 2019 Sheet 9 of 13 US 2019/0132211 A1
50Qk, (" staRT)
J' 502
MONITOR L-VNFM -\
506

SCALE OUT IS L-VNFM 504

L-VNFM OVERLOADED?

> MONITOR BRANCH /" \508
512
MOVE VNFS
RES(?URRCES IS BRANCH 510
?
FROM OVERLOADED?
BRANCH
514
» MONITORC-VNFM [./
518
516

SCALE OUT IS C-VNFM

C-VNFM OVERLOADED?

END

FIG. 5A

Patent Application Publication @ May 2, 2019 Sheet 10 of 13 US 2019/0132211 A1l

Rt

C START)
'

502
MONITOR L-VNFM VY
524
SCALE IN IS L-VNFM 500
L-VNFM UNDERLOADED?
> MONITOR C-VNFM /" \514
528

SCALE IN IS C-VNFM 526
C-VNFM UNDERLOADED?

{ END)

FIG. 5B

Patent Application Publication = May 2, 2019 Sheet 11 of 13

it

US 2019/0132211 A1l

DEPLOY A CLOUD VIRTUAL NETWORK FUNCTION
MANAGER (VNFM) AND ONE OR MORE CLOUD
VIRTUAL NETWORK FUNCTIONS (VNFS)

"\ 602

!

MONITOR AT LEAST ONE LOCAL VNFM ON A LOCAL
NETWORK AND AT LEAST ONE OF THE CLOUD
VNFM AND THE ONE OR MORE CLOUD VNFS

|/ "\ 604

!

BASED ON THE MONITORING, DETERMINE A FIRST
STATUS OF THE AT LEAST ONE LOCAL VNFM AND A
SECOND STATUS OF THE AT LEAST ONE OF THE
CLOUD VNFM AND THE ONE OR MORE CLOUD
VNFS

606

BASED ON THE FIRST STATUS AND THE SECOND
STATUS, SCALE ONE OR MORE OF THE AT LEAST
ONE LOCAL VNFM AND THE AT LEAST ONE OF THE
CLOUD VNFM AND THE ONE OR MORE CLOUD
VNFS

/) 608

|

End

FIG.6

Patent Application Publication

May 2, 2019 Sheet 12 of 13 US 2019/0132211 A1l

700
1 730
STORAGE
DEVICE
715 720 725
MOD 1 732
745~ INPUT 2
DEVICE [mMoD2 ||/ 734
735.] OUTPUT MEM || RoM || RAM /736
DEVICE i i i
I J CONNECTION
comv. || I 705
740 - -
INTERFACE CACHE CPU
712 = 710

Patent Application Publication @ May 2, 2019 Sheet 13 of 13 US 2019/0132211 A1l

FIG. 8

INTERFACES
802

CPU 804

MEMORY
806

PROCESSOR
808

810

US 2019/0132211 Al

SYSTEM AND METHOD FOR HYBRID AND
ELASTIC SERVICES

TECHNICAL FIELD

[0001] The subject matter of this disclosure relates in
general to the field of network function virtualization, and
more specifically to dynamic hybrid elastic services in
network function virtualization environments.

BACKGROUND

[0002] Network function virtualization (NFV) can offer
network operators a variety of benefits when managing and
provisioning network services. For example, a network
operator can increase utilization of computing infrastructure
(e.g., computing, storage, and network resources) and
decrease consumption of other resources (e.g., power, physi-
cal space, cooling, site-to-site management, etc.) by virtu-
alizing network functions. The network operator can run
software that performs specific network functions (i.e., vir-
tual network functions (VNFs)) on commodity hardware or
commercial-off-the-shelf (COTS) hardware (i.e., general
purpose servers and storage devices, etc.). This can reduce
the number of hardware devices in a network and different
geographic locations that are serviced by certain physical
network appliances. Unfortunately, current NFV platforms
are inflexible and have limited orchestration capabilities.

BRIEF DESCRIPTION OF THE DRAWINGS

[0003] In order to describe the manner in which the
above-recited and other advantages and features of the
disclosure can be obtained, a more particular description of
the principles briefly described above will be rendered by
reference to specific embodiments thereof which are illus-
trated in the appended drawings. Understanding that these
drawings depict only exemplary embodiments of the disclo-
sure and are not therefore to be considered to be limiting of
its scope, the principles herein are described and explained
with additional specificity and detail through the use of the
accompanying drawings in which:

[0004] FIG. 1A illustrates an example of a network func-
tion virtualization platform in accordance with various
embodiments;

[0005] FIG. 1B illustrates an example of a virtual network
function manager in accordance with various embodiments;
[0006] FIG. 2A illustrates a block diagram of an example
virtual branch node architecture;

[0007] FIG. 2B illustrates an example of a hybrid network
environment including a network function virtualization
platform, a local network, and a remote network;

[0008] FIG. 2C illustrates an example system for scaling
components of a VNFM;

[0009] FIG. 3 illustrates an example of a lifecycle state
machine for a VNF or VNFM;

[0010] FIG. 4A illustrates a diagram of an example pro-
cess for orchestration of a VNFM;

[0011] FIG. 4B illustrates a diagram of an example pro-
cess for orchestration of a VNF;

[0012] FIG. 5A illustrates a flowchart of an example
method for scaling elements in an overloaded scenario;
[0013] FIG. 5B illustrates a flowchart of an example
method for scaling elements in an underloaded scenario;
[0014] FIG. 6 illustrates an example method for hybrid,
elastic scaling in a hybrid network environment;

May 2, 2019

[0015] FIG. 7 illustrates an example architecture of a
computing system; and
[0016] FIG. 8 illustrates an example network device.

DESCRIPTION OF EXAMPLE EMBODIMENTS

[0017] Various embodiments of the disclosure are dis-
cussed in detail below. While specific implementations are
discussed, it should be understood that this is done for
illustration purposes only. A person skilled in the relevant art
will recognize that other components and configurations
may be used without parting from the spirit and scope of the
disclosure. Thus, the following description and drawings are
illustrative and are not to be construed as limiting. Numer-
ous specific details are described to provide a thorough
understanding of the disclosure. However, in certain
instances, well-known or conventional details are not
described in order to avoid obscuring the description. Ref-
erences to one or an embodiment in the present disclosure
can be references to the same embodiment or any embodi-
ment; and, such references mean at least one of the embodi-
ments.

[0018] Reference to “one embodiment” or “an embodi-
ment” means that a particular feature, structure, or charac-
teristic described in connection with the embodiment is
included in at least one embodiment of the disclosure. The
appearances of the phrase “in one embodiment” in various
places in the specification are not necessarily all referring to
the same embodiment, nor are separate or alternative
embodiments mutually exclusive of other embodiments.
Moreover, various features are described which may be
exhibited by some embodiments and not by others.

[0019] The terms used in this specification generally have
their ordinary meanings in the art, within the context of the
disclosure, and in the specific context where each term is
used. Alternative language and synonyms may be used for
any one or more of the terms discussed herein, and no
special significance should be placed upon whether or not a
term is elaborated or discussed herein. In some cases,
synonyms for certain terms are provided. A recital of one or
more synonyms does not exclude the use of other synonyms.
The use of examples anywhere in this specification includ-
ing examples of any terms discussed herein is illustrative
only, and is not intended to further limit the scope and
meaning of the disclosure or of any example term. Likewise,
the disclosure is not limited to various embodiments given
in this specification.

[0020] Without intent to limit the scope of the disclosure,
examples of instruments, apparatus, methods and their
related results according to the embodiments of the present
disclosure are given below. Note that titles or subtitles may
be used in the examples for convenience of a reader, which
in no way should limit the scope of the disclosure. Unless
otherwise defined, technical and scientific terms used herein
have the meaning as commonly understood by one of
ordinary skill in the art to which this disclosure pertains. In
the case of conflict, the present document, including defi-
nitions will control.

[0021] Additional features and advantages of the disclo-
sure will be set forth in the description which follows, and
in part will be obvious from the description, or can be
learned by practice of the herein disclosed principles. The
features and advantages of the disclosure can be realized and
obtained by means of the instruments and combinations
particularly pointed out in the appended claims. These and

US 2019/0132211 Al

other features of the disclosure will become more fully
apparent from the following description and appended
claims, or can be learned by the practice of the principles set
forth herein.

Overview

[0022] Disclosed are systems, methods, and computer-
readable storage media for hybrid and elastic services. As
disclosed herein, a network function virtualization (NFV)
platform can support hybrid and elastic services, including
scaling and recovery services. For example, a system, such
as a cloud controller, can deploy a cloud virtual network
function manager (VNFM) and one or more cloud virtual
network functions (VNFs) on a cloud environment. The
system can monitor, via the cloud VNFM, a local VNFM on
a local network, the cloud VNFM itself, and/or the one or
more cloud VNFs. Based on the monitoring, the system can
determine, via the cloud VNFM, a respective status (e.g., a
load) of the local VNFM, the cloud VNFM, and/or the one
or more cloud VNFs. The system can also monitor and
determine, via the cloud VNFM, a respective status of one
or more local VNFs on the local network. The cloud VNFM,
the local VNFM, the one or more cloud VNFs, and the one
or more local VNFs can be associated with a particular
application service

[0023] Based on the respective status of the local VNFM,
the cloud VNFM, and/or the one or more cloud VNFs, the
system can then scale, via the cloud VNFM, at least one of
the local VNFM, the cloud VNFM, and/or the one or more
cloud VNFs. The system can also scale, via the cloud
VNFM, the one or more local VNFs based on their respec-
tive status. The system can scale in or scale out the local
VNFM, the cloud VNFM, the one or more cloud VNFs,
and/or the one or more cloud VNFs as necessary or desired
based on the respective status. For example, the system can
determine underload or overload conditions of VNFMs and
VNF's deployed on the cloud or the local network, and scale
VNFs or VNFMs in/out/up/down based on underload or
overload conditions by deploying, migrating, or removing
resources and/or VNF/VNFM instances.

Description

[0024] To support NFV, a network can include a manage-
ment and orchestration (MANO) system that can assemble,
recombine, and manage elements of a virtualized environ-
ment in an automated manner. The European Telecommu-
nications Institute (ETSI) Industry Specification Groups
(ISG) includes an NFV MANO working group that defines
a high-level functional architectural framework for NFV
management and orchestration system for facilitating devel-
opment of standardized and open interfaces between VNFs
and their associated computing infrastructure and to promote
interoperability among different vendors.

[0025] FIG. 1A illustrates a block diagram representing
NFV platform 100. One of ordinary skill in the art will
understand that, for NFV platform 100 and any system
discussed in the present disclosure, there can be additional
or fewer components in similar or alternative configurations.
The illustrations and examples provided in the present
disclosure are for conciseness and clarity. Other embodi-
ments may include different numbers and/or types of ele-

May 2, 2019

ments, but one of ordinary skill the art will appreciate that
such variations do not necessarily depart from the scope of
the present disclosure.

[0026] In this example, NFV platform 100 includes sev-
eral components or functional blocks that can provide an
NFV MANO architectural framework, including operations
support system (OSS)/business support system (BSS) 110;
element management system (EMSs) 120A, 120B, . . .,
120N (collectively, “120”); VNFs 122A, 122B, . . ., and
122N (collectively, “122”); NFV infrastructure (NFVI) 130;
and NFV MANO system 150. OSS/BSS 110 can include a
collection of systems and management applications that a
network operator uses to run its business. In some embodi-
ments, OSS/BSS 110 may provide for management and
orchestration of legacy systems and may have full end-to-
end visibility of services provided by legacy network func-
tions in the network. In some embodiments, OSS/BSS 110
can include one or more resource-facing services (RFS) 112
that can operate as an interface between the network opera-
tor’s product offerings or customer-facing services (CFS)
and lower-level network resources (e.g., network service
(NS) catalog 148, VNF catalog 150, NFV instances reposi-
tory 152, NFVI resources respoitory 154, etc.).

[0027] EMSs 120 can include systems and applications for
managing network elements. EMSs 120 can provide for
fault management for network functions performed by
VNFs 122, configuration for the network functions per-
formed by VNFs 122, accounting for the usage of VNF
functions, performance measurement for the functions of
VNFs 122, and security management for the VNF functions
(i.e., FCAPS).

[0028] VNFs 122 can include virtualized implementations
of physical network functions (PNFs), such as network
address translators (NATs), firewalls, distributed denial of
service (DDoS) mitigators, load balancers, intrusion prevent
systems (IPSs), intrusion detection systems (IDSs), wide
area network (WAN) optimizers, etc. In some cases, a VNF
can include multiple internal components. For example, a
single VNF can be made of multiple virtual instances (i.e.,
virtual machines (VMs), containers, or other virtual parti-
tions of one or more computing devices (collectively, “vir-
tual infrastructure”)) in which each virtual instance hosts an
individual component of the VNF. In some cases, a VNF can
be a single virtual instance. A network operator can chain
multiple VNFs 122 (and sometimes PNFs (not shown)) to
create a network service.

[0029] NFVI 130 includes hardware and software compo-
nents that make up the environment for the deployment,
management, and execution of VNFs 122. In some cases,
NFVI 130 can span across several geographic locations
(sometimes referred to as NFVI points of presence (PoPs)).
From a VNF’s perspective, NFVI 130 can appear to be a
black box for providing the VNF with specified resources as
there can be numerous possible implementations for NFVI
130. In this example, NFVI 130 is a collection of virtualized
resources, including virtual computing resources 132, vir-
tual storage resources 134, and virtual network resources
136; virtualization layer 138; and hardware resources 140,
including physical computing resources 142, physical stor-
age resources 144, and physical network resources 146.

[0030] There are various approaches for implementing
NFVI130, and particularly virtual computing resources 132.
Example approaches can include hypervisor-based virtual-
ization, container-based virtualization, and a hybrid of

US 2019/0132211 Al

hypervisor-based virtualization and container-based virtual-
ization, among others. In hypervisor-based virtualization,
software emulates the hardware of a physical computing
device so that an entire, unmodified operating system can
run within the emulated or virtual environment (i.e., a VM).
A physical server can run one or more VMs at once, and a
hypervisor or virtual machine monitor (VMM) can manage
the VMs and allocate the resources of the server among
them. Hypervisors can run as hosted software within a
conventional operating system, or run on “bare metal” or
directly on physical hardware. In container-based virtual-
ization, software provides self-contained execution environ-
ments (i.e., containers) that rely on the same operating
system kernel. A container engine isolates applications
executing within each environment, such as by using dif-
ferent namespaces for each environment or container. An
example of a hybrid implementation can involve using a
hypervisor (hosted or bare-metal) on some servers of a
network and a container engine on other servers of the
network. Virtual computing resources 132 can thus include
one or more VMs, one or more containers, and/or one or
more other virtual partitions. In some embodiments, how-
ever, VNFs 122 can also run on non-virtualized servers as
applications hosted by an operating system or as bare metal
applications.

[0031] Virtual storage resources 134 can include block
storage resources, file storage resources, and the like. In
block virtualization, a network operator abstracts logical
storage from physical storage such that data is accessible
without regard to physical storage or heterogeneous struc-
ture. In file virtualization, the network operator eliminates
dependencies between the data accessed at the file level and
the physical location of the files. Block data or files may
physically reside on the hard disk drives (HDD), solid state
drives (SSD), or other type of media of a multitude of
physical servers. Clients, however, can access a set of
associated blocks or files from a single logical location that
maps to physical locations.

[0032] Virtualization layer 138 can abstract and logically
partition hardware resources 140 to decouple VNF software
from the underlying hardware. This can facilitate deploy-
ment of VNFs 122 using different types of hardware, such as
physical devices having central processing units (CPUs)
based on the reduced instruction set computer (RISC) archi-
tecture (e.g., Advanced RISC Machine (ARM) architecture);
the Microprocessor without Interlocked Pipeline Stages
(MIPS) architecture; the Power architecture; Scalable Pro-
cessor Architecture (SPARC); or the complex instruction set
computer (CISC) architecture (e.g., the x86 architecture) or
physical devices having architectures that include a Front-
Side Bus (FSB), Dual Independent Buses (DIB), Dedicated
High-Speed Interconnects (DHSI), Intel QuickPath Inter-
connects (QPI), etc. Virtualization layer 138 enables VNF
software to use the underlying virtualized infrastructure, and
can also operate as an interface to provide virtualized
resources to VNFs 122. Virtualization layer 138 can include
hypervisors, containers, hardware abstraction layers (HAL),
hardware drivers, or other intermediary software between
virtual computing resources 132, virtual storage resources
134, and virtual network resources 136 and hardware
resources 140 for providing interoperability between VNFs
122 and hardware resources 140.

[0033] In configurations that implement virtualization in
the network domain, virtualization layer 138 can abstract

May 2, 2019

network hardware to realize virtualized network paths that
provide connectivity between virtual instances of a VNF
and/or between different VNFs. Several techniques allow
this, including network abstraction layers that isolate
resources via virtual networks and network overlays, includ-
ing Virtual Local Area Network (VLAN), Virtual Private
LAN Service (VPLS), Virtual Extensible Local Area Net-
work (VXLAN), Network Virtualization using Generic
Routing Encapsulation (NVGRE), etc. Other possible forms
of virtualization of the transport network include centraliz-
ing the control plane of the transport network and separating
it from the forwarding plane and isolating the transport
medium (e.g., in optical wavelengths, etc.).

[0034] Hardware resources 140 include computing
resources 142, storage resources 144, and network resources
146 that provide processing, storage and connectivity to
VNFs 122 through virtualization layer 138. Hardware
resources 140 are typically “commodity” devices or com-
mercial-off-the-shelf (COTS) hardware but some embodi-
ments may utilize some purpose-built hardware for certain
functionality. Computing resources 142 can include physical
servers having a variety of CPUs, architectures, memory
capacity, types of memory, etc. Storage resources 144 can
include shared network attached storage (NAS) and/or stor-
age that resides on a commodity or COTS server. In some
embodiments, a network operator may pool computing
resources 142 and storage resources 144. Network resources
144 can include devices that provide switching functions
(e.g., switches, routers, and wired or wireless links).

[0035] NFV MANO system 150 manages NFVI 130 and
orchestrates the allocation of resources needed by VNFs 122
and network services (i.e., chains of VNFs 112 that may also
include PNFs). In this example, NFV MANO system 150
includes orchestrator 152, VNF managers (VNFMs) 154,
and virtual infrastructure manager (VIM) 156 for manage-
ment and orchestration of NFVI 130, VNFs 122, and net-
work services; fault and performance management of net-
work services and VNFs 122; policy management; and
testing of network services and VNFs 122.

[0036] Orchestrator 152 is generally responsible for
orchestration of the resources of NFVI 130 across multiple
VIMs 156, and lifecycle management of network services.
Tasks for management and orchestration of NFVI resources
can include providing VNFs 122 with the resources they
need and provisioning connectivity to PNFs when a network
service includes a PNF that needs to connect to a VNF or
when a network service spans multiple NFVI-PoPs. Orches-
trator 152 is also responsible for network service lifecycle
management, including operations for on-boarding a net-
work service (i.e., registering a network service in network
service catalog 158 and ensuring that orchestrator 152 can
access templates required by the network service, including
VNF templates stored in VNF catalog 160 and NFVI tem-
plates stored in NFVI resource repository 164); instantiating
a network service; scaling a network service; updating
and/or upgrading a network service; creating, deleting, que-
rying, and updating VNF forwarding graphs associated with
a network service; and terminating network services (i.e.,
requesting for the termination of constituent VNF instances,
requesting for the release of NFVI resources associated with
a network service, and returning them to NFVI 130). An
example of an implementation of orchestrator 152 is Cisco®
Network Service Orchestrator (NSO).

US 2019/0132211 Al

[0037] Data repositories for supporting the operations of
NFV MANO 150 can include network service catalog 158,
VNF catalog 160, NFV instances repository 162, and NFVI
resources repository 164 for performing its various opera-
tions. Network service catalog 158 can store information for
on-boarded network services, including network service
deployment templates (sometimes referred to as network
service descriptors (NSDs)), virtual link descriptors (VLDs),
and VNF forwarding graph descriptors (VNFFGDs).
[0038] VNF catalog 160 can store information for on-
boarded VNFs, including VNF deployment templates
(sometimes referred to as VNF Descriptors (VNFD)), soft-
ware images, manifest files, etc.). In some embodiments,
orchestrator 152 and VNF managers 154 can query VNF
catalog 160 for finding and retrieving a VNFD, validating a
VNF, and checking instantiation feasibility.

[0039] NFVI instances repository 162 can store informa-
tion for instantiated VNF and network service instances. A
VNF record can store information for a particular running
VNF instance, and a network service record can store
information for a particular running network service
instance. Various components of NFV MANO 150 can
update these records during the lifecycles of the respective
instances to represent changes resulting from execution of
NS lifecycle management operations and/or VNF lifecycle
management operations.

[0040] NFVI resources repository 164 can store informa-
tion for reserving, allocating, and monitoring the resources
of NVFI 130. In some cases, VIM 156 can provide an
interface for orchestrator 152 and VNF managers 154 to
accessing these functions.

[0041] VNF managers 154 can manage lifecycles of VNFs
122, including operations such as instantiating, scaling (i.e.,
increasing or reducing the number of VNF instances for a
particular network function), updating and/or upgrading,
and terminating VNFs 122. VNF managers 154 can also
perform VNF instantiation feasibility checking, VNF
instance-related collection of NFVI performance measure-
ment results and faults/events information, VNF instance
assisted or automated healing, VNF lifecycle management
change notification, management of the integrity of VNFs
122 through their lifecycles. An individual VNF manager
can serve a single VNF or multiple VNFs.

[0042] VIM 156 is responsible for resource management,
including maintaining inventory of the resources of NFVI
130 (i.e., virtual computing resources 132, virtual storage
resources 134, virtual network resources 136, virtualization
layer 138, computing resources 142, storage resources 144,
network resources 146, etc.); allocation of virtualization
resources (e.g., invoking hypervisors to instantiate VMs,
invoking container engines to instantiate containers, reserv-
ing servers and storage servers/devices, establishing net-
work connectivity, etc.); managing infrastructure resource
and allocation (e.g., increasing resources to virtual instances,
improving energy efficiency, and reclaiming resources, etc.).
VIM 156 can also provide for visibility into and manage-
ment of NFVI 130, root cause analysis of performance
issues of NFVI 130, collection of infrastructure fault infor-
mation, and collection of information for capacity planning,
monitoring, and optimization.

[0043] FIG. 1B illustrates a block diagram representing
VNF manager (VNFM) 154A, which can be an example of
an implementation of VNF managers (VNFMs) 154. In this
example, VNF manager 154 A includes various interfaces for

May 2, 2019

supporting “northbound” (from the perspective of VNF
manager 154A) interactions, including NETCONF/YANG
application programming interface (API) 170, restful state
transfer (REST) API 171, and web graphical user interface
(GUI) 172; interfaces for providing “southbound” (from the
perspective of VNF manager 154A) interactions, including
VIM driver 173; services, including high availability (HA)
service 174, health monitoring service 175, and logging
service 176; and lifecycle manager 180.

[0044] NETCONF is a network management protocol to
install, manipulate, operate, and delete the configuration of
network devices. In some cases, an orchestrator (e.g.,
orchestrator 152) can communicate with VNF manager
154 A using open NETCONTF protocol and YANG based data
models. In this manner, VNF manager 154A can manage
VNFs (e.g., VNFs 122) at a device level, and the orches-
trator can manage the entire network service lifecycle.
Together, the orchestrator and VNF manager can provide a
complete orchestration solution that spans across both physi-
cal and virtual infrastructure. In some cases, along with
NETCONF notifications, NETCONF/YANG API 170 can
also provide operational data, such as a list of all tenants,
networks, and deployments in VNF manager 154A.

[0045] Table 1 provides an example of a NETCONF
request to create a tenant, and Table 2 provides an example
of a NETCONF notification after VNF manager 154A
successfully creates a tenant.

TABLE 1

Example of a NETCONF request to create a tenant.

1: <rpc message-id="1"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0”>

2 <edit-config>
3: <source>
4: <running/>
5: </source>
6 <config>
7 <esc__datamodel
xmlns="“http://www.cisco.com/esc/esc”>
8: <tenants>
9: <tenant>
10: <name>mytenant</name>
11: </tenant>
12: </tenants>
13: </esc__datamodel>
14: </config>
15: </edit-config>
16: </rpc>
TABLE 2

Example of a NETCONF notification indicating
successful creation of a tenant.

1: <notification
xmlns="urn:ietf:params:xml:ns:netconfinotification:1.0”>
<eventTime>2015-05-05T19:38:27.71+00:00</event Time>
<escEvent xmlns="http://www.cisco.com/esc/esc”>
<status>SUCCESS</status>
<status__message>Tenant successfully
created</status__message>
<tenant>mytenant</tenant>
<vm__source/>
<vm__target/>
<event>
<type>CREATE__TENANT</type>

W Wb

O O 0 -1 Oy

—

US 2019/0132211 Al

TABLE 2-continued

May 2, 2019

TABLE 4-continued

Example of a NETCONF notification indicating
successful creation of a tenant.

Example of a REST response indicating
successful creation of a tenant.

11: <fevent> 13: <enabled>true</enabled>

12: </escEvent> 14: <description>A description...</description>

13: </notification> 15: </tenant>

[0046] REST API171 is a programmatic interface to VNF [0048] Web GUI 172 is a web-based tool for an adminis-

manager 154A that uses a representational state transfer
(REST) architecture. REST API 171 accepts and returns
Hypertext Transfer Protocol (HTTP) or HTTP Secure
(HTTPS) messages that contain JavaScript Object Notation
(JSON) or Extensible Markup Language (XML) documents.
An NFV platform (e.g., NFV platform 100) can use any
programming language to generate the messages and the
JSON or XML documents that contain the API methods or
managed object (MO) descriptions. REST API 171 can
include classes (i.e., templates that define the properties and
states of objects in the management information tree (MIT));
methods (i.e., actions that REST API 171 performs on one
or more objects); and types (i.e., object properties that map
values to the object state). In some cases, REST API 171 can
receive a request and place the request in a transactor queue
in first in, first out (FIFO) order. The transactor can retrieve
the request from the queue, interpret the request, and per-
form an authorization check. After confirmation of the
request, the transactor can update the MIT. REST API 171
can complete these operations in a single transaction.
[0047] Table 3 provides an example of a REST request to
create a tenant, and Table 4 provides an example of a REST
response after VNF manager 154A successfully creates a
tenant.

TABLE 3

Example of a REST request to create a tenant.

POST /vO/tenants/123 HTTP/1.1

Host: client.host.com

Content-Type: application/xml

Accept: application/xml
Client-Transaction-Id: 123456
Callback:/createtenantcallback

<?xml version="*1.0" encoding="UTF-8"?>
<tenant xmlns="urn:ietf:params:xml:ns:netconf:base:1.0”>
<name>xyz</name>

10: <enabled>true</enabled>

11: <description>A description...</description>
12: </tenant>

CoeRarhwhs

TABLE 4

Example of a REST response indicating
successful creation of a tenant.

HTTP/1.1 201 OK

Content-Type: application/xml; charset=UTF-8
Content-Length: 200

Date: Sun, 1 Jan 2011 9:00:00 GMT

ESC-Transaction-Id: 123456

ESC-Status-Code: 200

ESC-Status-Message: Success ...

<?xml version="1.0" encoding=“UTF-8"?>

<tenant>

10: <external_tenant_ id>234243490854004</external_tenant_ id>
11: <internal tenant id>434344896854965</internal_ tenant_ id>
12: <name>xyz</name>

VoRarhwn s

trator to create, read, update, or delete (CRUD) operations
related to VNF lifecycle management. Web GUI 172 can
enable an administrator to create and view the real-time
activities of VNF manager 154A such as deploying, unde-
ploying, healing, and scaling VNFs.

[0049] VIM driver 173 is a component that enables VNF
manager 154A to interface with a particular virtualization
platform, such as OpenStack provided by the OpenStack
Foundation of Austin, Tex. or vCenter provided by VMware
Inc. of Palo Alto, Calif.

[0050] HA service 174 can prevent single point of failure
and minimize shutdown time of VNF manager 154A. In
some cases, HA service 174 can implement a primary and
standby model. If the primary VNF manager instance fails,
the standby VNF manager instance can automatically take
over the services provided by the primary instance. In some
cases, HA service 200 can resolve single point failures due
to network failures, power failures, a dead VM instance,
scheduled downtime, hardware issues, and internal applica-
tion failures, among other possibilities.

[0051] Health monitoring service 175 provides an inter-
face (e.g., REST, Simple Object Access Protocol (SOAP),
service oriented architecture (SOA), resource oriented archi-
tecture (ROA) API) for third party software to monitor the
health of VNF manager 154A and its services. Using the
API, the third party software can query the health condition
of VNF manager 154 A periodically to check whether VNF
manager 154 A is in service. In response to the query, the API
can provide status code and messages. Table 5 provides an
example of status codes and associated health monitoring
messages.

TABLE 5

Example of health monitoring messages.

Status Code Message

2000 Services running.

2010 Services running but HA node is not reachable.

2020 Services running but one or more VIM services
are not reachable.

2030 Services running but VIM credentials not
provided.

2100 Services running but HA node is not reachable
and one or more VIM services are not
reachable.

5010 VNF manager service, VNF manager not
running.

5020 VNF manager service, NETCONF API not
running.

5030 VNF manager service, health monitoring
service not running.

5040 VNF manager service, VIM manager not
running.

[0052] Logging service 176 logs messages of events

throughout the lifecycle of each VNF deployed by VNF
manager 154A. The messages can be external messages,

US 2019/0132211 Al

messages from VNF manager 154A to other external sys-
tems, error messages, warnings, events, failures, and the
like. Logging service 176 can support classifications (i.e.,
logging categories) and tags (i.e., custom logging catego-
ries) to facilitate search of logs. In some examples, VNF
manager 154 A can expose logging service 176 to third party
software for the software to query and retrieve logs.
[0053] Lifecycle manager 180 manages the lifecycle of
each VNF/VM deployed by VNF manager 154A. Lifecycle
manager 180 can include a number of components or
engines for performing specific lifecycle management tasks.
In this example, the components of lifecycle manager 180
include provisioning module 181, configuration module
182, monitoring module 183, analytics engine 184, and rules
engine 185. The shaded boxes in FIG. 1B represent specific
tasks or actions, and the ellipses represent particular life-
cycle stages. The lifecycle of a service can begin with a
request for a new service to VNF manager 154A (e.g., via
NETCONF API 170, REST API 171, Web GUI 172, etc.).
[0054] Provisioning module 181 can instantiate 190 one or
more VMs, containers, or other virtual partitions (i.e., virtual
infrastructure), at which point the new service is in VI
deployment stage 191. The requestor can specify character-
istics (e.g., vVCPU, memory, disk, etc.) associated with
spinning up and managing virtual infrastructure. Lifecycle
manager 180 can also perform one or more actions 192,
which can include built-in actions (i.e., an action native to
VNF manager 154A that can execute by default or user
configuration) and/or custom actions (i.e., an action a user
can predefine to override a default action or to execute in
addition to a default action or other built-in action) when the
virtual infrastructure comes online. In various examples,
lifecycle manager 154A can perform any number of actions
(e.g., built-in and/or custom actions), including no actions,
in parallel and/or a specific order (e.g., one or more custom
actions followed by or more built-in actions and/or other
custom actions).

[0055] The one or more actions 192 can include a single
action or multiple actions. Any of the single and/or multiple
actions can be built-in or custom actions, and may be
associated with one or more triggers and/or conditions,
which can be unique to a respective action or shared among
multiple actions. In the case of multiple actions, such actions
can execute in parallel, sequence, random, or in any other
order (or lack thereof). For example, in some configurations,
multiple actions can execute in parallel, while in other
configurations, the multiple actions can execute in a specific
sequence or order. To illustrate, four actions may execute in
a particular sequence where one action executes after
another action (e.g., immediately upon completion, within a
predetermined amount of time after completion, on a sched-
ule, etc.) in a particular sequence until all four actions have
completed execution or until an event stops execution (e.g.,
a failure).

[0056] In some cases, a preceding action can function as
a trigger or precondition for a subsequent action in set of
multiple actions. For example, completion of a preceding
action can 1) trigger the subsequent action, 2) trigger a call
or request to perform the subsequent action, 3) trigger a
timer or countdown for executing the subsequent action, 4)
trigger a precondition for executing the subsequent action,
5) satisfy the precondition for executing the subsequent
action, etc. In other cases, multiple actions can include a
subset of actions that execute in a particular sequence, order,

May 2, 2019

schedule, etc., and one or more actions that can execute in
parallel to each other and/or parallel to one or more of the
subset of actions.

[0057] Configuration module 182 can apply “day-zero”
configuration and/or perform other bootstrapping tasks 193
for a new VNF service. For example, VNF configuration
module 182 can set up credentials, licensing, connectivity
information (e.g., IP address, gateway), and/or other static
parameters to make the new service available to the network.
[0058] After configuration and bootstrapping, the VNF
service is in VNF deployment stage 194. VNF monitoring
module 183 can track the health and performance of the
VNF service in monitoring stage 195. For example, VNF
manager 154A can interface with element managers (e.g.,
element managers 120) and evaluate metrics 196, such as
built-in service and performance metrics (e.g., number of
jobs, capacity, load bursts, job priorities, number of concur-
rent sessions, etc.). In some examples, VNF manager 154A
can integrate with a VIM manager (e.g., VIM manager 156)
to also monitor the health and performance of the VNF
service and/or the VM(s), container(s), and/or virtual parti-
tion(s) in which the VNF service resides, including built-in
metrics (e.g., CPU use, memory consumption, bandwidth,
etc.) and user-defined metrics.

[0059] In various examples, VNF manager 154 A can use
agentless monitoring to track the health and performance of
the VNF service and the virtual infrastructure running the
VNF service. Agentless monitoring can reduce service
deployment by eliminating or minimizing the time and
resources otherwise necessary for integration of agents,
re-validation/re-certification, root-cause troubleshooting
(i.e., determining whether an issue is the VNF software or
the orchestrator software), etc. With an agentless mode of
monitoring operations, VNF manager 154A can monitor
CPU or memory use to track VNF performance and/or other
user-defined metrics based on other protocols (e.g., Simple
Network Management Protocol (SNMP)) or custom scripts.
VNF manager 154A can scale in/out/up/down for monitor-
ing module 183. For example, VNF manager 154 A can track
the load of monitoring module 183 and scale in/out instances
of monitoring module 183 to maintain a specified load for
monitoring module 183. As another example, VNF manager
154 A can track the load of monitoring module 183 and scale
up/down resources to maintain the specified load for moni-
toring module.

[0060] Analytics engine 184 identifies problems and
events that require action, and rules engine 185 defines rules
and thresholds establishing the criteria for these occur-
rences. Together, these engines can automate and accelerate
the response of VNF manager 154 A to specific conditions or
events. Analytics engine 184 and rule engine 185 can handle
both simple and complex rules. For example, an adminis-
trator can define a simple rule such as advertising availabil-
ity of a service to the rest of the network when the service
goes live. A more complex rule can specify a set of actions
to perform in response to a particular event, such as directing
VNF manager 154A to automatically scale up/down or
in/out, and notify the orchestrator when overloading or
underloading of resources or instances (e.g., VNF instances,
VNFM instances, engine instances, etc.) occurs.

[0061] In this example, analytics engine 184 can receive
state information from monitoring module 183 to identify
lifecycle stages such as VNF/VNFM overloading/under-
loading 192A (e.g., overloading/underloading of VNF 122,

US 2019/0132211 Al

VNFM 154, and/or associated resources), virtual infrastruc-
ture 192B overloading/underloading (e.g., overloading/un-
derloading of virtual infrastructure in which a VNF and/or
VNFM runs), VNF/VNFM failure 192C (e.g., failure of a
VNF or VNFM), virtual infrastructure failure 192D, etc. The
analytics engine 184 can evaluate applicable rules and
thresholds from rules engine 185 to trigger one or more
actions 192, including built-in and/or custom actions for
example. VNF manager 154A can support a variety of
built-in lifecycle stages or custom lifecycle stages based on
other built-in conditions or custom conditions that can
invoke other built-in actions and/or custom actions subject
to other built-in rules and thresholds and/or custom rules and
thresholds. As previously explained, actions 192 can include
a single action or multiple actions, and multiple actions can
execute in various ways (e.g., parallel, sequence, hybrid,
etc.).

[0062] FIG. 2A illustrates an example vBranch system 200
having an NFV platform. In this example, traditional routers
and physical appliances are replaced with a hardware (e.g.,
x86) platform that supports VNFs and virtual networks. For
branch virtualization, the local orchestrator and the virtual
appliances are managed by a central orchestration subsys-
tem. The system includes a plurality of vBranch nodes 202-1
through 202-N at a branch 210. The plurality of vBranch
nodes 202-1 through 202-N have connectivity (e.g., IP
connectivity) to a network 220 and a central manager 230.
The central manager 230 can be an example of NFV MANO
150 shown in FIG. 1A, and/or can implement one or more
components from NFV MANO 150.

[0063] While FIG. 2A shows N vBranch nodes, there may
be one or more vBranch nodes at a branch. A datacenter 240
may also be connected to the network 220. There may be
multiple (potentially thousands of) branches 210, but for
simplicity, in FIG. 2A only a single branch is shown. Each
vBranch node includes at least one VNF shown at reference
numeral 122 and an operating system (OS) shown at refer-
ence numeral 204.

[0064] Examples of virtual networking functions that may
run on a vBranch node include a cloud service router (CSR),
adaptive security appliance (ASA), web security appliance
(WSA), wide area application services (WAAS), and other
networking functions. CSR is a software router that is
deployed as a virtual machine (VM) in a vBranch node using
Linux KVM virtualization infrastructure. It supports com-
prehensive networking and security functions. ASA is a
software firewall that is deployed as a VM in a vBranch node
using Linux KVM virtualization infrastructure. It supports
security features consistent with hardware-based appliance.
WSA is a software web security appliance that is deployed
as a VM in a vBranch node using Linux KVM virtualization
infrastructure. It supports security features consistent with
hardware-based WSA.

[0065] The central manager 230 may integrate functions
of a central orchestrator 152A and a VNF Network Man-
agement System/Element Management System (NMS/
EMS) controller 250. VNF NMS/EMS controller 250 can be
an example of VNF Manager 154 and/or VI Manager 156 as
shown in FIG. 1A or may include one or more components
from VNF Manager 154 and/or VI Manager 156. A portal
270 is provided that enables user/administrator access to the
central manager 230. In some implementations, the central
orchestrator 152A and the VNF EMS/NMS controller 250
are combined into one entity.

May 2, 2019

[0066] The system 200 supports a large number of branch
locations (e.g., hundreds, thousands, etc.,) with a number of
VNFs (for example, 8 VNFs) at each branch. In some cases,
these VNFs can run as virtual machines on a kernel-based
virtual machine (KVM). However, in other examples, the
architecture may support other hypervisors and containers
technology without requiring upgrades of the NFV orches-
trator 152A.

[0067] The central orchestrator 152A is a central orches-
tration component responsible for the control and manage-
ment of all vBranch nodes associated with a customer. It
performs a number of functions. First, it provides a central
repository where VNF software and service profiles models
reside. The service profile model describes how VNFs
should be deployed and connected when they are imple-
mented on a vBranch node. Second, it maintains ongoing
status of vBranch nodes. Third, the central orchestrator
152A on-boards, using zero touch provisioning techniques
as described herein, new vBranch nodes into the system 200
when they are first deployed, and thereafter monitors the
status of the vBranch nodes.

[0068] The portal 270 is a component that provides two
portal functions. The first is the user portal function to allow
an end-user to select, manage and perform very basic
problem determination on VNFs and service profiles (a
collection of VNFs chained together) at the branch level. In
the case of a service provider-managed service environment,
the end-user would be the network or IT administrator of the
end-user customer. In the case of an enterprise environment,
the end-user would be network or IT administrator depend-
ing on organization’s setup. The second function is the
operator portal function. This provides an interface to define
and onboard new VNFs and new service profiles model,
perform problem determination and to gather analytical
information associated with the VNF infrastructure for one
or more vBranch nodes. In a service provider-managed
service environment, this may be an individual from the
service provider. In enterprise environments, this would be
either second line IT or network support depending on
organizational setup.

[0069] While the virtual branch system 200 solves many
problems associated with providing a rich and adaptable
service infrastructure in the branch 210, it does present some
challenges. For example, generally there is a hardware
platform and its OS in the branch that needs to be managed
and addressed through a wide area network (WAN) connec-
tion. The OS and particularly the local VNF manager
component of the OS is important in managing the branch
environment because it is the first component booted up in
the branch and is responsible for orchestrating a virtual
router in the branch. Therefore, it cannot be addressed
through the router in the branch. It needs to be accessible in
its own right through the WAN connection. The local VNF
manager component in the virtual branch needs a logical
local management network to the VNFs to enable local life
management of those VNFs. The central orchestrator needs
to be able to access the VNFs through the logical local
management network for configuration purposes. This is
typically through a WAN interface. WAN addressing is
generally very constrained and every effort needs to be made
to preserve these addresses. The addressing of the WAN
interface is often under the control of the Service Provider.
Moreover, it is important to ensure that the number of
addresses or routes associated with the vBranch infrastruc-

US 2019/0132211 Al

ture does not increase significantly due to the act of virtu-
alization. The disclosure herein addresses these and other
challenges as described below with respect to FIGS. 2B
through 6.

[0070] Additionally details regarding vBranches are fur-
ther described in U.S. Patent Publication No.
US20160359805A1 to Spraggs et al., filed on Jun. 3, 216,
entitled “Addressing and managing an internal network of a
virtual branch node”, all of which is incorporated by explicit
reference herein in its entirety.

[0071] FIG. 2B illustrates a block diagram of an example
hybrid network environment 290 implementing NFV plat-
form 100 on a cloud 280 and a branch 210 (e.g., vBranch
system 200). In this example, the cloud 280 represents one
or more remote networks and the branch 210 represents one
or more local networks. The cloud 280 and branch 210 are
shown in this example for clarity and explanation purposes
to illustrate a hybrid network environment including a local
and remote network. However, it should be understood that
the hybrid network environment 290 can include any type
and number of remote and local networks, such as a local
area network (LAN), a private cloud, a public cloud, a
hybrid cloud, one or more datacenters, an enterprise net-
work, a campus network, etc.

[0072] The cloud 280 and branch 210 can run a respective
NFV platform, such as NFC platform 100. The cloud 280
and branch 210 can communicate with each other and share
resources, services, workloads, etc. For example, the cloud
280 and branch 210 can work together to service a workload
by hosting respective portions of the resources or services
for the workload, load balancing portions of the workload,
load balancing and/or sharing management (e.g., monitor-
ing, orchestration, etc.) tasks for the workload, scaling in/out
resources and instances between the cloud 280 and branch
210, providing backup or recovery for the workload, etc.
Specific components of the NFV platform on the cloud 280
and branch 210 can communicate and interact with each
other to coordinate tasks, resources, instances, workloads,
etc. For example, one or more cloud VNFMs or C-VNFMs
(C-VNFM 154A-C) and local VNFMs or L-VNFMs
(L-VNFM 154D-F) can interact with each other to scale
in/out VNFs (e.g., VNFs 122A-D), VNFMs (e.g., C-VNFMs
154A-C and L-VNFMs 154D-F), and/or resources (e.g.,
physical and/or virtual infrastructure) on the cloud 280
and/or the branch 210.

[0073] Insome cases, one or more specific VNFMs on the
cloud 280 and/or the branch 210 can monitor VNFMs,
VNFs, resources, networks, etc., and determine whether
scaling operations should be performed. For example, in
some cases, C-VNFM 154A on the cloud 280 can monitor
itself, C-VNFMs 154-B-C on the cloud 280, L-VNFMs
154D-F on the branch 210, VNFs A-B on the cloud 280,
VNFs C-D on the branch 210, resources on the hybrid
environment 290 (e.g., the cloud 280 and/or branch 210),
status or conditions on the hybrid environment 290 (e.g., the
cloud 280 and/or branch 210), workloads on the hybrid
environment 290 (e.g., the cloud 280 and/or branch 210),
etc. Based on the monitoring, C-VNFM 154A can determine
if any of the services (e.g., VNFs, VNFMs, etc.) or resources
are overloaded/underloaded, and make scaling decisions for
the services or resources to maintain a specific load, perfor-
mance, balance, ratio, capacity, redundancy, etc., for specific
services, resources, networks, etc.

May 2, 2019

[0074] To illustrate, C-VNFM 154A can determine if any
of L-VNFMs 154D-F are overloaded/underloaded, the
branch 210 is overloaded/underloaded, the C-VNFM 154A
itself is overloaded, etc. If an L-VNFM is overloaded, the
C-VNFM 154A can scale out the L-VNFM by adding one or
more L-VNFM instances on the branch 210, such as
L-VNFM 154M. If the branch 210 (e.g., the branch network
and/or its resources) is overloaded, the C-VNFM 154A can
move VNFs, such as VNF C or VNF D, from the branch 210
to the cloud 280, and/or add one or more resources (e.g.,
VMs, containers, virtual compute, virtual storage, virtual
network, etc.), such as VM 292A,, to the resources 292 on the
branch 210. If the C-VNFM 154A itself is overloaded, the
C-VNFM 154A can add one or more instances of C-VNFM
154A, such as C-VNFM 154N, to scale itself out.

[0075] On the other hand, if an L-VNFM is underloaded,
the C-VNFM 154A can scale in the L-VNFM. For example,
the C-VNFM 154A can remove, migrate, disable, etc., one
or more instances of the L-VNFM on the branch 210, such
as L-VNFM 154L. By scaling in the L-VNFM, the
C-VNFM 154A can balance the load for the L-VNFM(s) and
the branch 210. If the C-VNFM 154A is underloaded, the
C-VNFM 154A can similarly scale itself in. For example,
the C-VNFM 154A can remove, migrate, disable, etc., one
or more instances of the C-VNFM 154A.

[0076] In some cases, the C-VNFM 154A can monitor the
L-VNFMs on the branch 210, the VNFs 122 on the branch
210, the resources 292, the branch 210, etc., through one or
more L-VNFMs, and scale in/out VNFs, VNFMs, and/or
resources 292 on the branch through the one or more
L-VNFMs. For example, the C-VNFM 154A communicate
with L-VNFM 154D to collect monitoring data, such as load
information, performance statistics, metrics, VNF informa-
tion, VNFM information, service requirements, etc., and
determine if the C-VNFM 154A should scale in/out any
resources, VNFs, VNFMs, etc., on the branch 210. If the
C-VNFM 154A determines a specific resource or service
should be scaled in/out based on the monitoring data, the
C-VNFM 154A can send a request or instructions to the
L-VNFM 154D to scale in/out the resource or service
accordingly. The request or instructions from the C-VNFM
154 A can include specific parameters, configurations, con-
ditions, etc., to facilitate the scaling of the resource or
service.

[0077] FIG. 2C illustrates an example system for scaling
components of a VNFM such as C-VNFM 154A. The
VNFM can scale individual components, such as compo-
nents 181-185, in or out based on load status. For example,
the VNFM can scale components 181, 182, 183, 184, and/or
185 to handle additional VNFs, VNFMs, and/or lifecycle
events. In this example, VNFM 200A represents an example
VNFM prior to scaling and VNFM 200B represents the
VNFM after one or more scaling of components in VNFM
200A.

[0078] VNFM 200A can monitor 294 components 181-
185 as well as load status as previously mentioned. Based on
the load status, VNFM 200A can perform a scaling event
296 to add or remove components 181-185. In this example,
VNFM 200A performs a scaling event 296 to remove a
provision component 181 and a configuration component
182, and add a monitoring component 183 and two analytics
engines 184. VNFM 200B illustrates VNFM 200A after the
scaling event 296.

US 2019/0132211 Al

[0079] The addition and removal of components can allow
the VNFM to adjust to load demands. The VNFM can
continue to monitor 294 components 181-185 and perform-
ing scaling events 296 to adjust as load demands change.
The specific scaling event 296 can add or remove compo-
nents 181-185 according to specific needs and/or load con-
ditions. For example, the VNFM can scale specific compo-
nents depending on whether the VNFM needs to increase/
decrease monitoring operations, deployment operations, etc.

[0080] FIG. 3 illustrates an example lifecycle state
machine 300 for a VNF or VNFM and its associated VM(s),
container(s), and/or other virtual partition(s). A VNF man-
ager (e.g., VNF manager 154, VNF manager 154A,
C-VNFM 154, etc.), and more specifically a lifecycle man-
ager (e.g., lifecycle manager 180) can track the health, load,
performance, status, etc., of a VNF or VNFM and its
underlying virtual infrastructure in accordance with life-
cycle state machine 300. In this example, lifecycle state
machine 300 includes VNF/VNFM onboarding stage 302,
VI deployment stage 304, VNF/VNFM pre-deployment
stage 306, VNF/VNFM deployment stage 308, VNF/VNFM
post-deployment stage 310, monitoring stage 312, update
stage 314, undeployment stage 316, overderloaded/under-
loaded stage 318, fail stage 320, scale stage 322, and heal
stage 324. In various examples, a lifecycle state machine can
include any number of built-in lifecycle stages and/or cus-
tom lifecycle stages and lifecycle state machine 300 is but
one possible set of lifecycle stages.

[0081] One or more of the lifecycle stages of lifecycle
state machine 300 can exhibit similar behavior—generally
staying in the same stage on failure and transitioning to a
new stage on success. The VNF manager can re-attempt one
or more actions associated with a particular lifecycle stage
until the action(s) complete(s) successfully. VNF/VNFM
onboarding stage 302, VI deployment stage 304, VNF/
VNFM pre-deployment stage 306, VNF/VNFM deployment
stage 308, VNF/VNFM post-deployment stage 310, updat-
ing stage 314, overloaded/underloaded stage 318, fail stage
320, scale stage 322, and heal stage 324 can behave in this
manner. VNF/VNFM onboarding stage 302 represents the
first time the VNF manager adds a VNFM or VNF. This
stage can involve ensuring that the VNF or VNFM complies
with the prerequisites defined for the VNF or VNFM, such
as one or more requirements provided by a VIM (e.g., VIM
156). Non-limiting examples of prerequisites or require-
ments can include support for certain virtual image formats
(e.g., raw image format, Open Virtualization Format (ovf),
QEMU copy on write (qcow) or qcow?2, virtual machine disk
(vmdk), etc.), a configuration drive for VNF or VNFM
boostrapping, or templates for new VNF or VNFM types.

[0082] VI deployment stage 304 can occur after a request
to the VNF manager for a VNF or VNFM, upon which the
VNF manager can provision the virtual resources for the
VNF or VNFM. The deployment of the VNF or VNFM can
include one or more phases, such as VNF/VNFM pre-
deployment stage 306, VNF/VNFM deployment stage 308,
and VNF/VNFM post-deployment stage 310. In VNF/
VNFM deployment stage 308, the VNF manager applies
configurations (e.g., day zero configuration, mirrored con-
figuration, etc.) for the VNF or VNFM, such as credentials,
licensing, connectivity information (e.g., IP address, gate-
way, etc.), and/or other parameters to make the virtual
resource available to the system. The VNF manager can also
activate licenses for the new VNFs or VNFMs during

May 2, 2019

VNF/VNFM deployment stage 308. In this example, VNF/
VNFM pre-deployment stage 306 and VNF/VNFM post-
deployment stage 310 are lifecycle stages preceding and
following VNF/VNFM deployment stage 308, respectively.

[0083] VNEF/VNFM pre-deployment stage 306, VNE/
VNFM deployment stage 308 and VNF/VNFM post-de-
ployment stage 310 (and any other lifecycle stages) can be
custom lifecycle stages and/or built-in or native lifecycle
stages. In various examples, an administrator can define a
lifecycle stage, such as a custom lifecycle stage, by config-
uring the VNF manager, an analytics engine (e.g., analytics
engine 184), and/or rules engine (e.g., rule engine 185) to
perform one or more specific tasks upon the occurrence of
one or more conditions.

[0084] Other lifecycle state machines may exhibit differ-
ent or additional behavior, such as more complex behavior,
which can include additional lifecycle stages and can pro-
vide, for example, more robust error handling, rolling back
failed actions, transitioning to particular stages to resolve
identified issues, etc. For example, in monitoring stage 312,
the VNF manager can track the health of virtual infrastruc-
ture using various methodologies, such as Internet Control
Message Protocol (ICMP), ping, SNMP, event logging,
status monitoring, etc. The VNF manager can also monitor
performance metrics, such as CPU use, memory consump-
tion, IOPS, number of active jobs, latency, and other param-
eters. The VNF manager can also provide a framework to
monitor service and/or performance-related metrics as well
as other user-defined parameters (e.g., capacity, load bursts,
number of concurrent sessions, priorities, patterns, etc.).

[0085] In overloaded/underloaded stage 318, the VNF
manager can detect load conditions (e.g., amount of work-
load, maximum capacity, resource availability, service
requirements, etc.) of the VNF or VNFM and/or the virtual
infrastructure. This can trigger one or more scaling actions
and entry into scale stage 322 to increase VNFs, VNFMs,
virtual resources, etc., in the overloaded stage; and decrease
VNFs, VNFMSs, virtual resources, etc., in the underloaded
stage. In fail stage 320, the VNF manager can detect failure
conditions of the VNF or VNFM and/or the virtual infra-
structure, and in heal stage 324, the VNF manager can
invoke one or more healing actions for handling the failure
conditions. In some examples, the VNF manager can utilize
an analytics engine (e.g., analytics engine 184) to evaluate
built-in or native key performance indicators (KPI) and/or
custom metrics to define overloaded/underloaded stage 318,
fail stage 320, and any other scenarios related to the VNF or
VNFM and its underlying virtual infrastructure. The VNF
manager can take specific actions defined in a rules engine
(e.g., rules engine 185).

[0086] In some examples, the VNF manager allows
deployment updates after a successful deployment. In
update stage 314, the VNF manager can perform updates
(e.g., adding or deleting a virtual infrastructure group,
adding or deleting an ephemeral network in a virtual infra-
structure group, adding or deleting an interface in a virtual
infrastructure group, etc.). In some cases, the VNF manager
can perform updates in a single deployment or individually.

[0087] The VNF manager can also support undeployment
of a deployed VNF or VNFM. In undeployment stage 316,
the VNF manager can undeploy the VNF or VNFM in
response to one or more events, such as a request from a
northbound API (e.g., NETCONF API 202, REST API 171)

US 2019/0132211 Al

or another interface (e.g., web GUI 172), a load condition
(e.g., an underloaded status), a failure condition, etc.
[0088] The VNF manager can dynamically alter the
behavior of a running or live VNF or VNFM or adapt to load
conditions of the network and/or the VNF or VNFM. In
some cases, the VNF manager can do so without undeploy-
ing the VNF or VNFM or its underlying virtual structure by
defining actions and conditions and/or updating existing
actions and conditions and updating one or more database
volumes associated with the VNF or VNFM or its underly-
ing virtual infrastructure. In some cases, this can involve
replicating the current database volume(s) of the VNF or
VNFM or its underlying infrastructure, updating the repli-
cated database(s) with the new and/or updated actions and
conditions, detaching the current database volume(s), and
attaching the updated database volume(s). In other
examples, this can involve writing the new and/or updated
actions and conditions to the current database volume(s)
using structured query language (SQL) or other relational
database querying language, Open Database Connectivity
(ODBC) or other object-relational mapping (ORM) system,
or other suitable data access techniques.

[0089] FIG. 4A illustrates a diagram of an example pro-
cess 400 for orchestration of a virtual service. The steps
shown in example process 400 are non-limiting example
steps provided for clarity and explanation purposes. How-
ever, in other examples, the process 400 can include addi-
tional, fewer, or alternative steps performed in similar or
alternative orders.

[0090] The process 400 can occur within an NFV plat-
form, such as NFV platform 100, including orchestrator 152,
VNF managers 154, VIM 156, and VNF 122. In some
examples, the process 400 can occur within a hybrid net-
work environment, such as hybrid network environment
290. The virtual service can be, for example, a VNF (e.g.,
VNF 122), a VNFM (e.g., an instance of a VNF manager
154), etc. For clarity and explanation purposes, the process
400 in this example will be described with respect to the
hybrid network environment 290 shown in FIG. 2B. In
particular, VNF manager in this example will be C-VNFM
154A and the virtual service will be an instance of L-VNFM
154D. Moreover, L-VNFM 154M will be deployed using
L-VNFM 154D as well as C-VNFM 154A.

[0091] Process 400 can begin with C-VNFM 154A detect-
ing a condition triggering a deployment of L-VNFM 154M,
such as an overloaded status of L-VNFM 154D. For
example, the C-VNFM 154A can monitor a status of
L-VNFM 154D (as well as other components in the branch
210 such as VNFs or resources), and making scaling deci-
sions based on the status of L-VNFM 154D. When L-VNFM
154D is determined to be overloaded, the C-VNFM 154A
can deploy L-VNFM 154M to decrease the load on
L-VNFM 154D.

[0092] The C-VNFM 154A can initiate deployment of the
L-VNFM 154M at step 422 by sending a request for VIM
156 on the branch 210 to instantiate a VI instance. The
request can be transmitted through L-VNFM 154D. For
example, the C-VNFM 154A can instruct L-VNFM 154D to
send the request to VIM 156. However, in some configura-
tions, the C-VNFM 154A can send the request directly to
VIM 156.

[0093] The request to VIM 156 can include information
(e.g., configurations, requirements, actions, parameters,
descriptors, templates, scripts, etc.) for deploying L-VNFM

May 2, 2019

154M. For example, the request can specify one or more
parameters (e.g., vCPU, memory, disk, etc.) associated with
spinning up and managing virtual infrastructure. At step 424,
VIM 156 can report the status of provisioning the VI
instance to L-VNFM 154D and, at step 426, L-VNFM 154D
can forward the status reported to orchestrator 152 on the
branch 210. In some cases, VIM 156 can report the status of
provisioning the VI instance to C-VNFM 154A and orches-
trator 152 can receive a forwarded report of the status from
C-VNFM 154A and/or L-VNFM 154D.

[0094] At step 428, L-VNFM 154D deploys L-VNFM
154M onto the instantiated VI instance. At step 430, the
L-VNFM 154D can configure L-VNFM 154M according to
one or more parameters or settings, requirements, condi-
tions, etc. In some cases, the configuration can include
applying “day-zero” configuration and/or performing other
configuration (e.g., bootstrapping) tasks to condition the VI
instance for L-VNFM 154M. For example, L-VNFM 154D
can establish credentials, licensing, connectivity (e.g., IP
address, gateway), and/or other parameters to make the
instance of L-VNFM 154M available to the network (e.g.,
hybrid network environment 290).

[0095] The configurations can include mirroring configu-
rations and/or data from L-VNFM 154D. Thus, the configu-
rations from L-VNFM 154D can be used to deploy
L-VNFM 154M as a mirror, clone, and/or copy of L-VNFM
154D. The configurations and configuration tasks for a
service (e.g., VNF, VNFM, etc.) can be based on the
configurations and configuration tasks of another service,
the parent service, when migrating, cloning, mirroring, or
copying the parent service to a new location and/or virtual
infrastructure.

[0096] At step 432A, L-VNFM 154D can monitor the
state of L-VNFM 154M during the deployment. At step
412B, C-VNFM 154A can also monitor the state of
L-VNFM 154M during the deployment. In some cases,
process 400 can involve either step 412A or step 412B.
However, in some cases, the process 400 can involve both
steps 412A and 412B. For example, in some configurations,
L-VNFM 154D can monitor the state of L-VNFM 154M
during the deployment, and C-VNFM 154A can optionally
monitor the state during the deployment. In other configu-
rations, both L-VNFM 154D and C-VNFM 154 A can moni-
tor the state of L-VNFM 154M during the deployment.
Other variations can also be implemented. For example, in
some configurations, L-VNFM 154D can monitor the state
of L-VNFM 154M during the deployment and C-VNFM
154 A can monitor the state before, during, and/or after the
deployment.

[0097] At step 434, L-VNFM 154D can send a status of
L-VNFM 154M to orchestrator 152. The status can include
the deployment status of L-VNFM 154M, such as a deploy-
ment stage, a deployment state, a deployment completion, a
deployment verification, a deployment log, a deployment
error, deployment statistics, etc. At step 416, L-VNFM 154D
can also report the status of L-VNFM 154M to C-VNFM
154A. In some cases, L-VNFM 154D can continue to report
the status of L-VNFM 154M to C-VNFM 154A throughout
the lifetime, or a period of the lifetime, of L-VNFM 154M.
[0098] Steps 422-432 can repeat for each VI instance
needed by the virtual service, L-VNFM 154M.

[0099] The disclosure now turns to the example methods
500, 520 for hybrid, elastic scaling in overload and under-
load scenarios shown in FIGS. 5A and 5B. The steps

US 2019/0132211 Al

outlined herein are examples and can be implemented in any
combination thereof, including combinations that exclude,
add, or modify certain steps.

[0100] The methods 500, 520 can occur within an NFV
platform, such as NFV platform 100, including orchestrator
152, VNF managers 154, VIM 156, and VNF 122. More-
over, the methods 500, 520 can occur within a hybrid
network environment hosting one or more NFV platforms,
such as hybrid network environment 290. For the sake of
clarity and explanation, the methods 500, 520 are described
with reference to the hybrid network environment 290,
including C-VNFMs 154, [L-VNFMs 154, VNFs 122,
resources 292, branch 210, and cloud 280, as shown in FIG.
2B. More specifically, the methods 500, 520 will be
described with reference to C-VNFM 154A and [L-VNFM
154D configured to perform the various steps in the meth-
ods.

[0101] FIG. 5A illustrates a flowchart of an example
method 500 for hybrid, elastic scaling in overload scenarios.
In this example, at step 502, C-VNFM 154A monitors
L-VNFM 154D to determine a load status of L-VNFM
154D. The load status can be based on one or more load
metrics or factors, such as one or more conditions, param-
eters, events, requirements, statistics, metrics, etc. For
example, the load status can be monitored by analyzing load
metrics, which can include statistics, status information, job
information, configuration information, service require-
ments, capabilities, performance information, job priorities,
resource capabilities, resource statistics, number of services,
overall workload, etc., associated with L-VNFM 154D.
[0102] C-VNFM 154A can communicate with L-VNFM
154D and/or the branch 210 to collect information, such as
load metric, for determining the load status of L-VNFM
154D. C-VNFM 154 A can obtain such information through
a push and/or pull model. For example, C-VNFM 154A can
request (i.e., pull model) such information from L-VNFM
154D and/or the branch 210, and/or L-VNFM 154D or
branch 210 (e.g., a device, such as a controller, at branch
210) can report (i.e., push model) such information to
C-VNFM 154A.

[0103] Such information can be pushed or pulled at spe-
cific intervals (e.g., every n minutes, hours, or days; etc.)
and/or triggering events. Non-limiting examples of a trig-
gering event for pushing or pulling such information include
a change in a load, status, or performance; a performance or
load reaching a threshold; occurrence of a service event
(e.g., service deployment, service modification, service
request, etc.); a change in the number of VNFs on the branch
210; an indication that the number of VNFs on the branch
210 has reached or exceeded a threshold number of VNFs;
a change in the amount or availability of resources 292 on
the branch 210; an indication that the amount of available or
active resources on the branch 210 have reached a threshold;
an indication that a remaining capacity or availability of the
L-VNFM 154D and/or the branch 210 is below a threshold;
receipt of an information request, such as a user or system
request for load and/or performance-related information; a
condition has been satisfied; etc.

[0104] At step 504, C-VNFM 154A determines if
L-VNFM 154D is overloaded based on the load status of
L-VNFM 154D. C-VNFM 154A can determine if L-VNFM
154D is overloaded based on the load status of L-VNFM
154D. For example, C-VNFM 154A can determine
L-VNFM 154D is overloaded when the load status reaches

May 2, 2019

a threshold. The threshold can be defined for L-VNFM 154D
based on one or more factors, such as a load of the L-VNFM
154D relative to a load capacity of the L-VNFM 154D, a
performance of the L-VNFM 154D relative to a perfor-
mance requirement for L-VNFM 154D and/or one or more
services managed by L-VNFM 154D, a predefined maxi-
mum load, a load pattern associated with L-VNFM 154D
and/or one or more services associated with L-VNFM 154D,
a load capacity or resource availability associated with
branch 210 and/or cloud 280, etc. In some cases, the
threshold can be configured to be relative or proportional to
the respective load status of the branch 210 and/or other
services in the hybrid network environment 290, such as
VNFs and/or VNFMs on the branch 210 and/or the cloud
280, or may vary based on their respective load status. For
example, the threshold can depend on the respective load of
other VNFMs on the branch 210.

[0105] To illustrate, the threshold can be set to remain
within 5% of the highest load status of one or more other
VNFMs, and/or may be set to a specific load level defined
for L-VNFM 154D and configured to increase or decrease
based on the respective load status of other VNFMs. For
example, the threshold for L.-VNFM 154D can be set to X
amount of load but may also be configured to increase when
the respective load status of N number (or all) of VNFMs
reaches a Y amount of load or a Z percent of relative load.
Thus, the threshold can be dynamic, adjustable, and/or
dependent on more than one condition.

[0106] If C-VNFM 154A determines that L-VNFM 154D
is not overloaded (e.g., L-VNFM 154D has not reached a
threshold load status), the method 500 continues to step 508.
On the other hand, if C-VNFM 154A determines that
L-VNFM 154D is overloaded (e.g., L-VNFM 154D has
reached a threshold load status), the method 500 continues
to step 506. At step 506, C-VNFM 154A can scale out
L-VNFM 154D. For example, C-VNFM 154A can initiate a
deployment of one or more instances of L-VNFM 154D on
the branch 210 and/or the cloud 280, and/or request addi-
tional resources (physical and/or virtual) from the branch
210, such as memory, compute, storage, etc. To illustrate,
C-VNFM 154A can initiate a deployment of L-VNFM
154M on the branch 210 and/or deploy the one or more
L-VNFMs as previously described with reference to process
400 shown in FIG. 4A.

[0107] The number of instances to deploy in response to
L-VNFM 154D being overloaded can depend on one or
more factors, such as the load status of L-VNFM 154D, the
load status on the branch 210, the amount of resources 292
available on the branch 210, the service requirements asso-
ciated with L-VNFM 154D and/or one or more VNFs
associated with L-VNFM 154D, a number of VNFs associ-
ated with L-VNFM 154D and/or on the branch 210, a
respective load status of the branch 210 and/or other VNFMs
(e.g., L-VNFMs 154E, 154F), etc. For example, C-VNFM
154A can deploy a single instance of L-VNFM 154D if
determined that a single instance is sufficient to balance the
load associated with L-VNFM 154D, or multiple instances
if more than one instance is necessary. The multiple
instances can be deployed on the branch 210, the cloud 280,
and/or a combination of the branch 210 and the cloud 280.
[0108] At step 508, C-VNFM 154A monitors the branch
210. C-VNFM 154A can monitor the branch 210 to deter-
mine if the branch 210 is overloaded. C-VNFM 154A can
monitor the branch 210 based on load metrics associated

US 2019/0132211 Al

with the branch 210, such as network parameters, network
performance (e.g., delay, congestion, bandwidth, through-
put, jitter, etc.), current network conditions or events (e.g.,
failures, errors, upgrades, network health, etc.), network
and/or service requirements, network demands, network
statistics or trends, resource statistics associated with
resources 292 on the branch 210, cost parameters, quality of
service parameters, network capabilities, etc. C-VNFM
154A can obtain load metrics based on a push and/or pull
model as previously explained in step 502.

[0109] At step 510, C-VNFM 154A determines if the
branch 210 is overloaded. C-VNFM 154A can determine an
overloaded status based on the load metrics. The overloaded
status can be determined when the load metrics reach or
exceed a threshold defined for the branch 210. The threshold
can be defined based on user preferences, a maximum load,
service requirements, network trends, current conditions, a
network history, service history, a cost, current and/or pre-
dicted demands, etc.

[0110] If C-VNFM 154A determines that the branch 210 is
not overloaded, the method 500 continues to step 514. If
C-VNFM 154A determines that the branch 210 is over-
loaded, the method 500 continues to step 512. At step 512,
if the branch 210 is determined to be overloaded, C-VNFM
154A can move services (e.g., VNFMs, VNFs, etc.) and/or
resources (e.g., VMs, containers, etc.) from the branch 210
to the cloud 280 and/or request additional resources (physi-
cal and/or virtual) from the cloud 280, such as memory,
compute, storage, etc. For example, C-VNFM 154A can
move or migrate VM 292B, VNF 122C, and/or L-VNFM
154L. from the branch 210 to the cloud 280. C-VNFM 154 A
can move or migrate one or more services and/or resources,
and the number of services and/or resources can depend on
one or more factors, such as the load status of the branch
210, load patterns, capabilities of the branch 210, the num-
ber of services deployed and/or expected to be deployed,
cost, etc.

[0111] At step 514, C-VNFM 154A can monitor itself and,
at step 515, C-VNFM 154A can determine if it is over-
loaded. C-VNFM 154A can monitor its own load (e.g.,
number of services managed by C-VNFM 154 A, the service
or resource demands associated with C-VNFM 154A,
memory usage associated with C-VNFM 154A, CPU usage
associated with C-VNFM 154A, storage usage associated
with C-VNFM 154A, etc.), its own capabilities, its own
resource availabilities, its own usage patterns, its own
requirements, etc., to determine if it is overloaded. The
overloaded status can be determined based on an overload
threshold, which can be based on one or more factors as
previously explained, such as the load status, resource
availability, predicted demands, -capabilities, service
requirements, relative load status of other services, etc.
[0112] If C-VNFM 154A determines that it is overloaded,
at step 518, C-VNFM 154A can scale itself out. For
example, C-VNFM 154A can deploy or initiate deployment
of'one or more instances of C-VNFM 154 A on the cloud 280
and/or the branch 210. C-VNFM 154A can also request
additional resources (physical and/or virtual) for its load.
For example, C-VNFM 154A can request additional com-
pute, memory, storage, and/or other resources, to meet its
load demands and requirements.

[0113] FIG. 5B illustrates a flowchart of an example
method 520 for hybrid, elastic scaling in underload sce-
narios. In this example, the method 520 begins by monitor-

May 2, 2019

ing L-VNFM 154D to determine a load status of L-VNFM
154D, as previously explained in step 502 shown in FIG.
5A. At step 522, C-VNFM 154A determines if the L-VNFM
154D is underloaded. C-VNFM 154A can determine the
underloaded status for L-VNFM 154D based on a load
threshold as described in step 504. However, the load
threshold for determining the underloaded status is lower
than the load threshold for determining the overloaded
status. For example, the load threshold for the underloaded
status can be based on a minimum load for L-VNFM 154D,
a minimum relative load associated with one or more
VNFMs, a relative performance associated with one or more
VNFMs, a performance of the L-VNFM 154D relative to
performance requirements associated with L-VNFM 154D,
etc.

[0114] If C-VNFM 154A determines that L-VNFM 154D
is not underloaded, the method 520 proceeds to step 514,
which was previously described with reference to FIG. 5A.
If C-VNFM 154 A determines that L-VNFM 154D is under-
loaded, the method 520 proceeds to step 524.

[0115] At step 524, if C-VNFM 154A determines that
L-VNFM 154D is underloaded, C-VNFM 154A can scale in
L-VNFM 154D. For example, C-VNFM 154A can remove
instances of L-VNFM 154D, such as L-VNFM L; move
instances of L-VNFM 154D to the cloud 280; pause
instances of L-VNFM 154D; remove one or more compo-
nents of L-VNFM 154D (e.g., subservices, subcomponents,
resources, etc.); undeploy VNFMs associated with L-VNFM
154D; release resources used or associated with L-VNFM
154D and/or instances of L-VNFM 154D; migrate or deploy
one or more resources to the branch 210 for use by L-VNFM
154D, such as VM 292A; manage additional services, such
as VNFs; increasing the load of L-VNFM 154D; etc.
[0116] At step 514, C-VNFM 154A monitors itself as
previously described with reference to FIG. 5A. At step 526,
C-VNFM 154A determines if it is underloaded. C-VNFM
154 A can determine if it is underloaded based on a thresh-
old. The threshold can be based on the factors described at
step 516 in FIG. 5A, but will be lower than the threshold
used to determine an overload status. For example, the
threshold for determining an underloaded status can be a
minimum threshold, such as a minimum load, a minimum
relative load, a specific performance relative to a service
requirement, etc.

[0117] If C-VNFM 154A determines it is underloaded, at
step 528, C-VNFM 154 A can scale itself in. C-VNFM 154 A
can scale itself in by removing instances of itself, undeploy-
ing VNFMs associated with C-VNFM 154A, managing
additional services (e.g., VNFs), removing components
associated with C-VNFM 154A (e.g., subservices, etc.),
releasing resources used by C-VNFM 154A, increasing its
load, etc.

[0118] The VNFM life cycle management status and
operations can have an effect on a VNFM’s load and the load
of'the associated VNFs. Thus, when determining if a VNFM
is underloaded or overloaded and/or whether a scaling
operation is necessary in methods 500 and 520, C-VNFM
154 A can take into account the VNFM lifecycle manage-
ment status and operations taking place and/or scheduled to
take place. For example, C-VNFM 154A can take into
account the VNFM lifecycle management status and opera-
tions of L-VNFM 154D before deciding to scale in/out
L-VNFM 154D. To illustrate, C-VNFM 154 A may decide to
stop or pause scaling L.-VNFM 154D (or itself) in/out while

US 2019/0132211 Al

L-VNFM 154D (or itself) is performing a scaling operation
on an associated service (e.g., an associated VNF). Thus,
C-VNFM 154A can factor in any interdependencies between
a VNFM’s virtual resource (e.g., VNFM VM) and the
resources of its associated VNFs (e.g., VNF VMs).

[0119] Moreover, in addition to scaling in/out local
VNFMs on the branch 210 (e.g., L-VNFMs), C-VNFM
154A can also scale infout VNFs on the branch 210.
C-VNFM 154A can scale in/out VNFs on the branch 210
based on a load status (e.g., overloaded, underloaded) of the
VNFs on the branch 210 and/or the VNFMs on the branch
210. C-VNFM 154A can scale VNFs on the branch 210
directly and/or through one or more local VNFMs on the
branch 210, such as L-VNFM 154D. C-VNFM 154A can
thus remove some of the burden on the local VNFMs if they
become overloaded.

[0120] When scaling in/out VNFMs and/or VNFs on the
branch 210, C-VNFM 154 A can perform such scaling opera-
tions (e.g., orchestration, instantiation, deployment, moni-
toring, etc.) through one or more local VNFMs, such as
L-VNFM 154D. However, C-VNFM 154A can also perform
such scaling operations directly and/or without (or with
limited) coordination with the one or more local VNFMs.
For example, C-VNFM 154A can directly monitor services
on the branch 210 (e.g., VNFs, VNFMs, etc.) and/or com-
municate with the NFV components in the NFV platform on
the branch 210 to perform such scaling operations.

[0121] FIG. 6 illustrates an example method 600 for
hybrid, elastic scaling. The steps outlined herein are
examples and can be implemented in any combination
thereof, including combinations that exclude, add, or modify
certain steps.

[0122] At step 602, the method 600 can involve deploying
a cloud virtual network function manager (e.g., C-VNFM
154A) and one or more cloud virtual network functions (e.g.,
VNFs 122A-B). For example, NFV platform 100 on the
cloud 280 can deploy C-VNFM 154A and VNF 122A-B on
the cloud 280. NFV platform 100 on the cloud 280 can also
deploy additional cloud VNFMs and/or services, such as
C-VNFM 154B-C. In some cases, the method 600 can also
involve deploying local VNFMs and/or local VNFs, such as
L-VNFMs 154D-F and/or VNFs 122C-D.

[0123] At step 604, the method 600 can involve monitor-
ing one or more local VNFMs (e.g., L-VNFM 154D) on a
local network (e.g., branch 210), cloud VNFMs (e.g.,
C-VNFM 154A), and/or cloud VNFs (e.g., VNFs 122A-B).
For example, C-VNFM 154A can monitor any of L-VNFM
154D-F, VNFs 122A-B, and/or itself. In some cases, the
method 600 can also involve monitoring VNFs on the local
network (e.g., the branch 210). For example, C-VNFM
154A and/or L-VNFM 154D can monitor VNFs 122C-D.
The monitoring can be based on load and/or status metrics
collected for the monitored items.

[0124] Based on the monitoring, at step 606, the method
600 can involve determining a first status of the local
VNFM(s) (e.g., L-VNFM 154D) and a second status of the
cloud VNFM(s) (e.g., C-VNFM 154A) and/or the one or
more cloud VNFs (e.g., VNFs 122A-B). The method 600
can also involve determining a respective status of the local
network, such as the branch 210, and/or VNF's on the local
network, such as VNFs 122C-D on the branch 210. The
status can be a load status, such as an underload status or an
overload status as previously explained in methods 500 and
520. The status can also be determined based on a threshold,

May 2, 2019

such as an overload threshold and an underload threshold as
previously explained in methods 500 and 520.

[0125] Based on the first status and the second status, at
step 608, the method 600 can involve scaling one or more of
the local VNFMs (e.g., L-VNFM 154D), the cloud VNFMs
(e.g., C-VNFM 154A), and/or the one or more cloud VNFs
(e.g., VNFs 122A-B). The method 600 can also involve
scaling the local network (e.g., the branch 210) and/or local
VNFs (e.g., VNFs 122C-D on the branch 210) based on the
respective load status of the local network and local VNFs.
For example, C-VNFM 154A can scale itself, L-VNFM
154D-F, VNFs 122A-D, and/or the branch 210 based on a
respective status of each.

[0126] The scaling can be triggered by a respective thresh-
old status. Thus, the method 600 can trigger the scaling
when a status is satisfies the threshold status. For example,
C-VNFM 154A can trigger a scaling in operation for
L-VNFM 154D when a respective status (e.g., load status)
of L-VNFM 154D meets a threshold underload status, or a
scaling out operation for L-VNFM 154D when the respec-
tive status of L-VNFM 154D meets a threshold overload
status.

[0127] In some cases, the scaling can also be based on a
respective VNFM lifecycle management status. For
example, C-VNFM 154A can determine a VNFM lifecycle
management status of L-VNFM 154D before scaling
L-VNFM 154D. C-VNFM 154A can then scale L-VNFM
154D based on the load status and VNFM lifecycle man-
agement status of L-VNFM 154D. To illustrate, if L-VNFM
154D is performing a lifecycle management operation (e.g.,
scaling an associated VNF), C-VNFM 154A can pause or
stop the scaling of L-VNFM 154D, or recalculate the load
status of L-VNFM 154D based on the load associated with
the lifecycle management operation.

[0128] For example, C-VNFM 154A may determine that
the load status of L-VNFM 154D does not satisfy an
underloaded threshold. However, if L-VNFM 154D is per-
forming a lifecycle management operation when C-VNFM
154 A calculated the load status of L-VNFM 154D, the load
status calculated may only reflect a temporary state of
L-VNFM 154D. Accordingly, C-VNFM 154A may calculate
a load associated with the lifecycle management operation
and subtract that load from the load status of L-VNFM
154D. The recalculated load status may then be lower than
previously calculated. In some cases, C-VNFM 154 A may
determine that the recalculated load status satisfies an under-
loaded load status/threshold and thereafter scale in L-VNFM
154D. Similarly, after determining that a load status of
L-VNFM 154D satisfies an overloaded status/threshold,
C-VNFM 154A may determine that the load status was
calculated during a lifecycle management operation, and
thereafter recalculate the load status to remove the load
associated with the lifecycle management operation and
determine that the overloaded status/threshold has not been
satisfied by the recalculated load status.

[0129] In some cases, the method 600 may only perform
scaling operations when a service to be scaled is not per-
forming a lifecycle management operation. In other cases,
the method 600 can perform the scaling operations event if
the service is performing a lifecycle management operation
and the load status used to trigger the scaling reflects a load
associated with such lifecycle management operation. The
method 600 can also determine whether a service is sched-
uled to perform a lifecycle management operation and/or has

US 2019/0132211 Al

recently performed a lifecycle management operation and
take that into account when deciding whether to scale a
service or resource. For example, the method 600 may scale
out a VNFM in anticipation of a lifecycle management
operation, or pause scaling in anticipation of the lifecycle
management operation. The method 600 may also wait a
period of time after a lifecycle management operation before
scaling, calculating a load status, recalculating a load status,
etc.

[0130] The scaling operation can include scaling in/out a
service and/or resource. For example, a scaling out operation
can involve adding one or more service instances and/or
resources for a service, and a scaling in operation can
involve removing one or more service instances and/or
resources for the service.

[0131] In some cases, a VNFM can be deployed or can
include a cluster of VNFMs. For example, a plurality of
VNFMs can together make up a single VNFM, such as
C-VNFM 154A or L-VNFM 154D. Moreover, each VNFM
can include a cluster of VNFM components (e.g., VMs,
compute resources, services, etc.). In some cases, a VNFM
can include a cluster of VNFMs, and each VNFM can
include a cluster of VNFM components. In this example, the
method 600 can perform scaling of the VNFM as a whole or
scale one or more specific VNFMs in the cluster of VNFMs
and/or one or more specific VNFM components in one or
more specific clusters of VNFM components.

[0132] For example, L-VNFM 154D can include a cluster
of L-VNFMs, and each L-VNFM can include a cluster of
VNFM components. In this example, C-VNFM 154A can
monitor each L-VNFM in the cluster of L-VNFMs associ-
ated with L-VNFM 154D and/or each VNFM component in
one or more [.-VNFMs in the cluster of L-VNFMs associ-
ated with L-VNFM 154D. C-VNFM 154 A can determine a
respective status of each L-VNFM and/or L-VNFM com-
ponent monitored and, based on the respective status of
each, scale one or more L-VNFMs and/or L-VNFM com-
ponents.

[0133] In some cases, the method 600 can also involve
maintaining a ratio of active/inactive VNFMs and/or VNFs.
For example, the method 600 can involve deploying an N:M
ratio of active/inactive VNFM instances to increase redun-
dancy, availability, stability, recovery, etc. If a VNFM
instance fails, the method 600 can have a number of avail-
able inactive VNFM instances it can use to replace the failed
VNFM instance, and seamlessly replace the failed VNFM
instance with an inactive VNFM instance. The method 600
can also quickly scale out the VNFM instance when neces-
sary using the inactive VNFM instances.

[0134] To illustrate, the method 600 can involve config-
uring an active/inactive ratio (e.g., N:M) of VNFM instances
for C-VNFM 154A and/or L-VNFM 154D. The inactive
VNFM instances can be deployed on the cloud 280 and/or
the branch 210, and can be configured for standby. The
method 600 can then involve monitoring the VNFM
instances, and determining a current active/inactive ratio of
the VNFM instances to determine whether the current
active/inactive ratio has gone below or above the configured
active/inactive ratio (e.g., as a result of VNFM instances
being deployed, removed, etc.). If the method 600 identifies
a difference between the active/inactive ratio of VNFM
instances configured and the current active/inactive ratio of
VNFM instances, the method 600 can adjust the current

May 2, 2019

number of active and/or inactive VNFM instances to reach
the configured active/inactive ratio and maintain the active/
inactive ratio as configured.

[0135] The disclosure now turns to FIGS. 7 and 8, which
illustrate example computing and network devices, such as
switches, routers, load balancers, servers, client computers,
and so forth.

[0136] FIG. 7 illustrates an example architecture for a
computing system 700. Computing system 700 can include
central processing unit (CPU) 710 and system connection
705 (e.g., BUS) that may couple various system components
including system memory 715, memory (ROM) 720, and
random access memory (RAM) 725, to CPU 710. Comput-
ing system 700 can include cache 712 of high-speed
memory connected directly with, in close proximity to, or
integrated as part of CPU 710. Computing system 700 can
copy data from memory 715 and/or storage device 730 to
cache 712 for quick access by CPU 710. In this way, cache
712 can provide a performance boost that avoids processor
delays while waiting for data. These and other modules can
control CPU 710 to perform various actions. Other system
memory may be available for use as well. Memory 715 can
include multiple different types of memory with different
performance characteristics. CPU 710 can include any gen-
eral purpose processor and a hardware module or software
module configured to control CPU 710 as well as a special-
purpose processor where software instructions are incorpo-
rated into the actual processor design. CPU 710 may essen-
tially be a completely self-contained computing system,
containing multiple cores or processors, a bus, memory
controller, cache, etc. A multi-core processor may be sym-
metric or asymmetric.

[0137] To enable user interaction with computing system
700, input device 745 can represent any number of input
mechanisms, such as a microphone for speech, a touch-
protected screen for gesture or graphical input, keyboard,
mouse, motion input, speech and so forth. Output device 735
can also be one or more of a number of output mechanisms
known to those of skill in the art. In some instances,
multimodal systems can enable a user to provide multiple
types of input to communicate with computing system 700.
Communications interface 740 can govern and manage the
user input and system output. There may be no restriction on
operating on any particular hardware arrangement and there-
fore the basic features here may easily be substituted for
improved hardware or firmware arrangements as they are
developed.

[0138] Storage device 730 can be a non-volatile memory
and can be a hard disk or other types of computer readable
media which can store data that are accessible by a com-
puter, such as magnetic cassettes, flash memory cards, solid
state memory devices, digital versatile disks, cartridges,
random access memories (RAMs), read only memory
(ROM), and hybrids thereof. Storage device 730 can include
software modules 732, 734, 736 for controlling CPU 710.

[0139] In some embodiments, a computing system that
performs a particular function can include the software
component stored in a computer-readable medium in con-
nection with the necessary hardware components, such as
CPU 710, connection 705, output device 735, and so forth,
to carry out the function.

[0140] One of ordinary skill in the art will appreciate that
computing system 700 can have more than one processor

US 2019/0132211 Al

710 or can be part of a group or cluster of computing devices
networked together to provide greater processing capability.
[0141] FIG. 8 illustrates an example network device 800
suitable for performing switching, routing, assurance, and
other networking operations. Network device 800 includes a
central processing unit (CPU) 804, interfaces 802, and a
connection 810 (e.g., a PCI bus). When acting under the
control of appropriate software or firmware, the CPU 804 is
responsible for executing packet management, error detec-
tion, and/or routing functions. The CPU 804 preferably
accomplishes all these functions under the control of soft-
ware including an operating system and any appropriate
applications software. CPU 804 may include one or more
processors 808, such as a processor from the INTEL X86
family of microprocessors. In some cases, processor 808 can
be specially designed hardware for controlling the opera-
tions of network device 800. In some cases, a memory 806
(e.g., non-volatile RAM, ROM, TCAM, etc.) also forms part
of CPU 804. However, there are many different ways in
which memory could be coupled to the system. In some
cases, the network device 800 can include a memory and/or
storage hardware, such as TCAM, separate from CPU 804.
Such memory and/or storage hardware can be coupled with
the network device 800 and its components via, for example,
connection 810.

[0142] The interfaces 802 are typically provided as modu-
lar interface cards (sometimes referred to as “line cards™).
Generally, they control the sending and receiving of data
packets over the network and sometimes support other
peripherals used with the network device 800. Among the
interfaces that may be provided are Ethernet interfaces,
frame relay interfaces, cable interfaces, DSL interfaces,
token ring interfaces, and the like. In addition, various very
high-speed interfaces may be provided such as fast token
ring interfaces, wireless interfaces, Ethernet interfaces,
Gigabit Ethernet interfaces, ATM interfaces, HSSI inter-
faces, POS interfaces, FDDI interfaces, WIFI interfaces,
3G/4G/5G cellular interfaces, CAN BUS, LoRA, and the
like. Generally, these interfaces may include ports appropri-
ate for communication with the appropriate media. In some
cases, they may also include an independent processor and,
in some instances, volatile RAM. The independent proces-
sors may control such communications intensive tasks as
packet switching, media control, signal processing, crypto
processing, and management. By providing separate proces-
sors for the communications intensive tasks, these interfaces
allow the master microprocessor 804 to efficiently perform
routing computations, network diagnostics, security func-
tions, etc.

[0143] Although the system shown in FIG. 8 is one
specific network device of the present disclosure, it is by no
means the only network device architecture on which the
concepts herein can be implemented. For example, an archi-
tecture having a single processor that handles communica-
tions as well as routing computations, etc., can be used.
Further, other types of interfaces and media could also be
used with the network device 800.

[0144] Regardless of the network device’s configuration,
it may employ one or more memories or memory modules
(including memory 806) configured to store program
instructions for the general-purpose network operations and
mechanisms for roaming, route optimization and routing
functions described herein. The program instructions may
control the operation of an operating system and/or one or

May 2, 2019

more applications, for example. The memory or memories
may also be configured to store tables such as mobility
binding, registration, and association tables, etc. Memory
806 could also hold various software containers and virtu-
alized execution environments and data.

[0145] The network device 800 can also include an appli-
cation-specific integrated circuit (ASIC), which can be con-
figured to perform routing, switching, and/or other opera-
tions. The ASIC can communicate with other components in
the network device 800 via the connection 810, to exchange
data and signals and coordinate various types of operations
by the network device 800, such as routing, switching,
and/or data storage operations, for example.

[0146] For clarity of explanation, in some instances the
various embodiments may be presented as including indi-
vidual functional blocks including functional blocks com-
prising devices, device components, steps or routines in a
method embodied in software, or combinations of hardware
and software.

[0147] In some embodiments the computer-readable stor-
age devices, mediums, and memories can include a cable or
wireless signal containing a bit stream and the like. How-
ever, when mentioned, non-transitory computer-readable
storage media expressly exclude media such as energy,
carrier signals, electromagnetic waves, and signals per se.
[0148] Methods according to the above-described embodi-
ment can reside within computer-executable instructions
stored or otherwise available from computer readable media.
Such instructions can comprise, for example, instructions
and data which cause or otherwise configure a general
purpose computer, special purpose computer, or special
purpose processing device to perform a certain function or
group of functions. Portions of computer resources used can
be accessible over a network. The computer executable
instructions may be, for example, binaries, intermediate
format instructions such as assembly language, firmware, or
source code. Examples of computer-readable media used to
store instructions, information used, and/or information cre-
ated during methods according to described examples can
include magnetic or optical disks, flash memory, USB
devices provided with non-volatile memory, networked stor-
age devices, and so on.

[0149] Devices implementing methods according to the
present disclosure can comprise hardware, firmware, and/or
software, and can take any of a variety of form factors.
Typical examples of such form factors include laptops, smart
phones, small form factor personal computers, personal
digital assistants, rack-mount devices, standalone devices,
and so on. Functionality described in the present disclosure
can also reside in peripherals or add-in cards. Such func-
tionality can also reside on a circuit board among different
chips or different processes executing in a single device, by
way of further example. The instructions, media for con-
veying such instructions, computing resources for executing
them, and other structures for supporting such computing
resources are means for providing the functions described in
these disclosures.

[0150] Although a variety of examples and other informa-
tion explain aspects within the scope of the appended claims,
one of ordinary skill will understand not to imply any
limitation based on particular features or arrangements in
such examples, as one of ordinary skill would be able to use
these examples to derive a wide variety of implementations.
Further and although the present disclosure may describe

US 2019/0132211 Al

some subject matter in language specific to examples of
structural features and/or method steps, one of ordinary skill
will understand that the subject matter defined in the
appended claims is not necessarily limited to these described
features or acts. For example, such functionality can be
distributed differently or performed in components other
than those identified herein. Rather, the described features
and steps are disclosed as examples of components of
systems and methods within the scope of the appended
claims.

[0151] Claim language reciting “at least one of™ refers to
at least one of a set and indicates that one member of the set
or multiple members of the set satisfy the claim. For
example, claim language reciting “at least one of A and B”
means A, B, or A and B (i.e., one or more of A, one or more
of' B, or one or more of A and B). Moreover, claim language
reciting “one or more of A and B” means A, B, or A and B
(i.e., one or more of A, one or more of B, or one or more of
A and B).

What is claimed is:

1. A method comprising:

deploying a cloud virtual network function manager

(VNFM) and one or more cloud virtual network func-
tions (VNFs);

monitoring, by the cloud VNFM, at least one local VNFM

on a local network and at least one of the cloud VNFM
and the one or more cloud VNFs;

based on the monitoring, determining, by the cloud

VNEFM, a first status of the at least one local VNFM and
a second status of the at least one of the cloud VNFM
and the one or more cloud VNFs; and

based on the first status and the second status, scaling, by

the cloud VNFM, one or more of the at least one local
VNFM and the at least one of the cloud VNFM and the
one or more cloud VNFs.
2. The method of claim 1, wherein the at least one local
VNFM comprises a cluster of local VNFMs, wherein each
local VNFM in the cluster of local VNFMs comprises a
respective cluster of local VNFM components, the method
further comprising:
monitoring each local VNFM in the cluster of local
VNFMs;

determining a respective status of each local VNFM
component in the respective cluster of local VNFM
components; and

based on the respective status of each local VNFM

component, scaling one or more local VNFM compo-
nents in the respective cluster of local VNFM compo-
nents associated with a respective local VNFM from
the cluster of local VNFMs.

3. The method of claim 1, wherein the scaling comprises:

monitoring, by the cloud VNFM, a plurality of local

VNFs associated with the at least one local VNFM;
determining, by the cloud VNFM, a respective status of at
least one of the plurality of local VNFs; and

scaling, by the cloud VNFM, the at least one of the

plurality of local VNFs based on the respective status.

4. The method of claim 3, wherein the respective status
comprises a respective load of the at least one of the plurality
of local VNFs, wherein scaling the at least one of the
plurality of local VNFs comprises:

when the respective load is below a threshold, sending, by

the cloud VNFM to the at least one local VNFM, a first
instruction to at least one of:

May 2, 2019

disable at least one local VNF of the at least one of the
plurality of local VNFs; and

migrate the at least one local VNF of the at least one of
the plurality of local VNFs from the local network to
a cloud network associated with the cloud VNFM;
and

when the respective load is above a threshold, sending, by

the cloud VNFM to the at least one local VNFM, a
second instruction to deploy one or more additional
local VNFs on the local network.

5. The method of claim 1, wherein scaling the one or more
of the at least one local VNFM and the at least one of the
cloud VNFM and the one or more cloud VNFs comprises
scaling the at least one local VNFM, the method further
comprising:

determining at least one of a respective load and a

respective VNFM lifecycle management status associ-
ated with the at least one local VNFM; and

scaling the at least one local VNFM based on the at least

one of the respective load and the respective VNFM
lifecycle management status.

6. The method of claim 5, wherein the respective VNFM
lifecycle management status is determined based on one or
more lifecycle management operations at the at least one
local VNFM, the one or more lifecycle management opera-
tions being associated with one or more local VNFs on the
local network, wherein scaling the at least one local VNFM
is based on the respective VNFM lifecycle management
status.

7. The method of claim 6, wherein scaling the at least one
local VNFM is based on the respective VNFM lifecycle
management status comprises scaling the at least one local
VNFM only when the respective VNFM lifecycle manage-
ment status indicates at least one of:

the at least one local VNFM is not currently performing

a lifecycle management operation associated with at
least one of the one or more local VNFs and the at least
one local VNFM;
the at least one local VNFM is not scheduled to perform,
at least within a first period of time, the lifecycle
management operation associated with at least one of
the one or more local VNFs and the at least one local
VNFM; and

the at least one local VNFM has not performed, at least
within a second period of time, the lifecycle manage-
ment operation associated with at least one of the one
or more local VNFs and the at least one local VNFM.

8. The method of claim 1, further comprising:

determining, by the cloud VNFM, an updated status of the

cloud VNFM, the updated status indicating a load
associated with the cloud VNFM; and

scaling the cloud VNFM based on the updated status,

wherein scaling the cloud VNFM comprises scaling out
the cloud VNFM when the load is above a threshold
and scaling in the cloud VNFM when the load is below
the threshold.

9. The method of claim 1, wherein the cloud VNFM is
associated with a cloud, the method further comprising:

configuring an active/inactive ratio of VNFM elements

associated with at least one of the local network and the
cloud, the VNFM elements comprising at least one of
VNFMs, VNFM components, and VNFs, the active/
inactive ratio of VNFM elements comprising a first
number of active VNFM elements deployed in at least

US 2019/0132211 Al

one of the local network and the cloud and a second
number of standby VNFM elements deployed in at
least one of the local network and the cloud;

monitoring the VNFM elements associated with the at
least one of the local network and the cloud;

determining a current active/inactive ratio of the VNFM
elements based on a first current number of active
VNFM eclements deployed in the at least one of the
local network and the cloud and a second current
number of standby VNFM elements deployed in the at
least one of the local network and the cloud;

determining a difference between the active/inactive ratio
of VNFM elements and the current active/inactive ratio
of VNFM elements; and

in response to determining the difference, adjusting at

least one of the first current number of active VNFM
elements deployed in the at least one of the local
network and the cloud or the second current number of
standby VNFM elements deployed in the at least one of
the local network and the cloud to yield an updated
active/inactive ratio of VNFM elements, the updated
active/inactive ratio of VNFM elements being based on
the active/inactive ratio of VNFM elements.

10. A system comprising:

one or more processors; and

at least one computer-readable storage medium including

instructions that, when executed by the one or more

processors, cause the system to:

deploy a cloud virtual network function manager
(VNFM) and one or more cloud virtual network
functions (VNFs);

monitor, via the cloud VNFM, at least one local VNFM
on a local network and at least one of the cloud
VNFM and the one or more cloud VNFs;

based on the monitoring, determine, via the cloud
VNFM, a first status of the at least one local VNFM
and a second status of the at least one of the cloud
VNFM and the one or more cloud VNFs; and

based on the first status and the second status, scale, via
the cloud VNFM, one or more of the at least one
local VNFM and the at least one of the cloud VNFM
and the one or more cloud VNFs.

11. The system of claim 10, wherein the at least one local
VNFM comprises a cluster of local VNFMs, wherein each
local VNFM in the cluster of local VNFMs comprises a
respective cluster of local VNFM components, the at least
one computer-readable storage medium including instruc-
tions that, when executed by the one or more processors,
cause the VNFM to:

monitor each local VNFM in the cluster of local VNFMs;

determine a respective status of each local VNFM com-

ponent in the respective cluster of local VNFM com-
ponents; and

based on the respective status of each local VNFM

component, scale one or more local VNFM compo-
nents in the respective cluster of local VNFM compo-
nents associated with a respective local VNFM from
the cluster of local VNFMs.

12. The system of claim 10, wherein the scaling com-
prises:

monitoring a plurality of local VNFs associated with the

local network;

determining a respective status of at least one of the

plurality of local VNFs; and

May 2, 2019

based on the respective status, scaling the at least one of

the plurality of local VNFs.

13. The system of claim 12, wherein the respective status
comprises a respective load of the at least one of the plurality
of local VNFs, wherein scaling the at least one of the
plurality of local VNFs comprises:

when the respective load is below a threshold, sending, by

the cloud VNFM to the at least one local VNFM, a first

instruction to at least one of:

disable at least one local VNF of the at least one of the
plurality of local VNFs; and

migrate the at least one local VNF of the at least one of
the plurality of local VNFs from the local network to
a cloud network associated with the cloud VNFM;
and

when the respective load is above a threshold, sending, by

the cloud VNFM to the at least one local VNFM, a
second instruction to deploy one or more additional
local VNFs on the local network.

14. The system of claim 10, the at least one computer-
readable storage medium including instructions that, when
executed by the one or more processors, cause the VNFM to:

determine at least one of a respective load and a respective

VNFM lifecycle management status associated with
the at least one local VNFM; and

scale the at least one local VNFM based on the at least one

of the respective load and the respective VNFM life-
cycle management status.

15. The system of claim 14, wherein the respective
VNFM lifecycle management status is determined based on
one or more lifecycle management operations at the at least
one local VNFM, the one or more lifecycle management
operations being associated with one or more local VNFs on
the local network, wherein scaling the at least one local
VNFM is based on the respective VNFM lifecycle manage-
ment status.

16. The system of claim 15, wherein scaling the at least
one local VNFM based on the respective VNFM lifecycle
management status comprises scaling the at least one local
VNFM only when the respective VNFM lifecycle manage-
ment status indicates at least one of:

the at least one local VNFM is not currently performing

a lifecycle management operation associated with at
least one of the one or more local VNFs and the at least
one local VNFM;
the at least one local VNFM is not scheduled to perform,
at least within a first period of time, the lifecycle
management operation associated with at least one of
the one or more local VNFs and the at least one local
VNFM; and

the at least one local VNFM has not performed, at least
within a second period of time, the lifecycle manage-
ment operation associated with at least one of the one
or more local VNFs and the at least one local VNFM.

17. A non-transitory computer-readable medium compris-
ing:

one or more processors; and

instructions stored thereon which, when executed by the

one or more processors, cause the one or more proces-

sors to:

deploy a cloud virtual network function manager
(VNFM) and one or more cloud virtual network
functions (VNFs);

US 2019/0132211 Al

monitor, via the cloud VNFM, at least one local VNFM
on a local network and at least one of the cloud
VNFM and the one or more cloud VNFs;

based on the monitoring, determine, via the cloud
VNFM, a first status of the at least one local VNFM
and a second status of the at least one of the cloud
VNFM and the one or more cloud VNFs; and

based on the first status and the second status, scale, via
the cloud VNFM, one or more of the at least one
local VNFM and the at least one of the cloud VNFM
and the one or more cloud VNFs.

18. The non-transitory computer-readable medium of
claim 17, wherein the at least one local VNFM comprises a
cluster of local VNFMs, wherein each local VNFM in the
cluster of local VNFMs comprises a respective cluster of
local VNFM components, the non-transitory computer-read-
able storage medium storing instructions that, when
executed by the one or more processors, cause the one or
more processors to:

monitor each local VNFM in the cluster of local VNFMs;

determine a respective status of each local VNFM com-

ponent in the respective cluster of local VNFM com-
ponents; and

based on the respective status of each local VNFM

component, scale one or more local VNFM compo-
nents in the respective cluster of local VNFM compo-
nents associated with a respective local VNFM from
the cluster of local VNFMs.

19. The non-transitory computer-readable medium of
claim 17, wherein the scaling comprises:

monitoring a plurality of local VNFs associated with the

local network, wherein the respective status comprises
a respective load of the at least one of the plurality of
local VNFs;

determining a respective status of at least one of the

plurality of local VNFs; and

based on the respective status, scaling the at least one of

the plurality of local VNF's, wherein scaling the at least
one of the plurality of local VNFs comprises:

when the respective load is below a threshold, sending,

via the cloud VNFM, to the at least one local VNFM,

May 2, 2019

a first instruction to disable a local VNF of the at least
one of the plurality of local VNFs or migrate the local
VNF from the local network to a cloud network asso-
ciated with the cloud VNFM; and

when the respective load is above a threshold, sending,

via the cloud VNFM, to the at least one local VNFM,
a second instruction to deploy one or more local VNFs
on the local network.
20. The non-transitory computer-readable medium of
claim 17, storing instructions that, when executed by the one
or more processors, cause the one or more processors to:
configuring an active/inactive ratio of VNFM elements
associated with at least one of the local network and a
cloud, the VNFM elements comprising at least one of
VNFMs, VNFM components, and VNFs, the active/
inactive ratio of VNFM elements comprising a first
number of active VNFM elements deployed in at least
one of the local network and the cloud and a second
number of standby VNFM elements deployed in at
least one of the local network and the cloud;

monitoring the VNFM elements associated with the at
least one of the local network and the cloud;

determining a current active/inactive ratio of the VNFM
elements based on a third number of active VNFM
elements deployed in the at least one of the local
network and the cloud and a fourth number of standby
VNFM eclements deployed in the at least one of the
local network and the cloud;

determining a difference between the active/inactive ratio

of VNFM elements and the current active/inactive ratio
of VNFM elements; and

in response to determining the difference, adjusting at

least one of the third number of active VNFM elements
deployed in the at least one of the local network and the
cloud or the fourth number of standby VNFM elements
deployed in the at least one of the local network and the
cloud, to yield an updated active/inactive ratio of
VNFM elements, the updated active/inactive ratio of
VNFM elements being based on the active/inactive
ratio of VNFM elements.

#* #* #* #* #*

