
(19) United States
US 20110252145A1

(12) Patent Application Publication (10) Pub. No.: US 2011/0252145 A1
Lampell et al. (43) Pub. Date: Oct. 13, 2011

(54) APPLICATION PROGRAMMING
INTERFACE, SYSTEM, AND METHOD FOR
COLLABORATIVE ONLINEAPPLICATIONS

(76) Inventors: Mike Lampell, Woodside, CA
(US); Nathan Taylor, Scott Valley,
CA (US); Christina Elizabeth
Warren, San Jose, CA (US);
Francois-Yves Bertrand,
Sunnyvale, CA (US); Gabriel
Belinsky, Cupertino, CA (US);
Alan Dale Berfield, Cupertino, CA
(US)

(21) Appl. No.: 12/832,025

(22) Filed: Jul. 7, 2010

Related U.S. Application Data

(60) Provisional application No. 61/321,854, filed on Apr.

Publication Classification

(51) Int. Cl.
G06F 5/16 (2006.01)
G06F 9/46 (2006.01)

(52) U.S. Cl. ... 709/227; 719/328
(57) ABSTRACT

An application framework including different application
programming interfaces (APIs) is described which performs
a variety of mobile device functions in response to API calls
from applications. For example, in response to relatively
simple API calls made by applications the application frame
work manages the complex tasks associated with invitations
and matchmaking. By way of example, the details of complex
transactions such as establishing peer-to-peer connections
between mobile devices may be transparent to the application
developer, thereby simplifying the application design pro
cess. The application framework may include an application
daemon for communicating with a first set of services and an
applications services module for communicating with a sepa
rate set of services. The application framework may also
include a cache for caching data for each of the services based
on different cache management policies driven by each of the
services. The cache may be updated by push notification

7, 2010. cache updates sent from each of the services.

-
Data Service 100

Connection Matchmaker invitation
Data Exchange 111 12

10.

Network
20

Link irk
25 28

Link Link
26 27

Mobile v

Device A
eWC

120 Mobile Mobile 23
Device B Device C

2 22

US 2011/02521.45 A1 Oct. 13, 2011 Sheet 1 of 28 Patent Application Publication

? '61-I

§ 21

US 2011/02521.45 A1 Oct. 13, 2011 Sheet 2 of 28

? ? ?

Patent Application Publication

|--------------

N7

US 2011/02521.45 A1 Oct. 13, 2011 Sheet 3 of 28

ZZZ

Patent Application Publication

US 2011/02521.45 A1 Oct. 13, 2011 Sheet 4 of 28

99, D 3 SuodS38 3??Au|

Patent Application Publication

US 2011/02521.45 A1 Oct. 13, 2011 Sheet 5 of 28 Patent Application Publication

90€ £ L?oung ?ÍCH XCIO G0€ \j ??Cunº º?OH XOIO

US 2011/02521.45 A1 Oct. 13, 2011 Sheet 6 of 28 Patent Application Publication

O
N
B

| HVIS

US 2011/02521.45 A1 Oct. 13, 2011 Sheet 7 of 28 Patent Application Publication

G -61-I

N

| HVIS

9 ‘61-I

US 2011/02521.45 A1 Oct. 13, 2011 Sheet 8 of 28

609

Patent Application Publication

US 2011/02521.45 A1 Oct. 13, 2011 Sheet 9 of 28 Patent Application Publication

Z '61-I

eg '61-I

US 2011/02521.45 A1 Oct. 13, 2011 Sheet 10 of 28 Patent Application Publication

US 2011/02521.45 A1 Oct. 13, 2011 Sheet 11 of 28 Patent Application Publication

q8 '61)

£09 2) 334A3C]

US 2011/02521.45 A1 Oct. 13, 2011 Sheet 12 of 28 Patent Application Publication

6 (61-)

US 2011/02521.45 A1 Oct. 13, 2011 Sheet 13 of 28 Patent Application Publication

290 ? 30 AJ9S

01 '61-I

? ? 1. 30?Au2S

US 2011/02521.45 A1 Oct. 13, 2011 Sheet 15 of 28 Patent Application Publication

soit ideoov |

? |

US 2011/02521.45 A1 Oct. 13, 2011 Sheet 16 of 28 Patent Application Publication

£1 '51-)

ZOZT/LOZI asuodsax}/\sanbeg

US 2011/02521.45 A1 2011 Sheet 17 Of 28 9 Oct. 13 Patent Application Publication

Oot, I que?O Á????q?eduuoO IVN

US 2011/02521.45 A1 Oct. 13, 2011 Sheet 18 of 28 Patent Application Publication

91 "61-I

US 2011/02521.45 A1

GNB

Oct. 13, 2011 Sheet 19 of 28

8094 & ISW auues do? sisenbe!!!

Patent Application Publication

US 2011/02521.45 A1 Oct. 13, 2011 Sheet 20 of 28 Patent Application Publication

qZI ‘61-I eZ L '61-I

US 2011/02521.45 A1 Oct. 13, 2011 Sheet 21 of 28 Patent Application Publication

oZL '61)

US 2011/02521.45 A1 Oct. 13, 2011 Sheet 22 of 28 Patent Application Publication

91 "fil

| HVIS

US 2011/02521.45 A1 Oct. 13, 2011 Sheet 23 of 28 Patent Application Publication

61 "61-I

US 2011/02521.45 A1 Oct. 13, 2011 Sheet 24 of 28 Patent Application Publication

Oz '61-I 900Z SO

0,20€ uoueeG ?uue9

US 2011/02521.45 A1 Oct. 13, 2011 Sheet 25 of 28 Patent Application Publication

?z '61) 0£. Lº? queuoduoo aleMajos fiulileo ?dwff

US 2011/02521.45 A1 Oct. 13, 2011 Sheet 26 of 28 Patent Application Publication

za '61)

US 2011/02521.45 A1 Oct. 13, 2011 Sheet 27 of 28 Patent Application Publication

£Z 'OIA

US 2011/02521.45 A1 Oct. 13, 2011 Sheet 28 of 28 Patent Application Publication

US 2011/02521.45 A1

APPLICATION PROGRAMMING
INTERFACE, SYSTEM, AND METHOD FOR
COLLABORATIVE ONLINEAPPLICATIONS

CLAIM TO PRIORITY

0001. This application claims the benefit of U.S. Provi
sional Application Ser. No. 61/321,854, filed on Apr. 7, 2010,
entitled, "Application Programming Interface, System, And
Method For Collaborative Online Applications”.

BACKGROUND

0002 1. Field of the Invention
0003. This invention relates generally to the field of data.
More particularly, the invention relates to an improved appli
cation programming interface, system and method for col
laborative online applications such as multi-player games.
0004 2. Description of Related Art

A. Network Address Translation (“NAT)
0005 Large public networks, such as the Internet, fre
quently have connections to Smaller private networks, such as
those maintained by a corporation, Internet service provider,
or even individual households. By their very nature, public
networks must have a commonly agreed upon allocation of
network addresses, i.e., public addresses. For a variety of
reasons, maintainers of private networks often choose to use
private network addresses for the private networks that are not
part of the commonly agreed upon allocation. Thus, for net
work traffic from the private network to be able to traverse the
public network, some form of private/public network address
translation (“NAT”) is required.
0006. A device performing NAT operations alters the data
packets being sent out of the private network to comply with
the addressing scheme of the public network. Particularly, the
network address translator replaces the originating private
address and port number of a packet with its own public
address and an assigned port number. A network address
translator also alters the data packets being received for com
puters on the private network to replace the destination public
address and port number with the correct private address and
port number of the intended recipient. As used herein, the
term address should be construed to include both an address
and a port number if appropriate in the context, as would be
understood by one of ordinary skill in the art.
0007 NAT has become increasingly common in modern
network computing. One advantage of NAT is that it slows the
depletion of public network address space. For example,
TCP/IP addressing, which is used on the Internet, comprises
four strings of three digits each, thus providing a finite
address space. Additionally, certain portions of this address
space are reserved for particular uses or users, further deplet
ing the actual number of addresses available. However, if
NAT is used, a private network or subnet may use an arbitrary
number of addresses, and still present only a single, standard
ized public address to the outside world. This makes the
number of available addresses practically limitless, because
each private network could, theoretically, use exactly the
same private addresses.
0008. One advantage provided by NAT is increased secu

rity arising from the fact that those on the public network
cannot determine the actual (i.e., private) network address of
a computer on a private network. This is because only the
public address is provided on the public network by the net

Oct. 13, 2011

work address translator. Additionally, this public address may
correspond to any number of computers on the private net
work.
0009. Different NAT types employ different levels of
security. For example, with a “full cone NAT” once an inter
nal address (iAddriPort) is mapped to an external address
(eAddrePort), any external host can send packets to iAddr:
iPort by sending packets to eAddrePort. With a “restricted
cone NAT” an external host with an address hAddr can send
packets to iAddriPort by sending packets to eAddrePort
only ifiAddriPort had previously sent a packet to haddr. The
port of the external host is irrelevant. With a “Port Restricted
Cone NAT” an external host having an address/port haddr:
can send packets to iAddriPort by sending packets to eAddr:
ePort only ifiAddriPort previously sent a packet to haddr:
hPort. Finally, with a Symmetric NAT, each request from the
same iAddr:iPort to a specific destination IP address and port
is mapped to a unique eAddrePort. If the same internal host
sends a packet to a different destination, a different external
address and port mapping is used. Only an external host that
receives a packet from an internal host can send a packet back
to the internal host.

B. NAT Issues With Peer-to-Peer Networking
(0010 Peer-to-peer ("P2P") computing refers to a distrib
uted network architecture comprised of computing nodes
which make a portion of their resources directly available to
other network participants. Peers in a P2P network establish
direct communication channels with one another and act as
both clients and servers, in contrast to the traditional client
server model in which servers Supply resources and clients
COSU CSOUCS.

0011. The NAT operations described above pose numer
ous problems for P2P connections. For example, establishing
a direct connection between two peers becomes increasingly
difficult if one or both of the peers is located behind one or
more of the NAT types described above. This problem is
exacerbated by the fact that mobile devices such as the Apple
iPod Touch.R., Apple iPhone(R), Apple iPad(R) and various
other devices (e.g., RIM Blackberry(R) devices, Palm Pre(R)
devices, etc) are frequently moved between networks having
different NAT implementations. For example, the Apple
iPhoneTM is capable of communicating over Wi-Fi networks
(e.g., 802.11b, g, n networks); 3G networks (e.g., Universal
Mobile Telecommunications System (“UMTS) networks,
High-Speed Uplink Packet Access (“HSUPA') networks,
etc); and Bluetooth networks (known as personal area net
works (“PANs)). Future mobile devices will be capable of
communicating over additional communication channels
such as WiMAX, International Mobile Telecommunication
(“IMT) Advanced, and Long Term Evolution (“LTE)
Advanced, to name a few.

SUMMARY

0012. An application framework including different appli
cation programming interfaces (APIs) is described which
performs a variety of mobile device functions in response to
API calls from applications. For example, in response to
relatively simple API calls made by applications the applica
tion framework manages the complex tasks associated with
invitations and matchmaking. By way of example, the details
of complex transactions such as establishing peer-to-peer
connections between mobile devices may be transparent to

US 2011/02521.45 A1

the application developer, thereby simplifying the application
design process. The application framework may include an
application daemon for communicating with a first set of
services and an applications services module for communi
cating with a separate set of services. The application frame
work may also include a cache for caching data for each of the
services based on different cache management policies driven
by each of the services. The cache may be updated by push
notification cache updates sent from each of the services.

BRIEF DESCRIPTION OF THE DRAWINGS

0013. A better understanding of the present invention can
be obtained from the following detailed description in con
junction with the following drawings, in which:
0014 FIG. 1 illustrates a network architecture in which a
group of mobile devices and services communicate over a
network.

0.015 FIGS. 2a-c illustrate transactions between one
embodiment of a connection data exchange (CDX) service, a
matchmaker service and/or an invitation service.

0016 FIG. 3 illustrates a one embodiment of a ticket data
Structure.

0017 FIG. 4 illustrates one embodiment of a method
implemented by a CDX service.
0018 FIG. 5 illustrates one embodiment of a method
implemented by a mobile device.
0019 FIG. 6 illustrates a group of mobile devices con
nected through primary and secondary communication chan
nels.

0020 FIG. 7 illustrates one embodiment of a mobile
device for selecting among primary and secondary commu
nication channels

0021 FIGS. 8a-billustrate a group of mobile devices con
nected through primary and secondary communication chan
nels and the resulting network topologies.
0022 FIG. 9 illustrates one embodiment of a computer
implemented method for selecting between primary and sec
ondary communication channels.
0023 FIG.10 illustrates a network architecture in which a
group of mobile devices and services, including a directory
service and a push notification service communicate over a
network.

0024 FIG. 11 illustrates transactions between one
embodiment of an invitation service, a push notification ser
Vice and a connection data exchange (CDX) service.
0.025 FIG. 12 illustrates transactions between one
embodiment of an invitation service, a push notification ser
vice, and a relay service.
0026 FIG. 13 illustrates one embodiment of a relay ser
Vice for establishing a relay connection between two or more
mobile devices.
0027 FIG. 14 illustrates one embodiment of a NAT com
patibility chart for determining NAT compatibility.
0028 FIG. 15 illustrates one embodiment of a match
maker service for matching mobile devices for online appli
cations.

0029 FIG. 16 illustrates one embodiment of a method for
matching users/devices.
0030 FIGS. 17a-d illustrate an exemplary series of table
updates performed to match users/devices.
0031 FIG. 18 illustrates a method for matching users/
devices using different match fit variables.

Oct. 13, 2011

0032 FIG. 19 illustrates a framework exposing an appli
cation programming interface (API) for applications and a
service API for communicating with a set of services.
0033 FIG. 20 illustrates one embodiment of a game
framework with an API for applications, a game daemon and
a game services module for communicating with services.
0034 FIG.21 illustrates one embodiment of an API imple
menting software component and an API calling Software
component.
0035 FIG. 22 illustrates one embodiment in which API
calls are made between operating systems, services, and
applications.
0036 FIG. 23 illustrates one embodiment of an exemplary
computer system architecture.
0037 FIG. 24 illustrates another embodiment of an exem
plary computer system architecture.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

0038. Described below are embodiments of an apparatus,
method, and machine-readable medium for establishing,
maintaining and utilizing primary and/or backup peer-to-peer
("P2P") communication channels on a network. An invitation
service and a matchmaker service are also described for invit
ing users and matching users, respectively, for P2P sessions.
Additionally, a relay service is described to allow users to
establish relay connections under certain specified condi
tions. Finally, an application framework and associated appli
cation programming interface (API) are described to allow
application developers to design applications which take
advantage of various collaborative online features described
herein.
0039 Throughout the description, for the purposes of
explanation, numerous specific details are set forth in order to
provide a thorough understanding of the present invention. It
will be apparent, however, to one skilled in the art that the
present invention may be practiced without some of these
specific details. In other instances, well-known structures and
devices are not shown or are shown in a block diagram form
to avoid obscuring the underlying principles of the present
invention.

Apparatus and Method for Efficiently and Securely
Exchanging Connection Data

0040. As illustrated in FIG. 1, a general network topology
implemented in one embodiment of the invention can include
a group of “client’ or “peer mobile computing devices A-D.
120-123, respectively, communicating with one another and
with one or more services 110-112 over a network 120.
Although illustrated as a single network cloud in FIG. 1, the
“network” 120 can include a variety of different components
including public networks such as the Internet and private
networks such as local Wi-Fi networks (e.g., 802.11n home
wireless networks or wireless hotspots), local area Ethernet
networks, cellular data networks (e.g., 3G, Edge, etc), and
WiMAX networks, to name a few. For example, mobile
device A 120 may be connected to a home Wi-Fi network
represented by network link 125, mobile device B 121 may be
connected to a 3G network (e.g., Universal Mobile Telecom
munications System (“UMTS), High-Speed Uplink Packet
Access (“HSUPA'), etc) represented by network link 126,
mobile device C 122 may be connected to a WiMAX network
represented by network link 127, and mobile device 123 may

US 2011/02521.45 A1

be connected to a public Wi-Fi network represented by net
work link 128. Each of the local network links 125-128 over
which the mobile devices 120-123 are connected may be
coupled to a public network Such as the Internet through a
gateway and/or NAT device (not shown in FIG. 1), thereby
enabling communication between the various mobile devices
120-123 over the public network. However, if two mobile
devices are on the same local or private network (e.g., the
same Wi-Fi network), then the two devices may communicate
directly over that local/private network, bypassing the public
network. It should be noted, of course, that the underlying
principles of the invention are not limited to any particular set
of network types or network topologies.
0041. Each of the mobile devices 120-123 illustrated in
FIG. 1 can communicate with a connection data exchange
(CDX) service 110, a matchmaker service 111, and an invi
tation service 112. In one embodiment, the services 110-112
can be implemented as Software executed across one or more
physical computing devices such as servers. As shown in FIG.
1, in one embodiment, the services 110-112 may be imple
mented within the context of a larger data service 100 man
aged by the same entity (e.g., the same data service provider)
and accessible by each of the mobile devices 120-123 over the
network 120. The data service 100 can include a local area
network (e.g., an Ethernet-based LAN) connecting various
types of servers and databases. The data service 100 may also
include one or more storage area networks ("SANs) for
storing data. In one embodiment, the databases store and
manage data related to each of the mobile devices 120-123
and the users of those devices (e.g., user account data, device
account data, user application data, ... etc.).
0042. In one embodiment, matchmaker service 111 can
match two or more mobile devices for a collaborative P2P
session based on a specified set of conditions. For example,
users of two or more of the mobile devices may be interested
in playing a particular multi-player game. In Such a case, the
matchmaker service 111 may identify a group of mobile
devices to participate in the game based on variables Such as
each user's level of expertise, the age of each of the users, the
timing of the match requests, the particular game for which a
match is requested and various game-specific variables. By
way of example, and not limitation, the matchmaker service
111 may attempt to match users with similar levels of exper
tise at playing a particular game. Additionally, adults may be
matched with other adults and children may be matched with
other children. Moreover, the matchmaker service 111 may
prioritize user requests based on the order in which those
requests are received. The underlying principles of the inven
tion are not limited to any particular set of matching criteria or
any particular type of P2P application.
0043. As described in detail below, in response to a match
request, the matchmaker service 111 can coordinate with the
CDX service 110 to ensure that all matched participants
receive the necessary connection data for establishing P2P
sessions in an efficient and secure manner.

0044. In one embodiment, the invitation service 112 also
identifies mobile devices for participation in collaborative
P2P sessions. However, in the case of the invitation service
112, at least one of the participants is specifically identified by
another participant. For example, the user of mobile device A
120 may specifically request a collaborative session with the
user of mobile device B 121 (e.g., identifying mobile device
B with a user ID or phone number). As with the matchmaker
service 111, in response to an invitation request, the invitation

Oct. 13, 2011

service 112 can identify the set of participants and coordinate
with the CDX service 110 to ensure that all participants
receive the necessary connection data for establishing P2P
sessions in an efficient and secure manner.
0045. As mentioned above, in one embodiment, the CDX
service 110 operates as a central exchange point for connec
tion data required to establish P2P sessions between two or
more mobile devices. Specifically, one embodiment of the
CDX service generates NAT traversal data (sometimes
referred to as “Hole Punch data) in response to mobile
device requests to enable external services and clients to
communicate through the NAT of each mobile device (i.e., to
“punch a hole' through the NAT to reach the device). For
example, in one embodiment, the CDX service detects the
external IP address and port needed to communicate with the
mobile device and provides this information to the mobile
device. In one embodiment, the CDX service also receives
and processes lists of mobile devices generated by the match
maker service 111 and invitation service 112 and efficiently
and securely distributes connection data to each of the mobile
devices included on the lists (as described in detail below).
0046. In one embodiment, communication between the
mobile devices and the CDX service 110 is established using
a relatively lightweight network protocol such as User Data
gram Protocol (“UDP) sockets. As is known by those of skill
in the art, UDP socket connections do not require hand
shaking dialogues for guaranteeing packet reliability, order
ing, or data integrity and, therefore, do not consume as much
packet processing overhead as TCP socket connections. Con
sequently, UDP's lightweight, stateless nature is useful for
servers that answer Small queries from a vast number of
clients. Moreover, unlike TCP, UDP is compatible with
packet broadcasting (in which packets are sent to all devices
on a local network) and multicasting (in which packets are
sent to a subset of devices on the local network). As described
below, even though UDP may be used, security can be main
tained on the CDX service 110 by encrypting NAT traversal
data using session keys.
0047. In contrast to the low-overhead, lightweight net
work protocol used by the CDX service 110, in one embodi
ment, communication between the mobile devices 120-123
and the matchmaker service 111 and/or invitation service 112
is established with an inherently secure network protocol
such as Hypertext Transfer Protocol Secure (“HTTPS),
which relies on Secure Sockets Layer (“SSL) or Transport
Layer Security (“TLS) connections. Details associated with
these protocols are well known by those of skill in the art.
0048 FIG. 2a illustrates an exemplary series of transac
tions which can be implemented by a CDX server. When
describing the operation of one embodiment of the CDX
service, the following terms shall have the following mean
ings:
0049 Connection Data This is the information which
potential peers need to exchange with each other to establish
a Peer-To-Peer Session. Described below are embodiments of
a mechanism for how this information can be exchanged.
0050 CDX Server A CDX Server in one embodiment is
an authenticated multicast reflector which allows authorized
entities to exchange arbitrary data. This data is referred to as
the Payload.
0051 CDX Session A CDX Session refers to a group of
client devices which can communicate with each other via the
CDX Server. Each client device which is a part of the session
is assigned a CDX Ticket. Each session has a unique CDX

US 2011/02521.45 A1

Session ID, which is a large integer which can be used to
identify or refer to an individual session.
0052 CDX Request—A request that is sent from a client
device to the CDX Server. A request generally consists of two
parts: a CDXTicket and the Payload. In this embodiment, the
payload is Connection Data encrypted with the Session Key.
0053 CDX Response A CDX Response is what is
“reflected back to the other devices in a CDX Session when
the CDX Server receives a CDX Request from a member of
the CDX Session. It is constructed by appending the Payload
to the CDX Ticket Stub of the CDX Ticket used in the given
CDX Request.
0054 CDX Ticket A CDX Ticket tells the CDX Server
how to send a Payload to the members of the CDX Session. In
one embodiment, it is “signed with the CDX Ticket Key to
prevent forgery or tampering. As illustrated in FIG. 3, in one
embodiment, a CDX Ticket contains the following informa
tion:
0055. The Session ID 301 which is not encrypted or obfus
cated in one embodiment.
0056. The number of participants 302 in the session which

is not encrypted or obfuscated in one embodiment.
0057 The index 303 of which participant in the session
that this ticket refers to (not encrypted or obfuscated in one
embodiment).
0058 An expiration time/date 304, after which the ticket is
considered invalid (not encrypted or obfuscated in one
embodiment).
0059. The CDX Hole-Punch Data 305-306 for each par
ticipant in the session, encrypted using the CDX Ticket Key in
one embodiment.
0060 A Message Authentication Code 307 using the CDX
Ticket Key, which acts as a “Digital Signature' to ensure that
the ticket is authentic.

0061 CDX Ticket Stub The first part of a CDX Ticket,
minus the CDX Hole-Punch Data and the Message Authen
tication Code.
0062 Payload This is the second part of a CDX Request
and a CDX Response. The payload is the data that a client
device wishes to communicate to other devices in the CDX
Session. In this embodiment, the payload is the Connection
Data encrypted with the Session Key. The CDX Server does
not decrypt the payload, in one embodiment, it simply passes
it along unchanged.
0063 Session Key This is the key used by the clients to
encrypt the Connection Data. In one embodiment, this key is
not known to the CDX server. In this embodiment, the Ses
sion Key is generated by the matchmaking service and trans
mitted to the clients along with their individual CDX Tickets.
0064 CDX Ticket Key This is the key used to create and
“sign” CDX Tickets. The CDX Ticket Key is known only by
the CDX Server and the service which generates CDX Tick
ets—which, as described below, could be the matchmaking
service and/or the invitation service.
0065 CDX Hole-Punch Request-A special type of CDX
Request which is used to obtain the CDX Hole-Punch Data
from the CDX Server.

0066 CDX Hole-Punch Data This is an opaque data
blob that describes how the CDX Server can send information
to the client which originally requested it. It is obtained by
sending a CDX Hole-Punch Request to the CDX Server.
CDX Hole-Punch Data must be collected from each client
device in the CDX Session before CDX Tickets can be gen

Oct. 13, 2011

erated. The CDX Hole-Punch data (sometimes referred to as
“NAT traversal data') may include the public IP address and
port of a requesting device.
0067 Turning now to FIG. 2a, in one embodiment, the
mobile device A120 and mobile device B 121 can be execut
ing a collaborative application Such as a multi-player game or
a collaborative chat session which requires a P2P connection
with one or more other computing devices. At 201a, mobile
device A 120 transmits a CDX Hole-Punch Request to the
CDX Server 110. The CDX Server 110 then responds with the
CDX Hole-Punch Data at 202a. In one embodiment, the hole
punch data includes the public IP address and port of mobile
device A and/or any other data needed to punch a hole through
mobile device A's NAT (e.g., NAT type data defining mobile
device A's NAT type). Similar transactions are performed for
mobile device B at 201b and 202b, respectively.
0068. At 203a and 203b, mobile devices A and B then send
match requests including the CDX Hole-Punch Data to the
Matchmaking Service, along with any additional matching
criteria (described below). At this stage, mobile devices A and
B may begin to construct the Connection Data needed to
establish a P2P connection. This may be accomplished, for
example, using a transaction Such as a standard Internet Con
nectivity Establishment (“ICE) transaction (e.g., by a NAT
traversal service). However, the underlying principles of the
invention are not limited to any particular mechanism for
determining connection data.
0069. In one embodiment, once the matchmaking service
111 has found a set of client devices with matching criteria, it
may generate a unique CDX Session ID, a unique CDX
Ticket for each member of the CDX Session, and a unique
Session Key. In one embodiment, the matchmaking service
111 may encrypt the CDX Hole-Punch Data for the CDX
ticket using a unique CDX ticket key. At 204a and 204b, the
Matchmaking service then may then send each of the mobile
devices A and B their CDX Ticket and the Session Key.
0070 Mobile device A receives the CDX Ticket and Ses
sion Key and encrypts its previously determined Connection
Data using the Session Key, making a Payload. In one
embodiment, mobile device A constructs a CDX Request by
appending the constructed Payload to the CDX Ticket. At
205a, mobile device A sends the CDX Request to the CDX
Server 110. Mobile device B could also performs the same
operations and transmit a request to the CDX server at 205b.
(0071. At 206a, the CDX Server 110 receives the CDX
Request, examines the ticket to ensure that it is valid and
authentic (e.g., based on the message authentication code
307). If the CDX Ticket is invalid, the request is dropped. In
one embodiment, the CDX Server then decrypts the CDX
Hole-Punch Data set that is contained in the CDX Ticket
using the CDX ticketkey. In one embodiment, the CDX ticket
key can include an expiration time/date which may also be
transmitted with the tickets. The CDX service 110 and the
matchmaker service 111 can store two (or more) different
CDX ticket keys for encryption/decryption—a first which is
currently active and a second which will become active upon
reaching the expiration time/date of the first. Upon receiving
a ticket, the CDX service 110 can read the expiration time/
date to determine which ticket key to use. When a CDX ticket
key has expired, both the CDX service 110 and the match
maker Service 111 can each generate a new ticket key (which
will be the next key to be used after the current ticket key
expires). In one embodiment, the CDX service 110 and
matchmaker service 111 execute the same key generation

US 2011/02521.45 A1

algorithm to ensure consistency with the two ticket keys. For
example, techniques such as those used for the well-known
RSA SecuriD authentication mechanism may be used in
which a new authentication code is generated at fixed inter
vals. In one embodiment, a new CDX ticket key is generated
on a daily basis. However, the underlying principles of the
invention are not limited to any particular mechanism for
generating CDX ticket keys.
0072 The same operations could be performed as shown
at 206b for mobile device B. The CDX Server constructs a
CDX Response from the CDX Request and then uses the
CDX Hole-Punch Data to send the CDX Response to the
participants in the CDX Session (sending to mobile device B
at 207a and to mobile device A at 207b).
0073 Mobile device B receives the CDX Response 207a
from the CDX Server. Client Device B examines the CDX
Ticket Stub to ensure that the Session ID matches the Session
ID of its own CDX Ticket. Mobile device B may then decrypt
the Payload using the Session Key, yielding the Connection
Data from Mobile device A. Mobile device B then uses the
Connection Data from Mobile device A to begin the process
of establishing the P2P session. In one embodiment, these
involve standard ICE transactions. However, the underlying
principles of the invention are not limited to any particular
mechanism for establishing P2P communication.
0.074 As mentioned above, in one embodiment, mobile
device A and B establish Hypertext Transfer Protocol Secure
(“HTTPS) sessions to communicate with the matchmaker
service 111 (e.g., using HTTPS request/response transac
tions) and establish UDP sockets to communicate with the
CDX service. The match requests 204a, 204b can include the
NAT type and the hole punch data (e.g., the public IP address
and port) previously determined for each respective mobile
device. In an embodiment which involves a multi-player
game, each match request can identify the player on each
mobile device (e.g., using a unique playerID code), the game
that each user wishes to play, the number of players to par
ticipate in the game, and/or other game configuration vari
ables associated with the desired game. By way of example,
and not limitation, the game configuration variables associ
ated with a game may include a level of difficulty (e.g., easy,
normal, difficult), a user's age (e.g., “under 13’), a Sub-region
of the game (e.g., “level 2), and/or a level of player expertise
(e.g., expert, beginner, intermediate). As described in detail
below, these variables are sometimes referred to as a game
“bucket' and are identified using a unique “bucket ID. Each
game may include different sets of bucket IDs to identify
different game configuration variables.
0075. In one embodiment, mobile device B sends and
acknowledgement at 208a and 209a. Similarly, mobile device
A's acknowledgement is transmitted at 208b and 209b. If
mobile device A's or B's acknowledgements are not received
after a specified period of time, then the connection data 207a
may be resent to mobile device B 212. Either the CDX service
110 may initiate the retry and/or mobile device A 120 may
initiate the retry.
0076 FIG.2b illustrates a more detailed example in which
three different mobile devices 120-122 negotiate for P2P
connections using the CDX service and matchmaker service
111. FIG.2b also illustrates two additional services used by
the mobile devices 120-122 to establish a connection: a NAT
traversal service 291 for determining NAT type and a NAT
traversal service 290 for determining the full connection data
for each mobile device (e.g., utilizing an ICE connection data

Oct. 13, 2011

transaction). It should be noted, however, that separate Ser
vices are not required to comply with the underlying prin
ciples of the invention. For example, in an alternate embodi
ment, the NAT traversal functions performed by each of these
services 290-291 may be integrated directly within the CDX
service 110 and/or matchmaker service 111. Similarly, the
functions performed by the both NAT traversal services 290
291 may be integrated within a single NAT traversal service.
In Summary, the specific functional separation shown in FIG.
2b is not required for complying with the underlying prin
ciples of the invention.
(0077 Turning now to the specific details of FIG.2b, at
220, mobile device A transmits a NAT type request to the NAT
traversal service 291. In response, the NAT traversal service
291 may use various known techniques including implement
ing a series of transactions to determine the NAT type used by
mobile device A. For example, the NAT traversal service 291
may attempt to open different IP addresses and ports on
mobile device A's NAT and communicate with mobile device
A through those ports using different IP/port combinations. In
this manner, the NAT employed by mobile device A may be
classified as one of the NAT types described above (e.g., full
cone, restricted cone, port restricted cone, symmetric) or an
alternative NAT type. This information may then be provided
to mobile device A120 as illustrated.
0078. At 221, mobile device A 120 initiates a NAT tra
versal request with the CDX service 110. In response, the
CDX service 110 can read the public IP address and public
port number used for the request and transmits this informa
tion back to mobile device A 120. As described above, if a
device is behind a NAT, its public port and IP address will be
different from its private port and IP address, respectively.
Thus, depending on the type of NAT being used, the public IP
address and port may be used to “punch a hole' through the
NAT device to reach the mobile device.

0079. At 222, mobile device A 120 transmits a match
request 222 to the matchmaker service 111. As described
above, in one embodiment, mobile device A communicates to
the matchmaker service 111 using Hypertext Transfer Proto
col Secure (“HTTPS) sessions (e.g., using HTTPS request/
response transactions). The match request can include the
NAT type and the hole punch data (e.g., the public IP address
and port) previously determined for mobile device A120. In
an embodiment which involves a multi-player game, the
match request can identify the player on mobile device A
(e.g., using a unique player ID code), the game that the user
wishes to play, the number of players to participate in the
game, and/or other game configuration variables associated
with the desired game (as previously described with respect to
FIG. 2a).
0080. At 223-225 a set of transactions corresponding to
transactions 220-222 are performed for mobile device B 121
and at 226-228 a set of transactions corresponding to trans
actions 220-222 are performed for mobile device C 122.
Thus, following transaction 228, the matchmaker service 111
has received match requests for all three of the mobile devices
120-122. In this specific example, the match requests result in
mobile devices 120-122 being matched for a particular col
laborative session Such as a multi-player game (e.g., the users
of these mobile devices may have selected the same game
with the same, or similar, sets of variables, thereby resulting
in a match by the matchmaker service 111).
0081. The matchmaker service 111 uses the data con
tained in each of the match requests to generate Ticket A,

US 2011/02521.45 A1

which it transmits to mobile device A at 229; Ticket B, which
it transmits to mobile device Bat 230; and Ticket C, which it
transmits to mobile device C at 231. Although not shown in
FIG. 2b, the matchmaker service 111 may utilize a push
notification service to push Tickets A, B and C to mobile
devices A, B, and C, respectively (e.g., Such as the push
notification service 1050 illustrated FIGS. 11-12). One
embodiment of the ticket data structure used for tickets A, B,
and C is described above with respect to FIG. 3.
0082. At 232, mobile device A 120 communicates with
NAT traversal service 290 to determine its own connection
data. In one embodiment, this can include a standard ICE
connection data transaction. As previously mentioned, the
connection data may include public/private IP address, port
and NAT type for mobile device A120.
0083 Mobile device A120 appends its connection data to
Ticket A and, at 233, transmits Ticket A with the connection
data to the CDX service 110. In one embodiment, the CDX
service 110 processes Ticket A as described above and, at
234, transmits the connection data (which may be encrypted)
to mobile device B 121 and mobile device C 122. For these
transactions, the CDX service 110 can utilize the NAT tra
versal data for mobile devices B and C included with Ticket
A

0084. At 236-238, a set of transactions corresponding to
transactions 232-234 are performed using Ticket B and at
238-240 a set of transactions corresponding to transactions
232-234 are performed for Ticket C. Thus, following trans
action 240, connection data has been shared between each of
the mobile devices 120-122. Using the connection data, P2P
sessions are established between mobile devices A and B,
mobile devices A and C, and mobile devices A and C.
0085. As illustrated in FIG. 2C, an invitation service 112
can also be used with the CDX service 110 (either in lieu of or
in addition to the matchmaker service 111). In one embodi
ment, the invitation service 112 processes invitation requests
for P2P connections with specific mobile devices and/or
users. The invitation service 112 can be implemented as a
stateless service (i.e., a service which does not tack the cur
rent state of transactions between each of the wireless
devices).
I0086 Turning to this particular example, at 250, mobile
device A 120 transmits a NAT type request to the NAT tra
versal service 291. In response, the NAT traversal service 291
may use various known techniques for determining the NAT
type used by mobile device A (some of which are described
above). At 251, mobile device A120 initiates a NAT traversal
request with the CDX service 110. In response, the CDX
service 110 can read the public IP address and public port
number used for the request and transmits this information
back to mobile device A120. As described above, if a device
is behind a NAT, its public port and IP address will be differ
ent from its private port and IP address, respectively. Thus,
depending on the type of NAT being used, the public IP
address and port may be used to “punch a hole' through the
NAT device to reach the mobile device.

0087. As with the matchmaker service, in one embodi
ment, each of the mobile devices communicate with the invi
tation service 112 using Hypertext Transfer Protocol Secure
(“HTTPS) sessions (e.g., using HTTPS request/response
transactions).
0088 At 252, mobile device A120 transmits an invitation
request to the invitation service 112 which includes mobile
device A's NAT traversal data (e.g., NAT type, public IP

Oct. 13, 2011

address/port). In an embodiment which utilizes a push noti
fication service (described in greater detail below), the invi
tation request may also include mobile device A's push token.
The invitation request 252 can also include an identification
code identifying one or more other users/devices—in this
case the users of mobile devices B 121 and C 122. Various
different identification code types may be used. For example,
in the case of a multi-player game, the identification codes
may comprise game-specific player ID codes. In the case of
an audio/video chat session, the identification codes may
comprise phone numbers or unique ID codes identifying one
or more users from the user of mobile device A's “buddy” list.
0089. In one embodiment, the invitation service 112 reads
the identification codes from the invitation request and per
forms a lookup in a registration database (not shown) to locate
each of the mobile devices B and C. In one particularembodi
ment, each of the mobile devices B and C has previously
registered with a push service to receive push notifications
from the invitation service 112. As such, in this embodiment,
the invitation service 112 uses the push notification service to
push the invitation requests to mobile device B 121 and
mobile device C 122 at 253 and 254, respectively. Additional
details related to a push notification service are described
below (see, e.g., FIGS. 11-12 and associated text) and in the
Push Notification Application referenced above.
0090. In one embodiment, the invitation requests 253 and
254 include the ticket data structure illustrated in FIG.3 and
described above with respect to FIGS. 2a-b. Specifically, the
ticket sent to mobile device B includes an encrypted list
identifying mobile devices A and B and the ticket sent to
mobile device C includes an encrypted list identifying mobile
devices A and C. In one embodiment, because the invitation
service 112 may not yet have mobile device B's NAT traversal
data, the "ticket' at 253 may include other information iden
tifying mobile device B. For example, as set forth below with
respect to embodiments which utilize the relay service and
push notification service (see, e.g., FIGS. 11-12), the "ticket'
at 253 may include the NAT traversal data for mobile device
A, device A's ID code, device A's push token, device B's ID
code, and the push token for mobile device B. The same types
of information may be provided at 254 for mobile devices A
and C.

(0091. At 255, mobile device B may communicate with
NAT traversal service 291 to determine its NAT type and, at
256, mobile device B may communicate with the CDX ser
vice 110 to determine its NAT traversal data (e.g., public IP
address/port). At 257, mobile device B transmits an invitation
response to the invitation service 112 containing mobile
device A's and mobile device B's identification code, NAT
traversal data and, if the push notification service is used,
push tokens for mobile devices A and B. At 258, mobile
device B can retrieve its current connection data by commu
nicating with NAT traversal service 290. At 259, mobile
device B transmits its ticket (Ticket B) with its current con
nection data to the CDX service 110. In response, the CDX
service 110 processes the ticket as described above and for
wards the connection data to mobile device A120.

0092. Upon receipt of mobile device B's invitation
response, the invitation service 112 can generate an encrypted
ticket for mobile device A and transmit the ticket to mobile
device A at 260. In one embodiment, the ticket includes NAT
traversal data, NAT type and push token (if the push notifica
tion service is used) for mobile devices A and B. The "tickets”
described with respect to FIG.2c may be the same or different

US 2011/02521.45 A1

from the data structures for "tickets' described with respect to
the matchmaker service 111. For example, rather than gener
ating an encrypted "ticket' as described above, the invitation
service 112 may simply generate a unique session ID to
identify the invitation session with each of the mobile
devices.

0093. At 261, mobile device A retrieves its current con
nection data by communicating with NAT traversal service
290. Mobile device A may then append its connection data to
the ticket and, at 262, transmit the ticket with its connection
data to the CDX service 110. The CDX service 110 processes
the ticket as described above and forwards mobile device As
connection data to mobile device B. Finally, at 263, mobile
devices A and B use the exchanged connection data to open a
direct P2P connection. As described below, in cases where
mobile device A's and B's NAT types are incompatible, a relay
service may be used to enable communication between
mobile devices A and B.

0094. At 264-272, mobile device C 122 and mobile device
A can execute a series of transactions to establish a P2P
connection as described at 255-263 for mobile devices Band
A. Specifically, at 624, mobile device C 122 communicates
with NAT traversal service 291 to determine its NAT type and,
at 265, communicates with the CDX service 110 to determine
its NAT traversal data (e.g., public IP address/port). At 266,
mobile device C transmits an invitation response containing
mobile device C's and mobile device A's NAT type, NAT
traversal data and push token (if the push notification service
is used). At 267, mobile device Cretrieves its current connec
tion data through the NAT traversal P2P service 290 and, at
268, mobile device Cappends its connection data to Ticket C
and transmits Ticket C to the CDX Service 110. The CDX
service 110 processes the ticket as described above and for
wards mobile device C's connection data to mobile device A
120.

0095. At 269, mobile device A120 receives mobile device
C's invitation response from the invitation service 112 which
includes both mobile device A's and C's NAT type, NAT
traversal data and push tokens (if the push service is used). At
270, mobile device A retrieves its current connection data
from the NAT traversal service 290, appends its current con
nection data to Ticket A and, at 271, transmits Ticket A to the
CDX service 110. Alternatively, transaction 270 may not be
required because mobile device determined its connection
data at transaction 261. The CDX service 110 processes
Ticket A as described above and forwards mobile device A's
connection data to mobile device C. Finally, at 272, mobile
device A and C use the exchanged connection data to estab
lish a direct, P2P connection 272.
0096. In one embodiment, the invitation service 112 and
the matchmaker service 111 can rely on a push notification
service (not shown) for pushing data to mobile devices. For
example, in FIG.2c, invitation requests 253 and 254 may be
pushed to the mobile devices B 121 and C 122 via the push
notification service. Similarly, in FIG. 2a, tickets A and B
may be pushed to mobile devices A 120 and B 121. In one
embodiment, when a mobile device is activated on the net
work, it registers its push token in a central registration direc
tory accessible by the push notification service. In one
embodiment, the registration directory associates a password
protected user ID or a telephone number with a push token. If
the push token can be identified in the directory, the push
notification service can use the push token to transmit push
notifications to the mobile device. In one embodiment, the

Oct. 13, 2011

push notification service is the Apple Push Notification Ser
vice (APNS) designed by the assignee of the present appli
cation and described, for example, in the Push Notification
Application referenced above. It should be noted however,
that a push notification service is not required by the embodi
ments of the invention shown in FIGS. 2a-c. For example,
push notifications are not required for the CDX service 110 to
perform its operations as described herein.
(0097 FIG. 4 illustrates a method which can be imple
mented by a CDX service 110 to exchange connection data
and FIG.5 illustrates a method which may be implemented by
a mobile device to exchange connection data and establish a
P2P connection. Certain aspects of these methods have
already been described above with respect to FIGS. 1-2c. In
particular, these methods may be implemented within the
context of the network architecture shown in FIGS. 1-2c but
they are not limited to such an architecture. In one embodi
ment, the methods are embodied in program code which,
when executed by a processor, causes the operations of the
methods to be performed. The program code may be stored in
a machine-readable medium Such as a random access
memory (“RAM) while being executed by the processor.
The processor may be a general purpose processor (e.g., an
Intel(R) CoreTM processor) or a special purpose processor.
However, the methods may be implemented using any com
bination of hardware, software, and firmware. In addition, the
program code may be stored on a non-volatile storage device
Such as a hard disk drive, optical disc (e.g., a Digital Video
Disk or Compact Disc) or a non-volatile memory such as
Flash memory device.
0.098 Turning now to the method shown in FIG. 4, at 401,
a NAT traversal request (also sometimes referred to as a “hole
punch” request) is received for a particular mobile device—
“mobile device A' in the example. At 402, a NAT traversal
response is generated and transmitted to mobile device A. In
one embodiment, generating the NAT traversal response can
include determining the current public IP address/port and/or
NAT type of mobile device A.
0099. A ticket for mobile device A may subsequently be
generated and encrypted by a ticket-generation entity Such as
the matchmaker service 111 or invitation service 112
described above. At 403, the ticket generated for mobile
device A (“Ticket A) is received which includes NAT tra
versal data (for device A and one or more other devices) and
connection data for device A. At 404, the ticket is authenti
cated using the message authentication code and the hole
punch data is decrypted using the same CDX ticket key as that
used by the ticket-generation entity to encrypt the ticket. As
mentioned above, in one embodiment, the correct CDX ticket
key is identified using an expiration time/date associated with
the CDX ticket key.
0100. At 405, the NAT traversal data for the mobile
devices is extracted. At 406, the connection data for mobile
device A is transmitted to each of the peers using the NAT
traversal data. At 407 acknowledgements are received from
each of the peers. If acknowledgements have not been
received from all of the peers, determined at 408, then mobile
device A's connection data is retransmitted to those peers
which have not responded at 409. When all of the connection
data has been acknowledged, determined at 408, the method
terminates.

0101. In one embodiment, the method shown in FIG. 4 can
be performed for each of the peers involved in the P2P trans

US 2011/02521.45 A1

action to ensure that each peer receives the connection data
required to establish a P2P connection.
0102 FIG. 5 illustrates a method which can be performed
by a mobile device in accordance with the embodiments of
the invention described herein. At 501, a NAT traversal
request is transmitted and, at 502, a NAT traversal response is
received. As previously described, the NAT traversal data
contained in the response may include the public port/IP
address of the requesting device. At 503, a match request is
transmitted which contains the NAT traversal data. A ticket
for the mobile device may Subsequently be generated and
encrypted by a ticket-generation entity Such as the match
maker service 111 or invitation service 112 described above.
As an alternative to the ticket data structure described above,
the matchmaker service 111 and/or the invitation service 112
may simply identify each of the participants using a unique
session ID.

(0103) At 504, the ticket may be received; at 505, connec
tion data for the mobile device is appended to the ticket; and,
at 506, the ticket with the connection data is transmitted. At
507, connection data needed to establish P2P connections
with one or more other peers is received. At 508, acknowl
edgements indicating that one or more other wireless devices
have received the connection data transmitted at 506 are
received. If all acknowledgements are not received then, at
510, the connection data is retransmitted to those mobile
devices from which acknowledgements have not been
received. If all acknowledgements are received, determined at
509, then the connection data received at 507 is used to
establish P2P sessions with the other mobile devices.

Apparatus and Method for Establishing and Utilizing
Backup Communication Channels

0104 Current mobile devices are capable of communicat
ing over a variety of different communication channels. For
example, the Apple iPhoneTM is capable of communicating
over Wi-Fi networks (e.g., 802.11b, g, n networks); 3G net
works (e.g., Universal Mobile Telecommunications System
(“UMTS) networks, High-Speed Uplink Packet Access
(“HSUPA') networks, etc); and Bluetooth networks (known
as personal area networks (“PANs)). Future mobile devices
will be capable of communicating over additional communi
cation channels such as WiMAX, International Mobile Tele
communication (IMT) Advanced, and Long Term Evolu
tion (“LTE) Advanced, to name a few.
0105. In operation, current mobile devices select one pri
mary communication channel from among a set of available
channels. For example, mobile devices are often configured
to choose a Wi-Fi connection if one is available and to choose
a cellular data connection (e.g., a UTMS connection) if Wi-Fi
is not available.

0106. In one embodiment of the invention, a group of
mobile devices initially establish primary peer-to-peer
("P2P") communication channels using standard ICE con
nection data exchanges and/or using the connection data
exchange techniques described above. The mobile devices
may then exchange connection data over the primary chan
nels to establish one or more secondary communication chan
nels which are used as backup channels if any of the primary
channels fail. In one embodiment, the secondary communi
cation channels are maintained open through NAT firewalls
by periodically transmitting “heartbeat packets over these
channels.

Oct. 13, 2011

0.107 As used herein, a communication “channel” refers
to the full network path between two mobile devices and a
communication “link” refers to one particular connection
used in the communication path. For example, if device A is
connected to the Internet using a Wi-Fi connection and device
B is connected to the Internet using a 3G connection, then the
“channel between device A and device B is defined by both
the Wi-Fi link and the 3G link; device A has a Wi-Fi commu
nication “link:” and device Bhas a 3G communication “link.”
As such, if device A switches from a Wi-Fi link to a 3G link,
then the “channel between device A and device B is changed
notwithstanding the fact that device B's 3G link remains the
SaC.

0.108 Specific examples in which mobile devices estab
lish primary and secondary communication channels will
now be described with respect to FIG. 6. It should be noted,
however, that the underlying principles of the invention are
not limited to the particular set of communication links and
communication channels shown in FIG. 6.

0109. In FIG. 6, mobile device A 601 is capable of con
necting to a network 610 (e.g., the Internet) over communi
cation link 605 with NAT device 611 and over communica
tion link 606 with NAT device 612. Similarly, device C 603 is
capable of connecting to the network 610 over communica
tion link 609 with NAT device 613 and over communication
link 610 with NAT device 613. By way of example, and not
limitation, communication links 605 and 609 may be 3 G
communication links and communication links 606 and 610
may be Wi-Fi communication links.
0110 Consequently, in this example, there are four differ
ent communication channels which may be established
between mobile device A and mobile device B: a first channel
which uses links 605 and 609; a second channel which uses
links 605 and 610; a third channel which uses links 606 and
609; and a third channel which uses links 606 and 610. In one
embodiment, mobile devices A and B will select one of these
channels as the primary communication channel based on a
prioritization scheme and will select the three remaining
channels as backup communication channels. For example,
one prioritization scheme may be to select the channel with
the highest bandwidth as the primary channel and to use the
remaining channels as the secondary channels. If two or more
channels have comparable bandwidth, the prioritization
scheme may include selecting the least expensive channel
(assuming that the user pays a fee to use one or more of the
channels). Alternatively, the prioritization scheme may be to
select the least expensive channel as the primary channel and,
if the cost of each channel is the same, to select the highest
bandwidth channel. Various different prioritization schemes
may be implemented while still complying with the underly
ing principles of the invention.
0111 Mobile devices A 601 and C 603 may utilize the
techniques described above to establish the primary commu
nication channel (e.g., by exchanging connection data via the
CDX service 110). Alternatively, the mobile devices 601, 603
may implement standard Internet Connectivity Establish
ment (“ICE) transactions to exchange the connection data.
Regardless of how the primary channel is established, once it
is, the mobile devices A 601 and C 603 may exchange con
nection data for the secondary communication channels over
the primary communication channel. For example, if the pri
mary communication channel in FIG. 6 includes communi
cation link 606 and communication link 609, then this con
nection, once established may be used to exchange

US 2011/02521.45 A1

connection data for secondary communication channels
which include communication links 605 and 609. In this
example, the connection data exchanged over the primary
communication channel may include NAT traversal data and
NAT type data for NAT 611 and NAT 613, including public
and private IP addresses/ports for each of the mobile devices.
0112. Once the secondary communication channels have
been established, they are maintained open using heartbeat
packets. For example, device A may periodically transmit a
small “heartbeat packet to device C and/or device A may
periodically transmit a small “heartbeatpacket to device C to
ensure that the NAT ports used for the secondary channels
remain open (NATs will often close ports due to inactivity).
The heartbeat packets may be UDP packets with no payload,
although the underlying principles of the invention are not
limited to any particular packet format. The heartbeat packets
may be UDP packets with a self-identifying type field in their
payload header, and may contain optional additionally-for
matted information including but not limited to a channel
time-to-live value.
0113. As illustrated in FIG. 7, each mobile device 601
stores and maintains a data structure 710 (e.g., a table, text
file, database, etc) containing a list of primary and secondary
communication channels. A separate entry is provided for
each communication channel and includes the connection
data needed to utilize that channel (e.g., private/public IP
address, NAT type, etc), and the current status of that channel
(e.g., primary, secondary 1, secondary 2, etc).
0114. In one embodiment, communication interfaces 701
and 702 are used for communicating over communication
link 605 and communication link 606, respectively. A failure
detection module 705 can be executed on the mobile device
601 to detect when a particular communication interface/link
has failed or has degraded below a specified threshold. In
response, a link management module 706 can read the pri
mary/secondary connection data 710 to promote a secondary
channel having the next highest priority to the primary chan
nel. The prioritization of the secondary channels may be
accomplished using the same principles as those discussed
above for the primary channels (e.g., based on bandwidth,
cost, reliability, etc). Once a secondary channel has been
selected, the link management module 706 can transmit a link
failure indication to link management modules on the other
mobile devices, instructing those devices to promote the sec
ondary communication channel to a primary communication
channel. Those devices will then begin using the connection
data associated with the selected primary channel.
0115. In one embodiment, a complete “failure' of the pri
mary communication channel is not required to force a Switch
to one of the secondary communication channels. For
example, in one embodiment, if the primary communication
channel is Sufficiently degraded (e.g., below a particular
bandwidth, bitrate, or reliability threshold), then a change to
a secondary channel may be implemented as described
herein. In one embodiment, the Switch to the secondary chan
nel is only performed if the secondary channel is capable of
Supporting better performance (e.g., bandwidth, bitrate or
reliability) than the current primary channel.
0116 FIG. 8a illustrates the same network configuration
as shown in FIG. 6 with the addition of mobile device B 602
connected directly to the network 610 and connected to
device C 603 through a private network connection 620. The
private network 620 may be, for example, a Bluetooth PAN
connection between device B 602 and device C 603. It can be

Oct. 13, 2011

seen from this example that Switching from a primary channel
to a secondary channel may dramatically alter the network
topology. For example, as shown in FIG. 8b, if the primary
channels 801 for the mobile devices include communication
link 609 (resulting in direct connections between device
devices A, B and C) and the secondary channels include the
private network 620, then the network topology may change
as illustrated in FIG.8c because the only way for device A and
device C to communicate using the private network is through
device B. While this is a simplified example with only three
devices, a significantly larger number of devices may be used,
resulting in a variety of different network topology configu
rations when Switching between primary and secondary com
munication channels.
0117. One embodiment of a method for establishing and
maintaining secondary channels is illustrated in FIG. 8. In
one embodiment, the method may be executed by the link
management module 706 on each mobile device. However,
the method is not limited to any particular device configura
tion.
0118. At 901, a primary P2P communication channel is
selected. As mentioned above, the primary channel may be
selected based on a predefined prioritization scheme. For
example, certain communication channel types may be pri
oritized ahead of other communication channel types. Chan
nels may also be prioritized based on variables such as band
width, cost for usage, and/or reliability.
0119. At 902, backup P2P communication channels are
established. In one embodiment, this is accomplished by
sharing connection data between all of the mobile devices
over the primary communication channel. At 903, the backup
channels are maintained. In one embodiment, this involves
transmitting data periodically over the secondary communi
cation channels (e.g., in the form of periodic heartbeat pack
ets).
I0120. At 904, if the primary P2P channel fails (e.g.,
because the communication link of a particular mobile device
went down or the mobile device moved out of range of the
communication link), then at 905, the mobile devices pro
mote the highest priority backup channel to the primary chan
nel. In one embodiment, this involves the mobile device with
the failed link transmitting a notification of its link failure to
the other devices over the secondary channel. Finally, at 906,
the backup channel is made the primary channel and the
process reverts to 902 (in which any additional backup chan
nels are discovered and added to the prioritization scheme).

Apparatus and Method for an Invitation Service for
Establishing Peer-to-Peer (P2P) Communication

Channels

0121. As illustrated in FIG. 10, in addition to the CDX
service 110, matchmaker service 111 and invitation service
112 (some embodiments of which are described above), one
embodiment of the invention can include a registration/direc
tory service 1052, a push notification service 1050, and a
relay service 1051. As mentioned above, in one embodiment,
the invitation service 112 and/or the matchmaker service 111
can use the registration/directory service 1052 to identify
registered mobile devices and the push notification service
1050 to push data to the mobile devices. In one embodiment,
when a mobile device is activated on the network, it registers
a “push token' (sometimes referred to as a “notification ser
vice account identifier in the Push Notification Application)
with a database maintained by the registration/directory Ser

US 2011/02521.45 A1

vice 1052 by associating the push token with a password
protected user ID or a telephone number. If the push token is
identified in the registration directory (e.g., by performing a
query with the userID), the push notification service 1050 can
use the push token to transmit push notifications to a mobile
device. In one embodiment, the push notification service is
the Apple Push Notification Service (APNS) designed by
the assignee of the present application and described, for
example, in the Push Notification Application referenced
above.

0122 FIG. 11 illustrates an embodiment of the invention
in which the push notification service 1051 is used to establish
a direct P2P connection between two mobile devices and FIG.
12 illustrates an embodiment which is used to establish a P2P
connection through the relay service 1051. As described
below, the decision as to whether to use the relay service 1051
to establish a P2P connection may be based on the feasibility
of establishing a direct P2P connection between the mobile
devices (e.g., based on NAT compatibility issues).
(0123 Turning now to FIG. 11, at 1101, mobile device A
120 transmits an invitation to invite mobile device B 121 to
invite mobile device B to a P2P communication session (e.g.,
a collaborative video game, a P2P video chat, etc). In one
embodiment, the invitation includes a User ID code identify
ing mobile device B 121 (and/or the user of mobile device B)
within the context of a particular online application. For
example, the userID code may be a player ID for a particular
multi-player, P2P game and may take the form, for example,
of a Universally Unique Identifier (UUID). Alternatively, in
some embodiments, the ID code may be a phone number of
mobile device B121. A game ID code may be used to identify
the multi-player game that mobile device A is inviting mobile
device B to join. A bucket ID may be used to identify a
configuration for that game (as described herein with respect
to the matchmaker service).
0.124. The invitation 1101 may also include an ID code
identifying mobile device A 120 and NAT traversal/connec
tion data associated with mobile device A (e.g., the public/
private IP addresses and ports for mobile device A and the
NAT type for device A's NAT device). The NAT traversal/
connection data or NAT type data may have been previously
determined by mobile device Aprior to the invitation request
1101 (e.g., via NAT traversal, NAT type and connection data
transactions such as those discussed above with respect to
FIGS. 2a-c). As previously mentioned, the invitation request
1101 can take the form of an HTTPS request. In addition, for
additional security, the invitation request 1101 can include a
client certificate signed by a pre-specified certificate author
ity.
0.125 Regardless of the particular type of ID code used to
identify mobile device B, the ID code is received by the
invitation service 112 and, at 1102, the invitation service 112
can perform a lookup in the directory service 1052 (not shown
in FIG. 11) to identify a notification service account identifier
Such as a push token used for pushing notifications to mobile
device B (“push-token-B”). In one embodiment, the lookup
operations can perform several checks to determine whether
the invitation should be allowed. First, it can confirm that the
identification code for mobile device A (“ID-A) and device
A's push token (“push-token-A’) are a registered association
within the directory service database. The lookup operation
1102 can also confirm that that the user of mobile device A is
permitted to invite the user of mobile device B (e.g., the user
of mobile device B can specify that only those other users

Oct. 13, 2011

registered as B's friends can invite user B; or can specify that
no invitations are permitted). In one embodiment, if any of
these checks fail, the invitation is canceled, and the invitation
service 112 returns an error to mobile device A.

0.126 While a “push token' is described in this embodi
ment, it should be noted that the underlying principles of the
invention are not limited to the use of a “push token or any
other particular data structure for authenticating and pushing
notifications to mobile devices.

I0127. In one embodiment, after the push token has been
identified, the invitation service 112 can generate a secure,
one-time "session token' assigned to the invitation session
and used to identify the session in all further transactions. A
copy of the session token is then transmitted back to the
mobile device A 120 and sent to mobile device B with the
invitation request. In one embodiment, the session token is
used together with the ticket data structure described above
and, in another embodiment, only the session token is used.
I0128. At 1103, the invitation service 112 transmits a push
request to the push notification service 1050. In one embodi
ment, the push request can include the NAT traversal data for
mobile device A, device A's ID code, push-token-A, device
B's ID code, and push-token-B. In one embodiment, this
information may be packaged within a "ticket' data structure
and encrypted as described above. In another embodiment,
the data is simply transmitted with the invitation session ID.
I0129. Because mobile device B 121 in this example has
registered with the push notification service 1050, the push
notification service 1050 is capable of locating and pushing
the invitation request to mobile device B 121 at 1104. The
pushed invitation 1104 may include the session token, mobile
device A's NAT traversal data/connection data, and mobile
device B's ID code. In response to the invitation request,
mobile device B may determine its networking information
(e.g., NAT traversal/connection data, NAT type, etc) by mak
ing a call to a NAT traversal service or the CDX service 110
as described above.
I0130. At 1105, mobile device Baccepts the invitation. The
accept 1105 may take the form of an HTTPS call to the
invitation service 112 and may include a client certificate
signed by the pre-specified certificate authority (mentioned
above with respect to the invitation request). In one embodi
ment, the accept 1105 can include the ID code for mobile
devices A and Band the NAT traversal/connection data and/or
NAT type for mobile devices A and B. The accept 1105 may
also include the push tokens for mobile devices A and B
and/or the session token. In one embodiment, the accept 1105
may also contain an indication as to whether it is a retry from
a previous failed direct connection attempt. However, in
another embodiment, the accept 1105 does not contain the
retry indication. Rather, upon detecting a failed P2P connec
tion attempt, one of the two mobile devices may transmit a
special “relay invitation' to the invitation service 112. In
response, the service may directly initiate the series of relay
transactions described below with respect to FIG. 12 (starting
at 1201).
I0131. At 1106, the invitation service 112 can perform a
compatibility check to determine whether a direct P2P con
nection between mobile devices A and B is feasible. For
example, in one embodiment, if the accept 1105 received
from mobile device B indicates that it is a retry from a previ
ous failed direct connection attempt (or a specified number of
previous failed direct connection attempts), then the invita
tion service may conclude that a direct P2P connection is

US 2011/02521.45 A1

infeasible. The invitation service 112 may compare the NAT
type data for mobile devices A and B to determine if the NAT
devices of mobile devices A and B will support a direct P2P
connection. Certain combinations of NAT types are known to
be incompatible for establishing P2P connections. For
example, a full cone NAT may be used with any other NAT
type except a closed/firewalled NAT to establish a direct P2P
connection. By contrast, a symmetric NAT can only be used
with a full cone NAT to establisha direct P2P connection. The
feasibility of combining various NAT types in one embodi
ment of the invention is set forth in the NAT compatibility
table 1400 shown in FIG. 14, in which columns represent
NAT types of one mobile device (e.g., mobile device A) and
rows represent NAT types of the other mobile device (e.g.,
mobile device B). A “1.0” in a cell indicates that the NAT
types in the associated row and column are compatible and a
“0.0 indicates that the NAT types are incompatible.
0.132. In one embodiment, if the compatibility check 1106
determines that a direct P2P connection is infeasible, then the
invitation service 112 can transmit a relay lookup request
1201 as described below with respect to FIG. 12. If, however,
the compatibility check 1106 determines that a direct P2P
connection is feasible, then the invitation service 112 can
transmit a push request 1107 to the push notification service
1050 containing mobile device B's acceptance of mobile
device A's invitation. The push request 1107 and subsequent
push communication 1108 to mobile device A from the push
notification service 1050 can include the session token and
both mobile device A's and B's push token, ID code, and/or
NAT traversal/connection data. In one embodiment, this
information may be packed within the "ticket' data structure
described above (see, e.g., FIGS. 2a-c and associated text)
and may be encrypted using a unique key. Alternatively, this
information may simply be transmitted with a unique invita
tion session ID. The invitation service 1050 may also notify
mobile device B that a direct connection will be attempted.
0133. At this stage, mobile devices A and B have sufficient
information to establish a direct P2P connection. In one
embodiment, this is accomplished using the CDX service 110
as described above. For example, mobile device Bappends its
connection data to Ticket Band, at 1109, transmits Ticket B
(with connection data) to the CDX service. Just prior to this
transaction, mobile device B may implement a transaction
such as transaction 235 shown in FIG. 2b in order to ensure
that its connection data is current. The CDX service 110 then
authenticates the ticket (e.g., using the unique session key as
described above), extracts mobile device B's connection data,
and forwards the connection data to mobile device A at 1110.
Similarly, mobile device A appends its connection data to
Ticket A and, at 1111, transmits Ticket A (with connection
data) to the CDX service 110. Just prior to this transaction,
mobile device A may implement a transaction Such as trans
action 232 shown in FIG. 2b in order to ensure that its con
nection data is current. The CDX service 110 then authenti
cates the ticket (e.g., using the unique session key as
described above), extracts mobile device A's connection data
and forwards the connection data to mobile device Bat 1112.
Finally, at 1113, mobile devices A and B enter into a direct
P2P connection using the exchanged connection data.
0134 Turning now to FIG. 12, if the compatibility check
1106 determines that a direct P2P connection is infeasible,
then the invitation service 112 can transmit a relay lookup
request 1201 to the relay service 1051 to determine a relay
host to be used by each mobile device. The request 1201 may

Oct. 13, 2011

contain the networking information for mobile devices A and
B (e.g., NAT traversal/connection data and/or NAT type data)
which is used by the relay service 1051 to select appropriate
relay hosts for both of the mobile devices. As illustrated in
FIG. 13, one embodiment of the relay service 1051 includes
a plurality of relay hosts 1302-1303 and a relay host database
1301 containing network information related to each of the
relay hosts. The invitation service 112 transmits a relay
lookup request 1201 to a relay lookup service 1300, which
queries the relay host database 1301 using the network infor
mation for mobile devices A and B. Upon receiving the data
base results, the relay lookup service 1300 provides a
response 1202 identifying the selected relay hosts 1302
1303.

I0135) In one embodiment, the relay lookup response 1202
contains a relay token generated by the relay service and the
network addresses (IP addresses/ports) of the relay hosts
1302-1303 to be used by mobile devices A and B for the relay
connection. In one embodiment, the relay token is associated
with the relay session and is used by the relay hosts 1302
1303 to authenticate mobile devices A and B upon connecting
to the relay service 1051. The token may take on various
forms including, for example, unique ID relay session ID
code, a digital certificate and/or a unique encryption key
associated with the relay session.
0.136. At 1203, the invitation service transmits a relay
response 1203 to mobile device B 121 containing an indica
tion that a relay connection will be made. In one embodiment,
the relay response 1203 can include the relay token and the
network information for relay host B 1303. In one embodi
ment, response 1203 can be sent directly to mobile device B
(bypassing the push notification service 1050) because it is
being sent in response to mobile device B's accept 1105.
0.137 The invitation service 112 transmits relay response
1204 to mobile device A which can include the relay token
and the network information for relay host B 1303. In this
instance, the response 1204 is pushed to mobile device Avia
the push notification service 1050 at transaction 1205.
0.138. At 1206, mobile device A 120 uses the network
information for relay host A 1302 to establish a connection
with the relay service 1051. Similarly, at 1207, mobile device
B 121 uses the network information for relay host B 1303 to
establish a connection with the relay service 1051. In each of
these transactions, new holes are opened in any NAT firewalls
of mobile devices A and B and the NAT traversal/connection
data for mobile devices A and B may be determined by the
relay service 1051 and returned to mobile devices A and B,
respectively (e.g., by determining the public IP/port for the
devices). In one embodiment, the relay service 1051 and
mobile devices A and B implement the Traversal Using Relay
NAT (“TURN) protocol which, as understood by those of
skill in the art, allows an element behind a NAT or firewall to
receive incoming data over TCP or UDP connections.
0.139. At 1208, mobile device A transmits a relay update to
the invitation service 112 which is forwarded to the push
notification service at 1209 and pushed to mobile device Bat
1210. Similarly, at 1211 mobile device B transmits a relay
update to the invitation service 112 which is forwarded to the
push notification service at 1212 and pushed to mobile device
A at 1213. The relay update transmitted by mobile device A
can include the session token, each device's ID code, and the
NAT traversal/connection data determined by the relay at
1206 and 1207 (i.e., with mobile device A sending its NAT
traversal/connection data to mobile device Band vice versa).

US 2011/02521.45 A1

In one embodiment, the relay update operations are per
formed because each mobile device's NAT information may
change.
0140 Finally, at 1214 and 1215 mobile devices A and B,
respectively, establish a P2P connection through the relay
service 1051. In one embodiment, the relay connections can
be established when mobile device A sends the NAT traversal/
connection data of mobile device B to the relay service 1051,
and vice versa, thereby allowing the relay service to deter
mine the correct path to each peer’s relay host 1302-1303.
0141. Using the techniques described above, the invitation
service 112 may be implemented as a stateless service which
is inherently scalable and resilient, even in a large-scale sys
tem with a vast number of mobile devices. For example,
because the push notification service 1050 is inherently
capable of locating and pushing content to registered mobile
devices, the invitation service is not required to track the
current location of each device. Additionally, because devices
may transmit the entire session state data with each request
and response, the invitation service is never required to main
tain any per-connection state information, thereby reducing
the storage and processing requirements of the invitation
service. Such an implementation is particularly useful in a
large-scale system.

System and Method for Matching Users for Online
Sessions

0142. As illustrated in FIG. 15, one embodiment of a
matchmaker service 111 can include a matchmaker dis
patcher 1501 for receiving match requests and pushing match
responses to mobile devices 120-122; a database 1512 for
storing match requests in a request table 1502 and for storing
matchable set data in a matchable set identifier (“MSI) table
1503; and one or more matchmakers 1510 for fetching match
requests from the database 1512, performing matching opera
tions, and storing the match results back in the database 1512.
It should be noted, however, that the underlying principles of
the invention are not limited to the specific architecture shown
in FIG. 15.
0143. In one embodiment, the matchmaker dispatcher
1501 acts as an interface to the matchmaker service 111,
receiving requests from mobile devices 120-122, translating
those requests into commands to store the requests in the
database 1512, reading match results from the database 1512,
and translating and communicating those results to the
mobile devices 120-122.
0144. In operation, when a new match request arrives, the
matchmaker dispatcher 1501 can store the request within a
row of the request table 1502. In one embodiment, the dis
patcher 1501 assigns each match request a request ID
(“RID) code, illustrated simply as “A.” “B” and “C” in FIG.
15 (corresponding to mobile devices A, B and C, respec
tively). While shown using a letter designation in FIG. 15 for
simplicity, the RID code may be a string, integer, or any other
variable type Suitable for tracking match requests within the
database.
0145 Each match request may be assigned a matchable set
identifier (“MSI) value which is stored in the request table
1502. In one embodiment, the MSI can identify the specific
application for which a match is being requested and/or the
configuration parameters to be used for that application. For
example, an MSI value of 12:4 may identify a particular
multi-player game with the identifier “12 and may identify a
particular configuration for the game with the identifier “4”

Oct. 13, 2011

More specifically, the ID code of 12 may identify a particular
multi-player racing game and the ID code of 4 may specify a
particular racing track, speed, or player experience level for
the racing game. In one embodiment, application developers
are provided the option to specify any application configura
tion parameters using MSI values in this manner. In one
embodiment, rather than specifying an MSI directly, applica
tion developerS Specify a game ID (to identify a particular
game) and a bucket ID (to identify a particular game configu
ration) and these values are mapped to an MSI value by the
matchmaker dispatcher 1501.
0146 Additionally, several different MSI values may be
used within a single MSI to specify multiple different con
figuration parameters (e.g., 12:4:1 might represent: 12 rac
ing game: 4-track; and 1 experience level). As described in
detail below, in one embodiment, each MSI is used by a
matchmaker 1510 to identify a set of match requests in which
matchmaking operations can be performed (e.g., requests are
grouped based on MSI and matches are performed within
each MSI group). In one embodiment, each MSI may be
dynamically modified/selected by the dispatcher to include a
partition ID identifying different machine partitions. For
example, if a particular MSI becomes overloaded, the dis
patcher may split the MSI between two or more different
servers and/or storage partitions (e.g., using designations
such as 4:3:1 and 4:3:2 where the last digits identify partitions
1 and 2, respectively). A different matchmaker may then
independently retrieve and process requests from each of the
different MSIs from each of the different servers.

0147 As illustrated in FIG. 15, match request data may
also be stored within the request table 1502 for each request.
The request data may include any data usable for rendering a
matchmaking decision and/or any data needed to access the
mobile device initiating the request over the network. For
example, in one embodiment the match request data for each
request includes the NAT type data and/or NAT traversal/
connection data for the mobile device initiating the request.
Other types of request data may also be stored within the
request table 1502 such as device connection speed (100
kbps, 1 Mbps, etc), connection type (e.g., 3G, EDGE, WiFi,
etc), device location (e.g., determined by geo-location tech
niques), language (English, Spanish, etc), and/or user prefer
ences. The request data may be determined by each mobile
device 120-122 and transmitted to the matchmaking dis
patcher 1501 with each match request. For example, each
mobile device may determine its connection data, connection
type, device location, etc, using various techniques, some of
which are described herein (e.g., communicating with a NAT
traversal server to determine NAT traversal/connection data,
using GPS to determine device location, reading HTTP infor
mation to determine language, etc).
0.148. As illustrated in FIG. 15, in one embodiment, each
active MSI can be assigned a row in the MSI table 1503. In
one embodiment, when a new request arrives, in addition to
adding the request to the request table 1502, the dispatcher
1501 also checks the MSI table 1503 to determine whetheran
MSI already exists for that request (i.e., whether other
requests having the same MSI have already been received). If
no matching MSI is found, then the dispatcher 1501 may
create a new entry in the MSI table 1503 for the new request.
If a matching MSI is found, then the dispatcher can simply
add the new request to the request table 1502 as described
above.

US 2011/02521.45 A1

0149. Once the request table 1502 and MSI table 1503 are
updated by the matchmaker dispatcher 1501, an instance of a
matchmaker module 1510 (hereinafter simply referred to as
“matchmaker 1510) fetches the data to perform matchmak
ing operations. Multiple matchmaker instances may be con
currently executed to perform matchmaking requests and a
single matchmaker 1510 may concurrently process multiple
matchmaking operations on multiple different MSI groups.
0150. In one embodiment, when a matchmaker 1510
becomes available (e.g., after completing matching opera
tions for an MSI group or after being initialized), it queries the
MSI table 1503 to identify a new MSI to process. In FIG. 15,
the “N/A value in the matchmaker ID fields for MSI 3:1
indicate that the responsibility for processing this MSI has not
yet been assigned to a matchmaker. In one embodiment, each
MSI entry is time-stamped and the matchmaker 1510 selects
an MSI having the oldest time-stamp.
0151. In one embodiment, when a matchmaker 1510
assumes responsibility for a particular MSI, it updates its
matchmaker ID code in the MSI table 1503 and specifies a
lease duration for that MSI (e.g., 5 seconds). In one embodi
ment, the matchmaker 1510 continually updates the lease
value as it processes matches for that MSI. The lease values
may be used to identify MSIs which were assigned to failed
matchmakers 1510. For example, if the lease value has
expired, that MSI may be claimed by a new matchmaker
notwithstanding the fact that the MSI table 1503 indicates that
the MSI is already assigned to a matchmaker.
0152 Once the matchmaker 1510 has assumed responsi
bility for an MSI, it can query the request table 1502 to read
requests associated with that MSI into memory. The match
maker 1510 can then perform matching operations to match
users and mobile devices according to a set of matching
criteria (e.g., as described below). The matchmaker 1510 can
update the request table 1512 to indicate when matches of
mobile device have been made. For example, the matchmaker
can remove the MSI values from the MSI column in the
request table 1512 and enter a predefined value to indicate
that the match has been completed. In addition, the match
maker 1510 may update the “request data field for each
participant to identify the other participants with which that
participant was matched (e.g., by writing the NAT traversal/
connection data needed to communicate with the other par
ticipants).
0153. The dispatcher 1501 can periodically query the
request table 1502 to identify completed matches. In response
to detecting a completed match, the dispatcher 1501 may
transmit a push notification to the mobile devices involved in
the match (e.g., using the push notification techniques
described herein and in the co-pending applications). In one
embodiment, the push notification includes the "ticket' data
structure described above. The mobile devices may then use
each of their tickets to exchange connection data via the CDX
service 110 as described above.
0154) In addition to using push notifications, in one
embodiment, the mobile devices 120-122 may periodically
query the dispatcher 1501 to determine if a match has been
made. Periodic queries are useful in case the push notification
has not made it to the mobile device. However, because a push
architecture is used, the periodic queries may be set to a
relatively low rate, thereby reducing the load on the match
maker service 111.
0155 FIG. 16 illustrates an exemplary embodiment of a
method in which two mobile devices, A and B, are matched by

Oct. 13, 2011

the matchmaker service 111. FIGS. 17a-d illustrate exem
plary updates to the request table 1502 and the MSI table 1503
which may occur as the method progresses.
0156. At 1601, a match request is received from mobile
device A. At 1602, mobile device A's request is entered in the
request table and a new MSI entry (MSI 1:1) is entered in the
MSI table (if one does not already exist), as illustrated in FIG.
17a. At 1603, a match request is received from mobile device
B and, at 1604, mobile device B's match request is also
entered in the request table as illustrated in FIG. 17b.
0157 At 1605, a particular matchmaker instance (match
maker #N) checks the MSI table and detects that MSI 1:1 has
not been claimed by another matchmaker instance. Alterna
tively, the matchmaker may detect an MSI table entry with an
expired lease, indicating that the matchmaker previously
working on the MSI has failed. In one embodiment, MSI
entries with expired leases are given higher priority than new
MSI entries (which have not yet been assigned a match
maker). In addition, in one embodiment, relatively older MSI
entries may be given higher priority than relatively newer
MSI entries. Regardless of how the matchmaker selects the
MSI, when it does, it adds its identifier and sets a new lease
value for the MSI entry, as illustrated in FIG. 17c (e.g., using
a lease value of 5 seconds in the illustrated example). The
matchmaker may then query the request table and read the
request table entries with that MSI into memory so that they
can be processed.
0158. At 1606, the matchmaker performs a series of
matching operations to select an appropriate match for each
of the requests. Certain embodiments of the matching opera
tions are described below with respect to FIG. 18. Briefly, in
one embodiment, the variables which are evaluated to deter
mine “appropriate matches include the NAT type (e.g., full
cone, port restricted, symmetric, etc), the connection type
(e.g., WiFi, 3G, Edge, etc), the language associated with the
user (derived from the HTTP request accept-language
header), and the age of each of the match requests. In general,
the matchmaker 1510 may attempt to match mobile devices
having compatible NAT types (although the relay service may
Sometimes be used as described below), the same connection
types, and the same language. In one embodiment, the match
maker 1510 may be more liberal with the matching require
ments based on the age of the matching requests (i.e., the
older the request, the more liberally the matching constraints
will be applied).
0159 Returning to FIG. 16, at 1607, following the match
ing decision, the matchmaker 1510 may update the request
table to indicate that the matching is complete, as indicated in
FIG. 17d. As part of the update, the matchmaker may also
update the request data for mobile devices A and B. For
example, in one embodiment, the matchmaker 1510 writes
mobile device B's NAT traversal/connection data in the
request data column for mobile device A and writes mobile
device A's NAT traversal/connection data in the request col
umn for mobile device B.

(0160. At 1608, the dispatcher 1501 can read through the
request table to identify request entries which have been
matched. In one embodiment, when it detects that mobile
devices A and B have been matched, it reads the request data
(updated by the matchmaker as described above), and gener
ates a notification for mobile devices A and B. In one embodi
ment, the notification is the "ticket' data structure described
above which is encrypted and includes the NAT traversal/
connection data for each mobile device. As previously

US 2011/02521.45 A1

described, in one embodiment, the push notification service
1050 is used to push the notifications to mobile devices A and
B. In addition, mobile devices A and B may periodically poll
the dispatcher 1501 to determine whether a match has been
made. In this embodiment, the polling technique may be done
at a relatively slow rate to identify matches which, for some
reason, were not successfully pushed to one of the mobile
devices. Using push notifications to manage polling request
load significantly reduces the load on the matchmaker service
111, which would otherwise be loaded with polling requests
from mobile devices.

0161 If additional match requests are pending for the
same MSI, determined at 1608, the matchmaker may con
tinue to match mobile devices/users within the MSI. At 1610,
the matchmaker may reset the lease value within the MSI
table 1503. At 1611, additional matches are performed and
the request table is updated (as described above). At 1612, the
additional matches are read from the request table and the
additional mobile devices are updated (as described above). If
no additional match requests are pending for the MSI then, at
1609, the MSI entry is removed from the MSI table (e.g., via
a delete command from either the dispatcher and/or the
matchmaker).
0162 FIG. 18 illustrates one embodiment of a method for
performing matches between mobile devices/users (opera
tion 1606 in FIG.16). At 1801, all current MSI requests (e.g.,
for a particular application/bucket combination) are arranged
in pairs. At 1802, the match “fit between each pair is evalu
ated and, at 1803, the pairs are sorted by descending fit. The
“fit is evaluated based on a plurality of different variables
including, but not limited to, the NAT type (e.g., full cone,
port restricted, symmetric, etc), the connection type (e.g.,
WiFi, 3G, Edge, etc), the language associated with the user
(derived from the HTTP request accept-language header),
and the age of each of the match requests. Other variables
which may be factored in to the matchmaking decision
include the location of each of the mobile devices (e.g., with
an attempt to match users in a particular location); minimum
and/or maximum player requirements (e.g., specified by the
user and/or the application); whether the one or more of the
users included in the MSI are “friends' or have entered into a
P2P connection previously (e.g., with a preference to match
ing “friends' or prior acquaintances); and user experience
with the application (e.g., for a multi-player game, the lead
erboard ranks of each of the users may be factored in, with a
preference to matching similarly-experienced users).
0163 As indicated in Table A below, in one embodiment,
the evaluation of "fitness” is a numeric value between 0.0 and
1.0. Using a floating point value allows for normalization of
the fitness for each criteria. To avoid floating point arithmetic,
non-normalized integer values can be used with Suitable
evaluation so fitness values can be compared.
0164. In one embodiment, all criteria have a binary fit
where they are either compatible (having a normalized value
of 1.0) or not compatible (having a normalized value of less
than 1.0). These can be thought of as required criteria where
the fit may change with age (as described below). If location
is added as a variable, then the best fit may be one with the
closest player that matches the required criteria.

Oct. 13, 2011

TABLE A

Match Fitness

Factor Weight Normalized

NAT Compatibility 2.0 0.4
Connection Type 2.0 0.4
Language 1.O O.2

TOTAL S.O 1.O

0.165. In one embodiment, the Fit is equal to the Sum Of
(Normalized Weight* Aged Factor Value) for each of the
above criteria. The Aged Factor Value may start with a value
of 1 and increase after a predetermined period of time has
passed. It may then continue to increase as more time passes
(e.g., periodically increasing by a specified amount). In one
embodiment, instead of using the Aged Factor Value
described above, age thresholds may be established as
described below. The normalized/weighted values of certain
variables Such as Connection Type and Language may be
applied above certain age thresholds (even if they do not
match).
0166 In one embodiment, the “fit’ between a pair of
requests, A and B, is the average of the fit of A with Band B
with A. Moreover, the fit of A with B for each factor may be
adjusted based on A's age (and vice versa). In one embodi
ment, a fit of 1.0 may be required for a compatible match. This
means A and B will only match if the NAT compatibility,
Connection Type and Language match (resulting in a normal
ized value of 1.0) or if A and/or B have aged so that some of
the above variables (e.g., the Connection Type and Language)
are effectively ignored (either using the aged factor value
above or the thresholds below).

TABLE B

Ages

Age Thresh. 1 Thresh. 2 Thresh.3 Thresh. 4 Thresh. 5

Older Than O sec 1 Sec 5 sec 10 sec 30 sec

0.167 Age thresholds may be established as set forth in
Table B above. As each age threshold is passed (i.e., as the
request becomes older than the specified threshold), the aged
factor value may be increased to Successively larger values
(e.g., 1.5, 2.0, etc). Alternatively, or in addition, as different
age thresholds are passed, weighted values for certain vari
ables may be added to the matching decision (e.g., Such as
connection type and language as described below).
0.168. In one embodiment, the request age limits specified
in Table Bare adjusted according to the match flow rate for a
given MSI. In one embodiment, the flow rate is specified as a
number of matches being performed per a specified unit of
time (e.g., every 10 seconds, every minute, etc). Thus, the
flow rate provides an indication as to how busy a particular
MSI set is. In one embodiment, the busier the set, the lower
each of the above thresholds may be set in Table Babove to
increase the probability of an early Successful match and
reduce the load on the matchmaker. Moreover, the load for a
given MSI set may be provided to the end user (e.g., in the
form of an estimated time to match value), so that the end user
can choose whether to attempt to enter a multi-player game

US 2011/02521.45 A1

which is particularly busy. The load value may be provided to
the user in the form of a push notification.
0169 Turning now to each of the variables from Table A,
in one embodiment, NAT compatibility is determined from
the NAT compatibility chart 1400 shown in FIG. 14. If two
NATs are determined to be compatible based on this chart,
then the NAT compatibility weight may be applied.

TABLE C

Connection Type

AB WF Edge 3G

WF 1.O O.O O.O
Edge O.O 1.O O.O
3G O.O O.O 1.O

0170 The connection type may be evaluated using a chart
such as that shown above as Table C. In this example, if the
connection type of devices A and B is the same (as indicated
by a 1.0 in the cells where the same connection types meet),
then the weighted connection type value from Table A may be
included in the fitness determination. As mentioned above,
the age of each of the requests may be used to affect the
connection type determination. For example, in one embodi
ment, the fit value for connection type is selected using the
matrix in Table C forages at threshold 1, 2, and 3. Forages at
threshold 4 or above, the connection type may be set to 1.0
(even for non-matching connection types) and the corre
sponding weighted connection type value may be applied.
While connection “type' is used in some embodiments, con
nection speed may be determined and used with, or instead of
connection type. For example, connection speeds within cer
tain specified ranges may be considered "compatible” (e.g.,
0-100 kbps; 100-500 kbps; 500-1000 kbps, 1000-1500 kbps,
etc). Any of the matching variables discussed herein may also
be applied as weights to the match fit calculation and aged as
described above.

0171 In one embodiment, the player language can be
derived from the HTTP request accept-language header
which may contain one or more languages with a preference
qfactor. The dispatcher can extract the most preferred lan
guage and pass this information to the matchmaker. In one
embodiment, the weighted language value from Table A is set
to 1.0 if the languages are the same or 0.0 if they are not.
However, in one embodiment, the weighted language value
may be applied even if the languages are different if the age is
above a specified threshold (e.g., if the age is at threshold 2 or
above in Table B).
0172. In one embodiment, a match may be made between
two users with incompatible NAT types. For example, if the
matchmaker is having difficulty matching users for a particu
lar MSI, after a specified period of time it may route connec
tions through the relay service 1051 using the techniques
described above. In this way, the relay service 1051 acts as a
pressure valve, allowing aging matches to occur notwith
standing incompatible NAT types. The relay service 1051
may also be used in response to detecting one or more failed
match attempts. In this embodiment, each match request Sub
mitted by a mobile device may include an indication as to
whether one or more unsuccessful matches was previously
attempted.
0173 Various additional match criteria may be evaluated
and provided a weight value as part of the match fit determi

Oct. 13, 2011

nation including, by way of example and not limitation, an
indication as to whether any of the users requesting matches
are friends. For example, the matchmaker 1510 may attempt
to match any requests for users who are “friends' by applying
a “friends' weight to the match fit calculation. Similarly,
friends of friends may also be weighted (e.g., with 2 or more
degrees of separation). Additionally, a player may rate other
players for a particular game and the matchmaker may evalu
ate those ratings when performing a match (with a tendency to
match a user with those players who have relatively higher
ratings and not to match a user with players who have low
ratings). Moreover, the latency of a user's connection may be
evaluated (e.g., using a simple ping operation) and used as
part of the matchmaking decision.
0.174 Yet another variable used to match players may be
device type. For example, the matchmaker 1510 may attempt
to match players with similar device types (e.g., iPads, iPods,
iTouches, iPhones, RIM Blackberries, etc). Additional vari
ables may include a user's leaderboard ranking, current loca
tion, current residence, age, gender, and similar game collec
tions may similarly be evaluated for the match determination
(i.e., in many cases tending to favor matches between those
users with similar criteria). Finally, parental controls may be
evaluated by the matchmaker 1510 to ensure that users are
only matched with appropriate MSIs and with other users of
the same age.
0.175. The matchmaker service 111 may retrieve any of the
above variables from one or more databases managed within
the data service 100 (see, e.g., database 1920 described below
with respect to FIG. 19). For example, a user's friend data
may be accessed from a friends service database and other
information Such as each user's age, gender, game collection,
etc., may be accessed from one or more other databases (e.g.,
a user profile, a games database, a leaderboard database, etc).
In one embodiment, all of the services described herein are
provided with access to the same central database (or group of
databases) for storing all of the various different types of
user/device data used for making matchmaking decisions.
0176 While several specific examples are provided above,

it will be appreciated that the underlying principles of the
invention are not limited to any particular set of variables for
determining a fitness level for a match. In one embodiment,
application programmers designing applications to be run on
the system and method described herein may specify their
own set of criteria for matching and/or for grouping requests
using different MSI criteria.
(0177 Turning back to the method of FIG. 18, once the
match 'fit' between each pair has been determined, at 1803,
the pairs are sorted by descending fit (e.g., with the pairs
having the highest fit at the top of the list). At 1804 “match
sets are seeded with those pairs which have the highest fit
values above the specified threshold. As described above, the
“threshold value may be set to the normalized value of 1.0
shown above in Table A. At 1805, new prospective partners
are added to the match set which have fit values with one orall
of the current members in the match set above a specified
threshold. For example, if a match set has initially been
seeded with A and B, then C may be added to the match set if
the fit value of A-C and/or B-C are above the specified thresh
old. In one embodiment, if only a single match fit is above a
threshold for a prospective party, then that party may be added
to the match set (i.e., because, if necessary, that party will be
able to communicate to all of the parties through the one party
with which it has a suitable match fit). Once one or more new

US 2011/02521.45 A1

parties have been added to the match set, if the size require
ments for the match have been met, determined at 1806, then
the match results are stored and reported at 1807 (e.g., by
updating the request table 1502 and transmitting notifications
as described above). In one embodiment, a single match
request may represent multiple users (e.g., when a match
request follows an invitation sequence as described below). In
this case, the size requirements are evaluated based on the
number of users represented by each match request. If the size
requirements have not been met, then the process returns to
1805 and a new party is added to the match set (i.e., a party
having a match fit with one or more of the current members of
the set above a specified threshold).
0.178 At 1808, the matched requests are removed from the
current set of requests being processed by the matchmaker
1510. At 1809 the next seeded match set is selected and the
process returns to 1804 for additional matching. Although
illustrated in FIG. 18 as a sequential process, it should be
noted that multiple seeded match sets may be processed con
currently while still complying with the underlying principles
of the invention.
0179 Although described above as separate services, the
matchmaker service 111 and the invitation service 112 may
operate together to connect P2P users. For example, in one
embodiment, a first user may invite one or more friends to an
online session and request a match with one or more addi
tional users (e.g., INVITE friend “Bob” and match 3 addi
tional players for a multilayer video game). In Such a case, the
invitation service 112 may initially process the first user's
invitation request to connect the first user and the first user's
friend(s). The results of the invitation request (e.g., a success
ful P2P connection) may then be reported back to the user's
mobile device. The matchmaking service 111 may then
receive a match request from the first user's mobile device (or,
in one embodiment, directly from the invitation service or
from the first user's friends) requesting additional players. In
response, the matchmaker service 111 may match the first
user with one or more other match requests having the same
MSI as the first user's request (as described above). The
match request may include only the first user's matching
criteria or may include the first user's and the first user's
friend's matching criteria (e.g., NAT type, connection type,
language, location, etc). In one embodiment, if one or more of
the first user's friends cannot establish a direct P2P connec
tion with another matched user, the matched user's connec
tion with the first user's friends may by established through
the first user's data processing device (e.g., using the first
user's mobile device as a proxy for the connection) and/or the
relay service may be used to connect the users (as described
above).
0180. In one embodiment, the first user may initially be
matched with one or more users by the matchmaking service
(as described above) and then the first user may invite one or
more friends to join the online session with the first user and
the matched users. In this embodiment, both the user's infor
mation and the matched users information (e.g., NAT/con
nection data, user IDs, push tokens, etc) may be exchanged
with the invited users through the invitation service (as
described above). The underlying principles of the invention
remain the same regardless of whether matching occurs first,
followed by invitation or whether invitation occurs first, fol
lowed by matching.

Application Framework with an Application
Programming Interface for Collaborative Online

Applications
0181. As illustrated in FIG. 19, one embodiment of the
invention is implemented within the context of a mobile

Oct. 13, 2011

device 120 having a predefined software framework 1912
with an application programming interface (API) 1910 for
interfacing with one or more applications 1911 and a service
side API 1910 for communicating with a plurality of network
services 1901-1903. As shown in FIG. 19, the network ser
vices 1901-1903 may be designed and/or managed by the
same online data service 100 (although Such a configuration
is not required). Applications 1911 Such as P2P gaming appli
cations and other types of collaborative online applications
may be designed to access the network services 1901-1903
through the API 1910 by making calls to the API 1910. The
design of applications 1911 may be facilitated using a soft
ware development kid (“SDK) provided by the developer of
the framework 1912 and the network Services 1901-1903. A
more specific implementation of the framework 1912 and
APIs 1910, 1913 is described below with respect to FIG. 20.
0182. As illustrated, each of the services may be provided
with access to a database 1920 for storing data used by the
services. One particular example is the database 1512 used by
the matchmaker service 111 (described above). Other
examples may include a leaderboard database for storing
leaderboard data, a friend service database for storing friend
state records, a profile database for storing user profile data
and a games database for storing data related to online games.
Any type of database may be used (e.g., MySQL, Microsoft
SQL, etc) but in one particular embodiment, a key/value
database such as Berkley DB and/or MZBasic DB can be
used. The databases may be spread across a large number
mass storage devices (e.g., hard drives) in a Storage Area
Network (SAN) or other storage configuration.
0183 Consequently, when a particular service processes
and/or stores data as described above, the data may be stored
within the database 1920. Some services, however, may not
utilize a database. For example, as described above, the invi
tation service 112 may be implemented as a stateless service
and, therefore, may not be required to store data within a
database 1920 (although such an implementation is still pos
sible in accordance with the underlying principles of the
invention).
0.184 The API 1913 may be designed to communicate and
exchange information with the network services 1901-1903
using any suitable network protocol stack including, for
example, TCP/IP or UDP/IP at the network layer and HTTPS
at the application layer. An remote procedure call (RPC)-
based protocol over HTTP or HTTPS such as SOAP may be
used and/or a Representational State Transfer (REST) proto
col may be used. Moreover, the services may be implemented
on any computing platform including, by way of example,
Xserve or similar servers running Unix, Linux or an Apache
Software platform. In one particular embodiment, the plat
form includes Web objects implemented on Linux. The fore
going examples are provided merely for the purpose of illus
tration. The underlying principles of the invention are not
limited to any particular mechanism for linking applications
to services or any particular set of network protocols.
0185 FIG. 20 illustrates a more detailed software archi
tecture including application programming interfaces (APIs)
2001a-b which can be implemented on the wireless device
120 in one embodiment of the invention. Although this
embodiment is described within the context of a multi-player
game framework 2000, the underlying principles of the
invention are not limited to a gaming implementation. For
example, the software architecture shown in FIG. 20 may be

US 2011/02521.45 A1

used to support various collaborative applications which are
not games (e.g., collaborative chat, multi-party collaborative
audio/video, etc).
0186. In the architecture shown in FIG. 20, a game frame
work 2000 is provided to support the various multi-party
features and P2P features described herein. In one embodi
ment, the game framework 2000 is designed to run on the
mobile device's operating system 2005. For example, if the
mobile device 120 is an iPhone, iPad, or iPod Touch, the
operating system 2005 can be the iPhone OS, a mobile oper
ating system designed by the assignee of the present applica
tion.

0187. The game framework 2000 can include a public
application programming interface (API) 2001b and a private
or “secure' API 2001a. In one embodiment, a game center
application 2031 designed to provide various game-related
features described herein can make calls to both the public
API 2001b and the private API 2001a, whereas other appli
cations 2030 (e.g., applications designed by third parties) are
provided with access to only the public API 2001b. For
example, the designer of the mobile device 120 may wish to
keep certain API functions which involve potentially sensi
tive information out of the public API 2001b to avoid abuse by
third party developers (e.g., friend requests, friends lists, etc).
However, both the secure API 2001a and the public API
2001b may be merged into a single API accessible by all
applications on the mobile device (i.e., the separation of the
API into separate public and private components is not
required for complying with the underlying principles of the
invention). The designation API 2001 is sometimes used
below to refer to operations which may be found in either the
public API 2001b and/or the private API 2001a.
0188 One embodiment of the game center application
2031 is described in the co-pending application entitled Sys
tems and Methods for Providing a Game Center, Attorney
Docket No. 4860.P.9127USP1, Ser. No. 61/321,861, Filed
Apr. 7, 2010, having inventors Marcel Van Os and Mike
Lampell (hereinafter “Game Center Patent Application'),
which is assigned to the assignee of the present application
and which are incorporated herein by reference. Briefly, the
game center application2031 includes a game-centric graphi
cal user interface (GUI) for navigating through multi-player
games; purchasing new games; retrieving information related
to games (e.g., leaderboard information, achievements, friend
information, etc); contacting friends to play games; request
ing game matches with other users; and inviting specific
users. Various other functions performed by the game center
application 2031 are described in the Game Center Patent
Application referenced above. Some of the game center func
tions may be provided by the game framework 2000 and made
accessible to other applications 2030 through the public API
2001b.

(0189 In one embodiment, the API 2001 exposed by the
game framework 2000 simplifies the process of designing
multi-player, collaborative games for the mobile device 120.
In particular, in one embodiment, the API 2001 allows devel
opers to make a simple API call to invoke the relatively
complex process of connecting users for a multi-player, P2P
game session. For example, a simple API call such as INVITE
(Player BID, BucketID), may be invoked from the API 2001
to initiate the detailed invitation sequence described above.
Similarly, an API call such as MATCH (Player AID, Bucket
ID) may be invoked from the API 2001 to initiate the detailed
matchmaking sequence described above. The INVITE and

Oct. 13, 2011

MATCH functions are sometimes generally referred to herein
as "P2P Connection Functions.” In one embodiment, the
game framework 2000 includes the program code required to
manage the invitation and matchmaking operations in
response to these API calls (as described in greater detail
below). It should be noted that the actual API functions may
have somewhat different data formats than those set forth
above, (although they may result in the similar operations
performed by the game framework 2000). The underlying
principles of the invention are not limited to any particular
format for specifying API functions.
0190. Various other types of game-related transactions
and information may also be managed by the game frame
work 2000 on behalf of the game center 2031 and other
applications 2030. Some of this information is described in
the Game Center Patent Application. By way of example and
not limitation, this information may include “leaderboard
information related to those users who have achieved top
scores for each game and “achievements' information iden
tifying users who have completed certain game-specific
achievements. Each application developer may specify their
own set of “achievements’ for each game application 2030
(e.g., completed levels 1-3; completed level 1 in under 5
minutes; over 50 kills per level; knocked down 20 flags; etc).
0191 The game framework 2000 may also include pro
gram code for managing a user's friends data and for integrat
ing the friends data within the context of the game center 2031
and other gaming applications 2030. For example, when the
user selects a link to a particular game within the game center
2031, information related to each of the user's friends may be
displayed for that game (e.g., the friends ranking on the
leaderboard, the friends achievements, the results when the
user played the game with each of his/her friends, etc). In one
embodiment, the API 2001 of the game framework 2000
includes functions for accessing friends data managed by a
friend service Such as that described in the co-pending appli
cation entitled Apparatus and Method for Efficiently Manag
ing Data in a Social Networking Service, Attorney Docket
No. 4860.P9240, Ser. No. 61/321,848, Filed Apr. 7, 2010,
having inventors Amol Pattekar, Jeremy Werner, Patrick
Gates, and Andrew H. Vyrros (hereinafter “Friend Service
Application'), which is assigned to the assignee of the present
application and which is incorporated herein by reference.
0.192 As illustrated in FIG. 20, in one embodiment, a
game daemon2020 may interface the game framework 2000
to a first set of services 2050 and a game services component
2010 may interface the game framework 2000 to a second set
of services 2051. By way of example, the first set of services
2050 may include the invitation service 112, matchmaker
service 111, and relay service 1051 described above and the
friend service described in the Friend Service Application
referenced above. Other services which may be accessed via
the game daemon 2020 include a leaderboard service (pro
viding leaderboard data); a game service (providing statistics
and other data related to each of the games and the ability to
purchase game); a user authentication service (for authenti
cating the user of the mobile device); and/or a user profile
service (for storing user profile data such as userpreferences).
The second set of services 2051 accessed via the game ser
vices component 2010 may include the connection data
exchange (CDX) service 110 and the NAT traversal services
290-291 described above. Although illustrated as separate
components in FIG. 20 for the purpose of illustration, the
game daemon 2020 and the game services module 2010 may

US 2011/02521.45 A1

actually be components of the game framework 2000. In one
embodiment, the game daemon 2020 and 2010 communicate
with each of the network services 2050-2051 through a pre
defined API which, in one embodiment, is a private API (i.e.,
not published to third party developers).
0193 In one embodiment, the game daemon 2020 can
communicate with the matchmaker service 111, invitation
service 112, and other services 2050 using the HTTPS pro
tocol while the game services module 2010 can communicate
with the CDX Service 110 and the NAT traversal Services
290-291 using a relatively lightweight protocol such as UDP
Sockets. However, as previously mentioned, various other
network protocols may be employed while still complying
with the underlying principles of the invention.
0194 In addition, as illustrated in FIG. 20, the game dae
mon 2020 may receive push notifications 2052 generated by
certain services 2052 (e.g., the invitation service and match
maker service) while other types of push notifications 2053
may be received directly by the game center (e.g., friend
service notifications such as new friend requests). In one
embodiment, these push notifications 2053 are provided
directly to the game center 2031 to ensure that a user's sen
sitive data is not made accessible to applications 2030
designed by third party application developers.
0.195 Returning to the game invitation examples set forth
above in FIG. 11, when an application 2030 on mobile device
A makes an invitation call to the API 2001b of the game
framework 2000 to invite a user of mobile device B (e.g.,
INVITE (Player B ID, Game/Bucket ID)), the game frame
work 2000 may pass the invitation request to the game dae
mon 2020 of mobile device A. The game daemon 2020 may
then communicate with the invitation service 112 to submit
the invitation request. The invitation service 112 can then use
the push notification service 1050 (as described above) to
push the invitation to the game daemon2020 of mobile device
B. The game daemon 2020 of mobile device B may then
communicate with the game framework 2000 of mobile
device B to determine whether the game for which the invi
tation was sent is installed on mobile device B. If so, then the
game framework 2000 may trigger the application 2030 and/
or generate a visual notification of the invitation. If the appli
cation is not installed, then the game framework 2000 may
trigger a visual notification of the invitation to the user of
mobile device B with an offer to purchase the game (e.g., via
the game center 2031 GUI). Alternatively, the visual notifi
cation may be generated by a push notification daemon run
ning on the mobile device 120 (not shown). If the user of
mobile device B purchases the game, the invitation sequence
may continue following the purchase. Ifuser of mobile device
B accepts the invitation request, then the game framework
2000 of mobile device B may pass the invitation request to its
game daemon 2020 which can then respond to the invitation
service 112.

(0196. Recall that in FIG. 11, the compatibility check 1106
determines that the NAT types of mobile devices A and B are
compatible. Thus, at 1108, mobile device A's game daemon
2020 may receive mobile device B's acceptance (e.g., via
push notification in the example) and, in one embodiment,
passes the acceptance to the game framework 2000. At this
stage, the game framework 2000 of mobile device A may
either notify the requesting application 2030 that mobile
device Bhas accepted (via the API 2001) or may wait to notify
the requesting application 2030 until the devices have been
Successfully connected. In either case, the game framework

Oct. 13, 2011

2000 may pass a connection request to the game services
module 2010 which, in one embodiment, may initiate a con
nection data exchange with mobile device B. In particular, the
game services module may transmit mobile device A's con
nection data to mobile device Busing the CDX service 110
(see, e.g., transactions 1111 and 1112 in FIG. 11). As
described above, this communication may be implemented as
a UDP connection using a secure "ticket' data structure.
(0197) Recall that in FIG. 12, if the compatibility check
1106 determines that the NAT types of mobile devices A and
Bare not compatible then the relay service 1051 may be used
to provide a connection between the devices. Consequently,
the game daemon 2020 of mobile device B may receive a
relay response 1203 from the invitation service (shown in
FIG. 12) and the game daemon 2020 of mobile device A may
receive a relay response 1205 from the invitation service (via
the push notification service 1050). The game daemons 2020
of mobile devices A and B may communicate with the relay
service at 1206 and 1207 to retrieve configuration data. At
1210, the game daemon 2020 of mobile device B receives
relay update data from mobile device Aand, at 1213, the game
daemon 2020 of mobile device A receives relay update data
from mobile device B.
(0198 The end result of the processes shown in FIGS. 11
and 12 is that mobile devices A and B have established a
connection with one another (either a direct, P2P connection
or a relay connection). In one embodiment, upon detecting a
successful connection, the game framework 2000 may notify
the application2030 which requested the connection using an
API call (e.g., CONNECTED (Player AID, Player BID)).
Mobile devices A and B may then play the specified game or
other collaborative application 2030 using the established
connection.
0199 Thus, in response to a relatively simply call from the
API 2001 (e.g., INVITE Player B ID, Game/Bucket ID), a
complex series of transactions may be managed by the game
framework 2000 to establish a P2P or a relay connection
between mobile devices A and B. In one embodiment, the
game framework 2000 performs the sequence of operations to
connect mobile devices A and B, and then provides the results
to the requesting application 2030, thereby leaving the details
of the API call transparent to the application designer. As
Such, the application designer is not required to understand
how to connect mobile devices A and B on the network, or to
perform various other functions required for enabling com
munication between the devices, thereby simplifying the
application design process.
0200. In a similar manner, the game framework 2000 can
establish a match between mobile device A and other partici
pants using the matchmaker service 111 as described above
with respect to FIG. 2a-b. In this example, the application
2030 may make a simple call to the API 2001 such as MATCH
(Player A ID, Game/Bundle ID). In response, the game
framework 2000 can manage the matching and connection
data exchange operations. When the matching operations
and/or P2P connections are complete, the game framework
2000 provides the results back to the application 2030.
0201 For example, in FIG.2b, the game framework 2000
may use the game services module 2010 to communicate with
the connection data exchange (CDX) service 110 and NAT
traversal services 290-291 and may use the game daemon to
communicate with the matchmaker service 111. Once a
match has been made, the game daemon 2020 of mobile
device A receives Ticket A at 229 and the game framework

US 2011/02521.45 A1

2000 uses this information to implement a connection data
exchange through the game services module 2010. For
example, at 232, it may request its own connection data
through the NAT traversal service 290 and may then exchange
its connection data at 233-234 through the CDX service 110.
At 237 and 240, the game services module 2010 of mobile
device A receives connection data for mobile devices Band C,
respectively. Following these exchanges, the game services
module 2010 establishes P2P connections at 241 and the
game framework 2000 notifies the application 2030 that the
connection process is complete using an API notification
(e.g., MATCHCOMPLETE (Player BID, Player CID)). The
application may then execute using the established P2P con
nection.

0202 In some embodiments, the user may be given the
option to play a game with other friends who are currently
registered as “online. In this case, the notification that certain
friends are online may be provided via the push notifications
2052 or push notifications 2053 (received directly by the
game center 2031). The game center 2031 and/or applications
2030 may then provide the notifications to the user and pro
vide the user the option to play with one or more selected
online friends. It should be noted, however, that the invitation
sequence described herein will work regardless of whether
online notifications are provided. In one embodiment, the
user's online status may be monitored by a service accessible
by the game daemon 2020 (e.g., by the friend service men
tioned above or by a separate “presence' service).
0203 One embodiment of the game framework 2000 pro
vides for a combination invitation/matchmaking operation in
which a user may invite one or more friends to play a game
with a group of unknown matched participants. For example,
if a game requires 4 players and a first user invites a second
user to play the game, then the invitation service 112 may
initially connect the first user and second user and the match
making service 111 may then match the first user and second
user with two (or more) other players. In this embodiment, the
game framework 2000 may initially perform the invitation
sequences described above to connect the first user and the
second user. In one embodiment, once the first user and sec
ond user have been successfully connected, the game frame
work 2000 may implement the matchmaking sequences to
identify and connect with the other users. A mentioned above,
in one embodiment, the matching criteria applied by the
matchmaking service may include both the first and second
user (e.g., NAT types, connection types, language, etc., of both
the first and second user). Alternatively, the criteria of one of
the two users may be evaluated to make the matching deci
S1O.

0204. Once all of the users are connected, the game frame
work 2000 may provide the connection results to the appli
cation2030 which requested the connection via the API 2001.
Once again, in response to a relatively simple API call by an
application 2030, the game framework 2000 enters into a set
of complex transactions to connect each of the devices. Once
the devices have been Successfully connected, the game
framework 2000 provides the results back to the requesting
application 2030.
0205 As illustrated in FIG. 20, the game framework 2000
may include a communication buffer 2003 to temporarily
store communication between the user and other game par
ticipants. The communication may include, for example, text,
audio and/or video communication. The game framework
2000 can establish the buffer 2003 based on the requirements

Oct. 13, 2011

of each application 2030. For example, a relatively larger
buffer 2003 may be required for audio/video communication
with a slow network connection. In one embodiment, each
application 2030 may make an explicit request to establish a
communication buffer of a certain size via the API 2001 (e.g.,
using a BUFFER (size) command). Alternatively, the game
framework 2000 may automatically create a buffer based on
the communication requirements of each application. For
example, the game framework 2000 may select a particular
buffer size based on whether text, audio, and/or video need to
be supported.
0206. In one embodiment, the communication buffer 2003
may temporarily store communication streams before all of
the P2P connections have been established between users.
For example, after the invitation service 112 or matchmaker
service 111 has identified each of the users but before the
CDX service 110 has completed the connection data
exchange operations, each user may be notified of the other
game participants in the process of being connected. At this
stage the user of the mobile device 120 may transmit text,
audio and/or video communication streams to the other par
ticipants. The game framework 2000 will store the commu
nication streams within the communication buffer 2003 for
those participants who are not yet connected. The game
framework 2000 may then transmit the text, audio and/or
video from the buffer 2003 as the connection for each device
is completed.
0207. In one embodiment, the game daemon 2020
includes a cache 2021 for caching data persisted on each of
the services 2050 to reduce the network traffic. For example,
the user's friends list, leaderboard data, achievements data,
presence data, and profile data may be stored in the cache
2021 as specified by a cache management policy. In one
embodiment, the cache management policy is driven by each
individual service on which the data is stored. Consequently,
for n different services, n different cache management poli
cies may be applied to the cache 2021. In addition, because
the cache management policy is driven by the services, it may
be modified dynamically based on current network and/or
server load conditions. For example, during periods of time
when a service is heavily loaded (e.g., Christmas, the day of
a new product release, etc.), the service may dynamically
specify a cache management policy with relatively infrequent
cache updates (e.g., updates every 12 hours). By contrast,
during periods of time when a service is not heavily loaded,
the service may specify a caching policy with more frequent
cache updates (e.g., updates every /2 hour, hour, 2 hours, etc).
0208. In one embodiment, the cache management policy is
specified using a time-to-live (TTL) value for certain data
records stored in the cache 2021. When a data record has been
stored in the cache past its TTL value, then that data is con
sidered “stale” and a local request for that data may be for
warded directly to the service associated with that data. In one
embodiment, the request includes an ID code identifying a
current version of the data. If the ID code matches the ID code
on the service, then the data is still valid and does not need to
be updated. A response may then be sent back from the
service indicating that the data in the cache is current and the
TTL value for the data record may be reset.
0209. In addition to using a cache management policy as
described above, in one embodiment, cache updates for cer
tain types of data may be pushed to the mobile device using
the push notification service 1050. For example, changes to a
user's friends list or to the current online status of the user's

US 2011/02521.45 A1

friends may be dynamically pushed to the user's mobile
device 120. The push notification may be received by the
game daemon2020 which may then update the cache 2021 to
include the relevant portion of the data pushed by the service
(i.e., an update all of the data in the cache associated with that
service may not be required). By contrast, some push notifi
cations may instruct the game daemon 2020 to overwrite the
entire contents of cache (or at least the portion of the cache
associated with the service performing the push).
0210 Those services which utilize push to update the
cache 2021 may choose relatively high TTL values (and/or
may not set TTL values) because they have the ability to push
notifications to update data stored in the cache 2021. In one
embodiment, each service specifies a set of events which may
trigger a push notification cache update. For example, cache
update events may include a change to a friend's online status,
a new friend request, an acceptance of a friend request, a
de-friend operation, an indication that a friend is playing a
particular game, a game achievement reached by a friend, an
update to the top 10 of a particular leaderboard, or any other
events deemed to be of sufficient importance to warrant a
cache update. Using push notifications to update the cache
2021 in this manner may decrease network and service load
because, with push updates, periodic polling between the
mobile device and the service is not required.
0211 One embodiment of the game framework 2000
uniquely formats data presented to the end user based on the
country and/or geographical location of the user. For
example, Values such as current date, time and monetary
values may be presented differently for users in different
countries and locations. By way of example, in the United
States the date format may be month day, year (e.g., Apr. 25.
2010) whereas in other countries, the date format may be day
month, year (e.g., 25 Apr., 2010). Similarly, when represent
ing time in the US and some other countries the AM/PM
designation may be used and a colon may be used between
hours and minutes (e.g., 3:00 PM). By contrast, many other
countries do not use the AM/PM designation and/or use a
comma between hours and minutes (e.g., 15.00). As another
example, many parts of the world use the metric system while
some parts of the world do not (e.g., the United States). It
should be noted that these are simply illustrative examples
which may be used by certain embodiments of the invention.
The underlying principles of the invention are not limited to
any particular set of data formats.
0212. In one embodiment, these different data formats
may be selected when displaying leaderboard data, achieve
ments data, friends data, and/or any other data processed by
the game framework 2000. The game framework 2000 may
determine the country and/or geographical location of the
user in various ways. For example, in one embodiment, this
information is simply provided in the user's profile data and/
or may be determined based on the user's cellular service
provider. The user's location may also be determined using,
for example, Global Positioning System (GPS) tracking.
0213. Other types of data formatting which are unrelated
to geographical location and/or country may also be managed
by the game framework 2000. For example, when displaying
leaderboard data, it is important to know whether the lowest
score should place the user at the top or bottom of the lead
erboard. For some games (e.g., golf, track, racing, skiing,
etc), a lower number indicates a better performance whereas
in other games (e.g., football, baseball, etc), a higher number
indicates a better performance. Thus, in one embodiment, the

20
Oct. 13, 2011

application 2030 specifies the type of score which will be
used via the API 2001 (e.g., “ascending” or "descending').
The game framework 2000 may then use the appropriate set
of labels and formatting for displaying the score.
0214. One embodiment of the game framework 2000 also
filters user databased on the relationship between the user and
the user's friends. For example, one embodiment of the inven
tion allows for a “detailed' view, a “friends' view, and a
“public' view. In one embodiment, the detailed view is avail
able to the user who owns the data (i.e., the user's personal
information); the friends view is available to the user's
friends; and the public view is available to all other users.
0215. By way of example, the public view may simply
include an “alias’ name associated with each user, the games
played by the alias and associated scores, and the dates/times
on which the games were played. This information may be
used by the game framework 2000 to populate a public lead
erboard which may then be displayed via the game center
2031.

0216. The friends view may include all of the information
from the general view as well as any additional information to
be shared among the user's friends including, for example, the
games owned by the user; the games played by the user, the
user's achievements and scores; how many friends the user
has; the identify of those friends; URL identifying the user's
avatars, and/or the user's online status, to name a few. In one
embodiment, the “friends' view provides a default set of
information to be shared with friends but the end user may
adjust this default configuration and specify with particularity
the types of information to be shared by each individual friend
or groups of friends (e.g., co-workers, family members, col
lege/high School friends, etc).
0217. The “detailed' view may include all of the informa
tion from the “public' and “friend' views as well as any other
information managed by the various services 2050 on behalf
of the end user. By way of example, this may include all of the
user's profile data; the user's Universally Unique Identifier
(“UUID) (sometimes referred to herein as the “Player ID');
player name; alias names; number of games and the identity
of the games; the user's friends; all of the user's achieve
ments, etc.
0218. In some circumstances, an application 2030 may
only require a small amount of information related to each
user such as each user's Player ID. For example, in one
embodiment, when a match is requested, the game framework
2000 may initially only require each player's ID. As matches
are made by the matchmaker service (see above), the game
framework 2000 may determine whether any of the matched
users are friends (e.g., via communication with the friend
service and/or by interrogating the user's local friend data). If
so, then the game framework 2000 may retrieve additional
user data and provide that data to any matched friends. In this
way, the game framework 2000 filters information based on
the identity of the users and the relationship between each of
the users.

0219. In one embodiment, the game framework 2000 ini
tially provides a public view between a first user and a second
user if the two users do not have a friend relationship. How
ever, in one embodiment, the game framework 2000 allows
the first user to send a friend request to the second user (e.g.,
using the second user's alias). If the friend request is accepted,

US 2011/02521.45 A1

then the game framework 2000 will provide additional infor
mation to each of the users (e.g., the default “friend' view).

Different API Embodiments

0220. The API implemented in one embodiment, is an
interface implemented by a software component (hereinafter
“API implementing software component’) that allows a dif
ferent software component (hereinafter API calling software
component') to access and use one or more functions, meth
ods, procedures, data structures, and/or other services pro
vided by the API implementing software component. For
example, an API allows a developer of an API calling soft
ware component (which may be a third party developer) to
leverage specified features provided by an API implementing
software component. There may be one API calling software
component or there may be more than one such software
component. An API can be a source code interface that a
computer system or program library provides in order to
Support requests for services from a software application. An
API can be specified in terms of a programming language that
can be interpretative or compiled when an application is built,
rather than an explicit low level description of how data is laid
out in memory.
0221) The API defines the language and parameters that
API calling software components use when accessing and
using specified features of the API implementing software
component. For example, an API calling software component
accesses the specified features of the API implementing soft
ware component through one or more API calls (sometimes
referred to as function or method calls) exposed by the API.
The API implementing software component may return a
value through the API in response to an API call from an API
calling software component. While the API defines the syntax
and result of an API call (e.g., how to invoke the API call and
what the API call does), the API typically does not reveal how
the API call accomplishes the function specified by the API
call. Various function calls or messages are transferred via the
one or more application programming interfaces between the
calling Software (API calling software component) and an
API implementing software component. Transferring the
function calls or messages may include issuing, initiating,
invoking, calling, receiving, returning, or responding to the
function calls or messages. Hence, an API calling Software
component can transfera call and an API implementing soft
ware component can transfer a call.
0222 By way of example, the API implementing software
component 2010 and the API calling software component
may be an operating system, a library, a device driver, an API.
an application program, or other software module (it should
be understood that the API implementing software compo
nent and the API calling Software component may be the same
or different type of software module from each other). The
API calling software component may be a local software
component (i.e., on the same data processing system as the
API implementing software component) or a remote Software
component (i.e., on a different data processing system as the
API implementing Software component) that communicates
with the API implementing software component through the
API over a network. It should be understood that an API
implementing Software component may also act as an API
calling Software component (i.e., it may make API calls to an
API exposed by a different API implementing software com
ponent) and an API calling Software component may also act

Oct. 13, 2011

as an API implementing software component by implement
ing an API that is exposed to a different API calling software
component.
0223) The API may allow multiple API calling software
components written in different programming languages to
communicate with the API implementing Software compo
nent (thus the API may include features for translating calls
and returns between the API implementing software compo
nent and the API calling software component); however the
API may be implemented in terms of a specific programming
language.
0224 FIG. 21 illustrates one embodiment of an API archi
tecture which includes an API implementing software com
ponent 2110 (e.g., an operating system, a library, a device
driver, an API, an application program, or other Software
module) that implements the API 2120. The API 2120 speci
fies one or more functions, methods, classes, objects, proto
cols, data structures, formats and/or other features of the API
implementing Software component that may be used by the
API calling software component 2130. The API 2120 can
specify at least one calling convention that specifies how a
function in the API implementing software component
receives parameters from the API calling Software component
and how the function returns a result to the API calling soft
ware component. The API calling software component 2130
(e.g., an operating system, a library, a device driver, an API, an
application program, or other software module), makes API
calls through the API 2120 to access and use the features of
the API implementing software component 2110 that are
specified by the API 2120. The API implementing software
component 2110 may return a value through the API 2120 to
the API calling software component 2130 in response to an
API call.
0225. It will be appreciated that the API implementing
software component 2110 may include additional functions,
methods, classes, data structures, and/or other features that
are not specified through the API2120 and are not available to
the API calling software component 2130. It should be under
stood that the API calling software component 2130 may be
on the same system as the API implementing software com
ponent 2110 or may be located remotely and accesses the API
implementing software component 2110 using the API 2120
over a network. While FIG. 21 illustrates a single API calling
software component 2130 interacting with the API 2120, it
should be understood that other API calling software compo
nents, which may be written in different languages (or the
same language) than the API calling Software component
2130, may use the API 2120.
0226. The API implementing software component 2110,
the API 2120, and the API calling software component 2130
may be stored in a machine-readable medium, which includes
any mechanism for storing information in a form readable by
a machine (e.g., a computer or other data processing system).
For example, a machine-readable medium includes magnetic
disks, optical disks, random access memory; read only
memory, flash memory devices, etc.
0227. In FIG. 22 (“Software Stack”), an exemplary
embodiment, applications can make calls to Services 1 or 2
using several Service APIs and to Operating System (OS)
using several OS APIs. Services 1 and 2 can make calls to OS
using several OS APIs.
0228 Note that the Service 2 has two APIs, one of which
(Service 2 API 1) receives calls from and returns values to
Application 1 and the other (Service 2 API 2) receives calls

US 2011/02521.45 A1

from and returns values to Application 2. Service 1 (which
can be, for example, a Software library) makes calls to and
receives returned values from OS API 1, and Service 2 (which
can be, for example, a Software library) makes calls to and
receives returned values from both OS API 1 and OS API 2.
Application 2 makes calls to and receives returned values
from OS API 2.

Exemplary Data Processing Devices
0229 FIG.23 is a block diagram illustrating an exemplary
computer system which may be used in Some embodiments of
the invention. It should be understood that while FIG. 23
illustrates various components of a computer system, it is not
intended to represent any particular architecture or manner of
interconnecting the components as Such details are not ger
mane to the present invention. It will be appreciated that other
computer systems that have fewer components or more com
ponents may also be used with the present invention.
0230. As illustrated in FIG. 23, the computer system 2300,
which is a form of a data processing system, includes the
bus(es) 2350 which is coupled with the processing system
2320, power supply 2325, memory 2330, and the nonvolatile
memory 2340 (e.g., a hard drive, flash memory, Phase
Change Memory (PCM), etc.). The bus(es) 2350 may be
connected to each other through various bridges, controllers,
and/or adapters as is well known in the art. The processing
system 2320 may retrieve instruction(s) from the memory
2330 and/or the nonvolatile memory 2340, and execute the
instructions to perform operations as described above. The
bus 2350 interconnects the above components together and
also interconnects those components to the optional dock
2360, the display controller & display device 2370, Input/
Output devices 2380 (e.g., NIC (Network Interface Card), a
cursor control (e.g., mouse, touchscreen, touchpad, etc.), a
keyboard, etc.), and the optional wireless transceiver(s) 2390
(e.g., Bluetooth, WiFi, Infrared, etc.).
0231 FIG.24 is a block diagram illustrating an exemplary
data processing system which may be used in Some embodi
ments of the invention. For example, the data processing
system 2400 may be a handheld computer, a personal digital
assistant (PDA), a mobile telephone, a portable gaming sys
tem, a portable media player, a tablet or a handheld comput
ing device which may include a mobile telephone, a media
player, and/or a gaming system. As another example, the data
processing system 2400 may be a network computer or an
embedded processing device within another device.
0232. According to one embodiment of the invention, the
exemplary architecture of the data processing system 2400
may used for the mobile devices described above. The data
processing system 2400 includes the processing system 2420.
which may include one or more microprocessors and/or a
system on an integrated circuit. The processing system 2420
is coupled with a memory 2410, a power supply 2425 (which
includes one or more batteries) an audio input/output 2440, a
display controller and display device 2460, optional input/
output 2450, input device(s) 2470, and wireless transceiver(s)
2430. It will be appreciated that additional components, not
shown in FIG. 24, may also be a part of the data processing
system 2400 in certain embodiments of the invention, and in
certain embodiments of the invention fewer components than
shown in FIG. 24 may be used. In addition, it will be appre
ciated that one or more buses, not shown in FIG. 24, may be
used to interconnect the various components as is well known
in the art.

22
Oct. 13, 2011

0233. The memory 2410 may store data and/or programs
for execution by the data processing system 2400. The audio
input/output 2440 may include a microphone and/or a
speaker to, for example, play music and/or provide telephony
functionality through the speaker and microphone. The dis
play controller and display device 2460 may include a graphi
cal user interface (GUI). The wireless (e.g., RF) transceivers
2430 (e.g., a WiFi transceiver, an infrared transceiver, a Blue
tooth transceiver, a wireless cellular telephony transceiver,
etc.) may be used to communicate with other data processing
systems. The one or more input devices 2470 allow a user to
provide input to the system. These input devices may be a
keypad, keyboard, touch panel, multi touch panel, etc. The
optional other input/output 2450 may be a connector for a
dock.
0234 Embodiments of the invention may include various
steps as set forth above. The steps may be embodied in
machine-executable instructions which cause a general-pur
pose or special-purpose processor to perform certain steps.
Alternatively, these steps may be performed by specific hard
ware components that containhardwired logic for performing
the steps, or by any combination of programmed computer
components and custom hardware components.
0235 Elements of the present invention may also be pro
vided as a machine-readable medium for storing the machine
executable program code. The machine-readable medium
may include, but is not limited to, floppy diskettes, optical
disks, CD-ROMs, and magneto-optical disks, ROMs, RAMs.
EPROMs, EEPROMs, magnetic or optical cards, or other
type of media/machine-readable medium Suitable for storing
electronic program code.
0236 Throughout the foregoing description, for the pur
poses of explanation, numerous specific details were set forth
in order to provide a thorough understanding of the invention.
It will be apparent, however, to one skilled in the art that the
invention may be practiced without some of these specific
details. For example, it will be readily apparent to those of
skill in the art that the functional modules and methods
described herein may be implemented as software, hardware
or any combination thereof. Moreover, although embodi
ments of the invention are described herein within the context
of a mobile computing environment (i.e., using mobile
devices 120-123; 601-603), the underlying principles of the
invention are not limited to a mobile computing implemen
tation. Virtually any type of client or peer data processing
devices may be used in some embodiments including, for
example, desktop or workstation computers. Accordingly, the
Scope and spirit of the invention should be judged in terms of
the claims which follow.

What is claimed is:
1. A mobile data processing system, comprising:
a memory for storing program code;
a processor for processing the program code to generate an

application framework including a first application pro
gramming interface (API) implementing component
that implements an API, wherein the API exposes one or
more functions to an API-calling component, the func
tions including a peer-to-peer ("P2P) connection func
tion for establishing a P2P communication connection
with another data processing system, wherein upon call
ing of the P2P connection function, the application
framework performs the operations of:

transmitting a connection request to a first network service
to establish a P2P connection with one or more other

US 2011/02521.45 A1

mobile data processing systems, the connection request
including NAT traversal data needed to traverse a NAT
device to communicate with the mobile data processing
system;

receiving a connection data structure from the network
service, the connection data structure including NAT
traversal data for each of the one or more other mobile
data processing systems;

attaching connection data for the mobile data processing
system to the connection data structure and transmitting
the connection data structure with the connection data to
a connection data exchange service; and

receiving connection data of the one or more other mobile
data processing systems from the connection data
exchange service; and

using the connection data to establish P2P connections
with the one or more other mobile data processing sys
temS.

2. The mobile data processing system as in claim 1 wherein
upon calling of the P2P connection function, the application
framework performs the additional operations of:

transmitting a network address translation (“NAT) tra
Versal data request; and

receiving a NAT traversal data response including a public
network address and port needed to traverse the NAT
device to communicate with the mobile data processing
system.

3. The mobile data processing system as in claim 2 wherein
the NAT traversal data further includes NAT type data indi
cating a NAT device type.

4. The mobile data processing system as in claim 1 wherein
the P2P connection function comprises a match function and
wherein the network service comprises a matchmaking Ser
vice receiving requests for P2P matches from a plurality of
mobile data processing systems, the matchmaking service
matching the mobile data processing system with the one or
more other mobile data processing systems for a P2P session
based on a set of matching criteria and responsively generat
ing the connection data structure identifying the NAT tra
versal data for each of the plurality of mobile computing
devices.

5. The mobile data processing system as in claim 1 wherein
the P2P connection function comprises an invitation function
identifying a second mobile data processing system, and
wherein the network service comprises an invitation service
receiving an invitation request from the application frame
work requesting a P2P connection with the second mobile
data processing system, the invitation service responsively
generating the connection data structure identifying each of
the and second mobile data processing systems.

6. The mobile data processing system as in claim 1 wherein
the P2P connections requested and established by the appli
cation framework comprise P2P sessions for a multiplayer
game or a video chat.

7. The mobile data processing system as in claim 1 wherein
the application framework is a game framework proving API
functions for multi-player video games.

8. The mobile data processing system as in claim 7 wherein
the gaming framework includes a game daemon to transmit
the connection request to the first network service and to
receive the connection data structure from the network ser
vice.

9. The mobile data processing system as in claim 8 wherein
the gaming framework includes a game services module to

23
Oct. 13, 2011

transmit the connection data structure with the connection
data to a connection data exchange service and to receive
connection data of the one or more other mobile data process
ing systems from the connection data exchange service.

10. The mobile data processing system as in claim 9
wherein the game services module communicates with the
connection data exchange service using User Datagram Pro
tocol (“UDP) sockets and wherein the game daemon com
municates to the network service using Hypertext Transport
Protocol Secure (“HTTPS).

11. The mobile data processing system as in claim 8
wherein the game daemon comprises a cache for storing
copies of data received from the network service and one or
more other network services.

12. The mobile data processing system as in claim 11
wherein at least one of the other network services comprises
a friends service and wherein the cache stores copies of a
user's friends list.

13. The mobile data processing system as in claim 1
wherein the application framework comprises a communica
tion buffer for storing communication streams generated by a
user of the mobile data processing system prior to using the
connection data to establish the P2P connections with the one
or more other mobile data processing systems.

14. The mobile data processing system as in claim 13
wherein the communication streams comprise text, audio or
Video generated by the user.

15. The mobile data processing system as in claim 8
wherein the game daemon receives the connection data struc
ture from a push notification service.

16. A machine-readable medium having program code
stored thereon which, when executed by a processor of a first
mobile data processing system, causes the processor to gen
erate an application framework including a first application
programming interface (API) implementing component that
implements an API, wherein the API exposes one or more
functions to an API-calling component, the functions includ
ing a peer-to-peer ("P2P") connection function for establish
ing a P2P communication connection with another data pro
cessing system, wherein upon calling of the P2P connection
function, the application framework performs the operations
of:

transmitting a connection request to a first network service
to establish a P2P connection with one or more other
mobile data processing systems, the connection request
including NAT traversal data needed to traverse a NAT
device to communicate with the first mobile data pro
cessing system;

receiving a connection data structure from the network
service, the connection data structure including NAT
traversal data for each of the one or more other mobile
data processing systems;

attaching connection data for the first mobile data process
ing system to the connection data structure and trans
mitting the connection data structure with the connec
tion data to a connection data exchange service; and

receiving connection data of the one or more other mobile
data processing systems from the connection data
exchange service; and

using the connection data to establish P2P connections
with the one or more other mobile data processing sys
temS.

US 2011/02521.45 A1

17. The machine-readable medium as in claim 16 wherein
upon calling of the P2P connection function, the application
framework performs the additional operations of:

transmitting a network address translation (“NAT) tra
Versal data request; and

receiving a NAT traversal data response including a public
network address and port needed to traverse the NAT
device to communicate with the first mobile data pro
cessing system.

18. The machine-readable medium as in claim 17 wherein
the NAT traversal data further includes NAT type data indi
cating a NAT device type.

19. The machine-readable medium as in claim 16 wherein
the P2P connection function comprises a match function and
wherein the network service comprises a matchmaking Ser
vice receiving requests for P2P matches from a plurality of
mobile data processing systems, the matchmaking service
matching the first mobile data processing system with the one
or more other mobile data processing systems for a P2P
session based on a set of matching criteria and responsively
generating the connection data structure identifying the NAT
traversal data for each of the plurality of mobile computing
devices.

20. The machine-readable medium as in claim 16 wherein
the P2P connection function comprises an invitation function
identifying a second mobile data processing system, and
wherein the network service comprises an invitation service
receiving an invitation request from the application frame
work requesting a P2P connection with the second mobile
data processing system, the invitation service responsively
generating the connection data structure identifying each of
the first and second mobile data processing systems.

21. The machine-readable medium as in claim 16 wherein
the P2P connections requested and established by the appli
cation framework comprise P2P sessions for a multiplayer
game or a video chat.

22. The machine-readable medium as in claim 16 wherein
the application framework is a game framework proving API
functions for multi-player video games.

23. The machine-readable medium as in claim 22 wherein
the gaming framework includes a game daemon to transmit
the connection request to the first network service and to
receive the connection data structure from the network ser
vice.

24. The machine-readable medium as in claim 23 wherein
the gaming framework includes a game services module to
transmit the connection data structure with the connection
data to a connection data exchange service and to receive
connection data of the one or more other mobile data process
ing systems from the connection data exchange service.

25. The machine-readable medium as in claim 24 wherein
the game services module communicates with the connection
data exchange service using User Datagram Protocol
(“UDP) sockets and wherein the game daemon communi
cates to the network service using Hypertext Transport Pro
tocol Secure (“HTTPS).

24
Oct. 13, 2011

26. The machine-readable medium as in claim 23 wherein
the game daemon comprises a cache for storing copies of data
received from the network service and one or more other
network services.

27. The machine-readable medium as in claim 26 wherein
at least one of the other network services comprises a friends
service and wherein the cache stores copies of a user's friends
list.

28. The machine-readable medium as in claim 16 wherein
the application framework comprises a communication
buffer for storing communication streams generated by a user
of the mobile data processing system prior to using the con
nection data to establish the P2P connections with the one or
more other mobile data processing systems.

29. The machine-readable medium as in claim 28 wherein
the communication streams comprise text, audio or video
generated by the user.

30. The machine-readable medium as in claim 23 wherein
the game daemon receives the connection data structure from
a push notification service.

31. A mobile data processing system, comprising:
a memory for storing program code;
a processor for processing the program code to generate an

application framework comprising:
a first application programming interface (API) imple

menting component that implements a first API, wherein
the API exposes one or more functions to an API-calling
component, the functions including a communication
function for communicating with a plurality of different
network services;

a API implementing component that implements a second
API, wherein the API exposes one or more functions to
each of the plurality of network services; and

a cache for caching data from each of the network services,
the cache having a plurality of different cache manage
ment policies driven by each of the plurality of network
services.

32. The mobile data processing system as in claim 31
wherein one or more of the network services Supply push
notification cache updates to update the data in the cache
related to those services in response to certain predefined
eVentS.

33. The mobile data processing system as in claim 32
wherein at least one of the predefined events comprises a
change to a friend's online status, a new friend request, an
acceptance of a friend request, a de-friend operation, an indi
cation that a friend is playing a particular game, a game
achievement reached by a friend, and/or an update to a par
ticular leaderboard.

34. The mobile data processing system as in claim 31
wherein each of the cache management policies driven by
each service specifies a time-to-live value (TTL) associated
with its respective data stored in the cache.

c c c c c

