US011693799B2

a2 United States Patent ao) Patent No.: US 11,693,799 B2

Butenhof et al. 45) Date of Patent: Jul. 4, 2023

(54) BANDWIDTH CONTROL FOR 8,040,807 B2* 10/2011 Pai .cccooeovvvivvrrinnnns HO041 47/41

INPUT/OUTPUT CHANNELS 370/236
9,729,634 B2 8/2017 Adriaens et al.

(71) Applicant: RED HAT, INC., Raleigh, NC (US) 10,001,827 B2* 6/2018 W00 w.vvoiovrvv GOGF 11/3027

10,671,458 B2 6/2020 Pope et al.
11,074,202 B1* 7/2021 Tsirkin
11,269,792 B2* 3/2022 Martin

.... GO6F 13/1668
... GO6F 11/2015

(72) Inventors: David Butenhof, Westford, MA (US);

Lennart Poettering, Brasbrunn (DE); 2014/0112131 Al* 4/2014 Todaka HO4L 47/2433
Peter Portante, Westford, MA (US); W 370/230
Webb Scales, Concord, MA (US) (Continued)

(73) Assignee: RED HAT, INC., Raleigh, NC (US) FOREIGN PATENT DOCUMENTS

(*) Notice: Subject to any disclaimer, the term of this CN 111917586 11/2020

patent is extended or adjusted under 35

US.C. 154(b) by 29 days. OTHER PUBLICATIONS

(21) Appl. No.: 17/479,992 Github, “Provide Logging Behavior Policies Applied by conmon to

(22) Filed: Sep. 20, 2021 stdou.t/stderr”, avail.able on the internet at https://github.com/
containers/common/issues/84, Nov. 14, 2019, 1 page.
(65) Prior Publication Data (Continued)

US 2023/0086172 Al Mar. 23, 2023
Primary Examiner — Brian T Misiura

G Int, Cl. (74) Attorney, Agent, or Firm — Kilpatrick Townsend &

GO6F 13/22 (2006.01)
GOGF 13/10 (2006.01) Stockton LLP
GO6F 13/16 (2006.01)
(52) US. Cl. 57 ABSTRACT
CPC GOG6F 13/225 (2013.01); GOGF 13/102 7)
(2013.01); GO6F 13/1605 (2013.01) Bandwidth control can be provided for input/output chan-
(58) Field of Classification Search nels according to some aspects described herein. In one

CPC .. GO6F 13/102; GO6F 13/1605; GO6F 13/225; example, a system can detect an input/output (I/O) request
HO4L 47/10; HOAL 47/70 transmitted by a software application. In response to detect-

USPC e 710/29, 44 ing the 1/O request, the system can determine a bandwidth

See application file for complete search history. group that corresponds to an I/O channel associated with the

1/O request. The system can then determine whether band-

(56) References Cited width consumption of the bandwidth group exceeds a pre-

defined bandwidth limit. If so, the system can execute a

U.S. PATENT DOCUMENTS predefined policy assigned to the I/O channel for handling

6,826,640 BL* 11/2004 Chang GO6F 13362 the 1/O request.
710/240
7,577,780 B2* $2009 Huang ... GOGF 13/362
710/243 20 Claims, 8 Drawing Sheets

Computing Device 102

Software Software Software
Application Application Application 100
104a 304b ¥
ey S I N, O ——
5 ; ¢ i ¢
[_l.j*.‘-..' P Bandwidth ! Bandwigth H
H H Group 132k E
bt 116574
Hled ™
118

\,\

Network
Bandwidth Managarnent Service 106 o 120
-

$ 3
I 122k] Locat Remote
Bandwidth Bandwicth Palicy Mapping S.EOHSIE Storsge
Group Mapping Limit Mapping 1 1222 System System
“ r

112 134 126

130 1

US 11,693,799 B2

Page 2
(56) References Cited
U.S. PATENT DOCUMENTS
2017/0199770 Al* 7/2017 Peteva GOG6F 9/5088
2019/0052532 Al* 2/2019 Chenccceevneeee. HO4L 47/781

OTHER PUBLICATIONS

Heo, “C Group Admin Guide”, available on the internet at https://
www.kernel.org/doc/html/latest/admin-guide/cgroup-v2 html#io, Oct.
2015, 4 pages.

Kernel, “Block ID Controller”, available on the internet at https://
www.kernel.org/doc/Documentation/cgroup-v1/blkio-controller.
txt, at least as early as Jul. 1, 2021, 4 pages.

Nelson, “Tuning NGINX for Performance”, Oct. 10, 2014, 4 pages.
Wikipedia, “C Groups”, available on the internet at https:/en.
wikipedia.org/wiki/Cgroups , 2007, 1 page.

* cited by examiner

US 11,693,799 B2

Sheet 1 of 8

Jul. 4,2023

U.S. Patent

Cr48

WaIsAG
38e1015
oUIBY

001

TN jJOMIBN

T 'Oid

124}

0tt

TET - [441 OiL
LUIRIGAS B7eL Suiddeqy Ao110d Juddewy uy mc_mnmE dnoig
afes0is Yipimpueq yipismpueg

mmuﬂg i@n&NRNR.Mn A N 2

@ @ h A A ¥
% GOT ooaas wawaieuey yipmpuey
A & F-N y-3 A F-N N
POTE —
b 40T 29TT T 49TT |
BOTT ™

[ikttt et ab bt |“ pommmemmm—_—_——e n“

' GZET dnoun i Mmmmﬂ dnoig i

M Wpimpueg ” Fyipimpueg |

B o o b ne ok o n e 2 e e 2w ot e e oo] NIRRT OO .

A4 kA A 4 ¥ A2
IVGT g7 BH01
gopesyddy uonesyddy uopesyddy

BILMILOS BIEMYOS ILMYOS

701 aaiaeg Sunndwon

U.S. Patent Jul. 4,2023 Sheet 2 of 8 US 11,693,799 B2

Bandwidth Group

110

FIG. 2

/0 Channel identifier
1
2
3
4
5
6

US 11,693,799 B2

Sheet 3 of 8

Jul. 4,2023

U.S. Patent

€ 'Ol

5/9IN 00T

s/aiN 0%

5/QIN T

5/9IN 06T

s/9N 002

s/an 001

{puodas/sathqesow)
Hui apimpueg

dnoig yipimpueg

4

[41!

U.S. Patent Jul. 4,2023 Sheet 4 of 8 US 11,693,799 B2

Policy
A
g
A
C
D
D

114

FIG. 4

1/0 Channel
1
2
3
4
5
6

S 'O

US 11,693,799 B2

TTT Adijod pauyispald

1o U] yipimpueg paulispsdd

075 uvondwnsuoy yipmpueg

ZET dnoug yipmpueg

Sheet 5 of 8

5ot

a31A18g JueuiBdrUR UIPpIMpUEY

.

k4

Jul. 4,2023

$071 vonesyddy asemijos

0% Aowan

2

3

705 105533044

U.S. Patent

0T omaaq 3uiinduion

US 11,693,799 B2

Sheet 6 of 8

Jul. 4,2023

U.S. Patent

9B

Aoyod pauyspeud ayl 3mnoex3

9719

pawsciad ag o1 15anbai O/t 843 Mmopy

[452]

i

-3

EVEVREeV
syt 03 Suipucdsartod Asjod pauijspasd e 109598

19

7 o yipmpueq

=< U0IdWNSUOD Yipimpuey

4

X

ON SOA

19

dnos8 yipmpueq syl 01 paudisse i LIPIMpUEeY g auuLIslag

09
1

dnouf Yipmpueg ayy o voidinsuod YIpmpueq suiugsiag
809

-3

153NB3J O/} 841 YUM paiedosse
[BUURYD O/ ue 03 5pU0dsBII0D 1o tnoud Yyipimpueq g sujuwiiaag
¥09

£

uoieotdde asemijos e Ag paniwsueil 1senbas (/1) Indino/indut ue 12313(
209

US 11,693,799 B2

Sheet 7 of 8

Jul. 4,2023

U.S. Patent

AL

15anbas O/ 24 upuey 10} IBUURYD O 3yl 01 paudisse Asod pauijspausd e s3nosexy
807

&

ONoAZ YIBIMDLUEBY 313 0 pauBIsse Wl Uipimpueq
paulepasd e spasnxs dnoid yipimpueg a4l Jo uoRduwinsuod YipImpueg 18yl suiwisisg
SOL

£

153nha
0O/1 841 YA PIIBIDOSSE [BUURYD (/] UR 01 SpUOUsaoD Jey) dnoud (IpIMpUEey & suitiieiag

vOL
'y

uoiiesidde ssemiyos e Ag panyiwsueiy isenbal (/1) indino/indu ue 181
0L

US 11,693,799 B2

Sheet 8 of 8

Jul. 4,2023

U.S. Patent

078 24

G7T W1SAS
98e4018 30WaY

008

8 "Oid
174
0% 2114 - 443 o1t
— BCeL Suiddery Aoiod Suiddey 1w Buiddepy dnoig
PET waisAg yipimpueg yipimpueg
9Fel015 [E00T §77T A A A
F-

{

g

¥

50T 201A40% JuswaSeueiy Yipimpueg

708 wieisAs Bupesadp

B2 1N Som e SN Sy
GOTT7 o’
RG]

& Ey &

t

| 908 i jauseyd |
| 708 exeq S0 |

STT 1sanbay O/t

k4 A4 k4

$OT uonediddy
SIEMYDS

70t 9nnaq Supndwo)

US 11,693,799 B2

1
BANDWIDTH CONTROL FOR
INPUT/OUTPUT CHANNELS

TECHNICAL FIELD

The present disclosure relates generally to controlling
bandwidth consumption in computing systems. More spe-
cifically, but not by way of limitation, this disclosure relates
to controlling bandwidth consumption associated with input/
output (I/O) channels.

BACKGROUND

Software applications can transmit input/output (I/O)
requests to various destinations, such as physical disks,
virtual disks, network devices, and other processes. The I/O
requests can be transmitted via /O channels. Examples of
the 1/O requests can include read requests for reading data
and write requests for writing data. Transmitting the I/O
requests and associated data across the I/O channels can
consume the bandwidth of the I/O channels. Because there
is a limited amount of available bandwidth in any given set
of /O channels, software applications transmitting 1/O
requests over the I/O channels may compete for available
bandwidth.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of an example of a system for
controlling bandwidth consumption according to some
aspects of the present disclosure.

FIG. 2 is a table of an example of a bandwidth group
mapping according to some aspects of the present disclo-
sure.

FIG. 3 is a table of an example of a bandwidth limit
mapping according to some aspects of the present disclo-
sure.

FIG. 4 is a table of an example of a policy mapping
according to some aspects of the present disclosure.

FIG. 5 is a block diagram of an example of a computing
device for controlling bandwidth consumption according to
some aspects of the present disclosure.

FIG. 6 is a flow chart of an example of a process for
controlling bandwidth consumption according to some
aspects of the present disclosure.

FIG. 7 is a flow chart of another example of a process for
controlling bandwidth consumption when bandwidth con-
sumption exceeds a predefined bandwidth limit according to
some aspects of the present disclosure.

FIG. 8 is a block diagram of an example of a system for
which an operating system is usable to control bandwidth
consumption according to some aspects of the present
disclosure.

DETAILED DESCRIPTION

Software applications on a computing device can transmit
input/output (/O) requests to a destination, which may be
local or remote to the computing device. Examples of the
destination can include physical disks, virtual disks, network
devices, and other processes. The software applications can
transmit the 1/O requests via I/O channels on the computing
device. An 1/O channel can be a means for allowing a
software application to make a request to a device driver to
communicate with a destination. An example of the device
driver can be a storage driver for interfacing with a storage
device. 1/O channels may be conceptualized as an ephemeral

10

15

20

25

30

35

40

45

50

55

60

65

2

virtual pathway from a software application to a destination.
The software applications may transmit certain types of
requests via one [/O channel and other types of requests via
another I/O channel. For example, a first software applica-
tion may transmit write requests for storing debugging data
(e.g., log data) to a destination via a first [/O channel and a
second software application may transmit write requests for
storing application data to the destination via a second 1/O
channel. But there is a finite amount of total available
bandwidth across all I/O channels for a given destination. If
a software application consumes a significant amount of the
total available bandwidth for a particular destination by
transmitting I/O requests on one I/O channel, it may prevent
other software applications from transmitting I/O requests to
the destination on the other I/O channels. Lack of available
bandwidth on the other I/O channels may lead to delayed or
incomplete /O requests, which can reduce performance of
the other software applications. For example, if a software
application consumes all of the available bandwidth for the
destination in transmitting debugging data over a given /O
channel, it may prevent other software applications on the
computing device from being able to write data to the
destination when performing other processes. This can lead
to errors and reduced performance of the other software
applications.

Some examples of the present disclosure can overcome
one or more of the abovementioned problems via a band-
width management service that can group I/O channels
together into a bandwidth group (e.g., a pool of /O chan-
nels), assign an overall bandwidth limit to the bandwidth
group, and manage I/O requests transmitted via the 1/O
channels in the bandwidth group to help ensure that the
overall bandwidth limit for the bandwidth group is
respected. The I/O requests can be managed using individual
1/O control policies assigned to the /O channels in the
bandwidth group. Different /O channels within a given
bandwidth group may be assigned the same I/O control
policies or different /O control policies for handling corre-
sponding I/O requests in different ways. This may allow for
a high degree of granularity and flexibility in customizing
how bandwidth is controlled for a given bandwidth group.
Using these techniques, bandwidth consumption can be
better apportioned among competing computing operations,
which can reduce contention for bandwidth and improve
performance of the software applications. In some examples,
the bandwidth management service can be configured to
perform its functionality as far upstream as possible during
the I/O request process. This may reduce the number of
times that the same data is transferred (e.g., copied) among
system components during the I/O request process, thereby
reducing consumption of system resources.

In some examples, the bandwidth management service
can be executed in a manner that is hidden from the software
application or software applications transmitting the 1/O
requests. As a result, the software applications may be
unaware that the bandwidth management service is throt-
tling or otherwise influencing their 1/O requests. This may be
achieved in some examples through the usage of a hook
(e.g., an event hook inserted at runtime or at another point
in time), which may be automatically triggered in response
to an I/O request from a software application. The hook may
call the bandwidth management service, which may execute
some or all of the functionality described herein. For
example, the bandwidth management service can determine
the I/O channel corresponding to the 1/O request, the I/O
policy assigned to the I/O channel, and execute a corre-
sponding control operation based on the I/O policy.

US 11,693,799 B2

3

Examples of the control operation can include marking the
1/0O request as complete, delaying the I/O request for a time
period, dropping the I/O request, allowing the /O request to
proceed as normal, etc. Using these or other techniques
described herein, the system can use the bandwidth man-
agement service to control bandwidth consumption unbe-
knownst to the software applications transmitting the 1/O
requests, for example without the program code for the
software applications needing to be modified.

As mentioned above, in some examples the bandwidth
management service can perform its functionality as far
upstream as possible during the process by which an I/O
request is transmitted to a destination. This may reduce the
number of times that the same data is transferred (e.g.,
copied) among system components to effectuate the 1/O
request, thereby reducing consumption of system resources.
More specifically, the transmission of data through the /O
channel consumes system resources such as CPU, physical
memory, bus bandwidth, and possibly disk/network traffic
outside the computer. Placing the bandwidth management
service closer to where the I/O request originates can reduce
or eliminate some or all of this resource consumption. For
example, a typical process by which a software application
writes a dataset to a destination may involve the software
application first writing the dataset to a buffer in application
memory. Application memory can be a specific portion of
memory, such as random access memory, assigned to the
software application. The software application then requests
that the dataset be written out to the destination by trans-
mitting a write request to the operating system. The oper-
ating system can receive the write request and respond to the
write request by copying the dataset from application
memory to system memory, which can be another portion of
memory assigned to the operating system. The dataset may
then be transferred to the device driver and potentially to
other areas of the system, before ultimately being written to
the destination. Transferring the same dataset multiple times
throughout this process can consume valuable system
resources. But in some examples, the bandwidth manage-
ment service may be called (e.g., using an event hook) at an
upstream point in the 1/O process, for example before the
dataset is transferred from application memory to system
memory. This can allow the bandwidth management service
to perform its control operations in a timely manner, for
example before the dataset leaves the application memory or
the transaction reaches the kernel, potentially preventing
downstream operations from occurring and thereby reducing
consumption of system resources.

As one example of the present disclosure, a software
application can transmit an 1/O request via an /O channel.
Transmitting the I/O request may trigger an event hook,
which can call the bandwidth management service. The
bandwidth management service can detect the /O request
and determine a bandwidth group that contains the 1/O
channel. The bandwidth management service can next deter-
mine a bandwidth limit assigned to the bandwidth group and
determine bandwidth consumption of the bandwidth group.
If the bandwidth consumption of the bandwidth group is
below the bandwidth limit, the bandwidth management
service can allow the I/O request to be transmitted across the
1/O channel as normal. On the other hand, if the bandwidth
consumption of the bandwidth group meets or exceeds the
bandwidth limit, the bandwidth management service can
determine and execute a predefined /O control policy
assigned to the I/O channel. Different [/O channels can be
assigned different I[/O control policies, where the predefined
1/0 control policies include instructions about how to handle

20

25

40

45

4

the 1/O request. For example, an /O control policy may
indicate that an 1/O request is to be entirely discarded or
delayed in its transmission, so that the bandwidth limit of the
corresponding bandwidth group is respected. In this way, the
bandwidth management service can manage the bandwidth
consumption by the various bandwidth groups to help ensure
that the corresponding bandwidth limits are respected.

In some examples, the bandwidth groups and the band-
width limits can be selected by a system administrator. This
can allow the system administrator to customize how band-
width is consumed on the /O channels according to their
preferences or needs. In some examples, the I/O control
policies for the I/O channels may be set by the software
applications, a framework configured to deploy the software
applications, or by another entity. For example, a framework
such as a container orchestrator can notify the bandwidth
management service of which predefined I/O control poli-
cies to execute in relation to different /O channels. Since it
may be desirable for the bandwidth management service to
handle I/O requests associated with different I/O channels in
different ways when bandwidth limits are reached, this
approach may allow request handling to be customized for
the I/O channel.

These illustrative examples are provided to introduce the
reader to the general subject matter discussed here and are
not intended to limit the scope of the disclosed concepts. The
following sections describe various additional features and
examples with reference to the drawings in which similar
numerals indicate similar elements but, like the illustrative
examples, should not be used to limit the present disclosure.

FIG. 1 is a block diagram of an example of a system 100
for controlling bandwidth consumption according to some
aspects of the present disclosure. The system 100 includes a
computing device 102, such as desktop computer, laptop
computer, server, or mobile phone. In some examples, the
computing device 102 may be a node of a distributed
computing environment, such as a cloud computing envi-
ronment, a computing cluster, or a data grid.

The computing device 102 can execute one or more
software applications, such as software applications 104a-c.
Examples of a software application can include a utility
application, game, word processor, load balancer, etc. The
software applications 104a-c may be monolithic applica-
tions, microservices, serverless functions, etc. In some
examples in which the computing device 102 is a user
device, the software applications 104a-c¢ may be frontend
applications or services. Alternatively, the software applica-
tions 104a-c may be backend applications or services, for
example if the computing device 102 is a server.

As the software applications 104a-c execute, they can
transmit I/O requests to receive inputs or provide outputs via
one or more I/O channels. One example of an /O request
can be a read request for reading data from a source, such as
a local storage system 134 or a remote storage system 126.
Another example of an 1/O request can be a write request for
writing data to a destination, such as the local storage system
134 or the remote storage system 126. Each 1/O channel may
be configured for communicating read requests, write
requests, or both.

The I/O channels can be established by any suitable entity,
such as a software framework configured to deploy the
software applications 104a-c. One example of such a soft-
ware framework may be a container orchestrator and one
example of the software applications 104a-c may be pro-
cesses deployed within containers (e.g., relatively isolated
virtual environments) by the container orchestrator. The I/O
channels can be established before, during, or after a startup

US 11,693,799 B2

5

phase of the software applications 104a-c. Once the one or
more 1/O channels are established, the software applications
104-c¢ can transmit I/O requests via those 1/O channels.

In the example shown in FIG. 1, the software application
104a is configured to communicate /O requests over 1/O
channels 116a-c. Additionally, the software application 1045
is configured to communicate I/O requests over 1/O channels
116d-e. Further, the software application 104c¢ is configured
to communicate I/O requests over /O channels 116/ While
none of the software applications 104a-¢ share a common
(e.g., the same) 1/O channel in this example, other examples
may involve two or more software applications 104a-c
sharing the same 1/O channel. For instance, software appli-
cations 104a-b may both be configured to communicate [/O
requests over /O channel 116a in another example.

Some or all of the 1/O channels 116a-f may be assigned to
bandwidth groups. A bandwidth group is a pool of I/O
channels that are collectively monitored for determining
whether their collective bandwidth consumption meets or
exceeds a predefined bandwidth limit. Any number and
combination of I/O channels, including one, may be
assigned to a particular bandwidth group. For example, 1/O
channels 116a-b can be assigned to bandwidth group 1324
and 1/O channels 116e-f'can be assigned to bandwidth group
132b. The /O channels assigned to a particular bandwidth
group may all belong to the same software application 104a
or they may belong to different software applications 10454-
c. A user 130, such as a system administrator, or a software
framework can assign 1/O channels to bandwidth groups as
desired.

In some examples, the 1/0 channels 116a-f can be grouped
together based on their priority levels, for example so that
1/0 channels of a similar priority level may be pooled into
the same bandwidth group. In some examples, the priority
level of an 1/O channel may depend on the importance of the
computing operations associated with the I/O channel. For
example, storing log data to disk may be of lower priority
than storing application data to disk, so I/O channels used to
store log data may have a lower priority than /O channels
used to store application data. Once the I/O channels are
grouped together into bandwidth groups, a bandwidth limit
can be assigned to each bandwidth group based on its
priority. For example, a bandwidth group associated with
higher priority tasks like writing application data can be
assigned a higher bandwidth limit, and thus more of the total
available bandwidth, than another bandwidth group associ-
ated with lower priority tasks like writing logging data.

The bandwidth group assignments can be stored in a
bandwidth group mapping 110. One example of such a
bandwidth group mapping 110 is shown in FIG. 2. As
shown, the bandwidth group mapping 110 can be a table that
correlates /O channels to bandwidth groups, though other
data structures besides tables are also possible. In particular,
the /O channels are each assigned a unique identifier that
uniquely identifies the I/O channel from other /O channels
in the table. These unique identifiers can be referred to
herein as I/O channel identifiers. Examples of an I/O channel
identifier can include a file descriptor (e.g., on a Linux
operating system) or a file handle (e.g., on a Windows
operating system). The I/O channel identifiers can be cor-
related, in the bandwidth group mapping 110, to various
bandwidth groups.

As noted above, a bandwidth limit can also be assigned to
each bandwidth group. For example, a bandwidth limit of
100 kilobytes (kB) may be assigned to the bandwidth group
132a and a bandwidth limit of 1 megabytes (MB) may be
assigned to the bandwidth group 1324. The bandwidth limits

20

30

40

45

50

55

6

can be selected and assigned to bandwidth groups by the
user 130. Thus, the bandwidth limits may be user customi-
zable. In some examples, the user 130 may assign a band-
width limit to a particular bandwidth group 1325 before the
corresponding software applications 1045-¢ begin transmit-
ting communications via the I/O channels 116e-fassigned to
the bandwidth group 1325.

The bandwidth limit assignments can be stored in a
bandwidth limit mapping 112. One example of such a
bandwidth limit mapping 112 is shown in FIG. 3. As shown,
the bandwidth groups can be correlated, in the bandwidth
limit mapping 112, to various bandwidth limits. It is possible
for multiple bandwidth groups to be assigned the same
bandwidth limit or to be assigned different bandwidth limits.

Additionally, I/O control policies 124 can be assigned to
the /O channels 116a-f- An 1/O control policy is a policy
specifying how /O requests associated with an I/O channel
are to be handled when the bandwidth limit assigned to a
bandwidth group containing the I/O channel is exceeded. An
1/O control policy may be stored in a file or another data
structure. The I/O control policy can include commands or
instructions for implementing a particular technique for
handling the I/O requests associated with the 1/O channel.
1/O control policies 124 may be created on the computing
device 102 by a user or downloaded to the computing device
102. Different I/O control policies may be configured to
implement the same technique or different techniques for
handling the I/O requests. For example, a first policy 122a
may be assigned to the I/O channel 1164, and a second
policy 1225 may be assigned to the /O channel 1165. The
first policy 122a may be configured for causing an I/O
request to be discarded when the bandwidth limit for the
bandwidth group 132a is exceeded. The second policy 1225
may be configured for causing an 1/O request to be delayed
for a time interval (e.g., 5 milliseconds) when the bandwidth
limit for the bandwidth group 132a is exceeded. The length
of the time interval may depend on various factors, such as
the size of the I/O request and the available bandwidth. Of
course, other I/O request handling techniques are also pos-
sible. There can be any number and combination of 1/O
control policies 124 for implementing any number and
combination of bandwidth control techniques.

The I/O control policy assignments can be stored in a
policy mapping 114. One example of such a policy mapping
114 is shown in FIG. 4. As shown, the 1/O channels can be
correlated, in the bandwidth limit mapping 112, to various
1/O control policies. It is possible for multiple /O channels
to be assigned the same /O control policy or to be assigned
different I/O control policies.

In some examples, the I/O control policies 124 can be
assigned to the I/O channels 116a-f by the software appli-
cations 104a-c, by a software framework, by a user of the
computing device 102, or by another entity. For example, a
software application 104a can select an /O control policy
for a particular I/O channel used by the software application
104a. The software application 104a can then transmit a
command 108 to a software framework or another compo-
nent of the computing device 102 indicating that the I/O
control policy 1224 is to be assigned to the I/O channel 1164.
The command 108 can be transmitted during or after a
startup phase of the software application 104a. In response
to the command 108, the requested /O control policy 122a
can be assigned to the particular I/O channel 116a.

The software applications 104a-c may determine which of
the 1/O control policies 124 to assign to a particular I/O
channel using any suitable technique. For example, a soft-
ware developer may preprogram logic into the software

US 11,693,799 B2

7

application 104a for determining that information. The
software application 104a can then determine which of the
1/O control policies 124 to assign to which /O channels
116a-c based on its internal logic. Alternatively, a user (e.g.,
user 130) can specify that information in a configuration file
for the software application 104a. The software application
104a can then determine which of the /O control policies
124 to assign to which /O channels 116a-c based on the
configuration file. Other techniques are also possible.

As shown in FIG. 1, the computing device 102 can also
include a bandwidth management service 106. The band-
width management service 106 is software that is separate
from the software applications 104a-c. The bandwidth man-
agement service 106 may be configured to intercept 1/O
requests from the software applications 104a-c and perform
one or more control operations based on the I/O requests. In
some examples, the bandwidth management service 106
may be part of an operating system (e.g., Red Hat Enterprise
Linux®, Apple MacOX®, or Microsoft Windows®) of the
computing device 102. For example, the bandwidth man-
agement service 106 may be part of the kernel of the
operating system. Alternatively, the bandwidth management
service 106 may be another type of software, such as a
system runtime library running on the computing device
102.

Once the above aspects of the system are configured, the
bandwidth management service 106 can implement a band-
width monitoring and control service. For example, the
bandwidth management service 106 can detect an 1/O
request 128 from a software application 1044. This detection
may be achieved via the insertion of a hook, for example an
event hook that can be triggered in response to an I/O event
such as an I/O request. In some examples, the I/O request
may be a write request for writing data, such as log data, to
a storage system. The storage system may be a local storage
system 134 or a remote storage system 126. The local
storage system 134 can be a storage system that is internal
to the computing device 102 or accessible to the computing
device 102 via a local area network. The remote storage
system 126 can be a storage system that is accessible to the
computing device 102 via one or more networks 120 such as
the Internet. In response to detecting the 1/0 request 128, the
bandwidth management service 106 can determine whether
the I/O channel 1165 is part of a bandwidth group. In some
examples, the bandwidth management service 106 may
make this determination by consulting the bandwidth group
mapping 110. In the example shown in FIG. 1, the I/O
channel 1165 is part of the bandwidth group 132a. So, the
bandwidth management service 106 can determine that the
1/O channel 1165 is part of the bandwidth group 132a.

Having determined that the I/O channel 1165 is part of the
bandwidth group 132a, the bandwidth management service
106 can next determine the bandwidth consumption of the
bandwidth group 132a. The bandwidth consumption of a
bandwidth group is the total amount of bandwidth consump-
tion associated with all of the I/O channels in the bandwidth
group during a predefined time interval. The predefined time
interval can be a predefined time window, which can be
designated as W. For example, the bandwidth consumption
of the bandwidth group 1324 can be the total amount of
bandwidth consumed in relation to all of the I/O requests
transmitted on all of the I/O channels 116a-b in the band-
width group 132a during the predefined time interval W. The
predefined time interval W may be customizable by a user,
such as user 130.

The bandwidth consumption of a bandwidth group can be
computed by adding together the individual bandwidth

10

15

20

25

30

35

40

45

50

55

60

65

8

consumption associated with each individual /O channel in
the bandwidth group during the predefined time interval W.
For example, the software application 104a can transmit
multiple write requests for writing data via the I/O channels
1164a-b during the predefined time interval W, which may be
for example a 5 millisecond time interval. The write requests
and the associated data can consume bandwidth on those I/O
channels 116a-b. The bandwidth management service 106
can compute the bandwidth consumption associated with
bandwidth group 132« during the time interval W by adding
together the bandwidth consumed by all of the write requests
on all of the 1/O channels 116a-5 during the predefined time
interval W. In this way, the bandwidth management service
106 can monitor and track (e.g., in real time) the total
bandwidth consumption associated with each bandwidth
group during a given time interval W.

Before or after determining the bandwidth consumption
associated with the bandwidth group 1324, the bandwidth
management service 106 can determine a bandwidth limit
assigned to the bandwidth group 1324. The bandwidth limit
can be the maximum allowed I/O volume (Vmax) during the
predefined time interval W. The value of Vmax may also be
customizable by a user, such as the user 130. In some
examples, the bandwidth management service 106 may
determine the bandwidth limit by consulting the bandwidth
limit mapping 112.

Having determined the bandwidth limit, the bandwidth
management service 106 can compare the bandwidth con-
sumption associated with the bandwidth group 132 to the
bandwidth limit to determine whether the bandwidth con-
sumption meets or exceeds the bandwidth limit. If the
bandwidth management service 106 determines that the
bandwidth consumption associated with the bandwidth
group 132 is below the bandwidth limit, the bandwidth
management service 106 may allow the /O request 128 to
be performed (e.g., as normal without executing any of the
1/O control policies 124). But if the bandwidth management
service 106 determines that the bandwidth consumption
meets or exceeds the bandwidth limit, the bandwidth man-
agement service 106 can determine which of the I/O control
policies 124 to execute, for example by consulting the policy
mapping 114. The bandwidth management service 106 can
then execute whichever I/O control policy 122a is assigned
to the I/O channel 1165. Executing the I/O control policy
122a may involve executing program code or commands
specified in the I/O control policy 122a. In some examples,
the I/O control policy 122a can be configured to avoid
overconsumption of bandwidth. For example, the /O con-
trol policy 1224 may be configured for causing the I/O
request 128 to be discarded. Alternatively, the 1/O control
policy 122a may be configured for causing the I/O request
128 to be delayed for a particular time period (e.g., until after
the next time interval W begins).

As another example of the bandwidth monitoring and
control service, the bandwidth management service 106 can
detect an 1/O request 118 on an I/O channel 116¢ from a
software application 104a. The I/O request may be a write
request for writing data to the storage system or a read
request for reading data from a storage system. The storage
system can include one or more memory devices, such as a
hard drive, random access memory, cache memory, or any
combination of these, from which the data can be read or to
which the data can be written. In response to detecting the
1/0 request 118, the bandwidth management service 106 can
determine whether the I/O channel 116¢ is part of a band-
width group. If the bandwidth management service 106
determines that the I/O channel 116c¢ is not part of a

US 11,693,799 B2

9

bandwidth group, as is the case in the example shown in
FIG. 1, then the bandwidth management service 106 can
allow the I/O request 118 to be performed without executing
any of the I/O control policies 124.

Although FIG. 1 shows a particular number and arrange-
ment of components, this is for illustrative purposes and
intended to be non-limiting. Other examples may involve
more components, fewer components, different components,
or a different arrangement of the components than is shown
in FIG. 1. For instance, although the mappings 110-114 are
shown as separate from each other in FIG. 1, in other
examples some or all of these mappings may be combined
together into a single table or database.

FIG. 5 is a block diagram of an example of a computing
device 102 for controlling bandwidth consumption accord-
ing to some aspects of the present disclosure. The computing
device 102 can include a processor 502 communicatively
coupled to a memory 504.

The processor 502 is hardware that can include one
processing device or multiple processing devices. Non-
limiting examples of the processor 502 include a Field-
Programmable Gate Array (FPGA), an application-specific
integrated circuit (ASIC), or a microprocessor. The proces-
sor 502 can execute instructions stored in the memory 504
to perform computing operations. In some examples, the
instructions may correspond to a software application 104aq,
the bandwidth management service 106, or both. The
instructions may include processor-specific instructions gen-
erated by a compiler or an interpreter from code written in
any suitable computer-programming language, such as C,
C++, C#, Python, or Java.

The memory 504 can include one memory device or
multiple memory devices. The memory 504 can be volatile
or can be non-volatile, such that it can retain stored infor-
mation when powered off. Some examples of the memory
504 can include electrically erasable and programmable
read-only memory (EEPROM), flash memory, or any other
type of non-volatile memory. At least some of the memory
504 includes a non-transitory computer-readable medium
from which the processor 502 can read instructions. A
computer-readable medium can include electronic, optical,
magnetic, or other storage devices capable of providing the
processor 502 with computer-readable instructions or other
program code. Some examples of a computer-readable
medium include magnetic disks, memory chips, ROM,
random-access memory (RAM), an ASIC, a configured
processor, optical storage, or any other medium from which
a computer processor can read the instructions.

In some examples, the processor 502 can execute the
bandwidth management service 106 to perform some or all
of the functionality described herein. For example, the
processor 502 can detect (e.g., receive) an 1/O request 128
transmitted by the software application 104. In response to
detecting the /O request 128, the processor 502 can deter-
mine an [/O channel 116 associated with the I/O request 128.
The processor 502 can also determine whether a bandwidth
group 132 corresponds to the /O channel 116. In response
to determining that a bandwidth group 132 corresponds to
the /O channel 116, the processor 502 can determine
whether bandwidth consumption 510 of the bandwidth
group 132 exceeds a predefined bandwidth limit 512
assigned to the bandwidth group 132. In response to deter-
mining that the bandwidth consumption 510 of the band-
width group 132 exceeds the predefined bandwidth limit
512, the processor 502 can execute a predefined policy 122
assigned to the I/O channel 116. The predefined policy 122

10

15

20

25

30

35

40

45

50

55

60

65

10

is an I/O control policy that may be configured for prevent-
ing the I/O request 128 from being performed for at least a
particular time period.

In some examples, the processor 502 can execute the
bandwidth management service 106 to perform some or all
of the steps shown in FIG. 6. Although FIG. 6 shows a
certain number and arrangement of steps, this is for illus-
trative purposes and not intended to be limiting. Other
examples may involve more steps, fewer steps, different
steps, or a different order of the steps than are shown in FIG.
6. The steps of FIG. 6 will now be described below with
reference to the components of FIG. 5 described above.

In block 602, the processor 502 detects an /O request 128
transmitted by a software application 104. For example, the
processor 502 can monitor the system for I/O events, which
may trigger a hook. As another example, the processor 502
can monitor the I/O channel 116 for I/O requests to detect
new [/O requests on the I/O channel 116. As another
example, the software application 104 can notify the pro-
cessor 502 of the I/O request via a function call or another
call.

In some examples, the I/O request 128 may include an I/O
channel identifier (ID) that uniquely identifies the I/O chan-
nel 116 associated with the I/O request 128. Examples of the
1/O channel identifier can include a file descriptor or a file
handle. The processor 502 can extract the 1/O channel 1D
from the I/O request 128 to determine the /O channel 116
associated with the I/O request.

In block 604, the processor 502 determines a bandwidth
group 132 that corresponds to an I/O channel 116 associated
with the /O request 128. The processor 502 can make this
determination based on a mapping, such as the bandwidth
group mapping 110 of FIG. 1. For example, the processor
502 may first determine whether the I/O channel 116 is
assigned to any bandwidth group at all. To do so, the
processor 502 may first access the mapping to determine
whether the 1/O channel 116 is listed in the mapping. If the
1/O channel 116 is listed in the mapping, it may mean that
there is indeed a bandwidth group assigned to the I/O
channel 116. So, the processor 502 can consult the mapping
to determine which bandwidth group 132 is assigned to the
1/O channel 116.

In block 606, the processor 502 determines bandwidth
consumption 510 of the bandwidth group 132. For example,
the processor 502 can monitor the I/O channels in the
bandwidth group 132, for example to detect the /O requests
transmitted via the I/O channels in the bandwidth group 132.
Based on these 1/O requests, the processor 502 can track the
bandwidth consumption of the bandwidth group 132 during
apredefined time interval. This monitoring and tracking may
be performed substantially continuously and in real time.
The processor 502 can also perform similar monitoring and
tracking for some or all of the other bandwidth groups.

In block 608, the processor 502 determines a bandwidth
limit assigned to the bandwidth group 132. In some
examples, the bandwidth limit can be a predefined band-
width limit 512 stored in a mapping, such as the bandwidth
limit mapping 112 of FIG. 1. The processor 502 can consult
the mapping to determine which bandwidth limit is assigned
to the bandwidth group 132. In other examples, the band-
width limit can be determined on-the-fly using an algorithm
or other means.

In block 610, the processor 502 determines whether the
bandwidth consumption 510 is greater than or equal to the
bandwidth limit. If not, the process can proceed to block 612
where the processor 502 can allow the I/O request 128 to be
performed (e.g., without executing a corresponding 1/O

US 11,693,799 B2

11

control policy). This may involve transmitting the 1/O
request 128 to its intended destination. If the processor 502
determines that the bandwidth consumption 510 is greater
than or equal to the bandwidth limit, then the process can
proceed to block 614.

Inblock 614, the processor 502 selects a predefined policy
122 corresponding to the I/O channel 116. The predefined
policy 122 is an 1/O control policy that can be selected from
among a group of possible 1/O control policies. In some
examples, the processor 502 can select the predefined policy
122 using a mapping, such as the policy mapping 114 of
FIG. 1. The processor 502 can consult the mapping to
determine which predefined policy 122 is assigned to the [/O
channel 116. In other examples, the predefined policy 122
can be determined on-the-fly using an algorithm or other
means.

In block 616, the processor 502 executes the predefined
policy 122. This may involve performing an operation, or a
sequence of operations, specified in the predefined policy
122. The processor 502 can execute the predefined policy
122 prior to the /O request 128 being transmitted to its
intended destination. This may allow for bandwidth controls
to be implemented as far upstream as possible, for example
before the data associated with the I/O request leaves
application memory.

In some examples, the predefined policy 122 can be
configured for causing the I/O request 128 to be discarded
altogether. In other examples, the predefined policy 122 can
be configured for causing the 1/O request 128 to be delayed
for a particular time period. For instance, the predefined
policy 122 can configured for causing the I/O request 128 to
be delayed for 3 milliseconds before the 1/O request 128 is
transmitted to its intended destination. In still other
examples, the predefined policy 122 may be configured to
implement other bandwidth control techniques.

Referring now to FIG. 7, FIG. 7 is a flow chart of another
example of a process for controlling bandwidth consumption
according to some aspects of the present disclosure.
Although FIG. 7 shows a certain number and arrangement of
steps, this is for illustrative purposes and not intended to be
limiting. Other examples may involve more steps, fewer
steps, different steps, or a different order of the steps than are
shown in FIG. 7. The steps of FIG. 7 will now be described
below with reference to the components of FIG. 5 described
above.

In block 702, the processor 502 detects an 1/O request 128
transmitted by a software application 104. In some
examples, the processor 502 can make this detection as
described above with respect to block 602 of FIG. 6.

In block 704, the processor 502 determines a bandwidth
group 132 that corresponds to an I/O channel 116 associated
with the I/O request 128. In some examples, the processor
502 can make this determination as described above with
respect to block 604 of FIG. 6.

In block 706, the processor 502 determines that the
bandwidth consumption 510 of the bandwidth group 132
exceeds a predefined bandwidth limit 512 that is assigned to
the bandwidth group 132. In some examples, the processor
502 can make this determination as described above with
respect to blocks 606-610 of FIG. 6.

In block 708, the processor 502 executes a predefined
policy 122 for handling the I/O request 128, where the
predefined policy 122 is assigned to the I/O channel. In some
examples, the processor 502 can perform this execution as
described above with respect to blocks 616 of FIG. 6.

FIG. 8 is a block diagram of an example of a system 800
for which an operating system 802 is usable to control

25

35

40

45

55

60

12

bandwidth consumption according to some aspects of the
present disclosure. This example can be similar to the
example shown in FIG. 1, except the bandwidth manage-
ment service 106 is part of the operating system 802 of the
computing device 102. For instance, the bandwidth man-
agement service 106 can be implemented by a kernel of the
operating system 802 or by another component of the
operating system 802. Thus, the operating system 802 can be
executed by a processor to perform some or all of the
functionality described above with respect to the bandwidth
management service 106.

For example, the operating system 802 can detect 1/O
requests associated with one or more I/O channels 116a-c. In
the example shown in FIG. 8, the software application 104
has transmitted an /O request 118 that is a write request for
writing data to a file. The data may be log data 804 and the
file may be a log file. In some examples, the file can be a
local file 808 that is internal to the computing device 102 or
accessible to the computing device 102 via a local area
network. Alternatively, the file can be a remote file 810 that
is accessible to the computing device 102 via one or more
networks 120 such as the Internet.

The operating system 802 can detect the I/O request 118
and responsively determine an /O channel 116¢ correspond-
ing to the I/O request 118. For example, the operating system
802 can monitor the /O channels 116a-c for I/O requests.
Upon detecting the 1/0 request 118 on the I/O channel 116c,
the operating system 802 can determine that the I/O channel
116¢ is associated with the I/O request 118. Alternatively, the
operating system 802 can extract an 1/O channel identifier
806 from the /O request 118. Examples of the /O channel
identifier 806 can include a file descriptor or a file handle.
The 1/0O channel identifier 806 can indicate which I/O
channel 116¢ is to be used to communicate the 1/O request
118. Based on the /O channel identifier 806, the operating
system 802 can determine that the /O channel 116¢ is
associated with the I/O request 118.

Next, the operating system 802 can determine a band-
width group that corresponds to the /O channel 116¢, for
example by using the bandwidth group mapping 110. The
operating system 802 can also determine a predefined band-
width limit assigned to the bandwidth group, for example by
using the bandwidth limit mapping 112. The operating
system 802 can then compare the bandwidth consumption of
the bandwidth group to the predefined bandwidth limit to
determine whether the bandwidth consumption meets or
exceeds the predefined bandwidth limit. If so, the operating
system 802 can execute a predefined I/O control policy, such
as the second policy 1225, for handling the 1/O request. The
predefined I/O control policy can be selected for execution
based on a prior assignment of the I/O control policy to the
I/O channel 116¢. On the other hand, if the bandwidth
consumption is less than the predefined bandwidth limit, the
operating system 802 may not execute the /O control policy,
which can allow the I/O request 118 to proceed as normal.

Although FIG. 8 shows a particular number and arrange-
ment of components, this is for illustrative purposes and
intended to be non-limiting. Other examples may involve
more components, fewer components, different components,
or a different arrangement of the components than is shown
in FIG. 8. For instance, although the mappings 110-114 are
shown as separate from each other in FIG. 8, in other
examples some or all of these mappings may be combined
together into a single table or database.

In some aspects, bandwidth control for /O channels can
be implemented according to one or more of the following
examples. As used below, any reference to a series of

US 11,693,799 B2

13

examples is to be understood as a reference to each of those
examples disjunctively (e.g., “Examples 1-4” is to be under-
stood as “Examples 1, 2, 3, or 47).

Example #1: A non-transitory computer-readable medium
comprising program code that is executable by a processor
for causing the processor to perform operations including:
detecting an input/output (I/O) request from a software
application; in response to detecting the I/O request, deter-
mining a bandwidth group that corresponds to an I/O
channel associated with the I/O request; determining
whether bandwidth consumption of the bandwidth group
exceeds a predefined bandwidth limit; and in response to
determining that the bandwidth consumption of the band-
width group exceeds the predefined bandwidth limit, execut-
ing a predefined policy assigned to the /O channel for
handling the 1/O request.

Example #2: The non-transitory computer-readable
medium of Example #1, further comprising program code
that is executable by the processor for causing the processor
to: determine the bandwidth group by selecting the band-
width group from among a plurality of bandwidth groups
based on the I/O channel, wherein each respective band-
width group of the plurality of bandwidth groups encom-
passes one or more corresponding /O channels; and based
on selecting the bandwidth group, determine the predefined
bandwidth limit that is assigned to the bandwidth group,
wherein each respective bandwidth group of the plurality of
bandwidth groups is assigned a respective bandwidth limit.

Example #3: The non-transitory computer-readable
medium of Example #2, further comprising program code
that is executable by the processor for causing the processor
to: select the predefined policy from among a plurality of
predefined policies based on the /O channel, wherein each
1/O channel in each respective bandwidth group of the
plurality of bandwidth groups is assigned a respective pre-
defined policy specifying how /O requests from one or
more software applications are to be handled when the
respective bandwidth limit for the respective bandwidth
group is exceeded.

Example #4: The non-transitory computer-readable
medium of Example #3, wherein the plurality of predefined
policies specify a plurality of different techniques for han-
dling the I/O requests.

Example #5: The non-transitory computer-readable
medium of any of Examples #1-4, further comprising pro-
gram code that is executable by the processor for causing the
processor to, prior to receiving the I/O request from the
software application: receive a command from the software
application; based on the command, select the predefined
policy from among a plurality of predefined policies; and
assign the predefined policy to the /O channel.

Example #6: The non-transitory computer-readable
medium of any of Examples #1-5, wherein the predefined
policy is configured for causing the 1/O request to be
discarded, or wherein the predefined policy is configured for
causing the /O request to be delayed for a particular time
period.

Example #7: The non-transitory computer-readable
medium of any of Examples #1-6, further comprising pro-
gram code that is executable by the processor for causing the
processor to: in response to determining that the bandwidth
consumption of the bandwidth group does not exceed the
predefined bandwidth limit, allow the I/O request to be
performed without executing the predefined policy in rela-
tion to the I/O request.

10

15

20

25

30

35

40

45

50

55

60

65

14

Example #8: The non-transitory computer-readable
medium of any of Examples #1-7, wherein the predefined
bandwidth limit is user customizable.

Example #9: The non-transitory computer-readable
medium of any of Examples #1-8, wherein the I/O request
is a write request for storing data output by the software
application to a log file on a storage system, and wherein the
1/O channel is an output channel for writing the data to the
log file.

Example #10: The non-transitory computer-readable
medium of any of Examples #1-9, wherein the program code
corresponds to a kernel of an operating system, the kernel
being configured to execute the operations.

Example #11: A method comprising detecting, by a pro-
cessor, an input/output (I/O) request from a software appli-
cation; in response to detecting the I/O request, determining,
by the processor, a bandwidth group that corresponds to an
1/O channel; in response to determining the bandwidth
group, determining, by the processor, that bandwidth con-
sumption of the bandwidth group exceeds a predefined
bandwidth limit assigned to the bandwidth group; and in
response to determining that the bandwidth consumption of
the bandwidth group exceeds the predefined bandwidth
limit, executing, by the processor, a predefined policy
assigned to the I/O channel for handling the /O request.

Example #12: The method of Example #11, further com-
prising: selecting, by the processor, the bandwidth group
from among a plurality of bandwidth groups based on the
1/0 channel, wherein each respective bandwidth group ofthe
plurality of bandwidth groups encompasses one or more
corresponding /O channels; and based on selecting the
bandwidth group, determining, by the processor, the pre-
defined bandwidth limit assigned to the bandwidth group,
wherein each respective bandwidth group of the plurality of
bandwidth groups is assigned a respective bandwidth limit.

Example #13: The method of Example #12, further com-
prising: selecting, by the processor, the predefined policy
from among a plurality of predefined policies based on the
1/O channel, wherein each /O channel in each respective
bandwidth group of the plurality of bandwidth groups is
assigned a respective predefined policy specifying how /O
requests from one or more software applications are to be
handled when the respective bandwidth limit for the respec-
tive bandwidth group is exceeded.

Example #14: The method of any of Examples #11-13,
wherein the predefined policy is configured for causing the
1/O request to be discarded.

Example #15: The method of any of Examples #11-14,
wherein the predefined policy is configured for causing the
1/O request to be delayed for a particular time period.

Example #16: A computing device comprising: a proces-
sor; and a non-transitory memory including: a software
application; and a bandwidth management service that is
separate from the software application, the bandwidth man-
agement service being executable by the processor to per-
form operations including: detecting an input/output (1/O)
request from the software application; in response to detect-
ing the I/O request, determining a bandwidth group that
corresponds to an I/O channel associated with the 1/O
request; in response to determining the bandwidth group that
corresponds to the 1/O channel, determining whether band-
width consumption of the bandwidth group exceeds a pre-
defined bandwidth limit assigned to the bandwidth group;
and in response to determining that the bandwidth consump-
tion of the bandwidth group exceeds the predefined band-
width limit, executing a predefined policy assigned to the

US 11,693,799 B2

15

1/0 channel for preventing the 1/O request from being
performed for at least a particular time period.

Example #17: The computing device of Example #16,
wherein the bandwidth management service is further con-
figured to: determine the bandwidth group by selecting the
bandwidth group from among a plurality of bandwidth
groups based on the I/O channel, wherein each respective
bandwidth group of the plurality of bandwidth groups
encompasses a corresponding set of I/O channels, and
wherein each respective bandwidth group of the plurality of
bandwidth groups is assigned a respective bandwidth limit;
and select the predefined policy from among a plurality of
predefined policies based on the /O channel, wherein each
1/O channel in each respective bandwidth group of the
plurality of bandwidth groups is assigned a respective pre-
defined policy of the plurality of predefined policies, the
respective predefined policy specifying how the bandwidth
management service is to handle I/O requests from one or
more software applications when the respective bandwidth
limit for the respective bandwidth group is exceeded.

Example #18: The computing device of any of Examples
#16-17, wherein the bandwidth group includes a plurality of
1/O channels.

Example #19: The computing device of any of Examples
#16-18, wherein the bandwidth management service is fur-
ther configured to, prior to receiving the /O request from the
software application: receive a command; select, based on
the command, the predefined policy from among a plurality
of predefined policies; and assign the predefined policy to
the I/O channel.

Example #20: The computing device of any of Examples
#16-19, wherein the I/O request is a write request for writing
data to a destination, and wherein the bandwidth manage-
ment service is further configured to execute the predefined
policy prior to the data being transferred out of application
memory.

Example #21: A computing device comprising: a proces-
sor; and a memory including instructions for a software
application and an operating system of the computing
device, the operating system being executable by the pro-
cessor to perform operations including: detecting an 1/O
request from the software application, wherein the /O
request is for writing log data to a storage device or reading
the log data from the storage device; in response to detecting
the 1/O request, extracting an 1/O channel identifier from the
1/0 request; determine a bandwidth group associated with
the I/O channel identifier; in response to determining the
bandwidth group, determining whether bandwidth con-
sumption of the bandwidth group exceeds a predefined
bandwidth limit assigned to the bandwidth group; and in
response to determining that the bandwidth consumption of
the bandwidth group exceeds the predefined bandwidth
limit, executing a predefined policy assigned to the 1/O
channel for handling the I/O request.

Example #22: The computing device of Example #21,
wherein the operating system is further configured to: select
the predefined bandwidth limit based on the bandwidth
group; and select the predefined policy based on the /O
channel.

Example #23: The computing device of Example #22,
wherein the operating system is configured to select the
predefined bandwidth limit based on the bandwidth group by
accessing a predefined mapping that correlates predefined
bandwidth limits to bandwidth groups.

Example #24: The computing device of any of Examples
#22-23, wherein the operating system is configured to select

10

15

20

25

30

35

40

45

50

55

60

65

16

the predefined policy based on the /O channel by accessing
a predefined mapping that correlates predefined policies to
1/O channels.

Example #25: The computing device of any of Examples
#21-24, wherein the operating system is further configured
to determine the bandwidth group associated with the I/O
channel identifier by accessing a predefined mapping that
correlates /O channel identifiers to bandwidth groups.

Example #26: The computing device of Examples #21-
25, wherein the operating system is further configured to:
select the bandwidth group from among a plurality of
bandwidth groups based on the I/O channel identifier,
wherein each respective bandwidth group of the plurality of
bandwidth groups encompasses one or more corresponding
1/O channels; and based on selecting the bandwidth group,
determine the predefined bandwidth limit assigned to the
bandwidth group, wherein each respective bandwidth group
of' the plurality of bandwidth groups is assigned a respective
bandwidth limit.

Example #27: The computing device of Example #26,
wherein the operating system is further configured to: select
the predefined policy from among a plurality of predefined
policies based on the 1/0 channel, wherein each 1/O channel
of each respective bandwidth group of the plurality of
bandwidth groups is assigned a respective predefined policy
specifying how 1/O requests from one or more software
applications are to be handled when the respective band-
width limit for the respective bandwidth group is exceeded.

Example #28: The computing device of Examples #21-
27, wherein the bandwidth group includes a plurality of I/O
channel identifiers.

Example #29: The computing device of Examples #21-
28, wherein the operating system is further configured to
discard the I/O request based on the predefined policy.

Example #30: The computing device of Examples #21-
29, wherein the operating system is further configured to
delay the I/O request for a particular time period based on
the predefined policy.

Example #31: The computing device of Examples #21-
30, wherein the 1/O channel identifier includes a file descrip-
tor.

Example 32: A method comprising: detecting, by a pro-
cessor, an /O request from a software application, wherein
the [/O request is for writing log data to a storage device or
reading the log data from the storage device; in response to
detecting the I/O request, extracting, by the processor, an [/O
channel identifier from the 1/O request; determining, by the
processor, a bandwidth group that corresponds to the I/O
channel identifier; in response to determining the bandwidth
group, determining, by the processor, whether bandwidth
consumption of the bandwidth group exceeds a predefined
bandwidth limit assigned to the bandwidth group; and in
response to determining that the bandwidth consumption of
the bandwidth group exceeds the predefined bandwidth
limit, executing, by the processor, a predefined policy
assigned to the I/O channel for handling the /O request.

Example #33: The method of Example #32, further com-
prising: selecting, by the processor, the predefined band-
width limit based on the bandwidth group; and selecting, by
the processor, the predefined policy based on the /O chan-
nel.

Example #34: The method of Example #33, further com-
prising: selecting, by the processor, the predefined band-
width limit based on the bandwidth group by accessing a
predefined mapping that correlates predefined bandwidth
limits to bandwidth groups.

US 11,693,799 B2

17

Example #35: The method of any of Examples #33-34,
further comprising: selecting, by the processor, the pre-
defined policy based on the I/O channel by accessing a
predefined mapping that correlates predefined policies to I/O
channels.

Example #36: The method of any of Examples #32-35,
further comprising: determining, by the processor, the band-
width group associated with the /O channel identifier by
accessing a predefined mapping that correlates I/O channel
identifiers to bandwidth groups.

Example #37: The method of any of Examples #32-36,
further comprising: selecting, by the processor, the band-
width group from among a plurality of bandwidth groups
based on the 1/O channel identifier, wherein each respective
bandwidth group of the plurality of bandwidth groups
encompasses one or more corresponding /O channel iden-
tifiers associated with one or more I/O channels; and based
on selecting the bandwidth group, determining, by the
processor, the predefined bandwidth limit assigned to the
bandwidth group, wherein each respective bandwidth group
of the plurality of bandwidth groups is assigned a respective
bandwidth limit.

Example #38: The method of Example #37, further com-
prising: selecting, by the processor, the predefined policy
from among a plurality of predefined policies based on the
1/0 channel, wherein each 1/O channel of each respective
bandwidth group of the plurality of bandwidth groups is
assigned a respective predefined policy specifying how /O
requests from one or more software applications are to be
handled when the respective bandwidth limit for the respec-
tive bandwidth group is exceeded.

Example #39: The method of any of Examples #32-38,
wherein the bandwidth group includes a plurality of I/O
channel identifiers.

Example #40: The method of any of Examples #32-38,
wherein the 1/O channel identifier is a file descriptor.

Example #41: A system comprising: means for detecting
an input/output (I/0O) request from a software application;
means for determining a bandwidth group that corresponds
to an /O channel associated with the I/O request, in
response to detecting the I/O request; means for determining
whether bandwidth consumption of the bandwidth group
exceeds a predefined bandwidth limit assigned to the band-
width group, in response to determining the bandwidth
group; and means for executing a predefined policy assigned
to the 1/O channel for handling the 1/O request, in response
to determining that the bandwidth consumption of the band-
width group exceeds the predefined bandwidth limit.

The foregoing description of certain examples, including
illustrated examples, has been presented only for the pur-
pose of illustration and description and is not intended to be
exhaustive or to limit the disclosure to the precise forms
disclosed. Numerous modifications, adaptations, and uses
thereof will be apparent to those skilled in the art without
departing from the scope of the disclosure. For instance, any
examples described herein can be combined with any other
examples to yield further examples.

The invention claimed is:

1. A non-transitory computer-readable medium compris-
ing program code that is executable by a processor for
causing the processor to perform operations including:

detecting an input/output (I/O) request from a software

application;

in response to detecting the I/O request, determining a

bandwidth group that corresponds to an I/O channel
associated with the I/O request;

10

15

20

25

30

35

40

45

50

55

60

65

18

determining whether bandwidth consumption of the band-
width group exceeds a predefined bandwidth limit;
selecting a predefined policy from among a plurality of
predefined policies based on the predefined policy
being assigned to the /O channel; and
in response to determining that the bandwidth consump-
tion of the bandwidth group exceeds the predefined
bandwidth limit, executing the predefined policy
assigned to the I/O channel for handling the 1/O
request.
2. The non-transitory computer-readable medium of claim
1, further comprising program code that is executable by the
processor for causing the processor to:
determine the bandwidth group by selecting the band-
width group from among a plurality of bandwidth
groups based on the I/O channel, wherein each respec-
tive bandwidth group of the plurality of bandwidth
groups encompasses one or more corresponding 1/0O
channels; and
based on selecting the bandwidth group, determine the
predefined bandwidth limit that is assigned to the
bandwidth group, wherein each respective bandwidth
group of the plurality of bandwidth groups is assigned
a respective bandwidth limit.
3. The non-transitory computer-readable medium of claim
2, wherein each /O channel in each respective bandwidth
group of the plurality of bandwidth groups is assigned a
respective predefined policy specifying how /O requests
from one or more software applications are to be handled
when the respective bandwidth limit for the respective
bandwidth group is exceeded.
4. The non-transitory computer-readable medium of claim
3, wherein the plurality of predefined policies specify a
plurality of different techniques for handling the I/O
requests.
5. The non-transitory computer-readable medium of claim
1, further comprising program code that is executable by the
processor for causing the processor to, prior to receiving the
1/O request from the software application:
receive a command from the software application;
based on the command, select the predefined policy from
among the plurality of predefined policies; and
assign the predefined policy to the I/O channel.
6. The non-transitory computer-readable medium of claim
1, wherein the predefined policy is configured for causing
the 1/O request to be discarded, or wherein the predefined
policy is configured for causing the /O request to be delayed
for a particular time period.
7. The non-transitory computer-readable medium of claim
1, further comprising program code that is executable by the
processor for causing the processor to:
in response to determining that the bandwidth consump-
tion of the bandwidth group does not exceed the
predefined bandwidth limit, allow the I/O request to be
performed without executing the predefined policy in
relation to the 1/O request.
8. The non-transitory computer-readable medium of claim
1, wherein the predefined bandwidth limit is user customi-
zable.
9. The non-transitory computer-readable medium of claim
1, wherein the I/O request is a write request for storing data
output by the software application to a log file on a storage
system, and wherein the /O channel is an output channel for
writing the data to the log file.

US 11,693,799 B2

19

10. The non-transitory computer-readable medium of
claim 1, wherein the program code corresponds to a kernel
of an operating system, the kernel being configured to
execute the operations.

11. A method comprising:

detecting, by a processor, an input/output (I/O) request

from a software application;
in response to detecting the 1/O request, determining, by
the processor, a bandwidth group that corresponds to an
I/O channel,

in response to determining the bandwidth group, deter-
mining, by the processor, that bandwidth consumption
of the bandwidth group exceeds a predefined band-
width limit assigned to the bandwidth group;

selecting, by the processor, a predefined policy from
among a plurality of predefined policies based on the
predefined policy being assigned to the I/O channel;
and in response to determining that the bandwidth
consumption of the bandwidth group exceeds the pre-
defined bandwidth limit, executing, by the processor,
the predefined policy assigned to the I/O channel for
handling the 1/O request.

12. The method of claim 11, further comprising:

selecting, by the processor, the bandwidth group from

among a plurality of bandwidth groups based on the I/O
channel, wherein each respective bandwidth group of
the plurality of bandwidth groups encompasses one or
more corresponding I/O channels; and

based on selecting the bandwidth group, determining, by

the processor, the predefined bandwidth limit assigned
to the bandwidth group, wherein each respective band-
width group of the plurality of bandwidth groups is
assigned a respective bandwidth limit.

13. The method of claim 12, wherein each I/O channel in
each respective bandwidth group of the plurality of band-
width groups is assigned a respective predefined policy
specifying how /O requests from one or more software
applications are to be handled when the respective band-
width limit for the respective bandwidth group is exceeded.

14. The method of claim 11, wherein the predefined policy
is configured for causing the /O request to be discarded.

15. The method of claim 11, wherein the predefined policy
is configured for causing the I/O request to be delayed for a
particular time period.

16. A computing device comprising:

a processor; and

a non-transitory memory including:

a software application; and

a bandwidth management service that is separate from
the software application, the bandwidth management
service being executable by the processor to perform
operations including:

10

15

20

25

30

35

40

45

50

20

detecting an input/output (I/O) request from the
software application;

in response to detecting the I/O request, determining
a bandwidth group that corresponds to an I/O
channel associated with the I/O request;

in response to determining the bandwidth group that
corresponds to the [/O channel, determining
whether bandwidth consumption of the bandwidth
group exceeds a predefined bandwidth limit
assigned to the bandwidth group;

selecting a predefined policy from among a plurality
of predefined policies based on the predefined
policy being assigned to the I/O channel; and

in response to determining that the bandwidth con-
sumption of the bandwidth group exceeds the
predefined bandwidth limit, executing the pre-
defined policy assigned to the I/O channel for
preventing the 1/O request from being performed
for at least a particular time period.

17. The computing device of claim 16, wherein the
bandwidth management service is further configured to:

determine the bandwidth group by selecting the band-

width group from among a plurality of bandwidth
groups based on the I/O channel, wherein each respec-
tive bandwidth group of the plurality of bandwidth
groups encompasses a corresponding set of I/O chan-
nels, and wherein each respective bandwidth group of
the plurality of bandwidth groups is assigned a respec-
tive bandwidth limit; and

wherein each [/O channel in each respective bandwidth

group of the plurality of bandwidth groups is assigned
a respective predefined policy of the plurality of pre-
defined policies, the respective predefined policy speci-
fying how the bandwidth management service is to
handle 1/O requests from one or more software appli-
cations when the respective bandwidth limit for the
respective bandwidth group is exceeded.

18. The computing device of claim 16, wherein the
bandwidth group includes a plurality of I/O channels.

19. The computing device of claim 16, wherein the
bandwidth management service is further configured to,
prior to receiving the I/O request from the software appli-
cation:

receive a command;

select, based on the command, the predefined policy from

among a plurality of predefined policies; and

assign the predefined policy to the I/O channel.

20. The computing device of claim 16, wherein the I/O
request is a write request for writing data to a destination,
and wherein the bandwidth management service is further
configured to execute the predefined policy prior to the data
being transferred out of application memory.

#* #* #* #* #*

