
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2003/0214909 A1

Maciel

US 2003O214909A1

(43) Pub. Date: Nov. 20, 2003

(54) DATA PROCESSING DEVICE AND ITS
INPUT/OUTPUT METHOD AND PROGRAM

(75) Inventor:

Correspondence Address:
Stanley P. Fisher
Reed Smith LLP
3110 Fairview Park Drive, Suite 1400
Falls Church, VA 22042-4503 (US)

(73) Assignee: Hitachi, Ltd.

(21) Appl. No.:

(22) Filed: Dec. 17, 2002

(30) Foreign Application Priority Data

May 15, 2002 (JP)...................................... 2002-139572

10/320,607

Frederico Buchholz Maciel, Kokubunji
(JP)

T 11
PROTOCOL
PROCESSNG

40

DEVICE
DRIVER

Publication Classification

(51) Int. Cl." .. H04J 1/16
(52) U.S. Cl. .. 370/235

(57) ABSTRACT

The present invention improves input/output Speed by mul
tiplexing/demultiplexing data and also reducing the proceSS
ing time required for interrupt handling. The present inven
tion involves a proceSS which requests input/output
operation; an adapter which performs input/output operation
based on the request from the process, and a Scheduler which
keeps the proceSS in wait State while the adapter is perform
ing input/output operation. When the input/output operation
of the adapter is completed, the State of the process waiting
for the completion of the operation is changed into "run
nable” by the adapter, and the execution of the process
which requested input/output operation is thereby restarted.

PROCESS

34 DATA

SCHEDULER

42

INTERRUPT TIMER
HANDLER HANDLER

47

BUSY
FLAG

63 68
in ADAPTER

v 65

MULTIPLEX/DEMULTIPLEXING

Patent Application Publication Nov. 20, 2003 Sheet 1 of 7 US 2003/0214909 A1

FIG. 1

PROCESS

34 DATA

PROTOCOL
PROCESSING SCHEDULER

40

DEVICE INTERRUPT TIMER
DRIVER HANDLER HANDLER

2

48 i

5

MULTIPLEX/DEMULTIPLEXING s:

Patent Application Publication Nov. 20, 2003 Sheet 2 of 7 US 2003/0214909 A1

FIG. 2

103
MEMORY

104 Y CONTROLLER MEMORY
105

106

M ADAPTER

Patent Application Publication Nov. 20, 2003 Sheet 3 of 7 US 2003/0214909 A1

FIG. 3
INTERRUPT DEVICE PROTOCOL.

ADAPTER HANDLER DRIVER PROCESSING SCHEDULER PROCESS
(2, 6) (47) (46,50) (43,49) (41) (31, 32)

FIG, 4
INTERRUPT DEVICE PROTOCOL

ADAPTER HANDER DRIVER PROCESSING SCHEDULER PROCESS
(2, 6) (47) (46,50) (43,49) (41) (31, 32)

Patent Application Publication Nov. 20, 2003 Sheet 4 of 7 US 2003/0214909 A1

FIG. 5

PROTOCOL STATE

"I ANN
40 .. A.
DEVICE INTERRUPT TIMER

HANDLER DRIVER HANDLER

41

BUSY
FLAG

68 5 62

i. MULTIPLEX/DEMULTIPLEXING

Patent Application Publication Nov. 20, 2003 Sheet 5 of 7 US 2003/0214909 A1

FIG. 6

PROCESS

DATA 34 DATA

. ...
T 11
PR0000

i 44
DEVICE INTERRUPT
DRIVER HANDLER

47

Patent Application Publication Nov. 20, 2003 Sheet 6 of 7 US 2003/0214909 A1

FIG. 7

1

DATA

600
630 620 5

ENDPOINT ADAPTER ENDPOINT ENDPOINT

MULTIPLEX/DEMULTIPLEXING

Patent Application Publication Nov. 20, 2003. Sheet 7 of 7 US 2003/0214909 A1

FIG. 8

INTERRUPT DEVICE PROTOCOL
ADAPTER HANDLER DRIVER PROCESSING SCHEDULER PROCESS

(2, 6) (47) (46,50) (43,49) (41) (31, 32)

US 2003/0214909 A1

DATA PROCESSING DEVICE AND ITS
INPUT/OUTPUT METHOD AND PROGRAM

BACKGROUND OF THE INVENTION

0001) 1. Field of the Invention
0002 The present invention in general relates to an
input/output adapter and more particularly to an adapter
which connects a disk unit, a network, and the like to a
computer or the like and processes protocols used for the
disk unit and the network.

0003 2. Description of Related Art
0004. There are a plurality of different types of disk
connecting System and networks, and their examples include
Ethernet (registered trade name), Fibre Channel, ATM, and
parallel SCSI.
0005. When these disk connecting systems or networks
are connected to a data processing device Such as host
(computer), an adapter is used for linking the internal I/O
bus of the host with the disk connecting Systems or net
WorkS.

0006 With respect to personal computers, a network
adapter for connecting the PCI bus with Ethernet is an
example of Such adapters. (These adapters are usually in the
form of card to be inserted into a PCI bus connector,
however there are cases where its components are directly
built in the motherboard. The latter case is also referred to
as "adapter” in the present invention.)
0007 Referring to FIG. 6, an explanation will be given
to the operation of an adapter for a computer System, and the
kernel and processes of an operating System (hereafter,
referred to as “OS”).
0008. In this specification, an explanation will be given
mainly based on the case of a network adapter and the
TCP/IP protocol (Refer to “UNIX Network Programming.”
W. Richard Stevens, Prentice Hall, U.S.A., 1990, ISBN
0-13-949876-1, hereafter, referred to as “Reference 1.”),
which is widely used in network communication. Also, the
Sockets API (Application Programming Interface: aggregate
of functions which processes calls to use Some function of
a computer or an operating System) for communication
using TCP/IP will be used in the examples (Refer to Ref
erence 1.) Furthermore, the Linux kernel (Refer to “Under
standing the Linux Kernel.” D. P. Bovet, M. Cesati, O’Reilly
& Associates, 2001, ISBN 0-596-00002-2, hereafter,
referred to as “Reference 2') may be taken as an example of
OS. However, the present invention is not limited to network
adapters, the TCP/IP protocol, the Sockets API, or the Linux
kernel.

0009 First, in case of FIG. 6, a plurality of processes
(programs)31 and 32 of the host 1 carry out communication
using the adapter 2. (The party on the other end on the
network is not shown in FIG. 6 or in the following draw
ings.) The kernel 4 controls the adapter 2 and multiplexes/
demultiplexes the data and control of the processes 31 and
32. Next, an explanation will be given to multiplexing/
demultiplexing.

0.010 First, an explanation will be given to multiplexing/
demultiplexing of data. The adapter 2 transmits and receives
the data of a plurality of the processes 31 and 32 in a lump

Nov. 20, 2003

(i.e., the data is not received and transmitted Separately for
each process 31 and 32); therefore, the kernel 4 multiplexes/
demultiplexes data between the plurality of the processes 31
and 32 and the adapter 2 through the buffer 45. First, an
explanation will be given to receiving processing. When the
adapter 2 receives packets through the network, the adapter
writes the packets to the buffer 45 of the kernel 4. (The
adapter is capable of writing and reading data to and from
the main memory by DMA.)
0011. At the completion of reception, the adapter 2 gen
erates an interrupt, and this interrupt is handled by the code
of the interrupt handler 47 for the adapter 2, which in turn
calls the device driver 46. The device driver 46 reads the
packets from the buffer 45, checks the communication
protocol of the packets, and calls the protocol processing 43
for the corresponding protocol (TCP/IP in this example).

0012 Under TCP/IP, data is communicated on logical
connections established in advance of data transmission. To
perform TCP/IP processing, the protocol processing 43 has
a protocol processing table 44 for managing the State of
communication and recording the correspondences between
logical connections and processes and the like. The protocol
processing 43 checks the processes 31 and 32 which are the
destinations of the received data, copies the data to the
respective buffers 33 and 34 of the processes 31 and 32,
releases the area in the buffer 45 for the received data, and
completes the receiving processing.

0013 Transmitting processing is mostly done in the
reverse order of receiving processing. First, a proceSS 31 and
32 specifies transmission data 33 and 34 and calls the
protocol processing 43. The protocol processing 43 copies
the data 33 and 34 to the buffer 45, assembles packets on the
buffer 45, and calls the device driver 46. The device driver
46 controls and causes the adapter 2 to transmit the packets.
When the transmission is completed, the adapter 2 generates
an interrupt. This interrupt is handled by the interrupt
handler 47 and the device driver 46, and the device driver 46
releases the area in the buffer 45 where the transmitted
packets were Stored.

0014) Next, an explanation will be given to multiplexing/
demultiplexing of process control. In FIG. 6, the adapter 2
generates interrupts related to a plurality of the processes 31
and 32 in a lump (i.e., the interrupts are not generated
Separately for each process 31 and 32); therefore, the kernel
4 also multiplexes/demultiplexes the interrupts to perform
process control of the processes 31 and 32. (Usually, this
processing is not called “multiplexing/demultiplexing';
however, this term is used in the present invention to
highlight its analogy to multiplexing/demultiplexing of
data.)
0015 The process control mainly changes the state of
processes, as described next. Each process has a plurality of
States: for example, "running” (the State in which any of
CPUs is executing this process), “runnable” (the state in
which this process can be executed but no CPUs are cur
rently executing it), and “I/O wait” (the state in which this
process is waiting for transmission, reception, or the like to
be completed). (Refer to Reference 2. The processes in
Linux have these states but the states of task struct in Linux
do not have a one-to-one correspondence to the three States
mentioned above.)

US 2003/0214909 A1

0016. At the time of transmission/reception, the kernel 4
manages the State of each of the processes 31 and 32 and
records the States in the process table 42.
0.017. The time chart of receiving processing in FIG. 8 is
taken as an example. When a proceSS 31 and 32 uses a
blocking call (which waits until data reception is completed)
of the Sockets API, the protocol processing 43 of the kernel
4 is called (800). If data has not been received, the protocol
processing 43 calls the scheduler 41 of the kernel 4 (801),
and changes the State of the process 31 and 32 from
“running” to “I/O wait.”
0.018 When data reception is completed, the adapter 2
generates an interrupt (802). The interrupt handler 47, the
device driver 46, and the protocol processing 43 are called
(803, 804). The protocol processing 43 checks to see which
process 31 and 32 corresponds to the reception during the
receiving processing, and calls the Scheduler 41 if the State
thereof needs be changed (805). The scheduler 41 changes
the process 31 and 32 which transmitted or received data to
the runnable State.

0019. Thereafter (immediately after the process is
brought into runnable state or after one or more timer 5
interrupts (described later)), the process31 and 32 is brought
into running State (806), and the receiving processing is
completed (807).
0020 Independently of any data transmission or recep
tion, the timer 5 periodically generates an interrupt (100 Hz
for Linux. Refer to page 140 in Reference 1.), and, Subse
quently to the timer (interrupt) handler 48, the scheduler is
called. (Refer to pages 133 and 142 in Reference 1.) If
necessary, the Scheduler 41 Selects which of processes 31
and 32 in runnable or running State should be brought into
running or runnable State. The kernel implements timeshar
ing by this processing.
0021 Recently, the performance of networks has been
increasing more rapidly than the performance of Servers. AS
a result, the processing of the TCP/IP protocol is increas
ingly becoming a bottleneck.
0022. To cope with this, two methods for protocol pro
cessing in an adapter were developed: TCP/IP implemented
in hardware (Refer to “The Outboarding of TCP/IP.”
JHufferd, e-Commerce Infrastructure Technology Confer
ence and Tradeshow, February 2001, Monterey, U.S.A.) and
the InfiniBand network which implements functions, Such as
logical connection, equivalent to the TCP/IP by its own
protocol (Refer to “InfiniBand Architecture Specification
Volume 1, Release 1.0..a').
0023 Referring to FIG. 7, an explanation will be given
to an adapter 600 which processes a protocol taking an
InfiniBand adapter as an example.
0024. The adapter 600 manages the processing and the
State of communication of individual logical connections at
the communication endpoints 610 to 630 of the logical
connections. (These communication endpoints are called
Queue Pairs (hereafter, abbreviated to “QP") in InfiniBand.)
0.025 A process 31 and 32 establishes a logical connec
tion through the protocol processing 49 and the device driver
50. After the establishment, the process directly accesses an
endpoint 610 to 630, bypassing the kernel 4. (The protocol
processing 49, the protocol processing table 40, and the

Nov. 20, 2003

device driver 50 are equivalent to the protocol processing
43, the protocol processing table 44, and the device deriver
46, respectively. However, the protocol processing of the
latter is not included in the former, only the function of
connection management is included.)
0026. To directly transmit and receive the data 33 and 34
of the processes 31 and 32, the adapter 600 performs
multiplexing/demultiplexing 64 of the data of a plurality of
communication endpoints 610 to 630. Therefore, in the case
of the adapter 600, multiplexing/demultiplexing of data is
performed by the adapter 600, not by the kernel 4.
0027. To directly drive the InfiniBand adapter 600, APIs
different from the Sockets API are used. It is expected that
APIs for InfiniBand will also have blocking calls (these APIs
are currently under Standardization.)
0028. The processing related to the InfiniBand adapter
600 in FIG. 7 also follows the time chart in FIG. 8. In order
that the adapter 600 may perform protocol processing for
data transmission/reception, the protocol processing 49 calls
the scheduler 41 when a blocking call is made (800) (As a
modification, the processes 31 and 32 can directly call the
Scheduler by providing special System calls.) At the comple
tion of transmission/reception, the adapter 600 generates an
interrupt (802).
0029. In the example of prior art in FIG. 7, the adapter
600 which processes protocols bypasses the kernel 4 at the
time of data transmission/reception, bypasses the protocol
processing 43, and eliminates the copying of data between
the buffers 33 and 34 of the processes 31 and 32 and the
buffer 45. Consequently, the use of the adapter 600 reduces
the processing burden on the server CPUs and eliminates
part of the bottleneck which is created in ordinary adapters
2 (FIG. 6).
0030. However, the adapter 600 which processes proto
cols performs multiplexing/demultiplexing of data but does
not perform multiplexing/demultiplexing of control. When
the processes 31 and 32 use a blocking reception call of the
Sockets API, processing associated with interrupt, that is,
execution of the interrupt handler 47, the device driver 50,
the protocol processing 49, and the scheduler 41 (802 to
805) is required. As a result, while data communication
bypasses the kernel 4, control does not bypass the kernel 4;
therefore, part of the bottleneck remains.
0031 When the adapter 600 completes the transmission/
reception of data, the kernel executes the interrupt handler
47, calls the protocol processing 49 and the scheduler 41,
and brings the process 31 and 32 waiting for data transmis
Sion/reception (I/O wait) into runnable State. As illustrated in
FIG. 7, interrupt processing must be performed each time
transmission/reception is completed on the plurality of the
endpoints 610 to 630. Consequently, processing is required
to change the state of the processes from “I/O wait” to
"runnable', and thus the overhead in communication pro
cessing when using the adapter 600 cannot be eliminated
only by the multiplexing/demultiplexing of data.

SUMMARY OF THE INVENTION

0032. The present invention is made to solve the above
problem and is intended to perform multiplexing/demulti
plexing of data and further reduce the time required for
interrupt handling for the improvement of input/output
Speed.

US 2003/0214909 A1

0033. The input/output method of the present invention
involves processing which requests input/output operations,
an adapter which performs input/output operations based on
the requests from the processing, and a Scheduling means
which keeps the above processing in I/O wait State while the
adapter is performing input/output operations. In this input/
output method, when the input/output operation on the
adapter is completed, the State of processing which has been
waiting for the completion of this input/output operation is
changed into “runnable” by the adapter, and the processing
which requested the input/output operation is thereby
restarted.

0034) More specifically, a process 31, 32 makes a block
ing call, and, when transmission/reception associated with
this call is completed, the adapter 6 changes the State of the
process 31, 32 stored in the process table 42 into “runnable.”
On this account, the state of the process 31, 32 can be
changed without an interrupt or processing by the kernel 4.
When the scheduler 41 is thereafter executed by the timer
handler 48, the process 31, 32 is changed to “running” state.
0035) If there is any idle CPU in the host 1, the process
31, 32 brought into “runnable” at the completion of trans
mission/reception must be immediately brought into "run
ning to improve the performance. For this reason, an
interrupt is generated if there is an idle CPU. Subsequently
to the interrupt handling, the Scheduler 41 is called, and the
process 31 and 32 is changed to “running State.
0036). In the present invention, therefore, when an input/
output operation is requested, the input/output operation is
performed by the adapter, and the processing which
requested the operation is brought into I/O wait state. When
the input/output operation is completed, the adapter directly
changes the State of the processing from wait State to
runnable State. Thus, the processing time from the comple
tion of input/output operation to restarting of the processing
is shortened, and this enhances the efficiency in input/output
processing and thus the Speed thereof.

BRIEF DESCRIPTION OF THE DRAWINGS

0037 FIG. 1 is a block diagram illustrating one embodi
ment of the present invention and outlining the functions of
the host;
0.038 FIG. 2 is a schematic diagram illustrating the
hardware of the host;

0.039 FIG. 3 is a time chart illustrating the operation of
the State-changing facility of the adapter;

0040 FIG. 4 is a time chart illustrating interrupt handling
from the adapter;
0041 FIG. 5 is a block diagram illustrating another
embodiment and outlining the functions of the host;
0.042 FIG. 6 is a block diagram illustrating an example
of related art and outlining the functions of the host using a
network adapter;
0.043 FIG. 7 is a block diagram illustrating another
example of related art and outlining the functions of the host
using an InfiniBand adapter; and
0044 FIG. 8 is a time chart illustrating an example of
related art and depicting interrupt handling from the adapter.

Nov. 20, 2003

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

0045 Referring to the accompanying drawings, an
embodiment of the present invention will be described
below.

0046 FIG. 1 illustrates an example wherein the present
invention is applied to the InfiniBand adapter illustrated as
related art in FIG. 7.

0047 A plurality of the processes 31 and 32 (applica
tions) running under the operating System on the host
(computer) 1 communicate with the outside of the host 1
through the network 7 using the InfiniBand adapter 6. The
kernel 4 of the operating System (hereafter, referred to as
“OS") controls the InfiniBand adapter 6 and performs mul
tiplexing/demultiplexing of the data 33 and 34 and of the
control of the processes 31 and 32.
0048 FIG. 2 schematically illustrates the hardware con
figuration of the host 1.

0049. In the host 1, a plurality of the CPUs (processors)
101 and 102 are connected with the memory controller 104
through the CPU bus 103, and the memory controller 104 is
connected with the memory 106 through the memory bus
105. The memory 106 is accessed by the CPUs 101 and 102
or other devices.

0050. Further, the memory controller 104 is connected
with the InfiniBand adapter 6 through the internal I/O bus
107, and thus the CPUs 101 and 102 can communicate with
the external network 7.

0051. The memory controller 104 includes an interrupt
controller and the like, and the memory 106 is used as main
memory. The CPUs 101 and 102 may be constituted of
logically independent virtual processors.

0052. In FIG. 1, the adapter 6 manages processing of
logical connections and the State of communication at the
communication endpoints 61 to 63 (Queue Pairs, hereafter,
referred to as “QP") of the logical connections.
0053. The processes 31 and 32 establish logical connec
tions through the protocol processing 49 and the device
driver 50. After the logical connections are established, the
processes directly access the endpoints 61 to 63 by bypass
ing the kernel 4.
0054) To directly transmit and receive the data 33 and 34
of the processes 31 and 32, the adapter 6 performs multi
plexing/demultiplexing 64 of a plurality of the communica
tion endpoints 61 to 63. Therefore, in the case of the
InfiniBand adapter 6, multiplexing/demultiplexing of data is
performed by the InfiniBand adapter 6, not by the kernel 4.
0055. The process control of the operating system
changes the State of processes, as described next. Each
processe has a plurality of States: for example, "running”
(the State in which any of CPUs is executing this process),
“runnable” (the state in which this process can be executed
but no CPUs are currently executing it), and “I/O wait” (the
State in which this process is waiting for transmission,
reception, or the like to be completed. (Refer to Reference
2. The processes in Linux have these States but the States of
task struct in Linux do not have a one-to-one correspon
dence to the three States mentioned above.)

US 2003/0214909 A1

0056 The kernel 4 of the OS (Linux in this case) includes
the protocol processing 49 and the device driver 50 which
establish logical connections between the processes 31 and
32 and the adapter 6. The kernel 4 also includes the
scheduler 41 which controls the state of the processes 31 and
32, being called by the timer handler 48 according to the
timer 5 or by the interrupt handler 47.

0057. Further, the table 42 of the scheduler 41 is consti
tuted in a way that the state-changing facilities 65 to 67
respectively provided in the endpoints 61 to 63 of the
adapter 6 can directly write to this table.
0.058. The busy flag 68 indicating whether there is an idle
CPU is provided, and the busy flag 68 is set by the scheduler
41 and makes it possible to control interrupt requests from
the adapter 6 according to whether any CPUs are idle.
0059 Next, an explanation will be given to the state
changing facilities 65 to 67 respectively provided in the
endpoints 61 to 63.

0060. When the protocol processing 49 allocates an end
point 61 to 63 to a process 31 and 32 and establishes the
logical connection to this endpoint 61 to 63, the protocol
processing Stores the address of the entry in the proceSS table
42 indicating the state of this process 31 and 32 in the
state-changing facility 65 to 67 of the endpoint 61 to 63.
Thus, the state-changing facility 65 to 67 of each endpoint
can write to the entry in the process table 42 corresponding
to the logical connection to the endpoint.

0061. When the address is stored in the state-changing
facilities 65 to 67, a value indicating “runnable' in the field
in the entries in the process table 42 and the byte width
thereof are also Stored in the State-changing facilities 65 to
67. The process table 42 of the scheduler 41 is a storage area
preset in a specified area in the main memory.

0.062. In case the process 31 and 32 uses a blocking call
during data transmission/reception on a logical connection,
when the process accesses the endpoint 61 to 63 to start the
transmission/reception, the process makes a request to
change the State thereof at the completion of this transmis
Sion/reception. (Like the above-mentioned example of
related art, the processing of accessing of the endpoint is
performed by a communication library related to the adapter
6, under the level of the standard API.)
0.063. The operation of the state-changing facilities 65 to
67 will be described referring to the time chart in FIG. 3.
0064. The process 31 and 32 calls the protocol processing
49 (800 in FIG.3), and the protocol processing 49 brings the
process into I/O wait state and calls the scheduler 41 (801).
(At this time, if there are “runnable” processes 31 and 32,
one of them is brought into “running State.)
0065. When the transmission/reception is completed, the
endpoint 61 to 63 writes the value indicating “runnable” to
the process table 42 in the main memory by DMA, based on
the values stored in the state-changing facility 65 to 67, thus
changing the state of the process 31 and 32 from “I/O wait”
to “runnable.” (In FIG. 1, writing from the state-changing
facility 66 of the endpoint 62 to the process table 42 is
indicated by an arrow.) After one or more timer 5 interrupts,
the process 31 and 32 is brought into “running” state (806),
and the processing of the blocking call is completed (807).

Nov. 20, 2003

0066. If all the CPUs are busy when the transmission/
reception at the endpoint is completed, the performance of
the host 1 is not improved even by calling the Scheduler.
(This is because the time quantum of the running process has
not ended and the state of the process 31 and 32 is not
changed.) For this reason, the process brought into "run
nable” state by writing from the state-changing facility 65 to
67 to the process table 42 is brought into “running” state
when the timer handler 48 is thereafter executed.

0067. If there is any idle CPU, for the improvement of the
performance of the host 1, it is necessary to immediately call
the Scheduler and bring the process which has been brought
into “runnable” state into “running” state.
0068. As a result, it is required to determine whether an
interrupt should be generated or not according to whether
the CPUs are busy. To exercise this interrupt control, the
above-mentioned busy flag 68 as a flag indicating whether
there is any idle CPU is provided, and the scheduler 41 sets
the busy flag 68.
0069. If there is any idle CPU, the busy flag 68 enables
an interrupt generated by the adapter 6, and if not, the busy
flag disables the interrupts. (However, interrupts related to
exception handling, Such as error, are not inhibited. The busy
flag 68 should not be used to monitor exception handling,
and instead the use of another interrupt line (not shown) is
preferable.)
0070 FIG. 4 illustrates the flow of handling of the
above-mentioned interrupt.
0071. After modifying the process table 42 by using the
State-changing facility 65 to 67, the adapter 6 generates an
interrupt which starts the interrupt handler 47 (802).
0072. When the interrupt handler 47 checks the state of
the adapter 6 and acquires the information that this interrupt
was generated for changing the State of the process 31 and
32, it turns out that the device driver 50 need not be called.
Thus, the scheduler 41 is called (808), the target process 31
and 32 is brought into “running” state (806), and the
processing of the blocking call is completed (807).
0073. In FIG. 4, the scheduler 41 is called directly from
the interrupt handler 47, which is depicted as the normal
flow of processing. However, Since in Linux the Scheduler
41 cannot be called directly from the interrupt handler 47,
the scheduler 41 should be indirectly called by using delayed
processing, Such as a in a bottom half routine.
0074 Summarizing, when the adapter 6 establishes a
logical connection to the endpoint 61 to 63, the address of
an entry in the proceSS table 42 corresponding to the process
whose logical connection has been established is Stored in
the state-changing facility 65 to 67, and thereafter transmis
Sion/reception is performed. At the completion of the trans
mission/reception, the state-changing facility 65 to 67 of the
adapter 6 updates the entry in the process table 42 corre
sponding to the transmission/reception from “I/O wait” to
"runnable,” and thereafter, the adapter 6 generates an inter
rupt. As a result, the Scheduler 41 can be directly called.
0075. In the above-mentioned examples of prior art, the
kernel 4 executes the interrupt handler 47, the device driver
50, the protocol processing 49, and the scheduler in this
order, as illustrated in FIG. 8. Meanwhile, in the present
invention, the scheduler 41 is called directly from the

US 2003/0214909 A1

interrupt handler 47, and thus the Steps 803,804, and 805 in
FIG. 8 illustrating the above-mentioned example of prior art
are obviated. Thus, the overhead caused by their execution
can be reduced, and the time from the completion of
transmission/reception to the execution of process can be
Shortened. As a result, the processing of communication (or
input/output) between the processes 31 and 32 and the
adapter 6 can be accelerated.
0.076 Needless to say, the present invention is not limited
to the above-mentioned embodiments or modifications
thereof, and may be embodied by the modifications
described below or other modifications. Further, the present
invention may be embodied by a plurality of the above
mentioned embodiments, arts described as modifications
thereof, or a combination of the following modifications.
0.077 (Modification 1)
0078. In FIG. 1 above, the protocol processing table 40
has the information of the protocol processing. However,
this information may be provided in a plurality of tables in
actual kernels 4. The present invention can be also imple
mented in this case.

0079 (Modification 2)
0080. The present invention is not limited to the Infini
Band adapter 6 and is applicable to adapters which proceSS
other protocols (e.g. TCP/IP).
0081. In case of an adapter which processes TCP/IP,
possibly there are cases where the adapter does not have
endpoints 61 to 63 individually implemented. However,
since the adapter manages the state of each TCP/IP logical
connection, the present invention can be implemented by
adding a function equivalent to the State-changing facilities
65 to 67 to this management.
0082) While in the InfiniBand, the completion of each
transmission/reception operation is clear, in TCP/IP, which
is a Streaming protocol, data flows continuously, and the
point on this flow which corresponds to the completion of a
transmission/reception operation on the processes 31 and 32
is invisible at the protocol level. On this account, the
transmission/reception of one packet, the minimum amount
of data set by the processes 31 and 32, or the like is taken
as the criterion for the completion of transmission/reception.
0083) (Modification 3)
0084. The present invention is applicable not only to
network adapters, Such as the above-mentioned InfiniBand
and TCP/IP adapters, but also to disk adapters and adapters
for other kinds of I/O devices. For example, conventionally,
when a disk adapter starts data input/output (write/read)
operation, the OS Specifies a main memory address at which
data is to be written/read and a disk block to or from which
data is to be written/read, and input/output is done between
this main memory address and this disk block.
0085 To apply the present invention to this conventional
disk adapter, information (write address, value, and byte
width) equivalent to the state-changing facilities 65 to 67
only has to be added to information for Starting the above
mentioned input/output operation, and the adapter only has
to be provided with a function of writing the information
equivalent to the state-changing facilities 65 to 67 to the
process table 42 on the kernel 4 side at the completion of
transmission/reception.

Nov. 20, 2003

0.086 (Modification 4)
0087. The above description gives an example in which,
when a logical connection is established, a value indicating
“runnable” and the byte width thereof are stored in the
adapter 6. The timing with which information indicating
“runnable' is stored in the adapter 6 is not limited to the
foregoing but the information may be stored, for example,
when the adapter 6 is initialized. Further, instead of Storing
the value in the individual state-changing facilities 65 to 67,
adding a mechanism to Store the value in a single location
for the entire adapter may be considered.
0088 (Modification 5)
0089. In FIG. 1, the state-changing facilities 65 to 67 of
the adapter 6 may be made to take as the destination of
writing another table (52) illustrated in FIG. 5, instead of the
process table 42.
0090 Since this mode of operation of the invention
reduces modification to the kernel 4 and prevents hardware
from directly accessing the proceSS table 42, the mode of
operation is preferable in terms of man-hours in the devel
opment of the kernel 4 and the reliability thereof. In this
case, the State-changing facility 51 of the kernel 4 periodi
cally checks the values in the table, and, if input from the
adapter 6 takes place, changes the State of the target process
in the process table 42.
0091) Further, when there is an idle CPU and an interrupt
is generated, the Scheduler 41 is not called directly from the
interrupt handler 41. Instead, the following steps are taken:
the State-changing facility 51 is called, and the State-chang
ing facility 51 updates the process table 42 and calls the
Scheduler 41.

0092. Possible methods for the state-changing facility 51
to periodically check the table 52 include use of Task
Queues in Linux. (Refer to “Linux Device Drivers,” A.
Rubini, O'Reilly & Associates, ISBN 1-56592-292-1.)
When the adapter 6 is initialized, a task for checking the
entries (the State-changing facility 51) is put in the to timer
task queue. When executed, the State-changing facility 51
adds itself again to this task queue, and thus the task of
checking the entries is executed at each timer 5 interrupt.
0093. In case of this modification, process identifiers (e.g.
process numbers) may be used as the entries to the process
table 42, instead of addresses at which data is written,
values, and byte widths. One of possible data structures of
the table 52 is a circular queue. In case of circular queue, the
adapter 6 writes information (e.g. identifier) of the process
31 and 32 whose State is to be changed to this circular queue,
and the State-changing facility 51 which periodically checks
the information consumes this information. The adapter 6 or
the State-changing facility 66 is notified of the information
consumed by the State-changing facility 51. (In case the
entire adapter 6 is only provided with a table 52, the adapter
6 is notified. In case each State-changing facility 66 is
provided with a table 52, the state-changing facility 66 is
notified.)
0094 (Modification 6)
0095. In the above-mentioned embodiments and modifi
cations, the adapter 6 writes information related to a process
31 and 32 to the main Storage, and the State of the target
process is thereby changed directly or indirectly. There is an

US 2003/0214909 A1

alternative method wherein, as illustrated in FIG. 5, a queue
53 which is not present in the main Storage is provided, the
information (e.g. identifier) of a process 31 and 32 whose
State is changed by the adapter 6 is added to this queue 53,
and the State-changing facility 51 which periodically checks
the information in the queue (Refer to Modification 5 above)
reads out this information.

0096. For the queue 53, a storing means (or storage area)
in the adapter or a storing means (or storage area) in the
interrupt controller may be used.
0097 (Modification 7)
0098. The busy flag 68 described in the above embodi
ment may be implemented in hardware or Software. For
implementation in hardware, part of the adapter 6 or a circuit
in the host 1 (e.g. inside of the interrupt controller circuit)
may be used.
0099) Possible methods for implementation in software
include a method wherein the interrupt controller of the host
1 is configured So as to enable/disable interrupts from the
adapter 6.

0100 (Modification 8)
0101. In the above description, the adapter 6 is located
between the internal I/O bus 107 of the host 1 and the
network 7, as illustrated in FIG. 2, for making the descrip
tion and the drawings easier to understand. However, the
present invention is not limited to this mode of operation.
Concrete examples of other possible modes of operation
include an adapter between InfiniBand and other networks.
(In this case, the InfiniBand is equivalent to an internal bus.)
Another possible mode of operation is that the adapter is
connected only to InfiniBand through one or more connec
tions, and TCP/IP over InfiniBand is processed by this
adapter. (In this case, the internal bus and the external
network are constituted by one or more InfiniBand net
works.)
0102 (Modification 9)
0103) The above descriptions assume that the host 1 is a
data processing device Such as a computer for making the
description and the drawings easier to understand. However,
the present invention is not limited to Such data processing
devices but is also applicable to, for example, Storage
devices, network devices, Such as Switches and routers, and
adapters therefor. In this case, devices use an operating
System for embedded devices, and there are cases where
Such an operating System does not have the concept of
process 31 and 32. Nevertheless, the present invention can
be used to control I/O processing.
0104 (Modification 10)
0105. In the above description, the present invention
controls the state of the processes 31 and 32. However, the
present invention is not limited to the processes 31 and 32
but can be used to control the processing threads in each
process 31 and 32.
0106 For the purpose of distribution, a program for the
implementation of the present invention may be Stored in a
program Storage medium, Such as a disk Storage, Solely or in
combination with other programs. Further, a program for the
implementation of the present invention may be of Such a
type that the program is added to a program for communi

Nov. 20, 2003

cation already in use, or of Such a type that the program
replaces part of the program for communication.
0107 The embodiments disclosed above should be all
considered as examples and should not be considered
restrictive. The scope of the present invention is set forth by
the claims described later, not by the above description. The
present invention is intended to include every modification
to the extent that the meaning and Substance of the modi
fication is equivalent to those of the following claims.
What is claimed is:

1. An input/output method involving a processing request
ing an input/output operation on an adapter, and

a Scheduling procedure which keeps said processing in
wait State while the adapter is performing the input/
output operation, wherein the State of the processing is
changed into “runnable” based on the completion of the
input/output operation on the adapter, and wherein
when the input/output operation on the adapter is

completed, the State of the processing waiting for the
completion of the operation is changed into "run
nable” by the adapter.

2. The input/output method according to claim 1, wherein
Said Scheduling procedure correlates each processing to

an address and Stores the State of the processing in a
Specified memory area, and

Said adapter writes a value indicating runnable State to a
memory area corresponding to the processing in Said
Scheduling procedure when input/output operation is
completed.

3. The input/output method according to claim 2, wherein
Said adapter comprises a recording means for recording an

address corresponding to processing Stored in Said
Scheduling procedure and a value indicating runnable
State, and

records the address corresponding to Said processing and
Said value in Said recording means before or when Said
input/output operation is performed.

4. The input/output method according to claim 1, wherein
Said Scheduling procedure is included in an operating

System and has a means for recording the identifier of
Said processing waiting for the completion of input/
output operation,

Said operating System including
a procedure which adds said identifier to a queue when

the input/output operation of Said adapter is com
pleted, and

a procedure which periodically reads out the contents
of Said queue and, if there is any added identifier,
changes the State of processing corresponding to the
identifier into “runnable.”

5. The input/output method according to claim 2, wherein
Said adapter performs input/output operation on a network

protocol and has said recording means for each logical
connection under the protocol, Said input/output opera
tions being transmission/reception operations on logi
cal connections.

6. The input/output method according to claim 2, wherein
Said adapter is an input/output device adapter or an adapter

US 2003/0214909 A1

for a means for connecting an input/output device, and has
Said recording means for each input/output operation.

7. The input/output method according to claim 5, wherein
Said Scheduling procedure has a flag which enables or

disables interrupts depending on whether processors
are busy, and

Said adapter generates an interrupt if Said flag is in
enabling State when the input/output operation is com
pleted.

8. A data processing device comprising:
an adapter which performs input/output operations, and
a Scheduling means which keeps a processing which

requested an input/output operation in wait State while
Said adapter is performing the input/output operation,
wherein

Said adapter changes the-State of the processing waiting
for the completion of the input/output operation into
"runnable' on Said Scheduling means when the input/
output operation is completed.

9. The data processing device according to claim 8,
wherein

Said Scheduling means correlates an address to each
processing and Stores the State of the processing in a
Specified memory area, and

Said adapter writes a value indicating runnable State in a
memory area corresponding to the processing in Said
Scheduling means when input/output operation is com
pleted.

10. The data processing device according to claim 9,
wherein

Said adapter comprises a recording means for recording an
address corresponding to processing Stored in Said
Scheduling means and a value indicating runnable State,
and

records the address corresponding to Said processing and
Said value in Said recording means before or when Said
input/output operation is performed.

11. The data processing device according to claim 8,
wherein

Said Scheduling means is included in an operating System
and comprises an identifier recording means which
records an identifier of Said processing waiting for the
completion of input/output operation, and

Nov. 20, 2003

Said operating System includes:
a means which adds Said identifier to a queue when the

input/output operation of Said adapter is completed;
and

a means which periodically reads out the contents of
Said queue and, if there is any added identifier,
changes the State of processing corresponding to the
identifier into “runnable.”

12. The data processing device according to claim 9,
wherein

Said adapter performs input/output operation on a network
protocol and has said recording means for each logical
connection under the protocol, Said input/output opera
tion being transmission/reception operation on logical
connections.

13. The data processing device according to claim 8,
wherein Said adapter is an input/output device adapter or an
adapter for a means for connecting an input/output device,
and has Said recording means for each input/output opera
tion.

14. The data processing device according to claim 12,
wherein

Said Scheduling means has a flag which enables or dis
ables interrupts depending on whether processors are
busy, and

Said adapter generates an interrupt if Said flag is in
enabling State when the input/output operation is com
pleted.

15. A program which causes a computer to execute in
Specified order a plurality of processes, including one or
more processes related to input/output processing by an
adapter, wherein
when input/output processing is requested from Said pro

cesses, the computer is caused to execute the proce
dures for:

changing the State of the process into “wait';
causing Said adapter to perform the input/output opera

tion;
detecting that the State of the proceSS is changed into

“runnable” by said adapter; and
restarting the execution of the proceSS when the State of

Said process is changed into “runnable.”
k k k k k

