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(57) ABSTRACT

Apparatuses, systems, and methods are disclosed for con-
trolling commands for non-volatile memory. An apparatus
includes one or more memory die. A memory die includes a
command/address buffer, an on-die controller, and a plural-
ity of non-volatile memory cores that share a data path. A
core includes an array of non-volatile memory cells. A
command/address buffer queues command and address
information for a plurality of storage operations for one or
more non-volatile memory cores. An on-die controller ini-
tiates a first unexecuted read operation and a first unexecuted
write operation from a command/address buffer in parallel,
in response to determining that core dependencies are sat-
isfied for a read operation and a write operation.
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COMMAND CONTROL FOR MULTI-CORE
NON-VOLATILE MEMORY

CROSS-REFERENCES TO RELATED
APPLICATIONS

[0001] This patent application claims the benefit of U.S.
Provisional Patent Application No. 62/423,132 entitled
“COMMAND CONTROL FOR MULTI-CORE NON-
VOLATILE MEMORY” and filed on Nov. 16, 2016 for
Jingwen Ouyang et al., the entire contents of which are
incorporated herein by reference for all purposes.

TECHNICAL FIELD

[0002] The present disclosure, in various embodiments,
relates to non-volatile memory and more particularly relates
to controlling commands and data for multi-core non-vola-
tile memory.

BACKGROUND

[0003] A single-core non-volatile memory element may
execute storage operations (e.g., read, write, program, and/or
erase operations) sequentially. By contrast, a multiple-core
non-volatile memory element may execute storage opera-
tions in parallel. However, executing storage operations in
parallel may result in data collisions on a shared data path or
data bus, data being transferred out of order, or even the
wrong data being transferred if a read and a write for the
same location are processed out of order.

SUMMARY

[0004] Apparatuses are presented for controlling com-
mands for non-volatile memory. In one embodiment, an
apparatus includes one or more memory die. In a certain
embodiment, a memory die includes a plurality of non-
volatile memory cores that share a data path. In a further
embodiment a core includes an array of non-volatile
memory cells. In one embodiment, a memory die includes a
command/address buffer that queues command and address
information for a plurality of storage operations for one or
more non-volatile memory cores. In a certain embodiment,
a memory die includes an on-die controller that initiates a
first unexecuted read operation and a first unexecuted write
operation from a command/address buffer in parallel, in
response to determining that core dependencies are satisfied
for the read operation and the write operation.

[0005] Systems are presented for controlling commands
for non-volatile memory. In one embodiment, a system
includes one or more memory die. In a certain embodiment,
a memory die includes a plurality of non-volatile memory
cores. In a further embodiment a core includes an array of
non-volatile memory cells. In one embodiment, a memory
die includes a command/address queue that stores command
and address information for a plurality of storage operations
for one or more non-volatile memory cores. In a certain
embodiment, a memory die includes an on-die controller
that dispatches addresses for executing a first valid read
operation and a first valid write operation from a command/
address queue in parallel, in response to determining that the
command/address queue has no previously-scheduled valid
write operations for a core for the read operation, and has no
previously-scheduled valid read operations for a core for the
write operation. In one embodiment, a system includes a
device controller that communicates with an on-die control-
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ler for a selected die to send command and address infor-
mation and to transfer data for storage operations on the
selected die.

[0006] An apparatus, in another embodiment, includes
means for queuing command and address information for a
plurality of storage operations for non-volatile memory
cores that share a data path for a non-volatile memory die.
In a certain embodiment, an apparatus includes means for
identifying a first valid read operation and a first valid write
operation, based on a queued command and address infor-
mation. In a further embodiment, an apparatus includes
means for determining whether core dependencies are sat-
isfied for a read operation and a write operation. In some
embodiments, determining whether a core dependency is
satisfied for an operation may include determining whether
another valid operation of a different type is scheduled prior
to the operation, for the same core as the operation. In one
embodiment, an apparatus includes means for initiating a
read operation and a write operation in parallel based on
determining that one or more core dependencies are satis-
fied.

BRIEF DESCRIPTION OF THE DRAWINGS

[0007] A more particular description is included below
with reference to specific embodiments illustrated in the
appended drawings. Understanding that these drawings
depict only certain embodiments of the disclosure and are
not therefore to be considered to be limiting of its scope, the
disclosure is described and explained with additional speci-
ficity and detail through the use of the accompanying
drawings, in which:

[0008] FIG. 1 is a schematic block diagram illustrating
one embodiment of a system comprising a command control
component;

[0009] FIG. 2 is a schematic block diagram illustrating
one embodiment of a multiple-core non-volatile memory
element in communication with a device controller;

[0010] FIG. 3 is a schematic block timeline illustrating
one embodiment of a latency time;

[0011] FIG. 4A is a schematic block diagram illustrating
one embodiment of a command/address buffer;

[0012] FIG. 4B is a schematic block diagram illustrating a
further embodiment of a command/address buffer;

[0013] FIG. 4C is a schematic block diagram illustrating a
further embodiment of a command/address buffer;

[0014] FIG. 4D is a schematic block diagram illustrating
a further embodiment of a command/address buffer;
[0015] FIG. 4E is a schematic block diagram illustrating a
further embodiment of a command/address buffer; and
[0016] FIG. 5 is a schematic flow chart diagram illustrat-
ing one embodiment of a method for controlling commands
for non-volatile memory.

DETAILED DESCRIPTION

[0017] Aspects of the present disclosure may be embodied
as an apparatus, system, method, or computer program
product. Accordingly, aspects of the present disclosure may
take the form of an entirely hardware embodiment, an
entirely software embodiment (including firmware, resident
software, micro-code, or the like) or an embodiment com-
bining software and hardware aspects that may all generally
be referred to herein as a “circuit,” “module,” “apparatus,”
or “system.” Furthermore, aspects of the present disclosure
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may take the form of a computer program product embodied
in one or more non-transitory computer readable storage
media storing computer readable and/or executable program
code.

[0018] Many of the functional units described in this
specification have been labeled as modules, in order to more
particularly emphasize their implementation independence.
For example, a module may be implemented as a hardware
circuit comprising custom VLSI circuits or gate arrays,
off-the-shelf semiconductors such as logic chips, transistors,
or other discrete components. A module may also be imple-
mented in programmable hardware devices such as field
programmable gate arrays, programmable array logic, pro-
grammable logic devices, or the like.

[0019] Modules may also be implemented at least partially
in software for execution by various types of processors. An
identified module of executable code may, for instance,
comprise one or more physical or logical blocks of computer
instructions which may, for instance, be organized as an
object, procedure, or function. Nevertheless, the executables
of an identified module need not be physically located
together, but may comprise disparate instructions stored in
different locations which, when joined logically together,
comprise the module and achieve the stated purpose for the
module.

[0020] Indeed, a module of executable code may include
a single instruction, or many instructions, and may even be
distributed over several different code segments, among
different programs, across several memory devices, or the
like. Where a module or portions of a module are imple-
mented in software, the software portions may be stored on
one or more computer readable and/or executable storage
media. Any combination of one or more computer readable
storage media may be utilized. A computer readable storage
medium may include, for example, but not limited to, an
electronic, magnetic, optical, electromagnetic, infrared,
resistive (e.g., resistive random access memory (ReRAM),
memory resistor (Memristor) memory, programmable met-
allization cell memory, phase-change memory (PCM,
PCME, PRAM, PCRAM, ovonic unified memory, chalco-
genide RAM, or C-RAM), or the like), or semiconductor
system, apparatus, or device, or any suitable combination of
the foregoing, but would not include propagating signals. In
the context of this document, a computer readable and/or
executable storage medium may be any tangible and/or
non-transitory medium that may contain or store a program
for use by or in connection with an instruction execution
system, apparatus, processor, or device.

[0021] Computer program code for carrying out opera-
tions for aspects of the present disclosure may be written in
any combination of one or more programming languages,
including an object oriented programming language such as
Python, Java, Smalltalk, C++, C#, Objective C, or the like,
conventional procedural programming languages, such as
the “C” programming language, scripting programming
languages, and/or other similar programming languages.
The program code may execute partly or entirely on one or
more of a user’s computer and/or on a remote computer or
server over a data network or the like.

[0022] A component, as used herein, comprises a tangible,
physical, non-transitory device. For example, a component
may be implemented as a hardware logic circuit comprising
custom VLSI circuits, gate arrays, or other integrated cir-
cuits; off-the-shelf semiconductors such as logic chips, tran-
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sistors, or other discrete devices; and/or other mechanical or
electrical devices. A component may also be implemented in
programmable hardware devices such as field program-
mable gate arrays, programmable array logic, programmable
logic devices, or the like. A component may comprise one or
more silicon integrated circuit devices (e.g., chips, die, die
planes, packages) or other discrete electrical devices, in
electrical communication with one or more other compo-
nents through electrical lines of a printed circuit board
(PCB) or the like. Each of the modules described herein, in
certain embodiments, may alternatively be embodied by or
implemented as a component.

[0023] Reference throughout this specification to “one
embodiment,” “an embodiment,” or similar language means
that a particular feature, structure, or characteristic described
in connection with the embodiment is included in at least
one embodiment of the present disclosure. Thus, appear-
ances of the phrases “in one embodiment,” “in an embodi-
ment,” and similar language throughout this specification
may, but do not necessarily, all refer to the same embodi-
ment, but mean “one or more but not all embodiments”
unless expressly specified otherwise. The terms “including,”
“comprising,” “having,” and variations thereof mean
“including but not limited to” unless expressly specified
otherwise. An enumerated listing of items does not imply
that any or all of the items are mutually exclusive and/or
mutually inclusive, unless expressly specified otherwise.
The terms “a,” “an,” and “the” also refer to “one or more”
unless expressly specified otherwise.

[0024] Aspects of the present disclosure are described
below with reference to schematic flowchart diagrams and/
or schematic block diagrams of methods, apparatuses, sys-
tems, and computer program products according to embodi-
ments of the disclosure. It will be understood that each block
of the schematic flowchart diagrams and/or schematic block
diagrams, and combinations of blocks in the schematic
flowchart diagrams and/or schematic block diagrams, can be
implemented by computer program instructions. These com-
puter program instructions may be provided to a processor
of'a computer or other programmable data processing appa-
ratus to produce a machine, such that the instructions, which
execute via the processor or other programmable data pro-
cessing apparatus, create means for implementing the func-
tions and/or acts specified in the schematic flowchart dia-
grams and/or schematic block diagrams block or blocks.
[0025] It should also be noted that, in some alternative
implementations, the functions noted in the block may occur
out of the order noted in the figures. For example, two blocks
shown in succession may, in fact, be executed substantially
concurrently, or the blocks may sometimes be executed in
the reverse order, depending upon the functionality
involved. Other steps and methods may be conceived that
are equivalent in function, logic, or effect to one or more
blocks, or portions thereof, of the illustrated figures.
Although various arrow types and line types may be
employed in the flowchart and/or block diagrams, they are
understood not to limit the scope of the corresponding
embodiments. For instance, an arrow may indicate a waiting
or monitoring period of unspecified duration between enu-
merated steps of the depicted embodiment.

[0026] In the following detailed description, reference is
made to the accompanying drawings, which form a part
thereof. The foregoing summary is illustrative only and is
not intended to be in any way limiting. In addition to the
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illustrative aspects, embodiments, and features described
above, further aspects, embodiments, and features will
become apparent by reference to the drawings and the
following detailed description. The description of elements
in each figure may refer to elements of proceeding figures
Like numbers may refer to like elements in the figures,
including alternate embodiments of like elements.

[0027] FIG. 1 is a block diagram of one embodiment of a
system 100 comprising a command control component 150
for a non-volatile memory device 120. The command con-
trol component 150 may be part of and/or in communication
with a non-volatile memory media controller 126, a non-
volatile memory element 123, a device driver, or the like.
The command control component 150 may operate on a
non-volatile memory system 102 of a computing device 110,
which may comprise a processor 111, volatile memory 112,
and a communication interface 113. The processor 111 may
comprise one or more central processing units, one or more
general-purpose processors, one or more application-spe-
cific processors, one or more virtual processors (e.g., the
computing device 110 may be a virtual machine operating
within a host), one or more processor cores, or the like. The
communication interface 113 may comprise one or more
network interfaces configured to communicatively couple
the computing device 110 and/or non-volatile memory con-
troller 126 to a communication network 115, such as an
Internet Protocol (IP) network, a Storage Area Network
(SAN), wireless network, wired network, or the like.

[0028] The non-volatile memory device 120, in various
embodiments, may be disposed in one or more different
locations relative to the computing device 110. In one
embodiment, the non-volatile memory device 120 comprises
one or more non-volatile memory elements 123, such as
semiconductor chips or packages or other integrated circuit
devices disposed on one or more printed circuit boards,
storage housings, and/or other mechanical and/or electrical
support structures. For example, the non-volatile memory
device 120 may comprise one or more direct inline memory
module (DIMM) cards, one or more expansion cards and/or
daughter cards, a solid-state-drive (SSD) or other hard drive
device, and/or may have another memory and/or storage
form factor. The non-volatile memory device 120 may be
integrated with and/or mounted on a motherboard of the
computing device 110, installed in a port and/or slot of the
computing device 110, installed on a different computing
device 110 and/or a dedicated storage appliance on the
network 115, in communication with the computing device
110 over an external bus (e.g., an external hard drive), or the
like.

[0029] The non-volatile memory device 120, in one
embodiment, may be disposed on a memory bus of a
processor 111 (e.g., on the same memory bus as the volatile
memory 112, on a different memory bus from the volatile
memory 112, in place of the volatile memory 112, or the
like). In a further embodiment, the non-volatile memory
device 120 may be disposed on a peripheral bus of the
computing device 110, such as a peripheral component
interconnect express (PCI Express or PCle) bus, a serial
Advanced Technology Attachment (SATA) bus, a parallel
Advanced Technology Attachment (PATA) bus, a small
computer system interface (SCSI) bus, a FireWire bus, a
Fibre Channel connection, a Universal Serial Bus (USB), a
PCle Advanced Switching (PCle-AS) bus, or the like. In
another embodiment, the non-volatile memory device 120
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may be disposed on a data network 115, such as an Ethernet
network, an Infiniband network, SCSI RDMA over a net-
work 115, a storage area network (SAN), a local area
network (LAN), a wide area network (WAN) such as the
Internet, another wired and/or wireless network 115, or the
like.

[0030] The computing device 110 may further comprise a
non-transitory, computer readable storage medium 114. The
computer readable storage medium 114 may comprise
executable instructions configured to cause the computing
device 110 (e.g., processor 111) to perform steps of one or
more of the methods disclosed herein. Alternatively, or in
addition, one or more portions of the command control
component 150 may be embodied as one or more computer
readable instructions stored on the non-transitory storage
medium 114.

[0031] In one embodiment, the one or more non-volatile
memory elements 123 may be configured to transmit and
receive data for data operations for the non-volatile memory
device 120. For example, a non-volatile memory element
123 may comprise a first port, bus or path 152 for commu-
nicating command and address information for storage
operations, and a second port, bus, or path 154 for transfer-
ring data for storage operations. A non-volatile memory
element 123 may support multiple access modes, such as a
first mode (e.g., a burst mode) which may provide a full
speed and/or access to one or more unique features of the
non-volatile memory media 122, a second mode (e.g., a
legacy mode or compatibility mode) which may provide
support for a different access protocol (e.g., an older access
protocol, emulating a different type of memory media 122
such as NAND flash, or the like. For example, in one
embodiment, the non-volatile memory media 122 may com-
prise a resistive memory medium such as ReRAM, Mem-
ristor memory, programmable metallization cell memory,
phase-change memory (PCM, PCME, PRAM, PCRAM,
ovonic unified memory, chalcogenide RAM, or C-RAM), or
the like and a non-volatile memory element 123 may pro-
vide two access modes, one mode comprising a legacy or
compatibility mode which emulates a NAND flash access
protocol (e.g., a NAND flash toggle mode), or the like, for
clients 116 configured to use a legacy access protocol.
[0032] In a first mode (e.g., a burst mode, a native mode,
or the like) the first port 152 may receive command and/or
address information for data operations on the non-volatile
memory device 120 and/or element 123, while the second
port 154 transmits data of the data operations (e.g., receiving
data from a client 116 for a write request, sending data to a
client 116 for a read request, or the like). In a second mode
(e.g., a legacy mode, a compatibility mode, or the like) the
first port 152 may both receive command and address
information for data operations and transmit data for the
operations (e.g., so that the second port 154 isn’t used in the
second mode).

[0033] The non-volatile memory system 102, in the
depicted embodiment, includes a command control compo-
nent 150. The command control component 150, in one
embodiment, is configured to queue command and address
information for a plurality of storage operations for non-
volatile memory cores that share a data path for a non-
volatile memory element 123 or a memory die. In a further
embodiment, the command control component 150 is con-
figured to initiate a first unexecuted read operation and a first
unexecuted write operation from the command/address buf-
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fer in parallel, in response to determining that core depen-
dencies are satisfied for the read operation and the write
operation. In general, in various embodiments, a core depen-
dency for a read operation is satisfied if no write operation
is scheduled prior to the read operation, for the same core.
Similarly, in certain embodiments, a core dependency for a
write operation is satisfied if no read operation is scheduled
prior to the read operation, for the same core. In certain
embodiments, tracking whether a read depends on a prior
write (or a write depends on a prior read) at a per-core level
may allow a multiple-core non-volatile memory element 123
to process storage operations in parallel using different
cores, while avoiding delays that might be associated with
tracking dependencies of reads and writes at a per-address
level.

[0034] In one embodiment, the command control compo-
nent 150 may comprise logic hardware of one or more
non-volatile memory devices 120, such as a non-volatile
memory media controller 126, a non-volatile memory ele-
ment 123, a device controller, a field-programmable gate
array (FPGA) or other programmable logic, firmware for an
FPGA or other programmable logic, microcode for execu-
tion on a microcontroller, an application-specific integrated
circuit (ASIC), or the like. In another embodiment, the
command control component 150 may comprise executable
software code, such as a device driver or the like, stored on
the computer readable storage medium 114 for execution on
the processor 111. In a further embodiment, the command
control component 150 may include a combination of both
executable software code and logic hardware.

[0035] In one embodiment, a non-volatile memory ele-
ment 123 is configured to receive storage requests from a
device driver or other executable application via a bus 125
or the like. A non-volatile memory element 123 may be
further configured to transfer data to/from a device driver
and/or storage clients 116 via the bus 125. Accordingly, a
non-volatile memory element 123, in some embodiments,
may comprise and/or be in communication with one or more
direct memory access (DMA) modules, remote DMA mod-
ules, bus controllers, bridges, buffers, and so on to facilitate
the transfer of storage requests and associated data. In
another embodiment, a non-volatile memory element 123
may receive storage requests as an API call from a storage
client 116, as an I0-CTL command, or the like.

[0036] According to various embodiments, a non-volatile
memory controller 126 may manage one or more non-
volatile memory devices 120 and/or non-volatile memory
elements 123. The non-volatile memory device(s) 120 may
comprise recording, memory, and/or storage devices, such
as solid-state storage device(s) and/or semiconductor stor-
age device(s) that are arranged and/or partitioned into a
plurality of addressable media storage locations. As used
herein, a media storage location refers to any physical unit
of memory (e.g., any quantity of physical storage media on
a non-volatile memory device 120). Memory units may
include, but are not limited to: pages, memory divisions,
blocks, sectors, collections or sets of physical storage loca-
tions (e.g., logical pages, logical blocks), or the like.
[0037] A device driver and/or the non-volatile memory
media controller 126, in certain embodiments, may present
a logical address space 134 to the storage clients 116. As
used herein, a logical address space 134 refers to a logical
representation of memory resources. The logical address
space 134 may comprise a plurality (e.g., range) of logical
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addresses. As used herein, a logical address refers to any
identifier for referencing a memory resource (e.g., data),
including, but not limited to: a logical block address (LBA),
cylinder/head/sector (CHS) address, a file name, an object
identifier, an inode, a Universally Unique Identifier (UUID),
a Globally Unique Identifier (GUID), a hash code, a signa-
ture, an index entry, a range, an extent, or the like.

[0038] A device driver for the non-volatile memory device
120 may maintain metadata 135, such as a logical to
physical address mapping structure, to map logical
addresses of the logical address space 134 to media storage
locations on the non-volatile memory device(s) 120. A
device driver may be configured to provide storage services
to one or more storage clients 116. The storage clients 116
may include local storage clients 116 operating on the
computing device 110 and/or remote, storage clients 116
accessible via the network 115 and/or network interface 113.
The storage clients 116 may include, but are not limited to:
operating systems, file systems, database applications,
server applications, kernel-level processes, user-level pro-
cesses, applications, and the like.

[0039] A device driver may be communicatively coupled
to one or more non-volatile memory devices 120. The one or
more non-volatile memory devices 120 may include differ-
ent types of non-volatile memory devices including, but not
limited to: solid-state storage devices, semiconductor stor-
age devices, SAN storage resources, or the like. The one or
more non-volatile memory devices 120 may comprise one or
more respective non-volatile memory media controllers 126
and non-volatile memory media 122. A device driver may
provide access to the one or more non-volatile memory
devices 120 via a traditional block 1/O interface 131. Addi-
tionally, a device driver may provide access to enhanced
functionality through the SCM interface 132. The metadata
135 may be used to manage and/or track data operations
performed through any of the Block 1/O interface 131, SCM
interface 132, cache interface 133, or other, related inter-
faces.

[0040] The cache interface 133 may expose cache-specific
features accessible via a device driver for the non-volatile
memory device 120. Also, in some embodiments, the SCM
interface 132 presented to the storage clients 116 provides
access to data transformations implemented by the one or
more non-volatile memory devices 120 and/or the one or
more non-volatile memory media controllers 126.

[0041] A device driver may present a logical address space
134 to the storage clients 116 through one or more inter-
faces. As discussed above, the logical address space 134
may comprise a plurality of logical addresses, each corre-
sponding to respective media locations the on one or more
non-volatile memory devices 120. A device driver may
maintain metadata 135 comprising any-to-any mappings
between logical addresses and media locations, or the like.
[0042] A device driver may further comprise and/or be in
communication with a non-volatile memory device interface
139 configured to transfer data, commands, and/or queries to
the one or more non-volatile memory devices 120 over a bus
125, which may include, but is not limited to: a memory bus
of a processor 111, a peripheral component interconnect
express (PCl Express or PCle) bus, a serial Advanced
Technology Attachment (ATA) bus, a parallel ATA bus, a
small computer system interface (SCSI), FireWire, Fibre
Channel, a Universal Serial Bus (USB), a PCle Advanced
Switching (PCle-AS) bus, a network 115, Infiniband, SCSI
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RDMA, or the like. The non-volatile memory device inter-
face 139 may communicate with the one or more non-
volatile memory devices 120 using input-output control
(I0-CTL) command(s), I0-CTL. command extension(s),
remote direct memory access, or the like.

[0043] The communication interface 113 may comprise
one or more network interfaces configured to communica-
tively couple the computing device 110 and/or the non-
volatile memory controller 126 to a network 115 and/or to
one or more remote, network-accessible storage clients 116.
The storage clients 116 may include local storage clients 116
operating on the computing device 110 and/or remote,
storage clients 116 accessible via the network 115 and/or the
network interface 113. The non-volatile memory controller
126 is part of and/or in communication with one or more
non-volatile memory devices 120. Although FIG. 1 depicts
a single non-volatile memory device 120, the disclosure is
not limited in this regard and could be adapted to incorporate
any number of non-volatile memory devices 120.

[0044] The non-volatile memory device 120 may com-
prise one or more elements 123 of non-volatile memory
media 122, which may include but is not limited to:
ReRAM, Memristor memory, programmable metallization
cell memory, phase-change memory (PCM, PCME, PRAM,
PCRAM, ovonic unified memory, chalcogenide RAM, or
C-RAM), NAND flash memory, NOR flash memory, nano
random access memory (nano RAM or NRAM), nanocrystal
wire-based memory, silicon-oxide based sub-10 nanometer
process memory, graphene memory, Silicon-Oxide-Nitride-
Oxide-Silicon (SONOS), programmable metallization cell
(PMC), conductive-bridging RAM (CBRAM), magneto-
resistive RAM (MRAM), magnetic storage media (e.g., hard
disk, tape), optical storage media, or the like. The one or
more elements 123 of non-volatile memory media 122, in
certain embodiments, comprise storage class memory
(SCM).

[0045] While legacy technologies such as NAND flash
may be block and/or page addressable, storage class
memory, in one embodiment, is byte addressable. In further
embodiments, storage class memory may be faster and/or
have a longer life (e.g., endurance) than NAND flash; may
have a lower cost, use less power, and/or have a higher
storage density than DRAM; or offer one or more other
benefits or improvements when compared to other technolo-
gies. For example, storage class memory may comprise one
or more non-volatile memory elements 123 of ReRAM,
Memristor memory, programmable metallization cell
memory, phase-change memory, nano RAM, nanocrystal
wire-based memory, silicon-oxide based sub-10 nanometer
process memory, graphene memory, SONOS memory, PMC
memory, CBRAM, MRAM, and/or variations thereof.

[0046] While the non-volatile memory media 122 is
referred to herein as “memory media,” in various embodi-
ments, the non-volatile memory media 122 may more gen-
erally comprise one or more non-volatile recording media
capable of recording data, which may be referred to as a
non-volatile memory medium, a non-volatile storage
medium, or the like. Further, the non-volatile memory
device 120, in various embodiments, may comprise a non-
volatile recording device, a non-volatile memory device, a
non-volatile storage device, or the like.

[0047] The non-volatile memory media 122 may comprise
one or more non-volatile memory elements 123, which may
include, but are not limited to: chips, packages, planes, die,
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or the like. A non-volatile memory media controller 126 may
be configured to manage data operations on the non-volatile
memory media 122, and may comprise one or more proces-
sors, programmable processors (e.g., FPGAs), ASICs,
micro-controllers, or the like. In some embodiments, the
non-volatile memory media controller 126 is configured to
store data on and/or read data from the non-volatile memory
media 122, to transfer data to/from the non-volatile memory
device 120, and so on.

[0048] The non-volatile memory media controller 126
may be communicatively coupled to the non-volatile
memory media 122 by way of a bus 127. The bus 127 may
comprise an 110 bus for communicating data to/from the
non-volatile memory elements 123. The bus 127 may further
comprise a control bus for communicating addressing and
other command and control information to the non-volatile
memory elements 123. In some embodiments, the bus 127
may communicatively couple the non-volatile memory ele-
ments 123 to the non-volatile memory media controller 126
in parallel. This parallel access may allow the non-volatile
memory elements 123 to be managed as a group, forming a
logical memory element 129. The logical memory element
may be partitioned into respective logical memory units
(e.g., logical pages) and/or logical memory divisions (e.g.,
logical blocks). The logical memory units may be formed by
logically combining physical memory units of each of the
non-volatile memory elements.

[0049] The non-volatile memory controller 126 may com-
prise and/or be in communication with a device driver
executing on the computing device 110. A device driver may
provide storage services to the storage clients 116 via one or
more interfaces 131, 132, and/or 133. In some embodiments,
a device driver provides a block-device 110 interface 131
through which storage clients 116 perform block-level 1/0
operations. Alternatively, or in addition, a device driver may
provide a storage class memory (SCM) interface 132, which
may provide other storage services to the storage clients 116.
In some embodiments, the SCM interface 132 may comprise
extensions to the block device interface 131 (e.g., storage
clients 116 may access the SCM interface 132 through
extensions or additions to the block device interface 131).
Alternatively, or in addition, the SCM interface 132 may be
provided as a separate AP, service, and/or library. A device
driver may be further configured to provide a cache interface
133 for caching data using the non-volatile memory system
102.

[0050] A device driver may further comprise a non-vola-
tile memory device interface 139 that is configured to
transfer data, commands, and/or queries to the non-volatile
memory media controller 126 over a bus 125, as described
above.

[0051] FIG. 2 depicts one embodiment of a multiple-core
non-volatile memory die 202 in communication with a
device controller 126. The device controller 126 may be
substantially similar to the non-volatile memory media
controller 126 described above with regard to FIG. 1. In one
embodiment, the device controller 126 may include a hard-
ware controller for a storage device including the non-
volatile memory elements 123. In another embodiment, the
device controller 126 may include a device driver for a
storage device including the non-volatile memory elements
123, and the device driver may include logic hardware
and/or executable code stored on one or more computer
readable storage media. The non-volatile memory die 202
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may be substantially similar to a non-volatile memory
element 123 described above with regard to FIG. 1. A die
202, in various embodiments, may refer to an integrated
circuit that includes at least one core 200. In one embodi-
ment, such an integrated circuit may be a three-dimensional
integrated circuit that includes multiple die planes and/or
layers, but may still be referred to as a die 202. Although a
single non-volatile memory die 202 is depicted in FIG. 2, a
device controller 126 may be coupled to or in communica-
tion with multiple non-volatile memory die 202 in non-
volatile memory elements 123 for a non-volatile memory
device 120.

[0052] In the depicted embodiment, the device controller
126 is coupled to the die 202 via a first port, bus, or path 152
for command and address information, and a second port,
bus, or path 154 for transferring data, which may be sub-
stantially similar to the ports, buses, or paths 152, 154
described above with regard to FIG. 1. In the depicted
embodiment, the die 202 includes a plurality of cores 200,
and an on-die controller 250. In the depicted embodiment,
the on-die controller 250 includes a command control com-
ponent 150, an internal bus driver 220, a command/address
buffer 230, and a command/address decoder 240. The device
controller 126 may select a die 202 (such as the depicted die
202 or another die 202) as a target for a storage operation,
and may communicate with the on-die controller 250 for the
selected die 202 to send command and address information
and to transfer data for storage operations on the selected die
202. Data for a storage operation may include data to be
written to a core 200, data to be read from a core 200, or the
like, and transferring data may include sending or receiving
the data.

[0053] In various embodiments, a core 200 includes an
array (two or three dimensional) of non-volatile memory
cells. The on-die controller 250 communicates with a core
200 to perform storage operations such as reading, writing,
erasing, and the like using the array of cells for the core 200.
In certain embodiments, a “cell” may refer to a smallest or
fundamental physical unit of memory, or storage, for a core
200, and may be referred to interchangeably as a “storage
cell” a “memory cell” or the like. For example, a cell may
be a floating gate transistor for NAND flash memory, a
memristor for resistive memory, or the like. Thus, in a
further embodiment, an array of cells for a core 200 may be
a two-dimensional grid, a three-dimensional block, a group,
or other similar set of cells where data can be physically
stored, for short-term memory use, long-term storage use, or
the like. In certain embodiments, a core 200 may include
further or peripheral components in addition to the array,
such as word line drivers, sense amplifiers for bit lines,
latches to store data that is being read from or written to the
array, and the like.

[0054] In various embodiments, a multiple-core memory
die 202 may include a plurality of non-volatile memory
cores 200. For example, in the depicted embodiment, the
memory die 202 includes two cores 200a-b, referred to as
“core 0" 200a, and “core 1 2005. In another embodiment,
a memory die 202 may include three, four, or a larger
number of cores 200. In certain embodiments, one core 200
(e.g., core 0) may process or service storage operations
independently of; or in parallel with, another core 200 (e.g.,
core 1). For example, data may be addressable so that a data
address corresponds to a byte, a page, a block, or the like,
and the data addresses may correspond or be mapped to the
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different cores 200, so that core 0 services storage operations
for a first set of addresses, and core 1 services storage
operations for a second set of addresses. In certain embodi-
ments, using a plurality of cores 200 to service storage
operations independently or in parallel allows a non-volatile
memory die 202 to execute, process, or service storage
operations faster than a single-core memory die.

[0055] In various embodiments, a “data path” may refer to
any pathway for transferring data, such as a bus, a set of
wires or leads, a set of contacts, and/or the like. In the
depicted embodiment, an internal data path 210 between the
on-die controller 250 and the cores 200 is split, so that there
is a separate or independent data path between each core 200
and the on-die controller 250. However, in a further embodi-
ment, the external data path 154 between the on-die con-
troller 250 and the device controller 126 is shared by the
cores 200.

[0056] As used herein, an “independent” data path may
refer to a data path that is used to transfer data to or from a
single core 200, such as one of the split internal data paths
210. In a certain embodiment, the split internal data paths
210 may be separate channels on the same internal data bus,
but may still be referred to as “independent” because each
channel communicates with only one core 200. By contrast,
a “shared” data path may refer to a data path that is used to
transfer data to or from more than one core 200. For
example, in the depicted embodiment, the cores 200 share a
single data path (e.g., the shared data path 154) for com-
municating with the device controller 126. In certain
embodiments, a shared data path may present a risk of data
collisions. For example, if read operations are initiated on
core 0 and core 1 at the same time, then the data from the
cores 200 will collide, or arrive simultaneously at the shared
data path 154. Similarly, if write operations are initiated on
core 0 and core 1 at the same time, then the write data for
both cores 200 cannot be sent simultaneously via the shared
data path 154.

[0057] Certain types of non-volatile memory devices 120
with multiple die 202 avoid data collisions or competition
for a shared data path between the die 202 by providing
independent data paths between the device controller 126
and each die 202, or by using chip enable signals, clock
enable signals, or the like, to control which die 202 is able
to use the data path at a particular time. By contrast, cores
200 on a multiple-core die 202 may operate without inde-
pendent enable or disable signals, increasing the risk of a
data collision. For example, a core 200 that receives a data
address for a read operation may read the data at that address
and output the data as soon as it is ready, without waiting for
an enable signal. Thus, in certain embodiments, an on-die
controller 250 (including the command control component
150) may avoid data collisions by controlling the order and
timing for dispatching commands and/or addresses to the
plurality of cores 200, without directly controlling when the
cores 200 send or receive data (e.g., by the use of enable or
disable signals).

[0058] The on-die controller 250, in one embodiment,
communicates via the command/address path 152 and the
shared data path 154 to receive command and address
information and to transfer data for storage operations on the
cores 200. In various embodiments, an on-die controller 250
may refer to a component, control/operation logic, a set of
components, or the like on a die 202, that receives command
and/or address information, transfers data to or from a
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device controller 126, communicates commands, addresses,
and/or data to the plurality of cores 200, or the like.
[0059] In the depicted embodiment, the on-die controller
250 uses the command/address decoder 240 to receive
command and address information for storage operations,
via the command/address path 152. In certain embodiments,
command and address information may include commands,
such as read commands, write commands, program com-
mands, erase commands, status query commands, and any
other commands supported by the cores 200, and addresses
corresponding to the commands, such as an address to write
data to, an address to read data from, or the like. The on-die
controller 250 may receive command and address informa-
tion from a device controller 126. For example, the device
controller 126 may send command and address information
using the command/address path 152.

[0060] In various embodiments, the command/address
decoder 240 may decode or convert the command and
address information from the device controller 126 into a
format used by the command/address buffer 230 and/or the
cores 200. For example, in one embodiment, the command/
address decoder 240 may provide an address interface to
convert between the address that is used by the host or a
device controller 126 to the hardware address used by the
cores 200. In a certain embodiment, the command/address
decoder 240 may determine a type of command (e.g., a read
command, a write command, a control command, or the
like) and send an indicator of the type of command to the
command/address buffer 230.

[0061] The command/address buffer 230, in the depicted
embodiment, queues command and address information for
a plurality of storage operations for the non-volatile memory
cores 200. Storage operations may include read, write,
program, or erase operations, or the like. In various embodi-
ments, “queuing” command and address information may
refer to storing the command and address information in the
order in which it was sent by the device controller 126, or
in a way that preserves the order. Thus, in certain embodi-
ments, the command/address buffer 230 may be referred to
as a command/address queue, a first-in-first-out (FIFO)
queue, or the like. Because command and address informa-
tion corresponds to storage operations, the command/ad-
dress buffer 230 may be referred to interchangeably as
queuing command and address information or as queuing
operations, and an individual entry in the command/address
buffer 230 may be referred to as a command, an operation,
or the like. In certain embodiments, as described in further
detail below, parallel execution of storage operations may
not strictly preserve the first-in-first-out property of a tradi-
tional FIFO queue, but the command/address buffer 230 may
nevertheless be referred to as a queue or FIFO because it
stores the command and address information in order. In
various embodiments, a command/address buffer 230 may
include a set of storage locations for command and address
information, such as registers, latches, a range of volatile
memory, a circular buffer, or the like.

[0062] The internal bus driver 220, in the depicted
embodiment, is configured to transfer data to or from the
cores 200 using the split internal data paths 210, and to
transfer data to or from the device controller 126 using the
shared data path 154. For example, for a read operation, the
internal bus driver 220 may receive the read data from a core
200, and send the read data to the device controller 126.
Similarly, for a write operation, the internal bus driver 220
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may receive the write data from the device controller 126
and send the write data to the relevant core 200. In various
embodiments, the internal bus driver 220 may include a
serializer/deserializer, a data in FIFO for queuing data for
write operations, a data out FIFO for queuing data for read
operations, or the like.

[0063] The command control component 150 may be
substantially similar to the command control component 150
described above with regard to FIG. 1. In various embodi-
ments, the on-die controller 250 uses the command control
component 150 to control the storage and initiation of
commands in the command/address buffer 230, so that
command and address information is queued in order, and so
that a first unexecuted read operation and a first unexecuted
write operation are executed in parallel if core dependencies
are satisfied.

[0064] In certain embodiments, the command control
component 150 sends control information to the internal bus
driver 220 to control storage operations, initiate commands
or operation, dispatch addresses, or the like. For example,
for a write operation, the command control component 150
may match an address received via the command/address
path 152 (and stored in the command/address buffer 230) to
data received via the data path 154 by the internal bus driver
220, and cause the internal bus driver 220 to send the address
and the data to the core 200 that matches the address for the
write operation to be executed. In another embodiment, for
a read operation, the command control component 150 may
send an address stored in the command/address buffer 230 to
the internal bus driver 220 with a clock signal, so that the
internal bus driver 220 sends the address and the clock signal
to the core 200 that matches the address for the read
operation. The clock signal may control the rate at which
data is received from the core 200, latched into a data out
FIFO, or the like.

[0065] In one embodiment, the on-die controller 250 may
use the command control component 150 to initiate or
dispatch a read operation and a write operation from the
command/address buffer 230 in parallel. In various embodi-
ments, initiating an operation may refer to commencing,
beginning, or starting an operation in any way. For example,
in one embodiment, the on-die controller 250 may initiate an
operation by dispatching an address to a core 200 that will
perform the operation (e.g., the on-die controller 250 may
send the address via the internal bus driver 220).

[0066] In general, in various embodiments, executing
operations in parallel may refer to performing two or more
operations using two or more cores 200 so that the opera-
tions overlap in time to some degree. (By contrast, opera-
tions that are executed sequentially by a single core do not
overlap.) However, initiating operations or dispatching
addresses in parallel may more specifically refer to starting
the operations at the same time, or at approximately the
same time, such that a time period for sending the addresses
overlaps between the two operations. As described above,
initiating two read operations or two write operations in
parallel may result in data collisions on the shared data path
154, in resources of the internal bus driver 220 such as data
queues, or the like. Multiple operations of the same type
(e.g., multiple read operations, multiple write operations, or
the like) may still be executed in parallel by a multiple-core
die 202 if the operations are initiated far enough apart to
avoid data collisions (e.g., the addresses are dispatched
sequentially). For example, a latency period for processing
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a read operation may be significantly longer than the time it
takes to transfer the data for the read operation, and a second
read operation may be initiated (e.g., for core 1) during the
latency period for a first read operation (e.g., for core 0).
[0067] In addition, although initiating operations of the
same type in parallel may cause data collisions, initiating
operations of a different type (e.g., a read operation and a
write operation) in parallel may avoid data collisions, data
bus contention, or the like, because the different types of
operations use the shared data path 154, or shared resources
of the internal bus driver 220 at different times. Thus, in
certain embodiments, the on-die controller 250 may use the
command control component 150 to initiate a read operation
and a write operation in parallel. In a further embodiment,
the read operation and the write operation that are initiated
in parallel may be a first unexecuted read operation and a
first unexecuted write operation from the command/address
buffer 230.

[0068] As used herein, words such as “first,” “last,”
“prior,” “subsequent,” and the like, when used with regard
to the command/address buffer 230 or to queued command
and address information, refer to the order in which com-
mand and address information was received, which the
command/address buffer 230 preserves or maintains. For
example, a first unexecuted read (or write) operation in the
command/address buffer 230 refers to the first such opera-
tion that has been received from the device controller 126,
but that has not yet been initiated by the on-die controller
250. In one embodiment, entries for storage operations may
be removed from the command/address buffer 230 when the
operations are initiated or executed, and a first unexecuted
read (or write) operation may be the first read (or write)
operation in the command/address buffer 230. In another
embodiment, entries in the command/address buffer 230 for
storage operations may be marked invalid when the opera-
tions are initiated or executed, and the first unexecuted read
(or write) operation may be the first valid read (or write)
operation in the command/address buffer 230.

[0069] However, although dispatching a read operation
and a write operation in parallel may avoid data collisions,
parallel execution of read and write operations may cause
problems if the write operation depends on a prior read
operation for the same address, location or region (e.g., the
data is not to be overwritten or erased until it has been read),
or if the read operation depends on a prior write operation
for the same address, location or region (e.g., the data is not
to be read until the correct data has been written). The first
unexecuted write operation and the first unexecuted read
operation in the command/address buffer 230 will naturally
include the first unexecuted operation (which will not
depend on a prior operation), and a later operation (which
may depend on a prior operation). For example, the first
unexecuted write operation and the first unexecuted read
operation may be for the same address, location, or region,
so that the later of the two operations depends on the earlier
one. Alternatively, the first unexecuted write operation and
the first unexecuted read operation may be for different
addresses, locations, or regions, but the later of the two
operations may depend on an operation in an intermediate
position between the two operations in the command/ad-
dress buffer 230.

[0070] Thus, in various embodiments, the on-die control-
ler 250 initiates the first unexecuted read operation and the
first unexecuted write operation from the command/address
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buffer 230 in parallel, based on whether certain dependen-
cies are satisfied for the read operation and the write
operation. However, tracking dependencies on a per-address
basis may require multiple address comparisons, a substan-
tial amount of additional hardware for searching through the
queued information in the command/address buffer 230, or
the like. In certain embodiments, though, the on-die con-
troller 250 may track dependencies on a per-core basis.
[0071] In one embodiment, the on-die controller 250 ini-
tiates the first unexecuted read operation and the first unex-
ecuted write operation from the command/address buffer
230 in parallel, in response to determining that core depen-
dencies are satisfied for the read operation and the write
operation. Conversely, the on-die controller 250 may initiate
one of the operations, instead of initiating the operations in
parallel, in response to determining that a core dependency
is not satisfied for the other operation. In various embodi-
ments, a “core dependency” for an operation may refer to a
determination or indication, on a per-core basis, of whether
the operation depends on a prior operation for the same core
200. In general, a core dependency is “satisfied” for a write
operation if no prior read operation is queued in the com-
mand/address buffer 230 for the same core 200 as the write
operation. Similarly, in general, a core dependency is “sat-
isfied” for a read operation if no prior write operation is
queued in the command/address buffer 230 for the same core
200 as the read operation.

[0072] In one embodiment, the on-die controller 250
determines that a core dependency is satisfied for a sched-
uled operation based on no unexecuted operation of a
different type from the scheduled operation being queued in
the command/address buffer 230 prior to the scheduled
operation, for the same core 200 as the scheduled operation.
With reference to a read operation, an operation of a
“different type” refers to a write operation. Similarly, with
reference to a write operation, an operation of a “different
type” refers to a read operation. If different types of opera-
tions are unexecuted in the command/address buffer 230 for
the same core 200, then a core dependency is unsatisfied for
the later operation.

[0073] In a certain embodiment, determining whether a
core dependency is satisfied for an operation comprises
determining whether another valid operation of a different
type is scheduled prior to the operation, for the same core
200 as the operation. For example, the on-die controller 250
may determine that a core dependency is satisfied for a read
operation and a write operation in response to determining
the command/address buffer 230 has no previously-sched-
uled valid write operations for a core 200 for the read
operation, and has no previously-scheduled valid read
operations for a core 200 for the write operation.

[0074] In various embodiments, tracking dependencies at
a per-core level may delay some operations, compared to
tracking dependencies at a per-address level. For example, a
write operation that depends on a read operation for the same
core 200 may not actually depend on the read operation
when the operations are considered at the address level, if
the write operation and the read operation are for different
addresses. However, in some embodiments, tracking depen-
dencies at a per-core level may save time by avoiding
multiple address comparisons. Additionally, in certain
embodiments, initiating a first unexecuted read operation
and a first unexecuted write operation from the command/
address buffer 230 in parallel, based on determining that
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core dependencies are satisfied, may avoid attempting to
initiate two operations in parallel for the same core 200.
Even if the operations are for different addresses, a single
core 200 would process operations sequentially; processing
two operations in parallel would involve multiple cores 200.
[0075] FIG. 3 depicts a timeline 300 illustrating one
embodiment of a latency time 302. In the depicted embodi-
ment, the timeline 300 illustrates a sequence of command
and address information received by a die 202 from a device
controller 126 via a command/address path 152. Each opera-
tion is labeled with an R or W indicating whether it is a read
or a write operation, and with a number indicating which
core 200 the operation is addressed to. Thus, the sequence
R-0, R-1, W-1, R-0 indicates a read for core 0, a read for core
1, a write for core 1, and a read for core 0. The illustrated
sequence of read and write operations is for exemplary and
non-limiting purposes; many other sequences of operations
for different cores 200 could be similarly processed using a
command/address buffer 230 and a command control com-
ponent 150 for an on-die controller 250.

[0076] The timeline 300 further illustrates data transferred
via the data path 154. For a read operation, the device
controller 126 may retrieve the data from output latches or
an output queue of the die 202 (e.g., by sending a clock
signal to the die 202 to control the data transfer). For a write
operation, the device controller 126 may send the data to the
die 202.

[0077] The timeline 300 additionally illustrates a latency
time 302. In general, in various embodiments, a latency time
302 may refer to any period of time between sending
command and address information for a storage operation
and transferring data for the storage operation. Latency
times 302 may be measured in different ways in various
embodiments. For example, in the depicted embodiment, the
latency time 302 for the first command (R-0) is measured
from the beginning of the command and address information
transfer to the beginning of the data transfer for the opera-
tion. In another embodiment, a latency time 302 may be
measured from measured from the end of the command and
address information transfer to the beginning of the data
transfer for the operation, or the like. Various measurements
of latency time 302 will be clear in view of this disclosure.
[0078] In certain embodiments, the device controller 126
is configured to wait a latency time 302 between sending
command and address information for a storage operation
and transferring data for the storage operation. For example,
for a read operation, a latency time 302 may correspond to
an amount of time it takes a die 202 to receive and decode
the command and address information, dispatch the address
to a core 200, process the operation, and have the data ready
at an output stage (e.g., a data-out queue managed by the
internal bus driver 220). The device controller 126 may wait
a read latency time 302 between sending the command and
address information and attempting to retrieve the data over
the data path 154, so that will be ready when the device
controller 126 attempts the transfer.

[0079] As a further example, for a write operation, the
device controller 126 may wait a write latency time 302
between sending command and address information for the
write operation and sending the data to be written. The
latency time 302 for a write operation may be different from
the time it takes a die 202 to perform the operation, because
the die 202 performs the write operation (including sending
the address and the data to a core 200) after the data is
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received. However, a write latency time 302 observed by the
device controller 126 between sending the write command
and sending the data may correspond to or be based on the
read latency time 302, so that data transfers for a series of
storage operations occur in the same order in which the
device controller 126 sends the command and address
information for the storage operations. In various embodi-
ments, read and write latency times 302 may be specified for
a die 202 (e.g., by a manufacturer of the die 202), and
observed by the device controller 126.

[0080] In a further embodiment, the on-die controller 250
maintains an order for data transfers based on an order in
which the device controller 126 sends command and address
information. For example, in a certain embodiment, the
command/address buffer 230 may store operations in the
order in which the command and address information for the
operations was received from the device controller 126, and
the on-die controller 250 may maintains an order for data
transfers based on the order of command and address
information in the command/address buffer 230,

[0081] In various embodiments, transferring the data in
the same order as the command and address information
may allow the device controller 126 to easily keep track of
which data transfers correspond to which commands. How-
ever, initiating a read operation and a write operation from
a command/address buffer 230 may result in one of the
operations executing out of order. For example, if a com-
mand/address buffer 230 has queued several write opera-
tions for core 0 followed by a read operation for core 1, then
the core dependency is satisfied for the read operation
(because there is no previously-scheduled, valid write opera-
tion for core 1), but initiating the first write operation and the
first read operation in parallel would result in data for the
read operation being ready before other write operations
have completed. The on-die controller 250 may maintain the
order for data transfers by queuing or buffering the read data
(e.g., in a queue for the internal bus driver 220) until the data
transfers for the prior write operations are completed.
[0082] In certain embodiments, maintaining an order for
data transfers may include delaying, buffering, queuing, or
pipelining data for operations that are performed out-of-
order (e.g., not in the order in which the commands were
sent) so that the data is transferred in the desired order. For
example, in one embodiment, the internal bus driver 220
may include separate data-in and data-out FIFOs or queues.
In various embodiments, the order for data transfers may be
based on the order in which the device controller 126 sends
command and address information, or on the order of
command and address information in the command/address
buffer 230, in various ways. In one embodiment, the order
for data transfers may be based on applying latency times
302 to the order for the command and address information.
For example, in one embodiment, as described above, a
latency time 302 may be similar or identical for read and
write operations so that the order of the data transfers is the
same as the order of the commands. In another embodiment,
however, a latency time 302 may be different for read
commands and write commands, and the device controller
126 may attempt to transfer data for a read command and a
write command in a different order than the order in which
the commands were sent, based on the different latency
times 302.

[0083] In certain embodiments, the device controller 126
may send command and address information for a second
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storage operation during a latency time 302 for a first storage
operation. For example, in the depicted embodiment, the
device controller 126 sends command and address informa-
tion for a first operation (R-0), and then sends command and
address information for three more operations (R-1, W-1,
R-0) during the latency time 302 for the first operation. In
various embodiments, queuing command and address infor-
mation in a command/address buffer 230 and executing
storage operations in parallel using multiple cores 200 may
allow a die 202 to process multiple operations with over-
lapping latency times 302, instead of processing operations
sequentially with non-overlapping latency times 302.

[0084] FIGS. 4A-4E depict various embodiments of a
command/address buffer 230, at different points in time. In
the depicted embodiments, the command/address buffer 230
includes storage space for queuing command and address
information, so that each depicted row or entry stores
command and address information for one storage opera-
tion. In the depicted embodiment, an entry includes com-
mand information 402, address information 404, a validity
bit 406 and a ready bit 408. Additionally, in the depicted
embodiment, the command/address buffer 230 includes an
input pointer 420, a read pointer 440, a write pointer 460,
and core dependency indicators 480 for the plurality of cores
200. FIGS. 4A-4E depict the process of receiving and
initiating the series of commands depicted in FIG. 3 (R-0,
R-1, W-1, R-0)

[0085] The command information 402 may indicate a type
of command or operation. In the depicted embodiment (e.g.,
in FIG. 4B), the command information 402 indicates
whether the operations are read operations or write opera-
tions. In another embodiment, command information 402
may more specifically indicate a type of read operation (such
as a read pair operation for a pair of addresses, a read
commit operation, or the like), or a type of write operation
(such as a program operation, an erase operation, or the
like). The address information 404 stores addresses for the
data operations. As described above, different cores 200 may
have locations for storing data for different sets of addresses,
so the address information 404 may indicate which core 200
will process a storage operation. For example, in an embodi-
ment with two cores 200 as depicted above with regard to
FIG. 2 (e.g. core 0 and core 1) addresses may be assigned to
cores 200 based on a most significant bit of the address, a
least significant bit of the address, an even or odd parity for
the address, or the like. For convenience in depiction, FIGS.
4A-4E depict whether the address information 404 corre-
sponds to core O or core 1, instead of depicting actual
addresses on the cores 200.

[0086] In the depicted embodiment, an entry in the com-
mand/address buffer 230 for a storage operation comprises
a validity bit 406 that indicates whether the storage opera-
tion has been initiated. An operation for which command
and address information has been received, but that has not
been initiated, may be referred to as “valid” and the validity
bit 406 may indicate whether the storage operation is valid
(or whether the storage operation has been initiated) in
various ways. For example, in the depicted embodiment, a
validity bit 406 is set (e.g., to “1”) when command and
address information for a storage operation is received, and
reset (e.g., to “0”) when the storage operation is initiated. In
another embodiment, the validity bit 406 may be reset when
command and address information for a storage operation is
received, and set when the storage operation is initiated.
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Command and address information for invalid operations
may be removed from the command/address buffer 230, or
may be overwritten as command and address information for
further operations is received.

[0087] In the depicted embodiment, an entry in the com-
mand/address buffer 230 for a storage operation comprises
a ready bit 408 that indicates whether the storage operation
is ready to be initiated. For example, in the depicted embodi-
ment, a ready bit 408 may be set (e.g., to “1”") when a storage
operation is ready to be initiated, and may be reset (e.g., to
“0”) when the storage operation is initiated. Conversely, in
another embodiment, a ready bit 408 may be reset when a
storage operation is ready to be initiated, and may be set
when the storage operation is initiated. In certain embodi-
ments, the ready bit 408 may indicate whether a storage
operation is ready to be initiated based on certain resources
of the cores 200 or the on-die controller 250. For example,
for a read operation, the ready bit 408 may indicate whether
a register, buffer, or set of latches for a core 200 is ready to
receive a read address. Similarly, in one embodiment, a write
operation may be ready to be initiated when the data for the
write operation is received from the device controller 126. In
a further embodiment, the ready bit 408 may indicate
whether data has been received from the device controller
126 and is ready in a data-in buffer or queue of the internal
bus driver 220, so that the address and the data are ready to
be sent to a core 200 together. Further ways of determining
whether a storage operation is ready to be initiated will be
clear in view of this disclosure.

[0088] In one embodiment, a size of the command/address
buffer 230 may be based on a latency time for a storage
operation. For example, in certain embodiments, command
and address information may be received and queued for
multiple storage operations during a latency time for a first
storage operation. In a further embodiment, a “size” of the
command/address buffer 230 may refer to a number of
stages, rows or entries in a command/address buffer 230, an
amount of storage space for the command/address buffer
230, or the like. In one embodiment, the size of the com-
mand/address buffer 230 may be selected to provide space
for storing command and address information for a number
of commands that may be received in a latency time. For
example, in one embodiment, a latency time for a storage
operation may be long enough to send up to 31 additional
commands, and a command/address buffer 230 may include
at least 32 stages. In a further embodiment, the command/
address buffer 230 may include further stages (e.g., 40
stages, including the 32 stages previously discussed) to
avoid filling the command/address buffer 230, overwriting
command and address information for unexecuted opera-
tions, or the like.

[0089] In the depicted embodiment, the input pointer 420,
the read pointer 440, and the write pointer 460 are used by
the on-die controller 250 to point or refer to locations or
entries in the command/address buffer 230. In various
embodiments a “pointer” may refer to any register, or
location for information that “points™ or refers to a location
in the command/address buffer 230, or to the actual value of
the pointer. For example, in one embodiment, a pointer may
be an integer that refers to a numbered stage in the com-
mand/address buffer 230. In a further embodiment, “incre-
menting” a pointer may also refer to updating the pointer to
point or refer to an immediately subsequent operation in the
command/address buffer 230 (e.g., the next stage or entry in
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the command/address buffer 230). For example, if the stages
of the command/address buffer 230 are numbered in order,
and the pointer is an integer, the on-die controller 250 may
increment a pointer by adding one to the stored integer. In
a further embodiment, incrementing a pointer that refers to
the last stage of the command/address buffer 230 may
comprise updating the pointer to refer to the first stage. Thus,
a pointer may be incremented in a circular manner, so that
the command/address buffer 230 acts as a circular buffer.

[0090] In various embodiments, the on-die controller 250
uses the input pointer 420 to queue the command and
address information in the command/address buffer 230, and
uses the read pointer 440 and the write pointer 460 to
identify read and write operations (respectively) in the
command/address buffer 230. The on-die controller 250 may
use the command control component 150 to manage and
update the input pointer 420, the read pointer 440, and the
write pointer 460. The input pointer 420, in certain embodi-
ments, may be similar to an input pointer for a FIFO queue,
and the read pointer 440 and write pointer 460 may be
similar to an output pointer for a FIFO queue, except that
using two output pointers for read and write operations may
allow certain operations to be initiated in parallel rather than
sequentially. The operation of the pointers is described in
further detail below at different time periods for FIGS.
4A-4E.

[0091] In a further embodiment, the core dependency
indicators 480 are maintained and updated by the on-die
controller 250, and indicate whether core dependencies are
satisfied for the individual cores 200. The on-die controller
250 may use the command control component 150 to
maintain and update the core dependency indicators 480. In
general, in various embodiments, a core dependency indi-
cator 480 for a core 200 may include any register, latch,
information location, or the like, that stores information
indicating whether a core dependency is satisfied or unsat-
isfied for a read operation on a core 200, or for a write
operation on the core 200. In a further embodiment, a core
dependency indicator bit may be a single-bit latch, register,
or location that acts as a core dependency indicator 480. In
one embodiment, a first value for a core dependency indi-
cator bit for a core 200 indicates that a core dependency is
unsatisfied for a read operation on the core 200 (and satisfied
for a write operation), and a second value for the core
dependency indicator bit indicates that a core dependency is
unsatisfied for a write operation on the core 200 (and
satisfied for a read operation).

[0092] For example, in the depicted embodiment, RXW
[0] is a core dependency indicator bit for core 0, and
RXWT/1] is a core dependency indicator bit for core 1. In a
further embodiment, additional core dependency indicator
bits may be provided for additional cores 200. In one
embodiment, the core dependency bit RXW [x] for core x
may store a 0, based on the read pointer 440 passing a valid
write operation for core X, thus indicating that a core
dependency is unsatisfied for a read operation on core x. In
further embodiment, the core dependency bit RXW/[x] for
core X may store a 1, based on the write pointer 460 passing
a valid read operation for core x, thus indicating that a core
dependency is unsatisfied for a write operation on core x. In
a further embodiment, the meaning of the 0 and 1 values for
the core dependency bit may be reversed (compared to the
meaning in the depicted embodiment). In certain embodi-
ments, using a single bit per core to track core dependencies
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provides a simple way to determine whether core depen-
dencies are satisfied, without a large amount of additional
hardware. The core dependency bits are updated in FIGS.
4A-4E based on the pointers.

[0093] In FIG. 4A, the command/address buffer 230 is
empty, and the input pointer 420, the read pointer 440, and
the write pointer 460 point to the first stage in the command/
address buffer 230. The values for the core dependency
indicators 480 may be indeterminate at this point: the RXW
bits for core 0 and core 1 may not have been set or reset, or
may reflect values based on previously performed storage
operations that are no longer queued in the command/
address buffer 230.

[0094] In the depicted embodiment, the command/address
buffer 230 queues or store command and address informa-
tion by storing the command and address information in a
location in the command/address buffer 230 pointed to by
the input pointer 420. The on-die controller 250 then incre-
ments the input pointer 420 to point to the next empty or
invalid location in the command/address buffer 230. Thus, in
FIG. 4B, four commands have been received. The first read
command for core 0 is stored in the first stage of the
command/address buffer 230, the read command for core 1
is stored in the second stage of the command/address buffer
230, the write command for core 1 is stored in the third stage
of the command/address buffer 230, the second read com-
mand for core 0 is stored in the fourth stage of the command/
address buffer 230, and the input pointer 420 points to the
fifth stage of the command/address buffer 230, which
remains empty.

[0095] In the depicted embodiment, the on-die controller
250 uses the read pointer 440 and the write pointer 460 to
identify the first unexecuted read operation and the first
unexecuted write operation in the command/address buffer
230. In a certain embodiment, the read pointer 440 is
incremented by the on-die controller 250 based on initiating
a read operation pointed to by the read pointer 440, and/or
based on determining that the read pointer 440 points to an
unexecuted write operation. Similarly, in a further embodi-
ment, the write pointer 460 is incremented by the on-die
controller 250 based on initiating a write operation pointed
to by the write pointer 460, and/or based on determining that
the write pointer 460 points to an unexecuted write opera-
tion.

[0096] In FIG. 4B, the pointers have been updated but no
storage operations have been initiated. Thus, the read pointer
440 points to the first read operation for core 0, in the first
stage of the command/address buffer 230. The read pointer
440 has not been incremented from its initial position in
FIG. 4A, because the read operation at that stage has not yet
been initiated. The ready bit 408 for the read operation has
been set to a 1, indicating that the operation is ready to be
initiated. The write pointer 460 has been incremented twice,
based on previously pointing to the unexecuted read opera-
tions in the first and second stages of the command/address
buffer 230, and now points to the write operation for core 1,
in the third stage of the command/address buffer 230. The
write point has not been incremented further, because the
write operation at the third stage of the command/address
buffer 230 has not yet been initiated. The ready bit 408 for
the write operation is a 0, indicating that the write operation
is not ready to be performed. For example, the data for the
write operation may not have been received from the device
controller 126 yet.
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[0097] Because the on-die controller 250 increments the
pointers one stage at a time, to point to immediately subse-
quent operations in the command/address buffer 230, the
write pointer 460 may temporarily point to a read operation
on its way to locating an unexecuted write operation, and the
read pointer 440 may temporarily point to a write operation
on its way to locating an unexecuted read operation. How-
ever, in certain embodiments, updating or incrementing
pointers one stage at a time may provide a simple way to
locate the first unexecuted read operation and the first
unexecuted write operation, without complex pointer look-
ahead hardware. In further embodiments, an internal clock
for incrementing the pointers may be faster than an external
clock for transferring data. For example, a pointer may be
incremented several times, based on fast internal clock
cycles, in one clock cycle of a slower external clock for
transferring data. In certain embodiments, updating pointers
based on a fast internal clock allows the first unexecuted
read operation and the first unexecuted write operation to be
quickly located.

[0098] Additionally, in some embodiments, updating
pointers one stage at a time may facilitate updating core
dependency indicators 480. In a certain embodiment, the
on-die controller 250 may update a core dependency indi-
cator 480 based on the read pointer 440 pointing to an
unexecuted write operation for the core 200, and/or based on
the write pointer 460 pointing to an unexecuted read opera-
tion for the core 200. Thus, in FIG. 4B, RXW][0] for core 0
has been updated to 1 based on the write pointer 460 having
passed the first read operation for core 0, in the first stage of
the command/address buffer 230, and RXW/1] for core 1
has been updated to 1 based on the write pointer 460 having
passed the read operation for core 1, in the second stage of
the command/address buffer 230. Because RXW[1]=1, the
core dependency for the first unexecuted write operation is
unsatisfied: the read operation for core 1 should be initiated
before the write operation for core 1. Thus, even if the ready
bit 408 indicated that the write operation was ready, the
on-die controller 250 would not dispatch the write operation
pointed to by the write pointer 460 and the read operation
pointed to by the read pointer 440 in parallel.

[0099] In FIG. 4C, the first read operation for core 0, at the
first stage of the command/address buffer 230 has been
initiated, so the on-die controller 250 has reset the validity
bit 408 to 0 and incremented the read pointer 440. The first
stage of the command/address buffer 230 may therefore be
treated as an empty stage, because the operation has been
initiated and is no longer valid. The next command is also a
read command, and has not yet been executed, so the read
pointer 440 is not incremented further. The write pointer 460
has not been further incremented, because the write opera-
tion has not yet been executed. The core dependency indi-
cators 480 store the same information as in FIG. 4B, because
the read pointer 440 has not passed a valid write command.
Therefore, the core dependency for the write command is
still unsatisfied: the read command for core 1 will be
initiated before the write command.

[0100] In FIG. 4D, the read command for core 1, at the
second stage of the command/address buffer 230 has been
initiated, so the read pointer 440 has been incremented and
the validity bit 406 for the second stage has been reset to 0.
Because the next operation in the command/address buffer
230 is a write operation for core 1, the on-die controller 250
increments the read pointer 440 one stage further, so that the
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read pointer 440 points to the unexecuted read operation for
core 0, in the fourth stage of the command/address buffer
230. Additionally, because the read pointer 440 passed a
write operation for core 1, the on-die controller 250 updates
the core dependency indicators 480 so that RXW [1]=0,
indicating that a core dependency would be unsatisfied for a
read operation on core 1, because the write operation for
core 1 should be initiated first.

[0101] In FIG. 4D, the core dependencies are satisfied for
both the write operation pointed to by the write pointer 460
and the read operation pointed to by the read pointer 440.
The write operation is for core 1 and RXW [1]=0, indicating
that the read pointer 440 has passed the write operation for
core 1. Also, the read operation is for core 0, and RXW
[0]=1, indicating that the core dependency is satisfied for the
read operation (but would be unsatisfied for a write opera-
tion on core 0). The on-die controller 250 has set the ready
bits 408 for both operations to 1, indicating that the opera-
tions are ready to be performed. For example, the ready bit
408 for the write operation may indicate that the data to be
written has been received from the device controller 126,
and the ready bit 408 for the read operation may indicate that
a page buffer for core 0 is ready to receive an address for a
read operation. Therefore, the on-die controller 250 initiates
the read operation and the write operation in parallel.
[0102] InFIG. 4E, the write command at the third stage of
the command/address buffer 230 and the read command at
the fourth stage of the command/address buffer 230 have
been initiated in parallel. The corresponding validity bits
406 have been reset to 0, and the read pointer 440 and the
write pointer 460 have been incremented. The read pointer
440 and the write pointer 460 are not incremented beyond
the fifth stage of the command/address buffer 230, because
the fifth stage does not yet store an operation. In certain
embodiments, invalid operations may be treated as empty
stages of the command/address buffer 230, and the pointers
may be incremented in a circular manner as described above,
so the configuration of the command/address buffer 230 in
FIG. 4E is substantially equivalent to the initial configura-
tion in FIG. 4A

[0103] FIG. 5 is a schematic flow chart diagram illustrat-
ing one embodiment of a method 500 for controlling com-
mands for non-volatile memory. The method 500 begins,
and the command/address buffer 230 queues 502 command
and address information for a plurality of storage operations
for non-volatile memory cores 200 that share a data path 154
for a non-volatile memory die 202. The on-die controller
250 identifies 504 a first valid read operation and a first valid
write operation, based on the queued command and address
information. The on-die controller 250 determines 506
whether core dependencies are satisfied for the read opera-
tion and the write operation. If the core dependencies are
satisfied for both operations, the on-die controller 250 ini-
tiates 508 the read operation and the write operation in
parallel, and the method 500 continues as the command/
address buffer 230 continues to queue 502 command and
address information. If the core dependencies are not satis-
fied for both operations, the on-die controller 250 initiates
510 one of the operations, for which a core dependency is
satisfied, and the method 500 continues as the command/
address buffer 230 continues to queue 502 command and
address information.

[0104] A means for queuing command and address infor-
mation, in various embodiments, may include a command/
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address path 152, a command/address decoder 240, a com-
mand/address buffer 230, an on-die controller 250, a
command control component 150, an input pointer 420, a
modified FIFO, a ring buffer, a range of memory locations,
other logic hardware, and/or other executable code stored on
a computer readable storage medium. Other embodiments
may include similar or equivalent means for queuing com-
mand and address information.

[0105] A means for identifying a first valid read operation
and a first valid write operation based on the queued
command and address information, in various embodiments
may include a command/address buffer 230, an on-die
controller 250, a command control component 150, a read
pointer 440, a write pointer 460, other logic hardware,
and/or other executable code stored on a computer readable
storage medium. Other embodiments may include similar or
equivalent means for identifying a first valid read operation
and a first valid write operation.

[0106] A means for determining whether core dependen-
cies are satisfied for the first valid read operation and the first
valid write operation, in various embodiments, may include
a command/address buffer 230, an on-die controller 250, a
command control component 150, a read pointer 440, a
write pointer 460, one or more core dependency indicators
480, other logic hardware, and/or other executable code
stored on a computer readable storage medium. Other
embodiments may include similar or equivalent means for
determining whether core dependencies are satisfied.
[0107] A means for initiating the first valid read operation
and the first valid write operation in parallel, in various
embodiments, may include a command/address buffer 230,
an on-die controller 250, a command control component
150, a read pointer 440, a write pointer 460, an internal bus
driver 220, a shared data path 154, one or more separate
internal data paths 210, one or more cores 200, other logic
hardware, and/or other executable code stored on a computer
readable storage medium. Other embodiments may include
similar or equivalent means for initiating a read operation
and a write operation in parallel.

[0108] A means for updating a core dependency indicator
for a core 200, in various embodiments, may include a
command/address buffer 230, an on-die controller 250, a
command control component 150, a read pointer 440, a
write pointer 460, one or more core dependency indicators
480, other logic hardware, and/or other executable code
stored on a computer readable storage medium. Other
embodiments may include similar or equivalent means for
determining whether core dependencies are satisfied.
[0109] The present disclosure may be embodied in other
specific forms without departing from its spirit or essential
characteristics. The described embodiments are to be con-
sidered in all respects only as illustrative and not restrictive.
The scope of the disclosure is, therefore, indicated by the
appended claims rather than by the foregoing description.
All changes which come within the meaning and range of
equivalency of the claims are to be embraced within their
scope.

What is claimed is:
1. An apparatus comprising:
one or more memory die, a memory die comprising:

a plurality of non-volatile memory cores that share a
data path, a core comprising an array of non-volatile
memory cells;
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a command/address buffer that queues command and
address information for a plurality of storage opera-
tions for the non-volatile memory cores; and

an on-die controller that initiates a first unexecuted read
operation and a first unexecuted write operation from
the command/address buffer in parallel, in response
to determining that core dependencies are satisfied
for the read operation and the write operation.

2. The apparatus of claim 1, wherein a core dependency
is satisfied for a scheduled operation based on no unexecuted
operation of a different type from the scheduled operation
being queued in the command/address buffer prior to the
scheduled operation, for the same core as the scheduled
operation.

3. The apparatus of claim 1, wherein the on-die controller
uses a read pointer and a write pointer to identify the first
unexecuted read operation and the first unexecuted write
operation in the command/address buffer.

4. The apparatus of claim 3, wherein the on-die controller
increments the read pointer in response to one or more of:
initiating a read operation pointed to by the read pointer, and
determining that the read pointer points to an unexecuted
write operation.

5. The apparatus of claim 3, wherein the on-die controller
increments the write pointer in response to one or more of:
initiating a write operation pointed to by the write pointer,
and determining that the write pointer points to an unex-
ecuted read operation.

6. The apparatus of claim 3, wherein the on-die controller
updates a core dependency indicator for a core in response
to one or more of: the read pointer pointing to an unexecuted
write operation for the core, and the write pointer pointing
to an unexecuted read operation for the core.

7. The apparatus of claim 3, wherein the on-die controller
increments a pointer by updating the pointer to point to an
immediately subsequent operation in the command/address
buffer, wherein an internal clock for incrementing the point-
ers is faster than an external clock for transferring data.

8. The apparatus of claim 1, wherein the on-die controller
maintains a core dependency indicator bit for each core,
such that a first value for a core dependency indicator bit for
a core indicates that a core dependency is unsatisfied for a
read operation on the core, and a second value for the core
dependency indicator bit indicates that a core dependency is
unsatisfied for a write operation on the core.

9. The apparatus of claim 1, wherein queueing command
and address information for a storage operation comprises
storing the command and address information in a location
in the command/address buffer pointed to by an input
pointer.

10. The apparatus of claim 1, wherein the on-die control-
ler maintains an order for data transfers based on an order of
command and address information in the command/address
buffer.

11. The apparatus of claim 1, wherein a size of the
command/address buffer is based on a latency time for a
storage operation.

12. The apparatus of claim 1, wherein an entry in the
command/address buffer for a storage operation comprises a
validity bit that indicates whether the storage operation has
been initiated.
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13. The apparatus of claim 1, wherein an entry in the
command/address buffer for a storage operation comprises a
ready bit that indicates whether the storage operation is
ready to be initiated.

14. The apparatus of claim 13, wherein a write operation
is ready to be initiated when the data for the write operation
is received.

15. A system comprising

one or more memory die, a memory die comprising:

a plurality of non-volatile memory cores, a core com-
prising an array of non-volatile memory cells;

a command/address queue that stores command and
address information for a plurality of storage opera-
tions for the non-volatile memory cores;

an on-die controller that dispatches addresses for
executing a first valid read operation and a first valid
write operation from the command/address queue in
parallel, in response to determining that the com-
mand/address queue has no previously-scheduled
valid write operations for a core for the read opera-
tion, and has no previously-scheduled valid read
operations for a core for the write operation; and

a device controller that communicates with the on-die

controller for a selected die to send command and

address information and to transfer data for storage
operations on the selected die.

16. The system of claim 15, wherein the cores for a
memory die share a single data path for communicating with
the device controller.

17. The system of claim 15, wherein the device controller
waits a latency time between sending command and address
information for a storage operation and transferring data for
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the storage operation, and the on-die controller maintains an
order for data transfers based on an order in which the device
controller sends command and address information.

18. The system of claim 15, wherein the device controller
sends command and address information for a second stor-
age operation during a latency time for a first storage
operation.

19. An apparatus comprising:

means for queuing command and address information for
a plurality of storage operations for non-volatile
memory cores that share a data path for a non-volatile
memory die;

means for identifying a first valid read operation and a
first valid write operation, based on the queued com-
mand and address information;

means for determining whether core dependencies are
satisfied for the read operation and the write operation,
wherein determining whether a core dependency is
satisfied for an operation comprises determining
whether another valid operation of a different type is
scheduled prior to the operation, for the same core as
the operation; and

means for initiating the read operation and the write
operation in parallel based on determining that the core
dependencies are satisfied.

20. The apparatus of claim 19, further comprising means
for updating a core dependency indicator for a core, based
on an order of queued, valid storage operations.
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