
US 20210377623A1 
MONT IN 

( 19 ) United States 
( 12 ) Patent Application Publication ( 10 ) Pub . No .: US 2021/0377623 A1 

Larson et al . ( 43 ) Pub . Date : Dec. 2 , 2021 

( 54 ) DETECTING LATENCY ANOMALIES FROM 
PIPELINE COMPONENTS IN CLOUD - BASED 
SYSTEMS 

( 71 ) Applicant : NVIDIA Corporation , Santa Clara , CA 
( US ) 

( 72 ) Inventors : Alan Larson , Milpitas , CA ( US ) ; Bipin 
Todur , Santa Clara , CA ( US ) 

( 21 ) Appl . No .: 16 / 886,192 

( 52 ) U.S. Cl . 
CPC H04N 21/64738 ( 2013.01 ) ; H04N 21/235 

( 2013.01 ) ; H04N 21/239 ( 2013.01 ) ; H04N 
21/8547 ( 2013.01 ) 

( 57 ) ABSTRACT 
A method , computer readable medium , and system are 
disclosed for monitoring a pipeline to detect anomalies such 
as unusual latency associated with a particular stage . Each 
stage of the pipeline is configured to update metadata 
associated with content being processed by inserting a time 
stamp into the metadata when processing of the content is 
completed by the stage . The server device can collect the 
metadata from the last stage of the pipeline and analyze the 
metadata in order to generate metrics for the pipeline , 
including a residual latency and / or a gain for each stage of 
the pipeline . In an embodiment , the content is a frame of 
video to be displayed on a client device after being rendered 
by a server device , such as through a streaming service ( e.g. , 
a video game streaming service ) . The server device can 
adjust the pipeline based on the metrics to improve perfor 
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DETECTING LATENCY ANOMALIES FROM 
PIPELINE COMPONENTS IN CLOUD - BASED 

SYSTEMS 

TECHNICAL FIELD 

[ 0001 ] The present disclosure relates to data analytics . 
More specifically , the embodiments set forth below describe 
techniques for tracking and analyzing stages of a pipeline . 

BACKGROUND 

the feedback signals from the client side to the server side , 
performing processing on the server side to render video 
content , and then delivering the video content to the client 
side for display . If this latency is too long , then the user 
experience will suffer . For example , a delay of more than 
100 ms from a controller input to a visual stimulus related 
to that input can be referred to as lag , and can be a significant 
source of frustration for gamers . As another example , a 
significant delay from a user turning their head to viewing 
corresponding motion on a head - mounted display can cause 
physiological reactions such as nausea in a VR / AR appli 
cation . 
[ 0005 ] Another issue with real - time video streaming ser 
vices that rely on user inputs can be referred to as stuttering . 
It can be difficult to ensure a consistent downlink bandwidth 
using Internet Protocol ( IP ) packets transmitted over the 
Internet . In addition , application conditions can change 
leading to varying render times at the server . This can lead 
to delay of certain frames . Normal display rates of 60-120 
Hz at the client side require each new frame to arrive 
consistently within 8.3-16.6 ms of the previous frame . If any 
particular frame is delayed beyond the expected frame 
duration , then the previous frame may be displayed again 
and / or certain frames may be skipped when two frames 
arrive before the next frame is displayed . This can cause 
stuttering where the video appears to stall or skip forward , 
and motion in the video content may not be smooth . Basic 
video streaming services can hide stuttering using a video 
frame buffer , but real - time applications like game streaming 
or VR / AR streaming cannot use these buffering techniques . 
[ 0006 ] In order to debug issues with the pipelined stack of 
the service , a service provider may utilize tools to visualize 
information related to the various components that make up 
the service . Conventionally , a client can report delays in the 
display of frames , such as logging and returning a list of time 
stamps for each frame received and displayed at the client 
device . While this information can indicate that there is an 
issue with the service , it is difficult or impossible to discern 
from this information whether the issue is located at the 
server side ( e.g. , rendering or encoding ) , within the network 
during transmission ( e.g. , network congestion or poor link 
quality ) , or located at the client side ( e.g. , decoding and 
display ) . Therefore , new techniques or approaches for moni 
toring the stages or components in a pipeline are needed . 

[ 0002 ] Cloud - based services have been developed for a 
variety of applications such as network storage , virtual 
compute resources , and the like . Streaming services such as 
Netflix® and Hulu offer a service that delivers video 
content to a client device such as a television or tablet 
computer . Streaming video offers certain challenges that 
require a minimum quality of service ( QoS ) to ensure a 
sufficient user experience . For example , low network band 
width or high network congestion can cause video to be 
delayed , leading to repeated buffering of the video at the 
client side that prevents a seamless viewing experience . 
While the service provider only has some basic tools for 
dealing with these network issues , such as negotiating 
exclusive use of network resources with ISPs , the service 
provider has more control over the software components 
executing on server devices located in their data centers . In 
addition , some of these issues can be addressed at the client 
side , such as by implementing a queue at the client that 
stores received frames of video and delays playback until a 
minimum amount of content has been received at the client 
side . By buffering a number of frames in the queue , any 
latency caused by a delay of the receipt for a small number 
of frames can be effectively hidden from the viewer , allow 
ing time for the server or network to catch up . 
[ 0003 ] New cloud - based services are being developed for 
streaming video games and / or virtual reality / augmented 
reality systems . Traditionally , video game applications 
required an application for the game to be executed on the 
client side , where the rendering of frames for display was 
performed by the client device , such as using a graphics 
processing unit included in the client device . As games 
improved in quality , the minimum hardware requirements of 
the client device increased , which leads to obsolescence of 
certain devices , or limits the ability of a game developer to 
offer high - end graphics for fear that the minimum hardware 
requirements will be met by too few devices on the market . 
One solution is to move the rendering of the graphics from 
the client side to a remote system hosted by the service 
provider , enabling the service provider to provide the hard 
ware required for rendering the video content , and then 
deliver the rendered video content to the client side via a 
network . 
[ 0004 ] However , there are a number of issues with deliv 
ering real - time content over a network that cannot be 
addressed using the same techniques that are employed by 
conventional streaming services . For example , unlike 
streaming of video content , game content or VR / AR content 
is rendered in response to feedback signals from the client 
side . For example , inputs from a game controller determine 
how objects or a viewpoint are adjusted for the next frame 
of the video game . Inputs from sensors in a head - mounted 
display are used to change the next frame of video in VR / AR 
systems . There is necessarily some latency in transmitting 
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[ 0007 ] A method , computer readable medium , and system 
are disclosed for monitoring a pipeline for a cloud - based 
service . The pipeline can include a number of stages , where 
at least one stage is implemented on a server device of the 
cloud - based service and at least one additional stage is 
implemented on a client connected to the cloud - based ser 
vice via a network . 
[ 0008 ] In a first aspect of the present disclosure , a system 
is described for monitoring latency variability in a pipeline 
of a cloud - based service . The system includes a server 
device including one or more processors . The server device 
is configured to : receive , from a client device , metadata 
corresponding to content processed by a plurality of stages 
of the pipeline ; generate , for each stage of the plurality of 
stages of the pipeline , a metric calculated based on the 
metadata ; and adjust a parameter associated with at least one 
stage of the pipeline based on the metrics for the plurality of 
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[ 0017 ] In another aspect of the present disclosure , a 
method is disclosed for monitoring a pipeline . The method 
includes the steps of : receiving , from a client device , meta 
data corresponding to content processed by a plurality of 
stages of a pipeline , generating , for each stage of the 
plurality of stages of the pipeline , a metric calculated based 
on the metadata ; and adjusting a parameter associated with 
at least one stage of the pipeline based on the metrics for the 
plurality of stages . The metadata includes information cor 
responding to each stage of the plurality of stages of the 
pipeline . 
[ 0018 ] In yet another aspect of the present disclosure , a 
non - transitory computer - readable media storing computer 
instructions is disclosed . The instructions , when executed by 
one or more processors , cause the one or more processors to 
perform the steps comprising : receiving , from a client 
device , metadata corresponding to content processed by a 
plurality of stages of a pipeline , generating , for each stage of 
the plurality of stages of the pipeline , a metric calculated 
based on the metadata ; and adjusting a parameter associated 
with at least one stage of the pipeline based on the metrics 
for the plurality of stages . The metadata includes informa 
tion corresponding to each stage of the plurality of stages of 
the pipeline . 

BRIEF DESCRIPTION OF THE DRAWINGS 

stages . The metadata includes information corresponding to 
each stage of the plurality of stages of the pipeline . 
[ 0009 ] In some embodiments , the content comprises a 
plurality of frames streamed to the client device during a 
session . The one or more processors are further configured 
to : calculate , for each frame of the plurality of frames , a gain 
for each stage of the pipeline ; compare , for each frame of the 
plurality of frames , a total residual latency to a first threshold 
value to identify anomalous frames ; and calculate , for each 
stage of the pipeline , an aggregate value by summing a 
number of anomalous frames in the plurality of frames 
where the gain corresponding to the stage in the anomalous 
frame is greater than a second threshold value . The one or 
more processors can further be configured to generate a 
visual representation based on the metrics . The metric for a 
particular stage is calculated based on the aggregate value 
for the particular stage . 
[ 0010 ] In an embodiment , the gain for a particular stage is 
calculated based on an expected frame duration and a 
difference between a time stamp corresponding to the par 
ticular stage for the current frame and a time stamp corre 
sponding to the particular stage for a previous frame . In an 
embodiment , the pipeline generates the plurality of frames 
in accordance with a variable frame rate , and the expected 
frame duration is set in accordance with a target frame rate . 
[ 0011 ] In an embodiment , the metric for a particular stage 
is calculated by multiplying a rate of the gain for the 
particular stage exceeding the second threshold value by a 
mean of the gain for the particular stage over a duration of 
the session . 
[ 0012 ] In some embodiments , the content comprises a 
frame of video rendered in response to a feedback signal 
received from the client device . In an embodiment , the 
frame of video is rendered in accordance with a ray - tracing 
algorithm . In some embodiments , the feedback signal 
includes at least one signal selected from the group consist 
ing of : controller input ; or sensor data from a head - mounted 
display . 
[ 0013 ] In some embodiments , adjusting the parameter 
causes an encoding stage or a decoding stage of the pipeline 
to use a different encoding configuration or a different codec 
for encoding or decoding the content . 
[ 0014 ] In some embodiments , the information correspond 
ing to each stage of the pipeline comprises a time stamp that 
indicates a time when the processing of the content by the 
stage is complete . In other embodiments , each stage includes 
one or more components and at least one stage includes a 
plurality of components . Information corresponding to a 
particular stage of the pipeline comprises a time stamp for 
each component of the particular stage that indicates a time 
when the processing of the content by the component is 
complete . 
[ 0015 ] In some embodiments , the pipeline includes at least 
one stage selected from the group consisting of : a frame 
capture stage , an encoding stage , a forward error correction 
( FEC ) stage , a transmit stage , a network stage , a decoding 
stage , a resynchronization stage , or a display stage . 
[ 0016 ] In an embodiment , the client device is configured 
to train a neural network for an autonomous vehicle . The 
server device is operable to generate simulated camera 
signals , representative of camera signals captured by the 
autonomous vehicle , in response to control inputs received 
from the autonomous vehicle . 

a 

[ 0019 ] FIG . 1 illustrates a pipelined stack for a cloud 
based service , in accordance with some embodiments . 
[ 0020 ] FIG . 2A illustrates a flowchart of a method for 
detecting latency anomalies in a pipeline , in accordance with 
some embodiments . 
[ 0021 ] FIG . 2B illustrates a flowchart of a method for 
monitoring a pipeline , in accordance with some embodi 
ments . 
[ 0022 ] FIG . 3 illustrates a parallel processing unit , in 
accordance with an embodiment . 
[ 0023 ] FIG . 4A illustrates a general processing cluster 
within the parallel processing unit of FIG . 3 , in accordance 
with an embodiment . 
[ 0024 ] FIG . 4B illustrates a memory partition unit of the 
parallel processing unit of FIG . 3 , in accordance with an 
embodiment . 
[ 0025 ] FIG . 5A illustrates the streaming multi - processor 
of FIG . 4A , in accordance with an embodiment . 
[ 0026 ] FIG . 5B is a conceptual diagram of a processing 
system implemented using the PPU of FIG . 3 , in accordance 
with an embodiment . 
[ 0027 ] FIG . 5C illustrates an exemplary system in which 
the various architecture and / or functionality of the various 
previous embodiments may be implemented . 
[ 0028 ] FIG . 6 is a conceptual diagram of a graphics 
processing pipeline implemented by the PPU of FIG . 3 , in 
accordance with an embodiment . 
[ 0029 ] FIG . 7 illustrates ideal latency in a pipeline of a 
cloud - based service , in accordance with some embodiments . 
[ 0030 ] FIG . 8 illustrates a stutter caused by latency vari 
ability of the cloud - based service , in accordance with some 
embodiments . 
[ 0031 ] FIG . 9 illustrates a client - server architecture for 
monitoring the pipeline stack of a cloud - based service , in 
accordance with some embodiments . 
[ 0032 ] FIG . 10 is a flowchart of a method for analyzing the 
metadata , in accordance with some embodiments . 

a 
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[ 0033 ] FIG . 11 illustrates a visualization of the per - stage 
gain during a session , in accordance with some embodi 
ments . 
[ 0034 ] FIG . 12 illustrates a visualization of the per - stage 
residual latency during a session , in accordance with some 
embodiments . 
[ 0035 ] FIG . 13 illustrates a visualization of anomalies 
detected in the pipelined stack , in accordance with some 
embodiments . 
[ 0036 ] FIG . 14 illustrates a visualization of a session 
analysis chart , in accordance with some embodiments . 
[ 0037 ] FIG . 15 illustrates a visualization of a summary of 
the session , in accordance with some embodiments . 

DETAILED DESCRIPTION 

a 

a 

on one or more client devices , the stages including a 
decoding stage 160 , a display stage 170 , and a client 
resynchronization ( resync ) stage 180 . 
[ 0042 ] It will be appreciated that the exemplary pipelined 
stack 100 for a game streaming service is depicted in FIG . 
1 for purposes of illustration of the various techniques 
described herein . In other embodiments , the particular 
arrangement of stages in the pipelined stack 100 can be 
different , such as by including additional stages not shown 
in FIG . 1 or omitting stages that are shown in FIG . 1. For 
example , the FEC stage 130 may be omitted where FEC is 
not implemented by the service . In addition , some imple 
mentations may combine aspects of two or more stages into 
a single stage ( e.g. , FEC and transmit may be combined into 
a single stage of the pipelined stack 100 ) . 
[ 0043 ] Each stage shown in FIG . 1 can include one or 
more components . For example , the encoding stage 120 can 
include a queue component that asynchronously receives 
frames from the frame capture stage 110 while a previous 
frame is being encoded by an encoder component . The 
encoding stage 120 can also include a send queue compo 
nent that asynchronously receives encoded frames from the 
encoder component and transmits the encoded frames to the 
FEC stage 130 when the encoded frames are available and 
the FEC stage 130 is ready . As will be discussed in more 
detail , metadata for the content processed by the stages of 
the pipelined stack 100 can be updated by each stage or , 
alternatively , by each component within the stage . 
[ 0044 ] In an embodiment , the content includes one or 
more frames and metadata is generated for each frame . As 
used herein , a frame can refer to a data structure that encodes 
image data for display on a display device . The frame can 
include an array of pixel values , where each pixel value 
includes one or more channels of color information . For 
example , the pixel values can include a red channel , a blue 
channel , and a green channel that indicates , via 8 or 10 bits , 
for example , a color of the pixel . Of course , in other 
embodiments , the pixel values can be encoded in a different 
format such as by encoding luminance and chrominance 
information in separate channels . In some embodiments , 
each component or stage of the pipelined stack 100 can be 
configured to update metadata corresponding to the pro 
cessed frame by adding a time stamp to the metadata when 
that stage / component has finished processing the frame . The 
metadata is then forwarded to the next component / stage 
along with the processed content . 
[ 0045 ] At the end of the pipelined stack 100 , the client 
device transmits the metadata back to the server device for 
storage and / or analysis . In an embodiment , the metadata for 
a frame returned to the server device comprises a plurality 
of time stamps , each time stamp corresponding to a time that 
indicates the completion of processing for the frame by a 
particular stage or component of a stage . In some embodi 
ments , the client device is configured to collect metadata for 
a plurality of frames ( e.g. , 60 seconds of video at 30-60 
frames per second ) in a data structure ( e.g. , a file ) before 
transmitting the data structure to the server device . In such 
embodiments , the server device collects files for a number of 
sessions , each session amounting to , e.g. , a number of 
seconds of video . It will be appreciated that the size of a 
session can be adjusted to match a desired size of the 
collected metadata , such as by collecting 30 minutes to 60 
minutes worth of metadata in a session . In some embodi 
ments , the client device collects the metadata in a circular 

[ 0038 ] A pipeline for a cloud - based service is configured 
to track processing of content within the pipeline by updat 
ing metadata corresponding to the content . Each stage of the 
pipeline can insert a time stamp into the metadata when 
processing of the content is completed by the stage . The 
client device , upon receiving the content and metadata , can 
update the metadata for any stages of the pipeline that are 
implemented by the client device and then transmit the 
updated metadata back to the server device . 
[ 0039 ] The server device can analyze the metadata from a 
number of instances of the content in order to identify 
residual latency and a gain for each stage of the pipeline for 
each pass of an instance of the content . In an embodiment , 
the content is a frame of video to be displayed on the client 
device after being rendered by the server device . The server 
device can also implement a dashboard that generates visu 
alization of the metadata or statistics derived from the 
metadata . The visualization can be presented to a developer 
via a client such as a web browser application . The devel 
oper can use the information in the visualization to find and 
debug issues and guide changes to the pipeline . 
[ 0040 ] In some embodiments , the server device analyzes 
the metadata and updates the parameters of the pipeline to 
improve a Quality of Service delivered by the cloud - based 
rvice . In an embodiment , the server vice can identify 

stages of the pipeline associated with large residual latency 
or gain and update a parameter of the stage to improve 
performance of the stage . For example , the parameter can 
cause the server device to utilize a different codec in an 
encoding stage of the pipeline . This functionality enables the 
pipeline to dynamically adjust to the latency in the pipeline . 
[ 0041 ] FIG . 1 illustrates a pipelined stack 100 for a 
cloud - based service , in accordance with some embodiments . 
The cloud - based service is implemented as a pipelined stack 
100 of a plurality of stages . Each stage includes one or more 
components , and the output of one stage is received at the 
input of a subsequent stage , with the exception of the last 
stage . As depicted in FIG . 1 , a pipelined stack 100 for a 
cloud - based , game streaming service includes a number of 
stages . The server side 102 implements a number of stages 
on one or more server devices , the stages including a frame 
capture stage 110 , an encoding stage 120 , a forward error 
correction ( FEC ) stage 130 , and a transmit stage 140. The 
pipelined stack 100 also includes a network stage 150 that 
encompasses the transmission of data packets over a net 
work 104 from the server side 102 to the client side 106. The 
network stage 150 is performed on one or more network 
devices , such as network routers , switches , access points , or 
the like . The client side 106 implements a number of stages 

a 

a 

a 
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buffer such that the metadata collected for the session is only 
the metadata for the last n frames in the session . For 
example , a circular buffer having a size suitable for collect 
ing 10 minutes of data at 60 frames per second ( e.g. , 36,000 
frames worth of metadata ) can continuously collect meta 
data during a session , overwriting the oldest metadata as the 
session extends past 10 minutes in length . At the end of the 
session ( e.g. , when a game application is terminated ) , the 
client device can encode and transmit the contents of the 
circular buffer to the server device . It will be appreciated 
that , when a user experiences issues that degrade the user 
experience , the session will likely be terminated early and , 
as such , the last m minutes of a session ( corresponding to n 
frames ) are usually sufficient to highlight the cause of the 
issue that degraded the user experience . In other embodi 
ments , the circular buffer can exist in the server side of the 
pipeline . The client device can be configured to send meta 
data for each frame back to the server device , which is then 
stored in the circular buffer . At the end of the session , the 
server device can process the contents of the circular buffer 
stored . In yet other embodiments , the metadata added by 
each stage of the pipeline can be stripped by the server 
device and stored temporarily at the server device such that 
the metadata is not forwarded to the client device along with 
the content . The stages of the pipeline at the client device 
then generate new metadata as the content is processed on 
the client side of the pipeline and the metadata is encoded 
and transmitted to the server device when the content is done 
being processed at the client device . The metadata from the 
client device is then combined with the corresponding 
metadata from the server device and stored in the circular 
buffer at the server device . It will be appreciated that any 
technique for collecting metadata at the server device , 
including having each stage transmit the corresponding 
metadata for that stage back to the server device individu 
ally , is within the scope of the present disclosure . 
[ 0046 ] FIG . 2A illustrates a flowchart of a method 200 for 
detecting latency anomalies in a pipeline , in accordance with 
some embodiments . The method 200 is described in the 
context of software executed by one or more processors . In 
some embodiments , the method 200 , at least in part , can be 
performed by instructions executed by a server device , 
which may be the same or separate from a server device that 
implements at least one stage of the pipelined stack 100. In 
other embodiments , the method 200 can be performed by 
hardware or some combination of hardware and software . 
[ 0047 ] At step 202 , metadata corresponding to content 
processed by a plurality of stages of the pipeline is received 
from a client device . The metadata includes information 
corresponding to each stage of the plurality of stages of the 
pipeline . In an embodiment , each stage of the pipeline is 
configured to update the metadata to add a time stamp that 
indicates a time when the processing of the content by the 
stage is complete . 
[ 0048 ] At step 204 , a metric is generated for each stage of 
the pipeline based on the metadata . In an embodiment , the 
metrics include a gain calculated for each stage of the 
pipeline , where the gain is calculated based on a difference 
in time stamps for two instances of the content and an 
expected duration of time between the two instances of the 
content . 
[ 0049 ] At step 206 , a parameter associated with at least 
one stage of the pipeline is adjusted based on the metrics for 
the plurality of stages . In some embodiments , the configu 

ration of the pipeline is adjusted by changing the configu 
ration of one or more stages of the pipeline , such as , but not 
limited to , adjusting a configuration of an encoding stage or 
a decoding stage , or changing a codec utilized by the 
encoding stage or decoding stage . Other parameters that can 
be adjusted , depending on the type of pipeline implemented 
for a specific application , include adjusting a frame rate or 
resolution of a streaming video , adjusting a process ( e.g. , 
adjusting a supply chain for an automated assembly line ) , or 
adjusting a schedule ( e.g. , adjusting a number or frequency 
of delivery drivers or bus routes ) . 
[ 0050 ] FIG . 2B illustrates a flowchart of a method 250 for 
monitoring a pipeline , in accordance with some embodi 
ments . The method 250 is described in the context of 
software executed by one or more processors . In some 
embodiments , the method 250 , at least in part , can be 
performed by instructions executed by a server device 
configured to implement at least one stage of the pipelined 
stack 100. In other embodiments , the method 200 can be 
performed by hardware or some combination of hardware 
and software . 
[ 0051 ] At step 252 , a feedback signal is received from a 
client device . In an embodiment , the feedback signal repre 
sents controller input collected by a client application 
executed by the client device . For example , a game control 
ler including one or more joysticks and one or more buttons 
can provide user feedback to the client application repre 
senting the state of each of the joysticks and / or buttons . 
Alternately , a keyboard and / or mouse device can provide 
keystrokes and motion data / button state to the client appli 
cation . In another embodiment , the feedback signal is related 
to sensors in a head - mounted display ( e.g. , gyroscopes , 
accelerometers , etc. ) . The client application transmits the 
feedback signal to the server device . 
[ 0052 ] At step 254 , the pipeline processes content based 
on the feedback signal . In an embodiment , the content is a 
frame of video rendered by at least one stage of the pipeline 
executed by a server device . In some embodiments , the 
server device utilizes , at least in part , a parallel processing 
unit to render each frame . The parallel processing unit can 
implement a ray - tracing algorithm to generate pixel values 
for each frame . Alternatively , the parallel processing unit 
can render the frames using a raster - based rendering algo 
rithm executed within a graphics processing pipeline . In an 
embodiment , the content includes frames of video for a 
video game streaming service . In another embodiment , the 
content includes frames of video for a head - mounted display 
associated with a VR / AR application . It will be appreciated 
that the content can be any content based on the feedback 
signal . 
[ 0053 ] In some embodiments , the content has a real - time 
requirement such as a maximum latency between receiving 
the feedback signal and the content being delivered to the 
client device . The maximum latency can be , e.g. , related to 
a multiple of a frame rate of display on a client device ( e.g. , 
N times the frame duration of 16.7 ms for 60 Hz display rate , 
where Nis an integer greater than one ) . In some embodi 
ments , the maximum latency is specified in terms of milli 
seconds and is not limited to an integer multiple of the frame 
rate . The real - time requirement can be defined as a Quality 
of Service ( QoS ) requirement , and can be set based on a 
subjective or objective measurement of user experience . The 
real - time requirement is a goal of the end - to - end delivery of 
the content and not a guarantee , as certain portions of the 
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pipeline may be implemented on hardware that is not 
controlled by the service provider , such as network devices 
or the client device . 
[ 0054 ] At step 256 , metadata corresponding to the content 
is updated . In some embodiments , the metadata is updated 
by each stage of the pipeline . The metadata can include 
identifier information that includes a frame number and / or a 
session identifier . In an embodiment , the metadata is updated 
by adding a time stamp to the metadata when the processing 
the content by each stage of the pipeline is complete . In other 
words , the time stamp can indicate a time corresponding to 
the completion of the processing by that stage in the pipe 
line , and the time stamp is generated and added to the 
metadata responsive to completion of the processing . 
[ 0055 ] In some embodiments , the first stage of the pipeline 
creates a data structure for the metadata with identifier 
information upon receipt of the content and updates the 
metadata to include a first time stamp upon completion of 
the processing of the content . In some embodiments , the first 
stage of the pipeline may also generate a time stamp that 
indicates a time when processing the content by the stage of 
the pipeline is commenced ( e.g. , when the content is 
received by the first stage of the pipeline ) . This initial time 
stamp can be used to identify a total time that the content 
was processed by the pipeline . 
[ 0056 ] In some embodiments , all stages of the pipeline on 
the server side of the pipeline are executed by a single server 
device , and transmitting the content and the metadata to the next stage of the pipeline is performed by transmitting a 
pointer to the content and / or metadata in a memory of the 
server device to a software module or process that imple 
ments the next stage . In other embodiments , each stage of 
the pipeline can be implemented by a different server device 
within a single data center or multiple data centers . In such 
embodiments , the content and / or metadata can be transmit 
ted from one server device to another server device over the 
network . 
[ 0057 ] At step 258 , the metadata received at a server 
device . In an embodiment , the metadata for each frame is 
transmitted by the client device back to the server device 
once the pipeline has completed the processing of the frame . 
In another embodiment , the metadata for multiple frames is 
collected and sent back to the server device at the termina 
tion of the session or after a threshold number of frames 
worth of metadata has been received by the client device . 
[ 0058 ] At step 260 , metrics are calculated based on the 
metadata . In an embodiment , the metrics can include a gain 
and / or a residual latency per stage of the pipeline , for each 
instance of content processed by the pipeline . For example , 
in some embodiments , the content comprises a plurality of 
frames streamed to the client device during a session . In 
such embodiments , the metrics can be calculated by : calcu 
lating , for each frame of the plurality of frames , a gain for 
each stage of the pipeline ; comparing , for each frame of the 
plurality of frames , a total residual latency to a first threshold 
value to identify anomalous frames ; and calculating , for 
each stage of the pipeline , an aggregate value by summing 
a number of anomalous frames in the plurality of frames 
where the gain corresponding to the stage in the anomalous 
frame is greater than a second threshold value . The metric 
for a particular stage is calculated based on the aggregate 
value for the particular stage . In an embodiment , the gain for 
a particular stage is calculated based on an expected frame 
duration and a difference between a time stamp correspond 

ing to the particular stage for the current frame and a time 
stamp corresponding to the particular stage for a previous 
frame . In some embodiments , the pipeline generates the 
plurality of frames in accordance with a variable frame rate , 
and the expected frame duration for calculating the gain is 
set in accordance with a target frame rate . In some embodi 
ments , the metric for a particular stage is calculated by 
multiplying a rate of the gain for the particular stage 
exceeding the second threshold value by a mean of the gain 
for the particular stage over a duration of the session , which 
can be referred to herein as a stutter duration per minute 
( SDPM ) metric . It will be appreciated that the given metrics 
selected for the pipeline can depend on the particular appli 
cation and the desired performance sought to be adjusted . 
[ 0059 ] At step 262 , a visual representation is generated 
based on the metrics . In an embodiment , the server device 
can implement a dashboard application that allows a client 
device to view the visual representation in an application 
such as a web browser application or a mobile application . 
The visual representation can quickly allow a developer to 
view the state of the pipeline and / or assess whether a 
particular session associated with a user experienced latency 
anomalies that could be indicative of poor performance of 
the pipeline stages . The metrics , calculated at a per - stage 
level of granularity and for each instance of the content 
processed by the pipeline ( e.g. , each frame ) allow for a 
particularly detailed view of the pipeline operation that 
enables a developer to pinpoint the particular stages that are 
responsible for the performance issues , enabling the devel 
oper to address the root cause of the problem . 
[ 0060 ] It will be appreciated that the method 250 is 
described above with time stamps being updated at the end 
of each stage . In some embodiments , where each stage 
includes one or more components , the method 250 can be 
extended such that the metadata is updated at the completion 
of each component to provide more fine - grained informa 
tion . 

[ 0061 ] It will be appreciated that the stages of the pipeline 
stack 100 and / or the steps of the method 200 or 250 are 
implemented by at least one of : one or more server devices , 
one or more network devices , and / or a client device . Each of 
a server device , a network device , and a client device 
includes at least a processor , a memory , and a network 
interface . The processor can include a conventional pro 
grammable processor such as a central processing unit . 
Alternatively , the processor can include a reduced instruc 
tion set computer ( RISC ) such as an ARM processor or a 
system on a chip ( SoC ) that includes one or more CPU cores 
and one or more GPU cores on a single integrated circuit or 
a plurality of integrated circuits included in a package on 
package ( POP ) device . In some embodiments , especially for 
stages tasked with performing frame rendering operations or 
other types of operations that can benefit from a parallel 
architecture such as single instruction , multiple data ( SIMD ) 
or single instruction , multiple thread ( SIMT ) processor 
architectures , the processor can include a parallel processing 
unit ( PPU ) or tensor processor . 
[ 0062 ] More illustrative information will now be set forth 
regarding various optional architectures and features with 
which the foregoing framework may be implemented , per 
the desires of the user . It should be strongly noted that the 
following information is set forth for illustrative purposes 
and should not be construed as limiting in any manner . Any a 
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of the following features may be optionally incorporated 
with or without the exclusion of other features described . 

Parallel Processing Architecture 
[ 0063 ] FIG . 3 illustrates a parallel processing unit ( PPU ) 
300 , in accordance with an embodiment . In an embodiment , 
the PPU 300 is a multi - threaded processor that is imple 
mented on one or more integrated circuit devices . The PPU 
300 is a latency hiding architecture designed to process 
many threads in parallel . A thread ( e.g. , a thread of execu 
tion ) is an instantiation of a set of instructions configured to 
be executed by the PPU 300. In an embodiment , the PPU 
300 is a graphics processing unit ( GPU ) configured to 
implement a graphics rendering pipeline for processing 
three - dimensional ( 3D ) graphics data in order to generate 
two - dimensional ( 2D ) image data for display on a display 
device such as a liquid crystal display ( LCD ) device . In 
other embodiments , the PPU 300 may be utilized for per 
forming general - purpose computations . While one exem 
plary parallel processor is provided herein for illustrative 
purposes , it should be strongly noted that such processor is 
set forth for illustrative purposes only , and that any proces 
sor may be employed to supplement and / or substitute for the 
same . 

I / O unit 305 may communicate with the host processor 
directly via the interconnect 302 or through one or more 
intermediate devices such as a memory bridge . In an 
embodiment , the I / O unit 305 may communicate with one or 
more other processors , such as one or more the PPUs 300 via 
the interconnect 302. In an embodiment , the I / O unit 305 
implements a Peripheral Component Interconnect Express 
( PCIe ) interface for communications over a PCIe bus and 
the interconnect 302 is a PCIe bus . In alternative embodi 
ments , the 1/0 unit 305 may implement other types of 
well - known interfaces for communicating with external 
devices . 
[ 0068 ] The I / O unit 305 decodes packets received via the 
interconnect 302. In an embodiment , the packets represent 
commands configured to cause the PPU 300 to perform 
various operations . The I / O unit 305 transmits the decoded 
commands to various other units of the PPU 300 as the 
commands may specify . For example , some commands may 
be transmitted to the front end unit 315. Other commands 
may be transmitted to the hub 330 or other units of the PPU 
300 such as one or more copy engines , a video encoder , a 
video decoder , a power management unit , etc. ( not explicitly 
shown ) . In other words , the I / O unit 305 is configured to 
route communications between and among the various logi 
cal units of the PPU 300 . 
[ 0069 ] In an embodiment , a program executed by the host 
processor encodes a command stream in a buffer that pro 
vides workloads to the PPU 300 for processing . A workload 
may comprise several instructions and data to be processed 
by those instructions . The buffer is a region in a memory that 
is accessible ( e.g. , read / write ) by both the host processor and 
the PPU 300. For example , the 1/0 unit 305 may be 
configured to access the buffer in a system memory con 
nected to the interconnect 302 via memory requests trans 
mitted over the interconnect 302. In an embodiment , the host 
processor writes the command stream to the buffer and then 
transmits a pointer to the start of the command stream to the 
PPU 300. The front end unit 315 receives pointers to one or 
more command streams . The front end unit 315 manages the 
one or more streams , reading commands from the streams 
and forwarding commands to the various units of the PPU 
300 . 
[ 0070 ] The front end unit 315 is coupled to a scheduler 
unit 320 that configures the various GPCs 350 to process 
tasks defined by the one or more streams . The scheduler unit 
320 is configured to track state information related to the 
various tasks managed by the scheduler unit 320. The state 
may indicate which GPC 350 a task is assigned to , whether 
the task is active or inactive , a priority level associated with 
the task , and so forth . The scheduler unit 320 manages the 
execution of a plurality of tasks on the one or more GPCs 
350 . 
[ 0071 ] The scheduler unit 320 is coupled to a work 
distribution unit 325 that is configured to dispatch tasks for 
execution on the GPCs 350. The work distribution unit 325 
may track a number of scheduled tasks received from the 
scheduler unit 320. In an embodiment , the work distribution 
unit 325 manages a pending task pool and an active task pool 
for each of the GPCs 350. The pending task pool may 
comprise a number of slots ( e.g. , 32 slots ) that contain tasks 
assigned to be processed by a particular GPC 350. The active 
task pool may comprise a number of slots ( e.g. , 4 slots ) for 
tasks that are actively being processed by the GPCs 350. As 
a GPC 350 finishes the execution of a task , that task is 

[ 0064 ] One or more PPUs 300 may be configured to 
accelerate thousands of High Performance Computing 
( HPC ) , data center , and machine learning applications . The 
PPU 300 may be configured to accelerate numerous deep 
learning systems and applications including autonomous 
vehicle platforms , deep learning , high - accuracy speech , 
image , and text recognition systems , intelligent video ana 
lytics , molecular simulations , drug discovery , disease diag 
nosis , weather forecasting , big data analytics , astronomy , 
molecular dynamics simulation , financial modeling , robot 
ics , factory automation , real - time language translation , 
online search optimizations , and personalized user recom 
mendations , and the like . 
[ 0065 ] As shown in FIG . 3 , the PPU 300 includes an 
Input / Output ( 1/0 ) unit 305 , a front end unit 315 , a scheduler 
unit a work distribution unit 325 , a hub 330 , a crossbar 
( Xbar ) 370 , one or more general processing clusters ( GPCs ) 
350 , and one or more memory partition units 380. The PPU 
300 may be connected to a host processor or other PPUs 300 
via one or more high - speed NVLink 310 interconnect . The 
PPU 300 may be connected to a host processor or other 
peripheral devices via an interconnect 302. The PPU 300 
may also be connected to a local memory 304 comprising a 
number of memory devices . In an embodiment , the local 
memory may comprise a number of dynamic random access 
memory ( DRAM ) devices . The DRAM devices may be 
configured as a high - bandwidth memory ( HBM ) subsystem , 
with multiple DRAM dies stacked within each device . 
[ 0066 ] The NVLink 310 interconnect enables systems to 
scale and include one or more PPUS 300 combined with one 
or more CPUs , supports cache coherence between the PPUS 
300 and CPUs , and CPU mastering . Data and / or commands 
may be transmitted by the NVLink 310 through the hub 330 
to / from other units of the PPU 300 such as one or more copy 
engines , a video encoder , a video decoder , a power man 
agement unit , etc. ( not explicitly shown ) . The NVLink 310 
is described in more detail in conjunction with FIG . 5B . 
[ 0067 ] The I / O unit 305 is configured to transmit and 
receive communications ( e.g. , commands , data , etc. ) from a 
host processor ( not shown ) over the interconnect 302. The 
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evicted from the active task pool for the GPC 350 and one 
of the other tasks from the pending task pool is selected and 
scheduled for execution on the GPC 350. If an active task 
has been idle on the GPC 350 , such as while waiting for a 
data dependency to be resolved , then the active task may be 
evicted from the GPC 350 and returned to the pending task 
pool while another task in the pending task pool is selected 
and scheduled for execution on the GPC 350 . 
[ 0072 ] The work distribution unit 325 communicates with 
the one or more GPCs 350 via XBar 370. The XBar 370 is 
an interconnect network that couples many of the units of the 
PPU 300 to other units of the PPU 300. For example , the 
XBar 370 may be configured to couple the work distribution 
unit 325 to a particular GPC 350. Although not shown 
explicitly , one or more other units of the PPU 300 may also 
be connected to the XBar 370 via the hub 330 . 
[ 0073 ] The tasks are managed by the scheduler unit 320 
and dispatched to a GPC 350 by the work distribution unit 
325. The GPC 350 is configured to process the task and 
generate results . The results may be consumed by other tasks 
within the GPC 350 , routed to a different GPC 350 via the 
XBar 370 , or stored in the memory 304. The results can be 
written to the memory 304 via the memory partition units 
380 , which implement a memory interface for reading and 
writing data to / from the memory 304. The results can be 
transmitted to another PPU 300 or CPU via the NVLink 310 . 
In an embodiment , the PPU 300 includes a number U of 
memory partition units 380 that is equal to the number of 
separate and distinct memory devices of the memory 304 
coupled to the PPU 300. A memory partition unit 380 will 
be described in more detail below in conjunction with FIG . 
4B . 

[ 0074 ] In an embodiment , a host processor executes a 
driver kernel that implements an application programming 
interface ( API ) that enables one or more applications execut 
ing on the host processor to schedule operations for execu 
tion on the PPU 300. In an embodiment , multiple compute 
applications are simultaneously executed by the PPU 300 
and the PPU 300 provides isolation , quality of service 
( QoS ) , and independent address spaces for the multiple 
compute applications . An application may generate instruc 
tions ( e.g. , API calls ) that cause the driver kernel to generate 
one or more tasks for execution by the PPU 300. The driver 
kernel outputs tasks to one or more streams being processed 
by the PPU 300. Each task may comprise one or more 
groups of related threads , referred to herein as a warp . In an 
embodiment , a warp comprises 32 related threads that may 
be executed in parallel . Cooperating threads may refer to a 
plurality of threads including instructions to perform the task 
and that may exchange data through shared memory . 
Threads and cooperating threads are described in more detail 
in conjunction with FIG . 5A . 
[ 0075 ] FIG . 4A illustrates a GPC 350 of the PPU 300 of 
FIG . 3 , in accordance with an embodiment . As shown in 
FIG . 4A , each GPC 350 includes a number of hardware units 
for processing tasks . In an embodiment , each GPC 350 
includes a pipeline manager 410 , a pre - raster operations unit 
( PROP ) 415 , a raster engine 425 , a work distribution cross 
bar ( WDX ) 480 , a memory management unit ( MMU ) 490 , 
and one or more Data Processing Clusters ( DPCs ) 420. It 
will be appreciated that the GPC 350 of FIG . 4A may include 
other hardware units in lieu of or in addition to the units 
shown in FIG . 4A . 

[ 0076 ] In an embodiment , the operation of the GPC 350 is 
controlled by the pipeline manager 410. The pipeline man 
ager 410 manages the configuration of the one or more DPCs 
420 for processing tasks allocated to the GPC 350. In an 
embodiment , the pipeline manager 410 may configure at 
least one of the one or more DPCs 420 to implement at least 
a portion of a graphics rendering pipeline . For example , a 
DPC 420 may be configured to execute a vertex shader 
program on the programmable streaming multiproce 
( SM ) 440. The pipeline manager 410 may also be configured 
to route packets received from the work distribution unit 325 
to the appropriate logical units within the GPC 350. For 
example , some packets may be routed to fixed function 
hardware units in the PROP 415 and / or raster engine 425 
while other packets may be routed to the DPCs 420 for 
processing by the primitive engine 435 or the SM 440. In an 
embodiment , the pipeline manager 410 may configure at 
least one of the one or more DPCs 420 to implement a neural 
network model and / or a computing pipeline . 
[ 0077 ] The PROP unit 415 is configured to route data 
generated by the raster engine 425 and the DPCs 420 to a 
Raster Operations ( ROP ) unit , described in more detail in 
conjunction with FIG . 4B . The PROP unit 415 may also be 
configured to perform optimizations for color blending , 
organize pixel data , perform address translations , and the 
like . 
[ 0078 ] The raster engine 425 includes a number of fixed 
function hardware units configured to perform various raster 
operations . In an embodiment , the raster engine 425 includes 
a setup engine , a coarse raster engine , a culling engine , a 
clipping engine , a fine raster engine , and a tile coalescing 
engine . The setup engine receives transformed vertices and 
generates plane equations associated with the geometric 
primitive defined by the vertices . The plane equations are 
transmitted to the coarse raster engine to generate coverage 
information ( e.g. , an x , y coverage mask for a tile ) for the 
primitive . The output of the coarse raster engine is trans 
mitted to the culling engine where fragments associated with 
the primitive that fail a z - test are culled , and transmitted to a clipping engine where fragments lying outside a viewing 
frustum are clipped . Those fragments that survive clipping 
and culling may be passed to the fine raster engine to 
generate attributes for the pixel fragments based on the plane 
equations generated by the setup engine . The output of the 
raster engine 425 comprises fragments to be processed , for 
example , by a fragment shader implemented within a DPC 
420 . 
[ 0079 ] Each DPC 420 included in the GPC 350 includes 
an M - Pipe Controller ( MPC ) 430 , a primitive engine 435 , 
and one or more SMS 440. The MPC 430 controls the 
operation of the DPC 420 , routing packets received from the 
pipeline manager 410 to the appropriate units in the DPC 
420. For example , packets associated with a vertex may be 
routed to the primitive engine 435 , which is configured to 
fetch vertex attributes associated with the vertex from the 
memory 304. In contrast , packets associated with a shader 
program may be transmitted to the SM 440 . 
[ 0080 ] The SM 440 comprises a programmable streaming 
processor that is configured to process tasks represented by 
a number of threads . Each SM 440 is multi - threaded and 
configured to execute a plurality of threads ( e.g. , 32 threads ) 
from a particular group of threads concurrently . In an 
embodiment , the SM 440 implements a SIMD ( Single 
Instruction , Multiple - Data ) architecture where each thread 
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in a group of threads ( e.g. , a warp ) is configured to process 
a different set of data based on the same set of instructions . 
All threads in the group of threads execute the same instruc 
tions . In another embodiment , the SM 440 implements a 
SIMT ( Single - Instruction , Multiple Thread ) architecture 
where each thread in a group of threads is configured to 
process a different set of data based on the same set of 
instructions , but where individual threads in the group of 
threads are allowed to diverge during execution . In an 
embodiment , a program counter , call stack , and execution 
state is maintained for each warp , enabling concurrency 
between warps and serial execution within warps when 
threads within the warp diverge . In another embodiment , a 
program counter , call stack , and execution state is main 
tained for each individual thread , enabling equal concur 
rency between all threads , within and between warps . When 
execution state is maintained for each individual thread , 
threads executing the same instructions may be converged 
and executed in parallel for maximum efficiency . The SM 
440 will be described in more detail below in conjunction 
with FIG . 5A . 
[ 0081 ] The MMU 490 provides an interface between the 
GPC 350 and the memory partition unit 380. The MMU 490 
may provide translation of virtual addresses into physical 
addresses , memory protection , and arbitration of memory 
requests . In an embodiment , the MMU 490 provides one or 
more translation lookaside buffers ( TLBs ) for performing 
translation of virtual addresses into physical addresses in the 
memory 304 . 

memory partition unit 380 supports a unified memory to 
provide a single unified virtual address space for CPU and 
PPU 300 memory , enabling data sharing between virtual 
memory systems . In an embodiment the frequency of 
accesses by a PPU 300 to memory located on other proces 
sors is traced to ensure that memory pages are moved to the 
physical memory of the PPU 300 that is accessing the pages 
more frequently . In an embodiment , the NVLink 310 sup 
ports address translation services allowing the PPU 300 to 
directly access a CPU's page tables and providing full 
access to CPU memory by the PPU 300 . 
[ 0086 ] In an embodiment , copy engines transfer data 
between multiple PPUs 300 or between PPUs 300 and 
CPUs . The copy engines can generate page faults for 
addresses that are not mapped into the page tables . The 
memory partition unit 380 can then service the page faults , 
mapping the addresses into the page table , after which the 
copy engine can perform the transfer . In a conventional 
system , memory is pinned ( e.g. , non - pageable ) for multiple 
copy engine operations between multiple processors , sub 
stantially reducing the available memory . With hardware 
page faulting , addresses can be passed to the copy engines 
without worrying if the memory pages are resident , and the 
copy process is transparent . 
[ 0087 ] Data from the memory 304 or other system 
memory may be fetched by the memory partition unit 380 
and stored in the L2 cache 460 , which is located on - chip and 
is shared between the various GPCs 350. As shown , each 
memory partition unit 380 includes a portion of the L2 cache 
460 associated with a corresponding memory 304. Lower 
level caches may then be implemented in various units 
within the GPCs 350. For example , each of the SMS 440 
may implement a level one ( L1 ) cache . The L1 cache is 
private memory that is dedicated to a particular SM 440 . 
Data from the L2 cache 460 may be fetched and stored in 
each of the L1 caches for processing in the functional units 
of the SMs 440. The L2 cache 460 is coupled to the memory 
interface 470 and the XBar 370 . 
[ 0088 ] The ROP unit 450 performs graphics raster opera 
tions related to pixel color , such as color compression , pixel 
blending , and the like . The ROP unit 450 also implements 
depth testing in conjunction with the raster engine 425 , 
receiving a depth for a sample location associated with a 
pixel fragment from the culling engine of the raster engine 
425. The depth is tested against a corresponding depth in a 
depth buffer for a sample location associated with the 
fragment . If the fragment passes the depth test for the sample 
location , then the ROP unit 450 updates the depth buffer and 
transmits a result of the depth test to the raster engine 425 . 
It will be appreciated that the number of memory partition 
units 380 may be different than the number of GPCs 350 
and , therefore , each ROP unit 450 may be coupled to each 
of the GPCs 350. The ROP unit 450 tracks packets received 
from the different GPCs 350 and determines which GPC 350 
that a result generated by the ROP unit 450 is routed to 
through the Xbar 370. Although the ROP unit 450 is 
included within the memory partition unit 380 in FIG . 4B , 
in other embodiment , the ROP unit 450 may be outside of 
the memory partition unit 380. For example , the ROP unit 
450 may reside in the GPC 350 or another unit . 
[ 0089 ] FIG . 5A illustrates the streaming multi - processor 
440 of FIG . 4A , in accordance with an embodiment . As 
shown in FIG . 5A , the SM 440 includes an instruction cache 
505 , one or more scheduler units 510 , a register file 520 , one 

[ 0082 ] FIG . 4B illustrates a memory partition unit 380 of 
the PPU 300 of FIG . 3 , in accordance with an embodiment . 
As shown in FIG . 4B , the memory partition unit 380 
includes a Raster Operations ( ROP ) unit 450 , a level two 
( L2 ) cache 460 , and a memory interface 470. The memory 
interface 470 is coupled to the memory 304. Memory 
interface 470 may implement 32 , 64 , 128 , 1024 - bit data 
buses , or the like , for high - speed data transfer . In an embodi 
ment , the PPU 300 incorporates U memory interfaces 470 , 
one memory interface 470 per pair of memory partition units 
380 , where each pair of memory partition units 380 is 
connected to a corresponding memory device of the memory 
304. For example , PPU 300 may be connected to up to Y 
memory devices , such as high bandwidth memory stacks or 
graphics double - data - rate , version 5 , synchronous dynamic 
random access memory , or other types of persistent storage . 
[ 0083 ] In an embodiment , the memory interface 470 
implements an HBM2 memory interface and Y equals half 
U. In an embodiment , the HBM2 memory stacks are located 
on the same physical package as the PPU 300 , providing 
substantial power and area savings compared with conven 
tional GDDR5 SDRAM systems . In an embodiment , each 
HBM2 stack includes four memory dies and Y equals 4 , with 
HBM2 stack including two 128 - bit channels per die for a 
total of 8 channels and a data bus width of 1024 bits . 
[ 0084 ] In an embodiment , the memory 304 supports 
Single - Error Correcting Double - Error Detecting ( SECDED ) 
Error Correction Code ( ECC ) to protect data . ECC provides 
higher reliability for compute applications that are sensitive 
to data corruption . Reliability is especially important in 
large - scale cluster computing environments where PPUS 
300 process very large datasets and / or run applications for 
extended periods . 
[ 0085 ] In an embodiment , the PPU 300 implements a 
multi - level memory hierarchy . In an embodiment , the 

2 
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The register file 520 provides temporary storage for oper 
ands connected to the data paths of the functional units . 
[ 0095 ] Each SM 440 comprises L processing cores 550. In 
an embodiment , the SM 440 includes a large number ( e.g. , 
128 , etc. ) of distinct processing cores 550. Each core 550 
may include a fully - pipelined , single - precision , double - pre 
cision , and / or mixed precision processing unit that includes 
a floating point arithmetic logic unit and an integer arith 
metic logic unit . In an embodiment , the floating point 
arithmetic logic units implement the IEEE 754-2008 stan 
dard for floating point arithmetic . In an embodiment , the 
cores 550 include 64 single - precision ( 32 - bit ) floating point 
cores , 64 integer cores , 32 double - precision ( 64 - bit ) floating 
point cores , and 8 tensor cores . 
[ 0096 ] Tensor cores configured to perform matrix opera 
tions , and , in an embodiment , one or more tensor cores are 
included in the cores 550. In particular , the tensor cores are 
configured to perform deep learning matrix arithmetic , such 
as convolution operations for neural network training and 
inferencing . In an embodiment , each tensor core operates on 
a 4x4 matrix and performs a matrix multiply and accumulate 
operation D = AxB + C , where A , B , C , and D are 4x4 matri 

of 

ces . 

or more processing cores 550 , one or more special function 
units ( SFUs ) 552 , one or more load / store units ( LSUS ) 554 , 
an interconnect network 580 , a shared memory / L1 cache 
570 . 
[ 0090 ] As described above , the work distribution unit 325 
dispatches tasks for execution on the GPCs 350 of the PPU 
300. The tasks are allocated to a particular DPC 420 within 
a GPC 350 and , if the task is associated with a shader 
program , the task may be allocated to an SM 440. The 
scheduler unit 510 receives the tasks from the work distri 
bution unit 325 and manages instruction scheduling for one 
or more thread blocks assigned to the SM 440. The scheduler 
unit 510 schedules thread blocks for execution as warps 
parallel threads , where each thread block is allocated at least 
one warp . In an embodiment , each warp executes 32 threads . 
The scheduler unit 510 may manage a plurality of different 
thread blocks , allocating the warps to the different thread 
blocks and then dispatching instructions from the plurality 
of different cooperative groups to the various functional 
units ( e.g. , cores 550 , SFUs 552 , and LSUs 554 ) during each 
clock cycle . 
[ 0091 ] Cooperative Groups is a programming model for 
organizing groups of communicating threads that allows 
developers to express the granularity at which threads are 
communicating , enabling the expression of richer , more 
efficient parallel decompositions . Cooperative launch APIs 
support synchronization amongst thread blocks for the 
execution of parallel algorithms . Conventional program 
ming models provide a single , simple construct for synchro 
nizing cooperating threads : a barrier across all threads of a 
thread block ( e.g. , the syncthreads ( ) function ) . However , 
programmers would often like to define groups of threads at 
smaller than thread block granularities and synchronize 
within the defined groups to enable greater performance , 
design flexibility , and software reuse in the form of collec 
tive group - wide function interfaces . 
[ 0092 ] Cooperative Groups enables programmers to 
define groups of threads explicitly at sub - block ( e.g. , as 
small as a single thread ) and multi - block granularities , and 
to perform collective operations such as synchronization on 
the threads in a cooperative group . The programming model 
supports clean composition across software boundaries , so 
that libraries and utility functions can synchronize safely 
within their local context without having to make assump 
tions about convergence . Cooperative Groups primitives 
enable new patterns of cooperative parallelism , including 
producer - consumer parallelism , opportunistic parallelism , 
and global synchronization across an entire grid of thread 
blocks . 
[ 0093 ] A dispatch unit 515 is configured to transmit 
instructions to one or more of the functional units . In the 
embodiment , the scheduler unit 510 includes two dispatch 
units 515 that enable two different instructions from the 
same warp to be dispatched during each clock cycle . In 
alternative embodiments , each scheduler unit 510 may 
include a single dispatch unit 515 or additional dispatch 
units 515 . 
[ 0094 ] Each SM 440 includes a register file 520 that 
provides a set of registers for the functional units of the SM 
440. In an embodiment , the register file 520 is divided 
between each of the functional units such that each func 
tional unit is allocated a dedicated portion of the register file 
520. In another embodiment , the register file 520 is divided 
between the different warps being executed by the SM 440 . 

[ 0097 ] In an embodiment , the matrix multiply inputs A 
and B are 16 - bit floating point matrices , while the accumu 
lation matrices C and D may be 16 - bit floating point or 
32 - bit floating point matrices . Tensor Cores operate on 
16 - bit floating point input data with 32 - bit floating point 
accumulation . The 16 - bit floating point multiply requires 64 
operations and results in a full precision product that is then 
accumulated using 32 - bit floating point addition with the 
other intermediate products for a 4x4x4 matrix multiply . In 
practice , Tensor Cores are used to perform much larger 
two - dimensional or higher dimensional matrix operations , 
built up from these smaller elements . An API , such as 
CUDA 9 C ++ API , exposes specialized matrix load , matrix 
multiply and accumulate , and matrix store operations to 
efficiently use Tensor Cores from a CUDA - C ++ program . At 
the CUDA level , the warp - level interface assumes 16x16 
size matrices spanning all 32 threads of the warp . 
[ 0098 ] Each SM 440 also comprises M SFUS 552 that 
perform special functions ( e.g. , attribute evaluation , recip 
rocal square root , and the like ) . In an embodiment , the SFUS 
552 may include a tree traversal unit configured to traverse 
a hierarchical tree data structure . In an embodiment , the 
SFUs 552 may include texture units configured to perform 
texture map filtering operations . In an embodiment , the 
texture units are configured to load texture maps ( e.g. , a 2D 
array of texels ) from the memory 304 and sample the texture 
maps to produce sampled texture values for use in shader 
programs executed by the SM 440. In an embodiment , the 
texture maps are stored in the shared memory / L1 cache 470 . 
The texture units implement texture operations such as 
filtering operations using mip - maps ( e.g. , texture maps of 
varying levels of detail ) . In an embodiment , each SM 340 
includes two texture units . 
[ 0099 ] Each SM 440 also comprises N LSUs 554 that 
implement load and store operations between the shared 
memory / L1 cache 570 and the register file 520. Each SM 
440 includes an interconnect network 580 that connects each 
of the functional units to the register file 520 and the LSU 
554 to the register file 520 , shared memory / L1 cache 570. In 
an embodiment , the interconnect network 580 is a crossbar 
that can be configured to connect any of the functional units 



US 2021/0377623 A1 Dec. 2 , 2021 
10 

Exemplary Computing System to any of the registers in the register file 520 and connect the 
LSUS 554 to the register file and memory locations in shared 
memory / L1 cache 570 . 
[ 0100 ] The shared memory / L1 cache 570 is an array of 
on - chip memory that allows for data storage and commu 
nication between the SM 440 and the primitive engine 435 
and between threads in the SM 440. In an embodiment , the 
shared memory / L1 cache 570 comprises 128 KB of storage 
capacity and is in the path from the SM 440 to the memory 
partition unit 380. The shared memory / L1 cache 570 can be 
used to cache reads and writes . One or more of the shared 
memory / L1 cache 570 , L2 cache 460 , and memory 304 are 
backing stores . 
[ 0101 ] Combining data cache and shared memory func 
tionality into a single memory block provides the best 
overall performance for both types of memory accesses . The 
capacity is usable as a cache by programs that do not use 
shared memory . For example , if shared memory is config 
ured to use half of the capacity , texture and load / store 
operations can use the remaining capacity . Integration 
within the shared memory / L1 cache 570 enables the shared 
memory / L1 cache 570 to function as a high - throughput 
conduit for streaming data while simultaneously providing 
high - bandwidth and low - latency access to frequently reused 
data . 

[ 0102 ] When configured for general purpose parallel com 
putation , a simpler configuration can be used compared with 
graphics processing . Specifically , the fixed function graphics 
processing units shown in FIG . 3 , are bypassed , creating a 
much simpler programming model . In the general purpose 
parallel computation configuration , the work distribution 
unit 325 assigns and distributes blocks of threads directly to 
the DPCs 420. The threads in a block execute the same 
program , using a unique thread ID in the calculation to 
ensure each thread generates unique results , using the SM 
440 to execute the program and perform calculations , shared 
memory / L1 cache 570 to communicate between threads , and 
the LSU 554 to read and write global memory through the 
shared memory / L1 cache 570 and the memory partition unit 
380. When configured for general purpose parallel compu 
tation , the SM 440 can also write commands that the 
scheduler unit 320 can use to launch new work on the DPCs 
420 . 

[ 0105 ] Systems with multiple GPUs and CPUs are used in 
a variety of industries as developers expose and leverage 
more parallelism in applications such as artificial intelli 
gence computing . High - performance GPU - accelerated sys 
tems with tens to many thousands of compute nodes are 
deployed in data centers , research facilities , and supercom 
puters to solve ever larger problems . As the number of 
processing devices within the high - performance systems 
increases , the communication and data transfer mechanisms 
need to scale to support the increased bandwidth . 
[ 0106 ] FIG . 5B is a conceptual diagram of a processing 
system 500 implemented using the PPU 300 of FIG . 3 , in 
accordance with an embodiment . The processing system 500 
includes a CPU 530 , switch 510 , and multiple PPUS 300 , 
and respective memories 304. The NVLink 310 provides 
high - speed communication links between each of the PPUS 
300. Although a particular number of NVLink 310 and 
interconnect 302 connections are illustrated in FIG . 5B , the 
number of connections to each PPU 300 and the CPU 530 
may vary . The switch 510 interfaces between the intercon 
nect 302 and the CPU 530. The PPUS 300 , memories 304 , 
and NVLinks 310 may be situated on a single semiconductor 
platform to form a parallel processing module 525. In an 
embodiment , the switch 510 supports two or more protocols 
to interface between various different connections and / or 
links . 

[ 0103 ] The PPU 300 may be included in a desktop com 
puter , a laptop computer , a tablet computer , servers , super 
computers , a smart - phone ( e.g. , a wireless , hand - held 
device ) , personal digital assistant ( PDA ) , a digital camera , a 
vehicle , a head mounted display , a hand - held electronic 
device , and the like . In an embodiment , the PPU 300 is 
embodied on a single semiconductor substrate . In another 
embodiment , the PPU 300 is included in a system - on - a - chip 
( SOC ) along with one or more other devices such as addi 
tional PPUs 300 , the memory 304 , a reduced instruction set 
computer ( RISC ) CPU , a memory management unit 
( MMU ) , a digital - to - analog converter ( DAC ) , and the like . 
[ 0104 ] In an embodiment , the PPU 300 may be included 
on a graphics card that includes one or more memory 
devices . The graphics card may be configured to interface 
with a PCIe slot on a motherboard of a desktop computer . In 
yet another embodiment , the PPU 300 may be an integrated 
graphics processing unit ( GPU ) or parallel processor 
included in the chipset of the motherboard . 

[ 0107 ] In another embodiment ( not shown ) , the NVLink 
310 provides one or more high - speed communication links 
between each of the PPUS 300 and the CPU 530 and the 
switch 510 interfaces between the interconnect 302 and each 
of the PPUS 300. The PPUS 300 , memories 304 , and 
interconnect 302 may be situated on a single semiconductor 
platform to form a parallel processing module 525. In yet 
another embodiment ( not shown ) , the interconnect 302 
provides one or more communication links between each of 
the PPUS 300 and the CPU 530 and the switch 510 interfaces 
between each of the PPUS 300 using the NVLink 310 to 
provide one or more high - speed communication links 
between the PPUS 300. In another embodiment ( not shown ) , 
the NVLink 310 provides one or more high - speed commu 
nication links between the PPUS 300 and the CPU 530 
through the switch 510. In yet another embodiment ( not 
shown ) , the interconnect 302 provides one or more commu 
nication links between each of the PPUS 300 directly . One 
or more of the NVLink 310 high - speed communication links 
may be implemented as a physical NVLink interconnect or 
either an on - chip or on - die interconnect using the same 
protocol as the NVLink 310 . 
[ 0108 ] In the context of the present description , a single 
semiconductor platform may refer to a sole unitary semi 
conductor - based integrated circuit fabricated on a die or 
chip . It should be noted that the term single semiconductor 
platform may also refer to multi - chip modules with 
increased connectivity which simulate on - chip operation 
and make substantial improvements over utilizing a conven 
tional bus implementation . Of course , the various circuits or 
devices may also be situated separately or in various com 
binations of semiconductor platforms per the desires of the 
user . Alternately , the parallel processing module 525 may be 
implemented as a circuit board substrate and each of the 
PPUs 300 and / or memories 304 may be packaged devices . 
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[ 0115 ) Computer programs , or computer control logic 
algorithms , may be stored in the main memory 540 and / or 
the secondary storage . Such computer programs , when 
executed , enable the system 565 to perform various func 
tions . The memory 540 , the storage , and / or any other storage 
are possible examples of computer - readable media . 
[ 0116 ] The architecture and / or functionality of the various 
previous figures may be implemented in the context of a 
general computer system , a circuit board system , a game 
console system dedicated for entertainment purposes , an 
application - specific system , and / or any other desired sys 
tem . For example , the system 565 may take the form of a 
desktop computer , a laptop computer , a tablet computer , 
servers , supercomputers , a smart - phone ( e.g. , a wireless , 
hand - held device ) , personal digital assistant ( PDA ) , a digital 
camera , a vehicle , a head mounted display , a hand - held 
electronic device , a mobile phone device , a television , 
workstation , game consoles , embedded system , and / or any 
other type of logic . 
[ 0117 ] While various embodiments have been described 
above , it should be understood that they have been presented 
by way of example only , and not limitation . Thus , the 
breadth and scope of a preferred embodiment should not be 
limited by any of the above - described exemplary embodi 
ments , but should be defined only in accordance with the 
following claims and their equivalents . 

In an embodiment , the CPU 530 , switch 510 , and the parallel 
processing module 525 are situated on a single semiconduc 
tor platform . 
[ 0109 ] In an embodiment , the signaling rate of each 
NVLink 310 is 20 to 25 Gigabits / second and each PPU 300 
includes six NVLink 310 interfaces ( as shown in FIG . 5B , 
five NVLink 310 interfaces are included for each PPU 300 ) . 
Each NVLink 310 provides a data transfer rate of 25 
Gigabytes / second in each direction , with six links providing 
300 Gigabytes / second . The NVLinks 310 can be used exclu 
sively for PPU - to - PPU communication as shown in FIG . 5B , 
or some combination of PPU - to - PPU and PPU - to - CPU , 
when the CPU 530 also includes one or more NVLink 310 
interfaces . 
[ 0110 ] In an embodiment , the NVLink 310 allows direct 
load / store / atomic access from the CPU 530 to each PPU's 
300 memory 304. In an embodiment , the NVLink 310 
supports coherency operations , allowing data read from the 
memories 304 to be stored in the cache hierarchy of the CPU 
530 , reducing cache access latency for the CPU 530. In an 
embodiment , the NVLink 310 includes support for Address 
Translation Services ( ATS ) , allowing the PPU 300 to 
directly access page tables within the CPU 530. One or more 
of the NVLinks 310 may also be configured to operate in a 
low - power mode . 
[ 0111 ] FIG . 5C illustrates an exemplary system 565 in 
which the various architecture and / or functionality of the 
various previous embodiments may be implemented . As 
shown , a system 565 is provided including at least one 
central processing unit 530 that is connected to a commu 
nication bus 575. The communication bus 575 may be 
implemented using any suitable protocol , such as PCI ( Pe 
ripheral Component Interconnect ) , PCI - Express , AGP ( Ac 
celerated Graphics Port ) , HyperTransport , or any other bus 
or point - to - point communication protocol ( s ) . The system 
565 also includes a main memory 540. Control logic ( soft 
ware ) and data are stored in the main memory 540 which 
may take the form of random access memory ( RAM ) . 
[ 0112 ] The system 565 also includes input devices 560 , 
the parallel processing system 525 , and display devices 545 , 
e.g. a conventional CRT ( cathode ray tube ) , LCD ( liquid 
crystal display ) , LED light emitting diode ) , plasma display 
or the like . User input may be received from the input 
devices 560 , e.g. , keyboard , mouse , touchpad , microphone , 
and the like . Each of the foregoing modules and / or devices 
may even be situated on a single semiconductor platform to 
form the system 565. Alternately , the various modules may 
also be situated separately or in various combinations of 
semiconductor platforms per the desires of the user . 
[ 0113 ] Further , the system 565 may be coupled to a 
network ( e.g. , a telecommunications network , local area 
network ( LAN ) , wireless network , wide area network 
( WAN ) such as the Internet , peer - to - peer network , cable 
network , or the like ) through a network interface 535 for 
communication purposes . 
[ 0114 ] The system 565 may also include a secondary 
storage ( not shown ) . The secondary storage 610 includes , 
for example , a hard disk drive and / or a removable storage 
drive , representing a floppy disk drive , a magnetic tape 
drive , a compact disk drive , digital versatile disk ( DVD ) 
drive , recording device , universal serial bus ( USB ) flash 
memory . The removable storage drive reads from and / or 
writes to a removable storage unit in a well - known manner . 

Graphics Processing Pipeline 

[ 0118 ] In an embodiment , the PPU 300 comprises a graph 
ics processing unit ( GPU ) . The PPU 300 is configured to 
receive commands that specify shader programs for process 
ing graphics data . Graphics data may be defined as a set of 
primitives such as points , lines , triangles , quads , triangle 
strips , and the like . Typically , a primitive includes data that 
specifies a number of vertices for the primitive ( e.g. , in a 
model - space coordinate system ) as well as attributes asso 
ciated with each vertex of the primitive . The PPU 300 can 
be configured to process the graphics primitives to generate 
a frame buffer ( e.g. , pixel data for each of the pixels of the 
display ) . 
[ 0119 ] An application writes model data for a scene ( e.g. , 
a collection of vertices and attributes ) to a memory such as 
a system memory or memory 304. The model data defines 
each of the objects that may be visible on a display . The 
application then makes an API call to the driver kernel that 
requests the model data to be rendered and displayed . The 
driver kernel reads the model data and writes commands to 
the one or more streams to perform operations to process the 
model data . The commands may reference different shader 
programs to be implemented on the SMS 440 of the PPU 300 
including one or more of a vertex shader , hull shader , 
domain shader , geometry shader , and a pixel shader . For 
example , one or more of the SMs 440 may be configured to 
execute a vertex shader program that processes a number of 
vertices defined by the model data . In an embodiment , the 
different SMs 440 may be configured to execute different 
shader programs concurrently . For example , a first subset of 
SMS 440 may be configured to execute a vertex shader 
program while a second subset of SMs 440 may be config 
ured to execute a pixel shader program . The first subset of 
SMS 440 processes vertex data to produce processed vertex 
data and writes the processed vertex data to the L2 cache 460 
and / or the memory 304. After the processed vertex data is 
rasterized ( e.g. , transformed from three - dimensional data a 
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into two - dimensional data in screen space ) to produce 
fragment data , the second subset of SMS 440 executes a 
pixel shader to produce processed fragment data , which is 
then blended with other processed fragment data and written 
to the frame buffer in memory 304. The vertex shader 
program and pixel shader program may execute concur 
rently , processing different data from the same scene in a 
pipelined fashion until all of the model data for the scene has 
been rendered to the frame buffer . Then , the contents of the 
frame buffer are transmitted to a display controller for 
display on a display device . 
[ 0120 ] FIG . 6 is a conceptual diagram of a graphics 
processing pipeline 600 implemented by the PPU 300 of 
FIG . 3 , in accordance with an embodiment . The graphics 
processing pipeline 600 is an abstract flow diagram of the 
processing steps implemented to generate 2D computer 
generated images from 3D geometry data . As is well - known , 
pipeline architectures may perform long latency operations 
more efficiently by splitting up the operation into a plurality 
of stages , where the output of each stage is coupled to the 
input of the next successive stage . Thus , the graphics pro 
cessing pipeline 600 receives input data 601 that is trans 
mitted from one stage to the next stage of the graphics 
processing pipeline 600 to generate output data 602. In an 
embodiment , the graphics processing pipeline 600 may 
represent a graphics processing pipeline defined by the 
OpenGL® API . As an option , the graphics processing pipe 
line 600 may be implemented in the context of the func 
tionality and architecture of the previous Figures and / or any 
subsequent Figure ( s ) . 
[ 0121 ] As shown in FIG . 6 , the graphics processing pipe 
line 600 comprises a pipeline architecture that includes a 
number of stages . The stages include , but are not limited to , 
a data assembly stage 610 , a vertex shading stage 620 , a 
primitive assembly stage 630 , a geometry shading stage 640 , 
a viewport scale , cull , and clip ( VSCC ) stage 650 , a raster 
ization stage 660 , a fragment shading stage 670 , and a raster 
operations stage 680. In an embodiment , the input data 601 
comprises commands that configure the processing units to 
implement the stages of the graphics processing pipeline 600 
and geometric primitives ( e.g. , points , lines , triangles , 
quads , triangle strips or fans , etc. ) to be processed by the 
stages . The output data 602 may comprise pixel data ( e.g. , 
color data ) that is copied into a frame buffer or other type of 
surface data structure in a memory . 
[ 0122 ] The data assembly stage 610 receives the input data 
601 that specifies vertex data for high - order surfaces , primi 
tives , or the like . The data assembly stage 610 collects the 
vertex data in a temporary storage or queue , such as by 
receiving a command from the host processor that includes 
a pointer to a buffer in memory and reading the vertex data 
from the buffer . The vertex data is then transmitted to the 
vertex shading stage 620 for processing . 
[ 0123 ] The vertex shading stage 620 processes vertex data 
by performing a set of operations ( e.g. , a vertex shader or a 
program ) once for each of the vertices . Vertices may be , e.g. , 
specified as a 4 - coordinate vector ( e.g. , < x , y , z , w > ) 
associated with one or more vertex attributes ( e.g. , color , 
texture coordinates , surface normal , etc. ) . The vertex shad 
ing stage 620 may manipulate individual vertex attributes 
such as position , color , texture coordinates , and the like . In 
other words , the vertex shading stage 620 performs opera 
tions on the vertex coordinates or other vertex attributes 
associated with a vertex . Such operations commonly includ 

ing lighting operations ( e.g. , modifying color attributes for 
a vertex ) and transformation operations ( e.g. , modifying the 
coordinate space for a vertex ) . For example , vertices may be 
specified using coordinates in an object - coordinate space , 
which are transformed by multiplying the coordinates by a 
matrix that translates the coordinates from the object - coor 
dinate space into a world space or a normalized - device 
coordinate ( NCD ) space . The vertex shading stage 620 
generates transformed vertex data that is transmitted to the 
primitive assembly stage 630 . 
[ 0124 ] The primitive assembly stage 630 collects vertices 
output by the vertex shading stage 620 and groups the 
vertices into geometric primitives for processing by the 
geometry shading stage 640. For example , the primitive 
assembly stage 630 may be configured to group every three 
consecutive vertices as a geometric primitive ( e.g. , a tri 
angle ) for transmission to the geometry shading stage 640 . 
In some embodiments , specific vertices may be reused for 
consecutive geometric primitives ( e.g. , two consecutive 
triangles in a triangle strip may share two vertices ) . The 
primitive assembly stage 630 transmits geometric primitives 
( e.g. , a collection of associated vertices ) to the geometry 
shading stage 640 . 
[ 0125 ] The geometry shading stage 640 processes geo 
metric primitives by performing a set of operations ( e.g. , a 
geometry shader or program ) on the geometric primitives . 
Tessellation operations may generate one or more geometric 
primitives from each geometric primitive . In other words , 
the geometry shading stage 640 may subdivide each geo 
metric primitive into a finer mesh of two or more geometric 
primitives for processing by the rest of the graphics pro 
cessing pipeline 600. The geometry shading stage 640 
transmits geometric primitives to the viewport SCC stage 
650 . 
[ 0126 ] In an embodiment , the graphics processing pipeline 
600 may operate within a streaming multiprocessor and the 
vertex shading stage 620 , the primitive assembly stage 630 , 
the geometry shading stage 640 , the fragment shading stage 
670 , and / or hardware / software associated therewith , may sequentially perform processing operations . Once the 
sequential processing operations are complete , in an 
embodiment , the viewport SCC stage 650 may utilize the 
data . In an embodiment , primitive data processed by one or 
more of the stages in the graphics processing pipeline 600 
may be written to a cache ( e.g. L1 cache , a vertex cache , 
etc. ) . In this case , in an embodiment , the viewport SCC stage 
650 may access the data in the cache . In an embodiment , the 
viewport SCC stage 650 and the rasterization stage 660 are 
implemented as fixed function circuitry . 
[ 0127 ] The viewport SCC stage 650 performs viewport 
scaling , culling , and clipping of the geometric primitives . 
Each surface being rendered to is associated with an abstract 
camera position . The camera position represents a location 
of a viewer looking at the scene and defines a viewing 
frustum that encloses the objects of the scene . The viewing 
frustum may include a viewing plane , a rear plane , and four 
clipping planes . Any geometric primitive entirely outside of 
the viewing frustum may be culled ( e.g. , discarded ) because 
the geometric primitive will not contribute to the final 
rendered scene . Any geometric primitive that is partially 
inside the viewing frustum and partially outside the viewing 
frustum may be clipped ( e.g. , transformed into a new 
geometric primitive that is enclosed within the viewing 
frustum . Furthermore , geometric primitives may each be 

a 
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scaled based on a depth of the viewing frustum . All poten 
tially visible geometric primitives are then transmitted to the 
rasterization stage 660 . 
[ 0128 ] The rasterization stage 660 converts the 3D geo 
metric primitives into 2D fragments ( e.g. capable of being 
utilized for display , etc. ) . The rasterization stage 660 may be 
configured to utilize the vertices of the geometric primitives 
to setup a set of plane equations from which various attri 
butes can be interpolated . The rasterization stage 660 may 
also compute a coverage mask for a plurality of pixels that 
indicates whether one or more sample locations for the pixel 
intercept the geometric primitive . In an embodiment , Z - test 
ing may also be performed to determine if the geometric 
primitive is occluded by other geometric primitives that 
have already been rasterized . The rasterization stage 660 
generates fragment data ( e.g. , interpolated vertex attributes 
associated with a particular sample location for each covered 
pixel ) that are transmitted to the fragment shading stage 670 . 
[ 0129 ] The fragment shading stage 670 processes frag 
ment data by performing a set of operations ( e.g. , a fragment 
shader or a program ) on each of the fragments . The fragment 
shading stage 670 may generate pixel data ( e.g. , color 
values ) for the fragment such as by performing lighting 
operations or sampling texture maps using interpolated 
texture coordinates for the fragment . The fragment shading 
stage 670 generates pixel data that is transmitted to the raster 
operations stage 680 . 
[ 0130 ] The raster operations stage 680 may perform vari 
ous operations on the pixel data such as performing alpha 
tests , stencil tests , and blending the pixel data with other 
pixel data corresponding to other fragments associated with 
the pixel . When the raster operations stage 680 has finished 
processing the pixel data ( e.g. , the output data 602 ) , the pixel 
data may be written to a render target such as a frame buffer , 
a color buffer , or the like . 
[ 0131 ] It will be appreciated that one or more additional 
stages may be included in the graphics processing pipeline 
600 in addition to or in lieu of one or more of the stages 
described above . Various implementations of the abstract 
graphics processing pipeline may implement different 
stages . Furthermore , one or more of the stages described 
above may be excluded from the graphics processing pipe 
line in some embodiments ( such as the geometry shading 
stage 640 ) . Other types of graphics processing pipelines are 
contemplated as being within the scope of the present 
disclosure . Furthermore , any of the stages of the graphics 
processing pipeline 600 may be implemented by one or 
more dedicated hardware units within a graphics processor 
such as PPU 300. Other stages of the graphics processing 
pipeline 600 may be implemented by programmable hard 
ware units such as the SM 440 of the PPU 300 . 
[ 0132 ] The graphics processing pipeline 600 may be 
implemented via an application executed by a host proces 
sor , such as a CPU . In an embodiment , a device driver may 
implement an application programming interface ( API ) that 
defines various functions that can be utilized by an appli 
cation in order to generate graphical data for display . The 
device driver is a software program that includes a plurality 
of instructions that control the operation of the PPU 300. The 
API provides an abstraction for a programmer that lets a 
programmer utilize specialized graphics hardware , such as 
the PPU 300 , to generate the graphical data without requir 
ing the programmer to utilize the specific instruction set for 
the PPU 300. The application may include an API call that 

is routed to the device driver for the PPU 300. The device 
driver interprets the API call and performs various opera 
tions to respond to the API call . In some instances , the 
device driver may perform operations by executing instruc 
tions on the CPU . In other instances , the device driver may 
perform operations , at least in part , by launching operations 
on the PPU 300 utilizing an input / output interface between 
the CPU and the PPU 300. In an embodiment , the device 
driver is configured to implement the graphics processing 
pipeline 600 utilizing the hardware of the PPU 300 . 
[ 0133 ] Various programs may be executed within the PPU 
300 in order to implement the various stages of the graphics 
processing pipeline 600. For example , the device driver may 
launch a kernel on the PPU 300 to perform the vertex 
shading stage 620 on one SM 440 ( or multiple SMS 440 ) . 
The device driver ( or the initial kernel executed by the PPU 
400 ) may also launch other kernels on the PPU 400 to 
perform other stages of the graphics processing pipeline 
600 , such as the geometry shading stage 640 and the 
fragment shading stage 670. In addition , some of the stages 
of the graphics processing pipeline 600 may be implemented 
on fixed unit hardware such as a rasterizer or a data 
assembler implemented within the PPU 400. It will be 
appreciated that results from one kernel may be 
by one or more intervening fixed function hardware units 
before being processed by a subsequent kernel on an SM 
440 . 
[ 0134 ] Images generated applying one or more of the 
techniques disclosed herein may be displayed on a monitor 
or other display device . In some embodiments , the display 
device may be coupled directly to the system or processor 
generating or rendering the images . In other embodiments , 
the display device may be coupled indirectly to the system 
or processor such as via a network . Examples of such 
networks include the Internet , mobile telecommunications 
networks , a WIFI network , as well as any other wired and / or 
wireless networking system . When the display device is 
indirectly coupled , the images generated by the system or 
processor may be streamed over the network to the display 
device . Such streaming allows , for example , video games or 
other applications , which render images , to be executed on 
a server or in a data center and the rendered images to be 
transmitted and displayed on one or more user devices ( such 
as a computer , video game console , smartphone , other 
mobile device , etc. ) that are physically separate from the 
server or data center . Hence , the techniques disclosed herein 
can be applied to enhance the images that are streamed and 
to enhance services that stream images such as NVIDIA 
GeForce Now ( GFN ) , Google Stadia , and the like . 

a 

Rendering Via Ray - Tracing 
[ 0135 ] Although rendering tasks are commonly imple 
mented using raster - based rendering techniques , some algo 
rithms for performing rendering utilize light transport simu 
lation referred to as ray - tracing . Ray - tracing algorithms 
simulate the interaction of light with virtual objects in a 
scene in order to calculate colors for pixels of an image . 
Rays are cast into the scene for each pixel of the image as 
defined by a viewport and a virtual camera position . Effects 
such as diffuse and specular reflection , refraction , absorp 
tion , and the like can be simulated at each interaction of a ray 
with a virtual object by casting new rays from the intersec 
tion point of the ray with the virtual object . As a ray interacts 
with a light source , the light path from the virtual camera to 
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the light source can be traced to determine a color of light 
passing through the pixel corresponding to ray . An aggregate 
color from a plurality of rays passing through the pixel can 
be calculated to generate a color for the pixel of the image . 
[ 0136 ] In some embodiments , the PPU 300 can be utilized 
to render an image in accordance with various ray - tracing 
techniques . For example , ray casting can be implemented for 
a number of rays in parallel by executing a plurality of 
threads on one or more SMs 440. Each thread compares the 
parameters for a ray to a representation of the virtual objects 
in the scene to determine whether the ray intersects a virtual 
object . In some embodiments , the representation of the 
virtual objects comprises a bounding volume hierarchy , 
which is used to efficiently determine whether a ray inter 
sects with any virtual objects in the scene . Rays determined 
to intersect a virtual object can generate one or more new 
rays corresponding to a second plurality of threads executed 
by the SMs 440 in order to simulate lighting effects . When 
a ray intersects a light source , then the chain of rays from the 
virtual camera to the light source is identified as a light path , 
and the color of the pixel can be calculated for the light path . 
[ 0137 ] Ray - tracing algorithms can be used to produce 
realistic computer - generated images . Such algorithms have 
been utilized for producing animated feature films or tele 
vision programs , simulated images for commercial applica 
tions ( e.g. , images included in brochures or catalogs ) , and 
the like . Although ray - tracing was traditionally too complex 
for real - time applications , advancements in processing 
capacity and the underlying algorithms has made real - time 
ray - tracing practical in some applications . 

breaks down an input image of an automobile into various 
sections and looks for basic patterns such as lines and 
angles . The second layer assembles the lines to look for 
higher level patterns such as wheels , windshields , and 
mirrors . The next layer identifies the type of vehicle , and the 
final few layers generate a label for the input image , iden 
tifying the model of a specific automobile brand . 
[ 0141 ] Once the DNN is trained , the DNN can be 
deployed and used to identify and classify objects or patterns 
in a process known as inference . Examples of inference ( the 
process through which a DNN extracts useful information 
from a given input ) include identifying handwritten numbers 
on checks deposited into ATM machines , identifying images 
of friends in photos , delivering movie recommendations to 
over fifty million users , identifying and classifying different 
types of automobiles , pedestrians , and road hazards in 
driverless cars , or translating human speech in real - time . 
[ 0142 ] During training , data flows through the DNN in a 
forward propagation phase until a prediction is produced 
that indicates a label corresponding to the input . If the neural 
network does not correctly label the input , then errors 
between the correct label and the predicted label are ana 
lyzed , and the weights are adjusted for each feature during 
a backward propagation phase until the DNN correctly 
labels the input and other inputs in a training dataset . 
Training complex neural networks requires massive 
amounts of parallel computing performance , including float 
ing - point multiplications and additions that are supported by 
the PPU 300. Inferencing is less compute - intensive than 
training , being a latency - sensitive process where a trained 
neural network is applied to new inputs it has not seen before 
to classify images , translate speech , and generally infer new 
information . 
[ 0143 ] Neural networks rely heavily on matrix math 
operations , and complex multi - layered networks require 
tremendous amounts of floating - point performance and 
bandwidth for both efficiency and speed . With thousands of 
processing cores , optimized for matrix math operations , and 
delivering tens to hundreds of TFLOPS of performance , the 
PPU 300 is a computing platform capable of delivering 
performance required for deep neural network - based artifi 
cial intelligence and machine learning applications . 

Machine Learning 
[ 0138 ] Deep neural networks ( DNNs ) developed on pro 
cessors , such as the PPU 300 have been used for diverse use 
cases , from self - driving cars to faster drug development , 
from automatic image captioning in online image databases 
to smart real - time language translation in video chat appli 
cations . Deep learning is a technique that models the neural 
learning process of the human brain , continually learning , 
continually getting smarter , and delivering more acc 
results more quickly over time . A child is initially taught by 
an adult to correctly identify and classify various shapes , 
eventually being able to identify shapes without any coach 
ing . Similarly , a deep learning or neural learning system 
needs to be trained in object recognition and classification 
for it get smarter and more efficient at identifying basic 
objects , occluded objects , etc. , while also assigning context 
to objects . 
[ 0139 ] At the simplest level , neurons in the human brain 
look at various inputs that are received , importance levels 
are assigned to each of these inputs , and output is passed on 
to other neurons to act upon . An artificial neuron or percep 
tron is the most basic model of a neural network . In one 
example , a perceptron may receive one or more inputs that 
represent various features of an object that the perceptron is 
being trained to recognize and classify , and each of these 
features is assigned a certain weight based on the importance 
of that feature in defining the shape of an object . 
[ 0140 ] A deep neural network ( DNN ) model includes 
multiple layers of many connected nodes ( e.g. , perceptrons , 
Boltzmann machines , radial basis functions , convolutional 
layers , etc. ) that can be trained with enormous amounts of 
input data to quickly solve complex problems with high 
accuracy . In one example , a first layer of the DNN model 

Detecting Latency Anomalies in the Pipeline 
[ 0144 ] FIG . 7 illustrates ideal latency in a pipeline of a 
cloud - based service , in accordance with some embodiments . 
As depicted in FIG . 7 , a server device 710 processes content 
and transmits the content via the network 720 to a client 
device 730. There may be 5 ms of latency between starting 
the processing of the content on the server device 710 and 
transmitting the content via the network 720 to the client 
device 730. There may also be 5 ms of latency between 
receiving the content at the client device 730 and completing 
the processing of the content at the client device 730 ( e.g. , 
display of the frame ) . It will be appreciated that FIG . 7 is 
simplified for illustrative purposes . For example , there will 
also be some latency associated with the transmission over 
the network 720. Given that FIG . 7 illustrates the ideal 
latency in the pipeline , we can assume that such latency is 
constant and small due to , e.g. , a small number of hops in the 
network 720 and perfect connectivity ( i.e. , no network 
congestion , 100 % delivery rate of packets , etc. ) . 
[ 0145 ] Each frame is processed by the server device 710 
every 16.6 ms , corresponding to a 60 Hz frame rate . Each 
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of the pipelined stack 100 and / or each component of each 
stage of the pipelined stack 100 . 
[ 0150 ] In an embodiment , the monitor 950 is configured to 
analyze the metadata 904 to extract information that is 
useful for debugging . First , the time stamps corresponding 
to each frame can be used to identify the elapsed time for 
processing the content 902 within each stage ( or component 
of each stage ) to identify the stages or components of the 
pipelined stack 100 that are the predominant drivers of 
latency . Developers can use this information to streamline 
the pipeline by looking for efficiency improvements in the 
code . For example , if a particular encoding scheme is taking 
too long to process , then alternative encoding schemes can 
be explored to attempt to speed up the overall latency of the 
pipelined stack 100 . 
[ 0151 ] Second , a new statistical measure referred to as 
per - stage gain can be calculated by comparing timestamps 
temporally ( e.g. , from one frame to the next ) . The variability 
in latency can be referred to as a residual latency for a stage . 
In one embodiment , a residual VALUE R ; for stage i and 
frame number n can be calculated as follows : 

R ; ( n ) = TS , ( n ) -TS : ( n - 1 ) -Dexp ( Eq . 1 ) 

where TS ( n ) is the time stamp for the nth frame added to the 
metadata 904 by the ith stage of the pipelined stack 100 , 
TS , ( n - 1 ) is the time stamp for the previous frame , and D 
is the expected frame delta ( e.g. , 16.6 ms for 60 Hz ) . The 
gain G ; for a given stage can be either positive or negative 
and reflects a frame over frame deviation from an expected 
frame duration . 

n 

exp 

a 

G. ( n ) = R , ( n ) ( Eq . 2 ) 

frame is also displayed at the client device 730 every 16.6 
ms . However , the time between when rendering of a frame 
is initiated at the server device 710 and displayed at the 
client device 730 is at least 10 ms . Even though there is 10 
ms of latency in the pipelined stack 100 of the cloud - based 
service , the frame rate at the client side 106 is consistent at 
one frame every 16.6 ms . Thus , the video is displayed at the 
intended frame rate of 60 Hz . 
[ 0146 ] FIG . 8 illustrates a stutter caused by latency vari 
ability of the cloud - based service , in accordance with some 
embodiments . As depicted in FIG . 8 , the first frame is 
delivered as expected 10 ms after the server device 710 
initiates processing . The second frame begins the rendering 
process 16.6 ms after the first frame on the server device 
710. However , the second frame experiences some latency 
in the network 720 that increases the latency to deliver the 
content to the client side from 5 ms to 10 ms , which 
increases the latency of the second frame by 5 ms . This 
increase in latency causes the second frame to be delayed , at 
the client side , which increases the time between the first 
frame and the second frame from an expected 16.6 ms to 
21.6 ms . In such cases where the second frame arrives later 
than the start of the next frame period , the client device 730 
can be configured to display the first frame twice . 
[ 0147 ] The third frame begins rendering at the server 
device 710 16.6 ms after the second frame . The third frame 
experiences the same latency as the first frame , e.g. , 10 ms 
and is delivered and ready to be displayed 11.6 ms after the 
second frame was ready to be displayed . The total time 
between display of the first frame and the third frame is 33.2 
ms , which corresponds to the start of the third frame period . 
Because both the second frame and the third frame are ready 
to be displayed , the client device 730 can be configured to 
discard the second frame and display the third frame . More 
specifically , the three frame periods correspond to display 
ing the first frame , displaying the first frame a second time , 
and displaying the third frame . The result is that a viewer 
experiences a stutter in the video stream at the client side 
106 . 

[ 0148 ] FIG . 9 illustrates a client - server architecture 900 
for monitoring the pipeline stack of a cloud - based service 
910 , in accordance with some embodiments . As depicted in 
FIG . 9 , a server device 710 is in communication with a client 
device 730 via a network 720. In an embodiment , both the 
server device 710 and the client device 730 include network 
interface controllers ( NIC ) that enable the client device 730 
to establish a connection with the server device 710. The 
client device 730 and / or the server device 710 can establish 
a tunnel through the network 720 for delivery of data packets 
that include content 902 and metadata 904 for the cloud 
based service 910 . 
[ 0149 ] In an embodiment , the cloud - based service 910 
includes one or more stages of a pipelined stack , such as 
pipelined stack 100. The client device 730 includes a client 
application 930 that includes one or more stages of the 
pipelined stack 100. The client device 730 is configured to 
transmit the metadata 904 for the content back to the server 
device 710. In one embodiment , the metadata 904 is sent 
with a feedback signal 906 ( e.g. , controller input , sensor 
data , etc. ) utilized to generate new content for the client 
device 730. The metadata 904 is received by a monitor 950 
that is configured to analyze end - to - end performance of the 
pipelined stack 100 as well as the performance of each stage 

G ; ( n ) = R ( n ) -Ri - 1 ( n ) ( Eq . 3 ) 
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where G , refers to the residual latency at the start of the 
pipeline ( e.g. , the difference from an expected delay between 
the start of processing the current frame and the previous 
frame ) , and G ; is the per - stage gain for the ith stage , which 
is computed as a difference between the residual latency for 
the current stage and the residual latency for the previous 
stage . 
[ 0152 ] The total residual latency for the pipeline , Rs , can 
be obtained either by a sum of the gains across all stages for 
that frame or the residual latency for the last stage of the 
pipelined stack 100 , given as follows : 

Rs ( n ) = XG ; ( n ) = TS24n ) -TSy ( n - 1 ) -Dexp , ( Eq . 4 ) 

where S equals the number of stages in the pipelined stack 
100. This allows for a direct understanding of how much 
each stage contributes to an increase in residual latency on 
the final stage . It will be appreciated that the per - stage gain 
can be positive or negative and indicates whether a given 
stage is increasing or decreasing the residual latency of the 
pipelined stack 100 . 
[ 0153 ] Table 1 , below , shows pseudocode for identifying 
stages that are a root cause of an anomaly such as stutter . The 
monitor 950 can execute instructions for identifying stages 
that are the root cause of the anomaly by executing software 
that implements the functionality of the pseudocode . 

TABLE 1 
== ExpectedFrameInterval [ n ] 1000.0 / FPS [ n ] 

For ( each stage in the pipeline ) { 
i : current stage number // i = { 1,2 , ... , S } 
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TABLE 1 - continued 

= 

n : current frame number 
Th 1 : 8.33 ms // Threshold for anomaly 
Th 2 : 4 ms // Threshold for a stage as source 
Delta [ i ] [ n ] = Timestamp [ i ] [ n ] - Timestamp [ i ] [ n - 1 ] 
Delta [ i - 1 ] [ n ] = Timestamp [ i - 1 ] [ n ] - Timestamp [ i - 1 ] [ n - 1 ] 
Residual [ i ] [ n ] = Delta [ i ] [ n ] - ExpectedFrameInterval [ n ] 
Residual [ i - 1 ] [ n ] = Delta [ i - 1 ] [ n ] - Expected Frame Interval [ n ] 
Gain [ 0 ] [ n ] = Residual [ 0 ] [ n ] 
Gain [ i ] [ n ] = Residual [ i ] [ n ] - Residual [ i - 1 ] [ n ] 

} 
For ( each Frame n ) { 

If ( Delta [ S ] [ n ] - Expected FrameInterval [ n ] > Th_1 ) 
Mark Frame as Anomaly 

} 
Count [ i ] = 0 
For ( each Frame n marked as Anomaly ) { 

For { each stage i in the pipeline ) { 
If ( Gain [ i ] [ n ] > Th_2 ) 

Count [ i ] ++ 
} 

} 
MeanGain [ i ] = 0 
For ( each Frame n ) { 

MeanGain [ i ] + = Gain [ i ] [ n ] 
} 
MeanGain [ i ] / = N // N is total frames per session 
SessionDuration = Timestamp [ 0 ] [ n ] -Timestamp [ 0 ] [ 0 ] 
CountsPerMinute [ i ] = Count [ i ] / SessionDuration 
Stutter DurationPerMinute [ i ] = CountsPerMinute * MeanGain [ i ] 

= 

= 

[ 0154 ] The monitor 950 identifies frames as anomalies 
when the total delta for time stamps corresponding to two 
sequential frames exceeds the expected frame period ( e.g. , 
Delta [ S ] [ n ] -ExpectedFrameInterval [ n ] ) by a first threshold 
value . It will be appreciated that the pseudocode in Table 1 
describes , for each stage in the pipeline , counting frames in 
which anomalies occur based on a comparison of the per 
stage gain for the frame with a second threshold value , 
which is less than the first threshold value . This identifies 
stages that could be a major contributing source of the total 
residual latency for a frame . Statistical measures of the 
operation of the pipeline are calculated including , a mean 
gain per stage , a counts per minute that indicates a rate that 
a stage is a major contributor to the latency , and stutter 
duration per minute which is a measure of the severity of the 
latency over time . Stutter duration per minute , and interme 
diate aggregates thereof , can help differentiate between 
stages with low frequency of occurrence but higher disrup 
tion ( larger latency delta ) and stages with higher frequency 
of occurrence but lower disruption ( smaller latency delta ) . 
[ 0155 ] In an embodiment , the thresholds can be set manu 
ally based on an analysis of the application . In another 
embodiment , the monitor 950 can be configured to adjust the 
gains automatically . For example , the monitor 950 can 
adjust the gains up or down to capture a desired amount of 
anomalies as a percentage of total frames in order to ensure 
that the anomaly is defined relative to the average operation 
of the pipeline rather than a specific threshold corresponding 
to a QoS requirement , for example . 
[ 0156 ] In an embodiment , the monitor 950 can implement 
a dashboard . The dashboard refers to an application that 
generates graphical user interfaces that can be transmitted to 
a client device . For example , the dashboard can refer to a 
number of web - based applications that can be accessed via 
a browser application of a client device . The monitor 950 
generates dynamic hypertext markup language ( HTML ) 
pages that are transmitted to the client device and viewed in 
the web browser application . The HTML page can include 

images ( e.g. , graphs or charts ) that show the results of the 
statistical information calculated by the monitor 950. For 
example , each frame marked as including an anomaly can be 
plotted in a chart , or each stage that has a gain above a 
threshold value can be plotted on a chart . The dashboard 
enables a developer to quickly identify issues in the pipe 
lined stack 100 of the cloud - based service . Various examples 
of the visualizations that can be generated by the monitor 
950 are discussed below . 
[ 0157 ] FIG . 10 is a flowchart of a method for analyzing the 
metadata , in accordance with some embodiments . The 
method 1000 is described in the context of software 
executed by one or more processors . In some embodiments , 
the method 1000 , at least in part , can be performed by 
instructions executed by a server device 710. In other 
embodiments , the method 1000 can be performed by hard 
ware or some combination of hardware and software . 
[ 0158 ] At step 1002 , metadata associated with a pipeline 
is received . In one embodiment , the metadata comprises 
information corresponding to a number of frames of video 
processed by the pipeline . The metadata can include , for 
each of a plurality of frames , a set of time stamps that 
indicate when each stage of the pipeline completed process 
ing of the frame . 
[ 0159 ] At step 1004 , a residual value is calculated for each 
stage of the pipeline . The residual latency value refers to a 
difference between a measured interval and an expected 
interval for a particular stage of the pipeline . The expected 
interval refers to an average rate that instances of the content 
are processed by the pipeline . In an embodiment , the 
residual latency values are calculated for each frame in a 
plurality of frames processed by the pipeline . 
[ 0160 ] At step 1006 , a gain is calculated for each stage of 
the pipeline . The gain refers to a difference in the residual 
latency value for a stage in the pipeline and the residual 
latency value for a previous stage in the pipeline , for the 
current instance of the content . In an embodiment , the gains 
are calculated for each frame in the plurality of frames 
processed by the pipeline . 
[ 0161 ] At step 1008 , anomalies are identified based on a 
comparison of a total residual latency with a threshold value . 
In an embodiment , an anomaly is identified for a current 
frame based on a comparison of the total residual latency for 
the frame to a threshold value . In an embodiment , the total 
residual latency for a current frame refers to a difference 
between time stamps for a last stage in the pipeline between 
the current frame and a previous frame . 
[ 0162 ] At step 1010 , a number of anomalies are counted 
where the gain is above a threshold value . In an embodi 
ment , a counter for each stage of the pipeline is initialized . 
For each frame identified as having an anomaly , the counter 
for a particular stage is incremented if the gain for the 
particular stage is above a threshold value . 
[ 0163 ] At step 1012 , a metric value is calculated for each 
stage of the pipeline . The metric value can be calculated by 
multiplying a rate of the gain exceeding the threshold by a 
mean gain for the stage . In an embodiment , the mean gain 
refers to summing all of the gains for a stage for each of N 
frames and then dividing by N. The rate of the gain exceed 
ing the threshold is equal to the value of the counter for the 
stage divided by a duration of the session for the N frames . 
[ 0164 ] FIG . 11 illustrates a visualization 1100 of the 
per - stage gain during a session , in accordance with some 
embodiments . As depicted in FIG . 11 , the per - stage gain is 
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plotted for approximately 900 frames collected during a 
session . At 60 frames per second , this accounts for a session 
of approximately 15 seconds . The chart in FIG . 11 illustrates 
the gain for an encoder stage . Although the visualization 
1100 only includes a plot of the per - stage gain for a single 
stage of the pipeline , the same chart can be used to plot the 
gain for multiple stages , with the line for each stage being 
differentiated by color or line type ( e.g. , dashed , center line , 
etc. ) . This visualization makes it easy to determine that an 
encoder stage of the pipeline is experiencing high latency 
variability 
[ 0165 ] FIG . 12 illustrates a visualization 1200 of the 
per - stage residual latency during a session , in accordance 
with some embodiments . The residual latency is plotted for 
a single stage of the pipeline . However , in other embodi 
ments , the residual latency can be plotted for multiple stages 
on a single chart , with the line for each stage being differ 
entiated by color or line type . As depicted in FIG . 12 , the 
residual latency for a presentation complete stage ( e.g. , the 
final stage in the pipeline ) peaks multiple times between 
approximately frames 500 and 750. Of course , it will be 
appreciated that residual latencies for other stages of the 
pipeline can be plotting in the chart in addition to or in lieu 
of the presentation complete stage . 
[ 0166 ] In one embodiment , the developer can 
graphical user interface to select the stages of the pipeline to 
include in a particular visualization and the particular vari 
able ( e.g. , gain , residual latency , etc. ) to plot on the graph or 
chart . This enables the developer to focus on a small number 
of stages rather than see the cumulative total latency asso 
ciated with the entire pipeline . In some embodiments , the 
stages included in the chart will be selected automatically . 
For example , the stage with the maximum absolute value of 
the selected parameter for any frame in the session will be 
included in the chart as well as any other stages of the 
pipeline having a similar parameter above a specified mag 
nitude ( e.g. , 20 % of the maximum absolute value ) . 
[ 0167 ] FIG . 13 illustrates a visualization 1300 of anoma 
lies detected in the pipelined stack , in accordance with some 
embodiments . The stages of the pipeline are listed on the 
y - axis of the graph and the frame numbers are plotted on the 
X - axis of the graph . The instances where the Count variable 
was incremented ( e.g. , where the per - stage gain for that 
frame is above a threshold value ) for a particular stage is 
indicated on the chart . The visualization 1300 indicates 
succinctly how many times each stage is identified as a 
major source of the latency . 
[ 0168 ] FIG . 14 illustrates a visualization 1400 of a session 
analysis chart , in accordance with some embodiments . Visu 
alizations 1100 , 1200 , and 1300 are all shown in graph 
formats . However , other information can be presented in the 
dashboard via a chart . The visualization 1400 includes a 
major stutter analysis ( where the threshold is set at 4 ms ) and 
a minor stutter analysis ( where the threshold is set at 2 ms ) . 
In other words , by running the analysis set forth in the 
pseudocode above multiple times using different parameters 
( e.g. , threshold values ) for each pass , different information 
can be gained and compared . For example , the parameter 
Th_2 can be set at 4 ms for a first pass to perform the major 
stutter analysis and set at 2 ms for a second pass to perform 
the minor stutter analysis . Such visualizations off insight to 
the developer . 
[ 0169 ] FIG . 15 illustrates a visualization 1500 of a sum 
mary of the session , in accordance with some embodiments . 

The visualization 1500 is a chart that lists the stages of the 
pipelined stack 100 and a classification of each stage ( e.g. , 
a classification { Bad , Poor , Okay , Good , Perfect } on a scale 
between 1 and 5 ) selected for the stage . In some embodi 
ments , the per - stage information related to per - frame gain or 
per - frame residual latency is not easily digestible at a glance . 
Therefore , in some embodiments , the dashboard may also 
provide a quick summary of a session to the developer that 
indicates the quality of the content stream during the session . 
The classifications of the stages on an easily digestible scale 
can provide a quick indicator of whether the developer 
should look into the detailed data for the session or move on 
to analysis of a different session . The visualization 1500 can 
also provide a quick indicator of which subset of stages are 
the likely source of the problems with a session . The 
classification can be determined using a formula based on 
the various metrics generated by the monitor 950 . 
[ 0170 ] The dashboard functionality described above is 
useful for subsequent analysis of the captured metadata 
related to a session . This allows a developer of the service 
to identify where bottlenecks in the pipeline are occurring 
and work to adjust algorithms in the code to solve those 
bottlenecks . 

[ 0171 ] In some embodiments , the metadata can be used to 
adjust the pipelined stack 100 in real - time . As the metadata 
is collected by the client device 730 , the metadata is trans 
mitted back to the server device 710 and processed by an 
algorithm that utilizes the metadata to adjust operating 
parameters of one or more stages of the pipelined stack 100 . 
For example , analysis of the metadata can indicate that the 
per - stage gain for the encoding stage is above a threshold 
value and , in response , one or more parameters of the 
encoding stage can be adjusted to attempt to correct the 
latency associated with the encoding stage . In some embodi 
ments , the type of encoder ( e.g. , codec ) used for encoding 
can be changed and / or particular parameters of the encoder 
can be changed . The result of changing these parameters 
might cause the bitrate of the encoded bit stream to increase 
( requiring more network bandwidth to transmit the bit 
stream ) , but the overall latency of the pipelined stack 100 
may decrease as the server - side encoding latency decreases 
and the client - side decoding latency increases , for example . 
[ 0172 ] As another example of adjusting parameters of the 
pipelined stack 100 automatically , the overall frame rate can 
be reduced from , e.g. , 60 Hz to 30 Hz during periods of high 
network congestion by only capturing every other frame 
generated by the application . For example , when the meta 
data indicates that the network stage is the source of most of 
the latency , steps to reduce the overall bandwidth of the 
content stream can be taken such as reducing the resolution 
or bit depth of the video frames , reducing the frame rate , 
improving encoding efficiency , etc. When the metadata 
indicates that the network stage is no longer the source of 
most of the latency ( e.g. , network congestion has improved ) , 
then the parameters can be adjusted , increasing the frame 
rate , resolution , or bit depth of the content as needed to 
ensure a particular QoS . 
[ 0173 ] Such dynamic adjustments to the pipeline stack 
100 can help the service to deliver the highest quality 
content that the latency of the network 720 and / or the client 
device 730 allow while maintaining a given QoS . Similarly , 
the server device 710 can adjust the stages to decrease the 
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quality of the content to try and improve speed on the server 
side 102 in order to reduce the overall latency of the 
pipeline . 
[ 0174 ] It will be appreciated that the techniques described 
above are not limited to streaming video games or VR / AR 
applications . Any content that requires a pipelined stack 
implemented in a client - server framework and requiring 
some type of client - side feedback is contemplated as being 
within the scope of the disclosure . One application where the 
techniques that are described above could be used is in 
training of or inference with deep learning models in , e.g. , 
autonomous vehicles or other applications . This invention 
can help identify the problem stages within such a pipeline 
with respect to the consistency of latency . 
[ 0175 ] For example , an application on a server can be 
designed to generate simulated video that represents simu 
lated images captured from a camera of an autonomous 
vehicle . The video frames can be delivered to a client device 
( e.g. , an autonomous vehicle or an autonomous vehicle 
simulator ) and used as input to a machine learning algorithm 
configured to generate control outputs for controlling the 
vehicle ( e.g. , steering inputs , throttle inputs , etc. ) . The 
control outputs generated by the machine learning algo 
rithms , which would normally be used to drive the vehicle , 
are transmitted back to the server device in order to update 
the application and generate the next frame of simulated 
video , which is sent back to the autonomous vehicle to help 
provide inputs to the machine learning algorithm at a next 
time step . This allows for testing of multiple simulated 
scenarios to determine how the machine learning algorithm 
reacts without putting real people or property in jeopardy on 
the roads . In fact , this type of simulated system can enable 
thousands of virtual vehicles to be tested at once without 
requiring all of the necessary hardware of thousands of 
automated vehicles to be built and introduced to real - world 
driving conditions . The embodiments disclosed herein can 
be used to study latency associated with the pipeline for 
generating the simulated images in response to inputs ( e.g. , 
sensor signals ) from the autonomous vehicle / simulator plat 
form and generating outputs by the machine learning algo 
rithm . In this case , the graphics pipeline for rendering 
images is located on the server - side of the pipeline , and the 
machine learning algorithm can be located on either the 
server - side or the client - side ( e.g. , in the autonomous 
vehicle ) of the pipeline . 
[ 0176 ] Furthermore , the solution of tracking stages in a 
pipeline using time stamps can be utilized in other applica 
tions that are not typically software - based . For example , a 
shipping company may track packages routed through a 
distribution network of the shipping company . An automated 
scanner can identify a package arriving at a stage of the 
distribution network and update metadata in a computer 
system associated with the stage . A time stamp can be added 
to the metadata when the package arrives at a stage of the 
distribution network and leaves the stage of the distribution 
network . The stages can include specific locations of the 
distribution network ( e.g. , processing centers , receiving cen 
ters , distribution hubs , delivery vehicles , and the destina 
tion ) . The delivery route of each package delivered to a 
particular address is a pipeline and multiple packages deliv 
ered through the same route are different instances of the 
metadata for the pipeline . A server device could collect the 
metadata for a particular delivery route for a large number 
of packages and measure the variable latency ( e.g. , change 

in transit times ) for each stage of the delivery route . The 
visualization of this information could help the shipping 
company make capital improvements in certain locations to 
help improve delivery speed . 
[ 0177 ] As yet another example , public transportation ( e.g. , 
trains , buses , etc. ) may follow specific routes and have many 
stops along a given route . An automated system could be 
installed in the vehicles to log time stamps at each stop , with 
the route between adjacent stops representing each stage in 
the pipeline . Arriving at a given stop adds a new time stamp 
to metadata for a particular transit of the route and , over a 
number of transits , enough metadata is collected to deter 
mine whether there are problems with certain locations 
along the route that are causing delays in the total transit 
time . An individual could use the dashboard to see where 
along the route the issues are occurring and possibly adjust 
the route to ensure faster transit times . 

[ 0178 ] It is noted that the techniques described herein may 
be embodied in executable instructions stored in a computer 
readable medium for use by or in connection with a pro 
cessor - based instruction execution machine , system , appa 
ratus , or device . It will be appreciated by those skilled in the 
art that , for some embodiments , various types of computer 
readable media can be included for storing data . As used 
herein , a " computer - readable medium ” includes one or more 
of any suitable media for storing the executable instructions 
of a computer program such that the instruction execution 
machine , system , apparatus , or device may read ( or fetch ) 
the instructions from the computer - readable medium and 
execute the instructions for carrying out the described 
embodiments . Suitable storage formats include one or more 
of an electronic , magnetic , optical , and electromagnetic 
format . A non - exhaustive list of conventional exemplary 
computer - readable medium includes : a portable computer 
diskette ; a random - access memory ( RAM ) ; a read - only 
memory ( ROM ) ; an erasable programmable read only 
memory ( EPROM ) ; a flash memory device ; and optical 
storage devices , including a portable compact disc ( CD ) , a 
portable digital video disc ( DVD ) , and the like . 
[ 0179 ] It should be understood that the arrangement of 
components illustrated in the attached Figures are for illus 
trative purposes and that other arrangements are possible . 
For example , one or more of the elements described herein 
may be realized , in whole or in part , as an electronic 
hardware component . Other elements may be implemented 
in software , hardware , or a combination of software and 
hardware . Moreover , some or all of these other elements 
may be combined , some may be omitted altogether , and 
additional components may be added while still achieving 
the functionality described herein . Thus , the subject matter 
described herein may be embodied in many different varia 
tions , and all such variations are contemplated to be within 
the scope of the claims . 
[ 0180 ] To facilitate an understanding of the subject matter 
described herein , many aspects are described in terms of 
sequences of actions . It will be recognized by those skilled 
in the art that the various actions may be performed by 
specialized circuits or circuitry , by program instructions 
being executed by one or more processors , or by a combi 
nation of both . The description herein of any sequence of 
actions is not intended to imply that the specific order 
described for performing that sequence must be followed . 
All methods described herein may be performed in any 
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particular stage for the current frame and a time stamp 
corresponding to the particular stage for a previous frame . 

4. The system of claim 3 , wherein the pipeline generates 
the plurality of frames in accordance with a variable frame 
rate , and wherein the expected frame duration is set in 
accordance with a target frame rate . 

5. The system of claim 2 , wherein the metric for a 
particular stage is calculated by multiplying a rate of the gain 
for the particular stage exceeding the second threshold value 
by a mean of the gain for the particular stage over a duration 
of the session . 

6. The system of claim 1 , wherein the content comprises 
a frame of video rendered in response to a feedback signal 
received from the client device . 

7. The system of claim 6 , wherein the frame of video is 
rendered in accordance with a ray - tracing algorithm . 

8. The system of claim 6 , wherein the feedback signal 
includes at least one signal selected from the group consist 
ing of : 

suitable order unless otherwise indicated herein or otherwise 
clearly contradicted by context . 
[ 0181 ] The use of the terms “ a ” and “ an ” and “ the ” and 
similar references in the context of describing the subject 
matter ( particularly in the context of the following claims ) 
are to be construed to cover both the singular and the plural , 
unless otherwise indicated herein or clearly contradicted by 
context . The use of the term “ at least one ” followed by a list 
of one or more items ( for example , “ at least one of A and B ” ) 
is to be construed to mean one item selected from the listed 
items ( A or B ) or any combination of two or more of the 
listed items ( A and B ) , unless otherwise indicated herein or 
clearly contradicted by context . Furthermore , the foregoing 
description is for the purpose of illustration only , and not for 
the purpose of limitation , as the scope of protection sought 
is defined by the claims as set forth hereinafter together with 
any equivalents thereof . The use of any and all examples , or 
exemplary language ( e.g. , " such as ” ) provided herein , is 
intended merely to better illustrate the subject matter and 
does not pose a limitation on the scope of the subject matter 
unless otherwise claimed . The use of the term “ based on " 
and other like phrases indicating a condition for bringing 
about a result , both in the claims and in the written descrip 
tion , is not intended to foreclose any other conditions that 
bring about that result . No language in the specification 
should be construed as indicating any non - claimed element 
as essential to the practice of the invention as claimed . 
What is claimed is : 
1. A system for monitoring latency variability in a pipe 

line , the system comprising : 
a server device including one or more processors config 

ured to : 
receive , from a client device , metadata corresponding 

to content processed by a plurality of stages of the 
pipeline , wherein the metadata includes information 
corresponding to each stage of the plurality of stages 
of the pipeline ; 

generate , for each stage of the plurality of stages of the 
pipeline , a metric calculated based on the metadata ; 
and 

adjust a parameter associated with at least one stage of 
the pipeline based on the metrics for the plurality of 
stages . 

2. The system of claim 1 , wherein the content comprises 
a plurality of frames streamed to the client device during a 
session , and wherein the one or more processors are further 
configured to : 

calculate , for each frame of the plurality of frames , a gain 
for each stage of the pipeline ; 

compare , for each frame of the plurality of frames , a total 
residual latency to a first threshold value to identify 
anomalous frames ; 

calculate , for each stage of the pipeline , an aggregate 
value by summing a number of anomalous frames in 
the plurality of frames where the gain corresponding to 
the stage in the anomalous frame is greater than a 
second threshold value ; and 

generate a visual representation based on the metrics , 
wherein the metric for a particular stage is calculated 
based on the aggregate value for the particular stage . 

3. The system of claim 2 , wherein the gain for a particular 
stage is calculated based on an expected frame duration and 
a difference between a time stamp corresponding to the 

controller input ; or 
sensor data from a head - mounted display . 
9. The system of claim 1 , wherein adjusting the parameter 

causes an encoding stage or a decoding stage of the pipeline 
to use a different encoding configuration or a different codec 
for encoding or decoding the content . 

10. The system of claim 1 , wherein the information 
corresponding to each stage of the pipeline comprises a time 
stamp that indicates a time when the processing of the 
content by the stage is complete . 

11. The system of claim 1 , wherein each stage includes 
one or more components and at least one stage includes a 
plurality of components , and wherein information corre 
sponding to a particular stage of the pipeline comprises a 
time stamp for each component of the particular stage that 
indicates a time when the processing of the content by the 
component is complete . 

12. The system of claim 1 , wherein the pipeline includes 
at least one stage selected from the group consisting of : a 
frame capture stage , an encoding stage , a forward error 
correction ( FEC ) stage , a transmit stage , a network stage , a 
decoding stage , a resynchronization stage , or a display stage . 

13. The system of claim 1 , wherein the client device is 
configured to train a neural network for an autonomous 
vehicle , and wherein the server device is operable to gen 
erate simulated camera signals , representative of camera 
signals captured by the autonomous vehicle , in response to 
control inputs received from the autonomous vehicle . 

14. A method , comprising : 
receiving , from a client device , metadata corresponding to 

content processed by a plurality of stages of a pipeline , 
wherein the metadata includes information correspond 
ing to each stage of the plurality of stages of the 
pipeline ; 

generating , for each stage of the plurality of stages of the 
pipeline , a metric calculated based on the metadata ; and 

adjusting a parameter associated with at least one stage of 
the pipeline based on the metrics for the plurality of 
stages . 

15. The method of claim 14 , wherein the content com 
prises a plurality of frames streamed to the client device 
during a session , the method further comprising : 

calculating , for each frame of the plurality of frames , a 
gain for each stage of the pipeline ; 
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comparing , for each frame of the plurality of frames , a 
total residual latency to a first threshold value to 
identify anomalous frames ; 

calculating , for each stage of the pipeline , an aggregate 
value by summing a number of anomalous frames in 
the plurality of frames where the gain corresponding to 
the stage in the anomalous frame is greater than a 
second threshold value ; and 

generating a visual representation based on the metrics , 
wherein the metric for a particular stage is calculated 
based on the aggregate value for the particular stage . 

16. The method of claim 15 , wherein the gain for a 
particular stage is calculated based on an expected frame 
duration and a difference between a time stamp correspond 
ing to the particular stage for the current frame and a time 
stamp corresponding to the particular stage for a previous 
frame 

17. The method of claim 15 , wherein the metric for a 
particular stage is calculated by multiplying a rate of the gain 
for the particular stage exceeding the second threshold value 
by a mean of the gain for the particular stage over a duration 
of the session . 

18. The method of claim 14 , wherein the content com 
prises a frame of video rendered in response to a feedback 

signal received from the client device , and wherein the 
feedback signal includes at least one signal selected from the 
group consisting of : 

controller input ; or 
sensor data from a head - mounted display . 
19. The method of claim 14 , wherein the information 

corresponding to each stage of the pipeline comprises a time 
stamp that indicates a time when the processing of the 
content by the stage is complete . 

20. A non - transitory computer - readable media storing 
computer instructions that , when executed by one or more 
processors , cause the one or more processors to perform 
steps comprising : 

receiving , from a client device , metadata corresponding to 
content processed by a plurality of stages of a pipeline , 
wherein the metadata includes information correspond 
ing to each stage of the plurality of stages of the 
pipeline ; 

generating , for each stage of the plurality of stages of the 
pipeline , a metric calculated based on the metadata ; and 

adjusting a parameter associated with at least one stage of 
the pipeline based on the metrics for the plurality of 
stages . 
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