
US 20210377623A1
MONT IN

(19) United States
(12) Patent Application Publication (10) Pub . No .: US 2021/0377623 A1

Larson et al . (43) Pub . Date : Dec. 2 , 2021

(54) DETECTING LATENCY ANOMALIES FROM
PIPELINE COMPONENTS IN CLOUD - BASED
SYSTEMS

(71) Applicant : NVIDIA Corporation , Santa Clara , CA
(US)

(72) Inventors : Alan Larson , Milpitas , CA (US) ; Bipin
Todur , Santa Clara , CA (US)

(21) Appl . No .: 16 / 886,192

(52) U.S. Cl .
CPC H04N 21/64738 (2013.01) ; H04N 21/235

(2013.01) ; H04N 21/239 (2013.01) ; H04N
21/8547 (2013.01)

(57) ABSTRACT
A method , computer readable medium , and system are
disclosed for monitoring a pipeline to detect anomalies such
as unusual latency associated with a particular stage . Each
stage of the pipeline is configured to update metadata
associated with content being processed by inserting a time
stamp into the metadata when processing of the content is
completed by the stage . The server device can collect the
metadata from the last stage of the pipeline and analyze the
metadata in order to generate metrics for the pipeline ,
including a residual latency and / or a gain for each stage of
the pipeline . In an embodiment , the content is a frame of
video to be displayed on a client device after being rendered
by a server device , such as through a streaming service (e.g. ,
a video game streaming service) . The server device can
adjust the pipeline based on the metrics to improve perfor

(22) Filed : May 28 , 2020

Publication Classification
(51) Int . Cl .

H04N 21/647 (2006.01)
HO4N 21/8547 (2006.01)
H04N 21/239 (2006.01)
H04N 21/235 (2006.01) mance .

100

Frame Capture
110

Encode
120

FEC
130

Transmit
140

Server Side 102

Network 104 Network
150

MA ALA ALA w A

Client Side 106

Decode
160

Display
170

Client Resync
180

Patent Application Publication Dec. 2 , 2021 Sheet 1 of 20 US 2021/0377623 A1

100

Frame Capture
110

Encode
120

FEC
130

Transmit
140

Server Side 102
1

Network 104 Network
150

NA

Client Side 106

Decode

Display
170

Client Resync
180

Fig . 1

Patent Application Publication Dec. 2 , 2021 Sheet 2 of 20 US 2021/0377623 A1

200

RECEIVE METADATA CORRESPONDING TO CONTENT
PROCESSED BY A PIPELINE

202

GENERATE A METRIC FOR EACH STAGE OF THE PIPELINE
CALCULATED BASED ON THE METADATA

204

ADJUST A PARAMETER ASSOCIATED WITH AT LEAST ONE
STAGE OF THE PIPELNE BASED ON THE METRICS

206

Fig . 24

Patent Application Publication Dec. 2 , 2021 Sheet 3 of 20 US 2021/0377623 A1

250

RECEIVE A FEEDBACK SIGNAL FROM A CLIENT DEVICE
252

PROCESS CONTENT BASED ON THE FEEDBACK SIGNAL
254

UPDATE METADATA CORRESPONDING TO THE CONTENT
256

RECEIVE THE METADATA FROM THE CLIENT DEVICE
258

CALCULATE METRICS BASED ON THE METADATA
260

GENERATE A VISUAL REPRESENTATION OF THE PIPELINE
STATE BASED ON THE METRICS

262

Fig . 2B

Patent Application Publication Dec. 2 , 2021 Sheet 4 of 20 US 2021/0377623 A1

302 PPU 300

VO Unit
305

Front End Unit
315 wwwwww

KE

Scheduler Unit
320

NVLink 310 Hub
330

w Work Distribution Unit
325

fuyupo

11
3

ww www

GPC
3500X)

WA
MU ZULU UD UUU XUU KALUL

XBar 370

Memory
3044

* o tom

Memory Partition Unit 380 (0)

0 . 19 * 14

W w w w w

L www . AK ***** M

L akce

Fig . 3

Patent Application Publication Dec. 2 , 2021 Sheet 5 of 20 US 2021/0377623 A1

To / From XBar 370

GPC 350

Pipeline Manager
410

PROP
415

MPC
430

Primitive
Engine
435 Raster Engine

425
SM
440

DPC 420/7)
+ + + + + + + + + + + +
WWW MWM ? A TARA

ht 11 ?? ? ?

w w M w w

WDX
480

MMU 490

To / From XBar 370 To / From XBar 370

Fig . 4A

Patent Application Publication Dec. 2 , 2021 Sheet 6 of 20 US 2021/0377623 A1

To / from
XBar 370

Memory Partition Unit
380

??????????

ROP 450

L2 Cache 460 To / From /
XBar 370

Memory Interface
470

To / From
Memory 304

Fig . 4B

Patent Application Publication Dec. 2 , 2021 Sheet 7 of 20 US 2021/0377623 A1

SM 440

Instruction Cache 505 w

Scheduler Unit 5100K)

Dispatch 515

w w w w w w w w W M w W

+ + + + + +

Register File 520

Core
550 (L - 1)

SFU
552 M - 1)

LSU
554 (N - 1)

M www w w w w w w ww w M w

Interconnect Network 580

Shared Memory / L1 Cache 570

To / from MMU 490

Fig . 54

Patent Application Publication Dec. 2 , 2021 Sheet 8 of 20 US 2021/0377623 A1

500

CPU 530

302

Switch 510

304 PPU 300 PPU 300 304

NVLink
310

304 PPU 300 PPU 300 304 ALAKKO AADHAARA

525

Fig . 5B

Patent Application Publication Dec. 2 , 2021 Sheet 9 of 20 US 2021/0377623 A1

565 Main
Memory
540

Network
Interface

535

Display
Devices
545

Input
Devices
560 CPU 530

???

A 302
575

Switch 510

304 PPU 300 PPU 300 304
NVLink
310

304 PPU 300 PPU 300 304 Yn ANYWY

525

Fig . 50

Patent Application Publication Dec. 2 , 2021 Sheet 10 of 20 US 2021/0377623 A1

600

Input Data
601

Data Assembly
610 Minnan

Vertex Shading
620

Primitive Assembly
630

Geometry Shading
640

Viewport SCC
650

Rasterization
660

Fragment Shading
670

Raster Operations
680

Output Data
602

Fig . 6

5 ms

5 ms

Server

Network 720

Frame 1

Client 730

Patent Application Publication

16.6 ms

16.6 ms

Network

Frame 2

Server 710

Client 730

OZZ

Dec. 2 , 2021 Sheet 11 of 20

16.6 ms

16.6 ms

Frame 3

Server 710

Network 720

Client 730

US 2021/0377623 A1

Fig . 7

5 ms

5 ms

5 ms

Server 710

Frame 1

Network 720

Client 730

Patent Application Publication

10 ms

16.6 ms

21.6 ms

Frame 2

Server 710

Network 720

Client 730

Dec. 2 , 2021 Sheet 12 of 20

16.6 ms

11.6 ms

Frame 3

Server 710

Network 720

Client 730

US 2021/0377623 A1

Fig . 8

Patent Application Publication Dec. 2 , 2021 Sheet 13 of 20 US 2021/0377623 A1

900 CLIO

Server Device 710

Service 910 Monitor 950

902/904
904 906

Network
720

0
904/906

App 930

Client Device 730 www

Fig .

Patent Application Publication Dec. 2 , 2021 Sheet 14 of 20 US 2021/0377623 A1

1000

RECEIVE METADATA FOR A SESSION
1002

CALCULATE , FOR EACH FRAME , A RESIDUAL VALUE FOR
EACH STAGE OF THE PIPELINE

1004 wwwwww

CALCULATE , FOR EACH FRAME , A GAIN FOR EACH STAGE
OF THE PIPELINE

1006 Winny

IDENTIFY ANOMALES BASED ON A COMPARISON OF THE
TOTAL RESIDUAL LATENCY TO A THRESHOLD VALUE

1008

COUNT , FOR EACH STAGE OF THE PIPELINE , A NUMBER
OF ANOMOLIES WHERE THE GAIN IS ABOVE A THESHOLD

VALUE

CALCULATE A METRIC VALUE FOR EACH STAGE BY
MULTIPLYING A RATE OF THE GAIN EXCEEDING THE
THRESHOLD BY A MEAN GAIN FOR THE STAGE

1012

Fig . 10

Patent Application Publication Dec. 2 , 2021 Sheet 15 of 20 US 2021/0377623 A1

1100
270 ?

8

Fig . 11

Gain 59000 3 AAKAKAKUU DOO

400

POC

002

09

G

3 24 10

Patent Application Publication Dec. 2 , 2021 Sheet 16 of 20 US 2021/0377623 A1

006 1200

2

3. ? : ????? 5.1 Residual latency
Fig . 12

??

? - ?

?????? .
. ? Z

1300

Patent Application Publication

Stream Index [0] : Pipeline Stutter Analysis : Root Cause

in - depth look into while

57233es CUST SEEDES on which transe .

Deesen complete RenderComplete

: .

SHARE Renderpresent x

**

!

Dec. 2 , 2021 Sheet 17 of 20

CaptureStart Capturelwut *

US 2021/0377623 A1

Fig . 13

Patent Application Publication Dec. 2 , 2021 Sheet 18 of 20 US 2021/0377623 A1

1400

Major Stutter Analysis
Gain 2 ms causing Centresem Soutters * ma

Forfremadradena

hranyosendQue

Randeryasen

Fig . 14A

Patent Application Publication Dec. 2 , 2021 Sheet 19 of 20 US 2021/0377623 A1

1400

Micro Stutter Analysis

WaitForframeGradend

AddFrameToSendQueue

FecencodeStar

236.25

Bendercompleta

Fig . 14B

1500

Patent Application Publication

28 ~ ??

? ? ?? ?

? ?

?

2 / 5 - Poor

Dec. 2. 2021 Sheet 20 of 20

…

RanderAndPresent 3/5 - Okay
? ? ? ? ? ?

? ,

US 2021 / 0377623A1

Fig . 15

US 2021/0377623 Al Dec. 2 , 2021
1

DETECTING LATENCY ANOMALIES FROM
PIPELINE COMPONENTS IN CLOUD - BASED

SYSTEMS

TECHNICAL FIELD

[0001] The present disclosure relates to data analytics .
More specifically , the embodiments set forth below describe
techniques for tracking and analyzing stages of a pipeline .

BACKGROUND

the feedback signals from the client side to the server side ,
performing processing on the server side to render video
content , and then delivering the video content to the client
side for display . If this latency is too long , then the user
experience will suffer . For example , a delay of more than
100 ms from a controller input to a visual stimulus related
to that input can be referred to as lag , and can be a significant
source of frustration for gamers . As another example , a
significant delay from a user turning their head to viewing
corresponding motion on a head - mounted display can cause
physiological reactions such as nausea in a VR / AR appli
cation .
[0005] Another issue with real - time video streaming ser
vices that rely on user inputs can be referred to as stuttering .
It can be difficult to ensure a consistent downlink bandwidth
using Internet Protocol (IP) packets transmitted over the
Internet . In addition , application conditions can change
leading to varying render times at the server . This can lead
to delay of certain frames . Normal display rates of 60-120
Hz at the client side require each new frame to arrive
consistently within 8.3-16.6 ms of the previous frame . If any
particular frame is delayed beyond the expected frame
duration , then the previous frame may be displayed again
and / or certain frames may be skipped when two frames
arrive before the next frame is displayed . This can cause
stuttering where the video appears to stall or skip forward ,
and motion in the video content may not be smooth . Basic
video streaming services can hide stuttering using a video
frame buffer , but real - time applications like game streaming
or VR / AR streaming cannot use these buffering techniques .
[0006] In order to debug issues with the pipelined stack of
the service , a service provider may utilize tools to visualize
information related to the various components that make up
the service . Conventionally , a client can report delays in the
display of frames , such as logging and returning a list of time
stamps for each frame received and displayed at the client
device . While this information can indicate that there is an
issue with the service , it is difficult or impossible to discern
from this information whether the issue is located at the
server side (e.g. , rendering or encoding) , within the network
during transmission (e.g. , network congestion or poor link
quality) , or located at the client side (e.g. , decoding and
display) . Therefore , new techniques or approaches for moni
toring the stages or components in a pipeline are needed .

[0002] Cloud - based services have been developed for a
variety of applications such as network storage , virtual
compute resources , and the like . Streaming services such as
Netflix® and Hulu offer a service that delivers video
content to a client device such as a television or tablet
computer . Streaming video offers certain challenges that
require a minimum quality of service (QoS) to ensure a
sufficient user experience . For example , low network band
width or high network congestion can cause video to be
delayed , leading to repeated buffering of the video at the
client side that prevents a seamless viewing experience .
While the service provider only has some basic tools for
dealing with these network issues , such as negotiating
exclusive use of network resources with ISPs , the service
provider has more control over the software components
executing on server devices located in their data centers . In
addition , some of these issues can be addressed at the client
side , such as by implementing a queue at the client that
stores received frames of video and delays playback until a
minimum amount of content has been received at the client
side . By buffering a number of frames in the queue , any
latency caused by a delay of the receipt for a small number
of frames can be effectively hidden from the viewer , allow
ing time for the server or network to catch up .
[0003] New cloud - based services are being developed for
streaming video games and / or virtual reality / augmented
reality systems . Traditionally , video game applications
required an application for the game to be executed on the
client side , where the rendering of frames for display was
performed by the client device , such as using a graphics
processing unit included in the client device . As games
improved in quality , the minimum hardware requirements of
the client device increased , which leads to obsolescence of
certain devices , or limits the ability of a game developer to
offer high - end graphics for fear that the minimum hardware
requirements will be met by too few devices on the market .
One solution is to move the rendering of the graphics from
the client side to a remote system hosted by the service
provider , enabling the service provider to provide the hard
ware required for rendering the video content , and then
deliver the rendered video content to the client side via a
network .
[0004] However , there are a number of issues with deliv
ering real - time content over a network that cannot be
addressed using the same techniques that are employed by
conventional streaming services . For example , unlike
streaming of video content , game content or VR / AR content
is rendered in response to feedback signals from the client
side . For example , inputs from a game controller determine
how objects or a viewpoint are adjusted for the next frame
of the video game . Inputs from sensors in a head - mounted
display are used to change the next frame of video in VR / AR
systems . There is necessarily some latency in transmitting

a

SUMMARY

a

a

[0007] A method , computer readable medium , and system
are disclosed for monitoring a pipeline for a cloud - based
service . The pipeline can include a number of stages , where
at least one stage is implemented on a server device of the
cloud - based service and at least one additional stage is
implemented on a client connected to the cloud - based ser
vice via a network .
[0008] In a first aspect of the present disclosure , a system
is described for monitoring latency variability in a pipeline
of a cloud - based service . The system includes a server
device including one or more processors . The server device
is configured to : receive , from a client device , metadata
corresponding to content processed by a plurality of stages
of the pipeline ; generate , for each stage of the plurality of
stages of the pipeline , a metric calculated based on the
metadata ; and adjust a parameter associated with at least one
stage of the pipeline based on the metrics for the plurality of

US 2021/0377623 A1 Dec. 2 , 2021
2

[0017] In another aspect of the present disclosure , a
method is disclosed for monitoring a pipeline . The method
includes the steps of : receiving , from a client device , meta
data corresponding to content processed by a plurality of
stages of a pipeline , generating , for each stage of the
plurality of stages of the pipeline , a metric calculated based
on the metadata ; and adjusting a parameter associated with
at least one stage of the pipeline based on the metrics for the
plurality of stages . The metadata includes information cor
responding to each stage of the plurality of stages of the
pipeline .
[0018] In yet another aspect of the present disclosure , a
non - transitory computer - readable media storing computer
instructions is disclosed . The instructions , when executed by
one or more processors , cause the one or more processors to
perform the steps comprising : receiving , from a client
device , metadata corresponding to content processed by a
plurality of stages of a pipeline , generating , for each stage of
the plurality of stages of the pipeline , a metric calculated
based on the metadata ; and adjusting a parameter associated
with at least one stage of the pipeline based on the metrics
for the plurality of stages . The metadata includes informa
tion corresponding to each stage of the plurality of stages of
the pipeline .

BRIEF DESCRIPTION OF THE DRAWINGS

stages . The metadata includes information corresponding to
each stage of the plurality of stages of the pipeline .
[0009] In some embodiments , the content comprises a
plurality of frames streamed to the client device during a
session . The one or more processors are further configured
to : calculate , for each frame of the plurality of frames , a gain
for each stage of the pipeline ; compare , for each frame of the
plurality of frames , a total residual latency to a first threshold
value to identify anomalous frames ; and calculate , for each
stage of the pipeline , an aggregate value by summing a
number of anomalous frames in the plurality of frames
where the gain corresponding to the stage in the anomalous
frame is greater than a second threshold value . The one or
more processors can further be configured to generate a
visual representation based on the metrics . The metric for a
particular stage is calculated based on the aggregate value
for the particular stage .
[0010] In an embodiment , the gain for a particular stage is
calculated based on an expected frame duration and a
difference between a time stamp corresponding to the par
ticular stage for the current frame and a time stamp corre
sponding to the particular stage for a previous frame . In an
embodiment , the pipeline generates the plurality of frames
in accordance with a variable frame rate , and the expected
frame duration is set in accordance with a target frame rate .
[0011] In an embodiment , the metric for a particular stage
is calculated by multiplying a rate of the gain for the
particular stage exceeding the second threshold value by a
mean of the gain for the particular stage over a duration of
the session .
[0012] In some embodiments , the content comprises a
frame of video rendered in response to a feedback signal
received from the client device . In an embodiment , the
frame of video is rendered in accordance with a ray - tracing
algorithm . In some embodiments , the feedback signal
includes at least one signal selected from the group consist
ing of : controller input ; or sensor data from a head - mounted
display .
[0013] In some embodiments , adjusting the parameter
causes an encoding stage or a decoding stage of the pipeline
to use a different encoding configuration or a different codec
for encoding or decoding the content .
[0014] In some embodiments , the information correspond
ing to each stage of the pipeline comprises a time stamp that
indicates a time when the processing of the content by the
stage is complete . In other embodiments , each stage includes
one or more components and at least one stage includes a
plurality of components . Information corresponding to a
particular stage of the pipeline comprises a time stamp for
each component of the particular stage that indicates a time
when the processing of the content by the component is
complete .
[0015] In some embodiments , the pipeline includes at least
one stage selected from the group consisting of : a frame
capture stage , an encoding stage , a forward error correction
(FEC) stage , a transmit stage , a network stage , a decoding
stage , a resynchronization stage , or a display stage .
[0016] In an embodiment , the client device is configured
to train a neural network for an autonomous vehicle . The
server device is operable to generate simulated camera
signals , representative of camera signals captured by the
autonomous vehicle , in response to control inputs received
from the autonomous vehicle .

a

[0019] FIG . 1 illustrates a pipelined stack for a cloud
based service , in accordance with some embodiments .
[0020] FIG . 2A illustrates a flowchart of a method for
detecting latency anomalies in a pipeline , in accordance with
some embodiments .
[0021] FIG . 2B illustrates a flowchart of a method for
monitoring a pipeline , in accordance with some embodi
ments .
[0022] FIG . 3 illustrates a parallel processing unit , in
accordance with an embodiment .
[0023] FIG . 4A illustrates a general processing cluster
within the parallel processing unit of FIG . 3 , in accordance
with an embodiment .
[0024] FIG . 4B illustrates a memory partition unit of the
parallel processing unit of FIG . 3 , in accordance with an
embodiment .
[0025] FIG . 5A illustrates the streaming multi - processor
of FIG . 4A , in accordance with an embodiment .
[0026] FIG . 5B is a conceptual diagram of a processing
system implemented using the PPU of FIG . 3 , in accordance
with an embodiment .
[0027] FIG . 5C illustrates an exemplary system in which
the various architecture and / or functionality of the various
previous embodiments may be implemented .
[0028] FIG . 6 is a conceptual diagram of a graphics
processing pipeline implemented by the PPU of FIG . 3 , in
accordance with an embodiment .
[0029] FIG . 7 illustrates ideal latency in a pipeline of a
cloud - based service , in accordance with some embodiments .
[0030] FIG . 8 illustrates a stutter caused by latency vari
ability of the cloud - based service , in accordance with some
embodiments .
[0031] FIG . 9 illustrates a client - server architecture for
monitoring the pipeline stack of a cloud - based service , in
accordance with some embodiments .
[0032] FIG . 10 is a flowchart of a method for analyzing the
metadata , in accordance with some embodiments .

a

US 2021/0377623 A1 Dec. 2 , 2021
3

[0033] FIG . 11 illustrates a visualization of the per - stage
gain during a session , in accordance with some embodi
ments .
[0034] FIG . 12 illustrates a visualization of the per - stage
residual latency during a session , in accordance with some
embodiments .
[0035] FIG . 13 illustrates a visualization of anomalies
detected in the pipelined stack , in accordance with some
embodiments .
[0036] FIG . 14 illustrates a visualization of a session
analysis chart , in accordance with some embodiments .
[0037] FIG . 15 illustrates a visualization of a summary of
the session , in accordance with some embodiments .

DETAILED DESCRIPTION

a

a

on one or more client devices , the stages including a
decoding stage 160 , a display stage 170 , and a client
resynchronization (resync) stage 180 .
[0042] It will be appreciated that the exemplary pipelined
stack 100 for a game streaming service is depicted in FIG .
1 for purposes of illustration of the various techniques
described herein . In other embodiments , the particular
arrangement of stages in the pipelined stack 100 can be
different , such as by including additional stages not shown
in FIG . 1 or omitting stages that are shown in FIG . 1. For
example , the FEC stage 130 may be omitted where FEC is
not implemented by the service . In addition , some imple
mentations may combine aspects of two or more stages into
a single stage (e.g. , FEC and transmit may be combined into
a single stage of the pipelined stack 100) .
[0043] Each stage shown in FIG . 1 can include one or
more components . For example , the encoding stage 120 can
include a queue component that asynchronously receives
frames from the frame capture stage 110 while a previous
frame is being encoded by an encoder component . The
encoding stage 120 can also include a send queue compo
nent that asynchronously receives encoded frames from the
encoder component and transmits the encoded frames to the
FEC stage 130 when the encoded frames are available and
the FEC stage 130 is ready . As will be discussed in more
detail , metadata for the content processed by the stages of
the pipelined stack 100 can be updated by each stage or ,
alternatively , by each component within the stage .
[0044] In an embodiment , the content includes one or
more frames and metadata is generated for each frame . As
used herein , a frame can refer to a data structure that encodes
image data for display on a display device . The frame can
include an array of pixel values , where each pixel value
includes one or more channels of color information . For
example , the pixel values can include a red channel , a blue
channel , and a green channel that indicates , via 8 or 10 bits ,
for example , a color of the pixel . Of course , in other
embodiments , the pixel values can be encoded in a different
format such as by encoding luminance and chrominance
information in separate channels . In some embodiments ,
each component or stage of the pipelined stack 100 can be
configured to update metadata corresponding to the pro
cessed frame by adding a time stamp to the metadata when
that stage / component has finished processing the frame . The
metadata is then forwarded to the next component / stage
along with the processed content .
[0045] At the end of the pipelined stack 100 , the client
device transmits the metadata back to the server device for
storage and / or analysis . In an embodiment , the metadata for
a frame returned to the server device comprises a plurality
of time stamps , each time stamp corresponding to a time that
indicates the completion of processing for the frame by a
particular stage or component of a stage . In some embodi
ments , the client device is configured to collect metadata for
a plurality of frames (e.g. , 60 seconds of video at 30-60
frames per second) in a data structure (e.g. , a file) before
transmitting the data structure to the server device . In such
embodiments , the server device collects files for a number of
sessions , each session amounting to , e.g. , a number of
seconds of video . It will be appreciated that the size of a
session can be adjusted to match a desired size of the
collected metadata , such as by collecting 30 minutes to 60
minutes worth of metadata in a session . In some embodi
ments , the client device collects the metadata in a circular

[0038] A pipeline for a cloud - based service is configured
to track processing of content within the pipeline by updat
ing metadata corresponding to the content . Each stage of the
pipeline can insert a time stamp into the metadata when
processing of the content is completed by the stage . The
client device , upon receiving the content and metadata , can
update the metadata for any stages of the pipeline that are
implemented by the client device and then transmit the
updated metadata back to the server device .
[0039] The server device can analyze the metadata from a
number of instances of the content in order to identify
residual latency and a gain for each stage of the pipeline for
each pass of an instance of the content . In an embodiment ,
the content is a frame of video to be displayed on the client
device after being rendered by the server device . The server
device can also implement a dashboard that generates visu
alization of the metadata or statistics derived from the
metadata . The visualization can be presented to a developer
via a client such as a web browser application . The devel
oper can use the information in the visualization to find and
debug issues and guide changes to the pipeline .
[0040] In some embodiments , the server device analyzes
the metadata and updates the parameters of the pipeline to
improve a Quality of Service delivered by the cloud - based
rvice . In an embodiment , the server vice can identify

stages of the pipeline associated with large residual latency
or gain and update a parameter of the stage to improve
performance of the stage . For example , the parameter can
cause the server device to utilize a different codec in an
encoding stage of the pipeline . This functionality enables the
pipeline to dynamically adjust to the latency in the pipeline .
[0041] FIG . 1 illustrates a pipelined stack 100 for a
cloud - based service , in accordance with some embodiments .
The cloud - based service is implemented as a pipelined stack
100 of a plurality of stages . Each stage includes one or more
components , and the output of one stage is received at the
input of a subsequent stage , with the exception of the last
stage . As depicted in FIG . 1 , a pipelined stack 100 for a
cloud - based , game streaming service includes a number of
stages . The server side 102 implements a number of stages
on one or more server devices , the stages including a frame
capture stage 110 , an encoding stage 120 , a forward error
correction (FEC) stage 130 , and a transmit stage 140. The
pipelined stack 100 also includes a network stage 150 that
encompasses the transmission of data packets over a net
work 104 from the server side 102 to the client side 106. The
network stage 150 is performed on one or more network
devices , such as network routers , switches , access points , or
the like . The client side 106 implements a number of stages

a

a

a

US 2021/0377623 A1 Dec. 2 , 2021
4

a

2

buffer such that the metadata collected for the session is only
the metadata for the last n frames in the session . For
example , a circular buffer having a size suitable for collect
ing 10 minutes of data at 60 frames per second (e.g. , 36,000
frames worth of metadata) can continuously collect meta
data during a session , overwriting the oldest metadata as the
session extends past 10 minutes in length . At the end of the
session (e.g. , when a game application is terminated) , the
client device can encode and transmit the contents of the
circular buffer to the server device . It will be appreciated
that , when a user experiences issues that degrade the user
experience , the session will likely be terminated early and ,
as such , the last m minutes of a session (corresponding to n
frames) are usually sufficient to highlight the cause of the
issue that degraded the user experience . In other embodi
ments , the circular buffer can exist in the server side of the
pipeline . The client device can be configured to send meta
data for each frame back to the server device , which is then
stored in the circular buffer . At the end of the session , the
server device can process the contents of the circular buffer
stored . In yet other embodiments , the metadata added by
each stage of the pipeline can be stripped by the server
device and stored temporarily at the server device such that
the metadata is not forwarded to the client device along with
the content . The stages of the pipeline at the client device
then generate new metadata as the content is processed on
the client side of the pipeline and the metadata is encoded
and transmitted to the server device when the content is done
being processed at the client device . The metadata from the
client device is then combined with the corresponding
metadata from the server device and stored in the circular
buffer at the server device . It will be appreciated that any
technique for collecting metadata at the server device ,
including having each stage transmit the corresponding
metadata for that stage back to the server device individu
ally , is within the scope of the present disclosure .
[0046] FIG . 2A illustrates a flowchart of a method 200 for
detecting latency anomalies in a pipeline , in accordance with
some embodiments . The method 200 is described in the
context of software executed by one or more processors . In
some embodiments , the method 200 , at least in part , can be
performed by instructions executed by a server device ,
which may be the same or separate from a server device that
implements at least one stage of the pipelined stack 100. In
other embodiments , the method 200 can be performed by
hardware or some combination of hardware and software .
[0047] At step 202 , metadata corresponding to content
processed by a plurality of stages of the pipeline is received
from a client device . The metadata includes information
corresponding to each stage of the plurality of stages of the
pipeline . In an embodiment , each stage of the pipeline is
configured to update the metadata to add a time stamp that
indicates a time when the processing of the content by the
stage is complete .
[0048] At step 204 , a metric is generated for each stage of
the pipeline based on the metadata . In an embodiment , the
metrics include a gain calculated for each stage of the
pipeline , where the gain is calculated based on a difference
in time stamps for two instances of the content and an
expected duration of time between the two instances of the
content .
[0049] At step 206 , a parameter associated with at least
one stage of the pipeline is adjusted based on the metrics for
the plurality of stages . In some embodiments , the configu

ration of the pipeline is adjusted by changing the configu
ration of one or more stages of the pipeline , such as , but not
limited to , adjusting a configuration of an encoding stage or
a decoding stage , or changing a codec utilized by the
encoding stage or decoding stage . Other parameters that can
be adjusted , depending on the type of pipeline implemented
for a specific application , include adjusting a frame rate or
resolution of a streaming video , adjusting a process (e.g. ,
adjusting a supply chain for an automated assembly line) , or
adjusting a schedule (e.g. , adjusting a number or frequency
of delivery drivers or bus routes) .
[0050] FIG . 2B illustrates a flowchart of a method 250 for
monitoring a pipeline , in accordance with some embodi
ments . The method 250 is described in the context of
software executed by one or more processors . In some
embodiments , the method 250 , at least in part , can be
performed by instructions executed by a server device
configured to implement at least one stage of the pipelined
stack 100. In other embodiments , the method 200 can be
performed by hardware or some combination of hardware
and software .
[0051] At step 252 , a feedback signal is received from a
client device . In an embodiment , the feedback signal repre
sents controller input collected by a client application
executed by the client device . For example , a game control
ler including one or more joysticks and one or more buttons
can provide user feedback to the client application repre
senting the state of each of the joysticks and / or buttons .
Alternately , a keyboard and / or mouse device can provide
keystrokes and motion data / button state to the client appli
cation . In another embodiment , the feedback signal is related
to sensors in a head - mounted display (e.g. , gyroscopes ,
accelerometers , etc.) . The client application transmits the
feedback signal to the server device .
[0052] At step 254 , the pipeline processes content based
on the feedback signal . In an embodiment , the content is a
frame of video rendered by at least one stage of the pipeline
executed by a server device . In some embodiments , the
server device utilizes , at least in part , a parallel processing
unit to render each frame . The parallel processing unit can
implement a ray - tracing algorithm to generate pixel values
for each frame . Alternatively , the parallel processing unit
can render the frames using a raster - based rendering algo
rithm executed within a graphics processing pipeline . In an
embodiment , the content includes frames of video for a
video game streaming service . In another embodiment , the
content includes frames of video for a head - mounted display
associated with a VR / AR application . It will be appreciated
that the content can be any content based on the feedback
signal .
[0053] In some embodiments , the content has a real - time
requirement such as a maximum latency between receiving
the feedback signal and the content being delivered to the
client device . The maximum latency can be , e.g. , related to
a multiple of a frame rate of display on a client device (e.g. ,
N times the frame duration of 16.7 ms for 60 Hz display rate ,
where Nis an integer greater than one) . In some embodi
ments , the maximum latency is specified in terms of milli
seconds and is not limited to an integer multiple of the frame
rate . The real - time requirement can be defined as a Quality
of Service (QoS) requirement , and can be set based on a
subjective or objective measurement of user experience . The
real - time requirement is a goal of the end - to - end delivery of
the content and not a guarantee , as certain portions of the

a

a

a

2

US 2021/0377623 A1 Dec. 2 , 2021
5

a

a

a

a

pipeline may be implemented on hardware that is not
controlled by the service provider , such as network devices
or the client device .
[0054] At step 256 , metadata corresponding to the content
is updated . In some embodiments , the metadata is updated
by each stage of the pipeline . The metadata can include
identifier information that includes a frame number and / or a
session identifier . In an embodiment , the metadata is updated
by adding a time stamp to the metadata when the processing
the content by each stage of the pipeline is complete . In other
words , the time stamp can indicate a time corresponding to
the completion of the processing by that stage in the pipe
line , and the time stamp is generated and added to the
metadata responsive to completion of the processing .
[0055] In some embodiments , the first stage of the pipeline
creates a data structure for the metadata with identifier
information upon receipt of the content and updates the
metadata to include a first time stamp upon completion of
the processing of the content . In some embodiments , the first
stage of the pipeline may also generate a time stamp that
indicates a time when processing the content by the stage of
the pipeline is commenced (e.g. , when the content is
received by the first stage of the pipeline) . This initial time
stamp can be used to identify a total time that the content
was processed by the pipeline .
[0056] In some embodiments , all stages of the pipeline on
the server side of the pipeline are executed by a single server
device , and transmitting the content and the metadata to the next stage of the pipeline is performed by transmitting a
pointer to the content and / or metadata in a memory of the
server device to a software module or process that imple
ments the next stage . In other embodiments , each stage of
the pipeline can be implemented by a different server device
within a single data center or multiple data centers . In such
embodiments , the content and / or metadata can be transmit
ted from one server device to another server device over the
network .
[0057] At step 258 , the metadata received at a server
device . In an embodiment , the metadata for each frame is
transmitted by the client device back to the server device
once the pipeline has completed the processing of the frame .
In another embodiment , the metadata for multiple frames is
collected and sent back to the server device at the termina
tion of the session or after a threshold number of frames
worth of metadata has been received by the client device .
[0058] At step 260 , metrics are calculated based on the
metadata . In an embodiment , the metrics can include a gain
and / or a residual latency per stage of the pipeline , for each
instance of content processed by the pipeline . For example ,
in some embodiments , the content comprises a plurality of
frames streamed to the client device during a session . In
such embodiments , the metrics can be calculated by : calcu
lating , for each frame of the plurality of frames , a gain for
each stage of the pipeline ; comparing , for each frame of the
plurality of frames , a total residual latency to a first threshold
value to identify anomalous frames ; and calculating , for
each stage of the pipeline , an aggregate value by summing
a number of anomalous frames in the plurality of frames
where the gain corresponding to the stage in the anomalous
frame is greater than a second threshold value . The metric
for a particular stage is calculated based on the aggregate
value for the particular stage . In an embodiment , the gain for
a particular stage is calculated based on an expected frame
duration and a difference between a time stamp correspond

ing to the particular stage for the current frame and a time
stamp corresponding to the particular stage for a previous
frame . In some embodiments , the pipeline generates the
plurality of frames in accordance with a variable frame rate ,
and the expected frame duration for calculating the gain is
set in accordance with a target frame rate . In some embodi
ments , the metric for a particular stage is calculated by
multiplying a rate of the gain for the particular stage
exceeding the second threshold value by a mean of the gain
for the particular stage over a duration of the session , which
can be referred to herein as a stutter duration per minute
(SDPM) metric . It will be appreciated that the given metrics
selected for the pipeline can depend on the particular appli
cation and the desired performance sought to be adjusted .
[0059] At step 262 , a visual representation is generated
based on the metrics . In an embodiment , the server device
can implement a dashboard application that allows a client
device to view the visual representation in an application
such as a web browser application or a mobile application .
The visual representation can quickly allow a developer to
view the state of the pipeline and / or assess whether a
particular session associated with a user experienced latency
anomalies that could be indicative of poor performance of
the pipeline stages . The metrics , calculated at a per - stage
level of granularity and for each instance of the content
processed by the pipeline (e.g. , each frame) allow for a
particularly detailed view of the pipeline operation that
enables a developer to pinpoint the particular stages that are
responsible for the performance issues , enabling the devel
oper to address the root cause of the problem .
[0060] It will be appreciated that the method 250 is
described above with time stamps being updated at the end
of each stage . In some embodiments , where each stage
includes one or more components , the method 250 can be
extended such that the metadata is updated at the completion
of each component to provide more fine - grained informa
tion .

[0061] It will be appreciated that the stages of the pipeline
stack 100 and / or the steps of the method 200 or 250 are
implemented by at least one of : one or more server devices ,
one or more network devices , and / or a client device . Each of
a server device , a network device , and a client device
includes at least a processor , a memory , and a network
interface . The processor can include a conventional pro
grammable processor such as a central processing unit .
Alternatively , the processor can include a reduced instruc
tion set computer (RISC) such as an ARM processor or a
system on a chip (SoC) that includes one or more CPU cores
and one or more GPU cores on a single integrated circuit or
a plurality of integrated circuits included in a package on
package (POP) device . In some embodiments , especially for
stages tasked with performing frame rendering operations or
other types of operations that can benefit from a parallel
architecture such as single instruction , multiple data (SIMD)
or single instruction , multiple thread (SIMT) processor
architectures , the processor can include a parallel processing
unit (PPU) or tensor processor .
[0062] More illustrative information will now be set forth
regarding various optional architectures and features with
which the foregoing framework may be implemented , per
the desires of the user . It should be strongly noted that the
following information is set forth for illustrative purposes
and should not be construed as limiting in any manner . Any a

US 2021/0377623 A1 Dec. 2 , 2021
6

of the following features may be optionally incorporated
with or without the exclusion of other features described .

Parallel Processing Architecture
[0063] FIG . 3 illustrates a parallel processing unit (PPU)
300 , in accordance with an embodiment . In an embodiment ,
the PPU 300 is a multi - threaded processor that is imple
mented on one or more integrated circuit devices . The PPU
300 is a latency hiding architecture designed to process
many threads in parallel . A thread (e.g. , a thread of execu
tion) is an instantiation of a set of instructions configured to
be executed by the PPU 300. In an embodiment , the PPU
300 is a graphics processing unit (GPU) configured to
implement a graphics rendering pipeline for processing
three - dimensional (3D) graphics data in order to generate
two - dimensional (2D) image data for display on a display
device such as a liquid crystal display (LCD) device . In
other embodiments , the PPU 300 may be utilized for per
forming general - purpose computations . While one exem
plary parallel processor is provided herein for illustrative
purposes , it should be strongly noted that such processor is
set forth for illustrative purposes only , and that any proces
sor may be employed to supplement and / or substitute for the
same .

I / O unit 305 may communicate with the host processor
directly via the interconnect 302 or through one or more
intermediate devices such as a memory bridge . In an
embodiment , the I / O unit 305 may communicate with one or
more other processors , such as one or more the PPUs 300 via
the interconnect 302. In an embodiment , the I / O unit 305
implements a Peripheral Component Interconnect Express
(PCIe) interface for communications over a PCIe bus and
the interconnect 302 is a PCIe bus . In alternative embodi
ments , the 1/0 unit 305 may implement other types of
well - known interfaces for communicating with external
devices .
[0068] The I / O unit 305 decodes packets received via the
interconnect 302. In an embodiment , the packets represent
commands configured to cause the PPU 300 to perform
various operations . The I / O unit 305 transmits the decoded
commands to various other units of the PPU 300 as the
commands may specify . For example , some commands may
be transmitted to the front end unit 315. Other commands
may be transmitted to the hub 330 or other units of the PPU
300 such as one or more copy engines , a video encoder , a
video decoder , a power management unit , etc. (not explicitly
shown) . In other words , the I / O unit 305 is configured to
route communications between and among the various logi
cal units of the PPU 300 .
[0069] In an embodiment , a program executed by the host
processor encodes a command stream in a buffer that pro
vides workloads to the PPU 300 for processing . A workload
may comprise several instructions and data to be processed
by those instructions . The buffer is a region in a memory that
is accessible (e.g. , read / write) by both the host processor and
the PPU 300. For example , the 1/0 unit 305 may be
configured to access the buffer in a system memory con
nected to the interconnect 302 via memory requests trans
mitted over the interconnect 302. In an embodiment , the host
processor writes the command stream to the buffer and then
transmits a pointer to the start of the command stream to the
PPU 300. The front end unit 315 receives pointers to one or
more command streams . The front end unit 315 manages the
one or more streams , reading commands from the streams
and forwarding commands to the various units of the PPU
300 .
[0070] The front end unit 315 is coupled to a scheduler
unit 320 that configures the various GPCs 350 to process
tasks defined by the one or more streams . The scheduler unit
320 is configured to track state information related to the
various tasks managed by the scheduler unit 320. The state
may indicate which GPC 350 a task is assigned to , whether
the task is active or inactive , a priority level associated with
the task , and so forth . The scheduler unit 320 manages the
execution of a plurality of tasks on the one or more GPCs
350 .
[0071] The scheduler unit 320 is coupled to a work
distribution unit 325 that is configured to dispatch tasks for
execution on the GPCs 350. The work distribution unit 325
may track a number of scheduled tasks received from the
scheduler unit 320. In an embodiment , the work distribution
unit 325 manages a pending task pool and an active task pool
for each of the GPCs 350. The pending task pool may
comprise a number of slots (e.g. , 32 slots) that contain tasks
assigned to be processed by a particular GPC 350. The active
task pool may comprise a number of slots (e.g. , 4 slots) for
tasks that are actively being processed by the GPCs 350. As
a GPC 350 finishes the execution of a task , that task is

[0064] One or more PPUs 300 may be configured to
accelerate thousands of High Performance Computing
(HPC) , data center , and machine learning applications . The
PPU 300 may be configured to accelerate numerous deep
learning systems and applications including autonomous
vehicle platforms , deep learning , high - accuracy speech ,
image , and text recognition systems , intelligent video ana
lytics , molecular simulations , drug discovery , disease diag
nosis , weather forecasting , big data analytics , astronomy ,
molecular dynamics simulation , financial modeling , robot
ics , factory automation , real - time language translation ,
online search optimizations , and personalized user recom
mendations , and the like .
[0065] As shown in FIG . 3 , the PPU 300 includes an
Input / Output (1/0) unit 305 , a front end unit 315 , a scheduler
unit a work distribution unit 325 , a hub 330 , a crossbar
(Xbar) 370 , one or more general processing clusters (GPCs)
350 , and one or more memory partition units 380. The PPU
300 may be connected to a host processor or other PPUs 300
via one or more high - speed NVLink 310 interconnect . The
PPU 300 may be connected to a host processor or other
peripheral devices via an interconnect 302. The PPU 300
may also be connected to a local memory 304 comprising a
number of memory devices . In an embodiment , the local
memory may comprise a number of dynamic random access
memory (DRAM) devices . The DRAM devices may be
configured as a high - bandwidth memory (HBM) subsystem ,
with multiple DRAM dies stacked within each device .
[0066] The NVLink 310 interconnect enables systems to
scale and include one or more PPUS 300 combined with one
or more CPUs , supports cache coherence between the PPUS
300 and CPUs , and CPU mastering . Data and / or commands
may be transmitted by the NVLink 310 through the hub 330
to / from other units of the PPU 300 such as one or more copy
engines , a video encoder , a video decoder , a power man
agement unit , etc. (not explicitly shown) . The NVLink 310
is described in more detail in conjunction with FIG . 5B .
[0067] The I / O unit 305 is configured to transmit and
receive communications (e.g. , commands , data , etc.) from a
host processor (not shown) over the interconnect 302. The

>

a

US 2021/0377623 A1 Dec. 2 , 2021
7

cessor

evicted from the active task pool for the GPC 350 and one
of the other tasks from the pending task pool is selected and
scheduled for execution on the GPC 350. If an active task
has been idle on the GPC 350 , such as while waiting for a
data dependency to be resolved , then the active task may be
evicted from the GPC 350 and returned to the pending task
pool while another task in the pending task pool is selected
and scheduled for execution on the GPC 350 .
[0072] The work distribution unit 325 communicates with
the one or more GPCs 350 via XBar 370. The XBar 370 is
an interconnect network that couples many of the units of the
PPU 300 to other units of the PPU 300. For example , the
XBar 370 may be configured to couple the work distribution
unit 325 to a particular GPC 350. Although not shown
explicitly , one or more other units of the PPU 300 may also
be connected to the XBar 370 via the hub 330 .
[0073] The tasks are managed by the scheduler unit 320
and dispatched to a GPC 350 by the work distribution unit
325. The GPC 350 is configured to process the task and
generate results . The results may be consumed by other tasks
within the GPC 350 , routed to a different GPC 350 via the
XBar 370 , or stored in the memory 304. The results can be
written to the memory 304 via the memory partition units
380 , which implement a memory interface for reading and
writing data to / from the memory 304. The results can be
transmitted to another PPU 300 or CPU via the NVLink 310 .
In an embodiment , the PPU 300 includes a number U of
memory partition units 380 that is equal to the number of
separate and distinct memory devices of the memory 304
coupled to the PPU 300. A memory partition unit 380 will
be described in more detail below in conjunction with FIG .
4B .

[0074] In an embodiment , a host processor executes a
driver kernel that implements an application programming
interface (API) that enables one or more applications execut
ing on the host processor to schedule operations for execu
tion on the PPU 300. In an embodiment , multiple compute
applications are simultaneously executed by the PPU 300
and the PPU 300 provides isolation , quality of service
(QoS) , and independent address spaces for the multiple
compute applications . An application may generate instruc
tions (e.g. , API calls) that cause the driver kernel to generate
one or more tasks for execution by the PPU 300. The driver
kernel outputs tasks to one or more streams being processed
by the PPU 300. Each task may comprise one or more
groups of related threads , referred to herein as a warp . In an
embodiment , a warp comprises 32 related threads that may
be executed in parallel . Cooperating threads may refer to a
plurality of threads including instructions to perform the task
and that may exchange data through shared memory .
Threads and cooperating threads are described in more detail
in conjunction with FIG . 5A .
[0075] FIG . 4A illustrates a GPC 350 of the PPU 300 of
FIG . 3 , in accordance with an embodiment . As shown in
FIG . 4A , each GPC 350 includes a number of hardware units
for processing tasks . In an embodiment , each GPC 350
includes a pipeline manager 410 , a pre - raster operations unit
(PROP) 415 , a raster engine 425 , a work distribution cross
bar (WDX) 480 , a memory management unit (MMU) 490 ,
and one or more Data Processing Clusters (DPCs) 420. It
will be appreciated that the GPC 350 of FIG . 4A may include
other hardware units in lieu of or in addition to the units
shown in FIG . 4A .

[0076] In an embodiment , the operation of the GPC 350 is
controlled by the pipeline manager 410. The pipeline man
ager 410 manages the configuration of the one or more DPCs
420 for processing tasks allocated to the GPC 350. In an
embodiment , the pipeline manager 410 may configure at
least one of the one or more DPCs 420 to implement at least
a portion of a graphics rendering pipeline . For example , a
DPC 420 may be configured to execute a vertex shader
program on the programmable streaming multiproce
(SM) 440. The pipeline manager 410 may also be configured
to route packets received from the work distribution unit 325
to the appropriate logical units within the GPC 350. For
example , some packets may be routed to fixed function
hardware units in the PROP 415 and / or raster engine 425
while other packets may be routed to the DPCs 420 for
processing by the primitive engine 435 or the SM 440. In an
embodiment , the pipeline manager 410 may configure at
least one of the one or more DPCs 420 to implement a neural
network model and / or a computing pipeline .
[0077] The PROP unit 415 is configured to route data
generated by the raster engine 425 and the DPCs 420 to a
Raster Operations (ROP) unit , described in more detail in
conjunction with FIG . 4B . The PROP unit 415 may also be
configured to perform optimizations for color blending ,
organize pixel data , perform address translations , and the
like .
[0078] The raster engine 425 includes a number of fixed
function hardware units configured to perform various raster
operations . In an embodiment , the raster engine 425 includes
a setup engine , a coarse raster engine , a culling engine , a
clipping engine , a fine raster engine , and a tile coalescing
engine . The setup engine receives transformed vertices and
generates plane equations associated with the geometric
primitive defined by the vertices . The plane equations are
transmitted to the coarse raster engine to generate coverage
information (e.g. , an x , y coverage mask for a tile) for the
primitive . The output of the coarse raster engine is trans
mitted to the culling engine where fragments associated with
the primitive that fail a z - test are culled , and transmitted to a clipping engine where fragments lying outside a viewing
frustum are clipped . Those fragments that survive clipping
and culling may be passed to the fine raster engine to
generate attributes for the pixel fragments based on the plane
equations generated by the setup engine . The output of the
raster engine 425 comprises fragments to be processed , for
example , by a fragment shader implemented within a DPC
420 .
[0079] Each DPC 420 included in the GPC 350 includes
an M - Pipe Controller (MPC) 430 , a primitive engine 435 ,
and one or more SMS 440. The MPC 430 controls the
operation of the DPC 420 , routing packets received from the
pipeline manager 410 to the appropriate units in the DPC
420. For example , packets associated with a vertex may be
routed to the primitive engine 435 , which is configured to
fetch vertex attributes associated with the vertex from the
memory 304. In contrast , packets associated with a shader
program may be transmitted to the SM 440 .
[0080] The SM 440 comprises a programmable streaming
processor that is configured to process tasks represented by
a number of threads . Each SM 440 is multi - threaded and
configured to execute a plurality of threads (e.g. , 32 threads)
from a particular group of threads concurrently . In an
embodiment , the SM 440 implements a SIMD (Single
Instruction , Multiple - Data) architecture where each thread

US 2021/0377623 A1 Dec. 2 , 2021
8

in a group of threads (e.g. , a warp) is configured to process
a different set of data based on the same set of instructions .
All threads in the group of threads execute the same instruc
tions . In another embodiment , the SM 440 implements a
SIMT (Single - Instruction , Multiple Thread) architecture
where each thread in a group of threads is configured to
process a different set of data based on the same set of
instructions , but where individual threads in the group of
threads are allowed to diverge during execution . In an
embodiment , a program counter , call stack , and execution
state is maintained for each warp , enabling concurrency
between warps and serial execution within warps when
threads within the warp diverge . In another embodiment , a
program counter , call stack , and execution state is main
tained for each individual thread , enabling equal concur
rency between all threads , within and between warps . When
execution state is maintained for each individual thread ,
threads executing the same instructions may be converged
and executed in parallel for maximum efficiency . The SM
440 will be described in more detail below in conjunction
with FIG . 5A .
[0081] The MMU 490 provides an interface between the
GPC 350 and the memory partition unit 380. The MMU 490
may provide translation of virtual addresses into physical
addresses , memory protection , and arbitration of memory
requests . In an embodiment , the MMU 490 provides one or
more translation lookaside buffers (TLBs) for performing
translation of virtual addresses into physical addresses in the
memory 304 .

memory partition unit 380 supports a unified memory to
provide a single unified virtual address space for CPU and
PPU 300 memory , enabling data sharing between virtual
memory systems . In an embodiment the frequency of
accesses by a PPU 300 to memory located on other proces
sors is traced to ensure that memory pages are moved to the
physical memory of the PPU 300 that is accessing the pages
more frequently . In an embodiment , the NVLink 310 sup
ports address translation services allowing the PPU 300 to
directly access a CPU's page tables and providing full
access to CPU memory by the PPU 300 .
[0086] In an embodiment , copy engines transfer data
between multiple PPUs 300 or between PPUs 300 and
CPUs . The copy engines can generate page faults for
addresses that are not mapped into the page tables . The
memory partition unit 380 can then service the page faults ,
mapping the addresses into the page table , after which the
copy engine can perform the transfer . In a conventional
system , memory is pinned (e.g. , non - pageable) for multiple
copy engine operations between multiple processors , sub
stantially reducing the available memory . With hardware
page faulting , addresses can be passed to the copy engines
without worrying if the memory pages are resident , and the
copy process is transparent .
[0087] Data from the memory 304 or other system
memory may be fetched by the memory partition unit 380
and stored in the L2 cache 460 , which is located on - chip and
is shared between the various GPCs 350. As shown , each
memory partition unit 380 includes a portion of the L2 cache
460 associated with a corresponding memory 304. Lower
level caches may then be implemented in various units
within the GPCs 350. For example , each of the SMS 440
may implement a level one (L1) cache . The L1 cache is
private memory that is dedicated to a particular SM 440 .
Data from the L2 cache 460 may be fetched and stored in
each of the L1 caches for processing in the functional units
of the SMs 440. The L2 cache 460 is coupled to the memory
interface 470 and the XBar 370 .
[0088] The ROP unit 450 performs graphics raster opera
tions related to pixel color , such as color compression , pixel
blending , and the like . The ROP unit 450 also implements
depth testing in conjunction with the raster engine 425 ,
receiving a depth for a sample location associated with a
pixel fragment from the culling engine of the raster engine
425. The depth is tested against a corresponding depth in a
depth buffer for a sample location associated with the
fragment . If the fragment passes the depth test for the sample
location , then the ROP unit 450 updates the depth buffer and
transmits a result of the depth test to the raster engine 425 .
It will be appreciated that the number of memory partition
units 380 may be different than the number of GPCs 350
and , therefore , each ROP unit 450 may be coupled to each
of the GPCs 350. The ROP unit 450 tracks packets received
from the different GPCs 350 and determines which GPC 350
that a result generated by the ROP unit 450 is routed to
through the Xbar 370. Although the ROP unit 450 is
included within the memory partition unit 380 in FIG . 4B ,
in other embodiment , the ROP unit 450 may be outside of
the memory partition unit 380. For example , the ROP unit
450 may reside in the GPC 350 or another unit .
[0089] FIG . 5A illustrates the streaming multi - processor
440 of FIG . 4A , in accordance with an embodiment . As
shown in FIG . 5A , the SM 440 includes an instruction cache
505 , one or more scheduler units 510 , a register file 520 , one

[0082] FIG . 4B illustrates a memory partition unit 380 of
the PPU 300 of FIG . 3 , in accordance with an embodiment .
As shown in FIG . 4B , the memory partition unit 380
includes a Raster Operations (ROP) unit 450 , a level two
(L2) cache 460 , and a memory interface 470. The memory
interface 470 is coupled to the memory 304. Memory
interface 470 may implement 32 , 64 , 128 , 1024 - bit data
buses , or the like , for high - speed data transfer . In an embodi
ment , the PPU 300 incorporates U memory interfaces 470 ,
one memory interface 470 per pair of memory partition units
380 , where each pair of memory partition units 380 is
connected to a corresponding memory device of the memory
304. For example , PPU 300 may be connected to up to Y
memory devices , such as high bandwidth memory stacks or
graphics double - data - rate , version 5 , synchronous dynamic
random access memory , or other types of persistent storage .
[0083] In an embodiment , the memory interface 470
implements an HBM2 memory interface and Y equals half
U. In an embodiment , the HBM2 memory stacks are located
on the same physical package as the PPU 300 , providing
substantial power and area savings compared with conven
tional GDDR5 SDRAM systems . In an embodiment , each
HBM2 stack includes four memory dies and Y equals 4 , with
HBM2 stack including two 128 - bit channels per die for a
total of 8 channels and a data bus width of 1024 bits .
[0084] In an embodiment , the memory 304 supports
Single - Error Correcting Double - Error Detecting (SECDED)
Error Correction Code (ECC) to protect data . ECC provides
higher reliability for compute applications that are sensitive
to data corruption . Reliability is especially important in
large - scale cluster computing environments where PPUS
300 process very large datasets and / or run applications for
extended periods .
[0085] In an embodiment , the PPU 300 implements a
multi - level memory hierarchy . In an embodiment , the

2

US 2021/0377623 A1 Dec. 2 , 2021
9

The register file 520 provides temporary storage for oper
ands connected to the data paths of the functional units .
[0095] Each SM 440 comprises L processing cores 550. In
an embodiment , the SM 440 includes a large number (e.g. ,
128 , etc.) of distinct processing cores 550. Each core 550
may include a fully - pipelined , single - precision , double - pre
cision , and / or mixed precision processing unit that includes
a floating point arithmetic logic unit and an integer arith
metic logic unit . In an embodiment , the floating point
arithmetic logic units implement the IEEE 754-2008 stan
dard for floating point arithmetic . In an embodiment , the
cores 550 include 64 single - precision (32 - bit) floating point
cores , 64 integer cores , 32 double - precision (64 - bit) floating
point cores , and 8 tensor cores .
[0096] Tensor cores configured to perform matrix opera
tions , and , in an embodiment , one or more tensor cores are
included in the cores 550. In particular , the tensor cores are
configured to perform deep learning matrix arithmetic , such
as convolution operations for neural network training and
inferencing . In an embodiment , each tensor core operates on
a 4x4 matrix and performs a matrix multiply and accumulate
operation D = AxB + C , where A , B , C , and D are 4x4 matri

of

ces .

or more processing cores 550 , one or more special function
units (SFUs) 552 , one or more load / store units (LSUS) 554 ,
an interconnect network 580 , a shared memory / L1 cache
570 .
[0090] As described above , the work distribution unit 325
dispatches tasks for execution on the GPCs 350 of the PPU
300. The tasks are allocated to a particular DPC 420 within
a GPC 350 and , if the task is associated with a shader
program , the task may be allocated to an SM 440. The
scheduler unit 510 receives the tasks from the work distri
bution unit 325 and manages instruction scheduling for one
or more thread blocks assigned to the SM 440. The scheduler
unit 510 schedules thread blocks for execution as warps
parallel threads , where each thread block is allocated at least
one warp . In an embodiment , each warp executes 32 threads .
The scheduler unit 510 may manage a plurality of different
thread blocks , allocating the warps to the different thread
blocks and then dispatching instructions from the plurality
of different cooperative groups to the various functional
units (e.g. , cores 550 , SFUs 552 , and LSUs 554) during each
clock cycle .
[0091] Cooperative Groups is a programming model for
organizing groups of communicating threads that allows
developers to express the granularity at which threads are
communicating , enabling the expression of richer , more
efficient parallel decompositions . Cooperative launch APIs
support synchronization amongst thread blocks for the
execution of parallel algorithms . Conventional program
ming models provide a single , simple construct for synchro
nizing cooperating threads : a barrier across all threads of a
thread block (e.g. , the syncthreads () function) . However ,
programmers would often like to define groups of threads at
smaller than thread block granularities and synchronize
within the defined groups to enable greater performance ,
design flexibility , and software reuse in the form of collec
tive group - wide function interfaces .
[0092] Cooperative Groups enables programmers to
define groups of threads explicitly at sub - block (e.g. , as
small as a single thread) and multi - block granularities , and
to perform collective operations such as synchronization on
the threads in a cooperative group . The programming model
supports clean composition across software boundaries , so
that libraries and utility functions can synchronize safely
within their local context without having to make assump
tions about convergence . Cooperative Groups primitives
enable new patterns of cooperative parallelism , including
producer - consumer parallelism , opportunistic parallelism ,
and global synchronization across an entire grid of thread
blocks .
[0093] A dispatch unit 515 is configured to transmit
instructions to one or more of the functional units . In the
embodiment , the scheduler unit 510 includes two dispatch
units 515 that enable two different instructions from the
same warp to be dispatched during each clock cycle . In
alternative embodiments , each scheduler unit 510 may
include a single dispatch unit 515 or additional dispatch
units 515 .
[0094] Each SM 440 includes a register file 520 that
provides a set of registers for the functional units of the SM
440. In an embodiment , the register file 520 is divided
between each of the functional units such that each func
tional unit is allocated a dedicated portion of the register file
520. In another embodiment , the register file 520 is divided
between the different warps being executed by the SM 440 .

[0097] In an embodiment , the matrix multiply inputs A
and B are 16 - bit floating point matrices , while the accumu
lation matrices C and D may be 16 - bit floating point or
32 - bit floating point matrices . Tensor Cores operate on
16 - bit floating point input data with 32 - bit floating point
accumulation . The 16 - bit floating point multiply requires 64
operations and results in a full precision product that is then
accumulated using 32 - bit floating point addition with the
other intermediate products for a 4x4x4 matrix multiply . In
practice , Tensor Cores are used to perform much larger
two - dimensional or higher dimensional matrix operations ,
built up from these smaller elements . An API , such as
CUDA 9 C ++ API , exposes specialized matrix load , matrix
multiply and accumulate , and matrix store operations to
efficiently use Tensor Cores from a CUDA - C ++ program . At
the CUDA level , the warp - level interface assumes 16x16
size matrices spanning all 32 threads of the warp .
[0098] Each SM 440 also comprises M SFUS 552 that
perform special functions (e.g. , attribute evaluation , recip
rocal square root , and the like) . In an embodiment , the SFUS
552 may include a tree traversal unit configured to traverse
a hierarchical tree data structure . In an embodiment , the
SFUs 552 may include texture units configured to perform
texture map filtering operations . In an embodiment , the
texture units are configured to load texture maps (e.g. , a 2D
array of texels) from the memory 304 and sample the texture
maps to produce sampled texture values for use in shader
programs executed by the SM 440. In an embodiment , the
texture maps are stored in the shared memory / L1 cache 470 .
The texture units implement texture operations such as
filtering operations using mip - maps (e.g. , texture maps of
varying levels of detail) . In an embodiment , each SM 340
includes two texture units .
[0099] Each SM 440 also comprises N LSUs 554 that
implement load and store operations between the shared
memory / L1 cache 570 and the register file 520. Each SM
440 includes an interconnect network 580 that connects each
of the functional units to the register file 520 and the LSU
554 to the register file 520 , shared memory / L1 cache 570. In
an embodiment , the interconnect network 580 is a crossbar
that can be configured to connect any of the functional units

US 2021/0377623 A1 Dec. 2 , 2021
10

Exemplary Computing System to any of the registers in the register file 520 and connect the
LSUS 554 to the register file and memory locations in shared
memory / L1 cache 570 .
[0100] The shared memory / L1 cache 570 is an array of
on - chip memory that allows for data storage and commu
nication between the SM 440 and the primitive engine 435
and between threads in the SM 440. In an embodiment , the
shared memory / L1 cache 570 comprises 128 KB of storage
capacity and is in the path from the SM 440 to the memory
partition unit 380. The shared memory / L1 cache 570 can be
used to cache reads and writes . One or more of the shared
memory / L1 cache 570 , L2 cache 460 , and memory 304 are
backing stores .
[0101] Combining data cache and shared memory func
tionality into a single memory block provides the best
overall performance for both types of memory accesses . The
capacity is usable as a cache by programs that do not use
shared memory . For example , if shared memory is config
ured to use half of the capacity , texture and load / store
operations can use the remaining capacity . Integration
within the shared memory / L1 cache 570 enables the shared
memory / L1 cache 570 to function as a high - throughput
conduit for streaming data while simultaneously providing
high - bandwidth and low - latency access to frequently reused
data .

[0102] When configured for general purpose parallel com
putation , a simpler configuration can be used compared with
graphics processing . Specifically , the fixed function graphics
processing units shown in FIG . 3 , are bypassed , creating a
much simpler programming model . In the general purpose
parallel computation configuration , the work distribution
unit 325 assigns and distributes blocks of threads directly to
the DPCs 420. The threads in a block execute the same
program , using a unique thread ID in the calculation to
ensure each thread generates unique results , using the SM
440 to execute the program and perform calculations , shared
memory / L1 cache 570 to communicate between threads , and
the LSU 554 to read and write global memory through the
shared memory / L1 cache 570 and the memory partition unit
380. When configured for general purpose parallel compu
tation , the SM 440 can also write commands that the
scheduler unit 320 can use to launch new work on the DPCs
420 .

[0105] Systems with multiple GPUs and CPUs are used in
a variety of industries as developers expose and leverage
more parallelism in applications such as artificial intelli
gence computing . High - performance GPU - accelerated sys
tems with tens to many thousands of compute nodes are
deployed in data centers , research facilities , and supercom
puters to solve ever larger problems . As the number of
processing devices within the high - performance systems
increases , the communication and data transfer mechanisms
need to scale to support the increased bandwidth .
[0106] FIG . 5B is a conceptual diagram of a processing
system 500 implemented using the PPU 300 of FIG . 3 , in
accordance with an embodiment . The processing system 500
includes a CPU 530 , switch 510 , and multiple PPUS 300 ,
and respective memories 304. The NVLink 310 provides
high - speed communication links between each of the PPUS
300. Although a particular number of NVLink 310 and
interconnect 302 connections are illustrated in FIG . 5B , the
number of connections to each PPU 300 and the CPU 530
may vary . The switch 510 interfaces between the intercon
nect 302 and the CPU 530. The PPUS 300 , memories 304 ,
and NVLinks 310 may be situated on a single semiconductor
platform to form a parallel processing module 525. In an
embodiment , the switch 510 supports two or more protocols
to interface between various different connections and / or
links .

[0103] The PPU 300 may be included in a desktop com
puter , a laptop computer , a tablet computer , servers , super
computers , a smart - phone (e.g. , a wireless , hand - held
device) , personal digital assistant (PDA) , a digital camera , a
vehicle , a head mounted display , a hand - held electronic
device , and the like . In an embodiment , the PPU 300 is
embodied on a single semiconductor substrate . In another
embodiment , the PPU 300 is included in a system - on - a - chip
(SOC) along with one or more other devices such as addi
tional PPUs 300 , the memory 304 , a reduced instruction set
computer (RISC) CPU , a memory management unit
(MMU) , a digital - to - analog converter (DAC) , and the like .
[0104] In an embodiment , the PPU 300 may be included
on a graphics card that includes one or more memory
devices . The graphics card may be configured to interface
with a PCIe slot on a motherboard of a desktop computer . In
yet another embodiment , the PPU 300 may be an integrated
graphics processing unit (GPU) or parallel processor
included in the chipset of the motherboard .

[0107] In another embodiment (not shown) , the NVLink
310 provides one or more high - speed communication links
between each of the PPUS 300 and the CPU 530 and the
switch 510 interfaces between the interconnect 302 and each
of the PPUS 300. The PPUS 300 , memories 304 , and
interconnect 302 may be situated on a single semiconductor
platform to form a parallel processing module 525. In yet
another embodiment (not shown) , the interconnect 302
provides one or more communication links between each of
the PPUS 300 and the CPU 530 and the switch 510 interfaces
between each of the PPUS 300 using the NVLink 310 to
provide one or more high - speed communication links
between the PPUS 300. In another embodiment (not shown) ,
the NVLink 310 provides one or more high - speed commu
nication links between the PPUS 300 and the CPU 530
through the switch 510. In yet another embodiment (not
shown) , the interconnect 302 provides one or more commu
nication links between each of the PPUS 300 directly . One
or more of the NVLink 310 high - speed communication links
may be implemented as a physical NVLink interconnect or
either an on - chip or on - die interconnect using the same
protocol as the NVLink 310 .
[0108] In the context of the present description , a single
semiconductor platform may refer to a sole unitary semi
conductor - based integrated circuit fabricated on a die or
chip . It should be noted that the term single semiconductor
platform may also refer to multi - chip modules with
increased connectivity which simulate on - chip operation
and make substantial improvements over utilizing a conven
tional bus implementation . Of course , the various circuits or
devices may also be situated separately or in various com
binations of semiconductor platforms per the desires of the
user . Alternately , the parallel processing module 525 may be
implemented as a circuit board substrate and each of the
PPUs 300 and / or memories 304 may be packaged devices .

US 2021/0377623 A1 Dec. 2 , 2021
11

[0115) Computer programs , or computer control logic
algorithms , may be stored in the main memory 540 and / or
the secondary storage . Such computer programs , when
executed , enable the system 565 to perform various func
tions . The memory 540 , the storage , and / or any other storage
are possible examples of computer - readable media .
[0116] The architecture and / or functionality of the various
previous figures may be implemented in the context of a
general computer system , a circuit board system , a game
console system dedicated for entertainment purposes , an
application - specific system , and / or any other desired sys
tem . For example , the system 565 may take the form of a
desktop computer , a laptop computer , a tablet computer ,
servers , supercomputers , a smart - phone (e.g. , a wireless ,
hand - held device) , personal digital assistant (PDA) , a digital
camera , a vehicle , a head mounted display , a hand - held
electronic device , a mobile phone device , a television ,
workstation , game consoles , embedded system , and / or any
other type of logic .
[0117] While various embodiments have been described
above , it should be understood that they have been presented
by way of example only , and not limitation . Thus , the
breadth and scope of a preferred embodiment should not be
limited by any of the above - described exemplary embodi
ments , but should be defined only in accordance with the
following claims and their equivalents .

In an embodiment , the CPU 530 , switch 510 , and the parallel
processing module 525 are situated on a single semiconduc
tor platform .
[0109] In an embodiment , the signaling rate of each
NVLink 310 is 20 to 25 Gigabits / second and each PPU 300
includes six NVLink 310 interfaces (as shown in FIG . 5B ,
five NVLink 310 interfaces are included for each PPU 300) .
Each NVLink 310 provides a data transfer rate of 25
Gigabytes / second in each direction , with six links providing
300 Gigabytes / second . The NVLinks 310 can be used exclu
sively for PPU - to - PPU communication as shown in FIG . 5B ,
or some combination of PPU - to - PPU and PPU - to - CPU ,
when the CPU 530 also includes one or more NVLink 310
interfaces .
[0110] In an embodiment , the NVLink 310 allows direct
load / store / atomic access from the CPU 530 to each PPU's
300 memory 304. In an embodiment , the NVLink 310
supports coherency operations , allowing data read from the
memories 304 to be stored in the cache hierarchy of the CPU
530 , reducing cache access latency for the CPU 530. In an
embodiment , the NVLink 310 includes support for Address
Translation Services (ATS) , allowing the PPU 300 to
directly access page tables within the CPU 530. One or more
of the NVLinks 310 may also be configured to operate in a
low - power mode .
[0111] FIG . 5C illustrates an exemplary system 565 in
which the various architecture and / or functionality of the
various previous embodiments may be implemented . As
shown , a system 565 is provided including at least one
central processing unit 530 that is connected to a commu
nication bus 575. The communication bus 575 may be
implemented using any suitable protocol , such as PCI (Pe
ripheral Component Interconnect) , PCI - Express , AGP (Ac
celerated Graphics Port) , HyperTransport , or any other bus
or point - to - point communication protocol (s) . The system
565 also includes a main memory 540. Control logic (soft
ware) and data are stored in the main memory 540 which
may take the form of random access memory (RAM) .
[0112] The system 565 also includes input devices 560 ,
the parallel processing system 525 , and display devices 545 ,
e.g. a conventional CRT (cathode ray tube) , LCD (liquid
crystal display) , LED light emitting diode) , plasma display
or the like . User input may be received from the input
devices 560 , e.g. , keyboard , mouse , touchpad , microphone ,
and the like . Each of the foregoing modules and / or devices
may even be situated on a single semiconductor platform to
form the system 565. Alternately , the various modules may
also be situated separately or in various combinations of
semiconductor platforms per the desires of the user .
[0113] Further , the system 565 may be coupled to a
network (e.g. , a telecommunications network , local area
network (LAN) , wireless network , wide area network
(WAN) such as the Internet , peer - to - peer network , cable
network , or the like) through a network interface 535 for
communication purposes .
[0114] The system 565 may also include a secondary
storage (not shown) . The secondary storage 610 includes ,
for example , a hard disk drive and / or a removable storage
drive , representing a floppy disk drive , a magnetic tape
drive , a compact disk drive , digital versatile disk (DVD)
drive , recording device , universal serial bus (USB) flash
memory . The removable storage drive reads from and / or
writes to a removable storage unit in a well - known manner .

Graphics Processing Pipeline

[0118] In an embodiment , the PPU 300 comprises a graph
ics processing unit (GPU) . The PPU 300 is configured to
receive commands that specify shader programs for process
ing graphics data . Graphics data may be defined as a set of
primitives such as points , lines , triangles , quads , triangle
strips , and the like . Typically , a primitive includes data that
specifies a number of vertices for the primitive (e.g. , in a
model - space coordinate system) as well as attributes asso
ciated with each vertex of the primitive . The PPU 300 can
be configured to process the graphics primitives to generate
a frame buffer (e.g. , pixel data for each of the pixels of the
display) .
[0119] An application writes model data for a scene (e.g. ,
a collection of vertices and attributes) to a memory such as
a system memory or memory 304. The model data defines
each of the objects that may be visible on a display . The
application then makes an API call to the driver kernel that
requests the model data to be rendered and displayed . The
driver kernel reads the model data and writes commands to
the one or more streams to perform operations to process the
model data . The commands may reference different shader
programs to be implemented on the SMS 440 of the PPU 300
including one or more of a vertex shader , hull shader ,
domain shader , geometry shader , and a pixel shader . For
example , one or more of the SMs 440 may be configured to
execute a vertex shader program that processes a number of
vertices defined by the model data . In an embodiment , the
different SMs 440 may be configured to execute different
shader programs concurrently . For example , a first subset of
SMS 440 may be configured to execute a vertex shader
program while a second subset of SMs 440 may be config
ured to execute a pixel shader program . The first subset of
SMS 440 processes vertex data to produce processed vertex
data and writes the processed vertex data to the L2 cache 460
and / or the memory 304. After the processed vertex data is
rasterized (e.g. , transformed from three - dimensional data a

US 2021/0377623 A1 Dec. 2 , 2021
12

into two - dimensional data in screen space) to produce
fragment data , the second subset of SMS 440 executes a
pixel shader to produce processed fragment data , which is
then blended with other processed fragment data and written
to the frame buffer in memory 304. The vertex shader
program and pixel shader program may execute concur
rently , processing different data from the same scene in a
pipelined fashion until all of the model data for the scene has
been rendered to the frame buffer . Then , the contents of the
frame buffer are transmitted to a display controller for
display on a display device .
[0120] FIG . 6 is a conceptual diagram of a graphics
processing pipeline 600 implemented by the PPU 300 of
FIG . 3 , in accordance with an embodiment . The graphics
processing pipeline 600 is an abstract flow diagram of the
processing steps implemented to generate 2D computer
generated images from 3D geometry data . As is well - known ,
pipeline architectures may perform long latency operations
more efficiently by splitting up the operation into a plurality
of stages , where the output of each stage is coupled to the
input of the next successive stage . Thus , the graphics pro
cessing pipeline 600 receives input data 601 that is trans
mitted from one stage to the next stage of the graphics
processing pipeline 600 to generate output data 602. In an
embodiment , the graphics processing pipeline 600 may
represent a graphics processing pipeline defined by the
OpenGL® API . As an option , the graphics processing pipe
line 600 may be implemented in the context of the func
tionality and architecture of the previous Figures and / or any
subsequent Figure (s) .
[0121] As shown in FIG . 6 , the graphics processing pipe
line 600 comprises a pipeline architecture that includes a
number of stages . The stages include , but are not limited to ,
a data assembly stage 610 , a vertex shading stage 620 , a
primitive assembly stage 630 , a geometry shading stage 640 ,
a viewport scale , cull , and clip (VSCC) stage 650 , a raster
ization stage 660 , a fragment shading stage 670 , and a raster
operations stage 680. In an embodiment , the input data 601
comprises commands that configure the processing units to
implement the stages of the graphics processing pipeline 600
and geometric primitives (e.g. , points , lines , triangles ,
quads , triangle strips or fans , etc.) to be processed by the
stages . The output data 602 may comprise pixel data (e.g. ,
color data) that is copied into a frame buffer or other type of
surface data structure in a memory .
[0122] The data assembly stage 610 receives the input data
601 that specifies vertex data for high - order surfaces , primi
tives , or the like . The data assembly stage 610 collects the
vertex data in a temporary storage or queue , such as by
receiving a command from the host processor that includes
a pointer to a buffer in memory and reading the vertex data
from the buffer . The vertex data is then transmitted to the
vertex shading stage 620 for processing .
[0123] The vertex shading stage 620 processes vertex data
by performing a set of operations (e.g. , a vertex shader or a
program) once for each of the vertices . Vertices may be , e.g. ,
specified as a 4 - coordinate vector (e.g. , < x , y , z , w >)
associated with one or more vertex attributes (e.g. , color ,
texture coordinates , surface normal , etc.) . The vertex shad
ing stage 620 may manipulate individual vertex attributes
such as position , color , texture coordinates , and the like . In
other words , the vertex shading stage 620 performs opera
tions on the vertex coordinates or other vertex attributes
associated with a vertex . Such operations commonly includ

ing lighting operations (e.g. , modifying color attributes for
a vertex) and transformation operations (e.g. , modifying the
coordinate space for a vertex) . For example , vertices may be
specified using coordinates in an object - coordinate space ,
which are transformed by multiplying the coordinates by a
matrix that translates the coordinates from the object - coor
dinate space into a world space or a normalized - device
coordinate (NCD) space . The vertex shading stage 620
generates transformed vertex data that is transmitted to the
primitive assembly stage 630 .
[0124] The primitive assembly stage 630 collects vertices
output by the vertex shading stage 620 and groups the
vertices into geometric primitives for processing by the
geometry shading stage 640. For example , the primitive
assembly stage 630 may be configured to group every three
consecutive vertices as a geometric primitive (e.g. , a tri
angle) for transmission to the geometry shading stage 640 .
In some embodiments , specific vertices may be reused for
consecutive geometric primitives (e.g. , two consecutive
triangles in a triangle strip may share two vertices) . The
primitive assembly stage 630 transmits geometric primitives
(e.g. , a collection of associated vertices) to the geometry
shading stage 640 .
[0125] The geometry shading stage 640 processes geo
metric primitives by performing a set of operations (e.g. , a
geometry shader or program) on the geometric primitives .
Tessellation operations may generate one or more geometric
primitives from each geometric primitive . In other words ,
the geometry shading stage 640 may subdivide each geo
metric primitive into a finer mesh of two or more geometric
primitives for processing by the rest of the graphics pro
cessing pipeline 600. The geometry shading stage 640
transmits geometric primitives to the viewport SCC stage
650 .
[0126] In an embodiment , the graphics processing pipeline
600 may operate within a streaming multiprocessor and the
vertex shading stage 620 , the primitive assembly stage 630 ,
the geometry shading stage 640 , the fragment shading stage
670 , and / or hardware / software associated therewith , may sequentially perform processing operations . Once the
sequential processing operations are complete , in an
embodiment , the viewport SCC stage 650 may utilize the
data . In an embodiment , primitive data processed by one or
more of the stages in the graphics processing pipeline 600
may be written to a cache (e.g. L1 cache , a vertex cache ,
etc.) . In this case , in an embodiment , the viewport SCC stage
650 may access the data in the cache . In an embodiment , the
viewport SCC stage 650 and the rasterization stage 660 are
implemented as fixed function circuitry .
[0127] The viewport SCC stage 650 performs viewport
scaling , culling , and clipping of the geometric primitives .
Each surface being rendered to is associated with an abstract
camera position . The camera position represents a location
of a viewer looking at the scene and defines a viewing
frustum that encloses the objects of the scene . The viewing
frustum may include a viewing plane , a rear plane , and four
clipping planes . Any geometric primitive entirely outside of
the viewing frustum may be culled (e.g. , discarded) because
the geometric primitive will not contribute to the final
rendered scene . Any geometric primitive that is partially
inside the viewing frustum and partially outside the viewing
frustum may be clipped (e.g. , transformed into a new
geometric primitive that is enclosed within the viewing
frustum . Furthermore , geometric primitives may each be

a

US 2021/0377623 A1 Dec. 2 , 2021
13

processed

scaled based on a depth of the viewing frustum . All poten
tially visible geometric primitives are then transmitted to the
rasterization stage 660 .
[0128] The rasterization stage 660 converts the 3D geo
metric primitives into 2D fragments (e.g. capable of being
utilized for display , etc.) . The rasterization stage 660 may be
configured to utilize the vertices of the geometric primitives
to setup a set of plane equations from which various attri
butes can be interpolated . The rasterization stage 660 may
also compute a coverage mask for a plurality of pixels that
indicates whether one or more sample locations for the pixel
intercept the geometric primitive . In an embodiment , Z - test
ing may also be performed to determine if the geometric
primitive is occluded by other geometric primitives that
have already been rasterized . The rasterization stage 660
generates fragment data (e.g. , interpolated vertex attributes
associated with a particular sample location for each covered
pixel) that are transmitted to the fragment shading stage 670 .
[0129] The fragment shading stage 670 processes frag
ment data by performing a set of operations (e.g. , a fragment
shader or a program) on each of the fragments . The fragment
shading stage 670 may generate pixel data (e.g. , color
values) for the fragment such as by performing lighting
operations or sampling texture maps using interpolated
texture coordinates for the fragment . The fragment shading
stage 670 generates pixel data that is transmitted to the raster
operations stage 680 .
[0130] The raster operations stage 680 may perform vari
ous operations on the pixel data such as performing alpha
tests , stencil tests , and blending the pixel data with other
pixel data corresponding to other fragments associated with
the pixel . When the raster operations stage 680 has finished
processing the pixel data (e.g. , the output data 602) , the pixel
data may be written to a render target such as a frame buffer ,
a color buffer , or the like .
[0131] It will be appreciated that one or more additional
stages may be included in the graphics processing pipeline
600 in addition to or in lieu of one or more of the stages
described above . Various implementations of the abstract
graphics processing pipeline may implement different
stages . Furthermore , one or more of the stages described
above may be excluded from the graphics processing pipe
line in some embodiments (such as the geometry shading
stage 640) . Other types of graphics processing pipelines are
contemplated as being within the scope of the present
disclosure . Furthermore , any of the stages of the graphics
processing pipeline 600 may be implemented by one or
more dedicated hardware units within a graphics processor
such as PPU 300. Other stages of the graphics processing
pipeline 600 may be implemented by programmable hard
ware units such as the SM 440 of the PPU 300 .
[0132] The graphics processing pipeline 600 may be
implemented via an application executed by a host proces
sor , such as a CPU . In an embodiment , a device driver may
implement an application programming interface (API) that
defines various functions that can be utilized by an appli
cation in order to generate graphical data for display . The
device driver is a software program that includes a plurality
of instructions that control the operation of the PPU 300. The
API provides an abstraction for a programmer that lets a
programmer utilize specialized graphics hardware , such as
the PPU 300 , to generate the graphical data without requir
ing the programmer to utilize the specific instruction set for
the PPU 300. The application may include an API call that

is routed to the device driver for the PPU 300. The device
driver interprets the API call and performs various opera
tions to respond to the API call . In some instances , the
device driver may perform operations by executing instruc
tions on the CPU . In other instances , the device driver may
perform operations , at least in part , by launching operations
on the PPU 300 utilizing an input / output interface between
the CPU and the PPU 300. In an embodiment , the device
driver is configured to implement the graphics processing
pipeline 600 utilizing the hardware of the PPU 300 .
[0133] Various programs may be executed within the PPU
300 in order to implement the various stages of the graphics
processing pipeline 600. For example , the device driver may
launch a kernel on the PPU 300 to perform the vertex
shading stage 620 on one SM 440 (or multiple SMS 440) .
The device driver (or the initial kernel executed by the PPU
400) may also launch other kernels on the PPU 400 to
perform other stages of the graphics processing pipeline
600 , such as the geometry shading stage 640 and the
fragment shading stage 670. In addition , some of the stages
of the graphics processing pipeline 600 may be implemented
on fixed unit hardware such as a rasterizer or a data
assembler implemented within the PPU 400. It will be
appreciated that results from one kernel may be
by one or more intervening fixed function hardware units
before being processed by a subsequent kernel on an SM
440 .
[0134] Images generated applying one or more of the
techniques disclosed herein may be displayed on a monitor
or other display device . In some embodiments , the display
device may be coupled directly to the system or processor
generating or rendering the images . In other embodiments ,
the display device may be coupled indirectly to the system
or processor such as via a network . Examples of such
networks include the Internet , mobile telecommunications
networks , a WIFI network , as well as any other wired and / or
wireless networking system . When the display device is
indirectly coupled , the images generated by the system or
processor may be streamed over the network to the display
device . Such streaming allows , for example , video games or
other applications , which render images , to be executed on
a server or in a data center and the rendered images to be
transmitted and displayed on one or more user devices (such
as a computer , video game console , smartphone , other
mobile device , etc.) that are physically separate from the
server or data center . Hence , the techniques disclosed herein
can be applied to enhance the images that are streamed and
to enhance services that stream images such as NVIDIA
GeForce Now (GFN) , Google Stadia , and the like .

a

Rendering Via Ray - Tracing
[0135] Although rendering tasks are commonly imple
mented using raster - based rendering techniques , some algo
rithms for performing rendering utilize light transport simu
lation referred to as ray - tracing . Ray - tracing algorithms
simulate the interaction of light with virtual objects in a
scene in order to calculate colors for pixels of an image .
Rays are cast into the scene for each pixel of the image as
defined by a viewport and a virtual camera position . Effects
such as diffuse and specular reflection , refraction , absorp
tion , and the like can be simulated at each interaction of a ray
with a virtual object by casting new rays from the intersec
tion point of the ray with the virtual object . As a ray interacts
with a light source , the light path from the virtual camera to

a

?

US 2021/0377623 A1 Dec. 2 , 2021
14

a

a

the light source can be traced to determine a color of light
passing through the pixel corresponding to ray . An aggregate
color from a plurality of rays passing through the pixel can
be calculated to generate a color for the pixel of the image .
[0136] In some embodiments , the PPU 300 can be utilized
to render an image in accordance with various ray - tracing
techniques . For example , ray casting can be implemented for
a number of rays in parallel by executing a plurality of
threads on one or more SMs 440. Each thread compares the
parameters for a ray to a representation of the virtual objects
in the scene to determine whether the ray intersects a virtual
object . In some embodiments , the representation of the
virtual objects comprises a bounding volume hierarchy ,
which is used to efficiently determine whether a ray inter
sects with any virtual objects in the scene . Rays determined
to intersect a virtual object can generate one or more new
rays corresponding to a second plurality of threads executed
by the SMs 440 in order to simulate lighting effects . When
a ray intersects a light source , then the chain of rays from the
virtual camera to the light source is identified as a light path ,
and the color of the pixel can be calculated for the light path .
[0137] Ray - tracing algorithms can be used to produce
realistic computer - generated images . Such algorithms have
been utilized for producing animated feature films or tele
vision programs , simulated images for commercial applica
tions (e.g. , images included in brochures or catalogs) , and
the like . Although ray - tracing was traditionally too complex
for real - time applications , advancements in processing
capacity and the underlying algorithms has made real - time
ray - tracing practical in some applications .

breaks down an input image of an automobile into various
sections and looks for basic patterns such as lines and
angles . The second layer assembles the lines to look for
higher level patterns such as wheels , windshields , and
mirrors . The next layer identifies the type of vehicle , and the
final few layers generate a label for the input image , iden
tifying the model of a specific automobile brand .
[0141] Once the DNN is trained , the DNN can be
deployed and used to identify and classify objects or patterns
in a process known as inference . Examples of inference (the
process through which a DNN extracts useful information
from a given input) include identifying handwritten numbers
on checks deposited into ATM machines , identifying images
of friends in photos , delivering movie recommendations to
over fifty million users , identifying and classifying different
types of automobiles , pedestrians , and road hazards in
driverless cars , or translating human speech in real - time .
[0142] During training , data flows through the DNN in a
forward propagation phase until a prediction is produced
that indicates a label corresponding to the input . If the neural
network does not correctly label the input , then errors
between the correct label and the predicted label are ana
lyzed , and the weights are adjusted for each feature during
a backward propagation phase until the DNN correctly
labels the input and other inputs in a training dataset .
Training complex neural networks requires massive
amounts of parallel computing performance , including float
ing - point multiplications and additions that are supported by
the PPU 300. Inferencing is less compute - intensive than
training , being a latency - sensitive process where a trained
neural network is applied to new inputs it has not seen before
to classify images , translate speech , and generally infer new
information .
[0143] Neural networks rely heavily on matrix math
operations , and complex multi - layered networks require
tremendous amounts of floating - point performance and
bandwidth for both efficiency and speed . With thousands of
processing cores , optimized for matrix math operations , and
delivering tens to hundreds of TFLOPS of performance , the
PPU 300 is a computing platform capable of delivering
performance required for deep neural network - based artifi
cial intelligence and machine learning applications .

Machine Learning
[0138] Deep neural networks (DNNs) developed on pro
cessors , such as the PPU 300 have been used for diverse use
cases , from self - driving cars to faster drug development ,
from automatic image captioning in online image databases
to smart real - time language translation in video chat appli
cations . Deep learning is a technique that models the neural
learning process of the human brain , continually learning ,
continually getting smarter , and delivering more acc
results more quickly over time . A child is initially taught by
an adult to correctly identify and classify various shapes ,
eventually being able to identify shapes without any coach
ing . Similarly , a deep learning or neural learning system
needs to be trained in object recognition and classification
for it get smarter and more efficient at identifying basic
objects , occluded objects , etc. , while also assigning context
to objects .
[0139] At the simplest level , neurons in the human brain
look at various inputs that are received , importance levels
are assigned to each of these inputs , and output is passed on
to other neurons to act upon . An artificial neuron or percep
tron is the most basic model of a neural network . In one
example , a perceptron may receive one or more inputs that
represent various features of an object that the perceptron is
being trained to recognize and classify , and each of these
features is assigned a certain weight based on the importance
of that feature in defining the shape of an object .
[0140] A deep neural network (DNN) model includes
multiple layers of many connected nodes (e.g. , perceptrons ,
Boltzmann machines , radial basis functions , convolutional
layers , etc.) that can be trained with enormous amounts of
input data to quickly solve complex problems with high
accuracy . In one example , a first layer of the DNN model

Detecting Latency Anomalies in the Pipeline
[0144] FIG . 7 illustrates ideal latency in a pipeline of a
cloud - based service , in accordance with some embodiments .
As depicted in FIG . 7 , a server device 710 processes content
and transmits the content via the network 720 to a client
device 730. There may be 5 ms of latency between starting
the processing of the content on the server device 710 and
transmitting the content via the network 720 to the client
device 730. There may also be 5 ms of latency between
receiving the content at the client device 730 and completing
the processing of the content at the client device 730 (e.g. ,
display of the frame) . It will be appreciated that FIG . 7 is
simplified for illustrative purposes . For example , there will
also be some latency associated with the transmission over
the network 720. Given that FIG . 7 illustrates the ideal
latency in the pipeline , we can assume that such latency is
constant and small due to , e.g. , a small number of hops in the
network 720 and perfect connectivity (i.e. , no network
congestion , 100 % delivery rate of packets , etc.) .
[0145] Each frame is processed by the server device 710
every 16.6 ms , corresponding to a 60 Hz frame rate . Each

US 2021/0377623 A1 Dec. 2 , 2021
15

of the pipelined stack 100 and / or each component of each
stage of the pipelined stack 100 .
[0150] In an embodiment , the monitor 950 is configured to
analyze the metadata 904 to extract information that is
useful for debugging . First , the time stamps corresponding
to each frame can be used to identify the elapsed time for
processing the content 902 within each stage (or component
of each stage) to identify the stages or components of the
pipelined stack 100 that are the predominant drivers of
latency . Developers can use this information to streamline
the pipeline by looking for efficiency improvements in the
code . For example , if a particular encoding scheme is taking
too long to process , then alternative encoding schemes can
be explored to attempt to speed up the overall latency of the
pipelined stack 100 .
[0151] Second , a new statistical measure referred to as
per - stage gain can be calculated by comparing timestamps
temporally (e.g. , from one frame to the next) . The variability
in latency can be referred to as a residual latency for a stage .
In one embodiment , a residual VALUE R ; for stage i and
frame number n can be calculated as follows :

R ; (n) = TS , (n) -TS : (n - 1) -Dexp (Eq . 1)

where TS (n) is the time stamp for the nth frame added to the
metadata 904 by the ith stage of the pipelined stack 100 ,
TS , (n - 1) is the time stamp for the previous frame , and D
is the expected frame delta (e.g. , 16.6 ms for 60 Hz) . The
gain G ; for a given stage can be either positive or negative
and reflects a frame over frame deviation from an expected
frame duration .

n

exp

a

G. (n) = R , (n) (Eq . 2)

frame is also displayed at the client device 730 every 16.6
ms . However , the time between when rendering of a frame
is initiated at the server device 710 and displayed at the
client device 730 is at least 10 ms . Even though there is 10
ms of latency in the pipelined stack 100 of the cloud - based
service , the frame rate at the client side 106 is consistent at
one frame every 16.6 ms . Thus , the video is displayed at the
intended frame rate of 60 Hz .
[0146] FIG . 8 illustrates a stutter caused by latency vari
ability of the cloud - based service , in accordance with some
embodiments . As depicted in FIG . 8 , the first frame is
delivered as expected 10 ms after the server device 710
initiates processing . The second frame begins the rendering
process 16.6 ms after the first frame on the server device
710. However , the second frame experiences some latency
in the network 720 that increases the latency to deliver the
content to the client side from 5 ms to 10 ms , which
increases the latency of the second frame by 5 ms . This
increase in latency causes the second frame to be delayed , at
the client side , which increases the time between the first
frame and the second frame from an expected 16.6 ms to
21.6 ms . In such cases where the second frame arrives later
than the start of the next frame period , the client device 730
can be configured to display the first frame twice .
[0147] The third frame begins rendering at the server
device 710 16.6 ms after the second frame . The third frame
experiences the same latency as the first frame , e.g. , 10 ms
and is delivered and ready to be displayed 11.6 ms after the
second frame was ready to be displayed . The total time
between display of the first frame and the third frame is 33.2
ms , which corresponds to the start of the third frame period .
Because both the second frame and the third frame are ready
to be displayed , the client device 730 can be configured to
discard the second frame and display the third frame . More
specifically , the three frame periods correspond to display
ing the first frame , displaying the first frame a second time ,
and displaying the third frame . The result is that a viewer
experiences a stutter in the video stream at the client side
106 .

[0148] FIG . 9 illustrates a client - server architecture 900
for monitoring the pipeline stack of a cloud - based service
910 , in accordance with some embodiments . As depicted in
FIG . 9 , a server device 710 is in communication with a client
device 730 via a network 720. In an embodiment , both the
server device 710 and the client device 730 include network
interface controllers (NIC) that enable the client device 730
to establish a connection with the server device 710. The
client device 730 and / or the server device 710 can establish
a tunnel through the network 720 for delivery of data packets
that include content 902 and metadata 904 for the cloud
based service 910 .
[0149] In an embodiment , the cloud - based service 910
includes one or more stages of a pipelined stack , such as
pipelined stack 100. The client device 730 includes a client
application 930 that includes one or more stages of the
pipelined stack 100. The client device 730 is configured to
transmit the metadata 904 for the content back to the server
device 710. In one embodiment , the metadata 904 is sent
with a feedback signal 906 (e.g. , controller input , sensor
data , etc.) utilized to generate new content for the client
device 730. The metadata 904 is received by a monitor 950
that is configured to analyze end - to - end performance of the
pipelined stack 100 as well as the performance of each stage

G ; (n) = R (n) -Ri - 1 (n) (Eq . 3)

i

,

a

where G , refers to the residual latency at the start of the
pipeline (e.g. , the difference from an expected delay between
the start of processing the current frame and the previous
frame) , and G ; is the per - stage gain for the ith stage , which
is computed as a difference between the residual latency for
the current stage and the residual latency for the previous
stage .
[0152] The total residual latency for the pipeline , Rs , can
be obtained either by a sum of the gains across all stages for
that frame or the residual latency for the last stage of the
pipelined stack 100 , given as follows :

Rs (n) = XG ; (n) = TS24n) -TSy (n - 1) -Dexp , (Eq . 4)

where S equals the number of stages in the pipelined stack
100. This allows for a direct understanding of how much
each stage contributes to an increase in residual latency on
the final stage . It will be appreciated that the per - stage gain
can be positive or negative and indicates whether a given
stage is increasing or decreasing the residual latency of the
pipelined stack 100 .
[0153] Table 1 , below , shows pseudocode for identifying
stages that are a root cause of an anomaly such as stutter . The
monitor 950 can execute instructions for identifying stages
that are the root cause of the anomaly by executing software
that implements the functionality of the pseudocode .

TABLE 1
== ExpectedFrameInterval [n] 1000.0 / FPS [n]

For (each stage in the pipeline) {
i : current stage number // i = { 1,2 , ... , S }

US 2021/0377623 A1 Dec. 2 , 2021
16

TABLE 1 - continued

=

n : current frame number
Th 1 : 8.33 ms // Threshold for anomaly
Th 2 : 4 ms // Threshold for a stage as source
Delta [i] [n] = Timestamp [i] [n] - Timestamp [i] [n - 1]
Delta [i - 1] [n] = Timestamp [i - 1] [n] - Timestamp [i - 1] [n - 1]
Residual [i] [n] = Delta [i] [n] - ExpectedFrameInterval [n]
Residual [i - 1] [n] = Delta [i - 1] [n] - Expected Frame Interval [n]
Gain [0] [n] = Residual [0] [n]
Gain [i] [n] = Residual [i] [n] - Residual [i - 1] [n]

}
For (each Frame n) {

If (Delta [S] [n] - Expected FrameInterval [n] > Th_1)
Mark Frame as Anomaly

}
Count [i] = 0
For (each Frame n marked as Anomaly) {

For { each stage i in the pipeline) {
If (Gain [i] [n] > Th_2)

Count [i] ++
}

}
MeanGain [i] = 0
For (each Frame n) {

MeanGain [i] + = Gain [i] [n]
}
MeanGain [i] / = N // N is total frames per session
SessionDuration = Timestamp [0] [n] -Timestamp [0] [0]
CountsPerMinute [i] = Count [i] / SessionDuration
Stutter DurationPerMinute [i] = CountsPerMinute * MeanGain [i]

=

=

[0154] The monitor 950 identifies frames as anomalies
when the total delta for time stamps corresponding to two
sequential frames exceeds the expected frame period (e.g. ,
Delta [S] [n] -ExpectedFrameInterval [n]) by a first threshold
value . It will be appreciated that the pseudocode in Table 1
describes , for each stage in the pipeline , counting frames in
which anomalies occur based on a comparison of the per
stage gain for the frame with a second threshold value ,
which is less than the first threshold value . This identifies
stages that could be a major contributing source of the total
residual latency for a frame . Statistical measures of the
operation of the pipeline are calculated including , a mean
gain per stage , a counts per minute that indicates a rate that
a stage is a major contributor to the latency , and stutter
duration per minute which is a measure of the severity of the
latency over time . Stutter duration per minute , and interme
diate aggregates thereof , can help differentiate between
stages with low frequency of occurrence but higher disrup
tion (larger latency delta) and stages with higher frequency
of occurrence but lower disruption (smaller latency delta) .
[0155] In an embodiment , the thresholds can be set manu
ally based on an analysis of the application . In another
embodiment , the monitor 950 can be configured to adjust the
gains automatically . For example , the monitor 950 can
adjust the gains up or down to capture a desired amount of
anomalies as a percentage of total frames in order to ensure
that the anomaly is defined relative to the average operation
of the pipeline rather than a specific threshold corresponding
to a QoS requirement , for example .
[0156] In an embodiment , the monitor 950 can implement
a dashboard . The dashboard refers to an application that
generates graphical user interfaces that can be transmitted to
a client device . For example , the dashboard can refer to a
number of web - based applications that can be accessed via
a browser application of a client device . The monitor 950
generates dynamic hypertext markup language (HTML)
pages that are transmitted to the client device and viewed in
the web browser application . The HTML page can include

images (e.g. , graphs or charts) that show the results of the
statistical information calculated by the monitor 950. For
example , each frame marked as including an anomaly can be
plotted in a chart , or each stage that has a gain above a
threshold value can be plotted on a chart . The dashboard
enables a developer to quickly identify issues in the pipe
lined stack 100 of the cloud - based service . Various examples
of the visualizations that can be generated by the monitor
950 are discussed below .
[0157] FIG . 10 is a flowchart of a method for analyzing the
metadata , in accordance with some embodiments . The
method 1000 is described in the context of software
executed by one or more processors . In some embodiments ,
the method 1000 , at least in part , can be performed by
instructions executed by a server device 710. In other
embodiments , the method 1000 can be performed by hard
ware or some combination of hardware and software .
[0158] At step 1002 , metadata associated with a pipeline
is received . In one embodiment , the metadata comprises
information corresponding to a number of frames of video
processed by the pipeline . The metadata can include , for
each of a plurality of frames , a set of time stamps that
indicate when each stage of the pipeline completed process
ing of the frame .
[0159] At step 1004 , a residual value is calculated for each
stage of the pipeline . The residual latency value refers to a
difference between a measured interval and an expected
interval for a particular stage of the pipeline . The expected
interval refers to an average rate that instances of the content
are processed by the pipeline . In an embodiment , the
residual latency values are calculated for each frame in a
plurality of frames processed by the pipeline .
[0160] At step 1006 , a gain is calculated for each stage of
the pipeline . The gain refers to a difference in the residual
latency value for a stage in the pipeline and the residual
latency value for a previous stage in the pipeline , for the
current instance of the content . In an embodiment , the gains
are calculated for each frame in the plurality of frames
processed by the pipeline .
[0161] At step 1008 , anomalies are identified based on a
comparison of a total residual latency with a threshold value .
In an embodiment , an anomaly is identified for a current
frame based on a comparison of the total residual latency for
the frame to a threshold value . In an embodiment , the total
residual latency for a current frame refers to a difference
between time stamps for a last stage in the pipeline between
the current frame and a previous frame .
[0162] At step 1010 , a number of anomalies are counted
where the gain is above a threshold value . In an embodi
ment , a counter for each stage of the pipeline is initialized .
For each frame identified as having an anomaly , the counter
for a particular stage is incremented if the gain for the
particular stage is above a threshold value .
[0163] At step 1012 , a metric value is calculated for each
stage of the pipeline . The metric value can be calculated by
multiplying a rate of the gain exceeding the threshold by a
mean gain for the stage . In an embodiment , the mean gain
refers to summing all of the gains for a stage for each of N
frames and then dividing by N. The rate of the gain exceed
ing the threshold is equal to the value of the counter for the
stage divided by a duration of the session for the N frames .
[0164] FIG . 11 illustrates a visualization 1100 of the
per - stage gain during a session , in accordance with some
embodiments . As depicted in FIG . 11 , the per - stage gain is

a

US 2021/0377623 A1 Dec. 2 , 2021
17

use a

plotted for approximately 900 frames collected during a
session . At 60 frames per second , this accounts for a session
of approximately 15 seconds . The chart in FIG . 11 illustrates
the gain for an encoder stage . Although the visualization
1100 only includes a plot of the per - stage gain for a single
stage of the pipeline , the same chart can be used to plot the
gain for multiple stages , with the line for each stage being
differentiated by color or line type (e.g. , dashed , center line ,
etc.) . This visualization makes it easy to determine that an
encoder stage of the pipeline is experiencing high latency
variability
[0165] FIG . 12 illustrates a visualization 1200 of the
per - stage residual latency during a session , in accordance
with some embodiments . The residual latency is plotted for
a single stage of the pipeline . However , in other embodi
ments , the residual latency can be plotted for multiple stages
on a single chart , with the line for each stage being differ
entiated by color or line type . As depicted in FIG . 12 , the
residual latency for a presentation complete stage (e.g. , the
final stage in the pipeline) peaks multiple times between
approximately frames 500 and 750. Of course , it will be
appreciated that residual latencies for other stages of the
pipeline can be plotting in the chart in addition to or in lieu
of the presentation complete stage .
[0166] In one embodiment , the developer can
graphical user interface to select the stages of the pipeline to
include in a particular visualization and the particular vari
able (e.g. , gain , residual latency , etc.) to plot on the graph or
chart . This enables the developer to focus on a small number
of stages rather than see the cumulative total latency asso
ciated with the entire pipeline . In some embodiments , the
stages included in the chart will be selected automatically .
For example , the stage with the maximum absolute value of
the selected parameter for any frame in the session will be
included in the chart as well as any other stages of the
pipeline having a similar parameter above a specified mag
nitude (e.g. , 20 % of the maximum absolute value) .
[0167] FIG . 13 illustrates a visualization 1300 of anoma
lies detected in the pipelined stack , in accordance with some
embodiments . The stages of the pipeline are listed on the
y - axis of the graph and the frame numbers are plotted on the
X - axis of the graph . The instances where the Count variable
was incremented (e.g. , where the per - stage gain for that
frame is above a threshold value) for a particular stage is
indicated on the chart . The visualization 1300 indicates
succinctly how many times each stage is identified as a
major source of the latency .
[0168] FIG . 14 illustrates a visualization 1400 of a session
analysis chart , in accordance with some embodiments . Visu
alizations 1100 , 1200 , and 1300 are all shown in graph
formats . However , other information can be presented in the
dashboard via a chart . The visualization 1400 includes a
major stutter analysis (where the threshold is set at 4 ms) and
a minor stutter analysis (where the threshold is set at 2 ms) .
In other words , by running the analysis set forth in the
pseudocode above multiple times using different parameters
(e.g. , threshold values) for each pass , different information
can be gained and compared . For example , the parameter
Th_2 can be set at 4 ms for a first pass to perform the major
stutter analysis and set at 2 ms for a second pass to perform
the minor stutter analysis . Such visualizations off insight to
the developer .
[0169] FIG . 15 illustrates a visualization 1500 of a sum
mary of the session , in accordance with some embodiments .

The visualization 1500 is a chart that lists the stages of the
pipelined stack 100 and a classification of each stage (e.g. ,
a classification { Bad , Poor , Okay , Good , Perfect } on a scale
between 1 and 5) selected for the stage . In some embodi
ments , the per - stage information related to per - frame gain or
per - frame residual latency is not easily digestible at a glance .
Therefore , in some embodiments , the dashboard may also
provide a quick summary of a session to the developer that
indicates the quality of the content stream during the session .
The classifications of the stages on an easily digestible scale
can provide a quick indicator of whether the developer
should look into the detailed data for the session or move on
to analysis of a different session . The visualization 1500 can
also provide a quick indicator of which subset of stages are
the likely source of the problems with a session . The
classification can be determined using a formula based on
the various metrics generated by the monitor 950 .
[0170] The dashboard functionality described above is
useful for subsequent analysis of the captured metadata
related to a session . This allows a developer of the service
to identify where bottlenecks in the pipeline are occurring
and work to adjust algorithms in the code to solve those
bottlenecks .

[0171] In some embodiments , the metadata can be used to
adjust the pipelined stack 100 in real - time . As the metadata
is collected by the client device 730 , the metadata is trans
mitted back to the server device 710 and processed by an
algorithm that utilizes the metadata to adjust operating
parameters of one or more stages of the pipelined stack 100 .
For example , analysis of the metadata can indicate that the
per - stage gain for the encoding stage is above a threshold
value and , in response , one or more parameters of the
encoding stage can be adjusted to attempt to correct the
latency associated with the encoding stage . In some embodi
ments , the type of encoder (e.g. , codec) used for encoding
can be changed and / or particular parameters of the encoder
can be changed . The result of changing these parameters
might cause the bitrate of the encoded bit stream to increase
(requiring more network bandwidth to transmit the bit
stream) , but the overall latency of the pipelined stack 100
may decrease as the server - side encoding latency decreases
and the client - side decoding latency increases , for example .
[0172] As another example of adjusting parameters of the
pipelined stack 100 automatically , the overall frame rate can
be reduced from , e.g. , 60 Hz to 30 Hz during periods of high
network congestion by only capturing every other frame
generated by the application . For example , when the meta
data indicates that the network stage is the source of most of
the latency , steps to reduce the overall bandwidth of the
content stream can be taken such as reducing the resolution
or bit depth of the video frames , reducing the frame rate ,
improving encoding efficiency , etc. When the metadata
indicates that the network stage is no longer the source of
most of the latency (e.g. , network congestion has improved) ,
then the parameters can be adjusted , increasing the frame
rate , resolution , or bit depth of the content as needed to
ensure a particular QoS .
[0173] Such dynamic adjustments to the pipeline stack
100 can help the service to deliver the highest quality
content that the latency of the network 720 and / or the client
device 730 allow while maintaining a given QoS . Similarly ,
the server device 710 can adjust the stages to decrease the

a

a

US 2021/0377623 A1 Dec. 2 , 2021
18

a

quality of the content to try and improve speed on the server
side 102 in order to reduce the overall latency of the
pipeline .
[0174] It will be appreciated that the techniques described
above are not limited to streaming video games or VR / AR
applications . Any content that requires a pipelined stack
implemented in a client - server framework and requiring
some type of client - side feedback is contemplated as being
within the scope of the disclosure . One application where the
techniques that are described above could be used is in
training of or inference with deep learning models in , e.g. ,
autonomous vehicles or other applications . This invention
can help identify the problem stages within such a pipeline
with respect to the consistency of latency .
[0175] For example , an application on a server can be
designed to generate simulated video that represents simu
lated images captured from a camera of an autonomous
vehicle . The video frames can be delivered to a client device
(e.g. , an autonomous vehicle or an autonomous vehicle
simulator) and used as input to a machine learning algorithm
configured to generate control outputs for controlling the
vehicle (e.g. , steering inputs , throttle inputs , etc.) . The
control outputs generated by the machine learning algo
rithms , which would normally be used to drive the vehicle ,
are transmitted back to the server device in order to update
the application and generate the next frame of simulated
video , which is sent back to the autonomous vehicle to help
provide inputs to the machine learning algorithm at a next
time step . This allows for testing of multiple simulated
scenarios to determine how the machine learning algorithm
reacts without putting real people or property in jeopardy on
the roads . In fact , this type of simulated system can enable
thousands of virtual vehicles to be tested at once without
requiring all of the necessary hardware of thousands of
automated vehicles to be built and introduced to real - world
driving conditions . The embodiments disclosed herein can
be used to study latency associated with the pipeline for
generating the simulated images in response to inputs (e.g. ,
sensor signals) from the autonomous vehicle / simulator plat
form and generating outputs by the machine learning algo
rithm . In this case , the graphics pipeline for rendering
images is located on the server - side of the pipeline , and the
machine learning algorithm can be located on either the
server - side or the client - side (e.g. , in the autonomous
vehicle) of the pipeline .
[0176] Furthermore , the solution of tracking stages in a
pipeline using time stamps can be utilized in other applica
tions that are not typically software - based . For example , a
shipping company may track packages routed through a
distribution network of the shipping company . An automated
scanner can identify a package arriving at a stage of the
distribution network and update metadata in a computer
system associated with the stage . A time stamp can be added
to the metadata when the package arrives at a stage of the
distribution network and leaves the stage of the distribution
network . The stages can include specific locations of the
distribution network (e.g. , processing centers , receiving cen
ters , distribution hubs , delivery vehicles , and the destina
tion) . The delivery route of each package delivered to a
particular address is a pipeline and multiple packages deliv
ered through the same route are different instances of the
metadata for the pipeline . A server device could collect the
metadata for a particular delivery route for a large number
of packages and measure the variable latency (e.g. , change

in transit times) for each stage of the delivery route . The
visualization of this information could help the shipping
company make capital improvements in certain locations to
help improve delivery speed .
[0177] As yet another example , public transportation (e.g. ,
trains , buses , etc.) may follow specific routes and have many
stops along a given route . An automated system could be
installed in the vehicles to log time stamps at each stop , with
the route between adjacent stops representing each stage in
the pipeline . Arriving at a given stop adds a new time stamp
to metadata for a particular transit of the route and , over a
number of transits , enough metadata is collected to deter
mine whether there are problems with certain locations
along the route that are causing delays in the total transit
time . An individual could use the dashboard to see where
along the route the issues are occurring and possibly adjust
the route to ensure faster transit times .

[0178] It is noted that the techniques described herein may
be embodied in executable instructions stored in a computer
readable medium for use by or in connection with a pro
cessor - based instruction execution machine , system , appa
ratus , or device . It will be appreciated by those skilled in the
art that , for some embodiments , various types of computer
readable media can be included for storing data . As used
herein , a " computer - readable medium ” includes one or more
of any suitable media for storing the executable instructions
of a computer program such that the instruction execution
machine , system , apparatus , or device may read (or fetch)
the instructions from the computer - readable medium and
execute the instructions for carrying out the described
embodiments . Suitable storage formats include one or more
of an electronic , magnetic , optical , and electromagnetic
format . A non - exhaustive list of conventional exemplary
computer - readable medium includes : a portable computer
diskette ; a random - access memory (RAM) ; a read - only
memory (ROM) ; an erasable programmable read only
memory (EPROM) ; a flash memory device ; and optical
storage devices , including a portable compact disc (CD) , a
portable digital video disc (DVD) , and the like .
[0179] It should be understood that the arrangement of
components illustrated in the attached Figures are for illus
trative purposes and that other arrangements are possible .
For example , one or more of the elements described herein
may be realized , in whole or in part , as an electronic
hardware component . Other elements may be implemented
in software , hardware , or a combination of software and
hardware . Moreover , some or all of these other elements
may be combined , some may be omitted altogether , and
additional components may be added while still achieving
the functionality described herein . Thus , the subject matter
described herein may be embodied in many different varia
tions , and all such variations are contemplated to be within
the scope of the claims .
[0180] To facilitate an understanding of the subject matter
described herein , many aspects are described in terms of
sequences of actions . It will be recognized by those skilled
in the art that the various actions may be performed by
specialized circuits or circuitry , by program instructions
being executed by one or more processors , or by a combi
nation of both . The description herein of any sequence of
actions is not intended to imply that the specific order
described for performing that sequence must be followed .
All methods described herein may be performed in any

US 2021/0377623 A1 Dec. 2 , 2021
19

particular stage for the current frame and a time stamp
corresponding to the particular stage for a previous frame .

4. The system of claim 3 , wherein the pipeline generates
the plurality of frames in accordance with a variable frame
rate , and wherein the expected frame duration is set in
accordance with a target frame rate .

5. The system of claim 2 , wherein the metric for a
particular stage is calculated by multiplying a rate of the gain
for the particular stage exceeding the second threshold value
by a mean of the gain for the particular stage over a duration
of the session .

6. The system of claim 1 , wherein the content comprises
a frame of video rendered in response to a feedback signal
received from the client device .

7. The system of claim 6 , wherein the frame of video is
rendered in accordance with a ray - tracing algorithm .

8. The system of claim 6 , wherein the feedback signal
includes at least one signal selected from the group consist
ing of :

suitable order unless otherwise indicated herein or otherwise
clearly contradicted by context .
[0181] The use of the terms “ a ” and “ an ” and “ the ” and
similar references in the context of describing the subject
matter (particularly in the context of the following claims)
are to be construed to cover both the singular and the plural ,
unless otherwise indicated herein or clearly contradicted by
context . The use of the term “ at least one ” followed by a list
of one or more items (for example , “ at least one of A and B ”)
is to be construed to mean one item selected from the listed
items (A or B) or any combination of two or more of the
listed items (A and B) , unless otherwise indicated herein or
clearly contradicted by context . Furthermore , the foregoing
description is for the purpose of illustration only , and not for
the purpose of limitation , as the scope of protection sought
is defined by the claims as set forth hereinafter together with
any equivalents thereof . The use of any and all examples , or
exemplary language (e.g. , " such as ”) provided herein , is
intended merely to better illustrate the subject matter and
does not pose a limitation on the scope of the subject matter
unless otherwise claimed . The use of the term “ based on "
and other like phrases indicating a condition for bringing
about a result , both in the claims and in the written descrip
tion , is not intended to foreclose any other conditions that
bring about that result . No language in the specification
should be construed as indicating any non - claimed element
as essential to the practice of the invention as claimed .
What is claimed is :
1. A system for monitoring latency variability in a pipe

line , the system comprising :
a server device including one or more processors config

ured to :
receive , from a client device , metadata corresponding

to content processed by a plurality of stages of the
pipeline , wherein the metadata includes information
corresponding to each stage of the plurality of stages
of the pipeline ;

generate , for each stage of the plurality of stages of the
pipeline , a metric calculated based on the metadata ;
and

adjust a parameter associated with at least one stage of
the pipeline based on the metrics for the plurality of
stages .

2. The system of claim 1 , wherein the content comprises
a plurality of frames streamed to the client device during a
session , and wherein the one or more processors are further
configured to :

calculate , for each frame of the plurality of frames , a gain
for each stage of the pipeline ;

compare , for each frame of the plurality of frames , a total
residual latency to a first threshold value to identify
anomalous frames ;

calculate , for each stage of the pipeline , an aggregate
value by summing a number of anomalous frames in
the plurality of frames where the gain corresponding to
the stage in the anomalous frame is greater than a
second threshold value ; and

generate a visual representation based on the metrics ,
wherein the metric for a particular stage is calculated
based on the aggregate value for the particular stage .

3. The system of claim 2 , wherein the gain for a particular
stage is calculated based on an expected frame duration and
a difference between a time stamp corresponding to the

controller input ; or
sensor data from a head - mounted display .
9. The system of claim 1 , wherein adjusting the parameter

causes an encoding stage or a decoding stage of the pipeline
to use a different encoding configuration or a different codec
for encoding or decoding the content .

10. The system of claim 1 , wherein the information
corresponding to each stage of the pipeline comprises a time
stamp that indicates a time when the processing of the
content by the stage is complete .

11. The system of claim 1 , wherein each stage includes
one or more components and at least one stage includes a
plurality of components , and wherein information corre
sponding to a particular stage of the pipeline comprises a
time stamp for each component of the particular stage that
indicates a time when the processing of the content by the
component is complete .

12. The system of claim 1 , wherein the pipeline includes
at least one stage selected from the group consisting of : a
frame capture stage , an encoding stage , a forward error
correction (FEC) stage , a transmit stage , a network stage , a
decoding stage , a resynchronization stage , or a display stage .

13. The system of claim 1 , wherein the client device is
configured to train a neural network for an autonomous
vehicle , and wherein the server device is operable to gen
erate simulated camera signals , representative of camera
signals captured by the autonomous vehicle , in response to
control inputs received from the autonomous vehicle .

14. A method , comprising :
receiving , from a client device , metadata corresponding to

content processed by a plurality of stages of a pipeline ,
wherein the metadata includes information correspond
ing to each stage of the plurality of stages of the
pipeline ;

generating , for each stage of the plurality of stages of the
pipeline , a metric calculated based on the metadata ; and

adjusting a parameter associated with at least one stage of
the pipeline based on the metrics for the plurality of
stages .

15. The method of claim 14 , wherein the content com
prises a plurality of frames streamed to the client device
during a session , the method further comprising :

calculating , for each frame of the plurality of frames , a
gain for each stage of the pipeline ;

US 2021/0377623 A1 Dec. 2 , 2021
20

comparing , for each frame of the plurality of frames , a
total residual latency to a first threshold value to
identify anomalous frames ;

calculating , for each stage of the pipeline , an aggregate
value by summing a number of anomalous frames in
the plurality of frames where the gain corresponding to
the stage in the anomalous frame is greater than a
second threshold value ; and

generating a visual representation based on the metrics ,
wherein the metric for a particular stage is calculated
based on the aggregate value for the particular stage .

16. The method of claim 15 , wherein the gain for a
particular stage is calculated based on an expected frame
duration and a difference between a time stamp correspond
ing to the particular stage for the current frame and a time
stamp corresponding to the particular stage for a previous
frame

17. The method of claim 15 , wherein the metric for a
particular stage is calculated by multiplying a rate of the gain
for the particular stage exceeding the second threshold value
by a mean of the gain for the particular stage over a duration
of the session .

18. The method of claim 14 , wherein the content com
prises a frame of video rendered in response to a feedback

signal received from the client device , and wherein the
feedback signal includes at least one signal selected from the
group consisting of :

controller input ; or
sensor data from a head - mounted display .
19. The method of claim 14 , wherein the information

corresponding to each stage of the pipeline comprises a time
stamp that indicates a time when the processing of the
content by the stage is complete .

20. A non - transitory computer - readable media storing
computer instructions that , when executed by one or more
processors , cause the one or more processors to perform
steps comprising :

receiving , from a client device , metadata corresponding to
content processed by a plurality of stages of a pipeline ,
wherein the metadata includes information correspond
ing to each stage of the plurality of stages of the
pipeline ;

generating , for each stage of the plurality of stages of the
pipeline , a metric calculated based on the metadata ; and

adjusting a parameter associated with at least one stage of
the pipeline based on the metrics for the plurality of
stages .

a

