US 20220229664A1

a2y Patent Application Publication (o) Pub. No.: US 2022/0229664 A1l

a9y United States

Arakawa et al.

43) Pub. Date: Jul. 21, 2022

(54) INFORMATION PROCESSING DEVICE,
COMPILING METHOD, AND
NON-TRANSITORY COMPUTER-READABLE
RECORDING MEDIUM

(71) Applicant: FUJITSU LIMITED, Kawasaki-shi
(IP)

(72) Inventors: Takashi Arakawa, Numazu (JP);
MAKOTO KOMAGATA, Kawasaki
(IP); Akira HIRATA, Edogawa (JP);
Kensuke Watanabe, Numazu (JP)

(73) Assignee: FUJITSU LIMITED, Kawasaki-shi
(IP)

(21) Appl. No.: 17/488,359

(22) Filed: Sep. 29, 2021
(30) Foreign Application Priority Data
Jan. 8, 2021 (IP) coecevververcireecccinen 2021-002298

Publication Classification

(51) Int. CL
GOGF 9/30 (2006.01)
GOGF 9/38 (2006.01)
(52) US.CL
CPC ... GOGF 9/30047 (2013.01); GOGF 9/381

(2013.01); GOGF 930043 (2013.01); GO6F
9/30065 (2013.01)

(57) ABSTRACT

An information processing device includes a memory, and a
processor coupled to the memory and configured to detect an
access pattern according to which a memory reference
instruction in a first loop process to be executed posterior to
a second loop process accesses first data elements in the
memory every loop iteration, and insert a prefetch instruc-
tion to the second loop process based on the access pattern,
the prefetch instruction being an instruction to transfer at
least one of the first data elements from the memory to a first
sector of a cache memory, the at least one of the first data
elements transferred to the first sector of the cache memory
being never cached out by a second data element different
from each of the first data elements.

ARRAY ACCESS PATTERN [TOTAL SIZE
$11~RECEIVE INPUT OF SOURCE PROGRAM -
1 | B N T SEQUENTIAL ACCESS | unknown
L S "
REPEAT FOR TWO CONSECUTIVE éE% alil SEQUENTIAL ACCESS unknown
LOOP PROCESSES g bi] SEQUENTIAL ACCESS | unknown
312 disa idxi] SEQUENTIAL ACCESS unknown
-9 - :
= % x{i] SEQUENTIAL ACCESS | unknown
s13~I___DETECT Acciss PATTERN | arReY | Type| PREFEICH CANDIDATE
B2~
DETERMINATION PROCESS OF o S THIRD PREFETCH
S14~{| CANDIDATE PR%FETCH METHOD ||, R (] read | 16 iterations METHOD
=
=18 o . FIRST PREFETCH
[DEGENERATION DETERMINATION PROCESS [}\‘ ggg tablefidxi]] |read| 8 KiB METHOD
S16 ' ‘ . THIRD PREFETCH
THERE 1S SUBJECT? x[i] write | 16 iterations WETHOD
1 ARRAY | TYPE| PREFETCH lppeceren meHoD
$17~] INSERT PREFETCH INSTRUCTION | DISTANCE
o — THIRD PREFETCH
REPEATngg gggcgggggcuﬂw B3 | idx{i] read | 16 iterations WETHOD
(; =1 . . THIRD PREFETCH
év_é_g_' table[idx{i]] | read| 16 iterations WETHOD
$18~| GENERATE EXECUTABLE PROGRAM | - I THIR&E%EEETCH

END

Patent Application Publication Jul. 21,2022 Sheet 1 of 33 US 2022/0229664 A1

FIG. 1

PROCESSOR

ARITHMETIC
44— " UNIT

5 REGISTER

6~ CACHE MEMORY

MEMORY 3

Patent Application Publication Jul. 21,2022 Sheet 2 of 33 US 2022/0229664 A1

FIG. 2A
1: for (size_ti=0; i<n; ++i) {
2: x[i] = a[i];
3.}
FIG. 2B
1: for (size_ti=0; i<n; ++i) {
2: x[i] = a[i];
3: prefetch(x[i+N]);
4. prefetch(a[i+N]);
5}

Patent Application Publication Jul. 21,2022 Sheet 3 of 33 US 2022/0229664 A1

FIG. 3A

for (size_t i=0; i<n; ++i) {
idx[i] = op1(a[i], b[i], -..);

}

for (size_t i=0; i<n; ++i) {
x[i] = op2(table[idx[i]]);

}

S A

FIG. 3B

for (size_t i=0; i<n; ++i) {
idx[i] = op1(a[i], b[i], ...);

}

for (size_ti=0; i<n; ++i) {
x[i] = op2(table[idx[i]]);
prefetch(table[idx[i+N]]);

}

NogoRON =

Patent Application Publication Jul. 21,2022 Sheet 4 of 33 US 2022/0229664 A1

FIG. 4A
1: for (size_t i=0; i<m; ++i) {
2: } // OPERATION BOTTLENECK PROCESS
3:
4: for (size_t i=0; i<n; ++i) {
5: } x[i] = op2(tablel[opl(alil, b[il, -=1);
6:
FIG. 4B
1: for (size_t i=0; i<m; ++i) {
2: ! // OPERATION BOTTLENECK PROCESS
3:
4: for (size_t i=0; i<n; ++i) |
5: x[i] = op2(table[op1(alil, bl[il, --)1);
6: prefetch (table[opl(ali]l, b[il, --)1);
1:
FIG. 4C
1: for (size_t i=0: i<m; ++i) |
2: } // OPERATION BOTTLENECK PROCESS
3:
4: // PROCESS FOR GALCULATING AND INITIALIZING
idx[0] TO idx[N-1]
5: for (size_t i=0; i<n; ++i) {
6: t1 = idx[i]
7: x[i] = op2(table[t1]):
8: t2 = opl(ali+N], b[i+N], ---);
9: prefetch (table[t2]):
10: } idx[i+N] = t2;
11:
12: // PROCESS FOR PREVENTING overrun BY
i+N ACCESS

¢ DId

.
s L o= N+z§ umo_ | ewen
S (I gsﬁea [hoipeo | | @ | omwen
N cmg [fenepeor | [Tenlapeo | | | swwen
2 :N%Bmc %E@a | :+zw cmo_ | pawen
0 [a= Hm+z_xn_ [boipeol | | exwen
2 ”1 beemm- S e S Sy Sy SRS S U Ryt Y B—— Mup— Fup—— “,

o ([zle1qe1) ;oﬁma [NJa peo | CHWBI
= 0 :%ﬁﬁ omo_ [INle peol | HUBI
= [aenw [Toxprpeol || o#wein
e
I o
=

S lsv|w|er|a||o|e|s|z]|o|s|v|e]|e]|t]|o] enh
E

«

5

g

Patent Application Publication Jul. 21, 2022 Sheet 6 of 33 US 2022/0229664 A1

FIG. 6A
1. for (size_t i=0; i<m; ++i) {
2: // OPERATION BOTTLENECK
PROCESS
3: }
4: for (size_t i=0; i<n; ++i) |
5: x[i] =
6: |}
FIG. 6B
1. for (size_t i=0; i<m; ++i) {
2: // OPERATION BOTTLENECK
PROCESS}
prefetch (x[0]) ;
prefetch (x[1]) ;

prefetch (x[N-1]) ;

for (size t i=0; i<n; ++i) |
X[l] =~
prefetch (x[i+N]) ;

— O 0O ~JO Tl

Patent Application Publication Jul. 21,2022 Sheet 7 of 33 US 2022/0229664 A1

FIG. 7

INFORMATION
SOURCE EXECUTABLE
PROCESSING PROGRAM

—>>]
PROGRAM DEVICE

21 230

Patent Application Publication

FIG. 8A

FIG. 8B

Jul. 21, 2022 Sheet 8 of 33

US 2022/0229664 Al

6
9 9
n ol ol 7
111 NN S \\\
OLDESTHHSSIS e
9—— NN [tne TESSN
11— T
R | \NNNNN| | IR | [NNSNSHESSIN
10 <] QN 10
S | _lé_wxx_x_»——a ——9
I N e ey A
..... A
to~]| TRawsrer
MEMORY ~
] RN e
1094 =
i:;:;:;:;:;:; \\ |
11
)
9 9 >
6 10% 1” /
104 o R
g—||LATEST \ DEOO \\
11~} RIS
9—— \ S \
10 oo HA10
9— | \ RO | S
11~} NN H-11
9—— \\ L 9

Patent Application Publication Jul. 21,2022 Sheet 9 of 33 US 2022/0229664 A1

FIG. 9A 6
Ba A La
SECTOR #1 (ISECTOR #0'

1 ToLesT \\\\ NN |RREEES |

9—| NIESSSSE= 9

R ppennn] ST
90— SITHATESH 9
T ey R [

10~ | TRANSFER
MEMORY ~

N e e

10

. . .2. -
e /6 Jote

M toLpesT N[

SIS s 0
ol | AresT 2
SECTOR #1 {SECTOR #0 |

..

Patent Application Publication Jul. 21,2022 Sheet 10 of 33 US 2022/0229664 A1

FIG. 10A
1: for (size_t i=0; i<n; ++i) {
2: } idx[i] = op1(ali], bLil, --);
3:
4: for (size t i=0; i<n; ++i) |
5: } x[i] = op2(table[idx[i]l]):
6:
FIG. 10B
1: for (size_t i=0; i<n; ++i) {
2: idx[i] = opt(alil, bLil, --);
er sector_prefetch (table[ldx[l]])
5: for (size_t i=0; i<n; ++i) |
6: x[i] = op2(tablelidx[ill);
1:
8: sector setting deactivation();

US 2022/0229664 Al

Jul. 21,2022 Sheet 11 of 33

Patent Application Publication

210)S 2103s
" (1y-¢) - | (ssiurg) |
dnxo0}-9|gE) Lo 1| dnyjool-a|qe) m
o L] peoj-xepul "
peol-xepul I B T L ey e B
! P (Hy-$) Xapul ¥ :
m zomwwmmw4<o QJxOOTJWﬁﬁ o w
[uosejeud S I I L e
| IS— peoj-xapul NOI 1vYddd0 X / NOILVY3d0| $S390Md

pEQ| ‘

NOILVd3dof |] &~ VEISSS SS T N
VARE N <o / | IN3no3sans
AN o= RN seaaas
NN,

= = ek / NOITLYINO TV
w 3 NN\ A .

Xapul

| NY Y e N

L .1 [2101s-xapul m
=S S T
m // o X // .| HNIG3D3ud
Y f y ¢ 3 YY) | € y ¢ X

NN B ssuses A RS uaN))
C sewan Mv || $ewan N gewan N
............ 4007 DNIGIOTd dOOT ININOISENS weidimi o in
NI HO13434d NI HO1343¥d HOL3434d LNOHLIM 11 'OId

Patent Application Publication Jul. 21,2022 Sheet 12 of 33 US 2022/0229664 A1

FIG. 12A
1: for (size_t i=0; i<m; ++i) |
2. } // OPERATION BOTTLENECK PROCESS
3:
4: for (size_t i=0; i<n; ++i) |
5: x[i] = op2(table[opl(alil, bLil, --91);
6:

FIG. 12B

1 size_t tbl_sz = sizeof (table) / sizeof (table[0]);

2 for (size_t i=0; i<m; ++i) |

3 // OPERATION BOTTLENECK PROGESS

4 for (size_t j=tbl_sz*i/m; j<tbl_szx(i+1)/m; ++j) {
5: } sector_prefetch(table[j]);
6:

1

8

9

1

1

}

for (size_t i=0; i<n; ++i) |

: x[i] = op2(tablel[opl (alil, blil, =) 1):
0:
1: sector setting deactivation ():

< I
2 Y
m 210} 910}S-Xapul P “
S S | yoleyeud \ A
S dnoo}-ajqe) L peol . // W
2 | peo| P 9l0js Lo] /Y
| Coi L (u-g) L / |
- | yoreseud . 1| dmjoor-siqey BN] < y 1| $53004d
m |o1ge)-sjoym ¢dO i i | peol-xepul o / \ g v._.zmmwmwm:m
“ m / va_m w ﬁ
5 m 7 ﬂ m
2 b N N [\do|
7 I XSy
S e \ — a
m, N / 310}s
= \ (ssiu-g)
= A 4§ | dnxool-aiqe} | $s300ud
= / L__Peol 7 dooT
g . | DN10303ud
£ NN y i
2 L | |
e NN | [NOILVE3d0 NI// 1
g NOT1V43d0 N “
E $oWIN NIV L gewaw Ny
-~ R S _ S
=
= d007 DNI10303ud d00T IN3NO3SANS
E NI HO1333d NI H013434d HO1343dd LNOHLIN
g €1 DI

Patent Application Publication Jul. 21,2022 Sheet 14 of 33 US 2022/0229664 A1

FIG. 14A
1: for (size_t i=0; i<m; ++i) |
2: // OPERATION BOTTLENECK PROCESS
3:
4: for (size_t i=0; i<n; ++i) |
5: x[i] = ---;
6: // OTHER PROCESSES
7:]
FIG. 14B
1: for (size_t i=0; i<m; ++i) |
2. // OPERATION BOTTLENECK PROCESS
3: for (size_t j=i*N/m; j<(i+1)*N/m; ++j) |
4: } sector_prefetch(x[j]);
h:
6: }
7: for (size_t i=0; i<n; ++i) {
8: x[i] = ---;
9: | sector_prefetch(x[i+N]);
10:
11: sector setting deactivation ();

US 2022/0229664 Al

Jul. 21, 2022 Sheet 15 of 33

Patent Application Publication

L 1| (ssiw-g)
yoyeje.d P P 21018
anbojoud L] (u-g) i | peo .
P 810} P , o v S
(Hu-$) Lo peoj P) m
©I015 = NOILYY3dO] | m
peo| b \ SR AN <)

\ NOILVE3d0] | | W Yy == // .| ss3o0ud
== NN e // AHZHUM:EEM [naoasens
N | 0 w

e B)
& AN J

Ry = |
) == |
<o N [z iy
| ONI03934d
AN ﬁ)
NOTLVY3d0] |
$WIN NIV | | $eNIN NV
4007 HN103034d d007 INND3sANS
NI HOL343d NI H01343¥d HO13434d LNOHLIM
Sl 'DIA

US 2022/0229664 Al

Jul. 21, 2022 Sheet 16 of 33

Patent Application Publication

JA08Y 3SOHL NYHL ¥3HL0

umouun

100d AHOWANW
JIINT 40 AZIS

(Axau¢-d = d
‘anjeand-d = X
b (TINN =i d) 8jiym
100d AYOWIW WOY¥d //
(3AYISTY vy ST d //

V34V 11004 NI SHIINIOd A9 OL
(3INIOd SINAWNTTd VIVQ SSFI0V

$S§300v 11004

319VL 40 SINIWITI TV
40 3ZIS il

{
t[[1]xp1]o|qe1 = X
J (1++ tuy1 t0=1) dog

378vL 40 SINJW3T13 SSF00Y

SSH00V 14Vl

J1VNINY3LAAN]

1GVIYVA ST U NIHM
9zis aul|-§ *x U

'9Z1S dul | {
-$ 22 40 380 1[0 % 118 = X NOILYYILI d007 A¥IAZ SST00
SPAp— } (1++ :Upl f0=1) 4oy | ATIVILNANDIS TVANILNI ¥vInoay SI00Y
IR 1V GINDITV SINAWITT VIVA SSIOOV
4V 9 ONY U NIHM
([0]®) J08ZIS % O x U
79718 aul |
~¢> 9 40 IV9
_3LYNINYILION] { NOILVNILI d007 A¥IAZ Ss200Y
TIavINVA SI U NIHA ‘[17e = x ATIVIININD3S ¥3HLO HOV3 oL Wi laooNas
([0JB) 409218 * U |] (1++ :U>i :0=1) 4oy | SNONDILINOD SINIWTTI VLVQ SSI00V
371S VLO0L TdHYX3 ONINVIN N¥3LLYd SSID0V

91 "OIA

Patent Application Publication Jul. 21,2022 Sheet 17 of 33 US 2022/0229664 A1

FIG. 17A

for (size_t i=0; i<n; ++i) {
idx[i] = op1(a[i], b[i], ...);

}

for (size_t i=0; i<n; ++i) {
x[i] = op2(table[idx[i]]);

}

SR wON=

FIG. 17B

(1)[(8)
(D} ()4
(3)
(6)] |(B) [—table

Patent Application Publication Jul. 21,2022 Sheet 18 of 33 US 2022/0229664 A1

FIG. 18
PRECEDING LOOP PROCESS ~ SUBSEQUENT LOOP PROCESS
6 6 |
‘) S
: V), () R 2)l(6 o
| FIRST PREFETCH NETHOD 8{&7; alil, bfil, idx[i] 8}8 x[il, idx[i]
(al I-index prefetch) @[® @©)
: H_/\ ~ S W_j\ v J
SECTOR SECTOR SECTOR SECTOR
#1 #0 #1 #0
.. T
§ ali] -
. SECOND PREFETCH METHOD - SNCC b ENIRE
i (whole-table prefetch) idx[i]
SECTOR SECTOR SECTOR SECTOR
‘ #1 #0 #1 #0
ﬁﬁ
) (5)
THIRD PREFETCH METHOD [2) afil, biil, idx[i] 60y, iax[i
(better-prologue 3) (7)
prefetch) (4) (8)
kVJ\ Y 7 Hfj\ Y /
SECTOR SECTOR SECTOR SECTOR

__

Patent Application Publication Jul. 21,2022 Sheet 19 of 33 US 2022/0229664 A1

FIG. 19A
1: for (size_t i=0; i<m; ++i) {
2: // OPERATION BOTTLENECK PROCESS}
3: for (size_ti=0; i<n; ++i) {
4: x[i] = op2(table[op1(a[i], b, ...)]);
5 1}
FIG. 19B
(1)|(8)
(N [(2)(4)
(3)
(6)] [(B)] [—table

Patent Application Publication Jul. 21,2022 Sheet 20 of 33 US 2022/0229664 A1

FIG. 20

PRECEDING LOOP PROCESS SUBSEQUENT LOOP PROCESS

6 6
§ ali
' SECOND PREFETCH METHOD | ETNATBIfEE i %TSHEESR : ETbj\TBILREE 1 bl
i (whole-table prefetch) x[i]
SECTOR SECTOR SECTOR SEGTOR

Patent Application Publication Jul. 21,2022 Sheet 21 of 33 US 2022/0229664 A1

FIG. 21A
1: for (size_t i=0; i<m; ++i) |
2. } // OPERATION BOTTLENECK PROGESS
3:
4: for (size_t i=0; i<n; ++i) |
5: x[i] = ---;
6: | // OTHER PROCESSES
1:
FIG. 21B
PRECEDING SUBSEQUENT
LOOP PROGESS LOOP PROCESS
6 6
D1 21X
Sl Rk
THIRD PREFETCH METHOD R o | %
(better-prologue prefetch) -% = OTHER USES Z|Z| OTHER USES
=i it
X N v J N i v J
SECTOR SECTOR SEGTOR SECTOR

#1 #0 #1 #0

Patent Application Publication Jul. 21,2022 Sheet 22 of 33 US 2022/0229664 A1

FIG. 22
BEFORE DEGENERATION (all-index prfetch)

for (size_t i=0; i<n; ++i) {
idx[i] = opl(alil, b[i], --);
sector_prefetch (table[idx[il]);

}

for (size_t i=0; i<n; ++i) |
x[i] = op2(tablelidx[il]l):

CO~NO TN —

sector setting deactivation();

AFTER DEGENERATION (better—prologue prefetch)

1: for (size_t i=0; i<n; ++i) {
idx[i] =t =opl(alil, b[il,)
if (i <N) {
| sector_prefetch (t) ;

}

for (size_t i=0; i<n; ++i) |
x[i] = op2(table[idx[il]):
sector_prefetch (table[idx[i+N]]);

— ek (O O~ TN

0: |}
1. sector setting deactivation();

Patent Application Publication Jul. 21,2022 Sheet 23 of 33 US 2022/0229664 A1

FI1G. 23
BEFORE DEGENERATION (whole-table prefetch)
1 size_t tbl_sz = sizeof (table) / sizeof (table[0]):
2 for (size_t i=0; i<m; ++i) |
3 // OPERATION BOTTLENECK PROGESS
4 for (size_t j=tbl_szxi/m; j<tbl_szx(i+1)/m; ++j) {
5: } sector_prefetch (table[j]);
6:
7:]
8. for (size_t i=0; i<n; ++i) |
9: x[i] = op2(table[opi (alil, b[il, -)1);
10:
11: sector setting deactivation();

AFTER DEGENERATION (ALTERNATIVE PREFETCH METHOD)

for (size_t i=0; i<m; ++i) {
| // OPERATION BOTTLENECK PROGESS

for (size_t i=0; i<n: ++i) |
x[i] = op2(tablel[opl (alil, b[il, —)1);
prefetch(table[rand()1):

- OO P GO PO -

J

Patent Application Publication

FIG. 24

Jul. 21, 2022 Sheet 24 of 33

INFORMATION PROCESSING DEVICE

CONTROL UNIT

STORAGE UNIT

US 2022/0229664 Al

SOURCE
PROGRAM

é%

INTERMEDI-
ATE CODE

é%

EXECUTABLE
PROGRAM

éb

INPUT UNIT |51
DETERMINATION |-
UNIT 92
DETECTION L.
UNIT o3
CALCULATION |
UNIT o4
DEGENERATION | .
DETERMINAT ION
UNIT
INSERTION -
UNIT >0
GENERATION L
UNIT o7
)
42

)
41

20

US 2022/0229664 Al

Jul. 21, 2022 Sheet 25 of 33

Patent Application Publication

E

QOHLW suonelall gL | olum [1]x

HO13434d GAlH e WVAD0Yd T1GV1N03XT LVEINGD |~8IS
QOHL3W suonesayl g1 | peas | [[ixpileige} Wmm A

N (o 8 v
QOHLIW el

HOL34TUd QuInL | SUOBEISMOL | pesl [ixpt

ConLaN foLzsd| VT | 30| avany 7,, NOTLONYLSNI HOL343ud LY3SNI |~LIS
QOHLIN 7103rdns SI IHL

HOL3T4d QuIHL | SUOWISOL | olm L oIS I
QOHLW s2g - 2

[(]

HOL3438d 1SH1 ay g | peal| [ixpileigel S :_.N:,___.ﬁ $53004d zEEzEﬂqu NOIL1VY3INTD3d
QOHLIW R QOALIW FD13939d JIVAIONWD ||
HOL3{34d QuIHL | SUOesMOL | peal [t o 40 §530044 NOLLYNIWEI3G | [~ ¥*S

JONVISIA i
ALVATaNvd Hol3iqug [FdM | AV A We3LIVd SS300V 103130 |-€1S
UMOUNUN | $5300V V1 LNINDAS [I e N
gy 8 $$300V_378v1 ([xpileide) |3 &L
umousun | $5300Y V1 LN3ND3S [xp1 = ¢1s
UMOUUN | $5300V V1LNIND3S [l 3 $3553004d d00
umoudun | SS399Y TVILININDIS [1e %W.@: NCIALLNOISNOD OML ¥0d Lv3Id
STOTHT | SS300v_VINANO4S L - n_ue_e WvY904d 304N0S Ho INdNI 3A130Y~ LIS
371S WI0L| N93LLvd SS300V AVEY
14V1S ST DI

Qe

wa\/\mquwwomz_ ST ONIHO13444d
1VHL ANTWY.13d

NNl _ww

QOHL3N
HO13434d JATIVNYALTY

US 2022/0229664 Al

NaNL3Y LeS $SS300V 7100d

{

Jul. 21, 2022 Sheet 26 of 33

(3lqe3-ajoym) |
(I0HLIW HOL343¥d ANOD3S S3A
ENMONY SI
ON 3715 3av1
92S
= Ndn13Y ON ON
£ TG %03aNTONT | :
= QOHLIN HOL34d 1Su14 [~ g3 —~S! NOLLY 1oV TNt
=
£ (€78
5 N¥NL3Y Gzs ves ON
£ (85300
3 (engo|0.4d-491104)
B QOHLIN HOL343ud QYIHL [T SAA mew__ﬁ Pum&wmoﬁ
< [178
E ¢S .
Z (31vaIanvd 40 GOHIIW NOTIVNIWMIZA) 9T DIA

Patent Application Publication Jul. 21,2022 Sheet 27 of 33 US 2022/0229664 A1

FIG. 27

C DEGENERATION DETERMINATION PROCESS)

S41—~ CALCULATE SIZE C

l

S42—~—{CALCULATE SIZES W, X, Y, AND Z

l

S43 DETERMINATION PROCESS

l
(RETURN)

US 2022/0229664 Al

Jul. 21, 2022 Sheet 28 of 33

Patent Application Publication

¥9S
N

¢9S
[

@3Lno3xX3 LON SI
yojeje.id ajqel-ojoym ONY
yoyeje.d ango|oad-Je338q

owm

yoleeud ango|oid-Je339q 0l Yyoieleud @31nd3ax3 1ON SI
Nanigy ATNO_AQTdH3 LR TURE ERE 4039494d 9]qe3-3 | oYM
S3A
N 039
€9S
8GS
QOHL3NW IOhmumwm JATLYNYALTY mwm vww wa
01 Yo39ja.d 9|qel-a|oym yolejedd ango|o.d-Ja831eq GOHLIN HO.13434d Q30 443d
J1VYINDIA ONV yolejo.d 01 Yo1e4e4d LN 10N STRoiL
ango|oJd-Ja}1eq ol Yyoleleud xapul-| e J1¥YINT93a 5[0€1-9]0UM J1VYINIDI “VNaN3B3a
Xopui-| & JIVHINI93A

S3A
(L + X3) >=
LSS

ON

(' $53004d NOILYNIWY3LIQ)

8¢ DId

US 2022/0229664 Al

Jul. 21, 2022 Sheet 29 of 33

Patent Application Publication

Z M
|« >le >
>|
m yolajeid
yolajeud m zwszh%w_mom yojeje.d yojejeud ;mww%mag 40
9|ge}-sjoym L ygLqy | XepPuriE anbojoid-1a)eq EYETRY S123rans
W 341S1no
@\M/A >le >|
0 o)
Z+M <O
d6¢ DIA
A M

< e |

yolejaud
yojejeud yoejeud yojejeud :mwﬂmma 40
9 alqel-sjoym| xspur-jle | enbojoid-isleq TR S104rdns
] 341S1n0
N
l< 3 >l 5 >|
A+M 2O V67 DIA

US 2022/0229664 Al

Jul. 21, 2022 Sheet 30 of 33

Patent Application Publication

M
| -
R yojejeid xspui-jje
2 - X #
m a
© NOIL NOIL Yoregead | 1019594
yojeeud : yojejaud 40
> | —VYINIDIA | -V¥aNIDIC » IALLVN
a|qe}-sjoym L S0y | enboloid-ieieq | 23 | s103rans
_ 301S1N0
P |
1) 0
Z+X 2D
M
| |
yojejald xopui-e
e X
ot s
yojao.d
mr.__ww%% D30 8%@%@8 Rttt c103 e
Iqe}-2j0uM 10Jd-1 3
N
le .y ~l
I O | U

d0¢ DId

V0t DId

US 2022/0229664 Al

Jul. 21, 2022 Sheet 31 of 33

Patent Application Publication

_ M
|
yojayalud
Xopul-jje
. A e X “
yolejeid
yojsjeud vipbag | weeeid (WS g
a|qel-ajoym anbojoid-se)aq | $103rdns
4314y 4411V
341S1n0
w\” >l >
i O | U |
<O
le > =l >> =]
yolejoud
yolejeud yojejeud yojeseud ;mwﬂwma 40
d|ge}-sjoym Xapul-|je anbojoid-iejeq YETR Y S103rans
341S1No
9/
I O Hu

di¢ DId

VIt DId

US 2022/0229664 Al

Jul. 21, 2022 Sheet 32 of 33

Patent Application Publication

Z
< >l
NOI1VY3N33d
LETE
X
R o)
I< 1
NOI1Y¥3N393q
hETEL
yoyaoud
] yojejaud 032484d
9 onBojoid-1e1eq INLNEALTY | 0 S19I0ANS
e >l< g
0
¢t DId

US 2022/0229664 Al

WNTA3N
A0 pNI1Q¥oo
e joc a0¢ P0OC
i , , |
- momf\.uoH>m= ONIQvIY FOIAAd J0IAdd JOVAYFINI
z NNI1aIN 1NdNI AV1dSId NOILVIINNWWOO
s)
S uoz
= 40SS3004d AJOWAN WYHH0Md 00l
f w ONITIdWOD
202 qo0z J0IA3Q FOVYHOLS

)

301A30 DNISSID0Nd NOILVWMOANI — B0C

¢t DId

Patent Application Publication

US 2022/0229664 Al

INFORMATION PROCESSING DEVICE,
COMPILING METHOD, AND
NON-TRANSITORY COMPUTER-READABLE
RECORDING MEDIUM

CROSS-REFERENCE TO RELATED
APPLICATION

[0001] This application is based upon and claims the
benefit of priority of the prior Japanese Patent Application
No. 2021-002298, filed on Jan. 8, 2021, the entire contents
of which am incorporated herein by reference.

FIELD

[0002] The present invention relates an information pro-
cessing device, a compiling method, and a non-transitory
computer-readable recording medium.

BACKGROUND

[0003] Prefetching is one of methods for accelerating the
execution speed of programs. Prefetching is a method for
reducing the waiting time associated with the data transfer
by transferring the data required for the program from the
memory to a cache memory in advance.

[0004] However, depending on the program, prefetching is
not effective enough to accelerate the execution speed of the
program in some cases. Note that the technique related to the
present disclosure is also disclosed in Japanese Laid-Open
Patent Publication Nos. 2010-244205, 2018-010540, and
2001-290657.

SUMMARY

[0005] According to an aspect of the embodiments, there
is provided an information processing device including: a
memory; and a processor coupled to the memory and
configured to: detect an access pattern according to which a
memory reference instruction in a first loop process to be
executed posterior to a second loop process accesses first
data elements in the memory every loop iteration, and insert
a prefetch instruction to the second loop process based on
the access pattern, the prefetch instruction being an instruc-
tion to transfer at least one of the first data elements from the
memory to a first sector of a cache memory, the at least one
of the first data elements transferred to the first sector of the
cache memory being never cached out by a second data
element different from each of the first data elements.

BRIEF DESCRIPTION OF DRAWINGS

[0006] FIG.1 is a schematic view of a computing machine
that executes prefetching.

[0007] FIG. 2A illustrates a C source code before opti-
mized by a compiler, and FIG. 2B illustrates a C source code
obtained after the compiler optimizes the source code illus-
trated in FIG. 2A.

[0008] FIG. 3A illustrates a C source code in accordance
with a first example before optimized by the compiler, and
FIG. 3B illustrates a C source code obtained after the
complier optimizes the source code illustrated in FIG. 3A.
[0009] FIG. 4A illustrates a C source code in accordance
with a second example before optimized by the compiler,
FIG. 4B illustrates a C source code obtained after the
complier optimizes the source code illustrated in FIG. 4A,
and FIG. 4C illustrates a C source code after the complier

Jul. 21, 2022

optimizes the source code illustrated in FIG. 4A using a
method different from the method of FIG. 48.

[0010] FIG. 5 is a schematic view for describing the
outstanding number when the source code of FIG. 4C is
executed.

[0011] FIG. 6A illustrates a C source code in accordance
with a third example before optimized by the compiler, and
FIG. 68 illustrates a C source code obtained after the
compiler optimizes the source code illustrated in FIG. 6A.
[0012] FIG. 7 is a schematic view illustrating a process
executed by an information processing device in accordance
with an embodiment.

[0013] FIG. 8A is a schematic view of a cache memory
without a sector function, and FIG. 8B is a schematic view
illustrating cache-out in the cache memory without a sector
function.

[0014] FIG. 9A is a schematic view of a cache memory
having a sector function, and FIG. 9B is a schematic view
illustrating cache-out in the cache memory having a sector
function.

[0015] FIG. 10A illustrates a C source code written in a
source program before compiled by the information pro-
cessing device, and FIG. 10B illustrates a source code
obtained by optimizing the source code illustrated in FIG.
10A by the information processing device according to a
first prefetch method.

[0016] FIG. 11 is a schematic view illustrating an advan-
tage achieved by the first prefetch method.

[0017] FIG. 12A illustrates a C source code written in a
source program before compiled by the information pro-
cessing device, and FIG. 12B illustrates a source code
obtained by optimizing the source code illustrated in FIG.
12A by the information processing device according to a
second prefetch method.

[0018] FIG. 13 is a schematic view illustrating an advan-
tage achieved by the second prefetch method.

[0019] FIG. 14A illustrates a C source code written in a
source program before compiled by the information pro-
cessing device, and FIG. 14B illustrates a source code
obtained by optimizing the source code illustrated in FIG.
14A by the information processing device according to a
third prefetch method.

[0020] FIG. 15 is a schematic view illustrating an advan-
tage achieved by the third prefetch method.

[0021] FIG. 16 is a diagram for describing an access
pattern.
[0022] FIG. 17A illustrates an example of a source code in

acase 1, and FIG. 17B is a schematic view of an entire table.
[0023] FIG. 18 schematically illustrates the cache memory
at the time of executing each of a preceding loop process and
a subsequent loop process when the first to third prefetch
methods are executed in the case 1.

[0024] FIG. 19A illustrates an example of a source code in
a case 2, and FIG. 19B is a schematic view of the entire
table.

[0025] FIG. 20 schematically illustrates the cache memory
at the time of executing each of the preceding loop process
and the subsequent loop process when the second prefetch
method is executed in the case 2.

[0026] FIG. 21A illustrates an example of a source code in
a case 3. FIG. 21B schematically illustrates the cache
memory at the time of executing each of the preceding loop
process and the subsequent loop process when the third
prefetch method is executed in the case 3.

US 2022/0229664 Al

[0027] FIG. 22 illustrates a source code before degenera-
tion and a source code after degeneration when the first
prefetch method is degenerated to the third prefetch method.
[0028] FIG. 23 is a source code before degeneration and a
source code after degeneration when the second prefetch
method is degenerated to an alternative prefetch method.
[0029] FIG. 24 is a functional block diagram of the
information processing device.

[0030] FIG. 25 is a flowchart of a compiling method in
accordance with the embodiment.

[0031] FIG. 26 is a flowchart of a determination process of
a candidate prefetch method.

[0032] FIG. 27 is a flowchart of a degeneration determi-
nation process.

[0033] FIG. 28 is a flowchart of a determination process.
[0034] FIG. 29A is a schematic view of the cache memory

when “C=zW4+Y” is established, and FIG. 29B is a schematic
view of the cache memory when “C=W+Z” is established.
[0035] FIG. 30A is a schematic view of the cache memory
when “Cz=X+Y” is established, and FIG. 30B is a schematic
view of the cache memory when “Cz=X+Z7" is established.
[0036] FIG. 31A is a schematic view of the cache memory
when “CzW” is established, and FIG. 31B is a schematic
view of the cache memory when “Cz=X" is established.
[0037] FIG. 32 is a schematic view of the cache memory
when “C=z0” is established.

[0038] FIG. 33 is a hardware configuration diagram of the
information processing device.

DESCRIPTION OF EMBODIMENTS

[0039] Prior to the description of an embodiment, basic
matters will be described.

[0040] FIG.1 is a schematic view of a computing machine
that executes prefetching.

[0041] In this example, a computing machine 1 includes a
processor 2 and a memory 3. The memory 3 is a volatile
memory such as a dynamic random access memory
(DRAM) storing data and instructions.

[0042] The processor 2 is hardware such as a central
processing unit (CPU) or a graphical processing unit (GPU)
including an arithmetic unit 4, a register 5, and a cache
memory 6. The arithmetic unit 4 is hardware such as an
arithmetic logic unit (ALU). The register 5 is a volatile
memory such as a static random access memory (SRAM)
that holds data and stores operation results when the arith-
metic unit 4 performs operations. The cache memory 6 is a
volatile memory such as an SRAM that holds data and
instructions stored in the memory 3.

[0043] In the above architecture, before the arithmetic unit
4 performs an operation, prefetching is executed to transfer
data elements required for the operation from the memory 3
to the cache memory 6. Then, by transferring, to the register
5, the data elements that have been transferred to the cache
memory 6, the arithmetic unit 4 can perform the operation
using the data elements.

[0044] The waiting time from when the arithmetic unit 4
requests data from each memory until the arithmetic unit 4
can use the requested data increases as the memory is farther
away from the arithmetic unit 4. For example, the waiting
time between the arithmetic unit 4 and the register 5 is
shortest, one clock cycle to several clock cycles. By contrast,
the waiting time between the arithmetic unit 4 and the
memory 3 is hundreds of clock cycles.

Jul. 21, 2022

[0045] Since the waiting time between the arithmetic unit
4 and the cache memory 6 is several tens of clock cycles, the
execution speed of the program can be accelerated by
prefetching data elements in the memory 3 to the cache
memory 6 to reduce the waiting time.

[0046] Prefetching may be achieved in software by opti-
mization by a compiler, or may be achieved in hardware.
Here, prefetching achieved in software will be described.
[0047] FIG. 2A illustrates a C source code before opti-
mized by a compiler.

[0048] In this example, inside a “for” loop, an operation

[Tt}

that assigns an element of an array “a” to an element of an
array “x” is repeated n times. Hereinafter, n may be also
referred to as a loop iteration number.

[0049] In addition, a load instruction to store the i-th
element of the array “a” from the memory 3 to the register
5 is issued by executing “ali]” in the second line by the
arithmetic unit 4. Mien, a store instruction to store the i-th
element of the array “x” from the register 5 to the memory
3 is issued by executing “x[i]” in the second line by the
arithmetic unit 4.

[0050] FIG. 2B illustrates a C source code obtained after
the compiler optimizes the source code illustrated in FIG.
2A.

[0051] As illustrated in FIG. 2B, in this example, the
compiler inserts a prefetch instruction to the third line and
the fourth line inside the “for” loop. “Prefetch(x[i+N])” is an
instruction to transfer the (i+N)-th (N>0) element of the
array “x” from the memory 3 to the cache memory 6.
Similarly, “prefetch(a[i+N])” is an instruction to transfer the
(1+N)-th element of the array “a” from the memory 3 to the
cache memory 6. Hereinafter, “N” is referred to as a prefetch
distance.

[0052] By transferring the element that is N ahead of the
i-th element, to the cache memory 6 in advance in the i-th
process with use of the prefetch instruction, the arithmetic
unit 4 does not need to access the memory 3 in the (i+N)-th
loop process, and the acceleration in the execution speed of
the program is therefore expected.

[0053] However, such prefetching does not always accel-
erate the execution speed of the program.

[0054] For example, in the case illustrated in FIG. 2B,
“x[i]=a[i]” is executed in the order of i=1, 2, . . ., n.
Therefore, the prefetched (i+N)-the elements of the arrays
“x” and “a” are always accessed in the future.

[0055] However, when the access to the element of the

IRt

array “a” is random, there may be a case where the (i+N)-th
element of the array “a” is not accessed in the future. In this
case, even when the (i+N)-th element is prefetched, the
arithmetic unit 4 will never use this element, and the
acceleration in the execution speed of the program cannot be

achieved.

[0056] Furthermore, in the prefetch instructions such as
“prefetch(x[i+N])” and “prefetch(al[i+N])”, the elements of
i=0, 1 ..., N-1 of each of the arrays “x” and “a” are not
prefetched. Therefore, the acceleration in the execution
speed in the loop processes of i=0, 1, . . ., N-1 is not
expected.

[0057] To solve the above problems, a method of gener-

ating a prefetch instruction as in the following first to third
examples may be considered.

[0058] FIG. 3A illustrates a C source code in accordance
with a first example before optimized by the compiler.

US 2022/0229664 Al

[0059] In the first example, a loop process starting with a
for statement exists in the first line and the fourth line. In the
preceding loop process of the first line, the result obtained by
performing a predetermined operation “opl” on array ele-
ments “ali]” and “b[i]” is assigned to the array element
“idx[i]”. Each element of the array “idx” indicates the index
of each element of an array “table” that stores elements of
a table. Since each array element “idx[i]” is determined by
the operation “opl”, respective data elements of “idx[0]”,
“idx[1]”, . . ., “idx[n]” are not necessarily aligned serially
in the memory 3, and may be aligned randomly in the
memory 3.

[0060] In the subsequent loop process of the fourth line,
the result obtained by performing a predetermined operation
“op2” on the table data element “table[idx[i]]” is stored in
the array element “x[i]”.

[0061] FIG. 3B illustrates a C source code obtained after
the compiler optimizes the source code illustrated in FIG.
3A.

[0062] In this example, the compiler inserts a prefetch
instruction “prefetch(table[idx[i+N]])” to the inside of the
subsequent loop process.

[0063] In this case, even when the array elements “idx[i]”
are aligned randomly, the prefetch instruction “prefetch
(table[idx[i1+N]])” prefetches “table[idx[i+N]]” that is to be
always accessed in the future. Thus, the acceleration in the
execution speed of the program can be expected.

[0064] However, one load instruction is generated by
“idx[i+N]” every time the loop process is executed, the
execution time of the program may increase due to the
transfer time of the data caused by the load instruction.
[0065] FIG. 4A illustrates a C source code in accordance
with a second example before optimized by the compiler.
[0066] In the second example, a loop process starting with
a for statement exists in the first line and the fourth line as
in the first example. However, unlike the first example, the
process in which a value is assigned to the index of the array
“table” is not executed in the preceding loop process. In
addition, inside the preceding loop process, an operation
bottleneck process is performed. The operation bottleneck
process is a process in which the total number of clock
cycles required for the operation process to be executed by
the arithmetic unit 4 is greater than the total number of clock
cycles required for the arithmetic unit 4 to reference data of
the memory 3. The referencing of data is a process in which
the arithmetic unit 4 writes data to the memory 3, or a
process in which the arithmetic unit 4 reads data from the
memory 3.

[0067] In the subsequent loop process of the fourth line,
the index “opl(a[i], b[i], . . .)” of the table is obtained by
the operation “op1”. Further, the result obtained by perform-
ing the predetermined operation “op2” on the element
“table[opl(a[i], b[i], . . .)]” of the table corresponding to the
index “opl(a[i], b[i], . . .)” is stored in the array element
“x[1]”.

[0068] FIG. 4B is a C source code obtained after the
compiler optimizes the source code illustrated in FIG. 4A.
[0069] In this example, the compiler inserts a prefetch
instruction “prefetch(table[op1(a[i], b[i], . . .)])” to the loop
process of the for statement in the fourth line to try to
accelerate the execution speed of the program.

[0070] However, “opl(ali], b[i], . ..)” is calculated in the
fifth line and the sixth line. Thus, the calculation cost may
increase depending on the contents of the operation “op1”.

Jul. 21, 2022

[0071] FIG. 4C illustrates a C source code after the
compiler optimizes the source code illustrated in FIG. 4A
using a method different from that of FIG. 48.

[0072] In this example, the process of the operation “op1”
is performed in only one place. “op1(a[i+N], b[i+N], ...)”
in the eighth line, which makes the calculation cost less than
that of the case of in FIG. 4B.

[0073] However, four arrays “idx”, “x”, “a”, and “table”
become necessary inside the subsequent loop process, which
results in increase in the number of streams. Here, plural
data elements having consecutive addresses in the memory
3, such as array elements, are called one stream. In this
example, four streams respectively corresponding to four
arrays “idx”, “x”, “a”, and “table” are generated.

[0074] As the number of streams increases, the number of
memory reference instructions to access each stream
increases, which results in resource shortage, and in some
cases, only a smaller number of the memory reference
instructions than the outstanding number determined by
hardware can be issued.

[0075] FIG. 5 is a schematic view for describing the
outstanding number when the source code of FIG. 4C is
executed.

[0076] The horizontal axis of FIG. 5 represents the num-
ber of clock cycles. Here, a case where two arithmetic units
4 are provided is assumed, and two arithmetic units 4 are
expressed by “ALU #0” and “ALU #1”, respectively. In
addition, “Mem #0” to “Mem #7” indicate physical paths
through which data is transferred from the memory 3 to the
cache memory 6. Furthermore, assumed is a case where the
processor 2 employs the out-of-order execution architecture,
and therefore can issue two operation instructions in the
same cycle and issue two memory reference instructions in
the same cycle.

[0077] In this case, the processor 2 can simultaneously
issue up to 8 memory reference instructions such as a store
instruction, a load instruction, and a prefetch instruction in
the same clock cycle. This number, 8, is the outstanding
number.

[0078] However, when the large number of memory ref-
erence instructions are issued, the memory reference instruc-
tion to be issued when the number of clock cycles is 10
becomes only one memory reference instruction “load table
[t1]”, which results in decrease in the execution speed of the
program.

[0079] FIG. 6A illustrates a C source code in accordance
with the third example before optimized by the compiler.
[0080] In this example, a loop process starting with a for
statement exists in the first line and the fourth line. The
operation bottleneck process is executed inside the preced-
ing loop process.

[0081] In addition, in the subsequent loop process, the
statement “x[i]= . . . ” in the fifth line causes a store
instruction to assign the right-hand value to the i-th element
“x[i]” of the array “x” to be executed.

[0082] FIG. 6B illustrates a C source code obtained after
the compiler optimizes the source code illustrated in FIG.
6A.

[0083] In this example, before the loop process of the for
statement in the seventh line starts, the compiler inserts
“prefetch[0]”, “prefetch[1]”, “prefetch[N-1]" for
prefetching the array elements “x[0]”, “x[1]”, ..., “x[N-1]"
required for the loop process. These prefetch instructions are
expected to accelerate the execution speed of the program

US 2022/0229664 Al

compared with the case illustrated in FIG. 6A to some
extent. Such prefetching is called prologue prefetching.
[0084] However, in prologue prefetching, the subsequent
loop process in the seventh line cannot be executed until the
prefetch instructions “prefetch[0]”, “prefetch[1]”, . . .,
“prefetch[N-1]" are completed, and them is room for accel-
erating the execution speed of the program.

[0085] Hereinafter, an embodiment will be described.
EMBODIMENT
[0086] FIG. 7 is a schematic view illustrating a process

executed by an information processing device 20 in accor-
dance with the embodiment.

[0087] The information processing device 20 is a comput-
ing machine such as a personal computer (PC) or a server,
and compiles a source program 21 to generate an executable
program 22. Although the programing language of the
source program 21 is not particularly limited, hereinafter, a
case where the source program 21 is written in the C
language will be described as an example.

[0088] The target machine to execute the executable pro-
gram 22 is the computing machine 1 (see FIG. 1). As
illustrated in FIG. 1, the computing machine 1 includes the
cache memory 6, but in this embodiment, the executable
program 22 executes prefetching using the cache memory 6
having a sector function. Thus, the sector function will be
described first.

[0089] FIG. 8A is a schematic view of the cache memory
6 without a sector function.

[0090] As illustrated in FIG. 8A, the cache memory 6 has
a plurality of cache lines 9. The cache line 9 is a storage area
having a storage capacity of, for example, 128 kBytes.
Prefetching of data from the memory 3 to the cache memory
6 is executed for each cache line 9. Similarly, writing of data
from the cache memory 6 to the memory 3 is performed for
each cache line 9.

[0091] Here, a case where stream data 10 and table data 11
in the memory 3 are prefetched to the memory 3 in the order
indicated by the arrow A will be described. The stream data
10 is a set of data elements having consecutive addresses in
the memory 3, such as a[0], a[i], The table data 11 is
data that is reused by the program.

[0092] The entire size (the capacity) of the cache memory
6 is smaller than the capacity of the memory 3. Thus, it is
impossible to prefetch all the data in the memory 3 to the
cache memory 6. Thus, cache-out is performed to write
unnecessary data in the cache memory 6 back to the memory
3. This will be described next.

[0093] FIG. 8B is a schematic view for describing cache-
out in the cache memory 6 without a sector function.
[0094] When the data of the cache memory 6 is cached
out, the data is written back to the memory 3 in order from
the least recently used data by using, for example, Least
Recently Used (LRU). When no sector function is provided,
regardless of whether the write-back object is the stream
data 10 or the table data 11, the least recently used data is the
cache-out object. This example illustrates a case where the
table data 11 is cached out by newly prefetching the stream
data 10.

[0095] FIG. 9A is a schematic view of the cache memory
6 having a sector function.

[0096] Inthe cache memory 6 having a sector function, the
cache memory 6 is divided into storage areas called sectors

Jul. 21, 2022

6a. Here, the sectors 6a are uniquely identified by the
number subsequent to the symbol “#”, such as the “sector
#0” and the “sector #1”.

[0097] When the sector function is provided, the stream
data 10 is stored only in the sector #0, and the stream data
10 is not stored in sectors other than the sector #0. Similarly,
the table data 11 is store only in the sector #1, and the table
data 11 is not stored in sectors other than the sector #1. The
sector #1 is an example of a first sector, and the sector #0 is
an example of a second sector.

[0098] Here, a case where the stream data 10 and the table
data 11 in the memory 3 are prefetched to the memory 3 in
the order indicated by the arrow A is illustrated.

[0099] FIG. 98 is a schematic view illustrating cache-out
in the cache memory 6 having a sector function.

[0100] Here, a case where the least recently used data is
the table data 11 in the sector #1, and the stream data 10 is
newly prefetched from the memory 3 to the cache memory
6 will be discussed. In the cache memory 6 with a sector
cache, the data stored in a certain sector is kicked out only
by the data in the same sector. Thus, in the above case, the
table data 11 in the sector #1 is not kicked out, and the
stream data 10 that is least recently used in the sector #0 is
cached out to the memory 3.

[0101] Next, a compiling method executed by the infor-
mation processing device will be described. The prefetch
method used in the compiling method includes first to third
prefetch methods.

First Prefetch Method (all-Index Prefetch)

[0102] FIG. 10A illustrates a C source code written in the
source program 21 before compiled by the information
processing device 20. This source code is the same as the
source code illustrated in FIG. 3A, and has a preceding loop
process starting with a for statement in the first line and a
subsequent loop process starting with a for statement in the
fourth line. The preceding loop process is an example of a
second loop process, and the subsequent loop process is an
example of a first loop process.

[0103] The preceding loop process is a process in which
the indexes “idx[i]” (i=0, 1, . . ., n) of the array “table”
representing the table are calculated by the operation “op1”.
The subsequent loop process is a process in which the
operation “op2” is performed on the elements “table[idx[i]]”
(i=0, 1, . . . , n) of the array “table” corresponding to
respective indexes “idx[i]” and the operation results are
stored in respective elements of the array “x”.

[0104] FIG. JOB illustrates a source code obtained after
the information processing device 20 optimizes the source
code illustrated in FIG. 10A according to the first prefetch
method.

[0105] In the first prefetch method, the information pro-
cessing device 20 inserts a prefetch instruction “sector_
prefetch(table[idx[i]])” to the preceding loop process. The
prefetch instruction “sector_prefetch(table[idx[i]])” is an
example of a first instruction, and transfers data elements
expressed by “table[idx[i]]” from the memory 3 to the sector
#1 of the cache memory 6. This prefetch instruction trans-
fers, from the memory 3 to the cache memory 6, the data
elements “table[idx[i]]” corresponding to the indexes “idx
[1]” calculated in the preceding loop process among the data
elements that are the elements of the array “table”. This
prefetch is called all-index prefetch, hereinafter. The data
elements that are the elements of the army “table” are
examples of first data elements. Data elements other than the

US 2022/0229664 Al

data element “table[idx[i]]”, such as “idx[i]”, “a[i]”, and
“bli]”, are examples of a second data element to be
prefetched to the sector #0. The data elements “table[idx][i]]”
corresponding to the indexes “idx[i]” calculated in the
preceding loop process among the data elements that are the
elements of the array “table” are examples of third data
elements.

[0106] When the prefetch instruction “sector_prefetch
(table[idx[i]])” is executed, the data in the sector #1 is
prohibited from being cached out by data other than the
elements of the array “table” representing the table. “Sector
setting deactivation” in the eighth line is an instruction to
deactivate this prohibition. The same applies to the second
prefetch method and the third prefetch method described
later.

[0107] FIG. 11 is a schematic view illustrating an advan-
tage achieved by the first prefetch method (all-index
prefetch).

[0108] In this example, the period during which the arith-
metic unit 4 performs an operation is indicated by a hatched
rectangle below “ALU)”. This period will be sometimes
referred to as an operation cost, hereinafter. A hatched
rectangle below “MEM<=$” indicates the period during
which data is transferred from the memory 3 to the cache
memory 6. This period will be sometimes referred to as a
memory cost, hereinafter. In FIG. 11 and FIG. 13 and FIG.
15 described later, time flows from the top to the bottom of
the paper.

[0109] “Without prefetch” indicates a case where the
executable program obtained from the source code of FIG.
10A, which is not optimized, is executed in the computing
machine 1. In this case, the data element “table[idx[i]]” may
be absent in the cache memory 6 at the time of executing the
load instruction required for the operation “op2(table[idx
[1]])” in the fifth line in FIG. 10A. In this case, a cache miss
occurs, which results in increase in the memory cost and
increase in the execution time of the executable program 22
in the computing machine 1.

[0110] “Prefetch in subsequent loop” indicates a case
where the executable program obtained from the optimized
source code as illustrated in FIG. 38 is executed in the
computing machine 1. In this case, as described above, the
load instruction is generated every time the subsequent loop
process of FIG. 3B is executed, and the execution time of the
program increases due to the transfer time of the data caused
by the load instruction.

[0111] “Prefetch in preceding loop” indicates a case where
the executable program obtained from the source code
optimized using the first prefetch method (all-index
prefetch) illustrated in FIG. 10B is executed in the comput-
ing machine 1. As illustrated in FIG. 10B, prefetching is not
executed in the subsequent loop in this case. Thus, compared
with the case “prefetch in subsequent loop”, the memory
cost in the subsequent loop process is reduced.

[0112] This reduced memory cost is added to the execu-
tion time of the load instruction required for the prefetch
instruction “sector_prefetch(table[idx[i]])” of the preceding
loop process. However, when the preceding loop process
executes the operation bottleneck process, the execution
time of the load instruction can be hidden in the operation
cost, which prevents the increase in the execution time of the
preceding loop process.

[0113] As a result, the first prefetch method (all-index
prefetch) described in FIG. 108 can reduce the execution

Jul. 21, 2022

time of the executable program 22 compared with the cases
“without prefetch” and “prefetch in preceding loop”.
[0114] In addition, the prefetch instruction “sector_
prefetch(table[idx[i]])” is an instruction to prefetch the ele-
ments (table[idx[i]]) of the table to the sector #1 of the cache
memory 6. Therefore, the elements (table[idx[i]]) prefetched
to the sector #1 are not cached out by array elements other
than the elements of the table until the subsequent loop
process is completed, which increases the cache hit ratio.

Second Prefetch Method (Whole-Table Prefetch)

[0115] FIG. 12A illustrates a C source code written in the
source program 21 before compiled by the information
processing device 20. This source code is the same as the
source code of FIG. 4A, and has a preceding loop process
starting with a for statement in the first line and a subsequent
loop process starting with a for statement in the fourth line.
The preceding loop process is an example of a second loop
process, and the subsequent loop process is an example of a
first loop process.

[0116] The preceding loop process executes the operation
bottleneck process. The subsequent loop process executes a
process in which the operation “op2” is performed on the
element “table[opl(a[i], b[i], . . .)]” of the array “table”
representing the table and the operation result is stored in in
the element “x[i]” of the array “x”.

[0117] Accordingly, the elements of the array “table” that
am subject to the operation “op2” are determined by the
results of the operation “op1”. Thus, which elements are
subject to the operation “op2” among all the elements of
“table” are unknown in advance.

[0118] FIG. 128 illustrates a source code obtained after the
information processing device 20 optimizes the source code
of FIG. 12A according to the second prefetch method.
[0119] In the second prefetch method, the information
processing device 20 inserts a prefetch instruction “sector_
prefetch(table[j])” to the preceding loop process. The
prefetch instruction “sector_prefetch(table[j])” is an
example of a second instruction, and is an instruction to
transfer the data of all the elements of the array “table” from
the memory 3 to the sector #1 of the cache memory 6. This
prefetch is referred to as whole-table prefetch, hereinafter.
The data elements “table[j]” to be prefetched to the sector #1
as described above are examples of first data elements. Data
elements other than the data element “table[j]”, such as
“ali]”, “b[i]”, and “x[i]”, are examples of a second data
element to be prefetched to the sector #0.

[0120] Accordingly, even when the elements of the array
“table” subject to the operation “op2” are unknown in
advance, all the elements of the array “table” are prefetched
in the preceding loop process, and thereby, occurrence of
cache misses in the subsequent loop process is prevented.
[0121] Additionally, the prefetch instruction “sector_
prefetch(table[j])” is an instruction to prefetch the elements
(table[j]) of the table to the sector #1 of the cache memory
6. Thus, the elements (table[j]) that have been prefetched to
the sector #1 are not cached out by array elements other than
the elements of the table until the subsequent loop process
is completed, which increases the cache hit ratio.

[0122] FIG. 13 is a schematic view illustrating an advan-
tage achieved by the second prefetch method (whole-table
prefetch).

[0123] “Without prefetch” in FIG. 13 indicates a case
where the executable program obtained from the source

US 2022/0229664 Al

code of FIG. 12A, which is not optimized, is executed in the
computing machine 1. In this case, the data element “table
[opl(ali], b[i], . . .)]” may be absent in the cache memory
6 at the time of executing the load instruction required for
the operation “op2(table[opl(ali], b[i], . . .)])” in the fifth
line of FIG. 12A. In this case, a cache miss occurs, which
results in increase in the memory cost and increase in the
execution time of the executable program 22 in the com-
puting machine 1.

[0124] “Prefetch in subsequent loop” indicates a case
where the executable program obtained from the optimized
source code as illustrated in FIG. 4C is executed in the
computing machine 1. In this case, as mentioned above,
since the number of streams in the subsequent loop process
increases, only a smaller number of memory reference
instructions than the outstanding number may be issued. In
such a case, the memory cost increases.

[0125] “Prefetch in preceding loop” indicates a case where
the executable program obtained from the source code
optimized using the second prefetch method (whole-table
prefetch) illustrated in FIG. 12B is executed in the comput-
ing machine 1. As with the first prefetch method, prefetching
is not executed in the subsequent loop in this case, and
therefore, the memory cost in the subsequent loop process
can be reduced.

[0126] In addition, the reduced memory cost is added to
the execution time of the load instruction required for the
prefetch instruction “sector_prefetch(table[j])” of the pre-
ceding loop process. However, in this example, since the
preceding loop process executes the operation bottleneck
process, the execution time of the load instruction can be
hidden in the operation cost, and the increase in the execu-
tion time of the preceding loop process is prevented.
[0127] As a result, the second prefetch method (whole-
table prefetch) of FIG. 12B can reduce the execution time of
the executable program 22 compared with the cases “with-
out prefetch” and “prefetch in preceding loop”.

Third Prefetch Method (Better-Prologue Prefetch)

[0128] FIG. 14A illustrates a C source code written in the
source program 21 before compiled by the information
processing device 20. This source code is the same as the
source code of FIG. 6A, and has a preceding loop process
starting with a for statement in the first line and a subsequent
loop process starting with a for statement in the fourth line.
The preceding loop process is an example of a second loop
process, and the subsequent loop process is an example of a
first loop process.

[0129] The preceding loop process executes the operation
bottleneck process. The subsequent loop process is a process
in which a predetermined value is assigned to each element
“[i]” of the array “x”. The addresses of the elements of the
array in the memory 3 are consecutive. Thus, the elements
“x[i]” are contiguous to each other in the memory 3.
[0130] FIG. 148 illustrates a source code obtained after the
information processing device 20 optimizes the source code
of FIG. 14A according to the third prefetch method.
[0131] In the third prefetch method, the information pro-
cessing device 20 inserts a prefetch instruction “sector_
prefetch(x[j])” to the preceding loop process. This prefetch
instruction “sector_prefetch(x[j])” is an example of a third
instruction, and an instruction to transfer, from the memory
3 to the sector #1 of the cache memory 6, the data of the
elements “x[i]” contiguous to each other in the memory 3.

Jul. 21, 2022

Additionally, the information processing device 20 inserts a
prefetch instruction “sector_prefetch(x[i+N])” to the subse-
quent loop process. This prefetch is referred to as better-
prologue prefetch, hereinafter. The data elements “[i]” to be
prefetched to the sector #1 are examples of first data
elements. In addition, data elements other than “x[i]” are
examples of a second data element to be prefetched to the
sector #0.

[0132] Accordingly, the elements “x[i]” required for
execution of the statement “x[i]=. .. ;” in the eighth line are
transferred from the memory 3 to the cache memory 6 in
advance in the preceding loop process, which prevents
occurrence of cache misses in the subsequent loop process.
Further, in the prefetch instruction “sector_prefetch(x[i+
N])” in the subsequent loop process, the element “x[i+N]”,
which is N ahead of the element “x[i]”, is prefetched. This
also prevents cache misses.

[0133] Further, the prefetch instruction “sector_prefetch(x
[[1)” and “sector_prefetch(x[i+N])” are instructions to
prefetch the elements of the array “x” to the sector #1 of the
cache memory 6. Thus, the elements of the array “x”
prefetched to the sector #1 are not cached out by array
elements other than the elements of the array “x” until the
subsequent loop process is completed, which increases the
cache hit ratio.

[0134] FIG. 15 is a schematic view illustrating an advan-
tage achieved by the third prefetch method (better-prologue
prefetch).

[0135] “Without prefetch” in FIG. 15 indicates a case
where the executable program obtained from the source
code of FIG. 14A, which is not optimized, is executed in the
computing machine 1. In this case, the data element “x[i]”
may be absent in the cache memory 6 at the time of
executing the load instruction and the store instruction
required for the statement “x[i]=. . . ;” in the fifth line of
FIG. 14A. In this case, a cache miss occurs, which results in
increase in the memory cost and increase in the execution
time of the executable program 22 in the computing machine
1.

[0136] “Prefetch in subsequent loop” indicates a case
where the executable program obtained from the source
code optimized by prologue prefetch as illustrated in FIG.
6B is executed in the computing machine 1. In prologue
prefetch, the subsequent loop process is kept waiting until
the prefetch instructions “prefetch[0]”, “prefetch[1]”, . . .,
“prefetch[N-1]" are completed after the completion of the
preceding loop process. Thus, there are limitations to accel-
eration in the execution time of the program.

[0137] “Prefetch in preceding loop” indicates a case where
the executable program obtained from the source code
optimized by the third prefetch method (better-prologue
prefetch) illustrated in FIG. 148 is executed in the comput-
ing machine 1. In this case, since the prefetch instruction
“sector_prefetch(x[j])” is executed in the preceding loop
process, the subsequent loop process is not kept waiting after
completion of the preceding loop process.

[0138] Furthermore, since the preceding loop process
executes the operation bottleneck process, the execution
time of the prefetch instruction “sector_prefetch(x[j])” can
be hidden in the operation cost of the preceding loop
process, which prevents the increase in the execution time of
the preceding loop process.

[0139] As a result, the third prefetch method (better-
prologue prefetch) of FIG. 148 can reduce the execution

US 2022/0229664 Al

time of the executable program 22 compared with the cases
“without prefetch” and “prefetch in preceding loop”.
[0140] In the present embodiment, there are the first to
third prefetch methods as described above. Which prefetch
method is selected among the first to third prefetch methods
is determined by the information processing device 20 based
on the access pattern in the subsequent loop process as
follows.

[0141] FIG. 16 is a diagram for describing the access
pattern.
[0142] The access pattern indicates how a memory refer-

ence instruction such as a load instruction and a store
instruction accesses a plurality of data elements in the
memory 3 every loop iteration. In the present embodiment,
a sequential access, a stride access, a table access, and a pool
access are assumed as the access pattern. Patterns other than
these patterns are defined as unknown.

[0143] InFIG. 16, the total size of the areas to be reserved
in the cache memory 6 when data elements are prefetched in
each access pattern is also presented.

[0144] The sequential access is a pattern in which the
memory reference instruction sequentially accesses a plu-
rality of data elements contiguous to each other in the
memory 3 every loop iteration. For example, the pattern in
which the array elements are accessed sequentially is the
sequential access.

[0145] When the sequential access is applied to the array
“a” in the loop process of which the loop iteration number
is the constant n, the total size is n*seizeof(a[0]). “Sizeof” is
the function that returns the size of the array element “a[0]”.
When the loop iteration number n is a variable, the total size
is indeterminate.

[0146] The stride access is a pattern in which the memory
reference instruction sequentially accesses a plurality of data
elements aligned at regular intervals in the memory 3 every
loop iteration. For example, the pattern in which the array
elements corresponding to the indexes that are a multiple of
the integer ¢ are accessed is the stride access.

[0147] The total size in the case of the stride access differs
depending on the magnitude relationship between the inte-
ger ¢ and the size S-line size of the cache line. For example,
when c<$-line size and the integer ¢ and the loop iteration
number n are constants, the total size is n*c*sizeof(a[0]).
When the integer ¢ and the loop iteration number are both
variables, the total size is indeterminate.

[0148] By contrast, when c=$-line size and the loop itera-
tion number n is a constant, the total size is n*S-line size.
When the loop iteration number n is a variable, the total size
is indeterminate.

[0149] The table access is a pattern in which the elements
of the table stored in the memory 3 are accessed. It is
impossible for the information processing device 20 to
identify the index of the element to be accessed in advance.
Thus, the table access needs to reserve the total size of all the
elements of the table in the cache memory 6.

[0150] The pool access is a pattern in which data elements
pointed to by pointers in the pool area reserved in the
memory 3 are accessed. In this case, the total size is the size
of the entire memory pool.

[0151] Next, the method of selecting the first to third
prefetch methods based on the access pattern will be
described for the following cases 1 to 3.

Jul. 21, 2022

Case 1

[0152] FIG. 17A illustrates an example of a source code in
the case 1. This source code is the same as the source code
in FIG. 10A.

[0153] The case 1 is a case where the access pattern of the
subsequent loop process is the table access, and the preced-
ing loop process is a process in which the indexes of the
table are calculated. In FIG. 17A, the array “table” repre-
sents the table, and each element of the array “idx™ repre-
sents the index.

[0154] FIG. 17B is a schematic view of the entire table.
[0155] In this example, a case where the table represented
by the array “table” has 16 elements is assumed. In addition,
8 elements indicated by (1) to (8) of the 16 elements are
accessed in the subsequent loop process. The numbers (1) to
(8) indicate the order in which the elements are accessed in
the subsequent loop process.

[0156] FIG. 18 schematically illustrates the cache memory
6 at the time of executing each of the preceding loop process
and the subsequent loop process when the first to third
prefetch methods are executed in the case 1.

[0157] Inthe case 1, the indexes of the table are calculated
in the preceding loop process, and only the elements corre-
sponding to the calculated indexes are accessed in the
subsequent loop process. Thus, the second prefetch method
(whole-table prefetch), which prefetches all the elements of
the table, wastes the cache memory 6, and thus is not
employed.

[0158] In the third prefetch method (better-prologue
prefetch), the elements of (1) to (4) are prefetched in the
preceding loop process, and the elements of (5) to (8) are
prefetched in the subsequent loop process. Since the
memory cost associated with switching of the elements as
described above is generated, the priority of the third
prefetch method (better-prologue prefetch) is low.

[0159] As clear from above, in the case 1, the information
processing device 20 selects the first prefetch method (all-
index prefetch). However, when the memory size of the
cache memory 6 is not enough, the information processing
device 20 selects the third prefetch method (better-prologue
prefetch).

Case 2

[0160] FIG. 19A illustrates an example of a source code in
the case 2. This source code is the same as the source code
in FIG. 12A.

[0161] The case 2 is a case where the access pattern of the
subsequent loop process is the table access. The elements of
the table to be accessed by the subsequent loop process are
unknown in advance. For example, in this source code, the
elements to be accessed by the subsequent loop process are
determined by the results of the operation “op1(a[i], b[i])”,
and am unknown until the operation “opl(a[i], b[i])” is
performed.

[0162] FIG. 19B is a schematic view of the entire table.

[0163] As in FIG. 17B, a case where the table represented
by the array “table” has 16 elements is assumed. In addition,
8 elements indicated by (1) to (8) of the 16 elements are
accessed in the subsequent loop process. The numbers (1) to
(8) indicate the order in which the elements are accessed in
the subsequent loop process.

[0164] FIG. 20 schematically illustrates the cache memory
6 at the time of executing each of the preceding loop process

US 2022/0229664 Al

and the subsequent loop process when the second prefetch
method (whole-table prefetch) is executed in the case 2.
[0165] In the case 2, as mentioned above, the elements of
the table to be accessed by the subsequent loop process are
unknown at the time of executing the preceding loop pro-
cess. Thus, in the case 2, the information processing device
20 employs the second prefetch method (whole-table
prefetch) to prefetch all the elements of the table in the
preceding loop process.

[0166] Also in a case where the access pattern of the
subsequent loop process is the pool access, the data elements
to be accessed are unknown in advance. Thus, as in the
above case 2, the information processing device 20 employs
the second prefetch method (whole-table prefetch).

Case 3

[0167] FIG. 21A illustrates a source code in the case 3.
This source code is the same as the source code in FIG. 14A.
[0168] The case 3 is a case where the access pattern of the
subsequent loop process is the sequential access.

[0169] FIG. 21B is a schematic view of the cache memory
6 at the time of executing each of the preceding loop process
and the subsequent loop process when the third prefetch
method (better-prologue prefetch) is performed in the case 3.
[0170] In the case 3, the subject to be accessed by the
subsequent loop process is not the element of the table.
Thus, it is impossible to use the first prefetch method and the
second prefetch method, which prefetch the element of the
table. Therefore, the information processing device 20

employs the third prefetch method (better-prologue
prefetch).
[0171] When data elements are prefetched from the

memory 3 to the cache memory 6, the area having a size
capable of storing the prefetched data elements is required in
the cache memory 6. When it is impossible to reserve such
an area, degeneration is performed between two prefetch
methods as follows.

[0172] FIG. 22 illustrates a source code before degenera-
tion and a source code after degeneration when the first
prefetch method (all-index prefetch) is degenerated to the
third prefetch method (better-prologue prefetch).

[0173] As illustrated in FIG. 22, in the source code before
degeneration, the prefetch instruction (sector_prefetch(table
[idx[i]])) is executed in the preceding loop process. A ease
where the cache memory 6 does not have an area having a
size capable of storing all the data elements to be prefetched
by this prefetch instruction is discussed.

[0174] In this case, the information processing device 20
reduces the number of the prefetch instructions (sector_
prefetch(table[idx[i]])) in the fourth line executed in the
preceding loop process to less than the number before
degeneration. In this example, the information processing
device 20 leaves only the prefetch instructions (sector_
prefetch(table[idx[i]])) of i<N by an if statement in the third
line, and deletes the prefetch instructions (sector_prefetch
(table[idx[i]])) of i=N from the preceding loop process. Note
that N is a prefetch distance smaller than the loop iteration
number 1.

[0175] Additionally, the information processing device 20
inserts a prefetch instruction (sector_prefetch(table[idx[i+
N]1])) to the ninth line of the subsequent loop process. This
prefetch instruction is an instruction to transfer the element
of the table corresponding to the index “idx[i+N]” larger
than all of the indexes “idx[i]” calculated in the preceding

Jul. 21, 2022

loop process, from the memory 3 to the cache memory 6.
The prefetch instruction (sector_prefetch(table[idx[i+N]]))
is an example of a fourth instruction.

[0176] Through the above process, the first prefetch
method (all-index prefetch) is degenerated to the third
prefetch method (better-prologue prefetch). The degenera-
tion is a manipulation that replaces a certain prefetch method
with another prefetch method that is expected to use less
cache memory. The degeneration in accordance with this
example is an example of a second manipulation.

[0177] FIG. 23 illustrates a source code before degenera-
tion and a source code after degeneration when the second
prefetch method (whole-table prefetch) is degenerated to an
alternative prefetch method.

[0178] As illustrated in FIG. 23, in the source code before
degeneration, the prefetch instruction (sector_prefetch(table
[iD) is executed in the preceding loop process. A case where
the cache memory 6 does not have an area having a size
capable of storing all the data elements to be prefetched by
this prefetch instruction is discussed.

[0179] In this case, the information processing device 20
deletes the prefetch instruction (sector_prefetch(table[j]))
from the preceding loop process. Additionally, the informa-
tion processing device 20 inserts a prefetch instruction
(prefetch(table[rand()])) to the subsequent loop process.
This prefetch instruction (prefetch(table[rand()])) is an
instruction to transfer the element having an index equal to
the random number generated by the function “rand()” of
the table, from the memory 3 to the sector #0 of the cache
memory 6. This prevents cache misses when the index of the
element accessed in the subsequent loop process is inciden-
tally equal to the random number. The prefetch instruction
(prefetch(table[rand()])) is an example of a fifth instruction.
[0180] Through the above process, the second prefetch
method (whole-table prefetch) is degenerated to an alterna-
tive prefetch method using the random number. The degen-
eration in accordance with this example is an example of a
first manipulation.

[0181] The functional configuration of the information
processing device 20 in accordance with the embodiment
will be described.

[0182] FIG. 24 is a functional block diagram of the
information processing device 20.

[0183] As illustrated in FIG. 24, the information process-
ing device 20 includes a storage unit 41 and a control unit
42.

[0184] The storage unit 41 stores the source program 21,
the executable program 22, and an intermediate code 23. The
intermediate code 23 is a source code obtained by optimiz-
ing the source program 21 according to the first to third
prefetch methods. For example, the source codes illustrated
in FIG. 10B, FIG. 12C, and FIG. 14B are examples of the
intermediate code 23.

[0185] The executable program 22 is a binary program
executable in the computing machine 1 of FIG. 1.

[0186] The control unit 42 is a processing unit that con-
trols each unit of the information processing device 20, and
includes an input unit 51, a determination unit 52, a detec-
tion unit 53, a calculation unit 54, a degeneration determi-
nation unit 55, an insertion unit 56, and a generation unit 57.
[0187] The input unit 51 is a processing unit that receives
the input of the source program 21, and stores the source
program 21 in the storage unit 41. As an example, the input
unit 51 receives the input of the source program 21 stored in

US 2022/0229664 Al

a recording medium such as a compact disc read only
memory (CD-ROM), a digital versatile disc (DVD), or a
universal serial bus (USB) memory. The input unit 51 may
receive the input of the source program 21 from the external
device through the communication with a network such as a
local area network (LAN) and the Internet.

[0188] In this example, the source program 21 includes a
preceding loop process and a subsequent loop process as in
the source codes illustrated in FIG. 10A, FIG. 12A, and FIG.
14A.

[0189] The determination unit 52 is a processing unit that
determines whether the preceding loop process includes the
operation bottleneck process. As mentioned above, the
operation bottleneck process is a process where the total
number of clock cycles required for an operation process
executed by the arithmetic unit 4 is larger than the total
number of clock cycles required for the access to the
memory 3.

[0190] The detection unit 53 is a processing unit that
detects the access pattern in the subsequent loop process
written in the source program 21. As illustrated in FIG. 16,
the access pattern includes the sequential access, the stride
access, the table access, the pool access, and unknown.
[0191] The calculation unit 54 is a processing unit that
calculates the total size of the data elements to be transferred
from the memory 3 to the cache memory 6 by prefetching.
[0192] The degeneration determination unit 55 is a pro-
cessing unit that determines the degeneration of the prefetch
method when it is impossible to reserve an area having a size
capable of storing the prefetched data elements in the cache
memory 6.

[0193] The insertion unit 56 is a processing unit that
inserts the prefetch instruction based on the access pattern
detected by the detection unit 53 into the preceding loop
process. Additionally, the insertion unit 56 stores, as the
intermediate code 23, the source program 21 to which the
prefetch instruction has been inserted, in the storage unit 41.
[0194] The generation unit 57 is a processing unit that
generates an object file from the intermediate code 23 and
links the necessary library to the object file to generate the
executable program 22. Then, the generation unit 37 stores
the generated executable program 22 in the storage unit 41.
[0195] FIG. 25 is a flowchart of a compiling method in
accordance with the embodiment.

[0196] First, the input unit 31 receives the input of the
source program 21 and stores the source program 21 in the
storage unit 41 (step S11).

[0197] After this step, each step is performed for a pair of
two consecutive loop processes in the source program 21.
[0198] First, the determination unit 52 determines whether
the preceding loop process of the two loop processes
includes the operation bottleneck process (step S12). Here,
when it is determined that no operation bottleneck process is
included (step S12: NO), step S12 is performed again for the
subsequent two consecutive loop processes.

[0199] When it is determined that the operation bottleneck
process is included (step S12: YES), the process proceeds to
step S13.

[0200] In step S13, the detection unit 53 detects the access
pattern in the subsequent loop process. Additionally, the
detection unit 53 generates an access pattern table TB1
indicating the detected access patterns, and stores the access
pattern table TB1 in the storage unit 41.

Jul. 21, 2022

[0201] The access pattern table TB1 is a table that relates
each of the arrays included in the preceding loop process and
the subsequent loop process to the access pattern and the
total size of the array. In the case of the table access, the total
size is the total size of all the elements included in the table.
The total size of the access pattern other than the table access
is not known, and becomes “unknown”.

[0202] Then, the detection unit 53 executes a determina-
tion process in which the candidate prefetch method is
determined from among the first to third prefetch methods
with respect to each array of the subsequent loop process
based on the access pattern table TB1 (step S14). For
example, the detection unit 53 analyzes which of the cases
1 to 3 (FIG. 17 to FIG. 21) the process contents of the
preceding loop process and the subsequent loop process
correspond, based on the access pattern table TB1. Then, the
detection unit 53 determines the candidate prefetch method
based on the analysis result.

[0203] For example, the access patterns of the arrays
“idx[i]” and “x[i]” are the sequential access. Therefore,
when there is any one of the arrays “idx[i]” and “x[i]” in the
subsequent loop process, this case corresponds to the case 3
(FIG. 21A). In this case, the detection unit 53 selects the
third prefetch method (better-prologue prefetch) as the can-
didate prefetch method for the arrays “idx[i]” and “x[i]”.
[0204] A case where the subsequent loop process includes
the array “table[idx[i]]” of which the access pattern is the
table access, and the preceding loop process includes the
array “idx[i]” representing the index of the table is dis-
cussed. This situation corresponds to the case 1 (FIG. 17A).
Therefore the detection unit 53 selects the first prefetch
method (all-index prefetch) as the candidate prefetch
method for the array “table[idx[i]]”.

[0205] Then, the detection unit 53 generates a candidate
table TB2 indicating candidates selected as described above,
and stores die candidate table TB2 in the storage unit 41. The
candidate table TB2 is a table that relates the array subject
to prefetch in the subsequent loop process, the type of
prefetch, the prefetch distance, and the candidate prefetch
method to each other. The prefetch type indicates whether
the process to the array is read or write.

[0206] Then, the degeneration determination unit 55
executes a degeneration determination process in which
whether the prefetch method in the candidate table TB2 is to
be degenerated is determined with respect to each array, and
stores a determination table TB3 indicating the determina-
tion results in the storage unit 41 (step S15).

[0207] The determination table TB3 is a table that relates
the array subject to prefetch in the subsequent loop process,
the prefetch type, the prefetch distance, and the determined
prefetch method to each other.

[0208] For example, when it is impossible to reserve an
area having a size capable of storing the prefetched data
elements in the cache memory 6, the degeneration determi-
nation unit 55 determines degeneration. In this example,
illustrated is a case where when the candidate prefetch
method for the array “table[idx[i]]” is the first prefetch
method (all-index prefetch), the degeneration determination
unit 55 degenerates the first prefetch method (all-index
prefetch) to the third prefetch method (better-prologue
prefetch).

[0209] Then, the insertion unit 56 determines whether
there is an array subject to prefetch (step S16). For example,
the insertion unit 56 determines that there is no array subject

US 2022/0229664 Al

to prefetch when the field of the prefetch method in the
determination table TB3 is empty, and determines that there
is an array subject to prefetch when the field of the prefetch
method in the determination table TB3 is not empty.
[0210] When it is determined that there is no array subject
to prefetch (step S16: NO), the process starts over from step
S12 for the subsequent two consecutive loop processes.
[0211] When it is determined that there is an array subject
to pre fetch (step S16: YES), the process proceeds to step
S17.

[0212] Instep S17, the insertion unit 56 writes the prefetch
instruction corresponding to the prefetch method in the
determination table TB3 to the preceding loop process.
Additionally, the insertion unit 56 stores, as the intermediate
code 23, the source program 21 to which the prefetch
instruction has been inserted in the storage unit 41.

[0213] Then, the generation unit 57 generates the execut-
able program 22 from the intermediate code 23, and stores
the generated executable program 22 in the storage unit 41
(step S18).

[0214] In the above manner, the basic steps of the com-
piling method in accordance with the embodiment am
completed.

[0215] Next, the determination process of the candidate
prefetch method in step S14 will be described.

[0216] FIG. 26 is a flowchart of the determination process
of the candidate prefetch method.

[0217] This flowchart is a flowchart for determining the
candidate prefetch method by analyzing which of the cases
1 to 3 (FIG. 17 to FIG. 21) the process contents of the
preceding loop process and the subsequent loop process
correspond. This process of the flowchart is executed by the
detection unit 53 for each array included in the subsequent
loop process.

[0218] First, the detection unit 53 determines whether the
access pattern in the subsequent loop process is the sequen-
tial access or the stride access (step S21). When it is
determined that the access pattern in the subsequent loop
process is the sequential access or the stride access (step
S21: YES), the process proceeds to step S22, and the
detection unit 53 selects the third prefetch method (better-
prologue prefetch). Thereafter, the process returns to the
caller.

[0219] When it is determined that the access pattern in the
subsequent loop process is not the sequential access or the
stride access (step S21: NO), the process proceeds to step
S23. In step S23, the detection unit 53 determines whether
the access pattern in the subsequent loop process is the table
access.

[0220] When it is determined that the access pattern in the
subsequent loop process is the table access (step S23: YES),
the process proceeds to step S24. In step S24, the detection
unit 53 determines whether the preceding loop process
includes a process in which the index of the table is
calculated.

[0221] When it is determined that the preceding loop
process includes the process in which the index of the table
is calculated (step S24: YES), the process proceeds to step
S25, and the detection unit 53 selects the first prefetch
method (all-index prefetch). Thereafter, the process returns
to the caller.

[0222] When it is determined that the preceding loop
process does not include the process in which the index of
the table is calculated (step S24: NO), the process proceeds

Jul. 21, 2022

to step S26. In step S26, the detection unit 53 determines
whether the table size is known. For example, when there is
a statement that declares the table size is included in the
source program 21, the detection unit 53 determines that the
table size is known. When the statement that declares the
table size is not included in the source program 21, the
detection unit 53 determines that the table size is unknown.
[0223] When it is determined that the table size is known
(step S26: YES), the process proceeds to step S27, and the
detection unit 53 selects the second prefetch method (whole-
table prefetch). Thereafter, the process returns to the caller.
[0224] When it is determined that the access pattern in the
subsequent loop process is not the table access in step S23,
the process proceeds to step S28.

[0225] In step S28, the detection unit 53 determines
whether the access pattern in the subsequent loop process is
the pool access. When it is determined that the access pattern
in the subsequent loop process is the pool access (step S28:
YES), the process proceeds to step S29.

[0226] In step S29, the detection unit 53 determines
whether the range of the data elements pointed to by pointers
in the pool area is known. For example, when a statement
that declares the range is included in the source program 21,
the detection unit 53 determines that the range of the data
elements is known. When the statement that declares the
range is not included in the source program 21, the detection
unit 53 determines that the range of the data elements is
unknown.

[0227] When it is determined that the range of the data
elements pointed to by pointers in the pool area is known
(step S29: YES), the process proceeds to step S27 described
above, and the detection unit 53 selects the second prefetch
method (whole-table prefetch).

[0228] When it is determined that the access pattern in the
subsequent loop process is not the pool access in step S28,
the process proceeds to step S30. When it is determined that
the range of the data elements pointed to by pointers in the
pool area is unknown in step S29, the process also proceeds
to step S30. When it is determined that the table size is
unknown in step S26, the process also proceeds to step S30.
[0229] In step S30, it is determined whether prefetching is
possible by an alternative prefetch method different from all
of the first to third prefetch methods. Examples of the
alternative prefetch method include, but are not limited to,
the prefetch method using the random number described in
FIG. 23.

[0230] When it is determined that prefetching is possible
by the alternative prefetch method (step S30: YES), the
process proceeds to step S31, the detection unit 53 selects
the alternative prefetch method, and the process returns to
the caller.

[0231] When it is determined that prefetching is impos-
sible by the alternative prefetch method (step S30: NO), the
process proceeds to step S32.

[0232] Instep S32, the detection unit 53 determines that it
is impossible to prefetch the array, and the process returns to
the caller.

[0233] In the above manner, the basic steps of the deter-
mination process of the candidate prefetch method are
completed.

[0234] Even when the candidate prefetch method is deter-
mined as described above, if the cache memory 6 is not
enough, it is impossible to execute prefetching. In such a
case, the information processing device 20 performs the

US 2022/0229664 Al

selection of the prefetch method and degeneration of the
prefetch method in the degeneration determination process
of step S15 in FIG. 25.

[0235] The prefetch method is selected taking into con-
sideration the respective advantages of the first to third
prefetch methods.

[0236] For example, the third prefetch method (better-
prologue prefetch) has an advantage that the cache usage of
the subsequent loop process does not increase. The first
prefetch method (all-index prefetch) and the second prefetch
method (whole-table prefetch) do not have this advantage.
Taking this advantage into consideration, in the following
example, the third prefetch method of the first to third
prefetch methods is to be always executed.

[0237] FIG. 27 is a flowchart of the degeneration deter-
mination process.

[0238] First, the calculation unit 54 calculates the size C of
an area available in the cache memory 6 (step S41). Here,
the calculation unit 54 calculates the size C using the
equation C=the entire size of the cache memory 6-c. The
calculation unit 54 calculates a as follows. The size C is an
example of a first size.

[0239] First, the calculation unit 54 calculates the sum of
the values of the following (a) to (¢) with respect to each of
the preceding loop process and the subsequent loop process.
[0240] (a) The total size (Byte) of the elements when each
element of the array for which the third prefetch method
(better-prologue prefetch) is selected as a candidate is
prefetched by the third prefetch method.

[0241] (b) The total size (Byte) of the elements when each
of the arrays for which the alternative prefetch method
different from all of the first to third prefetch methods is
selected as a candidate is prefetched by the alternative
prefetch method.

[0242] (c) The number of arrays that are not subject to
prefetchxthe size of the cache line 9xf. Note that f is a
constant determined by the architecture of the processor 2.
[0243] The calculation unit 54 employs the larger value
between the sum of (a) to (c) of the preceding loop process
and the sum of (a) to (¢) of the subsequent loop process as
a.

[0244] Here, o has a meaning as the size of the area that
must be reserved in the cache memory 6. The total size of the
array elements prefetched by the third prefetch method
(better-prologue prefetch), which is (a), is included in c.
Thus, the third prefetch method is always executed without
being replaced by any other prefetch methods.

[0245] Then, the calculation unit 54 calculates the sizes W,
X, Y, and Z (step S42). The meanings of these sizes are as
follows.

[0246] W: The total size of the data elements to be
transferred to the cache memory 6 by the prefetch instruc-
tion of the first prefetch method (all-index prefetch) in the
preceding loop process. The prefetch instruction is, for
example, the prefetch instruction “sector_prefetch(table[idx
[1]])” of FIG. 10B. The size W is an example of a first total
size. The data elements to be transferred to the cache
memory 6 by the prefetch instruction of the first prefetch
method (all-index prefetch) are examples of fourth data
elements.

[0247] X: The total size of the data elements to be trans-
ferred to the cache memory 6 in the preceding loop process
when the first prefetch method (all-index prefetch) is degen-
erated to the third prefetch method (better-prologue

Jul. 21, 2022

prefetch) as illustrated in FIG. 22 and the data elements to
be transferred to the cache memory in the subsequent loop
process when the first prefetch method (all-index prefetch)
is degenerated to the third prefetch method (better-prologue
prefetch). The size X is an example of a fourth total size. The
data elements to be transferred to the cache memory 6 in the
preceding loop process when the first prefetch method
(all-index prefetch) is degenerated to the third prefetch
method (better-prologue prefetch) are examples of seventh
data elements, and the data elements to be transferred to the
cache memory 6 in the subsequent loop process when the
first prefetch method (all-index prefetch) is degenerated to
the third prefetch method (better-prologue prefetch) are
examples of eighth data elements.

[0248] Y: The total size of the data elements to be trans-
ferred to the cache memory 6 by the prefetch instruction of
the second prefetch method (whole-table prefetch) in the
preceding loop process. The prefetch instruction is, for
example, the prefetch instruction “sector_prefetch(table[j])”
of FIG. 12B. The size Y is an example of a second total size.
[0249] Z: The total size of the data elements to be trans-
ferred to the cache memory 6 in the preceding loop process
when the second prefetch method (whole-table prefetch) is
degenerated to the alternative prefetch method as illustrated
in FIG. 23 and the data elements to be transferred to the
cache memory 6 in the subsequent loop process when the
second prefetch method (whole-table prefetch) is degener-
ated to the alternative prefetch method. The size Z is an
example of a third total size. The data elements to be
transferred to the cache memory 6 in the preceding loop
process when the second prefetch method (whole-table
prefetch) is degenerated to the alternative prefetch method
are examples of fifth data elements, and the data elements to
be transferred to the cache memory 6 in the subsequent loop
process when the second prefetch method (whole-table
prefetch) is degenerated to the alternative prefetch method
are examples of sixth data elements.

[0250] Then, the degeneration determination unit 55
executes a determination process in which whether degen-
eration is to be performed is determined (step S43).

[0251] FIG. 28 is a flowchart of the determination process.
[0252] Hereinafter, assumed is case where three arrays are
included in the subsequent loop process, and the first to third
prefetch methods are determined as the candidate prefetch
methods for the respective arrays.

[0253] First, the degeneration determination unit 55 deter-
mines whether “C=W+Y” is established (step S51). When it
is determined that “CzW+Y” is established, the process
proceeds to step S52.

[0254] FIG. 29A is a schematic view of the cache memory
6 when “C=W+Y” is established. As illustrated in FIG. 29A,
in this case, even when degeneration is not performed, the
total size (W+Y) of the data elements to be prefetched is less
than the size C. Thus, in this case, in step S52, the degen-
eration determination unit 55 determines that degeneration is
not performed.

[0255] Referring back to FIG. 28, the description will be
continued.
[0256] When “C=W+Y” is not established, the process

proceeds to step S53. In step S53, the degeneration deter-
mination unit 55 determines whether “CzW+Z7” is estab-
lished. When it is determined that “C=W+Z" is established,
the process proceeds to step S54.

US 2022/0229664 Al

[0257] FIG. 29B is a schematic view of the cache memory
6 when “Cz=W+Z7” is established. As illustrated in FIG. 29B,
in this case, by degenerating the second prefetch method
(whole-table prefetch) to the alternative prefetch method
according to the method illustrated in FIG. 23, the total size
(W+Z) of the data elements to be prefetched becomes
smaller than the size C. Thus, in this case, in step S54, the
degeneration determination unit 55 determines that the sec-
ond prefetch method (whole-table prefetch) is degenerated
to the alternative prefetch method. Then, the insertion unit
56 degenerates the second prefetch method (whole-table
prefetch) to the alternative prefetch method in step S17 of
FIG. 25.

[0258] Referring back to FIG. 28, the description will be
continued.
[0259] When it is determined that “Cz=zW+7" is not estab-

lished (step S53: NO), the process proceeds to step S5. In
step S55, the degeneration determination unit 55 determines
whether “C=X+Y" is established. When it is determined that
“CzX+Y” is established, the process proceeds to step S56.
[0260] FIG. 30A is a schematic view of the cache memory
6 when “Cz=X+Y” is established. As illustrated in FIG. 30A,
in this case, by degenerating the first prefetch method
(all-index prefetch) to the third prefetch method (better-
prologue prefetch) according to the method illustrated in
FIG. 22, the total size (X+Y) of the data elements to be
prefetched becomes less than the size C. Thus, in this case,
in step S56, the degeneration determination unit 55 deter-
mines that the first prefetch method (all-index prefetch) is
degenerated to the third prefetch method (better-prologue
prefetch). Men, the insertion unit 56 degenerates the first
prefetch method (all-index prefetch) to the third prefetch
method (better-prologue prefetch) in step S17 of FIG. 25.

[0261] Referring back to FIG. 28, the description will be
continued.
[0262] When it is determined that “C=X+Y" is not estab-

lished (step S55: NO), the process proceeds to step S57. In
step S57, the degeneration determination unit 55 determines
whether “Cz=X+Z7" is established. When it is determined that
“CzX+7" is established, the process proceeds to step S58.
[0263] FIG. 30B is a schematic view of the cache memory
6 when “C=X+Z" is established. As illustrated in FIG. 30B,
in this case, the total size (X+Z) of the data elements to be
prefetched becomes smaller than the size C by degenerating
the first prefetch method to the third prefetch method and
degenerating the second prefetch method to the alternative
prefetch method. Thus, in this case, in step S58, the degen-
eration determination unit 55 determines that the first
prefetch method is degenerated to the third prefetch method
and the second prefetch method is degenerated to the
alternative prefetch method. Then, the insertion unit 56
performs these degeneration in step S17 of FIG. 25.

[0264] Referring back to FIG. 28, the description will be
continued.
[0265] When it is determined that “C=X+Z7" is not estab-

lished (step S57: NO), the process proceeds to step S59. In
step S59, the degeneration determination unit 55 determines
whether “C=W” is established. When it is determined that
“CzW?” is established, the process proceeds to step S60.

[0266] FIG. 31A is a schematic view of the cache memory
6 when “Cz=W?” is established. As illustrated in FIG. 31A, in
this case, the total size (W) of the data elements to be
prefetched becomes smaller than the size C when the second
prefetch method (whole-table prefetch) is not executed.

Jul. 21, 2022

[0267] Thus, in this case, in step S60, the degeneration
determination unit 55 determines that the second prefetch
method (whole-table prefetch) is not executed. Then, the
insertion unit 56 does not insert the prefetch instruction to
execute the second prefetch method (whole-table prefetch)
to the preceding loop process in step S17 of FIG. 25.
Examples of such a prefetch instruction include, but are not
limited to, the prefetch instruction “sector_prefetch(table
(1) in FIG. 12B.

[0268] Referring back to FIG. 28, the description will be
continued.
[0269] When it is determined that “Cz=W” is not estab-

lished (step S59: NO), the process proceeds to step S61. In
step S61, the degeneration determination unit 55 determines
whether “C=X" is established. When it is determined that
“CzX” is established, the process proceeds to step S62.
[0270] FIG. 31B is a schematic view of the cache memory
6 when “Cz=X" is established. In this case the total size (X)
of the data elements to be prefetched becomes smaller than
the size C when the first prefetch method (all-index prefetch)
is degenerated to the third prefetch method and the second
prefetch method (whole-table prefetch) is not executed.
[0271] Thus, in this case, in step S62, the degeneration
determination unit 55 determines that the first prefetch
method (all-index prefetch) is degenerated to the third
prefetch method (better-prologue prefetch) and the second
prefetch method (whole-table prefetch) is not executed.
Then, the insertion unit 56 degenerates the first prefetch
method (all-index prefetch) to the third prefetch method
(better-prologue prefetch) in step S17 of FIG. 23. Along with
this, the insertion unit 56 does not insert the prefetch
instruction to execute the second prefetch method (whole-
table prefetch) to the preceding loop process.

[0272] Referring back to FIG. 28, the description will be
continued.
[0273] When it is determined that “C=X" is established

(step S61: NO), the process proceeds to step S63. In step
S61, the degeneration determination unit 55 determines
whether “C=0" is established. When it is determined that
“C=0” is established, the process proceeds to step S64.
[0274] FIG. 32 is a schematic view of the cache memory
6 when “C=0" is established. In this case, even when the first
prefetch method is degenerated to the third prefetch method
and the second prefetch method is degenerated to the
alternative prefetch method, each of the total sizes X and Z
after degeneration becomes larger than the size C.

[0275] Thus, in this case, in step S64, the degeneration
determination unit 55 determines that only the third prefetch
method (better-prologue prefetch) is employed among the
first to third prefetch methods. Then, the insertion unit 56
inserts the prefetch instruction to execute the third prefetch
method to the preceding loop process in step S17 of FIG. 25.
Examples of such a prefetch instruction include, but are not
limited to, the prefetch instruction “sector_prefetch(x[j])” in
FIG. 14B.

[0276] Referring back to FIG. 28, the description will be
continued.
[0277] When it is determined that “C=0" is not established

(step S63: NO), some of the prefetched data elements cannot
be stored in the cache memory 6 no matter which of the first
to third prefetch methods is employed. Thus, in this case, the
process is ended without executing prefetching.

[0278] In the above manner, the basic steps of the deter-
mination process are completed.

US 2022/0229664 Al

[0279] This determination process allows to determine
which of the first to third prefetch methods is employed
taking into consideration the size C of the area available in
the cache memory 6.

Hardware Configuration

[0280] Next, a description will be given of the hardware
configuration of the information processing device 20 in
accordance with the embodiment.

[0281] FIG. 33 is a hardware configuration diagram of the
information processing device 20. As illustrated in FIG. 33,
the information processing device 20 includes a storage
device 20a, a memory 204, a processor 20¢, a communica-
tion interface 204, a display device 20e, an input device 20f,
and a medium reading device 20g. These components am
connected to each other through a bus 204.

[0282] The storage device 20a is a non-volatile storage
such as a hard disk drive (HDD) and a solid state drive
(SSD), and stores a compiling program 100 in accordance
with the embodiment.

[0283] The compiling program 100 may be recorded in a
computer-readable recording medium 20%, and the processor
20c may be caused to read the compiling program 100
through the medium reading device 20g.

[0284] Such a recording medium 20k may be a physically
portable recording medium such as a CD-ROM, a DVD, or
a USB memory, for example. Also, a semiconductor
memory such as a flash memory, or a hard disk drive may
be used as the recording medium 20%4. Such a recording
medium 20% is not a temporary medium such as carrier
waves not having a physical form.

[0285] Further, the compiling program 100 may be stored
in a device connected to a public line, the Internet, a LAN,
or the like. In this case, the processor 20c reads and executes
the compiling program 100.

[0286] Meanwhile, the memory 206 is hardware that tem-
porarily stores data like a dynamic random access memory
(DRAM) or the like. The compiling program 100 is loaded
into the memory 2064.

[0287] The processor 20c¢ is hardware such as a CPU or a
GPU that controls the respective components of the infor-
mation processing device 20. The processor 20c¢ and the
memory 205 cooperatively execute the compiling program
100.

[0288] As the memory 205 and the processor 20c¢ coop-
erate to execute the compiling program 100, the control unit
42 of the information processing device 20 (see FIG. 24) is
implemented. The control unit 42 includes the input unit 51,
the determination unit 52, the detection unit 53, the calcu-
lation unit 54, the degeneration determination unit 55, the
insertion unit 56, and the generation unit 57.

[0289] The storage unit 41 (see FIG. 24) is implemented
by the storage device 20a and the memory 205.

[0290] Further, the communication interface 204 is hard-
ware such as a network interface card (NIC) for connecting
the information processing device 20 to a network such as a
LAN and the Internet.

[0291] The display device 20e is hardware such as a liquid
crystal display or a touch panel for displaying various types
of information.

[0292] The input device 20f is hardware such as a key-
board and a mouse for the developer to input the various
types of data to the information processing device 20.

Jul. 21, 2022

[0293] The medium reading device 20g is hardware such
as a CD drive, a DVD drive, and a USB interface for reading
the recording medium 20%.
[0294] All examples and conditional language recited
herein are intended for pedagogical purposes to aid the
reader in understanding the invention and the concepts
contributed by the inventor to furthering the art, and are to
be construed as being without limitation to such specifically
recited examples and conditions, nor does the organization
of such examples in the specification relate to a showing of
the superiority and inferiority of the invention. Although the
embodiments of the present invention have been described
in detail, it should be understood that the various change,
substitutions, and alterations could be made hereto without
departing from the spirit and scope of the invention.
What is claimed is:
1. An information processing device comprising:
a memory; and
a processor coupled to the memory and configured to:
detect an access pattern according to which a memory
reference instruction in a first loop process to be
executed posterior to a second loop process accesses
first data elements in the memory every loop itera-
tion, and

insert a prefetch instruction to the second loop process
based on the access pattern, the prefetch instruction
being an instruction to transfer at least one of the first
data elements from the memory to a first sector of a
cache memory, the at least one of the first data
elements transferred to the first sector of the cache
memory being never cached out by a second data
element different from each of the first data elements.

2. The information processing device according to claim

1, wherein the prefetch instruction is one of the following
instructions:

a first instruction to transfer, from the memory to the
cache memory, third data elements corresponding to
indexes calculated in the first loop process among the
first data elements that are elements of a table,

a second instruction to transfer, from the memory to the
cache memory, all the first data elements that are the
elements of the table, and

a third instruction to transfer, from the memory to the
cache memory, each of the first data elements aligned
contiguous to each other in the memory or each of the
first data elements aligned at a regular interval in the
memory.

3. The information processing device according to claim

25

wherein the access pattern is a table access in which the
first data elements that are the elements of the table
stored in the memory are accessed,

wherein the second loop process is a process in which the
index of the table is calculated, and

wherein the processor is configured to insert the first
instruction to the second loop process.

4. The information processing device according to claim

25

wherein the access pattern is a table access in which the
first data elements that are the elements of the table
stored in the memory are accessed, or a pool access in
which a data element pointed to by a pointer in a pool
area reserved in the memory is accessed, and

US 2022/0229664 Al

wherein the processor is configured to insert the second
instruction to the second loop process.
5. The information processing device according to claim
25
wherein the access pattern is a sequential access in which
the first data elements contiguous to each other in the
memory are sequentially accessed every loop iteration
in the first loop process, or a stride access in which the
first data elements aligned at a regular interval in the
memory are sequentially accessed every loop iteration
in the first loop process, and
wherein the processor is configured to insert the third
instruction to the second loop process.
6. The information processing device according to claim
2, wherein the processor is further configured to:
calculate a first size of an area available in the cache
memory;
calculate a first total size of fourth data elements to be
transferred to the cache memory by the first instruction
among the first data elements in the second loop
process,
calculate a second total size of the first data elements to
be transferred to the cache memory by the second
instruction in the second loop process,
calculate a third total size of fifth data elements and sixth
data elements, the fifth data elements being data ele-
ments to be transferred to the cache memory among the
first data elements in the second loop process when a
first manipulation is performed, the sixth data elements
being data elements to be transferred to the cache
memory among the first data elements in the first loop
process when the first manipulation is performed, the
first manipulation being a manipulation that deletes the
second instruction from the second loop process and
inserts a fifth instruction to the first loop process, the
fifth instruction being an instruction to transfer, from
the memory to the cache memory, the first data element
that is the element of the table, and
perform the first manipulation when a sum of the first total
size and the second total size is greater than the first
size, and a sum of the first total size and the third total
size is equal to or less than the first size.
7. The information processing device according to claim
2, wherein the processor is further configured to:
calculate a first size of an area available in the cache
memory,
calculate a first total size of fourth data elements to be
transferred to the cache memory by the first instruction
among the first data elements in the second loop
process;
calculate a second total size of the first data elements to
be transferred to the cache memory by the second
instruction in the second loop process,
calculate a fourth total size of seventh data elements and
eighth data elements, the seventh data elements being
data elements to be transferred to the cache memory
among the first data elements in the second loop
process when a second manipulation is performed, the
eighth data elements being data elements to be trans-
ferred to the cache memory among the first data ele-
ments in the first loop process when the second
manipulation is performed, the second manipulation
being a manipulation that reduces a number of the first
instructions executed in the second loop process and

14

Jul. 21, 2022

inserts a fourth instruction to the first loop process, the
fourth instruction being an instruction to transfer, from
the memory to the cache memory, the element corre-
sponding to an index greater than all of the indexes
calculated, and

perform the second manipulation when a sum of the first
total size and the second total size is greater than the
first size, and a sum of the second total size and the
fourth total size is equal to or less than the first size.

8. The information processing device according to claim
2, wherein the processor is further configured to:

calculate a first size of an area available in the cache
memory;

calculate a first total size of fourth data elements to be
transferred to the cache memory by the first instruction
among the first data elements in the second loop
process,

calculate a second total size of the first data elements to
be transferred to the cache memory by the second
instruction in the second loop process,

calculate a third total size of fifth data elements and sixth
data elements, the fifth data elements being data ele-
ments to be transferred to the cache memory among the
first data elements in the second loop process when a
first manipulation is performed, the sixth data elements
being data elements to be transferred to the cache
memory among the first data elements in the first loop
process when the first manipulation is performed, the
first manipulation being a manipulation that deletes the
second instruction from the second loop process and
inserts a fifth instruction to the first loop process, the
fifth instruction being an instruction to transfer, from
the memory to the cache memory, the first data element
that is the element of the table,

calculate a fourth total size of seventh data elements and
eighth data elements, the seventh data elements being
data elements to be transferred to the cache memory
among the first data elements in the second loop
process, the eighth data elements being data elements
to be transferred to the cache memory among the first
data elements in the first loop process when the second
manipulation is performed, the second manipulation
being a manipulation that reduces a number of the first
instructions executed in the second loop process and
inserts a fourth instruction to the first loop process, the
fourth instruction being an instruction to transfer, from
the memory to the cache memory, the element corre-
sponding to an index greater than all of the indexes
calculated, and

perform the first manipulation and the second manipula-
tion when a sum of the first total size and the second
total size is greater than the first size, and a sum of the
third total size and the fourth total size is equal to or less
than the first size.

9. The information processing device according to claim
2, wherein the processor is further configured to:
calculate a first size of an area available in the cache
memory,

calculate a first total size of fourth data elements to be
transferred to the cache memory by the first instruction
among the first data elements in the second loop
process,

US 2022/0229664 Al

calculate a second total size of the first data elements to
be transferred to the cache memory by the second
instruction in the second loop process, and

insert the first instruction to the first loop process without
inserting the second instruction when a sum of the first
total size and the second total size is greater than the
first size and the first total size is equal to or less than
the first size.

10. The information processing device according to claim

2, wherein the processor is further configured to:

calculate a first size of an area available in the cache
memory,

calculate a first total size of fourth data elements to be
transferred to the cache memory by the first instruction
among the first data elements in the second loop
process,

calculate a second total size of the first data elements to
be transferred to the cache memory by the second
instruction in the second loop process,

calculate a fourth total size of seventh data elements and
eighth data elements, the seventh data elements being
data elements to be transferred to the cache memory
among the first data elements in the second loop
process when a second manipulation is performed, the
eighth data elements being data elements to be trans-
ferred to the cache memory among the first data ele-
ments in the first loop process when the second
manipulation is performed, the second manipulation
being a manipulation that reduces a number of the first
instructions executed in the second loop process and
inserts a fourth instruction to the first loop process, the
fourth instruction being an instruction to transfer, from
the memory to the cache memory, the element corre-
sponding to an index greater than all of the indexes
calculated, and

perform the second manipulation and not to insert the
second instruction to the second loop process when a
sum of the first total size and the second total size is
greater than first size and the fourth total size is equal
to or less than the first size.

11. The information processing device according to claim

2, wherein the processor is further configured to:

calculate a first size of an area available in the cache
memory,

calculate a first total size of fourth data elements to be
transferred to the cache memory by the first instruction
among the first data elements in the second loop
process,

calculate a second total size of the first data elements to
be transferred to the cache memory by the second
instruction in the second loop process,

calculate a third total size of fifth data elements and sixth
data elements, the fifth data elements being data ele-
ments to be transferred to the cache memory among the
first data elements in the second loop process when a
first manipulation is performed, the sixth data elements
being data elements to be transferred to the cache
memory among the first data elements in the first loop
process when the first manipulation is performed, the
first manipulation being a manipulation that deletes the
second instruction from the second loop process and
inserts a fifth instruction to the first loop process, the
fifth instruction being an instruction to transfer, from

Jul. 21, 2022

the memory to the cache memory, the first data element
that is the element of the table,

calculate a fourth total size of seventh data elements and

eighth data elements, the seventh data elements being
data elements to be transferred to the cache memory
among the first data elements in the second loop
process when a second manipulation is performed, the
eighth data elements being data elements to be trans-
ferred to the cache memory among the first data ele-
ments in the first loop process when the second
manipulation is performed, the second manipulation
being a manipulation that reduces a number of the first
instructions executed in the second loop process and
inserts a fourth instruction to the first loop process, the
fourth instruction being an instruction to transfer, from
the memory to the cache memory, the element corre-
sponding to an index greater than all of the indexes
calculated, and

insert neither the first instruction nor the second instruc-

tion to the first loop process when a sum of the first total
size and the second total size is greater than the first
size and the third total size and the fourth total size are
both greater than the first size.

12. The information processing device according to claim
1, wherein a total number of clock cycles required for an
operation process executed by an arithmetic unit is greater
than a total number of clock cycles required for the arith-
metic unit to reference the first data element in the memory
in the second loop process.

13. The information processing device according to claim
1, wherein the cache memory includes a second sector that
stores the second data element transferred from the memory.

14. A compiling method implemented by a computer, the
compiling method comprising:

detecting an access pattern according to which a memory

reference instruction in a first loop process to be
executed posterior to a second loop process accesses
first data elements in the memory every loop iteration;
and

inserting a prefetch instruction to the second loop process

based on the access pattern, the prefetch instruction
being an instruction to transfer at least one of the first
data elements from the memory to a first sector of a
cache memory, the at least one of the first data elements
transferred to the first sector of the cache memory being
never cached out by a second data element different
from each of the first data elements.

15. A non-transitory computer-readable recording
medium storing a program that causes a computer to execute
a process, the process comprising:

detecting an access pattern according to which a memory

reference instruction in a first loop process to be
executed posterior to a second loop process accesses
first data elements in the memory every loop iteration;
and

inserting a prefetch instruction to the second loop process

based on the access pattern, the prefetch instruction
being an instruction to transfer at least one of the first
data elements from the memory to a first sector of a
cache memory, the at least one of the first data elements
transferred to the first sector of the cache memory being
never cached out by a second data element different
from each of the first data elements.

#* #* #* #* #*

