
Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent
Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the
Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been
paid. (Art. 99(1) European Patent Convention).

Printed by Jouve, 75001 PARIS (FR)

(19)
E

P
1

98
5

12
0

B
1

TEPZZ_985_ ZB_T
(11) EP 1 985 120 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention
of the grant of the patent:
04.09.2019 Bulletin 2019/36

(21) Application number: 07717801.0

(22) Date of filing: 08.01.2007

(51) Int Cl.:
H04N 7/24 (2011.01) G06T 9/00 (2006.01)

G06T 3/40 (2006.01)

(86) International application number:
PCT/US2007/000195

(87) International publication number:
WO 2007/081752 (19.07.2007 Gazette 2007/29)

(54) RESAMPLING AND PICTURE RESIZING OPERATIONS FOR MULTI-RESOLUTION VIDEO
CODING AND DECODING

NEUABTASTUNGS- UND BILDUMBEMESSUNGSOPERATIONEN ZUR VIDEOCODIERUNG UND
DECODIERUNG MIT MEHRFACH-AUFLÖSUNG

OPERATIONS DE REECHANTILLONNAGE ET DE REDIMENSIONNEMENT D’IMAGES
DESTINEES A UN CODAGE ET DECODAGE VIDEO A RESOLUTIONS MULTIPLES

(84) Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR
HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI
SK TR

(30) Priority: 06.01.2006 US 756846 P
27.03.2006 US 786573 P
13.10.2006 US 829515 P

(43) Date of publication of application:
29.10.2008 Bulletin 2008/44

(73) Proprietor: Microsoft Technology Licensing, LLC
Redmond, WA 98052 (US)

(72) Inventor: SULLIVAN, Gary, J.
Redmond, WA 98052-6399 (US)

(74) Representative: Grünecker Patent- und
Rechtsanwälte
PartG mbB
Leopoldstraße 4
80802 München (DE)

(56) References cited:
WO-A1-2006/006777 WO-A1-2006/112620
US-A1- 2003 185 306 US-A1- 2006 093 036
US-B1- 6 728 317

EP 1 985 120 B1

2

5

10

15

20

25

30

35

40

45

50

55

Description

TECHNICAL FIELD

[0001] Techniques and tools for encoding/decoding digital video are described.

BACKGROUND

[0002] With the increased popularity of DVDs, music delivery over the Internet, and digital cameras, digital media have
become commonplace. Engineers use a variety of techniques to process digital audio, video, and images efficiently
while still maintaining quality. To understand these techniques, it helps to understand how the audio, video, and image
information is represented and processed in a computer.

I. Representation of Media Information in a Computer

[0003] A computer processes media information as a series of numbers representing that information. For example,
a single number may represent the intensity of brightness or the intensity of a color component such as red, green or
blue for each elementary small region of a picture, so that the digital representation of the picture consists of one or
more arrays of such numbers. Each such number may be referred to as a sample. For a color image, it is conventional
to use more than one sample to represent the color of each elemental region, and typically three samples are used. The
set of these samples for an elemental region may be referred to as a pixel, where the word "pixel" is a contraction
referring to the concept of a "picture element." For example, one pixel may consist of three samples that represent the
intensity of red, green and blue light necessary to represent the elemental region. Such a pixel type is referred to as an
RGB pixel. Several factors affect quality of media information, including sample depth, resolution, and frame rate (for
video).
[0004] Sample depth is a property normally measured in bits that indicates the range of numbers that can be used to
represent a sample. When more values are possible for the sample, quality can be higher because the number can
capture more subtle variations in intensity and/or a greater range of values. Resolution generally refers to the number
of samples over some duration of time (for audio) or space (for images or individual video pictures). Images with higher
spatial resolution tend to look crisper than other images and contain more discernable useful details. Frame rate is a
common term for temporal resolution for video. Video with higher frame rate tends to mimic the smooth motion of natural
objects better than other video, and can similarly be considered to contain more detail in the temporal dimension. For
all of these factors, the tradeoff for high quality is the cost of storing and transmitting the information in terms of the bit
rate necessary to represent the sample depth, resolution and frame rate, as Table 1 shows.

[0005] Despite the high bit rate necessary for storing and sending high quality video (such as HDTV), companies and
consumers increasingly depend on computers to create, distribute, and play back high quality content. For this reason,
engineers use compression (also called source coding or source encoding) to reduce the bit rate of digital media.
Compression decreases the cost of storing and transmitting the information by converting the information into a lower
bit rate form. Compression can be lossless, in which quality of the video does not suffer but decreases in bit rate are
limited by the complexity of the video. Or, compression can be lossy, in which quality of the video suffers but decreases
in bit rate are more dramatic. Decompression (also called decoding) reconstructs a version of the original information
from the compressed form. A "codec" is an encoder/decoder system.
[0006] In general, video compression techniques include "intra" compression and "inter" or predictive compression.
For video pictures, intra compression techniques compress individual pictures. Inter compression techniques compress
pictures with reference to preceding and/or following pictures. For instance, US 6728317 B1 discloses an image com-

Table 1: Bit rates for different quality levels of raw video

Bits Per Pixel (sample depth times
samples per pixel)

Resolution (in
pixels, Width x

Height)

Frame Rate (in
frames per

second)

Bit Rate (in millions of
bits per second)

8 (value 0-255, monochrome) 160x120 7.5 1.2

24 (value 0-255, RGB) 320x240 15 27.6

24 (value 0-255, RGB) 640x480 30 221.2

24 (value 0-255, RGB) 1280x720 60 1327.1

EP 1 985 120 B1

3

5

10

15

20

25

30

35

40

45

50

55

pression method using temporal and resolution scalability by applying filtering techniques.

II. Multi-resolution Video and Spatial Scalability

[0007] Standard video encoders experience a dramatic degradation in performance when the target bit rate falls below
a certain threshold. Quantization and other lossy processing stages introduce distortion. At low bitrates, high frequency
information may be heavily distorted or completely lost. As a result, significant artifacts can arise and cause a substantial
drop in the quality of the reconstructed video. Although available bit rates increase as transmission and processing
technology improves, maintaining high visual quality at constrained bit rates remains a primary goal of video codec
design. Existing codecs use several methods to improve visual quality at constrained bitrates.
[0008] Multi-resolution coding allows encoding of video at different spatial resolutions. Reduced resolution video can
be encoded at a substantially lower bit rate, at the expense of lost information. For example, a prior video encoder can
downsample (using a downsampling filter) full-resolution video and encode it at a reduced resolution in the vertical and/or
horizontal directions. Reducing the resolution in each direction by half reduces the dimensions of the encoded picture
size by half. The encoder signals the reduced resolution coding to a decoder. The decoder receives information indicating
reduced-resolution encoding and ascertains from the received information how the reduced-resolution video should be
upsampled (using an upsampling filter) to increase the picture size before display. However, the information that was
lost when the encoder downsampled and encoded the video pictures is still missing from the upsampled pictures.
[0009] Spatially scalable video uses a multi-layer approach, allowing an encoder to reduce spatial resolution (and thus
bit rate) in a base layer while retaining higher resolution information from the source video in one or more enhancement
layers. For example, a base layer intra picture can be coded at a reduced resolution, while an accompanying enhancement
layer intra picture can be coded at a higher resolution. Similarly, base layer predicted pictures can be accompanied by
enhancement layer predicted pictures. A decoder can choose (based on bit rate constraints and/or other criteria) to
decode only base layer pictures at the lower resolution to obtain lower resolution reconstructed pictures, or to decode
base layer and enhancement layer pictures to obtain higher resolution reconstructed pictures. When the base layer is
encoded at a lower resolution than the displayed picture (also referred to as downsampling), the encoded picture size
is actually smaller than the displayed picture. The decoder performs calculations to resize the reconstructed picture and
uses upsampling filters to produce interpolated sample values at appropriate positions in the reconstructed picture.
However, previous codecs that use spatially scalable video have suffered from inflexible upsampling filters and inaccurate
or expensive (in terms of computation time or bit rate) picture resizing techniques.
[0010] Given the critical importance of video compression and decompression to digital video, it is not surprising that
video compression and decompression are richly developed fields. Whatever the benefits of previous video compression
and decompression techniques, however, they do not have the advantages of the following techniques and tools.

SUMMARY

[0011] This Summary is provided to introduce a selection of concepts in a simplified form that are further described
below in the Detailed Description. This Summary is not intended to identify key features or essential features of the
claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter.
[0012] In summary, the Detailed Description is directed to various techniques and tools for multi-resolution and layered
spatially scalable video coding and decoding.
[0013] For example, the Detailed Description is directed to various techniques and tools for high accuracy position
calculation for picture resizing in applications such as spatially-scalable video coding and decoding. Techniques and
tools for high accuracy position calculation for picture resizing in applications such as spatially-scalable video coding
and decoding are described. In one aspect, resampling of a video picture is performed according to a resampling scale
factor. The resampling comprises computation of a sample value at a position i,j in a resampled array. The computation
includes computing a derived horizontal or vertical sub-sample position x or y in a manner that involves approximating
a value in part by multiplying a 2n value by an inverse (approximate or exact) of the upsampling scale factor (or dividing
the 2n value by the upsampling scale factor or an approximation of the upsampling scale factor). The exponent n may
be a sum of two integers including an integer F that represents a number of bits in a fractional component. The approx-
imating can be a rounding or some other kind of approximating, such as a ceiling or floor function that approximates to
a nearby integer. The sample value is interpolated using a filter.
[0014] Some alternatives of the described techniques provide an altered sample position computation that in one
implementation provides approximately one extra bit of precision in the computations without significantly altering the
sample position computation process or its complexity. Some further alternatives of the described techniques relate to
how the sample position computation operates with 4:2:2 and 4:4:4 sampling structures. These alternative techniques
for such sampling structures lock the luma and chroma sample position calculations together whenever the resolution
of the chroma and luma sampling grid is the same in a particular dimension.

EP 1 985 120 B1

4

5

10

15

20

25

30

35

40

45

50

55

[0015] Additional features and advantages will be made apparent from the following detailed description of various
embodiments that proceeds with reference to the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0016]

Figure 1 is a block diagram of a suitable computing environment in conjunction with which several described em-
bodiments may be implemented.
Figure 2 is a block diagram of a generalized video encoder system in conjunction with which several described
embodiments may be implemented.
Figure 3 is a block diagram of a generalized video decoder system in conjunction with which several described
embodiments may be implemented.
Figure 4 is a diagram of a macroblock format used in several described embodiments.
Figure 5A is a diagram of part of an interlaced video frame, showing alternating lines of a top field and a bottom
field. Figure 5B is a diagram of the interlaced video frame organized for encoding/decoding as a frame, and Figure
5C is a diagram of the interlaced video frame organized for encoding/decoding as fields.
Figure 5D shows six example spatial alignments of 4:2:0 chroma sample locations relative to luma sample locations
for each field of a video frame.
Figure 6 is a flowchart showing a generalized technique for multi-resolution encoding of video.
Figure 7 is a flowchart showing a generalized technique for multi-resolution decoding of video.
Figure 8 is a flowchart showing a technique for multi-resolution encoding of intra pictures and inter-picture predicted
pictures.
Figure 9 is a flowchart showing a technique for multi-resolution decoding of intra pictures and inter-picture predicted
pictures.
Figure 10 is a flowchart showing a technique for encoding spatially scalable bitstream layers to allow decoding video
at different resolutions.
Figure 11 is a flowchart showing a technique for decoding spatially scalable bitstream layers to allow decoding video
at different resolutions.
Figures 12 and 13 are code diagrams showing pseudo-code for an example multi-stage position calculation tech-
nique.
Figure 14 is a code diagram showing pseudo-code for an example incremental position calculation technique.

DETAILED DESCRIPTION

[0017] Described embodiments are directed to techniques and tools for multi-resolution and layered spatially scalable
video coding and decoding.
[0018] The various techniques and tools described herein may be used independently. Some of the techniques and
tools may be used in combination (e.g., in different phases of a combined encoding and/or decoding process).
[0019] Various techniques are described below with reference to flowcharts of processing acts. The various processing
acts shown in the flowcharts may be consolidated into fewer acts or separated into more acts. For the sake of simplicity,
the relation of acts shown in a particular flowchart to acts described elsewhere is often not shown. In many cases, the
acts in a flowchart can be reordered.
[0020] Much of the detailed description addresses representing, coding, and decoding video information. Techniques
and tools described herein for representing, coding, and decoding video information may be applied to audio information,
still image information, or other media information.

I. Computing Environment

[0021] Figure 1 illustrates a generalized example of a suitable computing environment 100 in which several of the
described embodiments may be implemented. The computing environment 100 is not intended to suggest any limitation
as to scope of use or functionality, as the techniques and tools may be implemented in diverse general-purpose or
special-purpose computing environments.
[0022] With reference to Figure 1, the computing environment 100 includes at least one processing unit 110 and
memory 120. In Figure 1, this most basic configuration 130 is included within a dashed line. The processing unit 110
executes computer-executable instructions and may be a real or a virtual processor. In a multi-processing system,
multiple processing units execute computer-executable instructions to increase processing power. The memory 120
may be volatile memory (e.g., registers, cache, RAM), nonvolatile memory (e.g., ROM, EEPROM, flash memory, etc.),

EP 1 985 120 B1

5

5

10

15

20

25

30

35

40

45

50

55

or some combination of the two. The memory 120 stores software 180 implementing a video encoder or decoder with
one or more of the described techniques and tools.
[0023] A computing environment may have additional features. For example, the computing environment 100 includes
storage 140, one or more input devices 150, one or more output devices 160, and one or more communication connections
170. An interconnection mechanism (not shown) such as a bus, controller, or network interconnects the components of
the computing environment 100. Typically, operating system software (not shown) provides an operating environment
for other software executing in the computing environment 100, and coordinates activities of the components of the
computing environment 100.
[0024] The storage 140 may be removable or non-removable, and includes magnetic disks, magnetic tapes or cas-
settes, CD-ROMs, DVDs, flash memory, or any other medium which can be used to store information and which can
be accessed within the computing environment 100. The storage 140 stores instructions for the software 180 implementing
the video encoder or decoder.
[0025] The input device(s) 150 may be a touch input device such as a keyboard, mouse, pen, touch screen, or trackball,
a voice input device, a scanning device, or another device that provides input to the computing environment 100. For
audio or video encoding, the input device(s) 150 may be a sound card, video card, TV tuner card, or similar device that
accepts audio or video input in analog or digital form, or a CD-ROM, CD-RW or DVD that reads audio or video samples
into the computing environment 100. The output device(s) 160 may be a display, printer, speaker, CD- or DVD-writer,
or another device that provides output from the computing environment 100.
[0026] The communication connection(s) 170 enable communication over a communication medium to another com-
puting entity. The communication medium conveys information such as computer-executable instructions, audio or video
input or output, or other data in a modulated data signal. A modulated data signal is a signal that has one or more of its
characteristics set or changed in such a manner as to encode information in the signal. By way of example, and not
limitation, communication media include wired or wireless techniques implemented with an electrical, optical, RF, infrared,
acoustic, or other carrier.
[0027] The techniques and tools can be described in the general context of computer-readable media. Computer-
readable media are any available media that can be accessed within a computing environment. By way of example, and
not limitation, with the computing environment 100, computer-readable media include memory 120, storage 140, com-
munication media, and combinations of any of the above.
[0028] The techniques and tools can be described in the general context of computer-executable instructions, such
as those included in program modules, being executed in a computing environment on one or more target real processors
or virtual processors. Generally, program modules include routines, programs, libraries, objects, classes, components,
data structures, etc. that perform particular tasks or implement particular abstract data types. The functionality of the
program modules may be combined or split between program modules as desired in various embodiments. Computer-
executable instructions for program modules may be executed within a local or distributed computing environment.
[0029] For the sake of presentation, the detailed description uses terms like "encode," "decode," and "choose" to
describe computer operations in a computing environment. These terms are high-level abstractions for operations per-
formed by a computer, and should not be confused with acts performed by a human being. The actual computer operations
corresponding to these terms vary depending on implementation.

II. Example Video Encoder and Decoder

[0030] Figure 2 is a block diagram of an example video encoder 200 in conjunction with which some described
embodiments may be implemented. Figure 3 is a block diagram of a generalized video decoder 300 in conjunction with
which some described embodiments may be implemented.
[0031] The relationships shown between modules within the encoder 200 and decoder 300 indicate general flows of
information in the encoder and decoder; other relationships are not shown for the sake of simplicity. In particular, Figures
2 and 3 usually do not show side information indicating the encoder settings, modes, tables, etc. used for a video
sequence, picture, slice, macroblock, block, etc. Such side information is sent in the output bitstream, typically after
entropy encoding of the side information. The format of the output bitstream may vary depending on implementation.
[0032] The encoder 200 and decoder 300 process video pictures, which may be video frames, video fields or combi-
nations of frames and fields. The bitstream syntax and semantics at the picture and macroblock levels may depend on
whether frames or fields are used. There may be changes to macroblock organization and overall timing as well. The
encoder 200 and decoder 300 are block-based and use a 4:2:0 macroblock format for frames, with each macroblock
including four 8x8 luminance blocks (at times treated as one 16x16 macroblock) and two 8x8 chrominance blocks. For
fields, the same or a different macroblock organization and format may be used. The 8x8 blocks may be further sub-
divided at different stages, e.g., at the frequency transform and entropy encoding stages. Example video frame organ-
izations are described in more detail below. Alternatively, the encoder 200 and decoder 300 are object-based, use a
different macroblock or block format, or perform operations on sets of samples of different size or configuration than 8x8

EP 1 985 120 B1

6

5

10

15

20

25

30

35

40

45

50

55

blocks and 16x16 macroblocks.
[0033] Depending on implementation and the type of compression desired, modules of the encoder or decoder can
be added, omitted, split into multiple modules, combined with other modules, and/or replaced with like modules. In
alternative embodiments, encoders or decoders with different modules and/or other configurations of modules perform
one or more of the described techniques.

A. Video Frame Organizations

[0034] In some implementations, the encoder 200 and decoder 300 process video frames organized as follows. A
frame contains lines of spatial information of a video signal. For progressive video scanning, these lines contain samples
representing a snapshot of scene content sampled at the same time instant and covering the entire scene from the top
to the bottom of the frame. A progressive video frame is divided into macroblocks. such as the macroblock 400 shown
in Figure 4. The macroblock 400 includes four 8x8 luminance blocks (Y1 through Y4) and two 8x8 chrominance blocks
that are co-located with the four luminance blocks but half resolution horizontally and vertically, following the conventional
4:2:0 macroblock format. The 8x8 blocks may be further sub-divided at different stages, e.g., at the frequency transform
(e.g., 8x4, 4x8 or 4x4 DCTs) and entropy encoding stages. A progressive I-frame is an intra-coded progressive video
frame, where the term "intra" refers to coding methods that do not involve prediction from the content of other previously-
decoded pictures. A progressive P-frame is a progressive video frame coded using prediction from one or more other
pictures at time instances that temporally differ from that of the current picture (sometimes referred to as forward prediction
in some contexts), and a progressive B-frame is a progressive video frame coded using inter-frame prediction involving
a (possibly weighted) averaging of multiple prediction values in some regions (sometimes referred to as bi-predictive or
bi-directional prediction). Progressive P- and B-frames may include intra-coded macroblocks as well as various types
of inter-frame predicted macroblocks.
[0035] Interlaced video frame scanning consists of an alternating series of two types of scans of a scene - one, referred
to as the top field, comprising the even lines (lines numbered 0, 2, 4, etc.) of a frame, and the other, referred to as the
bottom field, comprising the odd lines (lines numbered 1, 3, 5, etc.) of the frame. The two fields typically represent two
different snapshot time instants. Figure 5A shows part of an interlaced video frame 500, including the alternating lines
of the top field and bottom field at the top left part of the interlaced video frame 500.
[0036] Figure 5B shows the interlaced video frame 500 of Figure 5A organized for encoding/decoding as a frame 530.
The interlaced video frame 500 has been partitioned into macroblocks or other such regions such as the macroblocks
531 and 532, which use a 4:2:0 format as shown in Figure 4. In the luminance plane, each macroblock 531, 532 includes
8 lines from the top field alternating with 8 lines from the bottom field for 16 lines total, and each line is 16 samples long.
(The actual organization of the picture into macroblocks or other such regions and the placement of luminance blocks
and chrominance blocks within the macroblocks 531, 532 are not shown, and in fact may vary for different encoding
decisions and for different video coding designs.) Within a given macroblock, the top-field information and bottom-field
information may be coded jointly or separately at any of various phases.
[0037] An interlaced I-frame is an intra-coded interlaced video frame containing two fields, where each macroblock
includes information for one or both fields. An interlaced P-frame is an interlaced video frame containing two fields that
is coded using inter-frame prediction, where each macroblock includes information for one or both fields, as is an
interlaced B-frame. Interlaced P- and B-frames may include intra-coded macroblocks as well as various types of inter-
frame predicted macroblocks.
[0038] Figure 5C shows the interlaced video frame 500 of Figure 5A organized for encoding/decoding as fields 560.
Each of the two fields of the interlaced video frame 500 is partitioned into macroblocks. The top field is partitioned into
macroblocks such as the macroblock 561, and the bottom field is partitioned into macroblocks such as the macroblock
562. (Again, the macroblocks use a 4:2:0 format as shown in Figure 4, and the organization of the picture into macroblocks
or other such regions and placement of luminance blocks and chrominance blocks within the macroblocks are not shown
and may vary.) In the luminance plane, the macroblock 561 includes 16 lines from the top field and the macroblock 562
includes 16 lines from the bottom field, and each line is 16 samples long.
[0039] An interlaced I-field is a single, separately represented field of an interlaced video frame. An interlaced P-field
is a single, separately represented field of an interlaced video frame coded using inter-picture prediction, as is an
interlaced B-field. Interlaced P- and B-fields may include intra-coded macroblocks as well as different types of inter-
picture predicted macroblocks.
[0040] Interlaced video frames organized for encoding/decoding as fields may include various combinations of different
field types. For example, such a frame may have the same field type (I-field, P-field, or B-field) in both the top and bottom
fields or different field types in each field.
[0041] The term picture generally refers to a frame or field of source, coded or reconstructed image data. For progres-
sive-scan video, a picture is typically a progressive video frame. For interlaced video, a picture may refer to an interlaced
video frame, the top field of a frame, or the bottom field of a frame, depending on the context.

EP 1 985 120 B1

7

5

10

15

20

25

30

35

40

45

50

55

[0042] Figure 5D shows six example spatial alignments of 4:2:0 chroma sample locations relative to luma sample
locations for each field of a video frame.
[0043] Alternatively, the encoder 200 and decoder 300 are object-based, use a different macroblock format (e.g., 4:2:2
or 4:4:4) or block format, or perform operations on sets of samples of different size or configuration than 8x8 blocks and
16x16 macroblocks.

B. Video Encoder

[0044] Figure 2 is a block diagram of an example video encoder system 200. The encoder system 200 receives a
sequence of video pictures including a current picture 205 (e.g., progressive video frame, interlaced video frame, or field
of an interlaced video frame), and produces compressed video information 295 as output. Particular embodiments of
video encoders typically use a variation or supplemented version of the example encoder 200.
[0045] The encoder system 200 uses encoding processes for intra-coded (intra) pictures (I-pictures) and inter-picture
predicted (inter) pictures (P- or B-pictures). For the sake of presentation, Figure 2 shows a path for I-pictures through
the encoder system 200 and a path for inter-picture predicted pictures. Many of the components of the encoder system
200 are used for compressing both I-pictures and inter-picture predicted pictures. The exact operations performed by
those components may vary depending on the type of information being compressed.
[0046] An inter-picture predicted picture is represented in terms of a prediction (or difference) from one or more other
pictures (which are typically referred to as reference pictures). A prediction residual is the difference between what was
predicted and the original picture. In contrast, an I-picture is compressed without reference to other pictures. I-pictures
may use spatial prediction or frequency-domain prediction (i.e., intra-picture prediction) to predict some portions of the
I-picture using data from other portions of the I-picture itself. However, for the sake of brevity, such I-pictures are not
referred to in this description as "predicted" pictures, so that the phrase "predicted picture" can be understood to be an
inter-picture predicted picture (e.g., a P- or B-picture).
[0047] If the current picture 205 is a predicted picture, a motion estimator 210 estimates motion of macroblocks or
other sets of samples of the current picture 205 with respect to one or more reference pictures, for example, the recon-
structed previous picture 225 buffered in the picture store 220. A motion estimator 210 may estimate motion with respect
to one or more temporally previous reference pictures and one or more temporally future reference pictures (e.g., in the
case of a bi-predictive picture). Accordingly, the encoder system 200 may use the separate stores 220 and 222 for
multiple reference pictures.
[0048] The motion estimator 210 may estimate motion by full-sample, ©-sample, ¨-sample, or other increments, and
may switch the resolution of the motion estimation on a picture-by-picture basis or other basis. The motion estimator
210 (and compensator 230) also may switch between types of reference picture sample interpolation (e.g., between
cubic convolution interpolation and bilinear interpolation) on a per-frame or other basis. The resolution of the motion
estimation may be the same or different horizontally and vertically. The motion estimator 210 outputs, as side information,
motion information 215 such as differential motion vector information. The encoder 200 encodes the motion information
215 by, for example, computing one or more predictors for motion vectors, computing differences between the motion
vectors and predictors, and entropy coding the differences. To reconstruct a motion vector, a motion compensator 230
combines a predictor with motion vector difference information.
[0049] The motion compensator 230 applies the reconstructed motion vector to the reconstructed picture(s) 225 to
form a motion-compensated prediction 235. The prediction is rarely perfect, however, and the difference between the
motion-compensated prediction 235 and the original current picture 205 is the prediction residual 245. During later
reconstruction of the picture, an approximation of the prediction residual 245 will be added to the motion compensated
prediction 235 to obtain a reconstructed picture that is closer to the original current picture 205 than the motion-com-
pensated prediction 235. In lossy compression, however, some information is still lost from the original current picture
205. Alternatively, a motion estimator and motion compensator apply another type of motion estimation/ compensation.
[0050] A frequency transformer 260 converts the spatial domain video information into frequency domain (i.e., spectral)
data. For block-based video coding, the frequency transformer 260 typically applies a discrete cosine transform (DCT),
a variant of a DCT, or some other block transform to blocks of the sample data or prediction residual data, producing
blocks of frequency-domain transform coefficients. Alternatively, the frequency transformer 260 applies another type of
frequency transform such as a Fourier transform or uses wavelet or sub-band analysis. The frequency transformer 260
may apply an 8x8, 8x4, 4x8, 4x4 or other size frequency transform.
[0051] A quantizer 270 then quantizes the blocks of frequency-domain transform coefficients. The quantizer applies
scalar quantization to the transform coefficients according to a quantization step-size that varies on a picture-by-picture
basis, a macroblock basis, or some other basis, where the quantization step size is a control parameter that governs
the uniformly-spaced spacing between discrete representable reconstruction points in the decoder inverse quantizer
process, which may be duplicated in an encoder inverse quantizer process 276. Alternatively, the quantizer applies
another type of quantization to the frequency-domain transform coefficients, for example, a scalar quantizer with non-

EP 1 985 120 B1

8

5

10

15

20

25

30

35

40

45

50

55

uniform reconstruction points, a vector quantizer, or non-adaptive quantization, or directly quantizes spatial domain data
in an encoder system that does not use frequency transformations. In addition to adaptive quantization, the encoder
200 may use frame dropping, adaptive filtering, or other techniques for rate control.
[0052] When a reconstructed current picture is needed for subsequent motion estimation/compensation, an inverse
quantizer 276 performs inverse quantization on the quantized frequency-domain transform coefficients. An inverse
frequency transformer 266 then performs the inverse of the operations of the frequency transformer 260, producing a
reconstructed prediction residual approximation (for a predicted picture) or a reconstructed I-picture approximation. If
the current picture 205 was an I-picture, the reconstructed I-picture approximation is taken as the reconstructed current
picture approximation (not shown). If the current picture 205 was a predicted picture, the reconstructed prediction residual
approximation is added to the motion-compensated prediction 235 to form the reconstructed current picture approxima-
tion. One or more of the picture stores 220, 222 buffers the reconstructed current picture approximation for use as a
reference picture in motion compensated prediction of subsequent pictures. The encoder may apply a de-blocking filter
or other picture refining process to the reconstructed frame to adaptively smooth discontinuities and remove other artifacts
from the picture prior to storing the picture approximation into one or more picture stores 220, 222.
[0053] The entropy coder 280 compresses the output of the quantizer 270 as well as certain side information (e.g.,
motion information 215, quantization step size). Typical entropy coding techniques include arithmetic coding, differential
coding, Huffman coding, run length coding, Lempel-Ziv coding, dictionary coding, and combinations of the above. The
entropy coder 280 typically uses different coding techniques for different kinds of information (e.g., low-frequency coef-
ficients, high-frequency coefficients, zero-frequency coefficients, different kinds of side information), and may choose
from among multiple code tables within a particular coding technique.
[0054] The entropy coder 280 provides compressed video information 295 to the multiplexer ["MUX"] 290. The MUX
290 may include a buffer, and a buffer fullness level indicator may be fed back to bit rate adaptive modules for rate
control. Before or after the MUX 290, the compressed video information 295 may be channel coded for transmission
over the network. The channel coding may apply error detection and correction data to the compressed video information
295.

C. Video Decoder

[0055] Figure 3 is a block diagram of an example video decoder system 300. The decoder system 300 receives
information 395 for a compressed sequence of video pictures and produces output including a reconstructed picture
305 (e.g., progressive video frame, interlaced video frame, or field of an interlaced video frame). Particular embodiments
of video decoders typically use a variation or supplemented version of the generalized decoder 300.
[0056] The decoder system 300 decompresses predicted pictures and I-pictures. For the sake of presentation, Figure
3 shows a path for I-pictures through the decoder system 300 and a path for predicted pictures. Many of the components
of the decoder system 300 are used for decompressing both I-pictures and predicted pictures. The exact operations
performed by those components may vary depending on the type of information being decompressed.
[0057] A DEMUX 390 receives the information 395 for the compressed video sequence and makes the received
information available to the entropy decoder 380. The DEMUX 390 may include a jitter buffer and other buffers as well.
Before or within the DEMUX 390, the compressed video information may be channel decoded and processed for error
detection and correction.
[0058] The entropy decoder 380 entropy decodes entropy-coded quantized data as well as entropy-coded side infor-
mation (e.g., motion information 315, quantization step size), typically applying the inverse of the entropy encoding
performed in the encoder. Entropy decoding techniques include arithmetic decoding, differential decoding, Huffman
decoding, run length decoding, Lempel-Ziv decoding, dictionary decoding, and combinations of the above. The entropy
decoder 380 typically uses different decoding techniques for different kinds of information (e.g., low-frequency coeffi-
cients, high-frequency coefficients, zero-frequency coefficients, different kinds of side information), and may choose
from among multiple code tables within a particular decoding technique.
[0059] The decoder 300 decodes the motion information 315 by, for example, computing one or more predictors for
motion vectors, entropy decoding motion vector differences (at entropy decoder 380), and combining decoded motion
vector differences with predictors to reconstruct motion vectors.
[0060] A motion compensator 330 applies motion information 315 to one or more reference pictures 325 to form a
prediction 335 of the picture 305 being reconstructed. For example, the motion compensator 330 uses one or more
macroblock motion vectors to find blocks of samples or to interpolate fractional positions between samples in the reference
picture(s) 325. One or more picture stores (e.g., picture store 320, 322) store previous reconstructed pictures for use
as reference pictures. Typically, B-pictures have more than one reference picture (e.g., at least one temporally previous
reference picture and at least one temporally future reference picture). Accordingly, the decoder system 300 may use
separate picture stores 320 and 322 for multiple reference pictures. The motion compensator 330 may compensate for
motion at full-sample, © sample, ̈ sample, or other increments, and may switch the resolution of the motion compensation

EP 1 985 120 B1

9

5

10

15

20

25

30

35

40

45

50

55

on a picture-by-picture basis or other basis. The motion compensator 330 also may switch between types of reference
picture sample interpolation (e.g., between cubic convolution interpolation and bilinear interpolation) on a per-frame or
other basis. The resolution of the motion compensation may be the same or different horizontally and vertically. Alter-
natively, a motion compensator applies another type of motion compensation. The prediction by the motion compensator
is rarely perfect, so the decoder 300 also reconstructs prediction residuals.
[0061] An inverse quantizer 370 inverse quantizes entropy-decoded data. Typically, the inverse quantizer applies
uniform scalar inverse quantization to the entropy-decoded data with a reconstruction step-size that varies on a picture-
by-picture basis, a macroblock basis, or some other basis. Alternatively, the inverse quantizer applies another type of
inverse quantization to the data, for example, a non-uniform, vector, or non-adaptive inverse quantization, or directly
inverse quantizes spatial domain data in a decoder system that does not use inverse frequency transformations.
[0062] An inverse frequency transformer 360 converts the inverse quantized frequency domain transform coefficients
into spatial domain video information. For block-based video pictures, the inverse frequency transformer 360 applies an
inverse DCT ["IDCT"], a variant of IDCT, or some other inverse block transform to blocks of the frequency transform
coefficients, producing sample data or inter-picture prediction residual data for I-pictures or predicted pictures, respec-
tively. Alternatively, the inverse frequency transformer 360 applies another type of inverse frequency transform such as
an inverse Fourier transform or uses wavelet or sub-band synthesis. The inverse frequency transformer 360 may apply
an 8x8, 8x4, 4x8, 4x4, or other size inverse frequency transform.
[0063] For a predicted picture, the decoder 300 combines the reconstructed prediction residual 345 with the motion
compensated prediction 335 to form the reconstructed picture 305. When the decoder needs a reconstructed picture
305 for subsequent motion compensation, one or more of the picture stores (e.g., picture store 320) buffers the recon-
structed picture 305 for use in predicting the next picture. In some embodiments, the decoder 300 applies a de-blocking
filter or other picture refining process to the reconstructed picture to adaptively smooth discontinuities and remove other
artifacts from the picture prior to storing the reconstructed picture 305 into one or more of the picture stores (e.g., picture
store 320) or prior to displaying the decoded picture during decoded video play-out.

III. General Overview of Multi-resolution Encoding and Decoding

[0064] Video can be encoded (and decoded) at different resolutions. For the purposes of this description, multi-
resolution encoding and decoding can be described as frame-based coding and decoding (e.g., reference picture resa-
mpling) or layered (sometimes referred to as spatial scalable) coding and decoding. Multi-resolution encoding and
decoding could also involve interlaced video and field-based encoding and decoding and switching between frame-
based and field-based encoding and decoding on a resolution-specific basis or on some other basis. However, frame
coding of progressive video is discussed in this overview for purposes of simplifying the concept description.

A. Frame-based Multi-resolution Encoding and Decoding

[0065] In frame-based multi-resolution coding, an encoder encodes input pictures at different resolutions. The encoder
chooses the spatial resolution for pictures on a picture-by-picture basis or on some other basis. For example, in reference
picture resampling, a reference picture can be resampled if it is encoded at a different resolution from that of the picture
being encoded. The term resampling is used to describe increasing (upsampling) or decreasing (downsampling) the
number of samples used to represent a picture area or some other section of a sampled signal. The number of samples
per unit area or per signal section is referred to as the resolution of the sampling.
[0066] Spatial resolution can be chosen based on, for example, an decrease/increase in available bit rate, decrease/in-
crease in quantization step size, decrease/increase in the amount of motion in the input video content, other properties
of the video content (e.g., presence of strong edges, text, or other content that may be significantly distorted at lower
resolutions), or some other basis. Spatial resolution can be varied in vertical, horizontal, or both vertical and horizontal
dimensions. Horizontal resolution may be the same as or different than vertical resolution. A decoder decodes encoded
frames using complementary techniques.
[0067] Once the encoder has chosen a spatial resolution for a current picture or area within a current picture, the
encoder re-samples the original picture to the desired resolution before coding it. The encoder can then signal the choice
of spatial resolution to the decoder.
[0068] Figure 6 shows a technique (600) for frame-based multi-resolution encoding of pictures. An encoder, such as
encoder 200 in Figure 2 sets a resolution (610) for a picture. For example, the encoder considers the criteria listed above
or other criteria. The encoder then encodes the picture (620) at that resolution. If the encoding of all pictures that are to
be encoded is done (630), the encoder exits. If not, the encoder sets a resolution (610) for the next picture and continues
encoding. Alternatively, the encoder sets resolutions at some level other than picture level, such as setting the resolution
differently for different parts of picture or making a resolution selection for a group or sequence of pictures.
[0069] The encoder may encode predicted pictures as well as intra pictures. Figure 8 shows a technique (800) for

EP 1 985 120 B1

10

5

10

15

20

25

30

35

40

45

50

55

frame-based multi-resolution encoding of intra pictures and inter-picture predicted pictures. First, the encoder checks
at 810 whether the current picture to be encoded is an intra picture or a predicted picture. If the current picture is an
intra picture, the encoder sets the resolution for the current picture at 820. If the picture is a predicted picture, the encoder
sets the resolution for the reference picture at 830 before setting the resolution for the current picture. After setting the
resolution for the current picture, the encoder encodes the current picture (840) at that resolution. Setting the resolution
for a picture (whether a current source picture or a stored reference picture) may involve resampling the picture to match
the selected resolution and may involve encoding a signal to indicate the selected resolution to the decoder. If the
encoding of all pictures that are to be encoded is done (850), the encoder exits. If not, the encoder continues encoding
additional pictures. Alternatively, the encoder treats predicted pictures in a different way.
[0070] A decoder decodes the encoded picture, and, if necessary, resamples the picture before display. Like the
resolution of the encoded picture, the resolution of the decoded picture can be adjusted in many different ways. For
example, the resolution of the decoded picture can be adjusted to fit the resolution of an output display device or of a
region of an output display device (for example, for "picture-in-picture" or PC desktop window display).
[0071] Figure 7 shows a technique (700) for frame-based multi-resolution decoding of pictures. A decoder, such as
decoder 300 in Figure 3, sets a resolution (at 710) for a picture. For example, the decoder gets resolution information
from the encoder. The decoder then decodes the picture (720) at that resolution. If the decoding of all pictures that are
to be decoded is done (730), the decoder exits. If not, the decoder sets a resolution (710) for the next picture and
continues decoding. Alternatively, the decoder sets resolutions at some level other than picture level.
[0072] The decoder may decode predicted pictures as well as intra pictures. Figure 9 shows a technique (900) for
frame-based multi-resolution decoding of intra pictures and predicted pictures.
[0073] First, the decoder checks whether the current frame to be decoded is an intra picture or a predicted picture
(910). If the current picture is an intra picture, the decoder sets the resolution for the current picture (920). If the picture
is a predicted picture, the decoder sets the resolution for the reference picture (930) before setting the resolution for the
current picture (920). Setting the resolution of the reference picture may involve resampling the stored reference picture
to match the selected resolution. After setting the resolution for the current picture (920), the decoder decodes the current
picture (940) at that resolution. If the decoding of all pictures that are to be decoded is done (950), the decoder exits. If
not, the decoder continues decoding.
[0074] The decoder typically decodes pictures at the same resolutions used in the encoder. Alternatively, the decoder
decodes pictures at different resolutions, such as when the resolutions available to the decoder are not exactly the same
as those used in the encoder.

B. Layered Multi-resolution Encoding and Decoding

[0075] In layered multi-resolution coding, an encoder encodes video in layers, with each layer having information for
decoding the video at a different resolution. In this way, the encoder encodes at least some individual pictures in the
video at more than one resolution. A decoder can then decode the video at one or more resolutions by processing
different combinations of layers. For example, a first layer (sometimes referred to as a base layer) contains information
for decoding video at a lower resolution, while one or more other layers (sometimes referred to as enhancement layers)
contain information for decoding the video at higher resolutions.
[0076] The base layer may be designed to itself be an independently decodable bitstream. Thus, in such a design, a
decoder that decodes only the base layer will produce a valid decoded bitstream at the lower resolution of the base
layer. Proper decoding of higher-resolution pictures using an enhancement layer may require also decoding some or
all of the encoded base layer data and possibly of one or more enhancement layers. A decoder that decodes the base
layer and one or more other higher-resolution layers will be able to produce higher resolution content than a decoder
that decodes only the base layer. Two, three or more layers may be used to allow for two, three or more different
resolutions. Alternatively, a higher resolution layer may itself also be an independently decodable bitstream. (Such a
design is often referred to as a simulcast multi-resolution encoding approach.)
[0077] Figure 10 shows a technique (1000) for encoding bitstream layers to allow decoding at different resolutions.
An encoder such as encoder 200 in Figure 2 takes full-resolution video information as input (1010). The encoder down-
samples the full-resolution video information (1020) and encodes the base layer using the downsampled information
(1030). The encoder encodes one or more higher-resolution layers using the base layer and higher-resolution video
information (1040). A higher-resolution layer can be a layer that allows decoding at full resolution, or a layer that allows
decoding at some intermediate resolution. The encoder then outputs a layered bitstream comprising two more of the
encoded layers. Alternatively, the encoding of the higher-resolution layer (1040) may not use base layer information and
may thus enable the independent decoding of the higher-resolution layer data for a simulcast multi-resolution encoding
approach.
[0078] The encoder can accomplish multi-resolution layer encoding in several ways following the basic outline shown
in Figure 10. For more information, see, e.g., U.S. Patent No. 6,510,177, or the MPEG-2 standard or other video standards.

EP 1 985 120 B1

11

5

10

15

20

25

30

35

40

45

50

55

[0079] Figure 11 shows a technique (1100) for decoding bitstream layers to allow decoding video at different resolutions.
A decoder such as decoder 300 in Figure 3 takes a layered bitstream as input (1110). The layers include a lower-
resolution layer (base layer) and one or more layers comprising higher-resolution information. The higher-resolution
layers need not contain independently encoded pictures; typically, higher-resolution layers include residual information
that describes differences between higher- and lower-resolution versions of pictures. The decoder decodes the base
layer (1120) and, if higher-resolution decoding is desired, the decoder upsamples the decoded base layer pictures (1130)
to the desired resolution. The decoder decodes one or more higher-resolution layers (1140) and combines the decoded
higher-resolution information with the upsampled, decoded base layer pictures to form higher-resolution pictures (1150).
Depending on the desired resolution level, the higher-resolution pictures may be full-resolution pictures or intermediate-
resolution pictures. For more information, see, e.g., U.S. Patent No. 6,510,177, or the MPEG-2 standard or other video
standards.
[0080] The decoder typically decodes pictures at one of the resolutions used in the encoder. Alternatively, the reso-
lutions available to the decoder are not exactly the same as those used in the encoder.

IV. Resampling Filters for Scalable Video Coding and Decoding

[0081] This section describes techniques and tools for scalable video coding and decoding. Although some described
techniques and tools are described in a layered (or spatial scalable) context, some described techniques and tools can
also be used in a frame-based (or reference picture sampling) context, or in some other context that involves resampling
filters. Further, although some described techniques and tools are described in the context of resampling pictures, some
described techniques and tools can also be used for resampling residual or difference signals that result from prediction
of higher resolution signals.
[0082] Scalable video coding (SVC) is a type of digital video coding that allows a subset of a larger bitstream to be
decoded to produce decoded pictures with a quality that is acceptable for some applications (although such picture
quality would be lower than the quality produced by decoding an entire higher-bit-rate bitstream). One well-known type
of SVC is referred to as spatial scalability, or resolution scalability. In a spatial SVC design, the encoding process (or a
pre-processing function to be performed prior to the encoding process, depending on the exact definition of the scope
of the encoding process) typically includes downsampling the video to a lower resolution and encoding that lower-
resolution video for enabling a lower-resolution decoding process, and upsampling of the lower-resolution decoded
pictures for use as a prediction of the values of the samples in the pictures of the higher-resolution video. The decoding
process for the higher-resolution video then includes decoding the lower-resolution video (or some part of it) and using
that upsampled video as a prediction of the value of the samples in the pictures of the higher-resolution video. Such
designs require the use of resampling filters. In particular, codec designs include the use of upsampling filters in both
decoders and encoders and the use of downsampling filters in encoders or encoding pre-processors. We especially
focus on the upsampling filters used in such designs. Typically, the upsampling process is designed to be identical in
encoders and decoders, in order to prevent a phenomenon known as drift, which is an accumulation of error caused by
the use of differing predictions of the same signal during encoding and decoding.
[0083] One drawback of some spatial SVC designs is the use of low-quality filters (e.g., two-tap bilinear filters) in the
decoding process. The use of higher quality filters would be beneficial to video quality.
[0084] Spatial SVC may include resampling filters that enable a high degree of flexibility in the resampling ratio of the
filter. However, this may require a large number of particular filter designs for each different "phase" of such a filter to
be developed and the "tap" values of these filters to be stored in implementations of encoders and decoders.
[0085] Furthermore, it can be beneficial to video quality to allow an encoder to control the amount of blurriness of the
resampling filters used for spatial SVC. Thus, for each "phase" of resampling to be designed for upsampling or down-
sampling, it may be beneficial to have several different filters to choose from, depending on the desired degree of
blurriness to be introduced in the process. The selection of the degree of blurriness to be performed during upsampling
may be sent from an encoder to a decoder as information conveyed for use in the decoding process. This extra flexibility
further complicates the design, as it greatly increases the number of necessary tap values that may need to be stored
in an encoder or decoder.
[0086] A unified design could be used to specify a variety of resampling filters with various phases and various degrees
of blurriness. One possible solution is the use of the Mitchell-Netravali filter design method. Straightforward application
of the Mitchell-Netravali filter design method to these problems may require excess computational resources in the form
of an excessive dynamic range of possible values for quantities that are to be computed in the encoder or decoder. For
example, one such design might require the use of 45-bit arithmetic processing, rather than the 16-bit or 32-bit processing
elements normally used in general-purpose CPUs and DSPs. To address this issue, we provide some design refinements.
[0087] A typical SVC design requires a normative upsampling filter for spatial scalability. To support arbitrary resampling
ratios (a feature known as extended spatial scalability), an upsampling filter design is described that incorporates a great
deal of flexibility regarding resampling ratios. Another key aspect is the relative alignment of luma and chroma. Since a

EP 1 985 120 B1

12

5

10

15

20

25

30

35

40

45

50

55

variety of alignment structures (see, e.g., H.261/MPEG-1 vs. MPEG-2 alignment for 4:2:0 chroma, and H.264/MPEG-4
AVC) are found in single-layer approaches, described techniques and tools support a flexible variety of alignments, with
an easy way for the encoder to indicate to the decoder how to apply the filtering appropriately.
[0088] Described techniques and tools comprise upsampling filters capable of high-quality upsampling and good anti-
aliasing. In particular, described techniques and tools have quality beyond that provided by previous bilinear filter designs
for spatial scalability. Described techniques and tools have high-quality upsampling filters that are visually pleasing as
well as providing good signal-processing frequency behavior. Described techniques and tools comprise a filter design
that is simple to specify and does not require large memory storage tables to hold tap values, and the filtering operations
themselves are computationally simple to operate. For example, described techniques and tools have a filter that is not
excessively lengthy and does not require excessive mathematical precision or overly complex mathematical functions.
[0089] This section describes designs having one or more of the following features:

- flexibility of luma/chroma phase alignment;
- flexibility of resampling ratio;
- flexibility of frequency characteristics;
- high visual quality;
- not too few and not too many filter taps (e.g., between 4 and 6);
- simple to specify;
- simple to operate (e.g., using practical word-length arithmetic).

A. Mitchell-Netravali Upsampling Filters

[0090] Described techniques and tools take a separable filtering approach - therefore, the following discussion will
focus primarily on processing of a one-dimensional signal, as the two-dimensional case is a simple separable application
of the one-dimensional case. It first proposes a two-parameter set of filters based on the conceptually-continuous impulse
response h(x) given by:

where b and c are the two parameters. For a relative phase offset position 0 ≤ x < 1, this kernel produces a 4-tap finite
impulse response (FIR) filter with tap values given by the following matrix equation:

Actually, it is sufficient to consider only the range of x from 0 to 1/2, since the FIR filter kernel for x is simply the FIR filter
kernel for 1 - x in reverse order.
[0091] This design has a number of interesting and useful properties. Here are some of them:

- No trigonometric functions, transcendental functions or irrational-number processing is needed to compute the filter
tap values. In fact, tap values for such a filter can be directly computed with only a few simple operations. They do
not need to be stored for the various possible values of the parameters and phases that are to be used; they can
simply be computed when needed. (So, to standardize the use of such filters, only a few formulas are needed - no
huge tables of numbers or standardized attempts to approximate functions like cosines or Bessel functions are
needed.)

- The resulting filter has 4 taps. This is a very practical number.
- The filter has only a single sidelobe on each side of the main lobe. It thus will not produce excessive ringing artifacts.
- The filter has a smooth impulse response. It value and its first derivative are both continuous.
- It has unity gain DC response, meaning that there is no overall brightness amplification or attenuation in the infor-

mation being upsampled.

EP 1 985 120 B1

13

5

10

15

20

25

30

35

40

45

50

55

- Members of this family of filter include relatively good approximations of well-known good filters such as the "Lanczos-
2" design and the "Catmull-Rom" design.

Furthermore, described techniques and tools include a particular relationship between the two parameters for the se-
lection of visually-pleasing filters. That relationship can be expressed as follows:

This reduces the degrees of freedom to a single bandwidth control parameter b. This parameter controls the degree of
extra blurriness introduced by the filter. Note that the member of this family associated with the value b = 0 is the excellent
and well-known Catmull-Rom upsampling filter (also known as a Keys "cubic convolution" interpolation filter).
[0092] The Catmull-Rom upsampling filter has a number of good properties of its own, in addition to the basic advan-
tages found for all members of the Mitchell-Netravali filter family:

- It is an "interpolating" filter - i.e., for phase values of x = 0 and x = 1, the filter has a single non-zero tap equal to 1.
In other words, an upsampled signal will pass exactly through the values of the input samples at the edges of each
upsampled curve segment.

- If the set of input samples forms a parabola (or a straight line, or a static value), the output points will lie exactly on
the parabolic curve (or straight line or static value).

In fact, in some ways, the Catmull-Rom upsampler can be considered the best upsampling filter of this length for these
reasons - although introducing some extra blurring (increasing b) may sometimes be more visually pleasing. Also,
introducing some extra blurring can help blur out low-bit-rate compression artifacts and thus act more like a Wiener filter
(a well-known filter used for noise filtering) estimator of the true upsampled picture.
[0093] Simple substitution of Equation (3) into Equation (2) results in the following tap values:

[0094] It has been reported that, based on subjective tests with 9 expert viewers and over 500 samples:

- a usable range is reported as 0 ≤ b ≤ 5/3;
- 0 ≤ b ≤ 1/2 is categorized as visually "satisfactory", with b = 1/3 reported as visually pleasing;
- b > 1/2 is categorized as "blurry," with b = 3/2 reported as excessively blurry

B. Integerization of the Bandwidth Control Parameter

[0095] The division by 6 in the Equation (4) may not be desirable. It may be desirable instead to integerize the bandwidth
control parameter and filter tap values, as infinite precision is impractical as part of a decoder design. Consider a
substitution using a new integer-valued variable a defined as follows:

where S is an integer shift factor and a is an unsigned integer acting as an integerized bandwidth control parameter.
The parameter a can be encoded as a syntax element by the encoder at the video sequence level in a bitstream. For
example, the parameter a can be encoded explicitly with a variable-length or fixed-length code, jointly coded with other
information, or signaled explicitly. Alternatively, the parameter a is signaled at some other level in a bitstream.
[0096] The integerization results in integerized tap values of

EP 1 985 120 B1

14

5

10

15

20

25

30

35

40

45

50

55

The result would then need to be scaled down by S positions in binary arithmetic processing.
[0097] If a has a range of 0 to M, then b has a range from 0 to 6 ∗ M / 2S. Some possible useful choices for M include
the following:

- M = 2(S-2) - 1, resulting in a range of b from 0 to 3/2 - 6/2S.
- M = Ceil(2S / 6), which returns the smallest integer greater than or equal to 2S / 6, resulting in range of b from 0 to

slightly more than 1.
- M = 2(S-3) - 1, resulting in an approximate range of b from 0 to 3/4 - 6/2S.

These choices for M are large enough cover most useful cases, with the first choice (M = 2(S-2) - 1) being the larger of
the three choices. A useful range for S is between 6 and 8. For example, consider S = 7 and M = 2(S-2) - 1, i.e., M = 31.
Alternatively, other values of M and S can be used.

C. Integerization of the Fractional-Sample Positioning

[0098] Next we consider the granularity of the value of x. For practicality, we should approximate x as well. For example,
we can define an integer i such that:

where F represents a supported fractional-sample position precision. For an example of a sufficiently-accurate resampling
operation, consider F ≥ 4 (one-sixteenth or greater sample positioning precision). This results in the following integerized
filter tap values:

For example, consider F = 4. The result would then need to be scaled down by 3F+S positions.
[0099] Note that every entry in the matrix above contains a factor of two in common (assuming that S is greater than
1). Thus we can instead formulate the tap values as follows:

where each of the tap values have been divided by 2. The result then would need to be scaled down by only 3F+S-1
positions.
[0100] For the down-scaling, we define the function RoundingRightShift(p, R) as the output of a right shift of R bits
(with rounding) computed for input value p, computed as follows:

EP 1 985 120 B1

15

5

10

15

20

25

30

35

40

45

50

55

where the notation ">>" refers to a binary arithmetic right shift operator using two’s complement binary arithmetic.
Alternatively, rounding right shifting is performed differently.
[0101] Some example applications for rounding right shifting are provided below.

D. Dynamic Range Consideration

[0102] If we filter pictures with N bits of sample bit depth and do so two-dimensionally before performing any rounding,
we will need 2∗(3F+S-1)+N+1 bits of dynamic range in the accumulator prior to down-shifting the result by 2∗(3F+S-1)
positions and clipping the output to an N bit range. For example, if we have F = 4, S = 7 and N = 8, we may need to use
a 45-bit accumulator to compute the filtered result.
[0103] We describe some approaches to mitigating this problem in the following subsections. These approaches can
be used separately or in combination with each other. It should be understood that variations of the described dynamic
range mitigation approaches are possible based on the descriptions herein.

1. First Example Dynamic Range Mitigation Approach

[0104] Consider an example where horizontal filtering is performed first, followed by vertical filtering. Consider a
maximum word length of W bits for any point in the two-dimensional processing pipeline. In a first dynamic range mitigation
approach, to accomplish the filtering we use a rounding right shift of RH bits at the output of the first (horizontal) stage
of the process and a rounding right shift of RV bits at the output of the second (vertical) stage of the process.
[0105] We thus compute the following:

and therefore

Then the right shift for the second (vertical) stage can be computed from

and therefore

For example, for F = 4 and S = 7 and N = 8 and W = 32, we obtain RH = 13 and RV = 23. Thus, instead of 45 bits of
dynamic range, with rounding right shifts the dynamic range is reduced to 32 bits. Right shifts of different numbers of
bits can be used for different values of W.

2. Second Example Dynamic Range Mitigation Approach

[0106] A second dynamic range mitigation approach involves reducing the precision of the tap values rather than
reducing the precision of the phase positioning (i.e., reducing F), reducing the granularity of the filter bandwidth adjustment
parameter (i.e., reducing S) or reducing the precision of the output of the first stage (i.e., increasing RH).
[0107] We denote the four integer tap values produced by Equation (9) as [t-1, t0, t1, t2]. Note that the sum of the four
filter tap values will be equal to 23F+S-1, i.e.,

This is an important property of this example dynamic range mitigation approach because whenever all four input samples
have the same value, the output will have that same value.
[0108] Using the example definition of rounding right shifting found in Equation (10), and given a right shift quantity

EP 1 985 120 B1

16

5

10

15

20

25

30

35

40

45

50

55

Rt for the tap values, we define the following:

u-1 = RoundingRightShift(t-1, Rt);
u1 = RoundingRightShift(t1, Rt);
u2 = RoundingRightShift(t2, Rt);

We then perform the filtering with tap values [u-1, u0, u1, u2] rather than [t-1, t0, t1, t2]. Each increase of 1 in the value of
Rt represents one less bit of dynamic range necessary in the arithmetic accumulator, and one less bit of right-shifting
to be performed in subsequent stages of processing.

3. Third Example Dynamic Range Mitigation Approach

[0109] One previous design uses a trick that is similar in concept but differs from the first example dynamic range
mitigation approach in that it makes the amount of right-shifting after the first stage of the process a function of the value
of the phase positioning variable i.
[0110] We can recognize that the filter tap values shown in Equation (9) will contain K zero-valued LSBs when the
value of i is an integer multiple of 2K. Thus, if the second stage of the filtering process uses a phase positioning variable
i that is an integer multiple of 2K, we can right-shift the tap values of the second stage by K bits and decrease the amount
of right shifting for the first stage by K bits.
[0111] This might get rather difficult to keep track of when operating a generalized resampling factor. However, when
performing simple resampling factors of 2:1 or other simple factors, it is easy to recognize that all phases in use for the
second stage of the filtering process contain the same multiple of 2K, allowing this approach to be applied in these special
cases.

V. Position Calculation Techniques and Tools

[0112] Techniques and tools for computing positioning information for spatial SVC are described.
[0113] Some techniques and tools are directed to how to focus on a word length B and optimize the precision of the
computation within the constraint of that word length. Instead of just selecting the precision and requiring some necessary
word length, applying the new method will result in higher precision in a real implementation and will broaden the range
of effective application of the technique, because it uses all of the available word length to maximize the accuracy within
that constraint.
[0114] Some techniques and tools are directed to a) offsetting the origin of the coordinate system and b) using unsigned
integers rather than signed integers in order to achieve a better trade-off between precision and word length/dynamic
range. A minor increase in computations is needed to add the origin offset term to each calculated position.
[0115] Some techniques and tools are directed to breaking the computation of different sections of the string of samples
to be produced into different stages of processing, wherein the origin of the coordinate system is changed at the start
of each stage. Again it provides a better trade-off between precision and word length/dynamic range with another minor
increase in computational requirements (since certain extra computations are performed at the start of each stage). If
the technique is taken to its logical extreme, the need for multiplication operations can be eliminated and the trade-off
between precision and word length/dynamic range can be further improved. However, certain extra operations would
need to be performed for every sample (since the extra computation needed for "each stage" becomes needed for every
sample when every stage contains only one sample).
[0116] As a general theme, designs are described for the position calculation part of the processing to achieve desirable
trade-offs between precision of the computed results, word length/dynamic range of the processing elements, and the
number and type of mathematical operations involved in the processing (e.g., shift, addition and multiplication operations).
[0117] For example, described techniques and tools allow flexible precision calculations using B-bit (e.g., 32-bit)
arithmetic. This allows a spatial SVC encoder/decoder to flexibly accommodate different image sizes without having to
convert to different arithmetic (e.g., 16-bit or 64-bit arithmetic) for calculations. With the flexible precision B-bit (e.g., 32-
bit) arithmetic, an encoder/decoder can devote a flexible number of bits to the fractional component. This allows increased
precision for calculations as the number of required bits for representing the integer component decreases (e.g., for a
smaller frame size). As the number of required bits for representing the integer component increases (e.g., for a larger
frame size), the encoder/decoder can use more bits for the integer component and less bits for the fractional component,
reducing precision but maintaining the B-bit arithmetic. In this way, changing between different precisions and different
frame sizes is greatly simplified.

EP 1 985 120 B1

17

5

10

15

20

25

30

35

40

45

50

55

[0118] This section includes specific details for an example implementation. However, it should be noted that the
specifics described herein can be varied in other implementations according to principles described herein.

A. Introduction and Position Calculation Principles

[0119] Techniques for computing position and phase information, resulting in much lower computational requirements
without any significant loss of accuracy, are described. For example, described techniques can reduce computational
requirements significantly - e.g., by reducing nominal dynamic range requirements dramatically (by tens of bits). Con-
sidering the variety of possible chroma positions that may be used in base and enhancement layers, it is desirable to
find a solution providing proper positioning of resampled chroma samples relative to luma samples. Accordingly, described
techniques allow adjustments to be made to calculate positions for video formats with different relationships between
luma and chroma positions.
[0120] A previous upsampling method designed for extended spatial scalability uses a rather cumbersome method of
calculating the position and phase information when upsampling the low-resolution layer; it scales an up-shifted approx-
imate inverse of a denominator, which causes amplification of the rounding error in the inversion approximation as the
numerator increases (i.e., as the upsampling process moves from left to right, or from top to bottom). By comparison,
techniques described herein have excellent accuracy and simplify computation. In particular, techniques are described
that reduce the dynamic range and the amount of right-shifting in the position calculations by tens of bits.
[0121] For example, a technique is described for computing the positioning information for obtaining an integer position
and a phase positioning variable i, where i = 0..2F - 1, for use in SVC spatial upsampling.
[0122] Described techniques apply the resampling process to the application of spatial scalable video coding rather
than to forward reference picture resampling. In this application of spatial scalable video coding, certain simplifications
can apply. Rather than a general warping process, we only need a picture resizing operation. This can be a separable
design for each dimension.

B. Position Calculation Design

[0123] Consider a problem statement, in each dimension (x or y), as the production of a string of samples lying
conceptually in a real-valued range from L to R > L in the new (upsampled) array. This real-valued range is to correspond
to a range from L’ to R’ > L’ in the referenced lower-resolution array.
[0124] For a position T in the new array where L ≤ T ≤ R, we then need to compute the position in the reference array
that corresponds to the position in the new array. This would be the position T’ = L’ + (T - L) ∗ (R’ - L’) 4 (R - L).
[0125] Now instead of considering the resizing of the range from L to R, we define an integer M > 0 and consider
resizing the range from L to L + 2M by the same resizing ratio (R’ - L’) 4 (R - L). The corresponding range in the referenced
sample coordinates are then from L’ to R", where R" = L’ + 2M ∗ (R’ - L’) 4 (R - L). If M is sufficiently large, i.e., if M ≥
Ceil(Log2(R - L)), then R"≥R’. (Let us assume for now that this constraint holds in order to explain the concepts below,
although this constraint is not really necessary for proper functioning of the equations.)
[0126] Now we can use linear interpolation between the positions L’ and R" for the positioning calculations. Position
L is mapped to position L’, and position T ≥ L is mapped to position ((2M - (T - L)) ∗ L’ + (T - L) ∗ R") 4 2M. This converts
the denominator of the operation to a power of 2, thus reducing the computational complexity of the division operation
by allowing it to be replaced by a binary right shift.
[0127] Appropriate modifications can be made to integerize the computations. We round the values of L’ and R" to
integer multiples of 1 4 2G, where G is an integer, such that L’ is approximated by k 4 2G and R" is approximated by r
4 2G where k and r are integers. Using this adjustment, we have position T mapped to position

[0128] Now we assume that the relevant values of T and L are integer multiples of 1 4 2J, where J is an integer, such
that T - L = j 4 2J. Using this adjustment, we have position T mapped to position

[0129] Recall from section IV, above, that the fractional phase of the resampling filter is to be an integer in units of 1
4 2F. So the computed position, in these units, is Round(((2(M+J)- j) ∗ k + j * r) 4 2(M+G+J-F)), or

EP 1 985 120 B1

18

5

10

15

20

25

30

35

40

45

50

55

 or, more simply,

where

[0130] The only error produced in the method described here (assuming no error in the representation of L and R and
L’ and R’) prior to the rounding of the computed position to the nearest multiple of 1 4 2F (which is an error that is present
in both designs) is the rounding error from the rounding of the position R" to the nearest multiple of 1 4 2G. This amount
is very small if G + M is relatively large. In fact, this source of error is tightly bounded to a magnitude of about (T - L) 4
2(G+M+1), the word length requirements for computation of the results are modest, and the modulo arithmetic allows the
integer part of the result to be separated out to minimize word length, or allows the computation to be decomposed in
other similar ways as well.
[0131] F can, for example, be 4 or greater. (For some applications, F = 3 or F = 2 may suffice.) Example values of J
include J = 1 for luma position calculations and J = 2 for chroma sample positions. Rationale for these example values
of J can be found below.

1. First Example Simplified Position Calculation Technique Using Signed B-bit Arithmetic

[0132] If R’ > 0 and L’ > -R’, then all positions t’ to be computed in the picture to be upsampled, as an integer in units
of 1 4 2F, will lie between -2Z and 2Z - 1, where Z = Ceil(Log2(R’)) + F. If the word length of the (j ∗ C + D) computation
is B bits, and we assume the use of signed two’s complement arithmetic, then we can require that B - 1 ≥ Z + S. High
accuracy is achieved if this constraint is tight, i.e., if B - 1 = Z + M + G + J - F.
[0133] For reasonably-small picture sizes (e.g., for levels up to level 4.2 in the current H.264/MPEG-4 AVC standard),
B = 32 can be used as a word length. Other values of B also can be used. For very large pictures, a larger B may be
used. The computations can also be easily decomposed into smaller word length sub-computations for use on 16-bit or
other processors.
[0134] The remaining two degrees of freedom are M and G. Their relationship is flexible, as long as G is sufficiently
large to avoid any need for rounding error when representing L’ as k 4 2G. Thus, based on issues discussed in the next
section for SVC, we can just pick G = 2, yielding

i.e.,

i.e.,

[0135] For example, if we want to upsample the luma array of a picture that has a width of 1000 luma samples with

EP 1 985 120 B1

19

5

10

15

20

25

30

35

40

45

50

55

B = 32 and L’ = 0, we can use F = 4, G = 2, J = 1, M = 18, S = 17, and Z = 14 using this first example position calculation
technique.
[0136] When T is very close (or equal) to R and R’ is very close (or equal) to an integer power of 2, especially when
(T - L) ∗ (R’ - L’) 4 2F is large (e.g., greater than 1/2), it may be hypothetically possible for the upper bound to be violated
by 1. We do not further consider such cases here, although adjustments to handle such cases are straightforward.

2. Second Example Position Calculation Technique Using Unsigned B-bit Arithmetic

[0137] If all positions to be calculated in the low-resolution picture are greater than or equal to 0, which is something
that can be made true by adding an appropriate offset to the origin of the coordinate system, then it may be a better
choice to compute t’ = (j ∗ C + D) using unsigned integer arithmetic rather than signed two’s complement arithmetic. This
allows one more bit of dynamic range without overflow in the computations (i.e., we can use B bits of dynamic range
magnitude rather than B - 1 bits), thus increasing M (or G) and S each by 1 and further increasing the accuracy of the
computed results. Thus, after including an offset E to adjust the origin of the coordinate system, the form of the computation
would be t’ = ((j ∗ C + D’) >> S’) + E rather than just t’ = (j ∗ C + D) >> S.
[0138] We provide further detail on this more accurate method involving unsigned arithmetic by identifying when the
origin offset E would not be needed as follows.

- Choose values for B, F, G, J, and Z as described above.
- Set M = B + F - (G + J + Z).
- Compute S, C, and D as specified above in Equations (18), (19) and (20), respectively, where D is computed as a

signed number.
- If D is greater than or equal to zero, no origin offset (i.e., no use of E) is needed and the computation can be performed

simply as t’ = (j ∗ C + D) >> S using unsigned arithmetic and the result will have greater accuracy than the first
example position calculation technique described in section V.B.1 above.

[0139] In addition to enhancing accuracy by enabling computation using unsigned integers, offsetting the origin can
sometimes also be used to provide improved accuracy by enabling a decrease in the value of Z. Without the origin offset,
Z is a function of R’. But with the origin offset, we can make Z a function of R’ - L’, which will make the computation more
accurate if this results in a smaller value of Z.
[0140] We provide further detail on this more accurate method involving unsigned arithmetic by showing one way to
offset the origin, deriving D’ and E as follows.

- Choose values for B, F, G, and J, as described above.
- Set Z = Ceil(Log2(R’ - L’)) + F.
- Set M = B + F - (G + J + Z).
- Compute S, C, and D as specified above in Equations (18), (19) and (20), respectively, where D is computed as a

signed number.
- Set E = D >> S.
- Set D’ = D- (E << S).
- The position computation can then be performed as t’ = ((j ∗ C + D’) >> S) + E.

[0141] If D’ and E (and M, S, and Z) are computed in this manner, the mathematical result of the equation t’ = ((j ∗ C
+ D’) >> S) + E will actually always be theoretically the same as the result of the equation t’ = (j ∗ C + D) >> S, except
that the value of (j ∗ C + D) may sometimes fall outside of the range of values from 0 to 2B - 1, while the value of (j ∗ C
+ D’) will not.
[0142] For example, if we want to upsample the luma array of a picture that has a width of 1000 luma samples with
B = 32 and L’= 0, we can use F = 4, G = 2, J = 1, M = 19, S = 18, and Z = 14 using this second example position
calculation technique. Another possibility that would work equally well, rather than offsetting the origin so that all values
of j ∗ C + D’ are non-negative and thus allowing use of the B-bit computing range from 0 to 2B - 1 using unsigned
arithmetic, would be to offset the origin further to the right by another 2(B - 1) to allow use of the B-bit computing range
from -2(B - 1) to 2(B - 1) - 1 using signed arithmetic.
[0143] As in the first example position calculation technique in the previous section, there could be "corner case"
adjustments needed when T is very close (or equal) to R and R’ - L’ is very close (or equal) to an integer power of 2.

3. Example Multi-Stage Techniques for Position Calculation

[0144] We have discussed methods in which the design was made to be able to perform the computation using the

EP 1 985 120 B1

20

5

10

15

20

25

30

35

40

45

50

55

same equation, e.g., t’ = ((j ∗ C + D’) >> S) + E, with the same variable values C, D’, S, and E for all values of j covering
the range of samples to be generated (i.e., for all values of T between L and R). We now discuss how this assumption
can be relaxed, enabling greater accuracy and/or reduced computational dynamic range requirements.
[0145] Ordinarily, the resampling process proceeds from left to right (or top to bottom) to generate a string of consecutive
samples at equally-spaced positions. In the second example position technique described in section V.B.2 above, we
showed how changing the origin using the offset parameter E can be used to make good use of the B-bit dynamic range
of the register used to compute the (j ∗ C + D’) part of the position computation.
[0146] Recall that in the previous section, only the S least significant bits of D were retained in D’, and the rest was
moved into E. Thus the major remaining issue for computation of (j ∗ C + D’) is the magnitude of j ∗ C.
[0147] Recall that T and L are integer multiples of 1 4 2J. Ordinarily we perform the upsampling process to generate
a string of samples at integer-valued increments in the higher-resolution picture, e.g., with a spacing of 2J between
consecutively-generated samples. Thus we desire to compute the positions t’i that correspond to the positions Ti = (p
+ i ∗ 2J) 4 2J for i = 0 to N - 1 for some value of p and N.
[0148] This process can be summarized in pseudo-code as shown in the pseudo-code 1200 of Figure 12 for some
value of p and N. As i increases toward N, the value of q increases, and the maximum value of q should be kept within
the available dynamic range of B bits. The maximum value computed for q is (p + (N - 1) ∗ 2J) ∗ C + D’.
[0149] Now, instead of generating all samples in one loop in this fashion, consider breaking up the process into multiple
stages, e.g., two stages. For example, in a two stage process, the first stage generates the first N0 < N samples, and
the second stage generates the remaining N - N0 samples. Also, since p is a constant with respect to the loop, we can
move its impact into D’ and E before the first stage. This results in a two-stage process illustrated in pseudo-code 1300
in Figure 13.
[0150] At the beginning of each stage in pseudo-code 1300, the origin has been reset such that all but the S least
significant bits of the first value of q for the stage have been moved into E (i.e., into E0 for the first stage and E1 for the
second stage). Thus, during operation of the each of the two stages, q requires a smaller dynamic range. After breaking
the process into stages in this fashion, the maximum value of q will be N0 ∗ C’ + D0, or ((N - N0 - 1) ∗ C’ + D1, whichever
is larger.. But since D0 and D1 each have no more than S bits of unsigned dynamic range, this will ordinarily be a smaller
maximum value than in the previously-described single-stage design. The number of samples generated in the stage
(i.e., N0 for the first stage and N - N0 for the second stage) can affect the dynamic range for the associated computations.
For example, using a smaller number of samples in each stage will result in a smaller dynamic range for the associated
computations.
[0151] Each stage can be split further into more stages, and thus the generation of the N total samples can be further
decomposed into any number of such smaller stages. For example, the process could be broken up into stages of equal
size so that blocks of, e.g., 8 or 16 consecutive samples are generated in each stage. This technique can either be used
to reduce the necessary number of bits of dynamic range B for computing q or to increase the precision of the computation
(increasing S and G+M) while keeping the dynamic range the same, or a mixture of these two benefits.
[0152] This technique of decomposing the position calculation process into stages can also be used to perform a
continuous resampling process along a very long string of input samples (conceptually, the string could be infinitely
long), such as when performing sampling rate conversion as samples arrive from an analog-to-digital converter for an
audio signal. Clearly, without breaking up the process into finite-size stages and resetting the origin incrementally from
each stage to the next, an infinitely-long string of samples could not be processed by the techniques described in the
previous sections, since this would require an infinite dynamic range in the processing word length. However, the difficulty
in applying the techniques to effectively-infinite string lengths is not a substantial limitation on such techniques since the
application to effectively-infinite length would only be useful when no rounding error is entailed by the representation of
the hypothetical benchmark positions L’ and R" in integer units representing multiples of 1 4 2G.
[0153] Under the circumstances in which multi-stage position calculation techniques can be applied, they provide a
way for the computations to be performed along an infinite-length string of samples with no "drifting" accumulation of
rounding error whatsoever in the operation of the position calculations throughout the entire rate conversion process.

4. Example Incremental Operation of Position Calculation

[0154] An interesting special case for the multi-stage decomposition concept described above is when the number of
samples to be produced in each stage has been reduced all the way to just one sample per stage. The pseudo-code
1400 in Figure 14 represents a process for generating N positions t’i for i = 0 to N - 1.
[0155] Since the process is described as an upsampling process (although the same principles could also apply to a
downsampling process), we know that for each increment of i there is a spacing of 1 in the higher-resolution picture and
therefore there is an increment of less than or equal to 1 in the lower-resolution picture. An increment of 1 in the spatial
position in the lower-resolution picture corresponds to a value of 2(S + F) for C’. Also, we know that D’ < 2S. Therefore q
= C’ + D’ has a range from 0 to less than 2(S + F) + 2S, and therefore q can be computed with a dynamic range requirement

EP 1 985 120 B1

21

5

10

15

20

25

30

35

40

45

50

55

of no more than B = S + F + 1 bits using unsigned integer arithmetic. In one implementation, this dynamic range
requirement is invariant to picture size (i.e., it does not depend on the value of R’ or R’ - L’).
[0156] For scalable video coding and many other such applications, there may be no real need to support upsampling
ratios that are very close to 1. In such applications, we can assume that C’ actually requires no more than S + F bits.
[0157] For example, if we want to upsample the luma array of a picture that has a width of 1000 luma samples with
B = 32 and L’= 0, we can use F = 4, G = 2, J = 1, M = 29, S = 28, and Z = 14 using this method. The result would be so
extraordinarily precise as to make a smaller value of B seem like a more reasonable choice.
[0158] Alternatively, if we want to upsample the luma array of a picture that has a width of 1000 luma samples with B
= 16 and L’ = 0, we can use F = 4, G = 2, J = 1, M = 13, S = 12, Z = 14 using this method.
[0159] Further knowledge of the circumstances of the upsampling operation to be performed may provide further
optimization opportunities. For example, if the upsampling ratio is significantly greater than two, the dynamic range
requirement will be reduced by another bit, and so on for upsampling ratios greater than four, sixteen, etc.
[0160] None of the changes (relative to the example multi-stage position calculation technique discussed above)
described with reference to the example incremental position calculation technique in this section affect the actual
computed values of the positions t’i for given values of C, D and S. Only the dynamic range necessary to support the
computation is changed.
[0161] The inner loop in pseudo-code 1400 for this form of decomposition does not require any multiplication operations.
This fact may be beneficial to providing reduced computation time on some computing processors.

5. Additional Remarks

[0162] For common resampling ratios such as 2:1, 3:2, etc. - any case in which no rounding would be necessary for
approximating the positions L’ and R" as an integer in units of 1 4 2G - there is no rounding error at all when using these
methods (other than whatever rounding error may be induced when rounding the final result to an integer in units of 1
4 2F, which is an error that would be present regardless of the position computation method).

C. Luma and Chroma Positions and Relationships

[0163] Assuming exact alignment of the complete new (upsampled) picture and the reference picture arrays, relative

to the luma sampling grid index coordinates, the positions L and R in the current picture coordinates are and

 where W is the number of samples in the image vertically or horizontally, depending on the relevant
resampling dimension. Equivalently, we could set the origin of the image spatial coordinate system a half-sample to the
left of (or above) the position of grid index 0 and add 1/2 when converting from image spatial coordinates to grid index
values, thus avoiding the need to deal with negative numbers when performing computations in the spatial coordinate
system.
[0164] The positions L’ and R’ in the referenced (lower-resolution) picture are referenced to the sampling grid coordi-
nates in the same way, where in this case W is the number of samples in the referenced picture rather than in the new
picture.
[0165] For the chroma sampling grid (whether in the new picture or the referenced picture), the situation is somewhat
less straightforward. To construct the designated alignment of chroma samples relative to luma, consider the image
rectangle that is represented by the chroma samples to be the same as the rectangle that is represented by the luma
samples. This produces the following cases:

- Horizontally, for 4:2:0 chroma sampling types 0, 2, and 4 (see Figure 5D), the current picture coordinates are defined

by and
- Horizontally, for 4:2:0 chroma sampling types 3, 1, and 5 (see Figure 5D), the current picture coordinates are defined

by and
- Vertically, for 4:2:0 chroma sampling types 2 and 3 (see Figure 5D), the current picture coordinates are defined by

 and

EP 1 985 120 B1

22

5

10

15

20

25

30

35

40

45

50

55

- Vertically, for 4:2:0 chroma sampling types 0 and 1 (see Figure 5D), the current picture coordinates are defined by

 and
- Vertically, for 4:2:0 chroma sampling types 4 and 5 (see Figure 5D), the current picture coordinates are defined by

 and
- Horizontally, for 4:2:2 chroma sampling, the current picture coordinates for the 4:2:2 sampling typically used in

industry practice are defined by and
- Vertically, for 4:2:2 chroma sampling, the current picture coordinates for the 4:2:2 sampling typically used in industry

practice are defined by and

- Both horizontally and vertically, for 4:4:4 chroma sampling, the current picture coordinates are defined by

and

[0166] Again an offset can be used to place the origin of the coordinate system sufficiently to the left of position L and
avoid the need to work with negative numbers.
[0167] The integer coordinates and the fractional phase offset remainder are computed by adjusting the integer co-
ordinate positions of the samples to be produced in the upsampled array to compensate for the fractional offset L, and
then applying the transformation shown at the end of section V.B. Conceptually, shifting the result to the right by F bits
results in the integer coordinate pointer into the reference picture, and subtracting the left-shifted integer coordinate
(shifted by F bits) provides the phase offset remainder.

D. Extra Precision for Position Calculation for Upsampling

[0168] This section describes how to map the position calculation method of section V.C.4 above to a specific upsam-
pling process, such as an upsampling process that may be used for the H.264 SVC Extension. The position calculation
is applied in a very flexible way to maximize the precision for both luma and chroma channels at various chroma formats
as well as for both progressive and interlace frame formats. The techniques described in this section can be varied
depending on implementation and for different upsampling processes.
[0169] In the above-described position calculations (in above sections V.A-C), the rescaling parameter (which is the
variable C, and hereafter labeled deltaX (or delta Y) in the following equations) is scaled up by a scaling factor equal to
2J (where J = 1 for luma and 2 for chroma) to form the increment added for generating each sample position from left
to right or top to bottom. The scaling was selected such that the up-scaled increment will fit into 16 bits.

1. Maximum precision for scaling position computation

[0170] A direct way to apply the position calculation method is to scale up the rescaling parameter by a scaling factor
equal to 2J, where J = 1 for luma and 2 for chroma, to form the increment added for generating each sample position
from left to right or top to bottom. The scaling parameters are then selected to ensure that the up-scaled increment will
fit into a specific word length such as 16 bits. A more flexible design is described in the following sections to maximize
the position precisions.

a. Luma Channel

[0171] The "direct" luma position calculation method can be summarized with the following example equations for F
= 4 and S = 12 (along the horizontal direction):

EP 1 985 120 B1

23

5

10

15

20

25

30

35

40

45

50

55

[0172] Here, BasePicWidth is the horizontal resolution of the base-layer or low-resolution picture; ScaledBaseWidth
is the horizontal resolution of the high-resolution picture region or window; deltaX is the intermediate rescaling parameter,
which in this case is a rounded approximation of 32768 times the inverse of the upsampling ratio; xP represents the
sample position in the high-resolution picture; ScaledBaseLeftOffset represents the relative position of the picture window
in the high-resolution picture, and Floor() denotes the largest integer less than or equal to its argument. The constant
value 30720 results from adding 2S-1 as the rounding offset prior to the right shift and subtracting 2S ∗ 2F / 2 for the half-
sample offset of the luma sampling grid reference location as discussed at the beginning of section V.C above.
[0173] It is noteworthy that each increment of xP results in an increment of 2 ∗ deltaX inside the equations. And, the
LSB of the quantity 2 ∗ deltaX is always zero, so one bit of computational precision is essentially being wasted. Approx-
imately one extra bit of precision can be obtained, without any significant increase in complexity, by changing these
equations to:

or a (slightly) more accurate form as follows:

[0174] The latter of these two forms is suggested due to its higher accuracy and negligible complexity impact (although
the precision difference also seems very small).
[0175] Note that on processing architectures on which division calculations are difficult to perform, having the result
of one of these equations can simplify the computation of the other. The value of deltaXa will always be in the range of
2 ∗ deltaXa plus or minus 1. The following simplified rule can therefore be derived to avoid the need to perform a division
operation for the computation of deltaXa:

 deltaXa = (deltaXb << 1)
 remainderDiff = (BasePicWidth << 16)+ (ScaledBaseWidth >> 1) -deltaXa
 if(remainderDiff < 0)
 deltaXa--
 else if (remainderDiff ≥ ScaledBaseWidth)
 deltaXa++

b. Chroma Channels

[0176] A factor-of-four multiplier can be used for chroma channels instead of a factor-of-two multiplier in this part of
the design to enable representation of the chroma positions for 4:2:0 sampling (using J = 2 for chroma rather than J =
1 as described for luma). Therefore the "direct" equations are:

EP 1 985 120 B1

24

5

10

15

20

25

30

35

40

45

50

55

[0177] Here, baseChromaPhaseX and scaledBaseChromaPhaseX represent chroma sampling grid position offsets
for the low- and high-resolution pictures, respectively. The values of these parameters may be explicitly conveyed as
information sent from the encoder to the decoder, or may have specific values determined by the application. All other
variables are similar to that defined for the luma channel with additional "C" suffix to represent application to the chroma
channel.
[0178] Each increment of xC results in an increment of 4 ∗ deltaXC inside the equation. Therefore, approximately two
extra bits of precision can be obtained, without any substantial increase in complexity, by changing these equations to:

where K = 0, 1, or 2. Using K = 0 would avoid an extra operation. Using K = 1 or K = 2 would have a little higher accuracy.
[0179] The corresponding, slightly more accurate form would be the following:

[0180] As with the luma case, the latter variant is preferred since the complexity difference seems negligible (although
the precision difference also seems very small).

c. Interlaced Field Coordinates

[0181] The reference for the coordinate system of a picture is ordinarily based on half-sample positions in luma frame
coordinates, thus resulting in the scale factor of two for luma coordinate reference positions as described above. A half-
sample shift in luma frame coordinates corresponds to a quarter-sample shift in 4:2:0 chroma frame coordinates, which
is why we currently use a factor of four rather than a factor of two in the scaling for the chroma coordinates as described
above.
[0182] Horizontally there is no substantial difference in operations for coded pictures that represent a frame and those
that represent a single field of interlaced video. However, when a coded picture represents a single field, a half-sample
position shift·in luma frame vertical coordinates corresponds to a quarter-sample position shift in luma field vertical

EP 1 985 120 B1

25

5

10

15

20

25

30

35

40

45

50

55

coordinates. Thus, a scale factor of four rather than two should be applied in the calculation of the vertical luma coordinate
positions.
[0183] Similarly, when a coded picture represents a single field, a half-sample position shift in luma frame vertical
coordinates corresponds to a one-eighth-sample position shift in the chroma field vertical coordinates. Thus, a scale
factor of eight rather than four should be applied in the calculation of the vertical chroma coordinate positions.
[0184] These scaling factors for computation of vertical coordinate positions in coded field pictures can be incorporated
into a deltaY vertical increment computation in the same manner as described above for the increment computation in
coded frame pictures. In this case, due to the increased scaling factor that is applied, the precision improvement becomes
approximately two bits of added precision for luma positions and three bits of added precision for chroma (vertically).

2. 4:2:2 and 4:4:4 Chroma Restriction and Refinement

[0185] The position calculation method of section V.D.1.b requires use of a different multiplication factor for chroma
than for luma. This makes sense for 4:2:0 video and it is also reasonable for 4:2:2 video horizontally, but it is not necessary
for 4:2:2 video vertically or for 4:4:4 video either horizontally or vertically, since in those cases the luma and chroma
resolution is the same and the luma and chroma samples are therefore presumably co-located.
[0186] As a result, the method of section V.D.1.b might require separate computations for determining luma and
chroma positions even when the luma and chroma resolution is the same in some dimension and no phase shift is
intended, just because the rounding will be performed slightly differently in the two cases. This is undesirable, so a
different handling of chroma is suggested in this section for use with 4:2:2 and 4:4:4 sampling structures.

a. 4:2:2 Vertical and 4:4:4 Horizontal and Vertical Positions

[0187] For the vertical dimension of 4:2:2 video and for both vertical and horizontal dimensions of 4:4:4 video, there
is no apparent need for the custom control of chroma phase. Therefore, whenever the chroma resolution is the same
as the luma resolution in some dimension, the equations for the computation of chroma positions should be modified to
result in computing the exact same positions for both luma and chroma samples whenever the chroma sampling format
has the same resolution for luma and chroma in a particular dimension. One option is just to set the chroma position
variables equal to the luma position variables, and another is to set up the chroma position equations so that they have
the same result.

b. 4:2:2 Horizontal Positions

[0188] While there is no functional problem with allowing chroma phase adjustment horizontally for 4:2:2 video, if there
is only one type of horizontal subsampling structure that is in use for 4:2:2, such as one that corresponds to the value
-1 for scaledBaseChromaPhaseX or BaseChromaPhaseX in the equations of section V.D.1.b, it may be desirable to
consider forcing these values to be used whenever the color sampling format is 4:2:2.

VI. Extensions and Alternatives

[0189] Techniques and tools described herein also can be applied to multi-resolution video coding using reference
picture resampling as found, for example in Annex P of the ITU-T international standard Recommendation H.263.
[0190] Techniques and tools described herein also can be applied not only to the upsampling of picture sample arrays,
but also to the upsampling of residual data signals or other signals. For example, techniques and tools described herein
also can be applied to the upsampling of residual data signals for reduced resolution update coding as found, for example
in Annex Q of the ITU-T international standard Recommendation H.263. As another example, techniques and tools
described herein can also be applied to the upsampling of residual data signals for prediction of high-resolution residual
signals from lower-resolution residual signals in a design for spatial scalable video coding. As a further example, tech-
niques and tools described herein can also be applied to the upsampling of motion vector fields in a design for spatial
scalable video coding. As a further example, techniques and tools described herein can also be applied to upsampling
of graphics images, photographic still pictures, audio sample signals, etc.
[0191] Having described and illustrated the principles of my invention with reference to various described embodiments,
it will be recognized that the described embodiments can be modified in arrangement and detail without departing from
such principles. It should be understood that the programs, processes, or methods described herein are not related or
limited to any particular type of computing environment, unless indicated otherwise. Various types of general purpose
or specialized computing environments may be used with or perform operations in accordance with the teachings
described herein. Elements of the described embodiments shown in software may be implemented in hardware and
vice versa.

EP 1 985 120 B1

26

5

10

15

20

25

30

35

40

45

50

55

[0192] In view of the many possible embodiments to which the principles of my invention may be applied, I claim as
my invention all such embodiments as may come within the scope of the following claims and equivalents thereto.

Claims

1. A computer implemented method comprising:
performing resampling of image data according to a horizontal or vertical resampling scale factor, wherein the
resampling comprises computation of a sample value at horizontal or vertical position i in a resampled array, and
wherein the computation comprises:
computing a derived horizontal or vertical sub-sample position x in a manner that is mathematically equivalent in
result to the formula x = (i ∗ C + D) >> S, wherein C is derived by approximating a value equivalent to 2S+F multiplied
by an inverse of the horizontal or vertical resampling scale factor, and wherein F, C, D, and S are integer values.

2. The method of claim 1 wherein said resampling of image data is an upsampling of a video picture according to a
horizontal upsampling scale factor and a vertical upsampling scale factor, wherein the upsampling comprises com-
putation of an interpolated sample value at the horizontal position i and the vertical position j in an upsampled array,
and wherein the computation comprises:

said computing the derived horizontal sub-sample position x in a manner that is mathematically equivalent in
result to the formula x = (i ∗ C + D) >> S,
wherein C is derived by approximating a value equivalent to 2S+F multiplied by an inverse of the horizontal
upsampling scale factor, and wherein F, C, D, and S are integer values;
computing the derived vertical sub-sample position y in a manner that is mathematically equivalent in result to
the formula y = (j ∗ C + D) >> S,
wherein C is derived by approximating a value equivalent to 2S+F multiplied by an inverse of the vertical up-
sampling scale factor; and
interpolating a sample value at the derived sub-sample position x, y.

3. The method of claim 2 wherein the computation further comprises:

selecting a horizontal resampling filter based on F least significant bits of the derived horizontal sub-sample
position x; and
selecting lower resolution samples to be filtered based on the remaining more significant bits of the derived
horizontal sub-sample position x; and
wherein interpolating a sample value at the derived sub-sample position x, y comprises:
interpolating the sample value based on the selected lower resolution samples and using the selected horizontal
resampling filter.

4. The method of claim 3 wherein a horizontal resampling filter applied for at least one value of the F least significant
bits of the derived horizontal sub-sample position x is a finite impulse response filter with more than two non-zero
filter tap values, and
a horizontal resampling filter applied for all values other than 0 for the F least significant bits of the derived horizontal
sub-sample position x is a finite impulse response filter with four non-zero filter tap values.

5. The method of claim 2 wherein the computation further comprises:

selecting a vertical resampling filter based on F least significant bits of the derived vertical sub-sample position
y; and
selecting lower resolution samples to be filtered based on the remaining more significant bits of the derived
vertical sub-sample position y; and
wherein interpolating a sample value at the derived sub-sample position x, y comprises:
interpolating the sample value based on the selected lower resolution samples and using the selected vertical
resampling filter.

6. The method of claim 5 wherein a vertical resampling filter applied for at least one value of the F least significant bits
of the derived vertical sub-sample position y is a finite impulse response filter with more than two non-zero filter tap
values, and

EP 1 985 120 B1

27

5

10

15

20

25

30

35

40

45

50

55

a vertical resampling filter applied for all values other than 0 for the F least significant bits of the derived vertical
sub-sample position y is a finite impulse response filter with four non-zero filter tap values.

7. The method of claim 2 wherein the upsampling is performed using one or more Mitchell-Netravalli resampling filters
or one or more Catmull-Rom resampling filters.

8. The method of claim 2 wherein at least one of the vertical or horizontal values of F, C, D, or S differs based at least
in part on whether the sample value is a chroma sample value or a luma sample value.

9. The method of claim 2 wherein a manner that is mathematically equivalent in result to the formula x = (i ∗ C + D) >>
S comprises an implementation of the formula x = ((i ∗ C + D) >> S) + E, where E is an offset.

10. The method of claim 2 wherein the upsampling is performed using one or more resampling filters having filter tap
values controlled by a bandwidth control parameter.

11. The method of claim 2 wherein the upsampling is performed in a layered spatially-scalable video encoding or
decoding process.

12. The method of claim 2 wherein the upsampling is performed for reference picture resampling.

13. The method of claim 2 wherein the approximating comprises rounding and/or the inverse is an approximate inverse.

14. The method of claim 2 wherein at least one of the F, C, D, and S integer values are different for the horizontal
computing than for the vertical computing, in particular F is equal to 4 and the value of S is equal to 12.

15. The method of claim 1, wherein said resampling of image data is an upsampling of a video picture according to an
upsampling scale factor, wherein the upsampling comprises computation of an interpolated sample value at the
horizontal position i and the vertical position j in an upsampled array, and wherein the computation comprises:

said computing the derived horizontal sub-sample position x in a manner mathematically equivalent in result to
the formula x = ((2J ∗ i + Q) ∗ C + D) >> S, wherein C is derived by approximating a value equivalent to 2S+F

multiplied by an inverse of the upsampling scale factor, and wherein F, C, D, S, J and Q are integers;
computing the derived vertical sub-sample position y in a manner that is mathematically equivalent in result to
the formula y = ((2J ∗ j + Q)* C + D) >> S; and
interpolating a sample value at the derived sub-sample position x, y.

16. A computer-readable medium storing computer-executable instructions for causing a processor, when programmed
thereby, to perform the method of any one of claims 1-15.

17. A computer system configured to perform the method of any one of claims 1-15.

Patentansprüche

1. Computerimplementiertes Verfahren umfassend:
Durchführen der Neuberechnung von Bilddaten entsprechend einem horizontalen oder vertikalen Neuberechnungs-
Skalierungsfaktor, wobei die Neuberechnung die Berechnung eines Abtastwerts an einer horizontalen oder vertikalen
Position i in einem neuberechneten Feld umfasst, und wobei die Berechnung umfasst:
Berechnen einer abgeleiteten horizontalen oder vertikalen Unterabtastposition x auf eine Weise, die mathematisch
gleichwertig im Ergebnis mit der Formel x = (i∗C+D) >> S ist, wobei C durch Nähern eines Werts gleichwertig mit
2S+F multipliziert mit einem Umkehrwert des horizontalen oder vertikalen Neuberechnungs-Skalierungsfaktors ab-
geleitet wird, und wobei F, C, D und S Ganzzahlenwerte sind.

2. Verfahren nach Anspruch 1, wobei die Neuberechnung von Bilddaten eine Aufwärtstastung eines Videobilds ent-
sprechend einem horizontalen Aufwärtstastungs-Skalierungsfaktors und eines vertikalen Aufwärtstastungs-Skalie-
rungsfaktors ist, wobei die Aufwärtstastung die Berechnung eines interpolierten Abtastwerts an der horizontalen
Position i und der vertikalen Position j in einem aufwärtsgetasteten Feld ist, und wobei die Berechnung umfasst:

EP 1 985 120 B1

28

5

10

15

20

25

30

35

40

45

50

55

das Berechnen der abgeleiteten horizontalen Unterabtastposition x auf eine Weise, die mathematisch gleich-
wertig im Ergebnis mit der Formel x = (i∗C+D) >> S ist, wobei C durch Nähern eines Wertes gleichwertig mit
2S+F multipliziert mit einem Umkehrwert des horizontalen Aufwärtstastungs-Skalierungsfaktors abgeleitet wird,
und wobei F, C, D und S Ganzzahlenwerte sind.
Berechnen der abgeleiteten vertikalen Unterabtastposition y auf eine Weise, die mathematisch gleichwertig im
Ergebnis mit der Formel y = (j∗C+D) >> S ist, wobei C durch Nähern eines Wertes gleichwertig mit 2S+F multi-
pliziert mit einem Umkehrwert des vertikalen Aufwärtstastungs-Skalierungsfaktors abgeleitet wird; und Interpo-
lieren eines Abtastwerts an der abgeleiteten Unterabtastposition x, y.

3. Verfahren nach Anspruch 2, wobei die Berechnung ferner umfasst:

Auswählen eines horizontalen Neuberechnungsfilters auf der Basis von F niederwertigsten Bits der abgeleiteten
horizontalen Unterabtastposition x; und
Auswählen von niedriger aufgelösten Abtastungen zum Filtern auf der Basis der restlichen höherwertigen Bits
der abgeleiteten horizontalen Unterabtastposition x; und
wobei das Interpolieren eines Abtastwerts an der abgeleiteten Unterabtastposition x, y umfasst:
Interpolieren des Abtastwerts auf der Basis der ausgewählten niedriger aufgelösten Abtastungen und Verwen-
den des ausgewählten horizontalen Neuberechnungsfilters.

4. Verfahren nach Anspruch 3, wobei ein für wenigstens einen Wert der F niedrigstwertigen Bits der abgeleiteten
horizontalen Unterabtastposition x angewendetes horizontales Neuberechnungsfilter ein Filter mit endlicher Im-
pulsantwort mit mehr als zwei Nicht-Null-Filterabzweigwerten ist, und
ein für alle Werte ungleich 0 für die F niedrigstwertigen Bits der abgeleiteten horizontalen Unterabtastposition x
angewendetes horizontales Neuberechnungsfilter ein Filter mit endlicher Impulsantwort mit vier Nicht-Null-Filterab-
zweigwerten ist.

5. Verfahren nach Anspruch 2, wobei die Berechnung ferner umfasst:

Auswählen eines vertikalen Neuberechnungsfilters auf der Basis von F niedrigstwertigen Bits der abgeleiteten
vertikalen Unterabtastposition y; und
Auswählen von niedriger aufgelösten Abtastungen zum Filtern auf der Basis der restlichen höherwertigen Bits
der abgeleiteten vertikalen Unterabtastposition y; und
wobei das Interpolieren eines Abtastwerts an der abgeleiteten Unterabtastposition x, y umfasst:
Interpolieren des Abtastwerts auf der Basis der ausgewählten niedriger aufgelösten Abtastungen und Verwen-
den des ausgewählten vertikalen Neuberechnungsfilters.

6. Verfahren nach Anspruch 5, wobei ein für wenigstens einen Wert der F niedrigstwertigen Bits der abgeleiteten
vertikalen Unterabtastposition y angewendetes vertikales Neuberechnungsfilter ein Filter mit endlicher Im-
pulsantwort mit mehr als zwei Nicht-Null-Filterabzweigwerten ist, und
ein für alle Werte ungleich 0 für die F niedrigstwertigen Bits der abgeleiteten vertikalen Unterabtastposition y ange-
wendetes vertikales Neuberechnungsfilter ein Filter mit endlicher Impulsantwort mit vier Nicht-Null-Filterabzweig-
werten ist.

7. Verfahren nach Anspruch 2, wobei die Aufwärtstastung unter Verwendung von einem oder mehreren Mitchell-
Netravalli-Neuberechnungsfiltern oder einem oder mehreren Catmull-Rom-Neuberechnungsfiltern durchgeführt
wird.

8. Verfahren nach Anspruch 2, wobei sich wenigstens einer der vertikalen oder horizontalen Werte von F, C, D oder
S auf der Basis von wenigstens teilweise, ob der Abtastwert ein Farbsättigungs-Abtastwert oder ein Luminanz-
Abtastwert ist, unterscheidet.

9. Verfahren nach Anspruch 2, wobei eine Weise, die mathematisch gleichwertig im Ergebnis mit der Formel x =
(i∗C+D) >> S ist, eine Implementierung der Formel x = ((i∗C+D) >> S) + E umfasst, wobei E ein Versatz ist.

10. Verfahren nach Anspruch 2, wobei die Aufwärtstastung unter Verwendung von einem oder mehreren Neuberech-
nungsfiltern, deren Filterabzweigungswerte von einem Bandbreiten-Steuerparameter gesteuert werden.

11. Verfahren nach Anspruch 2, wobei die Aufwärtstastung in einem geschichteten räumlich skalierbaren Videover-

EP 1 985 120 B1

29

5

10

15

20

25

30

35

40

45

50

55

schlüsselungs- oder Videoentschlüsselungsprozess durchgeführt wird.

12. Verfahren nach Anspruch 2, wobei die Aufwärtstastung für eine Referenzbild-Neuberechnung durchgeführt wird.

13. Verfahren nach Anspruch 2, wobei das Nähern ein Runden umfasst und/oder der Umkehrwert ein Näherungsum-
kehrwert ist.

14. Verfahren nach Anspruch 2, wobei sich wenigstens einer der Ganzzahlwerte F, C, D und S für die horizontale
Berechnung von dem für die vertikale Berechnung unterscheidet, wobei insbesondere F gleich 4 ist und der Wert
von S gleich 12 ist.

15. Verfahren nach Anspruch 1, wobei die Neuberechnung von Bilddaten eine Aufwärtstastung eines Videobildes ent-
sprechend einem Aufwärtungstastungs-Skalierungsfaktores ist, wobei die Aufwärtstastung die Berechnung eines
interpolierten Abtastwerts an der horizontalen Position i und der vertikalen Position j in einem aufwärtsgetasteten
Feld umfasst, und wobei die Berechnung umfasst:

die Berechnung der abgeleiteten horizontalen Unterabtastposition x auf eine Weise mathematisch gleichwertig
im Ergebnis mit der Formel x = ((2J∗i+Q)∗C+D) >> S, wobei C durch Nähern eines Werts gleichwertig mit 2S+F

multipliziert mit einem Umkehrwert des Aufwärtstastungs-Skalierungsfaktors abgeleitet wird, und wobei F, C,
D, S, J und Q Ganzzahlen sind;
Berechnen der abgeleiteten vertikalen Unterabtastposition y auf eine Weise, die mathematisch gleichwertig im
Ergebnis mit der Formel y = ((2J∗j+Q)∗C+D) >> S ist; und
Interpolieren eines Abtastwerts an der abgeleiteten Unterabtastposition x, y.

16. Computerlesbares Medium zum Speichern von computerausführbaren Anweisungen zum Veranlassen eines Pro-
zessors, wenn dadurch programmiert, zum Ausführen des Verfahrens nach einem der Ansprüche 1-15.

17. Zum Ausführen des Verfahrens nach einem der Ansprüche 1-15 ausgebildetes Computersystem.

Revendications

1. Procédé mis en oeuvre par ordinateur, consistant à :
procéder à un rééchantillonnage de données d’image conformément à un facteur d’échelle de rééchantillonnage
horizontal ou vertical, dans lequel le rééchantillonnage comprend le calcul d’une valeur d’échantillon au niveau
d’une position horizontale ou verticale i dans un tableau rééchantillonné, et dans lequel le calcul comprend :
le calcul d’une position de sous-échantillon horizontale ou verticale déduite x selon une méthode dont le résultat
est mathématiquement équivalent à la formule x = (i * C + D) >> s, dans lequel C est obtenu par approximation
d’une valeur équivalente à 2S+F multipliée par un inverse du facteur d’échelle de rééchantillonnage horizontal ou
vertical, et dans lequel F, C, D et S sont des valeurs entières.

2. Procédé selon la revendication 1, dans lequel ledit rééchantillonnage de données d’image est un suréchantillonnage
d’une image vidéo conformément à un facteur d’échelle de suréchantillonnage horizontal et à un facteur d’échelle
de suréchantillonnage vertical, dans lequel le suréchantillonnage comprend le calcul d’une valeur d’échantillon
interpolée au niveau de la position horizontale i et de la position verticale j dans un tableau suréchantillonné, et
dans lequel le calcul comprend :

ledit calcul de la position de sous-échantillon horizontale déduite x selon une méthode dont le résultat est
mathématiquement équivalent à la formule x = (i ∗ C + D) >> S, dans lequel C est obtenu par approximation
d’une valeur équivalente à 2S+F multipliée par un inverse du facteur d’échelle de suréchantillonnage horizontal,
et dans lequel F, C, D et S sont des valeurs entières ;
le calcul de la position de sous-échantillon verticale déduite y selon une méthode dont le résultat est mathé-
matiquement équivalent à la formule y = (j ∗ C + D) >> S, dans lequel C est obtenu par approximation d’une
valeur équivalente à 2S+F multipliée par un inverse du facteur d’échelle de suréchantillonnage vertical ; et
l’interpolation d’une valeur d’échantillon au niveau de la position de sous-échantillon déduite x, y.

3. Procédé selon la revendication 2, dans lequel le calcul comprend, en outre :

EP 1 985 120 B1

30

5

10

15

20

25

30

35

40

45

50

55

la sélection d’un filtre de rééchantillonnage horizontal sur la base des F éléments binaires les moins significatifs
de la position de sous-échantillon horizontale déduite x ; et
la sélection d’échantillons de résolution inférieure à filtrer sur la base des éléments binaires plus significatifs
restants de la position de sous-échantillon horizontale déduite x ; et
dans lequel l’interpolation d’une valeur d’échantillon au niveau de la position de sous-échantillon déduite x, y
comprend :
l’interpolation de la valeur d’échantillon sur la base des échantillons de résolution inférieure sélectionnés et
l’utilisation du filtre de rééchantillonnage horizontal sélectionné.

4. Procédé selon la revendication 3, dans lequel
un filtre de rééchantillonnage horizontal appliqué pour au moins une valeur des F éléments binaires les moins
significatifs de la position de sous-échantillon horizontale déduite x est un filtre à réponse impulsionnelle finie ayant
plus de deux valeurs de prise de filtre non nulles, et
un filtre de rééchantillonnage horizontal appliqué pour toutes les valeurs différentes de 0 pour les F éléments binaires
les moins significatifs de la position de sous-échantillon horizontal déduite x est un filtre à réponse impulsionnelle
finie ayant quatre valeurs de prise de filtre non nulles.

5. Procédé selon la revendication 2, dans lequel le calcul comprend en outre :

la sélection d’un filtre de rééchantillonnage vertical sur la base des F éléments binaires les moins significatifs
de la position de sous-échantillon verticale y ; et
la sélection d’échantillons de résolution inférieure à filtrer sur la base des éléments binaires plus significatifs
restants de la position de sous-échantillon verticale déduite y ; et
dans lequel l’interpolation d’une valeur d’échantillon au niveau de la position de sous-échantillon déduite x, y
comprend :
l’interpolation de la valeur d’échantillon sur la base des échantillons de résolution inférieure sélectionnés et
l’utilisation du filtre de rééchantillonnage vertical sélectionné.

6. Procédé selon la revendication 5, dans lequel un filtre de rééchantillonnage vertical appliqué pour au moins une
valeur des F éléments binaires les moins significatifs de la position de sous-échantillon verticale déduite y est un
filtre à réponse impulsionnelle finie ayant plus de deux valeurs de prise de filtre non nulles, et
un filtre de rééchantillonnage vertical appliqué pour toutes les valeurs différentes de 0 pour les F éléments binaires
les moins significatifs de la position de sous-échantillon verticale déduite y est un filtre à réponse impulsionnelle
finie ayant quatre valeurs de prise de filtre non nulles.

7. Procédé selon la revendication 2, dans lequel le suréchantillonnage est réalisé au moyen d’un ou de plusieurs filtres
de rééchantillonnage de Mitchell-Netravali ou d’un ou de plusieurs filtres de rééchantillonnage de Catmull-Rom.

8. Procédé selon la revendication 2, dans lequel au moins une des valeurs verticale ou horizontale de F, C, D ou S
diffère en fonction, au moins en partie, du fait que la valeur d’échantillon est une valeur d’échantillon chroma ou
une valeur d’échantillon luma.

9. Procédé selon la revendication 2, dans lequel une méthode dont le résultat est mathématiquement équivalent à la
formule x = (i ∗ C + D) >> S comprend une mise en oeuvre de la formule x = ((i ∗ C + D) >> S) + E, où E est un décalage.

10. Procédé selon la revendication 2, dans lequel le suréchantillonnage est réalisé au moyen d’un ou de plusieurs filtres
de rééchantillonnage ayant des valeurs de prise de filtre contrôlées par un paramètre de contrôle de bande passante.

11. Procédé selon la revendication 2, dans lequel le suréchantillonnage est réalisé dans un processus de codage ou
décodage vidéo spatialement échelonnable en couches.

12. Procédé selon la revendication 2, dans lequel le suréchantillonnage est réalisé pour un rééchantillonnage d’image
de référence.

13. Procédé selon la revendication 2, dans lequel l’approximation comprend un arrondissage et/ou l’inverse est un
inverse approximatif.

14. Procédé selon la revendication 2, dans lequel au moins une des valeurs entières F, C, D et S est différente pour le

EP 1 985 120 B1

31

5

10

15

20

25

30

35

40

45

50

55

calcul horizontal de ce qu’elle est pour le calcul vertical, en particulier F est égale à 4 et la valeur de S est égale à 12.

15. Procédé selon la revendication 1, dans lequel ledit rééchantillonnage de données d’image est un suréchantillonnage
d’une image vidéo conformément à un facteur d’échelle de suréchantillonnage, dans lequel le suréchantillonnage
comprend le calcul d’une valeur d’échantillon interpolée au niveau de la position horizontale i et de la position
verticale j dans un tableau suréchantillonné, et dans lequel le calcul comprend :

ledit calcul de la position de sous-échantillon horizontale déduite x selon une méthode dont le résultat est
mathématiquement équivalent à la formule x = ((2J ∗ i + Q) ∗ C + D) >> S, dans lequel C est obtenu par
approximation d’une valeur équivalente à 2S+F multipliée par un inverse du facteur d’échelle de suréchantillon-
nage, et dans lequel F, C, D, S, J et Q sont des entiers ;
le calcul de la position de sous-échantillon verticale déduite y selon une méthode dont le résultat est mathé-
matiquement équivalent à la formule y = ((2J * j + Q) * C + D) >> S; et
l’interpolation d’une valeur d’échantillon au niveau de la position de sous-échantillon déduite x, y.

16. Support lisible par ordinateur sur lequel sont stockées des instructions exécutables par ordinateur destinées à faire
exécuter par un processeur, lorsque ce dernier est programmé par ces instructions, le procédé selon l’une quelconque
des revendications 1 à 15.

17. Système informatique configuré pour exécuter le procédé selon l’une quelconque des revendications 1-15.

EP 1 985 120 B1

32

EP 1 985 120 B1

33

EP 1 985 120 B1

34

EP 1 985 120 B1

35

EP 1 985 120 B1

36

EP 1 985 120 B1

37

EP 1 985 120 B1

38

EP 1 985 120 B1

39

EP 1 985 120 B1

40

EP 1 985 120 B1

41

EP 1 985 120 B1

42

EP 1 985 120 B1

43

EP 1 985 120 B1

44

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European
patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be
excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• US 6728317 B1 [0006] • US 6510177 B [0078] [0079]

	bibliography
	description
	claims
	drawings
	cited references

