
US 201000770 10A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2010/0077010 A1

AILA et al. (43) Pub. Date: Mar. 25, 2010

(54) SYSTEMAND METHOD FOR IDENTIFYING Publication Classification
ENTRY POINTS OF A HERARCHICAL
STRUCTURE (51) Int. Cl.

G06F 7/30 (2006.01)

(75) Inventors: Timo AILA, Helsinki (FI); Samuli G06F 7/00 (2006.01)
Laine, Helsinki (FI) (52) U.S. Cl. 707/803; 707/E17.05

Correspondence Address:
PATTERSON & SHERIDAN, L.L.P. (57) ABSTRACT
3040 POST OAKBOULEVARD, SUITE 1500 -
HOUSTON, TX 77.056 (US) A method for identifying entry points of a hierarchical Struc

ture having a plurality of nodes includes the operations select
(73) Assignee: Nvidia Corporation, Santa Clara, ing a node of a hierarchical structure and testing it for iden

CA (US) tification as an entry point. The node is identified as an entry
point, and the selection, testing, and identification operations

(21) Appl. No.: 12/204,986 are repeated for at least one additional node of the hierarchical
structure to identify at least a second node as a respective

(22) Filed: Sep. 5, 2008 second entry point for the hierarchical structure.

200
M

210

Entry Point Search

Hierarchical Tree Operations

US 2010/0077.01.0 A1 Mar. 25, 2010 Sheet 1 of 8 Patent Application Publication

Prior Art
Fig. 1A

Prior Art

Patent Application Publication Mar. 25, 2010 Sheet 2 of 8 US 2010/0077.01.0 A1

2OO

210

Entry Point Search

Hierarchical Tree Operations

Fig. 2

Patent Application Publication Mar. 25, 2010 Sheet 3 of 8 US 2010/0077.01.0 A1

305
Begin node traversal for

entry point search

31 O
Execute node test &
report any child nodes

ls the
node identified as an

entry point 2

21 O

312

Insert node into
entry point list

Any reported
Child

Insert reported child
nodes into traversal Store

Add nodes in the
traversal Store ?

315

Skip entry point search
of Child nodes

Extract next node
in traversal Store

N
335

End node traversal for
entry point search

Fig. 3

Patent Application Publication Mar. 25, 2010 Sheet 4 of 8 US 2010/0077.01.0 A1

405

Begin node test

DOeSBW
interSect node 2

400

Do not identify node
Does node as entry point, do not

include primitive(s) report child nodes for
p traversal store

420
Identify node as

entry point
422

End node test

Child nodes 2

Estimate number of
ray vs. child node

interSections

Does
number exceed
a threshold 2

440
442

Do not identify node as entry
point, report child nodes End node test

intersected by BV for traversal
StOre

Fig. 4A

US 2010/0077.01.0 A1 Mar. 25, 2010 Sheet 5 of 8 Patent Application Publication

451

457 458 459 456

Fig. 4B

557 558 559 556

Fig. 5B

Patent Application Publication Mar. 25, 2010 Sheet 6 of 8 US 2010/0077.01.0 A1

505

Begin node test

510

500

Does probe ray
intersect node 2

Intersect probe ray
with primitives

520
Identify node as

entry point

525

End node test

Do not identify node
as entry point,
report all child

nodes for traversal
StOre

515

Does node
include primitive(s)

2

540

End node test

Fig. 5A

Patent Application Publication Mar. 25, 2010 Sheet 7 of 8 US 2010/0077.01.0 A1

605 600

Begin entry point search

610

Select node for
entry point test

620

Test node for identification
as entry point

NOde to be identified
as an entry point ?

630

Add node to
entry point list

Other nodes
to be Searched ?

640

End entry point search

Fig. 6

Patent Application Publication Mar. 25, 2010 Sheet 8 of 8 US 2010/0077.01.0 A1

700

Local Shared Parallel
M emory Processor

US 2010/00770 10 A1

SYSTEMAND METHOD FOR IDENTIFYING
ENTRY POINTS OF A HERARCHICAL

STRUCTURE

FIELD OF THE INVENTION

0001. The present invention relates to hierarchical struc
tures, and more particularly to systems and methods for iden
tifying entry points of a hierarchical structure.

BACKGROUND

0002 Hierarchical structures, such as logical tree struc
tures, are known in many technical fields, and are employed to
organize informationina logical form to facilitate storage and
retrieval of the information. In a typical implementation, the
highest node or “root’ of the logical tree includes the most
general information, with descendant nodes (i.e., child nodes,
grandchild nodes, etc. moving away from the root node)
providing additional detail as to a particular aspect of the
information represented by the tree structure. It is, or course,
desirable to navigate through the tree via the shortest path
and/or in the shortest amount of time in order to store or
retrieve information, and node traversal techniques for mini
mizing the time to perform these operations occupy engineers
and scientists from a variety of different fields.
0003. In the areas of graphics processing and rendering,
ray tracing is a field which uses hierarchical structures for
organizing information. Ray tracing involves a technique for
determining the visibility of a primitive from a given point in
space, for example, an eye, or camera perspective. Primitives
of a particular scene which are to be rendered are typically
located in nodes, and the nodes organized within a hierarchi
cal tree. Ray tracing involves a first operation of “node tra
versal, whereby nodes of the tree are traversed in a particular
manner in an attempt to locate nodes having primitives, and a
second operation of “primitive intersection.” in which a ray is
intersected with one or more primitives within a located node
to produce a particular visual effect. The operation of node
traversal starts at a particular node or “entry point, where a
test is made to determine if the node contains any primitives.
The node traversal process continues from the entry point to
descendant nodes in the tree, to test additional nodes for the
presence of primitives which may intersectaray that is visible
or that can create a visual effect within the scene.

0004. In some conventional embodiments, the node tra
Versal process commences at the root of the tree, i.e., at the
highest rank, or most general level of the scene. In many
instances, however, the root does not contain primitives
which are intersected by a ray that produces a visible effect
within the scene, and accordingly, skipping the root node and
starting at a lower ranked node is typically more optimal in
terms of minimizing the time required for the node traversal
process.

0005 FIGS. 1A and 1B illustrate an improvement of the
aforementioned node traversal process, as described by A.
Reshetov et al. in “Multi-Level Ray Tracing Algorithm.”
Proc. SIGGRAPH 2005. The article describes a technique for
identifying an entry point which is common to all primitive
containing nodes which may be intersected by a ray. As can be
seen in FIG. 1A, the technique represents an improvement
compared to the conventional technique in which the entry
point at the top node 110, as the entry point of the node
traversal process is one rank lower at node 120, node 120

Mar. 25, 2010

representing the common node for the primitive containing
nodes 140, 150 and 160 which may be intersected by the ray.
0006 FIG. 1B illustrates the tree structure when the primi
tive containing nodes are distributed a manner different from
that shown in FIG. 1A. In particular, the root node 110 is
identified as the best entry point, as it represents the common
node for primitive containing, possibly intersected nodes
130, 140, 150 and 160. In such an instance, no benefit is
gained from the disclosed improvement compared with the
conventional approach, in which the root node 110 represents
the entry point for node traversal.
0007 Accordingly, what is needed is an improved method
and system which provides more optimal entry points of a
hierarchical structure.

SUMMARY

0008. A method for identifying entry points of a hierarchi
cal structure includes the operations selecting a node of a
hierarchical structure and testing it for identification as an
entry point. The node is identified as an entry point, and the
selection, testing, and identification operations are repeated
for at least one additional node of the hierarchical structure to
identify at least a second node as a respective second entry
point for the hierarchical structure.

BRIEF DESCRIPTION OF THE DRAWINGS

0009 FIGS. 1A and 1B illustrates a conventionally known
method of identifying an entry point within a hierarchical
Structure.

0010 FIG. 2 illustrates an exemplary method for travers
ing a hierarchical structure in which the present invention
finds utility.
0011 FIG. 3 illustrates a first exemplary embodiment of
an entry point search operation shown in FIG. 2.
0012 FIG. 4A illustrates a first exemplary embodiment of
an entry point identification operation shown in FIG. 3.
0013 FIG. 4B illustrates a hierarchical tree displaying
entry point nodes identified in accordance with the method of
FIG. 4A.
0014 FIG. 5A illustrates a second exemplary embodiment
of the entry point identification operation shown in FIG. 3.
0015 FIG. 5B illustrates a hierarchical tree displaying
entry point nodes identified in accordance with the method of
FIG.S.A.
0016 FIG. 6 illustrates a second exemplary embodiment
of the entry point search operation shown in FIG. 2.
0017 FIG. 7 illustrates an exemplary system operable to
perform the operations illustrated in FIGS. 2-6.

DETAILED DESCRIPTION OF EXEMPLARY
EMBODIMENTS

0018 FIG. 2 illustrates an exemplary method for travers
ing a hierarchical structure in which the present invention
finds utility. At 210, an entry point search operation in which
Zero or more entry points of the hierarchical tree are identi
fied. Exemplary embodiments of this process are illustrated
below. At 220, hierarchical tree operations are initiated at the
entry points. In one exemplary embodiment, operation 220
includes ray tracing operations, i.e., the execution of node
traversal and primitive intersection operations, as known in
the art. The present invention is not limited to ray tracing
operations, and may be also employed in other applications in
which hierarchical tree traversal is used.

US 2010/00770 10 A1

0019 FIG. 3 illustrates a first exemplary embodiment of
an entry point search operation 210 shown in FIG. 2. The
process involves a node traversal operation, whereby particu
lar nodes are searched for particular conditions, as detailed
below. At 310, a node test is executed, and optionally, child
nodes (if any) of the tested node are reported. As known,
“child nodes' are nodes which are one level removed (moving
away from the root) from the node tested at 310. Exemplary
embodiments of operation 310 are further illustrated and
described in FIGS. 4A (method 400) and 5A (operation 500)
below. In an alternative embodiment, a test for any descen
dant node can be performed, since the detection of any
descendant node would necessarily mean that at least one
child node of the tested node exists.
0020. At 311, a determination is made as to whether the
node test at 310 is identified as an entry point. If so, the tested
node is included in a list of entry points at 312 (the list
defining an “entry point cut illustrated below), and any child
or descendant nodes of the tested node are skipped for further
entry point search operations (operation 315). As described
herein, a node which is skipped, not included, or excluded
from further entry point search operations or from inclusion
in an entry point list may be ignored (i.e., no further process
ing is executed upon it), or it may be tagged or identified in
Some manner, Such that the node is disregarded ifa process or
operation considers the node again. If at 311, the determina
tion is negative, a further determination is made at 313 as to
whether the node tested at 310 includes any child nodes
reported at 310. If the tested node did not report any child
nodes at 310, the method continues at 315 in which an entry
point search for any child or descendant nodes of the particu
lar tested node are skipped.
0021. If at 313, one or more child nodes of the tested node
are reported, a further determination is made at 314 as to
whether an entry point list overflow occurs. An overflow
condition can occur when the number of entry points in the
entry point list plus the number ofnodes in traversal store plus
the number of child nodes reported at 310 exceeds a pre
defined maximum number of entry points. If an overflow
occurs, the tested node is identified as an entry point and
included in a list of entry points at 312. Further exemplary,
any child or descendant nodes of the tested node are skipped
for further entry point search operations (operation 315). This
ensures correctness while allowing the method to conclude
when memory resources are bounded. If no overflow condi
tion is detected at 314, the child nodes reported by node test
310 are inserted into the traversal store at 320 and the method
continues to 325. As the skilled person will appreciate, the
overflow test in 314 is optional and can be omitted if no limit
is imposed on the number of entry points allowed in the entry
point list. Upon completion of operation 315 the method
continues at 325, whereby a determination is made as to
whether there are any additional nodes in the traversal store of
the entry point search. If so, the process continues at 330,
whereby the next node in the traversal store is selected, and
the method returns to operation 310 therefor. If at 325, no
additional nodes remain in the traversal store, node traversal
operations for the entry point search operations conclude.

Entry Point Search Using a Bounding Volume of Rays
0022 FIG. 4A illustrates a first exemplary embodiment of
the entry point identification operation 310, whereby a node is
tested for use as an entry point. In this embodiment 400, a
bounding volume (BV) of rays is used to determine if the

Mar. 25, 2010

tested node should be included in a list of one or more entry
points. In particular, if the BV does not intersect a node of the
hierarchical tree, than neither will any of the rays within the
BV intersect the node, and this information can be used to
determine whether the node is to be identified as an entry
point. The number of rays within the BV may vary, e.g., 1, 2,
4, 8, 16, 32, 64, 128, 1024 or more rays. The skilled person
will appreciate that any number of rays may be implemented
within the BV, and that the BV may be a subgroup of rays
within a larger BV. The BV may take on any geometric shape,
e.g., a shaft, a frustum, or another Suitable Volumetric shape.
0023. At 410, a determination is made as to whether the
tested node is intersected by the BV of rays. Such a test may
be performed using any means, including conventional geo
metric tests. If the determination is negative, the node is not
identified as entry point and further, no child nodes of the
tested node (if any) are reported at 411. The method con
cludes at 412, and entry point search operations 210 continue
with operations 311,313,315 and 325 shown in FIG.3. If the
node is determined to be intersected by the BV, the method
continues at 415.
0024. At 415, a determination is made as to whether the
tested node includes an object (i.e., one or more objects). The
term “object' or “objects” as used herein refers to any data
against which a query may be tested, and includes primitives,
Such as triangles, squares, spheres, points, lines, data objects,
and any other data that meets the aforementioned definition.
In a particular embodiment, the method 310 is applied to a
hierarchical structure Such as those commonly used in the
field of ray tracing, e.g., bounding Volume hierarchies, k-di
mensional trees, octrees, or binary space partitioning trees
whose nodes include primitives. However, the method 310 is
not to such an exemplary embodiment, and it may be imple
mented in other applications in which different hierarchical
structures and/or different objects are employed.
0025 If, at 415, a determination is made that the node
includes an object (e.g., a primitive) the node is identified as
an entry point (operation 420). The node test concludes at
422, and the process returns to operations 311 and 312, where
the node is inserted into the entry point list, and 315, where
entry point search of descendant nodes of the tested node
(child nodes, grandchild nodes, etc., moving further away
from the root node side of the tested node) is skipped and
subsequently at 325 and 330, the next non-descendant node in
the traversal store is retrieved for entry point search identifi
cation operations 310 in any of the embodiments described
herein.
0026 Ifa determination is made at 415 that the tested node
does not include a primitive, the process continues at 425 in
which a determination is made as to whether the present node
includes any child node(s). If the tested node includes no
child nodes, the method returns to 411 where the tested node
is not identified as an entry point and Zero child nodes thereof
are reported for loading into the traversal store. The process
returns to operations 311,313,315 and 325 of FIG.3, where
the next non-descendant node in the traversal store is tested
per any of the methods 310 as described herein.
0027. If, at 425, the tested node does include one or more
child nodes, the process continues at 430, where an estimate
is made as to the collective number of intersections between
the child nodes and the rays in the ray packet. In a specific
embodiment, this estimate is computed by the following pro
cess: (a) for each child node of the presently-tested node, (i)
identifying a planar area of a child node which is intersected
by the BV of rays; (ii) determining, as a percentage, the
intersected planar area of the child node versus the total
planar area intersected by the BV of rays; (iii) and multiplying
the percentage by the number of rays within ray packet to
determine the estimated number of rays which intersects the
child node, and (b) Summing together the results of (a).

US 2010/00770 10 A1

0028. The method continues at 435, where a determina
tion is made as to whether the estimated number of rays
computed in 430 meets or exceeds a predefined threshold. In
particular, a determination is made as to whether the esti
mated number of rays (i.e., the estimated total number of
intersections between the rays and the child nodes of the
presently-tested node) meets or exceeds a particular value.
The predefined threshold may be defined as different values,
for example as a ratio, such as 25%, 50%, 75%, 100%, 125%,
150% or 175% of the number of rays in the BV, or as a number
of intersections, such as 1, 2, 4, 8, 16, 64, 256, 4096, or more
intersections. Those skilled in the art will appreciate that
other metrics may be used to define the threshold as well.
0029. At 435, if the collective number of estimated inter
sections is below the predefined threshold, it can be assumed
that a significant number of rays in the BV may miss the child
nodes. In Such a case, the tested node is identified as an entry
point (as shown by the process returning to operation 420)
because it can be expected to be more efficient to process the
rays individually in the subtree starting from this node. If the
collective number of estimated intersections meets or exceeds
the predefined threshold, a sufficient number of rays in the BV
is likely to intersect the child nodes, and accordingly, the
entry point search process can be continued at each of these
child nodes per operation 330 in FIG. 3. In such an instance,
the presently-tested node is not identified as an entry point,
and child nodes intersected by BV are reported to be inserted
in traversal store (operation 440), and the testing process for
the present node concludes at 442. As noted, the testing pro
cess would eventually be performed for each of the child
nodes, and possibly for descendant nodes thereof, in the
aforementioned manner per operation 330 shown in FIG. 3.
Unless overflow is detected at 314, the process continues at
320 where the child nodes reported at 440 are inserted into a
traversal store, and continuing with operations 325 and 330
where the next node in the traversal store is tested per any of
the methods 310 described herein.

0030 FIG. 4B illustrates a hierarchical tree 450 displaying
entry point nodes identified in accordance with FIG. 4A.
Primitive-containing nodes 456-459 which may be inter
sected by the BV are shown in grey. Entry point nodes 452 and
453 are shown in black. The root node is shown as node 451.

0031. In a particular implementation of the process of FIG.
4A, root node 451 represents a non-primitive-containing
node which is intersected by the BV of rays (operations 410
and 415) and which includes child nodes (operation 425),
whereby the collective number of estimated intersections for
child nodes 452 and 453 meets or exceeds a predefined
threshold (operations 430 and 435). In such an instance, root
node 451 is not listed as an entry point, and the node traversal
process 210 continues for each of nodes 452 and 453.
0032. Operation 310 in FIG. 4A is subsequently executed
for each of nodes 452 and 453, whereby each of nodes 452
and 453 represent a BV intersected non-primitive-containing
node (operations 410 and 415) having child nodes (operation
425), wherein those child nodes are intersected with a number
of BV rays which do not exceed a predefined threshold (op
erations 430 and 435). In such a case, each of nodes 452 and
453 are listed as an entry point, per operation 435 (via the
'no' decision path). Descendants of these nodes, including
nodes 454-460, are not tested for entry point identification, as

Mar. 25, 2010

per operation 315. Inclusion of nodes 452 and 453 within the
entry point listing is shown diagrammatically by means of an
entry point cut 490.
Entry Point Search Using Probe Ray
0033 FIG. 5A illustrates a second exemplary embodiment
of the entry point identification operation 310, whereby a
node is tested for use as an entry point. In this embodiment
500, a probe ray representative of a ray packet is used to test
intersection with one or more nodes within the hierarchical
tree. As known in the art, a ray packet is a collection of rays,
for example, 1, 2, 4, 8, 16, 32, 64, 128, 1024 or more rays. The
probe ray may be selected from the ray packet in a variety of
ways, e.g., it may be a randomly selected ray from the ray
packet, or the median ray of ray packet may be selected as the
probe ray. Further alternatively, the probe ray may be com
puted, e.g., a mean probe ray which is computed as a mean of
all rays within the ray packet may be used. As an optional
optimization, if the probe ray is one of the rays in the ray
packet, the closest intersection found by the probe ray may be
used for computing the result of the corresponding ray.
0034. At 505, the test of the particular node commences,
and at 510 a determination is made as to whether the selected
probe ray intersects the node. If at 510, the probe ray is
determined to intersect the node, a determination is made at
515 as to whether the node includes an object, e.g., one or
more primitives. If so, the probe ray is intersected with all of
the objects in the node at 516. If the probe ray intersects one
or more objects, it may be shortened so that it terminates at the
intersection closest to the ray's origin. The node is identified
as an entry point (operation 520). The node test concludes at
525, and the process returns to operation 311 and 312, where
the node is inserted into the entry point list, and 315, where
entry point search for descendant nodes of the tested node is
skipped, and at 325 the next non-descendant node in the
traversal store is retrieved for entry point search identification
operations 310 in any of the embodiments described herein.
If, at 515, the node is determined not to include any objects, at
535 the node is not identified as an entry point, and all child
nodes (if any) are reported for traversal store at operation320.
The node test concludes at 540, and unless overflow is
detected at 314 the process returns to operation 320 in which
the reported child nodes are inserted into the traversal store
for further entry point search identification operations 310 in
any of the embodiments described herein.
0035) If, at 510, the node is determined not to have been
intersected by the probe ray, the node is identified as an entry
point (operation 520). The node test concludes at 525, and the
process returns to operation 312.
0036 While the aforementioned embodiments involve the
use of one probe ray in determining an intersection condition,
any number of probe rays (e.g. 2, 8, 16, 32, etc.) may be used
as well. In Such an embodiment, an intersection condition
may be determined at operation 510 when any one or a pre
defined number of the probe rays is found to intersect with the
tested node.
0037 FIG.5B illustrates a hierarchical tree550 displaying
entry point nodes identified in accordance with FIG. 5A.
Primitive-containing nodes 556-559 which may be inter
sected by the probe ray are shown in grey. Entry point nodes
554, 555 and 556 are shown in black. The root node is shown
as node 551.
0038. In a particular implementation of the process of FIG.
5A, root node 551 represents a non-primitive-containing
node which is intersected by the probe ray, said node being
excluded from the entry point list per operations 510,515 and
535. Nodes 552 and 553 represent child nodes which are
intersected by the probe ray and which also do not include
primitives. These nodes are excluded from entry point listing
per operations 310,510,515, and 535. Node 560, a child node

US 2010/00770 10 A1

of node 553, is an intersected, non-primitive containing node,
and is also excluded from entry point listing per operations
310,510,515, and 535. Nodes 554 and 555 represent non
primitive-containing nodes which are not intersected by the
probe ray. As such these nodes are included in the entry point
listing per operations 310,510,520, and 312. Descendants of
these nodes, including nodes 557,558, and 559, are not tested
for entry point identification, as per operation 315.
0039 Node 556 represents an intersected, primitive-con
taining node, and is included within the entry point listing, per
operations 310,510,515, 520, and 312. Inclusion of nodes
554, 555, and 556 within the entry point listing is shown
diagrammatically by means of an entry point cut 590.
0040. The number of entry points identified in operation
210 and/or employed in operation 220 may vary, depending,
e.g., the number of entry points identified, or the amount of
memory space or computational resources allocated thereto.
As an example, for each BV processed in operations 210 and
220, two, four, eight, 16, 32, 128, 256, 512, 1028, 2056, or
more entry points may be allocated. The number of entry
points allocated may be fixed or dynamic, the latter being
based, for example, on available memory storage or actual
number of entry points identified per operation 210.
0041 As the skilled person will appreciate, operation 210
may involve any one or more of the entry point identification
operations 400 or 500 illustrated in FIGS. 4A, and 5A. In one
embodiment, for example, an entry point search operation
400 may employ repeated operations thereof. In another
embodiment, the entry point search operation 210 may
employ alternating operations of the entry point search pro
cesses 400 and 500 shown in FIG. 4A and FIG. 5A, respec
tively. Any combination of the entry point search processes
400 and 500 may be used in accordance with the present
invention.
0042. In one embodiment, multiple implementations of
310, e.g., the first embodiment 400 and the second embodi
ment 500, are executed and their results combined. The com
bination is straightforward if all of the embodiments agree to
either insert the node into entry point list or to exclude the
node from the entry point list. In case the embodiments dis
agree, either decision leads to a valid entry point list. In order
to benefit from multiple embodiments, the advantages of each
embodiment are preferably considered. For example, the
embodiment of FIG. 4A may be preferred when it concludes
an entry point should be inserted compared to proposing
exclusion because it does not know when the rays terminate
due to occlusion. The second embodiment of FIG. 5A does
notice when probe rays terminate due to occlusion, and as a
result, may be preferred when it concludes an entry point
should be inserted. Therefore, one way of combining the
embodiments is to insert an entry pointifat least one embodi
ment Suggests so. Those skilled in the art will appreciate that
there are numerous ways of combining the results of multiple
embodiments, and different ways may be appropriate
depending on the use case.
0043. As illustrated in FIG. 2, the ray tracing method 200
includes two operations of entry point search and per ray
tracing operations 220. This two-kernel approach decouples
the resource requirements of each kernel, which is an impor
tant feature on processor architectures that have limited per
thread resources. The two-kernel approach substantially
reduces implementation overhead compared to frequent
Switching between the two kernels, and allows separate opti
mizations to be performed on both processes. For example, a

Mar. 25, 2010

single-kernel hierarchical traversal method employing a 32
thread warp width and 32-ray ray packets would require
322-1024 rays per warp, a significant amount of rays which
would be required to fill the SIMD machine. The present two
kernel approach improves this situation, as only the entry
point identification kernel is executed once per 32 rays,
requiring 32 rays per warp. The per-ray kernel is executed for
each ray, requiring a factor of 32 fewer rays to fill the SIMD
machine.
0044 FIG. 6 illustrates a second exemplary embodiment
of the entry point search operation 210 of FIG. 2. At 605, the
entry point search operation 600 commences, and at 610 a
node of the hierarchical structure is selected for testing. At
620, the selected node is tested, and at 625, a determination is
made as to whether the node is to be identified as an entry
point. If so, the method continues as 630 where the node is
added to an entry point list. If the node is not to be identified
as an entry point, the method continues at 635 where a deter
mination is made as to whether any further nodes of the
hierarchical structure are to be tested for identification as
entry points. If so, the method continues at 610 where a
further node is selected for entry point testing. If no further
nodes are to be tested, the entry point search operation con
cludes at 640.
0045 Operation 610 may be performed using any node
selection process, e.g., conventional node traversal opera
tions. In a particular embodiment, operation 610 is performed
in accordance with operation 330 shown in FIG. 3, in which
nodes are extracted from a traversal store. Those skilled in the
art will appreciate that other node selection techniques may
be used as well.
0046) Operation 620 may include any entry point test
operation, Some exemplary embodiments of which are dis
closed herein. For example, operations 311, 313, and 314 of
FIG.3 may be performed to determine if the selected node is
to be identified as an entry point. Further exemplary, opera
tions 410 and 415, or 410, 415,425, 430, and 435 of FIG. 4
may be performed in accordance with this operation. Also
operation 510 alone, or in combination with 515, and 516 of
FIG.5 may be performed to determine if the selected node is
to be identified as an entry point. These exemplary embodi
ments represent only a few examples of entry point tests that
can be used to determine if a node in the hierarchical structure
is to be identified as an entry point, and the person skilled in
the art that other tests may be used as well under the present
invention.

0047. The method 600 of FIG. 6 represents an embodi
ment of operation 210, and accordingly, it may be imple
mented as part of a larger hierarchical traversal and process
ing operation 200 in which one or more entry points are
identified to initiate traversal and processing of the tree. For
example, the method 600 of FIG. 6 may be used to define
entry points of hierarchical tree over which ray tracing node
traversal and primitive intersection operations are to be per
formed. The method 600 of FIG. 6 is not limited to this
particular application, and indeed may be applied to search
any hierarchical structure of entry points.
0048 FIG. 7 illustrates an exemplary system operable to
perform the operations illustrated in FIGS. 2-6 in accordance
with the present invention. System 700 includes a parallel
processing system 702, which includes a plurality of parallel
processing architectures 704, each configured to operate on a
predetermined number of threads. Accordingly, each parallel
processing architecture 704 may operate in parallel, while the

US 2010/00770 10 A1

corresponding threads may also operate in parallel. In a par
ticular embodiment, the parallel processing architecture 704
is a single instruction multiple data (SIMD) architecture of a
predefined SIMD width or “warp. for example32, 64, or 128
threads. The parallel processing system 702 may include a
graphics processor, or other integrated circuits equipped with
graphics processing capabilities.
0049. The parallel processing system 702 may further
include local shared memory 706, which may be physically or
logically allocated to a corresponding parallel processing
architecture 704. The system 700 may additionally include a
global memory 708 which is accessible to each of the parallel
processing architectures 704. The system 700 may further
include one or more drivers 710 for controlling the operation
of the parallel processing system 702 in accordance with the
methods of FIGS. 2-6. The driver 710 may include one or
more libraries for facilitating control of the parallel process
ing system 702.
0050. In a particular embodiment of the invention, each
parallel processing architecture 704 is configured to perform
entry point search operations 210, as described in FIGS. 4A,
5A, and 6. Further particularly, the parallel processing system
is operable to additionally perform the hierarchical tree
operations 220, as described in FIG. 2 as well, such opera
tions including node traversal and primitive intersection
operations for ray tracing operations in an exemplary embodi
ment.

0051. In a particular embodiment, the parallel processing
architecture 704 processing circuitry operable to identify a
plurality of nodes of a hierarchical structure as entry points,
the processing circuitry operable to select a node of a hierar
chical structure and test it for identification as an entry point.
The processing circuitry is further operable to identify the
node as an entry point, and repeat each of the selection,
testing, and identification operations for at least one addi
tional node of the hierarchical structure to identify at least a
second node as a respective second entry point for the hier
archical structure.
0052. The processing circuitry of the parallel processing
architecture 704 and/or system 702 is operable to performany
of the operations illustrated in FIGS. 2-6 herein. In an
embodiment exemplified by FIG. 3, the processing circuitry
operable to select a node is operable to perform any one or
more of operations 315, 320, 325 and 330. Further exempli
fied by FIG.3, the processing circuitry is operable to generate
an entry point list as per operation 312. In an embodiment
exemplified by FIG. 4A, the processing circuitry operable to
test the selected node is operable to perform any one or more
of the operations of 410, 415, 425, 430, and 435. In an
embodiment exemplified by FIG.5A, the processing circuitry
operable to test the selected node is operable to perform any
one or more of the operations 510,515 and 516.
0053. Further exemplary, the processing circuitry oper
able to identify the tested nodes as an entry point is operable
to perform the operations of identifying a node as an entry
point, for example, operation 420 in FIG. 4A, and operation
S2O in FIG.S.A.
0054 Further exemplary, the processing circuitry is oper
able to perform an operation of excluding the tested node
from the entry point list. Such as any one or more of the
operations 411 and 440 shown in FIG. 4A, and operation 535
shown in FIG. 5A. The processing circuitry is further oper
able to perform any one or more of the operations shown in
FIG. 6.

Mar. 25, 2010

0055 As readily appreciated by those skilled in the art, the
described processes and operations may be implemented in
hardware, software, firmware or a combination of these
implementations as appropriate. In addition, some or all of
the described processes and operations may be implemented
as computer readable instruction code resident on a computer
readable medium, the instruction code operable to control a
computer of other such programmable device to carry out the
intended functions. The computer readable medium on which
the instruction code resides may take various forms, for
example, a removable disk, Volatile or non-volatile memory,
etc., or a carrier signal which has been impressed with a
modulating signal, the modulating signal corresponding to
instructions for carrying out the described operations.
0056. The terms “a” or “an are used to refer to one, or
more than one feature described thereby. Furthermore, the
term “coupled' or “connected’ refers to features which are in
communication with each other (electrically, mechanically,
thermally, optically, as the case may be), either directly, or via
one or more intervening structures or Substances. The
sequence of operations and actions referred to in method
flowcharts are exemplary, and the operations and actions may
be conducted in a different sequence, as well as two or more
of the operations and actions conducted concurrently. Refer
ence indicia (if any) included in the claims serve to refer to
one exemplary embodiment of a claimed feature, and the
claimed feature is not limited to the particular embodiment
referred to by the reference indicia. The scope of the clamed
feature shall be that defined by the claim wording as if the
reference indicia were absent therefrom. All publications,
patents, and other documents referred to herein are incorpo
rated by reference in their entirety. To the extent of any incon
sistent usage between any such incorporated document and
this document, usage in this document shall control.
0057 The foregoing exemplary embodiments of the
invention have been described in sufficient detail to enable
one skilled in the art to practice the invention, and it is to be
understood that the embodiments may be combined. The
described embodiments were chosen in order to best explain
the principles of the invention and its practical application to
thereby enable others skilled in the art to best utilize the
invention in various embodiments and with various modifi
cations as are Suited to the particular use contemplated. It is
intended that the scope of the invention be defined solely by
the claims appended hereto.

What is claimed is:
1. A method for identifying a plurality of entry points of a

hierarchical structure having a plurality of nodes, the method
comprising:

(i) selecting a first node of a hierarchical structure;
(ii) testing the first node:
(iii) identifying the first node as a first entry point; and
(iv) repeating (i), (ii), and (ii) for at least one additional

node of the hierarchical structure to identify at least a
second node as a respective second entry point of the
hierarchical structure.

2. The method of claim 1, wherein the first node is a child
node of a parent node, the method further comprising

performing the operations (i) and (ii) for the parent node
and determining that the parent node is not identified as
an entry point;

and repeating (i), (ii) and (iii) for the child node, wherein
the child node is identified as an entry point.

US 2010/00770 10 A1

3. The method of claim 2, wherein (ii) further includes
determining whether an overflow condition exists as to an
entry point list into which the child node is to be added.

4. The method of claim 1, further including: excluding
from an entry point test a child node of the first or second
nodes identified as entry points.

5. The method of claim 1, wherein (ii) includes determin
ing whether a bounding Volume of rays intersects the first or
second node.

6. The method of claim 5, wherein (ii) further includes
determining whether the first or second node includes an
object.

7. The method of claim 5, wherein (ii) further include
determining whether the first or second node includes a child
node which is estimated to be intersected by at least a pre
defined number of rays.

8. The method of claim 7, further comprising repeating (i)
and (ii) for a third node of the hierarchical structure, wherein
repeating (ii) for the third node comprises:

determining that a bounding Volume of rays intersects the
third node; and

determining that the third node includes a child node which
is not intersected by at least a predefined number of rays,

wherein the third node is excluded as an entry point.
9. The method of claim 7, further comprising repeating (i)

and (ii) for a third node of the hierarchical structure, wherein
(ii) comprises determining that the bounding Volume of rays
does not intersect the third node,

wherein the third node is excluded as an entry point.
10. The method of claim 1, wherein (ii) includes determin

ing whether a probe ray does not intersect the first or second
node.

11. The method of claim 10, wherein (ii) further includes:
determining whether a probe ray intersects the first node:

and
determining whether the first or second node includes an

object.
12. The method of claim 10, repeating (i) and (ii) for a third

node of the hierarchical structure, wherein (ii) comprises:
determining that a probe ray intersects the third node;
determining that the third node does not include an object,
wherein the third node is excluded as an entry point.
13. A method of traversing a hierarchical structure having

a plurality of nodes, the method comprising:
identifying a plurality of entry points of a hierarchical

structure having a plurality of nodes, comprising:
(i) selecting a first node of a hierarchical structure;
(ii) testing the first node:
(iii) identifying the first node as a first entry point; and
(iv) repeating (i), (ii), and (ii) for at least one additional
node of the hierarchical structure to identify at least a
second node as a respective second entry point of the
hierarchical structure; and

initiating a hierarchical operation at each of the first and
second entry points.

14. The method of claim 13, wherein initiating a hierarchi
cal operation comprises performing a ray tracing node tra
Versal operation, and performing a ray tracing primitive inter
section operation.

15. A computer program product, resident on a computer
readable medium, for identifying a plurality of entry points of

Mar. 25, 2010

a hierarchical structure having a plurality of nodes, the com
puter program product comprising instruction code to:

(i) select a first node of a hierarchical structure:
(ii) test a first node:
(iii) identify the first node as a first entry point; and
(iv) repeat (i), (ii), and (ii) for at least one additional node

of the hierarchical structure to identify at least a second
node as a respective second entry point of the hierarchi
cal structure.

16. The computer program product of claim 15, wherein
(ii) includes instruction code to determine that a bounding
volume of rays intersects the first node.

17. The computer program product of claim 15, further
comprising instruction code to repeat (i) and (ii) for a third
node of the hierarchical structure, wherein said instruction
code to repeat (ii) for the third node comprises instruction
code to:

determine that a bounding Volume of rays intersects the
third node; and

determine that the third node includes a child node which is
not intersected by at least a predefined number of rays,

wherein the third nodes is excluded as an entry point.
18. The computer program product of claim 15, wherein

(ii) includes instruction code to determine whether a probe
ray does not intersect the first or second node.

19. The computer program product of claim 15, wherein
(ii) includes:

instruction code to determine whether a probe ray inter
sects the first or second node; and

instruction code to determine whether the first or second
node includes an object.

20. The computer program product of 15, further compris
ing instruction code to repeat (i) and (ii) for a third node of the
hierarchical structure, wherein said instruction code to repeat
(ii) for the third node comprises instruction code to:

determine that a probe ray intersects the third node; and
determine that the third node does not includes an object,
wherein the third node is excluded as an entry point.
21. A parallel processing architecture configured for iden

tifying a plurality of entry points of a hierarchical structure
having a plurality of nodes, the parallel processing architec
ture including processing circuitry operable to:

(i) select a first node of a hierarchical structure:
(ii) test the first node:
(iii) identify the first node as a first entry point; and
(iv) repeat (i), (ii), and (ii) for at least one additional node

of the hierarchical structure to identify at least a second
node as a respective second entry point of the hierarchi
cal structure.

22. The parallel processing architecture of claim 21,
wherein (ii) includes processing circuitry to:

determine whether a bounding Volume of rays intersects
the first or second node; and

determine whether the first or second nodes include an
object.

23. The parallel processing architecture of claim 21,
wherein (ii) includes processing circuitry to:

determine whether a probe ray intersects the first or second
node; and

determine whether the first node includes an object.
c c c c c

