
US 20220405124A1
IN

(19) United States
(12) Patent Application Publication (10) Pub . No .: US 2022/0405124 A1

Mukul (43) Pub . Date : Dec. 22 , 2022

(54) COMPUTING DEVICE CONTROL OF A JOB
EXECUTION ENVIRONMENT

(52) U.S. CI .
CPC G06F 9/4881 (2013.01) ; G06F 9/5038

(2013.01) ; G06F 9/5044 (2013.01) ; G06N
20/00 (2019.01) (71) Applicant : Adobe Inc. , San Jose , CA (US)

(72) Inventor : Reetesh Mukul , Bangalore (IN) (57) ABSTRACT

(73) Assignee : Adobe Inc. , San Jose , CA (US)
(21) Appl . No .: 17 / 350,448
(22) Filed : Jun . 17 , 2021

Publication Classification

Job execution environment control techniques are described
to manage policy selection and implementation to control
use of job executors by a computing device , automatically
and without user intervention . These techniques are usable
to select a policy from a plurality of policies that is then used
to control lifecycles of job executors of a job execution
environment of a computing device . Further , these tech
niques are usable to respond dynamically to change the
selected policy during runtime of the application in response
to changes in the job execution environment .

(51) Int . Ci .
G06F 9/48
G06F 9/50
GO6N 20/00

(2006.01)
(2006.01)
(2006.01)

300

Application 104

Queue 130

Job
108 (1) cooo Job

108 (N)

Job Engine 106
Threadpool 302

Thread Manager Module 304

Thread
306 (1)

Thread
306 (2)

Thread
306 (3)

Thread
306 (X)

Coro Job
108 (1)

Job
108 (2)

Job
108 (3)

Job
108 (X)

Performance Data 308

Regret Determination Module 310
Regret Model 312

Regret Data 314

V
Policy Selection Module 134

Bandit
Module 316

6)

318
Policy
132

Coo

Patent Application Publication Dec. 22 , 2022 Sheet 1 of 10 US 2022/0405124 A1

100

Cooo Cooo
DAV 80

Computing Device 102
Application 104

CO Policy 132 Cool
(??)

Queue 130 Jobs
108

Job Engine 106 Cool
Policy Selection Module 134

Job Pool 112

Coo Job
Executors 110

Job Execution Environment 114

Processing System 116

Memory System 118

Network System 120

" Other " System 122

Software 124

Operating
System 126
Competing
Applications

128

Fig . 1

Patent Application Publication Dec. 22 , 2022 Sheet 2 of 10 US 2022/0405124 A1

200

Processor
Operation

204

Memory
1 Operation

206
1
1 Network
1 Operation I

1 208

Other
Operation

210 1

Queue 130

Set of Jobs 202
Job

10810)

Job Engine 106 25
Job Pool 112 Policy

Selection
Module 134

2
Job

Executor
110 (1)

Job
Executor
110 (2)

Job
Executor
110 (3)

Job
Executor
110 (X) Cool Policy

132 Job
108 (1)

Job
108 (2)

Job
108 (3)

Job
1080X

3

Completed Jobs

Fig . 2

Patent Application Publication Dec. 22 , 2022 Sheet 3 of 10 US 2022/0405124 A1

300

Application 104

Queue 130

Job
108 (1) Cooo) Job

108 (N)

?
Job Engine 106
Threadpool 302

Thread Manager Module 304

Thread
306 (1)

Thread
306 (2)

Thread
306 (3)

Thread
306 (X)

Cooo Job
108 (1)

Job
108 (2)

Job
10813)

Job
1080X

Performance Data 308

Regret Determination Module 310
Regret Model 312

Regret Data 314

V
Policy Selection Module 134

Bandit
Module 316

Coon 318
Policy
132

(coo)

Fig . 3

Patent Application Publication Dec. 22 , 2022 Sheet 4 of 10 US 2022/0405124 A1

400

Threadpool 302
Thread Manager Module 304

Thread
306 (1)

Thread
306 (2)

Thread
306 (3)

Thread
306 (X)

Cooo Job
108 (1)

Job
108 (2)

Job
108 (3)

Job
108 (X)

Performance Data 308

Performance Tuple 402
Average Run Time of
Individual Jobs 404

Average Run Time of
Overall Jobs 406

Number of Active Threads 408
Number of Threads in

Thread Pool 410

Reward Mean 412

Fig . 4

Patent Application Publication Dec. 22 , 2022 Sheet 5 of 10 US 2022/0405124 A1

500

Performance Data 308

Performance Tuple 402
Average Run Time of
Individual Tasks 404

Average Run Time of
Overall Tasks 406

Number of Active Threads 408

Number of Threads in
Thread Pool 410

Reward Mean 412

Regret Determination Module 310
Regret Model 312
LSTM Decoder 502

[4x128x2]

LSTM Encoder 504
[4x128x2]

Fully Connected Units 506
FC ? [64x32] x FC2 [32x21]

Fully Connected Units 508
FC3 [64x32] x FC4 [32x21]

Regret Data 314
Energy State 510

Fig . 5

Patent Application Publication Dec. 22 , 2022 Sheet 6 of 10 US 2022/0405124 A1

600

Regret Data 314
Energy State 510

Policy Selection Module 134

Statistical Model Generation Module 602

Cooo
Reward

Distributions 606
Statistical
Model 604

Cooo)

Bandit Module 316

Exploration Module 608

Exploitation Module 610

Policy Selection 612

Thread Pool 302

Fig . 6

Patent Application Publication Dec. 22 , 2022 Sheet 7 of 10 US 2022/0405124 A1

700

702
Receive a plurality of policies , each policy defines respective criteria used
by a job engine to control lifecycles of job executors for execution of jobs
from a queue by a job execution environment of the computing device

704
Determine which policy of the plurality of policies minimizes regret that is

defined based on latency

706
Generate performance data describing performance ,

respectively , of a plurality of policies , each policy controlling
lifecycles of threads for execution of jobs from a queue

708
Generate regret data by a model using machine learning , the

regret data defining an amount of latency based on the
performance data for the plurality of policies , respectively

710
Select a policy from the plurality of policies by a model as part

of a multi - arm bandit technique

712
Control , automatically and without user intervention responsive to the

determination , lifecycles of the job executors for execution of subsequent
jobs from the queue using the policy

Fig . 7

Patent Application Publication Dec. 22 , 2022 Sheet 8 of 10 US 2022/0405124 A1

800

fer och * 1 s *** pocks can terminate ** they can keep tkwing * /
Kiss * - 1.10do / * each epoch constitutes a cycle of 10 sub - iterations /

UCBCZ , 0)

(Itz , R , T , 11 , 1) inrun (...) / * Threadpool p is run * /
TE + (1

lopt en pt / push pt in hpt . pop first element from hpt it its size

prediet (po

Fig . 8 8

Patent Application Publication Dec. 22 , 2022 Sheet 9 of 10 US 2022/0405124 A1

900

Loss

ht ???????????????????

Epochs

Fig . 9

Patent Application Publication Dec. 22 , 2022 Sheet 10 of 10 US 2022/0405124 A1

1000

Platform 1016

Resources 1018

Cloud
1014

ZAD

Computing Device 1002
Processing Computer - readable
System 1004 Media 1006

Hardware
Elements 1010

Memory !
Storage 1012

1/0
Interfaces 1008

Job
Engine 106

Fig . 10

US 2022/0405124 Al Dec. 22 , 2022
1

COMPUTING DEVICE CONTROL OF A JOB
EXECUTION ENVIRONMENT

BACKGROUND
a

[0006] FIG . 1 is an illustration of a digital medium envi
ronment in an example implementation that is operable to
employ job execution environment control techniques .
[0007] FIG . 2 depicts a system showing an example of
operation of a job engine of FIG . 1 in greater detail .
[0008] FIG . 3 depicts a system in an example implemen
tation showing operation of the job engine of FIG . 1 as
implementing policy selection for a threadpool .
[0009] FIG . 4 depicts a system in an example implemen
tation showing operation of a threadpool of FIG . 3 in greater
detail as generating performance data .
[0010] FIG . 5 depicts a system in an example implemen
tation showing operation of a regret determination module
of FIG . 3 in greater detail as generating regret data indicative
of latency in operation of the threadpool to execute jobs
from a queue .

[0001] Computing device functionality continues to
increase in part by harnessing underlying hardware paral
lelism of a job execution environment implemented by the
computing device . This is often realized through increases in
hardware functionality such as to increase a number of
processing cores supported by processors of a processing
system to support increasing numbers of parallel operations
in the job execution environment . However , increases in
hardware parallelism and software that is used to support
this parallelism introduces numerous challenges in the
operation of the computing device .
[0002] In one such example , application programmers use
threadpools to manage underlying hardware parallelism of
threads implemented by respective cores of a processor .
Conventionally , this is performed by manually specifying a
policy that is used to control a lifecycle of threads in the
threadpool , e.g. , creation and termination of respective
threads for use by an application during execution . In
instances in which an underlying structure and operation of
the application is homogenous and uniform , a policy is
typically estimated as a fixed constant or in terms of a
non - stochastic algorithm However , even in instances in
which the structure and operation of the application is
homogenous and uniform , complexities arise due to differ
ences in underlying hardware and software utilized by the
job execution environment . This challenge is further com
pounded as complexity of the application increases , often
times in ways that are not readily determinable by the
application programmer , e.g. , due to use of shared resources
that can make increases in parallelism less efficient in the
operation of the computing device . Accordingly , conven
tional techniques often fail and result in inefficient use of
computational resources and increases in latency .

[0011] FIG . 6 depicts a system in an example implemen
tation showing operation of a policy selection module of
FIG . 3 in greater detail as selecting a policy using a
multi - arm bandit technique .
[0012] FIG . 7 is a flow diagram depicting a procedure in
an example implementation in which a policy is selected for
managing lifecycles of job executors of a job pool using a
multi - arm bandit technique .
[0013] FIG . 8 depicts an example algorithm implementing
regret and a multi - armed bandit technique together .
[0014] FIG . 9 depicts an example of convergence
achieved through use of a multi - arm bandit technique for
policy selection .
[0015] FIG . 10 illustrates an example system including
various components of an example device that can be
implemented as any type of computing device as described
and / or utilize with reference to FIGS . 1-9 to implement
embodiments of the techniques described herein .

SUMMARY

a

[0003] Job execution environment control techniques are
described to manage policy selection and implementation to
control use of job executors by a computing device , auto
matically and without user intervention . These techniques
are usable to select a policy from a plurality of policies that
is then used to control lifecycles of job executors of a job
execution environment of a computing device . Further , these
techniques are usable to respond dynamically to change the
selected policy during runtime of the application in response
to changes in the job execution environment .
[0004] This Summary introduces a selection of concepts in
a simplified form that are further described below in the
Detailed Description . As such , this Summary is not intended
to identify essential features of the claimed subject matter ,
nor is it intended to be used as an aid in determining the
scope of the claimed subject matter .

DETAILED DESCRIPTION
[0016] Overview
[0017] Parallelism is used to increase computing device
functionality . Parallelism in hardware of a computing device
is implemented through a job pool that includes a collection
of job executors that executes jobs from a queue . An
example of the use of job executors as part of a job pool
include use of threads in a threadpool to execute jobs by a
processing system of a computing device , and more particu
larly respective cores of a processor of the processing
system . Other examples of hardware systems that support
parallelism include memory controllers of a memory system
involving parallel read / write operations , network devices
involving parallel communication of streams of data via a
network , rendering techniques , and so on . Each of these
xamples support parallel operations for job execution by

respective hardware components and software used to sup
port interaction with the components , e.g. , operating sys
tems , drivers , and so forth .
[0018] In order to address and take advantage of parallel
ism in the operation of the computing device , a policy is
manually created by a programmer of an application in
conventional techniques to control a lifecycle of job execu
tors that are used to execute jobs as part of a job pool . The
policy specifies a number of job executors that are to be
created for use by the application . Conventional techniques
to do so , however , rely on a “ best guess ” based on intuition
and experience of the programmer . Complexity of the job
execution environment , however , makes accuracy of such a

BRIEF DESCRIPTION OF THE DRAWINGS

[0005] The detailed description is described with refer
ence to the accompanying figures . Entities represented in the
figures are indicative of one or more entities and thus
reference is made interchangeably to single or plural forms
of the entities in the discussion .

US 2022/0405124 A1 Dec. 22 , 2022
2

a

best guess difficult if not impossible to achieve due to an
inability to determine an effect of interactions between
underlying functionality of the computing device used to
execute the jobs . This is due to potential interdependencies
of the jobs that are to be executed for the application ,
differences in hardware resources available from different
computing device , as well as the execution of other “ com
peting " applications by the computing device that affect
availability of hardware resources in the job execution
environment .
[0019] As a result , conventional techniques could hinder
operation of a computing device , as the complexity of
optimizing performance of the hardware components is
dependent on a variety of factors that are not detectable by
a human being . For example , an amount of I / O operations
may increase latency as a number of active job executors
increases , whereas in instances in which the jobs do not
share a significant amount of resources increases in the
number of job executors serves to decrease latency . In a
threadpool example , creation of too many threads wastes
resources of the processing system and costs time creating
unused threads . Likewise , terminating too many threads
requires additional time later on when creating the threads
again , creating threads too slowly results in increases in wait
times , terminating threads too slowly may starve execution
of other jobs both by the application as well as other
applications , and specifying too many threads may serve to
slow job execution in instances involving use of shared
resources , even for a single application .
[0020] Accordingly , job execution environment control
techniques are described to manage policy selection and
implementation to control use of job executors by a com
puting device , automatically and without user intervention .
These techniques are usable to select a policy from a
plurality of policies that is then used to control lifecycles of
job executors of a job execution environment of a computing
device . Further , these techniques are usable to respond
dynamically to change the selected policy during runtime of
the application in response to changes in the job execution
environment . This is not possible using conventional tech
niques nor is this possible to be performed manually by a
human being .
[0021] In one example , a job engine employs a multi - arm
bandit technique to choose the policy from the plurality of
policies to control lifecycles of job executors that are used
to execute respective jobs , e.g. , as part of execution of an
application . This technique is configured to address alloca
tion of a fixed limited set of resources (e.g. , job executors of
a job pool) through use of policy selection in a way to
minimize regret and maximize a reward .
[0022] In this technique , the job engine is modeled as a
gambler to determine which slot machine in a collection of
slot machines to play , how many times to play each slot
machine , in which order to play the slot machines , and
whether to continue with a current machine (exploitation) or
to try a different machine (exploration) . Each machine
provides a random reward (and thereby minimizes regret)
based on a probability distribution specific to that machine .
Thus , the objective of the job engine as the gambler is to
maximize a sum of rewards earned through a series of policy
selections over a series of time steps by identifying which
machines (i.e. , policies) minimize regret , e.g. , latency .
[0023] To do so , the job engine accesses a plurality of jobs
maintained in a storage device that are received through

execution of an application by the computing device . Each
of the policies defines respective criteria to be used by the
job engine to control lifecycles of job executors , e.g. ,
creation and termination of the job executors to execute
respective jobs .
[0024] The job engine then determines which of the poli
cies minimizes regret (e.g. , latency) and therefore maxi
mizes a “ reward ” using a multi - arm bandit technique . To
begin , a policy is selected for use by the job engine to control
lifecycles of job executors of a job pool . The job executors
are used to execute jobs from a queue of jobs generated by
the application . This includes parallel execution and is
asynchronous in instances in which a resource is not shared
by the jobs .
[0025] Performance data is generated that describes the
execution of the jobs by the job pool . The performance data ,
for instance , is configurable as a tuple that describes an
average runtime of individual jobs (also referred to as
" tasks " in the following discussion) , average runtime of
overall jobs , a number of active job executors , a number of
job executors included in the job pool , and / or a reward mean
which is a criterion that is user selectable . The performance
data is then passed as an input from the job pool of the job
engine to a regret determination module .
[0026] The regret determination module receives the per
formance data , and from this generates regret data indicative
of latency and more particularly a latency state of the job
pool based on use of the selected policy . The regret deter
mination module , for instance , is configured as a neural
network that is " fit ” to the performance data through
machine learning , e.g. , by use of an LSTM decoder , an
LSTM encoder , and two fully connected units .
[0027] The regret data is then used by a policy selection
module to select a policy from the plurality of policies based
on the regret data over a series of time steps , i.e. , iterations .
In one example , the policy selection module uses multi - arm
bandit techniques and begins by generating a statistical
model that includes reward distributions for each of the
plurality of policies based on the regret data . The statistical
model is then employed by the policy selection module to
select policies to maximize an overall reward over a series
of time steps “ T ” and therefore minimize regret , i.e. , latency .
[0028] As part of this , the policy selection module utilizes
a bandit module that employs exploration techniques in
which selections are generated to gather data regarding the
reward distributions for respective policies . The bandit mod
ule also employs exploitation techniques to maximize a
reward at a respective time step for a policy . In this way , the
bandit module may “ learn ” about the reward distributions of
respective policies through exploration and maximize the
amount of rewards collected at the individual time steps
through exploitation .
[0029] Both of these techniques are thus employed to
maximize an overall amount of reward over the series of
time steps through learning about the rewards and collecting
the rewards based on this learned knowledge as described by
respective reward distributions . As a result , these consider
ations converge over time to select of a policy that mini
mizes latency and thus optimizes performance of the com
puting device . In an implementation , the explore
consideration is kept alive through use of a minimum
probability in order to dynamically adjust to changes in a job
execution environment during runtime of the application ,
e.g. , so the selection does not fixate to a single operation . In

US 2022/0405124 A1 Dec. 22 , 2022
3

a

this way , the multi - arm bandit techniques may be leveraged
for policy selection to dynamically respond to changes in the
job execution environment in real time , automatically and
without user intervention . Further discussion of these and
other examples is included in the following discussion and
shown using corresponding figure .
[0030] In the following discussion , an example environ
ment is described that employs the techniques described
herein . Example procedures are also described that are
performable in the example environment as well as other
environments . Consequently , performance of the example
procedures is not limited to the example environment and
the example environment is not limited to performance of
the example procedures .
[0031] Example Environment
[0032] FIG . 1 is an illustration of a digital medium envi
ronment 100 in an example implementation that is operable
to employ job execution environment control techniques
described herein . The illustrated environment 100 includes a
computing device 102 , which is configurable in a variety of
ways .
[0033] The computing device 102 , for instance , is config
urable as a desktop computer , a laptop computer , a mobile
device (e.g. , assuming a handheld configuration such as a
tablet or mobile phone) , and so forth . Thus , the computing
device 102 ranges from full resource devices with substan
tial memory and processor resources (e.g. , personal com
puters , game consoles) to a low - resource device with limited
memory and / or processing resources (e.g. , mobile devices) .
Additionally , although a single computing device 102 is
shown , the computing device 102 is also representative of a
plurality of different devices , such as multiple servers uti
lized by a business to perform operations “ over the cloud ”
as described in FIG . 10 .
[0034] The computing device 102 is illustrated as includ
ing an application 104 and a job engine 106. The application
104 originates jobs 108 for execution by job executors 110
of a job pool 112 of the job engine 106. The jobs 108 refer
to one or more operations or tasks that are executable by
respective job executors 110 included within a job pool 112
of the job execution environment 108. The jobs 108 , for
instance , refer to instructions that are understandable by
underlying hardware components of the computing device
102 to implement corresponding functionality .
[0035] A variety of hardware components are usable in
conjunction with execution of the jobs 108 as part of a job
execution environment 114. For example , a processing sys
tem 116 is configurable to execute the jobs 108 using the job
executors 110 as implemented as threads . Thus , in this
example the jobs 108 are configured as assembly language
that is understandable by an underlying processor of the
processing system 116. Other examples include operations
performable by a memory system 118 , network system 120 ,
and “ other ” systems 122 , e.g. , printers , display devices , and
so on . The job execution environment 114 also includes
software 124 that supports interaction with these hardware
components , e.g. , an operating system 126 , other “ compet
ing ” applications 128 that are executed by the computing
device 102 , drivers , and so forth . Thus , the job pool 112
supports parallel execution of the jobs 108 , asynchronous
execution , use of shared resources , and so on .
[0036] For example , execution of the application 104
causes jobs 108 to be inserted into a queue 130 , which are
then executed by job executors 110 of the job pool 112 .

Policies 132 are employed to manage a life cycle of the job
executors 110 , e.g. , how many job executors 110 are to be
utilized to execute jobs 108 of the application 104 , when to
create or terminate the job executors 110 , and so on . In the
illustrated instance , the job engine 106 includes a policy
selection module 134 to select and optimize policies that are
used to manage the job pool 112 and job executors 110
within the pool .
[0037] FIG . 2 depicts an example system 200 showing
operation of the job engine 106 in greater detail . The queue
130 includes a set of jobs 202 received from the application
104. A job 108 (n) is indicated as being passed from the
queue 130 to a job pool 112 of the job engine 106. The job
108 (n) is representative of an operation that is executable at
least in part using hardware components of the computing
device , examples of which include a processor operation
204 , memory operation 206 , network operation 208 , or other
operation 210 .
[0038] The job pool 112 includes a number of job execu
tors 110 (1) , 110 (2) , 110 (3) , 110 (X) to execute jobs
108 (1) , 108 (2) , 108 (3) , . 108 (X) from the queue 130 as
specified by the policy 132 for the application 104. The
policy selection module 134 is configured to dynamically
choose which policy 132 to implement from among the
plurality of policies to manage operation of the job pool 112 ,
and therefore how to execute jobs 108 in parallel using the
job pool 112 , e.g. , for a given application 104. The policy
selection module 134 , for instance , selects the policy 132
that minimizes regret and therefore exhibits a least amount
of latency in job execution , thereby improving operation of
the computing device 102. Further discussion of these and
other examples is included in the following sections and
shown in corresponding figures .
[0039] In general , functionality , features , and concepts
described in relation to the examples above and below are
employed in the context of the example procedures
described in this section . Further , functionality , features , and
concepts described in relation to different figures and
examples in this document are interchangeable among one
another and are not limited to implementation in the context
of a particular figure or procedure . Moreover , blocks asso
ciated with different representative procedures and corre
sponding figures herein are applicable together and / or com
binable in different ways . Thus , individual functionality ,
features , and concepts described in relation to different
example environments , devices , components , figures , and
procedures herein are usable in any suitable combinations
and are not limited to the particular combinations repre
sented by the enumerated examples in this description .
[0040] Multi - Arm Bandit Based Policy Selection Tech
niques
[0041] FIG . 3 depicts a system 300 in an example imple
mentation showing operation of the job engine 106 of FIG .
1 as implementing a threadpool for policy selection . FIG . 4
depicts a system 400 in an example implementation showing
operation of a threadpool of FIG . 3 in greater detail as
generating performance data . FIG . 5 depicts a system 500 in
an example implementation showing operation of a regret
determination module of FIG . 3 in greater detail as gener
ating regret data indicative of latency in operation of the
threadpool to execute jobs from a queue . FIG . 6 depicts a
system 600 in an example implementation showing opera
tion of a policy selection module of FIG . 3 in greater detail
as selecting a policy using a multi - arm bandit technique .

a

a

US 2022/0405124 A1 Dec. 22 , 2022
4

+ 1

k

)

a

FIG . 7 depicts an example procedure 700 in which a policy
is selected for managing lifecycles of job executors of a job
pool using a multi - arm bandit technique .
[0042] The following discussion describes techniques that
are implementable utilizing the previously described sys
tems and devices . Aspects of each of the procedures are
implemented in hardware , firmware , software , or a combi
nation thereof . The procedures are shown as a set of blocks
that specify operations performed by one or more devices
and are not necessarily limited to the orders shown for
performing the operations by the respective blocks . In
portions of the following discussion , reference will be made
to FIGS . 1-9 .
[0043] FIG . 3 depicts the job engine 106 as implemented
in a threadpool 302 scenario in which a thread manager
module 304 manages the job executors 110 as threads
implemented by cores of a processing system 116. Although
configuration of the job executors 110 as threads 306 (1)
306 (X) and the job pool 112 as a threadpool 302 is
described , this example is equally applicable to the other job
execution scenarios as described in relation to FIGS . 1 and
2 .
[0044] This example begins by receipt of a plurality of
policies 132 by a job engine 106. Each of the policies 132
defines respective criteria used by the job engine 106 to
control lifecycles of job executors for execution of jobs from
a queue 130 by a job execution environment of a computing
device (block 702) . In one example , the plurality of policies
132 are included as part of the application 104 and therefore
are received by the job engine 106 from the application 104
and stored in a storage device 318. In another example , a
repository includes a plurality of preconfigured policies 132
that are maintained separately from the application 104 in
the storage device 318. A variety of other examples are also
contemplated .
[0045] The policies 132 describe criteria used to control
lifecycles of the job executors 110 , e.g. , the threads 306 (1)
306 (X) in this instance . The criteria may vary in complexity ,
such as to employ fixed numbers of job executors 110 ,
conditions to create and / or terminate the job executors 110 ,
e.g. , based on resource utilization , types of jobs 108 for
execution , portions of application 104 being executed , avail
ability of computational resources of the computing device
102 , and so forth . For example , the policies may describe a
minimum number of job executors 110 that are available , a
maximum number of job executors 110 to be made available
in the job pool 112 to the application 104 , a death rate (e.g. ,
after completion of execution of a job 108 , the job executors
110 are terminated accordingly to a Bernoulli Distribution) ,
a birth rate (e.g. , the job executors 110 are created accord
ingly to a Bernoulli Distribution) , and so forth .
[0046] In FIG . 3 , the job engine 106 utilizes multi - arm
bandit techniques to choose between different policies 132
to manage lifecycles of threads 306 (1) , 306 (2) , 306 (3) , . .
, 306 (X) in a threadpool 302 for execution of respective jobs
108 (1) , 108 (2) , 108 (3) , 108 (X) from the queue 130. As
previously described , a job 108 “ (I) " is a sequence of
instructions " (I ;) ien ” that are understood by underlying
hardware components of the computing device 102 , e.g. , as
assembly language of an underlying processor .
[0047] Each of these instructions " (I.) " takes time “ T ; ” to
execute . In some instances “ T , " is fixed , for example , when
pure arithmetic operations are involved . In other instances
“ T ; ” is not fixed , particularly when involving I / O instruc

tions . In multi - tasking systems , there are typically instruc
tions “ It ” and “ Ik + 1 ” between which there are additional
instructions from other jobs or applications that are being
scheduled . This gap , denoted as “ G? " between “ Ik " and
“ Ik + 1 , ” induces stochastic behavior in the application 104
and is a dominant feature of a multi - tasking system . When
several jobs are executed (and corresponding instructions /
operations of those jobs) , then “ G " for a given job 108 has
a higher degree of stochasticity , i.e. , randomness . An
increase in the size of gaps decreases the performance in
executing a job 108 , i.e. , increases latency . Therefore , gaps
and effective parallelism of jobs 108 are two opposing forces
that determine overall latency for execution of a given set of
jobs 108 .
[0048] The job engine 106 in this example employs an
energy - based model for latencies in job execution as part of
the multi - armed bandit technique . The job engine 106 is
tasked with making one of three decisions :

[0049] (1) keep the policy the same ;
[0050] (2) (11) look for a policy to increase a number of

threads ; or
[0051] (3) () look for a policy to decrease a number of

threads .
The last two decisions are made with a goal of pulling down
the overall “ energy configuration ” which is mapped to
latencies in job execution by the computing device 102. In
the following , the job engine 106 utilizes multi - arm bandit
techniques to determine which policy minimizes regret
defined as latency without requiring knowledge of underly
ing hardware and software functionality of the job execution
environment 114 and even without having insight into
operation of the individual policies 132 .
[0052] A determination is made by the job engine 106 as
to which policy of the plurality of policies 132 minimizes
regret that is defined based on latency (block 704) . To do so ,
the job engine 106 selects policies 132 through use of the
policy selection module 134. These policies 132 are then
used by a thread manager module 304 to control a lifecycle
of threads 306 (1) -306 (X) in the threadpool 302. Control of
the lifecycle of the threads 306 (1) -306 (X) includes follow
ing criteria of the policy 132 by the thread manager module
304 to create and terminate threads 306 (1) -306 (X) for
execution of jobs 108 (1) -108 (X) .
[0053] FIG . 4 depicts a system 400 in an example imple
mentation showing operation of a threadpool 302 of FIG . 3
in greater detail as generating performance data 308 that
describes performance , respectively of the plurality of poli
cies (block 706) . The threadpool 302 manages lifecycles of
threads 306 (1) -306 (X) to execute respective jobs 108 (1)
108 (X) . The threads 306 (1) -306 (X) may run in parallel ,
provided that the underlying processing system 116 of the
computing device 102 is multicore . Jobs 108 (1) -108 (X) are
executable asynchronously when not accessing a shared
resource . A threadpool (I) can be represented as a tuple :

I : = (T , Q , P , 3,3) >

where :
[0054] T : = set of threads associated with the threadpool (
I) ;
[0055] @ : = queue of jobs currently pooled for execution by
the threadpool ;
[0056] P : = policy to create or destroy threads , and pick
jobs from the queue (@) ;

i

US 2022/0405124 A1 Dec. 22 , 2022
5

1
" u (P , I , T) = (out1.5.09 gITI , I , P)) sigmoid (-wTl)

9

[0063] Returning again to FIG . 4 , upon completion of the
jobs 108 (1) -108 (N) by the threadpool 302 , performance data
308 is generated describing characteristics of this execution .
In an example , this is expressed as a performance tuple 402
that contains one or more of the following values :

[0064] i . average run time of individual jobs 404 (Rp) -if
“ ” is set of jobs executed by the threadpool 302 then ,

a
2

n

“ ? g : = (Tn . ? n ' ? n ' J
" Ry tj , "

n jeJ

ky k . ,

ky ky
at 11

where “ ; " is an amount of time taken to execute the “ jth ”
job .

[0065] ii . average run time of overall jobs 406 (R) -if “
I ” is set of jobs executed by the threadpool 302 then , 2

[0057] I : = T CT is the subset of threads that have picked
job from the threadpool ; and
[0058] 3 : = set of jobs currently picked up by the threads .
A thread is denoted by “ t ; ” or “ ta ” where “ 1 ” or “ a ” belong
to a suitable indexing set . A job is denoted by “ j , " or " Jaya
where “ r ” or “ yes belong to a suitable indexing set . “ JUR '
is set of all jobs associated with the threadpool 302. Thus , “ j *
EIVQ ” and “ t * ET CT . "
[0059] Let'n EN ” be a horizon , where " n " denotes a time
value “ tn " of a respective timestep or a “ tick - n ” depending
on context . Instantiations / implementations of the threadpool
302 for respective policies 132 are denoted by “ I „ " where

n ” and “ (* n) " corresponds to the
values of “ (*) ” at the instant “ n . ” In the following , “ p » = P
is considered a constant , that is a policy 132 for a given
threadpool 302 is a constant . Thus , a threadpool implement
ing a corresponding policy in denoted as “ T where " P
is the associated policy . “ I , is an instantiation of “ T
the horizon “ n . "
[0060] Thus , the job engine 106 in this example is con
figured to make a choice from a set “ T : = [2 kj ” of policies
132 implemented by the threadpool 302 where each policy
132 can be denoted as an arm or machine in a multi - arm
bandit technique . Threadpool 302 , as part of implementation
of the policies 132 , interacts within a job execution envi
ronment 114 “ e ” that includes hardware components (e.g. ,
processing system 116 , memory system 118 , network sys
tem 120 , and other systems 122) as well as software 124 that
is used to interact with the hardware components (e.g. , an
operating system 126) , competing applications 128 , and
other hardware / software resources .
[0061] In order to make the determination as to which
policy of the plurality of policies 132 are to be employed to
manage the threadpool 302 , an energy - based model is
employed in which the higher the energy of the system , the
higher the latencies . Interactions increase system energy ,
while true parallelism involves a decrease (dissipation) of
energy . Increases in the speed of execution (i.e. , a reduction
in latency) thus involves a decrease in the overall energy of
the system . Thus , the energy - based model is denoted as
follows :

P (r ; yl 7) = P (r :(, J , 7) | I) = V (rlu (" ,) , / .) , 0) ,

TI " R =
ITI '

where “ Ty 64

9

ko , ,

9

where “ N ” is gaussian , and " = 1 , u (P , 3,1) ” is analogous
to Fermi - Dirac statistics , where :

is an amount of time taken to execute the set
3. " With parallelism , “ R < / " is expected and " Rk of
threadpool executing policy “ I is less than “ Rl ” of thread
pool executing policy “ ql ” if the number of threads “ I kj ”
is greater than “ gl . ” Though with parallelism this expec
tation may or may not hold due to interactions , although in
practice it has been observed that “ R * < R ” if “ 7 kl > I'l . ”
Thus , parallelism negatively affects performance in execu
tion of individual jobs 108 in most instances .

[0066] iii . number of active threads 408 (1T 1) ;
[0067] iv . number of threads in Threadpool 410 (1T 1) ;

and
[0068] V. reward_mean 412 (u) specific to the criterion

that is manually set by a user .
Thus , the performance data 208 is expressed as a sequence
of tuples : (RF , R , IT I , IT] , u) .
[0069] Returning again to FIG . 3 , the performance data
308 is passed from the threadpool 302 as an input to a regret
determination module 310. The regret determination module
310 employs a regret model 312 to generate regret data 314
using machine learning . The regret data 314 defines an
amount of latency based on the performance data 308 for the
plurality of policies , respectively (block 708) . Regret , also
referred to as opportunity loss , defines a difference between
an actual payoff and a payoff that would have been obtained
if a different course of action had been chosen . In this
example , regret is defined with respect to latency , and
therefore minimizing regret is used to decrease latency in
operation of the computing device 102 .
[0070] FIG . 5 depicts an example system 500 showing
operation of the regret determination module 310 of FIG . 3
in greater detail . The regret determination module 310
receives as an input the performance data 308 and , using a
regret model 312 , generated regret data 314 describing an
energy state 510 in accordance with the energy model
described above . The regret model 312 , also referred to as a
generalized threadpool regret model (GTRM) in the follow
ing is a neural model , fit on “ (Ry , R , 17 , | T , u) ” where " u ”

1 / u (P , I , T) =
g (T , I , P)

1 + e - a (T - no)

2

P

[0062] “ 1 / u (: P , J I) " is included on the left side of the
equation because the right - hand side represents a model for
latency . The value “ a ” is a factor representing job interac
tions , “ IT | ” denotes a number of threads , “ no ” is the higher
value of a number of threads ; and values of “ 7 \ " greater
than “ no ” increases latency . The inverse of " g (1T 1,3 , P) "
denotes a degree of parallelism of jobs 108 from the appli
cation 104. Thus , for faster execution , “ g (17 1,3 , P) ” is
smaller . The term “ 1 / (1+ :) ” is analogous to sigmoid .
Thus , “ 1 / u (P , 3,1) = g (1.1 1,4 , P) xsigmoid (Wo + w , | 3 1) . " The
values “ g () ” and “ a ” are modeled as an output of a neural
model , and enumerated from the neural model ,

e - all - ne)

P

2

US 2022/0405124 A1 Dec. 22 , 2022
6

is the dependent variable . The regret model includes an
LSTM decoder 502 , LSTM encoder 504 , and two fully
connected units 506 508 forming the following cascade :

indicates text missing or illegible when filed

k "
n .

n
1 = 1

[0071] The LSTM pairs form a decoder - encoder model ,
where the output of the LSTM decoder 502 represents the
energy state of the system . The output of fully connected
units 506 , 508 corresponds to each of the threadpool
implemented policies .
[0072] Various notions of latency are associated with job
execution . One definition of latency is associated with the
average run time of jobs . The other is associated with a given
application 104. A third notion is a composition of these last
two latencies . If “ 1 * " is the maximum speed (inverse of least
latency) the most efficient policy - implemented thread
pool in “ T : = [z k] , ” and “ lk ” is the speed (inverse of latency)
associated with threadpool arm “ k , " then regret is defined as
" Spk : = 1 * -1 * . ” Along a horizon , regret is denoted as “ rn The
goal is to minimize “ E [E ; = " 18] = E [E ; = 1 " 1 *] - E [E ; = ; " 1 ' } "
where i ; E [k] is an arm instance .
[0073] When a threadpool instance " q " is executing , its I
impact on operation of the computing device 102 is because
of the policy “ p ” associated with it , the nature of jobs “ J ?
running in parallel , and thirdly through a number of threads
that are being executed “ T. ” This impact is denoted as the
tuple “ Y : = (P , 2,3) ” along the horizon denoted as " yok . ” As
an example , if “ I includes jobs 108 that consume a
significant amount of memory , then a bigger set “ T ” (that is
“ IT I , ” number of active threads is large) leads to higher
latencies . A policy “ P , " which increases “ p3 | ” and “ T) "
(by invoking an additional number of threads and executing
an additional number of jobs) decreases efficiency , and
hence is not favorable . System memory , hardware resources ,
and competing programs are latent variables that are typi
cally not measurable by a human being or otherwise due to
lack of insight into operational interactions and nature of
impact of those interactions on performance .
[0074] Accordingly , the tuple “ p and current system state
“ I ” affects a latent regret (vector) variable “ z ” which is the
parent of regret “ r . ” Further , the system state “ I ” is a
component that represents an external environment in which
the application 104 is executed and is not under the direct
control of the application 104. This results in the following
graphical model : “ y = z = > r ” which a corresponding estimate
as follows :

[0075] The regret data is then passed from the regret
determination module 310 to a policy selection module 134 .
A bandit module 316 is then employed by the policy
selection module 134 to select a policy 132 from the
plurality of policies 132 by a model as part of a multi - arm
bandit technique (block 710) . Functionality of the policy
selection module 134 is illustrated as being implemented by
a statistical model generation module 602 and a bandit
module 316 in the example system 600 of FIG . 6 .
[0076] To begin , regret data 314 is received by the policy
selection module 134. A statistical model generation module
602 is then employed to form a statistical model 604 based
on the regret data 314. The statistical model 604 describes a
plurality of reward distributions 606 for a plurality of
policies , respectively . The statistical model 604 may be
generated in a variety of ways , such as through use of
regression analysis techniques including linear regression .
In this way , the statistical model 604 includes a reward
distribution 606 for each of the policies 132 , which may be
further refined (i.e. , learned) through exploration or lever
aged through exploitation .
[0077] The statistical model 604 is then employed by a
bandit module 316 to generate a policy selection 612. As
part of this , the bandit module 316 is configured to address
a tradeoff between exploration as implemented by an explo
ration module 608 and exploitation as implemented by an
exploitation module 610. In exploration , the policy selection
612 is generated to improve knowledge about a relationship
(e.g. , linear relationship) between the feature vector and the
reward , e.g. , to further refine the statistical model 604 as
increasing knowledge of the reward through use of the regret
data 314. Thus , exploration is implemented by the explora
tion module 608 to increase an amount of data gathered for
each of the plurality of policies as serving as a basis for the
policy selection 612. An example of an exploration tech
nique that may be implemented by the exploration module
608 includes a uniform sampling exploration technique .
[0078] In exploitation as implemented by the exploitation
module 610 , the policy selection 612 is generated to maxi
mize effectiveness in minimizing regret (i.e. , latency) , e.g. ,
based on the reward distribution 606 of the statistical model
604 for respective policies . An example of an exploitation
technique includes an upper confidence bound (UCB) tech
nique .
[0079] Thus , in exploitation as implemented by the exploi
tation module 610 a policy selection 612 is generated to
maximize a reward at an individual time step . Exploration as
implemented by the exploration module 608 is used to
increase knowledge and accuracy of the reward distributions
606 , e.g. , a confidence interval for each distribution . This
increased knowledge and accuracy may then be used to
further exploit collection of rewards for future time steps
and thus maximize the reward for a series of times steps “ T. ”
[0080] In this way , the policy selection module 134 is
configured to address a tradeoff involves balancing a goal of
selecting the policy 132 that is most effective and determin
ing which policy 132 is most effective . Thus , in some
instances it may be desirable to generate a policy selection
612 for a sub - optimal policy 132 (i.e. , is less effective) to
learn more about the linear relationship between the policy
and the reward and thus increase a likelihood of accuracy of
the policy selection 612 .
[0081] The bandit module 316 in one example implements
the multi - arm bandit technique as an upper confidence

a

a indicates text missing or illegible when filed

The values :
P (riz , y.I) = P (r?z , 7)

a
2

are set as such because “ z ” is a direct parent of “ r . ” Thus ,
given a job execution environment “ 7 , " the impact tuple " spor
indexes into those " z " for which the value of " P (r / 7,1) " is
higher for lower regret .

US 2022/0405124 A1 Dec. 22 , 2022
7

a bound (UCB) bandit algorithm as described above . For
example , the bandit module 316 employs upper confidence
bound calculations as follows :

indicates text missing or illegible when filed

Here , “ 1 ” is “ ith ” arm , (i.e. , policy) , “ G = 1 / n ?, " where “ n ” is
the number of iterations algorithm executes at the minimum
(one thousand or greater) and the value “ 7 (t) " is the number
of times the " ith ” arm is executed until time “ t . ”
[0082] In an implementation , the explore tendency is kept
alive , even when the bandit module 316 exhibits conver
gence towards a particular arm . This is implemented to
allow the application 104 to remain agile to changes to the
job execution environment during runtime , which is other
wise not possible if the policy selection module 134 keeps
on exploiting a single arm without additional exploration .
Exploration is performed with a minimum probability of
0.05 . The bandit module 316 then chooses the arm (i.e. ,
policy 132) based on sampling values from the regret data
314. The value “ u ; ” thus received is used to sample weights
from the gaussian distribution “ W ; ~ N (• lui 1) . " Each of
these weights is used as weights for discrete distributions to
choose the arms and corresponding policies 132. An
example 800 of an implementation of regret and a multi
armed bandit technique together is illustrated in FIG . 8 .
[0083] The policy 132 referenced by the policy selection
612 is then used to control lifecycles of the job executors 110
for execution of subsequent jobs 108 from the queue 130
(block 712) . This may be performed , for instance , to “ set ” a
particular policy 132 for use by the application 104. In
another example , these techniques continue over runtime
(e.g. , at set time periods or constantly) to dynamically adjust
to changes in the job execution environment 114. In this
way , operational efficiency of the job execution environment
114 and more particularly com ents of the environment
such as a processing system 116 , memory system 118 ,
network system 120 , other systems 122 , and software 124 is
improved .
[0084] In a testing implementation , loss is measured with
respect to a number of epochs (for the " goodness ” of the
regret determination) and convergence of the multi - arm
bandit technique . Example results 900 are shown in FIG . 9 ,
which illustrates that after 40 epochs convergence is
reached . As shown in FIG . 9 , when the operation of the job
execution environment is stationary , then the latency - net
quickly converges . However , when the job execution envi
ronment is burdened by other applications or its focus
changes , then latency - net starts looking for a newer conver
gence . This illustrates advantages of continued exploration
described above .
[0085] Example System and Device
[0086] FIG . 10 illustrates an example system generally at
1000 that includes an example computing device 1002 that
is representative of one or more computing systems and / or
devices that implement the various techniques described
herein . This is illustrated through inclusion of the job engine
106. The computing device 1002 is configurable , for
example , as a server of a service provider , a device associ

ated with a client (e.g. , a client device) , an on - chip system ,
and / or any other suitable computing device or computing
system .
[0087] The example computing device 1002 as illustrated
includes a processing system 1004 , one or more computer
readable media 1006 , and one or more I / O interface 1008
that are communicatively coupled , one to another . Although
not shown , the computing device 1002 further includes a
system bus or other data and command transfer system that
couples the various components , one to another . A system
bus can include any one or combination of different bus
structures , such as a memory bus or memory controller , a
peripheral bus , a universal serial bus , and / or a processor or
local bus that utilizes any of a variety of bus architectures .
A variety of other examples are also contemplated , such as
control and data lines .
[0088] The processing system 1004 is representative of
functionality to perform one or more operations using hard
ware . Accordingly , the processing system 1004 is illustrated
as including hardware element 1010 that is configurable as
processors , functional blocks , and so forth . This includes
implementation in hardware as an application specific inte
grated circuit or other logic device formed using one or more
semiconductors . The hardware elements 1010 are not lim
ited by the materials from which they are formed or the
processing mechanisms employed therein . For example ,
processors are configurable as semiconductor (s) and / or tran
sistors (e.g. , electronic integrated circuits (ICs)) . In such a
context , processor - executable instructions are electroni
cally - executable instructions .
[0089] The computer - readable storage media 1006 is illus
trated as including memory / storage 1012. The memory /
storage 1012 represents memory / storage capacity associated
with one or more computer - readable media . The memory /
storage 1012 includes volatile media (such as random access
memory (RAM)) and / or nonvolatile media (such as read
only memory (ROM) , Flash memory , optical disks , mag
netic disks , and so forth) . The memory / storage 1012
includes fixed media (e.g. , RAM , ROM , a fixed hard drive ,
and so on) as well as removable media (e.g. , Flash memory ,
a removable hard drive , an optical disc , and so forth) . The
computer - readable media 1006 is configurable in a variety
of other ways as further described below .
[0090] Input / output interface (s) 1008 are representative of
functionality to allow a user to enter commands and infor
mation to computing device 1002 , and also allow informa
tion to be presented to the user and / or other components or
devices using various input / output devices . Examples of
input devices include a keyboard , a cursor control device
(e.g. , a mouse) , a microphone , a scanner , touch functionality
(e.g. , capacitive or other sensors that are configured to detect
physical touch) , a camera (e.g. , employing visible or non
visible wavelengths such as infrared frequencies to recog
nize movement as gestures that do not involve touch) , and
so forth . Examples of output devices include a display
device (e.g. , a monitor or projector) , speakers , a printer , a
network card , tactile - response device , and so forth . Thus , the
computing device 1002 is configurable in a variety of ways
as further described below to support user interaction .
[0091] Various techniques are described herein in the
general context of software , hardware elements , or program
modules . Generally , such modules include routines , pro
grams , objects , elements , components , data structures , and
so forth that perform particular tasks or implement particular

US 2022/0405124 A1 Dec. 22 , 2022
8

abstract data types . The terms “ module , " " functionality , ”
and “ component ” as used herein generally represent soft
ware , firmware , hardware , or a combination thereof The
features of the techniques described herein are platform
independent , meaning that the techniques are configurable
on a variety of commercial computing platforms having a
variety of processors .
[0092] An implementation of the described modules and
techniques is stored on or transmitted across some form of
computer - readable media . The computer - readable media
includes a variety of media that is accessed by the computing
device 1002. By way of example , and not limitation , com
puter - readable media includes " computer - readable storage
media " and " computer - readable signal media . "
[0093] “ Computer - readable storage media ” refers to
media and / or devices that enable persistent and / or non
transitory storage of information in contrast to mere signal
transmission , carrier waves , or signals per se . Thus , com
puter - readable storage media refers to non - signal bearing
media . The computer - readable storage media includes hard
ware such as volatile and non - volatile , removable and non
removable media and / or storage devices implemented in a
method or technology suitable for storage of information
such as computer readable instructions , data structures ,
program modules , logic elements / circuits , or other data .
Examples of computer - readable storage media include but
are not limited to RAM , ROM , EEPROM , flash memory or
other memory technology , CD - ROM , digital versatile disks
(DVD) or other optical storage , hard disks , magnetic cas
settes , magnetic tape , magnetic disk storage or other mag
netic storage devices , or other storage device , tangible
media , or article of manufacture suitable to store the desired
information and are accessible by a computer .
[0094] “ Computer - readable signal media ” refers to a sig
nal - bearing medium that is configured to transmit instruc
tions to the hardware of the computing device 1002 , such as
via a network . Signal media typically embodies computer
readable instructions , data structures , program modules , or
other data in a modulated data signal , such as carrier waves ,
data signals , or other transport mechanism . Signal media
also include any information delivery media . The term
“ modulated data signal ” means a signal that has one or more
of its characteristics set or changed in such a manner as to
encode information in the signal . By way of example , and
not limitation , communication media include wired media
such as a wired network or direct - wired connection , and
wireless media such as acoustic , RF , infrared , and other
wireless media .
[0095] As previously described , hardware elements 1010
and computer - readable media 1006 are representative of
modules , programmable device logic and / or fixed device
logic implemented in a hardware form that are employed in
some embodiments to implement at least some aspects of the
techniques described herein , such as to perform one or more
instructions . Hardware includes components of an integrated
circuit or on - chip system , an application - specific integrated
circuit (ASIC) , a field - programmable gate array (FPGA) , a
complex programmable logic device (CPLD) , and other
implementations in silicon or other hardware . In this con
text , hardware operates as a processing device that performs
program tasks defined by instructions and / or logic embodied
by the hardware as well as a hardware utilized to store
instructions for execution , e.g. , the computer - readable stor
age media described previously .

[0096] Combinations of the foregoing are also be
employed to implement various techniques described herein .
Accordingly , software , hardware , or executable modules are
implemented as one or more instructions and / or logic
embodied on some form of computer - readable storage
media and / or by one or more hardware elements 1010. The
computing device 1002 is configured to implement particu
lar instructions and / or functions corresponding to the soft
ware and / or hardware modules . Accordingly , implementa
tion of a module that is executable by the computing device a
1002 as software is achieved at least partially in hardware ,
e.g. , through use of computer - readable storage media and / or
hardware elements 1010 of the processing system 1004. The
instructions and / or functions are executable / operable by one
or more articles of manufacture (for example , one or more
computing devices 1002 and / or processing systems 1004) to
implement techniques , modules , and examples described
herein .
[0097] The techniques described herein are supported by
various configurations of the computing device 1002 and are
not limited to the specific examples of the techniques
described herein . This functionality is also implementable
all or in part through use of a distributed system , such as
over a “ cloud ” 1014 via a platform 1016 as described below .
[0098] The cloud 1014 includes and / or is representative of
a platform 1016 for resources 1018. The platform 1016
abstracts underlying functionality of hardware (e.g. , servers)
and software resources of the cloud 1014. The resources
1018 include applications and / or data that can be utilized
while computer processing is executed on servers that are
remote from the computing device 1002. Resources 1018
can also include services provided over the Internet and / or
through a subscriber network , such as a cellular or Wi - Fi
network .
[0099] The platform 1016 abstracts resources and func
tions to connect the computing device 1002 with other
computing devices . The platform 1016 also serves to
abstract scaling of resources to provide a corresponding
level of scale to encountered demand for the resources 1018
that are implemented via the platform 1016. Accordingly , in
an interconnected device embodiment , implementation of
functionality described herein is distributable throughout the
system 1000. For example , the functionality is implement
able in part on the computing device 1002 as well as via the
platform 1016 that abstracts the functionality of the cloud
1014 .

a

CONCLUSION

a

[0100] Although the invention has been described in lan
guage specific to structural features and / or methodological
acts , it is to be understood that the invention defined in the
appended claims is not necessarily limited to the specific
features or acts described . Rather , the specific features and
acts are disclosed as example forms of implementing the
claimed invention .
What is claimed is :
1. In a digital medium job execution environment , a

system comprising :
a thread pool implemented by a computing device to

generate performance data describing performance ,
respectively , of a plurality of policies , each said policy
controlling lifecycles of threads for execution of jobs
from a queue ;

US 2022/0405124 A1 Dec. 22 , 2022
9

a regret determination module implemented by the com
puting device to generate regret data by a model using
machine learning by the computing device , the regret
data defining an amount of latency based on the per
formance data for the plurality of policies , respectively ;

a policy selection module implemented by the computing
device to select a policy from the plurality of policies
by a model as part of a multi - arm bandit technique , the
selected policy used by the thread pool to control
lifecycles of the threads as part of execution of subse
quent jobs from the queue .

2. The system as described in claim 1 , wherein the
lifecycles define creation and removal of respective said
threads as part of operation of a processing system of the
computing device .

3. The system as described in claim 1 , wherein the
performance data describes a number of active threads , a
number of threads in the thread pool executed as corre
sponding to a respective said policy , and an amount of time
spent executing the jobs .

4. The system as described in claim 1 , wherein the queue
of jobs includes parallel jobs involving independent opera
tion and shared - resource jobs involving a shared resource by
at least two said jobs .

5. The system as described in claim 1 , wherein the regret
is based on latency as an amount of time used by a
processing system of the computing device for the execution
of said jobs .

6. The system as described in claim 1 , wherein the latency
is defined as an average runtime of individual said jobs .

7. The system as described in claim 1 , wherein the latency
is defined as an average runtime of an overall collection of
said jobs .

8. The system as described in claim 1 , wherein the
multi - arm bandit technique is defined such that each policy
of the plurality of policies is modeled as a respective arm of
a plurality of arms and the policy selection module uses the
multi - arm bandit technique to select the policy based on
exploration and exploitation .

9. In a digital medium job execution environment , a
method implemented by a computing device , the method
comprising :

receiving , by the computing device , a plurality of policies ,
each said policy defining respective criteria used by a
job engine to control lifecycles of job executors for
execution of jobs from a queue by a job execution
environment of the computing device ;

determining , by the computing device , which policy of
the plurality of policies minimizes regret that is defined
based on latency , the determining performed by a
model as part of a multi - arm bandit technique using
machine learning ; and

controlling , by the computing device automatically and
without user intervention responsive to the determin
ing , lifecycles of the job executors for execution of
subsequent jobs from the queue using the determined
policy .

10. The method as described in claim 9 , wherein the job
executors are threads included as part of a threadpool , the
threads defining a sequence of programmed instructions that
are independently manageable as part of execution by a
processing system implemented by hardware components of
the job execution environment of the computing device .

11. The method as described in claim 9 , wherein the job
executors are memory executors included as part of a
memory pool , the memory executors defining operations
involving reading and writing to and from a memory system
implemented by hardware components of the job execution
environment of the computing device .

12. The method as described in claim 9 , wherein the job
executors are network executors included as part of a
network pool , the network executors defining operations
involving transmitting and receiving data via a network
using a network system implemented by hardware compo
nents of the job execution environment of the computing
device .

13. The method as described in claim 9 , wherein the
lifecycles define creation and removal of respective said job
executors as part of operation of hardware and software
components of the job execution environment of the com
puting device .

14. The method as described in claim 9 , wherein the
queue of jobs includes parallel jobs involving independent
operation and shared - resource jobs involving a shared
resource by at least two said jobs .

15. The method as described in claim 9 , wherein the regret
is based on latency as an amount of time used for the
execution of the jobs by hardware components of the
computing device in accordance with respective said poli
cies .

16. The method as described in claim 9 , wherein the
latency is defined as an average runtime of individual said
jobs or an average runtime of an overall collection of said
jobs .

17. The method as described in claim 9 , wherein the
multi - arm bandit technique is defined such that each policy
of the plurality of policies is modeled as a respective arm of
a plurality of arms .

18. In a digital medium job execution environment , a
system comprising :
means for determining which policy of a plurality of

policies minimizes regret that is defined based on
latency , the determining performed by a model as part
of a multi - arm bandit technique using machine learn
ing , each said policy defining respective criteria used
by a job engine to control lifecycles of job executors for
execution of jobs from a queue by a job execution
environment of a computing device ; and

means for controlling lifecycles of the job executors for
execution of subsequent jobs from the queue using the
determined policy .

19. The system as described in claim 18 , wherein the job
executors are threads included as part of a threadpool , the
threads defining a sequence of programmed instructions that
are independently manageable as part of execution by a
processing system implemented by hardware components of
the job execution environment of the computing device .

20. The system as described in claim 18 , wherein the job
executors are :
memory executors included as part of a memory pool , the
memory executors defining operations involving read
ing and writing to and from a memory system imple
mented by hardware components of the job execution
environment of the computing device ; or

network executors included as part of a network pool , the
network executors defining operations involving trans
mitting and receiving data via a network using a

US 2022/0405124 A1 Dec. 22. 2022
10

network system implemented by hardware components
of the job execution environment of the computing
device .

*

