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COMPUTING DEVICE CONTROL OF A JOB 
EXECUTION ENVIRONMENT 

BACKGROUND 
a 

[ 0006 ] FIG . 1 is an illustration of a digital medium envi 
ronment in an example implementation that is operable to 
employ job execution environment control techniques . 
[ 0007 ] FIG . 2 depicts a system showing an example of 
operation of a job engine of FIG . 1 in greater detail . 
[ 0008 ] FIG . 3 depicts a system in an example implemen 
tation showing operation of the job engine of FIG . 1 as 
implementing policy selection for a threadpool . 
[ 0009 ] FIG . 4 depicts a system in an example implemen 
tation showing operation of a threadpool of FIG . 3 in greater 
detail as generating performance data . 
[ 0010 ] FIG . 5 depicts a system in an example implemen 
tation showing operation of a regret determination module 
of FIG . 3 in greater detail as generating regret data indicative 
of latency in operation of the threadpool to execute jobs 
from a queue . 

[ 0001 ] Computing device functionality continues to 
increase in part by harnessing underlying hardware paral 
lelism of a job execution environment implemented by the 
computing device . This is often realized through increases in 
hardware functionality such as to increase a number of 
processing cores supported by processors of a processing 
system to support increasing numbers of parallel operations 
in the job execution environment . However , increases in 
hardware parallelism and software that is used to support 
this parallelism introduces numerous challenges in the 
operation of the computing device . 
[ 0002 ] In one such example , application programmers use 
threadpools to manage underlying hardware parallelism of 
threads implemented by respective cores of a processor . 
Conventionally , this is performed by manually specifying a 
policy that is used to control a lifecycle of threads in the 
threadpool , e.g. , creation and termination of respective 
threads for use by an application during execution . In 
instances in which an underlying structure and operation of 
the application is homogenous and uniform , a policy is 
typically estimated as a fixed constant or in terms of a 
non - stochastic algorithm However , even in instances in 
which the structure and operation of the application is 
homogenous and uniform , complexities arise due to differ 
ences in underlying hardware and software utilized by the 
job execution environment . This challenge is further com 
pounded as complexity of the application increases , often 
times in ways that are not readily determinable by the 
application programmer , e.g. , due to use of shared resources 
that can make increases in parallelism less efficient in the 
operation of the computing device . Accordingly , conven 
tional techniques often fail and result in inefficient use of 
computational resources and increases in latency . 

[ 0011 ] FIG . 6 depicts a system in an example implemen 
tation showing operation of a policy selection module of 
FIG . 3 in greater detail as selecting a policy using a 
multi - arm bandit technique . 
[ 0012 ] FIG . 7 is a flow diagram depicting a procedure in 
an example implementation in which a policy is selected for 
managing lifecycles of job executors of a job pool using a 
multi - arm bandit technique . 
[ 0013 ] FIG . 8 depicts an example algorithm implementing 
regret and a multi - armed bandit technique together . 
[ 0014 ] FIG . 9 depicts an example of convergence 
achieved through use of a multi - arm bandit technique for 
policy selection . 
[ 0015 ] FIG . 10 illustrates an example system including 
various components of an example device that can be 
implemented as any type of computing device as described 
and / or utilize with reference to FIGS . 1-9 to implement 
embodiments of the techniques described herein . 

SUMMARY 

a 

[ 0003 ] Job execution environment control techniques are 
described to manage policy selection and implementation to 
control use of job executors by a computing device , auto 
matically and without user intervention . These techniques 
are usable to select a policy from a plurality of policies that 
is then used to control lifecycles of job executors of a job 
execution environment of a computing device . Further , these 
techniques are usable to respond dynamically to change the 
selected policy during runtime of the application in response 
to changes in the job execution environment . 
[ 0004 ] This Summary introduces a selection of concepts in 
a simplified form that are further described below in the 
Detailed Description . As such , this Summary is not intended 
to identify essential features of the claimed subject matter , 
nor is it intended to be used as an aid in determining the 
scope of the claimed subject matter . 

DETAILED DESCRIPTION 
[ 0016 ] Overview 
[ 0017 ] Parallelism is used to increase computing device 
functionality . Parallelism in hardware of a computing device 
is implemented through a job pool that includes a collection 
of job executors that executes jobs from a queue . An 
example of the use of job executors as part of a job pool 
include use of threads in a threadpool to execute jobs by a 
processing system of a computing device , and more particu 
larly respective cores of a processor of the processing 
system . Other examples of hardware systems that support 
parallelism include memory controllers of a memory system 
involving parallel read / write operations , network devices 
involving parallel communication of streams of data via a 
network , rendering techniques , and so on . Each of these 
xamples support parallel operations for job execution by 

respective hardware components and software used to sup 
port interaction with the components , e.g. , operating sys 
tems , drivers , and so forth . 
[ 0018 ] In order to address and take advantage of parallel 
ism in the operation of the computing device , a policy is 
manually created by a programmer of an application in 
conventional techniques to control a lifecycle of job execu 
tors that are used to execute jobs as part of a job pool . The 
policy specifies a number of job executors that are to be 
created for use by the application . Conventional techniques 
to do so , however , rely on a “ best guess ” based on intuition 
and experience of the programmer . Complexity of the job 
execution environment , however , makes accuracy of such a 

BRIEF DESCRIPTION OF THE DRAWINGS 

[ 0005 ] The detailed description is described with refer 
ence to the accompanying figures . Entities represented in the 
figures are indicative of one or more entities and thus 
reference is made interchangeably to single or plural forms 
of the entities in the discussion . 
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best guess difficult if not impossible to achieve due to an 
inability to determine an effect of interactions between 
underlying functionality of the computing device used to 
execute the jobs . This is due to potential interdependencies 
of the jobs that are to be executed for the application , 
differences in hardware resources available from different 
computing device , as well as the execution of other “ com 
peting " applications by the computing device that affect 
availability of hardware resources in the job execution 
environment . 
[ 0019 ] As a result , conventional techniques could hinder 
operation of a computing device , as the complexity of 
optimizing performance of the hardware components is 
dependent on a variety of factors that are not detectable by 
a human being . For example , an amount of I / O operations 
may increase latency as a number of active job executors 
increases , whereas in instances in which the jobs do not 
share a significant amount of resources increases in the 
number of job executors serves to decrease latency . In a 
threadpool example , creation of too many threads wastes 
resources of the processing system and costs time creating 
unused threads . Likewise , terminating too many threads 
requires additional time later on when creating the threads 
again , creating threads too slowly results in increases in wait 
times , terminating threads too slowly may starve execution 
of other jobs both by the application as well as other 
applications , and specifying too many threads may serve to 
slow job execution in instances involving use of shared 
resources , even for a single application . 
[ 0020 ] Accordingly , job execution environment control 
techniques are described to manage policy selection and 
implementation to control use of job executors by a com 
puting device , automatically and without user intervention . 
These techniques are usable to select a policy from a 
plurality of policies that is then used to control lifecycles of 
job executors of a job execution environment of a computing 
device . Further , these techniques are usable to respond 
dynamically to change the selected policy during runtime of 
the application in response to changes in the job execution 
environment . This is not possible using conventional tech 
niques nor is this possible to be performed manually by a 
human being . 
[ 0021 ] In one example , a job engine employs a multi - arm 
bandit technique to choose the policy from the plurality of 
policies to control lifecycles of job executors that are used 
to execute respective jobs , e.g. , as part of execution of an 
application . This technique is configured to address alloca 
tion of a fixed limited set of resources ( e.g. , job executors of 
a job pool ) through use of policy selection in a way to 
minimize regret and maximize a reward . 
[ 0022 ] In this technique , the job engine is modeled as a 
gambler to determine which slot machine in a collection of 
slot machines to play , how many times to play each slot 
machine , in which order to play the slot machines , and 
whether to continue with a current machine ( exploitation ) or 
to try a different machine ( exploration ) . Each machine 
provides a random reward ( and thereby minimizes regret ) 
based on a probability distribution specific to that machine . 
Thus , the objective of the job engine as the gambler is to 
maximize a sum of rewards earned through a series of policy 
selections over a series of time steps by identifying which 
machines ( i.e. , policies ) minimize regret , e.g. , latency . 
[ 0023 ] To do so , the job engine accesses a plurality of jobs 
maintained in a storage device that are received through 

execution of an application by the computing device . Each 
of the policies defines respective criteria to be used by the 
job engine to control lifecycles of job executors , e.g. , 
creation and termination of the job executors to execute 
respective jobs . 
[ 0024 ] The job engine then determines which of the poli 
cies minimizes regret ( e.g. , latency ) and therefore maxi 
mizes a “ reward ” using a multi - arm bandit technique . To 
begin , a policy is selected for use by the job engine to control 
lifecycles of job executors of a job pool . The job executors 
are used to execute jobs from a queue of jobs generated by 
the application . This includes parallel execution and is 
asynchronous in instances in which a resource is not shared 
by the jobs . 
[ 0025 ] Performance data is generated that describes the 
execution of the jobs by the job pool . The performance data , 
for instance , is configurable as a tuple that describes an 
average runtime of individual jobs ( also referred to as 
" tasks " in the following discussion ) , average runtime of 
overall jobs , a number of active job executors , a number of 
job executors included in the job pool , and / or a reward mean 
which is a criterion that is user selectable . The performance 
data is then passed as an input from the job pool of the job 
engine to a regret determination module . 
[ 0026 ] The regret determination module receives the per 
formance data , and from this generates regret data indicative 
of latency and more particularly a latency state of the job 
pool based on use of the selected policy . The regret deter 
mination module , for instance , is configured as a neural 
network that is " fit ” to the performance data through 
machine learning , e.g. , by use of an LSTM decoder , an 
LSTM encoder , and two fully connected units . 
[ 0027 ] The regret data is then used by a policy selection 
module to select a policy from the plurality of policies based 
on the regret data over a series of time steps , i.e. , iterations . 
In one example , the policy selection module uses multi - arm 
bandit techniques and begins by generating a statistical 
model that includes reward distributions for each of the 
plurality of policies based on the regret data . The statistical 
model is then employed by the policy selection module to 
select policies to maximize an overall reward over a series 
of time steps “ T ” and therefore minimize regret , i.e. , latency . 
[ 0028 ] As part of this , the policy selection module utilizes 
a bandit module that employs exploration techniques in 
which selections are generated to gather data regarding the 
reward distributions for respective policies . The bandit mod 
ule also employs exploitation techniques to maximize a 
reward at a respective time step for a policy . In this way , the 
bandit module may “ learn ” about the reward distributions of 
respective policies through exploration and maximize the 
amount of rewards collected at the individual time steps 
through exploitation . 
[ 0029 ] Both of these techniques are thus employed to 
maximize an overall amount of reward over the series of 
time steps through learning about the rewards and collecting 
the rewards based on this learned knowledge as described by 
respective reward distributions . As a result , these consider 
ations converge over time to select of a policy that mini 
mizes latency and thus optimizes performance of the com 
puting device . In an implementation , the explore 
consideration is kept alive through use of a minimum 
probability in order to dynamically adjust to changes in a job 
execution environment during runtime of the application , 
e.g. , so the selection does not fixate to a single operation . In 



US 2022/0405124 A1 Dec. 22 , 2022 
3 

a 

this way , the multi - arm bandit techniques may be leveraged 
for policy selection to dynamically respond to changes in the 
job execution environment in real time , automatically and 
without user intervention . Further discussion of these and 
other examples is included in the following discussion and 
shown using corresponding figure . 
[ 0030 ] In the following discussion , an example environ 
ment is described that employs the techniques described 
herein . Example procedures are also described that are 
performable in the example environment as well as other 
environments . Consequently , performance of the example 
procedures is not limited to the example environment and 
the example environment is not limited to performance of 
the example procedures . 
[ 0031 ] Example Environment 
[ 0032 ] FIG . 1 is an illustration of a digital medium envi 
ronment 100 in an example implementation that is operable 
to employ job execution environment control techniques 
described herein . The illustrated environment 100 includes a 
computing device 102 , which is configurable in a variety of 
ways . 
[ 0033 ] The computing device 102 , for instance , is config 
urable as a desktop computer , a laptop computer , a mobile 
device ( e.g. , assuming a handheld configuration such as a 
tablet or mobile phone ) , and so forth . Thus , the computing 
device 102 ranges from full resource devices with substan 
tial memory and processor resources ( e.g. , personal com 
puters , game consoles ) to a low - resource device with limited 
memory and / or processing resources ( e.g. , mobile devices ) . 
Additionally , although a single computing device 102 is 
shown , the computing device 102 is also representative of a 
plurality of different devices , such as multiple servers uti 
lized by a business to perform operations “ over the cloud ” 
as described in FIG . 10 . 
[ 0034 ] The computing device 102 is illustrated as includ 
ing an application 104 and a job engine 106. The application 
104 originates jobs 108 for execution by job executors 110 
of a job pool 112 of the job engine 106. The jobs 108 refer 
to one or more operations or tasks that are executable by 
respective job executors 110 included within a job pool 112 
of the job execution environment 108. The jobs 108 , for 
instance , refer to instructions that are understandable by 
underlying hardware components of the computing device 
102 to implement corresponding functionality . 
[ 0035 ] A variety of hardware components are usable in 
conjunction with execution of the jobs 108 as part of a job 
execution environment 114. For example , a processing sys 
tem 116 is configurable to execute the jobs 108 using the job 
executors 110 as implemented as threads . Thus , in this 
example the jobs 108 are configured as assembly language 
that is understandable by an underlying processor of the 
processing system 116. Other examples include operations 
performable by a memory system 118 , network system 120 , 
and “ other ” systems 122 , e.g. , printers , display devices , and 
so on . The job execution environment 114 also includes 
software 124 that supports interaction with these hardware 
components , e.g. , an operating system 126 , other “ compet 
ing ” applications 128 that are executed by the computing 
device 102 , drivers , and so forth . Thus , the job pool 112 
supports parallel execution of the jobs 108 , asynchronous 
execution , use of shared resources , and so on . 
[ 0036 ] For example , execution of the application 104 
causes jobs 108 to be inserted into a queue 130 , which are 
then executed by job executors 110 of the job pool 112 . 

Policies 132 are employed to manage a life cycle of the job 
executors 110 , e.g. , how many job executors 110 are to be 
utilized to execute jobs 108 of the application 104 , when to 
create or terminate the job executors 110 , and so on . In the 
illustrated instance , the job engine 106 includes a policy 
selection module 134 to select and optimize policies that are 
used to manage the job pool 112 and job executors 110 
within the pool . 
[ 0037 ] FIG . 2 depicts an example system 200 showing 
operation of the job engine 106 in greater detail . The queue 
130 includes a set of jobs 202 received from the application 
104. A job 108 ( n ) is indicated as being passed from the 
queue 130 to a job pool 112 of the job engine 106. The job 
108 ( n ) is representative of an operation that is executable at 
least in part using hardware components of the computing 
device , examples of which include a processor operation 
204 , memory operation 206 , network operation 208 , or other 
operation 210 . 
[ 0038 ] The job pool 112 includes a number of job execu 
tors 110 ( 1 ) , 110 ( 2 ) , 110 ( 3 ) , 110 ( X ) to execute jobs 
108 ( 1 ) , 108 ( 2 ) , 108 ( 3 ) , . 108 ( X ) from the queue 130 as 
specified by the policy 132 for the application 104. The 
policy selection module 134 is configured to dynamically 
choose which policy 132 to implement from among the 
plurality of policies to manage operation of the job pool 112 , 
and therefore how to execute jobs 108 in parallel using the 
job pool 112 , e.g. , for a given application 104. The policy 
selection module 134 , for instance , selects the policy 132 
that minimizes regret and therefore exhibits a least amount 
of latency in job execution , thereby improving operation of 
the computing device 102. Further discussion of these and 
other examples is included in the following sections and 
shown in corresponding figures . 
[ 0039 ] In general , functionality , features , and concepts 
described in relation to the examples above and below are 
employed in the context of the example procedures 
described in this section . Further , functionality , features , and 
concepts described in relation to different figures and 
examples in this document are interchangeable among one 
another and are not limited to implementation in the context 
of a particular figure or procedure . Moreover , blocks asso 
ciated with different representative procedures and corre 
sponding figures herein are applicable together and / or com 
binable in different ways . Thus , individual functionality , 
features , and concepts described in relation to different 
example environments , devices , components , figures , and 
procedures herein are usable in any suitable combinations 
and are not limited to the particular combinations repre 
sented by the enumerated examples in this description . 
[ 0040 ] Multi - Arm Bandit Based Policy Selection Tech 
niques 
[ 0041 ] FIG . 3 depicts a system 300 in an example imple 
mentation showing operation of the job engine 106 of FIG . 
1 as implementing a threadpool for policy selection . FIG . 4 
depicts a system 400 in an example implementation showing 
operation of a threadpool of FIG . 3 in greater detail as 
generating performance data . FIG . 5 depicts a system 500 in 
an example implementation showing operation of a regret 
determination module of FIG . 3 in greater detail as gener 
ating regret data indicative of latency in operation of the 
threadpool to execute jobs from a queue . FIG . 6 depicts a 
system 600 in an example implementation showing opera 
tion of a policy selection module of FIG . 3 in greater detail 
as selecting a policy using a multi - arm bandit technique . 

a 

a 
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FIG . 7 depicts an example procedure 700 in which a policy 
is selected for managing lifecycles of job executors of a job 
pool using a multi - arm bandit technique . 
[ 0042 ] The following discussion describes techniques that 
are implementable utilizing the previously described sys 
tems and devices . Aspects of each of the procedures are 
implemented in hardware , firmware , software , or a combi 
nation thereof . The procedures are shown as a set of blocks 
that specify operations performed by one or more devices 
and are not necessarily limited to the orders shown for 
performing the operations by the respective blocks . In 
portions of the following discussion , reference will be made 
to FIGS . 1-9 . 
[ 0043 ] FIG . 3 depicts the job engine 106 as implemented 
in a threadpool 302 scenario in which a thread manager 
module 304 manages the job executors 110 as threads 
implemented by cores of a processing system 116. Although 
configuration of the job executors 110 as threads 306 ( 1 ) 
306 ( X ) and the job pool 112 as a threadpool 302 is 
described , this example is equally applicable to the other job 
execution scenarios as described in relation to FIGS . 1 and 
2 . 
[ 0044 ] This example begins by receipt of a plurality of 
policies 132 by a job engine 106. Each of the policies 132 
defines respective criteria used by the job engine 106 to 
control lifecycles of job executors for execution of jobs from 
a queue 130 by a job execution environment of a computing 
device ( block 702 ) . In one example , the plurality of policies 
132 are included as part of the application 104 and therefore 
are received by the job engine 106 from the application 104 
and stored in a storage device 318. In another example , a 
repository includes a plurality of preconfigured policies 132 
that are maintained separately from the application 104 in 
the storage device 318. A variety of other examples are also 
contemplated . 
[ 0045 ] The policies 132 describe criteria used to control 
lifecycles of the job executors 110 , e.g. , the threads 306 ( 1 ) 
306 ( X ) in this instance . The criteria may vary in complexity , 
such as to employ fixed numbers of job executors 110 , 
conditions to create and / or terminate the job executors 110 , 
e.g. , based on resource utilization , types of jobs 108 for 
execution , portions of application 104 being executed , avail 
ability of computational resources of the computing device 
102 , and so forth . For example , the policies may describe a 
minimum number of job executors 110 that are available , a 
maximum number of job executors 110 to be made available 
in the job pool 112 to the application 104 , a death rate ( e.g. , 
after completion of execution of a job 108 , the job executors 
110 are terminated accordingly to a Bernoulli Distribution ) , 
a birth rate ( e.g. , the job executors 110 are created accord 
ingly to a Bernoulli Distribution ) , and so forth . 
[ 0046 ] In FIG . 3 , the job engine 106 utilizes multi - arm 
bandit techniques to choose between different policies 132 
to manage lifecycles of threads 306 ( 1 ) , 306 ( 2 ) , 306 ( 3 ) , . . 
, 306 ( X ) in a threadpool 302 for execution of respective jobs 
108 ( 1 ) , 108 ( 2 ) , 108 ( 3 ) , 108 ( X ) from the queue 130. As 
previously described , a job 108 “ ( I ) " is a sequence of 
instructions " ( I ; ) ien ” that are understood by underlying 
hardware components of the computing device 102 , e.g. , as 
assembly language of an underlying processor . 
[ 0047 ] Each of these instructions " ( I. ) " takes time “ T ; ” to 
execute . In some instances “ T , " is fixed , for example , when 
pure arithmetic operations are involved . In other instances 
“ T ; ” is not fixed , particularly when involving I / O instruc 

tions . In multi - tasking systems , there are typically instruc 
tions “ It ” and “ Ik + 1 ” between which there are additional 
instructions from other jobs or applications that are being 
scheduled . This gap , denoted as “ G? " between “ Ik " and 
“ Ik + 1 , ” induces stochastic behavior in the application 104 
and is a dominant feature of a multi - tasking system . When 
several jobs are executed ( and corresponding instructions / 
operations of those jobs ) , then “ G " for a given job 108 has 
a higher degree of stochasticity , i.e. , randomness . An 
increase in the size of gaps decreases the performance in 
executing a job 108 , i.e. , increases latency . Therefore , gaps 
and effective parallelism of jobs 108 are two opposing forces 
that determine overall latency for execution of a given set of 
jobs 108 . 
[ 0048 ] The job engine 106 in this example employs an 
energy - based model for latencies in job execution as part of 
the multi - armed bandit technique . The job engine 106 is 
tasked with making one of three decisions : 

[ 0049 ] ( 1 ) keep the policy the same ; 
[ 0050 ] ( 2 ) ( 11 ) look for a policy to increase a number of 

threads ; or 
[ 0051 ] ( 3 ) ( ) look for a policy to decrease a number of 

threads . 
The last two decisions are made with a goal of pulling down 
the overall “ energy configuration ” which is mapped to 
latencies in job execution by the computing device 102. In 
the following , the job engine 106 utilizes multi - arm bandit 
techniques to determine which policy minimizes regret 
defined as latency without requiring knowledge of underly 
ing hardware and software functionality of the job execution 
environment 114 and even without having insight into 
operation of the individual policies 132 . 
[ 0052 ] A determination is made by the job engine 106 as 
to which policy of the plurality of policies 132 minimizes 
regret that is defined based on latency ( block 704 ) . To do so , 
the job engine 106 selects policies 132 through use of the 
policy selection module 134. These policies 132 are then 
used by a thread manager module 304 to control a lifecycle 
of threads 306 ( 1 ) -306 ( X ) in the threadpool 302. Control of 
the lifecycle of the threads 306 ( 1 ) -306 ( X ) includes follow 
ing criteria of the policy 132 by the thread manager module 
304 to create and terminate threads 306 ( 1 ) -306 ( X ) for 
execution of jobs 108 ( 1 ) -108 ( X ) . 
[ 0053 ] FIG . 4 depicts a system 400 in an example imple 
mentation showing operation of a threadpool 302 of FIG . 3 
in greater detail as generating performance data 308 that 
describes performance , respectively of the plurality of poli 
cies ( block 706 ) . The threadpool 302 manages lifecycles of 
threads 306 ( 1 ) -306 ( X ) to execute respective jobs 108 ( 1 ) 
108 ( X ) . The threads 306 ( 1 ) -306 ( X ) may run in parallel , 
provided that the underlying processing system 116 of the 
computing device 102 is multicore . Jobs 108 ( 1 ) -108 ( X ) are 
executable asynchronously when not accessing a shared 
resource . A threadpool ( I ) can be represented as a tuple : 

I : = ( T , Q , P , 3,3 ) > 

where : 
[ 0054 ] T : = set of threads associated with the threadpool ( 
I ) ; 
[ 0055 ] @ : = queue of jobs currently pooled for execution by 
the threadpool ; 
[ 0056 ] P : = policy to create or destroy threads , and pick 
jobs from the queue ( @ ) ; 

i 
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1 
" u ( P , I , T ) = ( out1.5.09 gITI , I , P ) ) sigmoid ( -wTl ) 

9 

[ 0063 ] Returning again to FIG . 4 , upon completion of the 
jobs 108 ( 1 ) -108 ( N ) by the threadpool 302 , performance data 
308 is generated describing characteristics of this execution . 
In an example , this is expressed as a performance tuple 402 
that contains one or more of the following values : 

[ 0064 ] i . average run time of individual jobs 404 ( Rp ) -if 
“ ” is set of jobs executed by the threadpool 302 then , 

a 
2 

n 

“ ? g : = ( Tn . ? n ' ? n ' J 
" Ry tj , " 

n jeJ 

ky k . , 

ky ky 
at 11 

where “ ; " is an amount of time taken to execute the “ jth ” 
job . 

[ 0065 ] ii . average run time of overall jobs 406 ( R ) -if “ 
I ” is set of jobs executed by the threadpool 302 then , 2 

[ 0057 ] I : = T CT is the subset of threads that have picked 
job from the threadpool ; and 
[ 0058 ] 3 : = set of jobs currently picked up by the threads . 
A thread is denoted by “ t ; ” or “ ta ” where “ 1 ” or “ a ” belong 
to a suitable indexing set . A job is denoted by “ j , " or " Jaya 
where “ r ” or “ yes belong to a suitable indexing set . “ JUR ' 
is set of all jobs associated with the threadpool 302. Thus , “ j * 
EIVQ ” and “ t * ET CT . " 
[ 0059 ] Let'n EN ” be a horizon , where " n " denotes a time 
value “ tn " of a respective timestep or a “ tick - n ” depending 
on context . Instantiations / implementations of the threadpool 
302 for respective policies 132 are denoted by “ I „ " where 

n ” and “ ( * n ) " corresponds to the 
values of “ ( * ) ” at the instant “ n . ” In the following , “ p » = P 
is considered a constant , that is a policy 132 for a given 
threadpool 302 is a constant . Thus , a threadpool implement 
ing a corresponding policy in denoted as “ T where " P 
is the associated policy . “ I , is an instantiation of “ T 
the horizon “ n . " 
[ 0060 ] Thus , the job engine 106 in this example is con 
figured to make a choice from a set “ T : = [ 2 kj ” of policies 
132 implemented by the threadpool 302 where each policy 
132 can be denoted as an arm or machine in a multi - arm 
bandit technique . Threadpool 302 , as part of implementation 
of the policies 132 , interacts within a job execution envi 
ronment 114 “ e ” that includes hardware components ( e.g. , 
processing system 116 , memory system 118 , network sys 
tem 120 , and other systems 122 ) as well as software 124 that 
is used to interact with the hardware components ( e.g. , an 
operating system 126 ) , competing applications 128 , and 
other hardware / software resources . 
[ 0061 ] In order to make the determination as to which 
policy of the plurality of policies 132 are to be employed to 
manage the threadpool 302 , an energy - based model is 
employed in which the higher the energy of the system , the 
higher the latencies . Interactions increase system energy , 
while true parallelism involves a decrease ( dissipation ) of 
energy . Increases in the speed of execution ( i.e. , a reduction 
in latency ) thus involves a decrease in the overall energy of 
the system . Thus , the energy - based model is denoted as 
follows : 

P ( r ; yl 7 ) = P ( r :( , J , 7 ) | I ) = V ( rlu ( " , ) , / . ) , 0 ) , 

TI " R = 
ITI ' 

where “ Ty 64 

9 

ko , , 

9 

where “ N ” is gaussian , and " = 1 , u ( P , 3,1 ) ” is analogous 
to Fermi - Dirac statistics , where : 

is an amount of time taken to execute the set 
3. " With parallelism , “ R < / " is expected and " Rk of 
threadpool executing policy “ I is less than “ Rl ” of thread 
pool executing policy “ ql ” if the number of threads “ I kj ” 
is greater than “ gl . ” Though with parallelism this expec 
tation may or may not hold due to interactions , although in 
practice it has been observed that “ R * < R ” if “ 7 kl > I'l . ” 
Thus , parallelism negatively affects performance in execu 
tion of individual jobs 108 in most instances . 

[ 0066 ] iii . number of active threads 408 ( 1T 1 ) ; 
[ 0067 ] iv . number of threads in Threadpool 410 ( 1T 1 ) ; 

and 
[ 0068 ] V. reward_mean 412 ( u ) specific to the criterion 

that is manually set by a user . 
Thus , the performance data 208 is expressed as a sequence 
of tuples : ( RF , R , IT I , IT ] , u ) . 
[ 0069 ] Returning again to FIG . 3 , the performance data 
308 is passed from the threadpool 302 as an input to a regret 
determination module 310. The regret determination module 
310 employs a regret model 312 to generate regret data 314 
using machine learning . The regret data 314 defines an 
amount of latency based on the performance data 308 for the 
plurality of policies , respectively ( block 708 ) . Regret , also 
referred to as opportunity loss , defines a difference between 
an actual payoff and a payoff that would have been obtained 
if a different course of action had been chosen . In this 
example , regret is defined with respect to latency , and 
therefore minimizing regret is used to decrease latency in 
operation of the computing device 102 . 
[ 0070 ] FIG . 5 depicts an example system 500 showing 
operation of the regret determination module 310 of FIG . 3 
in greater detail . The regret determination module 310 
receives as an input the performance data 308 and , using a 
regret model 312 , generated regret data 314 describing an 
energy state 510 in accordance with the energy model 
described above . The regret model 312 , also referred to as a 
generalized threadpool regret model ( GTRM ) in the follow 
ing is a neural model , fit on “ ( Ry , R , 17 , | T , u ) ” where " u ” 

1 / u ( P , I , T ) = 
g ( T , I , P ) 

1 + e - a ( T - no ) 

2 

P 

[ 0062 ] “ 1 / u ( : P , J I ) " is included on the left side of the 
equation because the right - hand side represents a model for 
latency . The value “ a ” is a factor representing job interac 
tions , “ IT | ” denotes a number of threads , “ no ” is the higher 
value of a number of threads ; and values of “ 7 \ " greater 
than “ no ” increases latency . The inverse of " g ( 1T 1,3 , P ) " 
denotes a degree of parallelism of jobs 108 from the appli 
cation 104. Thus , for faster execution , “ g ( 17 1,3 , P ) ” is 
smaller . The term “ 1 / ( 1+ :) ” is analogous to sigmoid . 
Thus , “ 1 / u ( P , 3,1 ) = g ( 1.1 1,4 , P ) xsigmoid ( Wo + w , | 3 1 ) . " The 
values “ g ( ) ” and “ a ” are modeled as an output of a neural 
model , and enumerated from the neural model , 

e - all - ne ) 

P 

2 
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is the dependent variable . The regret model includes an 
LSTM decoder 502 , LSTM encoder 504 , and two fully 
connected units 506 508 forming the following cascade : 

indicates text missing or illegible when filed 

k " 
n . 

n 
1 = 1 

[ 0071 ] The LSTM pairs form a decoder - encoder model , 
where the output of the LSTM decoder 502 represents the 
energy state of the system . The output of fully connected 
units 506 , 508 corresponds to each of the threadpool 
implemented policies . 
[ 0072 ] Various notions of latency are associated with job 
execution . One definition of latency is associated with the 
average run time of jobs . The other is associated with a given 
application 104. A third notion is a composition of these last 
two latencies . If “ 1 * " is the maximum speed ( inverse of least 
latency ) the most efficient policy - implemented thread 
pool in “ T : = [ z k ] , ” and “ lk ” is the speed ( inverse of latency ) 
associated with threadpool arm “ k , " then regret is defined as 
" Spk : = 1 * -1 * . ” Along a horizon , regret is denoted as “ rn The 
goal is to minimize “ E [ E ; = " 18 ] = E [ E ; = 1 " 1 * ] - E [ E ; = ; " 1 ' } " 
where i ; E [ k ] is an arm instance . 
[ 0073 ] When a threadpool instance " q " is executing , its I 
impact on operation of the computing device 102 is because 
of the policy “ p ” associated with it , the nature of jobs “ J ? 
running in parallel , and thirdly through a number of threads 
that are being executed “ T. ” This impact is denoted as the 
tuple “ Y : = ( P , 2,3 ) ” along the horizon denoted as " yok . ” As 
an example , if “ I includes jobs 108 that consume a 
significant amount of memory , then a bigger set “ T ” ( that is 
“ IT I , ” number of active threads is large ) leads to higher 
latencies . A policy “ P , " which increases “ p3 | ” and “ T ) " 
( by invoking an additional number of threads and executing 
an additional number of jobs ) decreases efficiency , and 
hence is not favorable . System memory , hardware resources , 
and competing programs are latent variables that are typi 
cally not measurable by a human being or otherwise due to 
lack of insight into operational interactions and nature of 
impact of those interactions on performance . 
[ 0074 ] Accordingly , the tuple “ p and current system state 
“ I ” affects a latent regret ( vector ) variable “ z ” which is the 
parent of regret “ r . ” Further , the system state “ I ” is a 
component that represents an external environment in which 
the application 104 is executed and is not under the direct 
control of the application 104. This results in the following 
graphical model : “ y = z = > r ” which a corresponding estimate 
as follows : 

[ 0075 ] The regret data is then passed from the regret 
determination module 310 to a policy selection module 134 . 
A bandit module 316 is then employed by the policy 
selection module 134 to select a policy 132 from the 
plurality of policies 132 by a model as part of a multi - arm 
bandit technique ( block 710 ) . Functionality of the policy 
selection module 134 is illustrated as being implemented by 
a statistical model generation module 602 and a bandit 
module 316 in the example system 600 of FIG . 6 . 
[ 0076 ] To begin , regret data 314 is received by the policy 
selection module 134. A statistical model generation module 
602 is then employed to form a statistical model 604 based 
on the regret data 314. The statistical model 604 describes a 
plurality of reward distributions 606 for a plurality of 
policies , respectively . The statistical model 604 may be 
generated in a variety of ways , such as through use of 
regression analysis techniques including linear regression . 
In this way , the statistical model 604 includes a reward 
distribution 606 for each of the policies 132 , which may be 
further refined ( i.e. , learned ) through exploration or lever 
aged through exploitation . 
[ 0077 ] The statistical model 604 is then employed by a 
bandit module 316 to generate a policy selection 612. As 
part of this , the bandit module 316 is configured to address 
a tradeoff between exploration as implemented by an explo 
ration module 608 and exploitation as implemented by an 
exploitation module 610. In exploration , the policy selection 
612 is generated to improve knowledge about a relationship 
( e.g. , linear relationship ) between the feature vector and the 
reward , e.g. , to further refine the statistical model 604 as 
increasing knowledge of the reward through use of the regret 
data 314. Thus , exploration is implemented by the explora 
tion module 608 to increase an amount of data gathered for 
each of the plurality of policies as serving as a basis for the 
policy selection 612. An example of an exploration tech 
nique that may be implemented by the exploration module 
608 includes a uniform sampling exploration technique . 
[ 0078 ] In exploitation as implemented by the exploitation 
module 610 , the policy selection 612 is generated to maxi 
mize effectiveness in minimizing regret ( i.e. , latency ) , e.g. , 
based on the reward distribution 606 of the statistical model 
604 for respective policies . An example of an exploitation 
technique includes an upper confidence bound ( UCB ) tech 
nique . 
[ 0079 ] Thus , in exploitation as implemented by the exploi 
tation module 610 a policy selection 612 is generated to 
maximize a reward at an individual time step . Exploration as 
implemented by the exploration module 608 is used to 
increase knowledge and accuracy of the reward distributions 
606 , e.g. , a confidence interval for each distribution . This 
increased knowledge and accuracy may then be used to 
further exploit collection of rewards for future time steps 
and thus maximize the reward for a series of times steps “ T. ” 
[ 0080 ] In this way , the policy selection module 134 is 
configured to address a tradeoff involves balancing a goal of 
selecting the policy 132 that is most effective and determin 
ing which policy 132 is most effective . Thus , in some 
instances it may be desirable to generate a policy selection 
612 for a sub - optimal policy 132 ( i.e. , is less effective ) to 
learn more about the linear relationship between the policy 
and the reward and thus increase a likelihood of accuracy of 
the policy selection 612 . 
[ 0081 ] The bandit module 316 in one example implements 
the multi - arm bandit technique as an upper confidence 

a 

a indicates text missing or illegible when filed 

The values : 
P ( riz , y.I ) = P ( r?z , 7 ) 

a 
2 

are set as such because “ z ” is a direct parent of “ r . ” Thus , 
given a job execution environment “ 7 , " the impact tuple " spor 
indexes into those " z " for which the value of " P ( r / 7,1 ) " is 
higher for lower regret . 
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a bound ( UCB ) bandit algorithm as described above . For 
example , the bandit module 316 employs upper confidence 
bound calculations as follows : 

indicates text missing or illegible when filed 

Here , “ 1 ” is “ ith ” arm , ( i.e. , policy ) , “ G = 1 / n ?, " where “ n ” is 
the number of iterations algorithm executes at the minimum 
( one thousand or greater ) and the value “ 7 ( t ) " is the number 
of times the " ith ” arm is executed until time “ t . ” 
[ 0082 ] In an implementation , the explore tendency is kept 
alive , even when the bandit module 316 exhibits conver 
gence towards a particular arm . This is implemented to 
allow the application 104 to remain agile to changes to the 
job execution environment during runtime , which is other 
wise not possible if the policy selection module 134 keeps 
on exploiting a single arm without additional exploration . 
Exploration is performed with a minimum probability of 
0.05 . The bandit module 316 then chooses the arm ( i.e. , 
policy 132 ) based on sampling values from the regret data 
314. The value “ u ; ” thus received is used to sample weights 
from the gaussian distribution “ W ; ~ N ( • lui 1 ) . " Each of 
these weights is used as weights for discrete distributions to 
choose the arms and corresponding policies 132. An 
example 800 of an implementation of regret and a multi 
armed bandit technique together is illustrated in FIG . 8 . 
[ 0083 ] The policy 132 referenced by the policy selection 
612 is then used to control lifecycles of the job executors 110 
for execution of subsequent jobs 108 from the queue 130 
( block 712 ) . This may be performed , for instance , to “ set ” a 
particular policy 132 for use by the application 104. In 
another example , these techniques continue over runtime 
( e.g. , at set time periods or constantly ) to dynamically adjust 
to changes in the job execution environment 114. In this 
way , operational efficiency of the job execution environment 
114 and more particularly com ents of the environment 
such as a processing system 116 , memory system 118 , 
network system 120 , other systems 122 , and software 124 is 
improved . 
[ 0084 ] In a testing implementation , loss is measured with 
respect to a number of epochs ( for the " goodness ” of the 
regret determination ) and convergence of the multi - arm 
bandit technique . Example results 900 are shown in FIG . 9 , 
which illustrates that after 40 epochs convergence is 
reached . As shown in FIG . 9 , when the operation of the job 
execution environment is stationary , then the latency - net 
quickly converges . However , when the job execution envi 
ronment is burdened by other applications or its focus 
changes , then latency - net starts looking for a newer conver 
gence . This illustrates advantages of continued exploration 
described above . 
[ 0085 ] Example System and Device 
[ 0086 ] FIG . 10 illustrates an example system generally at 
1000 that includes an example computing device 1002 that 
is representative of one or more computing systems and / or 
devices that implement the various techniques described 
herein . This is illustrated through inclusion of the job engine 
106. The computing device 1002 is configurable , for 
example , as a server of a service provider , a device associ 

ated with a client ( e.g. , a client device ) , an on - chip system , 
and / or any other suitable computing device or computing 
system . 
[ 0087 ] The example computing device 1002 as illustrated 
includes a processing system 1004 , one or more computer 
readable media 1006 , and one or more I / O interface 1008 
that are communicatively coupled , one to another . Although 
not shown , the computing device 1002 further includes a 
system bus or other data and command transfer system that 
couples the various components , one to another . A system 
bus can include any one or combination of different bus 
structures , such as a memory bus or memory controller , a 
peripheral bus , a universal serial bus , and / or a processor or 
local bus that utilizes any of a variety of bus architectures . 
A variety of other examples are also contemplated , such as 
control and data lines . 
[ 0088 ] The processing system 1004 is representative of 
functionality to perform one or more operations using hard 
ware . Accordingly , the processing system 1004 is illustrated 
as including hardware element 1010 that is configurable as 
processors , functional blocks , and so forth . This includes 
implementation in hardware as an application specific inte 
grated circuit or other logic device formed using one or more 
semiconductors . The hardware elements 1010 are not lim 
ited by the materials from which they are formed or the 
processing mechanisms employed therein . For example , 
processors are configurable as semiconductor ( s ) and / or tran 
sistors ( e.g. , electronic integrated circuits ( ICs ) ) . In such a 
context , processor - executable instructions are electroni 
cally - executable instructions . 
[ 0089 ] The computer - readable storage media 1006 is illus 
trated as including memory / storage 1012. The memory / 
storage 1012 represents memory / storage capacity associated 
with one or more computer - readable media . The memory / 
storage 1012 includes volatile media ( such as random access 
memory ( RAM ) ) and / or nonvolatile media ( such as read 
only memory ( ROM ) , Flash memory , optical disks , mag 
netic disks , and so forth ) . The memory / storage 1012 
includes fixed media ( e.g. , RAM , ROM , a fixed hard drive , 
and so on ) as well as removable media ( e.g. , Flash memory , 
a removable hard drive , an optical disc , and so forth ) . The 
computer - readable media 1006 is configurable in a variety 
of other ways as further described below . 
[ 0090 ] Input / output interface ( s ) 1008 are representative of 
functionality to allow a user to enter commands and infor 
mation to computing device 1002 , and also allow informa 
tion to be presented to the user and / or other components or 
devices using various input / output devices . Examples of 
input devices include a keyboard , a cursor control device 
( e.g. , a mouse ) , a microphone , a scanner , touch functionality 
( e.g. , capacitive or other sensors that are configured to detect 
physical touch ) , a camera ( e.g. , employing visible or non 
visible wavelengths such as infrared frequencies to recog 
nize movement as gestures that do not involve touch ) , and 
so forth . Examples of output devices include a display 
device ( e.g. , a monitor or projector ) , speakers , a printer , a 
network card , tactile - response device , and so forth . Thus , the 
computing device 1002 is configurable in a variety of ways 
as further described below to support user interaction . 
[ 0091 ] Various techniques are described herein in the 
general context of software , hardware elements , or program 
modules . Generally , such modules include routines , pro 
grams , objects , elements , components , data structures , and 
so forth that perform particular tasks or implement particular 
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abstract data types . The terms “ module , " " functionality , ” 
and “ component ” as used herein generally represent soft 
ware , firmware , hardware , or a combination thereof The 
features of the techniques described herein are platform 
independent , meaning that the techniques are configurable 
on a variety of commercial computing platforms having a 
variety of processors . 
[ 0092 ] An implementation of the described modules and 
techniques is stored on or transmitted across some form of 
computer - readable media . The computer - readable media 
includes a variety of media that is accessed by the computing 
device 1002. By way of example , and not limitation , com 
puter - readable media includes " computer - readable storage 
media " and " computer - readable signal media . " 
[ 0093 ] “ Computer - readable storage media ” refers to 
media and / or devices that enable persistent and / or non 
transitory storage of information in contrast to mere signal 
transmission , carrier waves , or signals per se . Thus , com 
puter - readable storage media refers to non - signal bearing 
media . The computer - readable storage media includes hard 
ware such as volatile and non - volatile , removable and non 
removable media and / or storage devices implemented in a 
method or technology suitable for storage of information 
such as computer readable instructions , data structures , 
program modules , logic elements / circuits , or other data . 
Examples of computer - readable storage media include but 
are not limited to RAM , ROM , EEPROM , flash memory or 
other memory technology , CD - ROM , digital versatile disks 
( DVD ) or other optical storage , hard disks , magnetic cas 
settes , magnetic tape , magnetic disk storage or other mag 
netic storage devices , or other storage device , tangible 
media , or article of manufacture suitable to store the desired 
information and are accessible by a computer . 
[ 0094 ] “ Computer - readable signal media ” refers to a sig 
nal - bearing medium that is configured to transmit instruc 
tions to the hardware of the computing device 1002 , such as 
via a network . Signal media typically embodies computer 
readable instructions , data structures , program modules , or 
other data in a modulated data signal , such as carrier waves , 
data signals , or other transport mechanism . Signal media 
also include any information delivery media . The term 
“ modulated data signal ” means a signal that has one or more 
of its characteristics set or changed in such a manner as to 
encode information in the signal . By way of example , and 
not limitation , communication media include wired media 
such as a wired network or direct - wired connection , and 
wireless media such as acoustic , RF , infrared , and other 
wireless media . 
[ 0095 ] As previously described , hardware elements 1010 
and computer - readable media 1006 are representative of 
modules , programmable device logic and / or fixed device 
logic implemented in a hardware form that are employed in 
some embodiments to implement at least some aspects of the 
techniques described herein , such as to perform one or more 
instructions . Hardware includes components of an integrated 
circuit or on - chip system , an application - specific integrated 
circuit ( ASIC ) , a field - programmable gate array ( FPGA ) , a 
complex programmable logic device ( CPLD ) , and other 
implementations in silicon or other hardware . In this con 
text , hardware operates as a processing device that performs 
program tasks defined by instructions and / or logic embodied 
by the hardware as well as a hardware utilized to store 
instructions for execution , e.g. , the computer - readable stor 
age media described previously . 

[ 0096 ] Combinations of the foregoing are also be 
employed to implement various techniques described herein . 
Accordingly , software , hardware , or executable modules are 
implemented as one or more instructions and / or logic 
embodied on some form of computer - readable storage 
media and / or by one or more hardware elements 1010. The 
computing device 1002 is configured to implement particu 
lar instructions and / or functions corresponding to the soft 
ware and / or hardware modules . Accordingly , implementa 
tion of a module that is executable by the computing device a 
1002 as software is achieved at least partially in hardware , 
e.g. , through use of computer - readable storage media and / or 
hardware elements 1010 of the processing system 1004. The 
instructions and / or functions are executable / operable by one 
or more articles of manufacture ( for example , one or more 
computing devices 1002 and / or processing systems 1004 ) to 
implement techniques , modules , and examples described 
herein . 
[ 0097 ] The techniques described herein are supported by 
various configurations of the computing device 1002 and are 
not limited to the specific examples of the techniques 
described herein . This functionality is also implementable 
all or in part through use of a distributed system , such as 
over a “ cloud ” 1014 via a platform 1016 as described below . 
[ 0098 ] The cloud 1014 includes and / or is representative of 
a platform 1016 for resources 1018. The platform 1016 
abstracts underlying functionality of hardware ( e.g. , servers ) 
and software resources of the cloud 1014. The resources 
1018 include applications and / or data that can be utilized 
while computer processing is executed on servers that are 
remote from the computing device 1002. Resources 1018 
can also include services provided over the Internet and / or 
through a subscriber network , such as a cellular or Wi - Fi 
network . 
[ 0099 ] The platform 1016 abstracts resources and func 
tions to connect the computing device 1002 with other 
computing devices . The platform 1016 also serves to 
abstract scaling of resources to provide a corresponding 
level of scale to encountered demand for the resources 1018 
that are implemented via the platform 1016. Accordingly , in 
an interconnected device embodiment , implementation of 
functionality described herein is distributable throughout the 
system 1000. For example , the functionality is implement 
able in part on the computing device 1002 as well as via the 
platform 1016 that abstracts the functionality of the cloud 
1014 . 

a 

CONCLUSION 

a 

[ 0100 ] Although the invention has been described in lan 
guage specific to structural features and / or methodological 
acts , it is to be understood that the invention defined in the 
appended claims is not necessarily limited to the specific 
features or acts described . Rather , the specific features and 
acts are disclosed as example forms of implementing the 
claimed invention . 
What is claimed is : 
1. In a digital medium job execution environment , a 

system comprising : 
a thread pool implemented by a computing device to 

generate performance data describing performance , 
respectively , of a plurality of policies , each said policy 
controlling lifecycles of threads for execution of jobs 
from a queue ; 
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a regret determination module implemented by the com 
puting device to generate regret data by a model using 
machine learning by the computing device , the regret 
data defining an amount of latency based on the per 
formance data for the plurality of policies , respectively ; 

a policy selection module implemented by the computing 
device to select a policy from the plurality of policies 
by a model as part of a multi - arm bandit technique , the 
selected policy used by the thread pool to control 
lifecycles of the threads as part of execution of subse 
quent jobs from the queue . 

2. The system as described in claim 1 , wherein the 
lifecycles define creation and removal of respective said 
threads as part of operation of a processing system of the 
computing device . 

3. The system as described in claim 1 , wherein the 
performance data describes a number of active threads , a 
number of threads in the thread pool executed as corre 
sponding to a respective said policy , and an amount of time 
spent executing the jobs . 

4. The system as described in claim 1 , wherein the queue 
of jobs includes parallel jobs involving independent opera 
tion and shared - resource jobs involving a shared resource by 
at least two said jobs . 

5. The system as described in claim 1 , wherein the regret 
is based on latency as an amount of time used by a 
processing system of the computing device for the execution 
of said jobs . 

6. The system as described in claim 1 , wherein the latency 
is defined as an average runtime of individual said jobs . 

7. The system as described in claim 1 , wherein the latency 
is defined as an average runtime of an overall collection of 
said jobs . 

8. The system as described in claim 1 , wherein the 
multi - arm bandit technique is defined such that each policy 
of the plurality of policies is modeled as a respective arm of 
a plurality of arms and the policy selection module uses the 
multi - arm bandit technique to select the policy based on 
exploration and exploitation . 

9. In a digital medium job execution environment , a 
method implemented by a computing device , the method 
comprising : 

receiving , by the computing device , a plurality of policies , 
each said policy defining respective criteria used by a 
job engine to control lifecycles of job executors for 
execution of jobs from a queue by a job execution 
environment of the computing device ; 

determining , by the computing device , which policy of 
the plurality of policies minimizes regret that is defined 
based on latency , the determining performed by a 
model as part of a multi - arm bandit technique using 
machine learning ; and 

controlling , by the computing device automatically and 
without user intervention responsive to the determin 
ing , lifecycles of the job executors for execution of 
subsequent jobs from the queue using the determined 
policy . 

10. The method as described in claim 9 , wherein the job 
executors are threads included as part of a threadpool , the 
threads defining a sequence of programmed instructions that 
are independently manageable as part of execution by a 
processing system implemented by hardware components of 
the job execution environment of the computing device . 

11. The method as described in claim 9 , wherein the job 
executors are memory executors included as part of a 
memory pool , the memory executors defining operations 
involving reading and writing to and from a memory system 
implemented by hardware components of the job execution 
environment of the computing device . 

12. The method as described in claim 9 , wherein the job 
executors are network executors included as part of a 
network pool , the network executors defining operations 
involving transmitting and receiving data via a network 
using a network system implemented by hardware compo 
nents of the job execution environment of the computing 
device . 

13. The method as described in claim 9 , wherein the 
lifecycles define creation and removal of respective said job 
executors as part of operation of hardware and software 
components of the job execution environment of the com 
puting device . 

14. The method as described in claim 9 , wherein the 
queue of jobs includes parallel jobs involving independent 
operation and shared - resource jobs involving a shared 
resource by at least two said jobs . 

15. The method as described in claim 9 , wherein the regret 
is based on latency as an amount of time used for the 
execution of the jobs by hardware components of the 
computing device in accordance with respective said poli 
cies . 

16. The method as described in claim 9 , wherein the 
latency is defined as an average runtime of individual said 
jobs or an average runtime of an overall collection of said 
jobs . 

17. The method as described in claim 9 , wherein the 
multi - arm bandit technique is defined such that each policy 
of the plurality of policies is modeled as a respective arm of 
a plurality of arms . 

18. In a digital medium job execution environment , a 
system comprising : 
means for determining which policy of a plurality of 

policies minimizes regret that is defined based on 
latency , the determining performed by a model as part 
of a multi - arm bandit technique using machine learn 
ing , each said policy defining respective criteria used 
by a job engine to control lifecycles of job executors for 
execution of jobs from a queue by a job execution 
environment of a computing device ; and 

means for controlling lifecycles of the job executors for 
execution of subsequent jobs from the queue using the 
determined policy . 

19. The system as described in claim 18 , wherein the job 
executors are threads included as part of a threadpool , the 
threads defining a sequence of programmed instructions that 
are independently manageable as part of execution by a 
processing system implemented by hardware components of 
the job execution environment of the computing device . 

20. The system as described in claim 18 , wherein the job 
executors are : 
memory executors included as part of a memory pool , the 
memory executors defining operations involving read 
ing and writing to and from a memory system imple 
mented by hardware components of the job execution 
environment of the computing device ; or 

network executors included as part of a network pool , the 
network executors defining operations involving trans 
mitting and receiving data via a network using a 
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network system implemented by hardware components 
of the job execution environment of the computing 
device . 

* 


