US 20220284582A1

a2y Patent Application Publication o) Pub. No.: US 2022/0284582 Al

a9y United States

Yang et al. 43) Pub. Date: Sep. 8, 2022
(54) SELECTING A NEURAL NETWORK BASED GO6N 3/04 (2006.01)
ON AN AMOUNT OF MEMORY GO6N 3/10 (2006.01)
(71) Applicant: NVIDIA Corporation, Santa Clara, CA (52) US. ClL
(US) CPCcc..... GO6T 7/10 (2017.01); GO6T 7/0012

(72) Inventors: Dong Yang, Pocatello, ID (US); Yufan
He, Philadelphia, PA (US); Holger
Reinhard Roth, Rockville, MD (US);
Can Zhao, North Potomac, MD (US);
Daguang Xu, Potomac, MD (US)

(21) Appl. No.: 17/190,724

(2013.01); GO6N 3/0454 (2013.01); GO6N
3/10 (2013.01); GO6T 2207/20084 (2013.01)

(57) ABSTRACT

Apparatuses, systems, and techniques to select a neural

(22) Filed: Mar. 3, 2021 network using an amount of memory to be used. In at least
L . . one embodiment, a processor includes one or more circuits
Publication Classification to cause one or more neural networks to be selected from a
(51) Imt. ClL plurality of neural networks based, at least in part, on an
GO6T 7/10 (2006.01) amount of memory to be used by the one oe more neural
GO6T 7/00 (2006.01) networks.
TRAINING LOGIC/HARDWARE STRUCTURE(s) 115
f\—r———""""—""—""—"—"”"—"”"—"”""”/”"—”/ 7/ 7~ 7
| !
| CODE AND/OR !
|| PATASTORASE || paTA STORAGE | |
| - 105 !
| l ACTIVATION
LoD e S | STORAGE
120
ARITHMETIC LOGIC
UNIT(s) »
110

Patent Application Publication

Sep. 8,2022 Sheet 1 of 63

US 2022/0284582 Al

CODE AND/OR
DATA STORAGE
105

TRAINING LOGIC/HARDWARE STRUCTURE(s) 115

ACTIVATION

ARITHMETIC LOGIC
UNIT(s)
110

STORAGE
120

A

FIG. 1A

HARDWARE STRUCTURE(s) 115

DATA STORAGE
101

CODE AND/OR
DATA STORAGE

105

COMPUTATIONAL
HARDWARE
102

COMPUTATIONAL
HARDWARE

106

BN

.

ACTIVATION STORAGE
120

FIG. 1B

US 2022/0284582 Al

Sep. 8,2022 Sheet 2 of 63

Patent Application Publication

vic
jnsay

80¢
jeinaN
pauie]

i

[4¥4

19sBIB(Q MON

¢ 9Old

90¢
MJOMION
[BdNON paulelun

y0¢
ylomauwei4 Buiuies |

20¢
1eseieg

Buiutel |

Patent Application Publication Sep. 8,2022 Sheet 3 of 63 US 2022/0284582 A1

DATA CENTER
300 T

APPLICATION LAYER 34

APPLICATION(s) 342

SOFTWARE LAYER 330

SOFTWARE 332

FRAMEWORK LAYER 320

JOB CONFIGURATION
SCHEDULER 322 | MANAGER 324

DISTRIBUTED FILE SYSTEM 328

RESOURCE MANAGER 326

DATA CENTER INFRASTRUCTURE LAYER 310
RESOURCE ORCHESTRATOR 312

GROUPED COMPUTING RESOURCES 314
115

NODE C.R. NODE C.R.|*®*® | NODE CR.

316(1
11

Y

==

Y h 4

A
= B

® 0

FIG. 3

US 2022/0284582 Al

Sep. 8,2022 Sheet 4 of 63

Patent Application Publication

Vv ¥ 'Old

9y
W3LSAS
HOSN3S Ty Ty
DIV¥E HOSNIS
8y by YOSN3S vy
HOLYALOY NOLLvyaiA =y 967 INOHAOWIIN 7/ NOLLVYEIA HOSN3S
Divyd YOSN3S zsy YOSN3S ads gy
a33ds (S)40LYHIEIY Bivyg MOSN3S

oy
YOSN3S Hvan ‘\m,u [AUONHL g \ ¥var
09) N L , = - 09y
7 ¢ Y 85¥ (S)4OSN3IS 44 \ YOSN3S
: "

YOSNIS HY AW W
// SSND YOLVYNIDY Q X Hvavy
vy
m%wmum S 55 99y B~y
S {(s)doLvniov 0
JINOSYYLIN SN V/%M\ N LS (s)4OSN3S] NOHJO¥IIN
0Ly {S)IVYINVD =<0 5 N \ 75t
AAIIA-3AIM 0sp Ny V\N S W3LSAS \‘\ YOSN3S
89% INILSAS ONIYIILS \ o7t DINOSYHELIN
{s)vyanvd 0343Ls / NOISINGOYd 5 ‘\A IDVAHILNI
ovY " HHOMLIN 9ct
o Bluoas o6y (S)ITIOYLNOD
(SIVYINYD QIUVHANI ONIY3ILS 437 INOHJOUIIA Iy
ETAN§] (S)IVNNILNV
peb LININNYLSNI SSITIUIM
AV1dSIOIAH VLY (SIVHIINYD
ANNOYYUNS

Y/ 00V

v

<

o .

2 g ¥ 'Old

g

S

S

o

2]

-

9l¥ 86V
. 0Ly VH3INVO
VHINWYO FONVH-AIN
viy VHIWVYO JONVY-ONOT
(sIvd3INVD MIIA-FAIM

aNnoddnNs

vy (S)VHINVD
ANNOHHUNS

Sep. 8,2022 Sheet 5 of 63

a9y 89y

<mm2<o YHIAVYD
O343Ls 03y3aLs
(s)veaNVYD
o ANNOYYNS cLy 86y
VHINVYD QIHVHINI YHINYD
VHIANYD FONVH-QIN JONVH-ONOT

Patent Application Publication

Patent Application Publication Sep. 8,2022 Sheet 6 of 63 US 2022/0284582 A1

GNSS RADAR | | ULTRASONIC LIDAR MU
SENSOR(S) | | SENSOR(S) | | SENSOR(S) | | SENSOR(S) | | SENSOR(S) M'CROEQHGONE(S)
458 460 462 464 466 R

1 i]

i i i | i 1
STEREO |[WIDE-VIEW][INFRARED | SURROUND)[LONG-RANGE) | MID-RANGE
CAMERA(s) || CAMERA(s) || CAMERA(s)| ICAMERA(s)|| CAMERA(s) || CAMERA(s)

468 470 472 474 498 476
ST
INFOTAINMENT SoC 404(B)] (~CPU(s)

|| soC430) . 418
- \Na——
GPU(s)) 402 ~
|| INSTRUMENT 420
CLUSTER 432 (" PROCESSOR(S) 410) 115
\ T/
| s | HD MAP
| | HMIE DISPLAY . J 422

434 CACHE(S) 412 426
! > 2| | NETWORK
ADAS SYSTEM ACCELERATOR(S) 414 INTERFACE

| 438 | s | 424

115 J
| R —

DATA STORE(S)

CONTROLLER(S) |\l DATA STORE(S) 478

436 416 S~
l .

l l |) | l | .
STEERING | [VIBRATION SPEED BRAKE PROPULSION | [STEERING
SENSOR(s) | | SENSOR(s) | | SENSOR(s) | | SENSOR SYSTEM SYSTEM

440 442 444 SYSTEM 450 454

446 [| g

THROTTLE/ STEERING

BRAKE ACCELERATOR | | ACTUATORS
ACTUATORS 452 456

5-4-8‘ S J

US 2022/0284582 Al

Sep. 8,2022 Sheet 7 of 63

— —— b

O %

00¥ (SIHHOMLIN

Y

Sty | L& St St

| Hve7 oWey {© 7 7 [| @wey | | OeY [y
| Nd9 Ndo _ | ndo Ndo |

| A | _ A A
88y w
i | | A 4 . h 4 i
| | @vep | T e [T | Ve |
| Ndo | _ Ndo NdO |
| _ _ |
w “ | |
” | _ |
m ! _ J

(ﬂ:‘“""‘!

azsy Q ~ BIZer

R
I (I
I
Q
.:CQ
=
D&
@
@)
.
N
e
X
O]
tﬂ:
=3
Q01
Qo<
&)
o
;|: R

HOLIMS @10d | | HOLIMS @10d
A A A A
ogy

y Y Yy A4

ST SIT
aiosy VJ08F

Ndod - Ndo

877 (s)y3aAYSS

Patent Application Publication

Patent Application Publication Sep. 8,2022 Sheet 8 of 63 US 2022/0284582 A1

PROCESSOR 502 B EXECUTION UNIT 508
CACHE REGISTER FILE PACKE%Q.'FSET&UCT'ON
504 506 "'"
PROCESSOR BUS 510
514 518 MEMORY 520
GRAPHICS/ MEMORY
INSTRUCT! 1
VIDEG CARD ® CONEFEJ%LLER <‘L}_{> NSTRUCTION(S) 519
ole 516 DATA 521
@’ 522 LEGACY /O
DATA CONTROLLER 523
STORAGE K= (=D 1™ GSERINPOT AND !
524 | KEYBOARD |
| INTERFACES 525
o
WIRELESS CONTROLLER
TRANSCEIVER K— HUB SERIAL EXPANSION
526 530 K= PORT 527
FLASH BIOS AUDIO CONTROLLER
528 = = 529

I

NETWORK
CONTROLLER

s00 A — FIG. 5

US 2022/0284582 Al

Sep. 8,2022 Sheet 9 of 63

Patent Application Publication

— — 9 "Old
—— 555 aYvYOgAI NV
Lt 255 any HSvid | ¢8d —3 ' snans 55 HOSN3S
¥99 a ssvio Md geg S5 07 | > CIVNYFHL
SINOHLAvV3IH | | ANV 03000 Slefe NdL <
—— A U
=5 r olany __ yY yy ZSd . -
SHIAMYILS “«——> 099 0,1 | 3d00SOHAD
025 aaH |, VaH | d8d] as O —
H0955 | wvivs Ty v y 1L SSVAWOD
m pa—— : i 2z
260 (449N) < » —
; asn . .| O%0 "osN3s —
— m 18vN SNANS hlde
050 (44ON) |« 5iaS > — Ve
LINONVIM | > « ,| 08 anH —
219d 5. | HOSN3S Pl 199
4 3 HALINWOHATIOV
4
e G0 p—
759 IS SIT “ > — 0%9 avd
snamws! LINN D4N o honos
959 (449N) |l , —
LINAONYMM |] g 019 p v .| G20 NI3H0S
te asn HOSSFO0Nd ‘ o | monol
GGOSdD [« > —
O, ¥O LyvN < > 729
AYdSId
$G9 P R
VHINYD 0'E 9snN| ~
_\ S0 £4aad v/ 009
i

Patent Application Publication

Sep. 8,2022 Sheet 10

of 63 US 2022/0284582 Al

Computer System
700
Network ggg Display input
Interface — Devices Devices
122 115 706 708 Communication
? ? ? u Bus 710
Interconnect
¢ 718
Switch
720
PPU 714 PPU 714
7186 ‘ ’ 116
1151 | » | 115
PU714 PPU 714
716 < » 716
115 < » | 115
Parallel Processing System
712

FIG. 7

8 'Old

US 2022/0284582 Al

bl

] 058 21901 0¢8
JOVIHILNI JOV4H3LNI LINN
asn asn ONISS300dd

018
J31NdNOD

Sep. 8,2022 Sheet 11 of 63

A
Y
A
Y
A
A 4

¢8 MOILLS 85N

008
WNILSAS —
HILNAWOD

Patent Application Publication

US 2022/0284582 Al

Sep. 8,2022 Sheet 12 of 63

Patent Application Publication

(T"N)0Z6 (2026
AYOWIN NdD AHOW3INW NdO
(N)OS6 (2)626 (1-N)oss (1)626 (1)056
(2)ose
(NJOZ6 SIT SIT SiT gIT (1026
>m% a_\,_@mz (N)OLE BN 2076 1JoT6 AHOWIN
Ndo Ndo Ndo Ndo Ndo
(2)ove (1)ove
(N)ove (L-N)OP6
(WIT06 L skl 706
AHOWIN NJS06 (1506 AHOWIN
J0SS300dd ¥0S8S3I00Yd HOSSIDOHd J0OSS300¥d
IYOD-ILTNN IHOO-ILTNW
(N)aze Q26 (1)oz6

US 2022/0284582 Al

Sep. 8,2022 Sheet 13 of 63

Patent Application Publication

g6

Old

yi

AHOWIN WILSAS

" L p— qu“

5T | ST HOSS3D0Nd
. %mw | m W (S)3HOVO GUYHS || — — — — —— |
| - — b > 1| ome | !
| STT 9c6 L | (S)aHovo | ¢!
“ IHOVO L | ,“

. | 5106 |
— HOL134d _ . |
|| (A)EeE (N)ZEB ! : T g
| WaW e oNISS300Nd [| [p — L 00963400 1y
| Xd49 SOHAVHO srosuaLsioAEl % [EEEZE=s H
| , S)aHOVO | 9296 |
. . 86 LWOW || m o | 1 [(8)3HOWO “ |
L 4
" FAIS55 ZITE6 = I Ahv“ o el | "
WIN |6 ONISSTO0Hd ¢ | {096 340D
|
| xa0 SOHAVHD LWOW LAINU |y J— | |
. NOLLYMOIINI |1 SNE IONIFHIHOD r—————= T,
. (1)ges (17E6 HOLVyI1R00V |1 | V296 | _
|| WEN 6> DNISSA0OUd @ by | | (8)3HOVO | | _
| x4 SOIHdVyS | dY by - 576 N B
| 756 4LNJ Nt [P LINO¥ID K= T | wTgE |
AXO¥d

|
L N/ | V0% 300 | "
976 3TNAOW NOILYYI 1OV SOIHdvYD 0V6 b= -

US 2022/0284582 Al

Sep. 8,2022 Sheet 14 of 63

Patent Application Publication

716 AHOWIN NTALSAS
[T T T Mw llllllllll =
_ - 106
: 666 956 ¥0SSI00Yd !
AN (S)FHOVD QAUVHS |, — — — — — — _
lllllllllllllllll _ f |
| _ — . 4N 5296 !
| — : 8E6 . | (s)aHovo | | !
| b _ IHOVO | | "
. _ az96 | a1 _
po— gL
" _ :wmm ., (S)aHOVD , _ "
|
| ArEes NITE6 " | 1 5558 2w00 “ _
| Wan e ONISS300ud [« — aros a1l LD TS o
x4 SOIHAYAO " 576 SYILSIOTY ooz == =
~ . — T096 340D || 9% by
| . L1 356 twow || ()aHowo | |
~ b " IXZINOO 96 | “ |
1| (@)EE6 Q)€ _ e SNE IONIHIHOD A_w..y_ gleeanl | "
| Waw e ONISSID0Nd 4 :
|| x4 SOIHAVHO | | LLNON Ldun b |
. | %6 96 I 8096 3400)|
. || NOLLWVEDIINI K= LINDHID K| === —~— - |
I T7)E6 11e6 | | ¥OLv¥31300V AXO¥d | V206 | "
I W3N e ONISSTO0Ud 1€ || (S)3HOVYD | |
1| xd49 SOlHdvyo |/d¥| ££8 " 1 !
41N p— (= _
. 5E6 V| ot |
V96 g1 _
| 1Nl TIT] | |
. T
- o6 NS L V0% Iw00 1

Patent Application Publication Sep. 8,2022 Sheet 15 of 63 US 2022/0284582 A1

PROCESSOR 907
115
;— ~ APPLICATIONS80 | : APPLICATION |
| |
; GPU INVOCATION 981 | | : GPU INVOCATION ,
T | | |
SYSTEM MEMORY 914
A
APPLICATION EFFECTIVE | OS VIRTUAL ADDRESS :
ADDRESS SPACE 982 | SPACE 985 |
——————————— i
: PROCESS ELEMENTS | | :
|
| 2 , : SEGMENT/PAGE TABLES | |
| WORK ! , 280 |
! | DESCRIPTOR (WD) | | | |
* 984 | i A l
| —/—x | U [l
ACCELERATION INTEGRATION |
SLICE 990
MMU 939 |«
Y INT
Fé/}l/%H | REGISTERS J| INTERRUPT | 92
" 945 MGMT 947
9291
CONTEXT
MGMT 948
A
SAVE/ RESTORE
A 4 L 4
GRAPHICS ACCELERATION MODULE 946 | 115
EFFECTIVE
FIG.9 D ADDRESS

993

US 2022/0284582 Al

Sep. 8,2022 Sheet 16 of 63

Patent Application Publication

SS34HAayv

£66

EIRROEELE

\

3 6 'Old

L0
-
~

6 ITNAOW NOILVHITIOOV SOIHAVHD

A

Y.

FHOLSH /3AVS

8v6 LIWOIW LX3INOD

266 > 776 LWOW LdNYHILNI
NI

Y6 SHILSIOIY

A

166 HO134 M

A

> €6 NAN 066 3011

ry NOILVYDILNI NOILLYSIT1IO0V
iiiiiii X o e e e e e e o e e e o o
, T * —___F-ZZZC
| P * | — |
_ 56 Py . | 786 (am) |
V| tsrinawaiassaoodd | | V| s37ave m%w,wpzmﬁomm ! " HOLdIHOSIA AOM | 1
! — 1 | !
* — M , ! | §86 LNIWI T3 SSI00Nd “
, 866 30VdS m M 586 I | moo

mwmmom< V3 mOw_>mmnw>IH

m AHOWIW WILSAS

mo<&m SS3HAAY TVNLYIA wO !

286 30VdS SS3Haav
IALLOF 443 NOILYOIddVY

A

bl 966 HOSIAYIAdAH

G966 SO

A

706 ¥0SS300Nd

086 NOILYOIddV

US 2022/0284582 Al

4 6 'Old

AHOWZIN d3HdINN

ot - - Sttt o I — — — —— v — w———- 1 o o Nrore e mow v www—n AnAn WA Annn - o — o——— it o s soiotn oirrtrs mirrind

woes | ©ozs | _ b wnos ! ros
AHOWIN M AMOWIN w AHOWIN “ AHOWIN “ Adowan | Aadowanw
| | | _

Sep. 8,2022 Sheet 17 of 63

Ndo Ndo Ndo Ndo d0O85300dd “ H0OSS3004dd
A
Y

iiiﬂ.iii qlliﬂ..i.i...._ qlilﬁlii._ qiiiiiii.m w....!....................m
| 366 | _ areo | _ Y66 _ _ gv66 | I V66 m
{ | 3DONZYIHOO _ | | 3ONIHIHOD | I | JONIHIHOD | I | 3ON3YIHOO | I [IONIHUIHOOD |
_ /SV19 | | /SVIg _ | /Sv1g | _ /SY18 | | /SVYig |
! _ _ | |
| d6t6 NAIN __ [doto NIAIN b_ | ott NAIN __ | 9686 NAIN M | Voeo NIAN W

Gl Gl Gl gtl gt

NJOL6 {I"NJ0T6 ¢)0l6 L)0L6 S06 HOSSAD0Hd

Ndo NdS NdS NdO FH00-1LINN

Patent Application Publication

Patent Application Publication

Sep. 8,2022 Sheet 18 of 63

US 2022/0284582 Al

SOC INTEGRATED

CIRCUIT
1000
APPLICATION GRAPHICS
PROCESSOR(s) PROCESSOR
1005 1010
115 115
IMAGE VIDEO
PROCESSOR PROCESSOR
1015 1020
115 115
USB UART SPI/SDIO 1’s/1°C DISPLAY
1025 1030 1035 1040 1045
C . | [MEMORY T
:Sgggﬁ&vl CON- FLASH : mipt | HDMI
| 1070 | | TROLLER 1060 | 1055 | 1050

N

FIG. 10

Patent Application Publication Sep. 8,2022 Sheet 19 of 63 US 2022/0284582 A1l

GRAPHICS
PROCESSOR
1110

G N

VERTEX PROCESSOR
1105
115

oo T e oo e e -
FRAGMENT | FRAGMENT | | FRAGMENT |
PROCESSOR | PROCESSOR | | PROCESSOR |
1115A | 1115C | -~~~ | 1115N-1 |
| ' | *
115 | 115 I | 115 |
b o o] S i
| ERAGMENT : | FRAGMENT : | FRAGMENT;
|PROCESSOR' 'PROCESSORI 'PROCESSOR,
: 11158 ’ : 1115D e 1115N ’
| oo ' | '
B N I e |
L e e oo e o 4 b e e oo oo o J b o oo oo e oo J
___________ .
MMU * MMU |
1120A * 11208 a
S, -
mmmmmmmmmmm 1
CACHE * CACHE a
1125A * 11258 |
-
“““““““““““ |
INTERCONNECT * INTERCONNECT |
1130A z* 1130B |

FIG. 11A

Patent Application Publication Sep. 8,2022 Sheet 20 of 63 US 2022/0284582 A1

GRAPHICS

%/””“PROCESSOR
1140

/?; INTER-CORE TASK MANAGER 4<§\
(e.g., THREAD DISPATCHER)
1145
SHADER| tSHADER! ESHADER: ! SHADER |
CORE | ' CORE | ' CORE | | CORE |
1155A | + 1155C | 1 1155E :---51155N-1i
= ' h=——— 1' —————]
115 || 415 & N 115 w11 415 1
Mg, [L1 [3 Tl (N}
L oL ' L]
ESHADER: iSHADER: ESHADER: :SHADERE
| CORE E { CORE E '\ CORE i | CORE 1
1 11558 1 1 1156D 1 1 1185F E---i 1155N 1
| [, i | R, 1 | IO 1 b .
R g A I LR E
=== |oaem - I kb | g o m [
o bl b ; b
TILING UNIT 1158
MMU T MMU i
1120A : 11208 ;
S S,
CACHE : CACHE E
1125A L 1125B !
INTERCONNECT f__ﬂiﬁi&iﬁﬁ&QE__?
}
\\ 11304 v ses //

FIG. 11B

Patent Application Publication

Sep. 8,2022 Sheet 21 of 63

GRAPHICS CORE

~

1200

US 2022/0284582 Al

SHARED INSTRUCTION CACHE —~ 1202

Y

/‘ 1201A

LOCAL INSTRUCTION CACHE

1204A

THREAD SCHEDULER

1206A

Y

THREAD DISPATCHER

1208A

Y

Rt

~ 1201N

LOCAL INSTRUCTION CACHE

1204N

\ 4

THREAD SCHEDULER

1206N

\4

THREAD DISPATCHER

1208N

A

REGISTER - 1210N

—

REGISTER - 1210A
AFU FPU ALU
1212A 1214A 1218A
v Y
o | g
ACU DPFPU
MPU
1213A 1215A 1917A
Y. * Y + A 4

TEXTURE UNIT

[2e)

P

AFU FPU ALU
1212N 1214N 1216N
Y Y
ACU DPFPU
1213N 1215N o
Y * A 4 + h 4

y

CACHE/SHARED MEMORY ~ 1220

115

FIG. 12A

US 2022/0284582 Al

Sep. 8,2022 Sheet 22 of 63

Patent Application Publication

avrcl
\\/mo_zm_z

acl 9Ol

Ovci MNIT NdO

¢l 8nNH o/

vivel
>m0_>_m_>_'J

b

D

HI9ECL ¥31SN10
31NdNOD

b

99¢¢l ¥318N10
310400

b

49¢21 ¥318N710
31NdNOO

b

39€¢) ¥31SN10
41iNdNOCD

8€cl AJOWIN JHOVO

o
-
o

aoect H3a1snio
ALNdNOD

w0
-—
-

O9E¢T ¥3LSNTO
41NdNO0D

w0

Ll

g9¢tct ¥3LsN1o
A1NdNOD

w

bl

VoEcl ¥318n10
ALNdNOD

A
h 4

devel \

H3TI0HINOD
AHOWIN

yecl ¥31NagaH0s vao1o

¢tcl J0V4EaLINI LSOH

r Vevel

d3T0H1INOD

AHONWIW

Patent Application Publication Sep. 8,2022 Sheet 23 of 63 US 2022/0284582 A1

WIRELESS NETWORK
NETWORK ADAP{FER
ADAPTER 1318
1319
DISPLAY
DEVICE(S)
1310A
42220 ADD-IN
Vo ShTen DEVICE(S)
4210 1320
e
—— /O HUB SYSTEM
STORAGE
. 1307 i
INPUT ./ 1314
DEVICE(S) \
1308
/O SUBSYSTEM 1311
COMMUNICATION
[T T T T, T T, L LNK1306 — |
| PARALLEL
||| PROCESSOR(S) MEMORY SYSTEM
| 1312 HUB MEMORY
1304
!L o 1305
COMMUNICATION
LINK 1313
DISPLAY Y —— -
DEVICE(S) Il PROCESSOR(S)
13108 : 1302 PROCESSING
SUBSYSTEM
! 118 1301
L LIS

FIG. 13

Patent Application Publication Sep. 8,2022 Sheet 24 of 63 US 2022/0284582 A1

|
| PARALLEL PROCESSOR MEMORY 1422
! MEMORY MEMORY MEMORY
' UNIT UNIT coe UNIT
a 1424A 14248 1424N
A . : ; PARALLEL
| | | PROCESSOR
g = 1 = - — = 1400
PARTITION PARTITION PARTITION
UNIT UNIT oo UNIT
1420A 14208 1420N

MEMORY INTERFACE 141

MEMORY CROSSBAR 1416 N
CLUSTER CLUSTER see CLUSTER
1414A 14148 1414N

115 115 115
PROCESSING CLUSTER ARRAY 1412

SCHEDULER 1410

!
!
!
!
!
!
!
n
!
!
!
!
!
:
!
n
!
:
u
!
!
!
!
!
!
1

HOST
FR%%SEND INTERFACE I 2 4%2”
1408 1406 1404
| PARALLEL PROCESSING UNIT 1402
|~ 1413

MEMORY HUB 140

FIG.14 A

Patent Application Publication Sep. 8,2022 Sheet 25 of 63 US 2022/0284582 A1

TO/FROM
MEMORY UNIT
1424

|
l

FRAME BUFFER
INTERFACE
1425

ROP
1426

L2 CACHE
1421

A

PARTITION UNIT 142

v

TO/FROM
MEMORY
CROSSBAR
1416

FIG.14 B

Patent Application Publication Sep. 8,2022 Sheet 26 of 63 US 2022/0284582 A1

TO MEMORY
CROSSBAR 1316
AND/OR OTHER
PROCESSING
CLUSTERS
A
MMU PREROP DATA CROSSBAR
1445 1422 1440
TO/FROM GRAPHICS L
MEMORY MULTIPROCESSOR TEXTURE
CROSSBAR 1434 UNIT
1416 1436
L1 CACHE 115
1448
i | §
PROCESSING PIPELINE MANAGER
CLUSTER 1432
1414
A 4
TO/FROM
SCHEDULER
1410

FIG.14 C

Patent Application Publication

Sep. 8,2022 Sheet 27 of 63 US 2022/0284582 A1l

Y
SHARED MEMORY CACHE MEMORY
1470 1472
(MEMORY AND CACHE INTERCONNECT 1468
— _-—_—-_.___._I: IJ.____'________l_:
| |
LOAD/ |
PGPU CORES | | |
STORE UNIT || CPOPL SORES T
| 1462 !
1466 | [
F t
REGISTER FILE
1458
ADDRESS
MAPPING INSTRUCTION UNIT
UNIT 1454
1456
INSTRUCTION CACHE
1452
GRAPHICS
MULTIPROCESSOR 115
1434

!

FROM PIPELINE MANAGER 1432

FIG.14 D

Patent Application Publication Sep. 8,2022 Sheet 28 of 63 US 2022/0284582 A1

1500
P2P GPU /
LINKS
1516
GPGPU s~y | GPGPU
o 808A 1) g6
145 | | 115
A | | A
s it =N
(
N I
\ 4 | A
GPGPU : | GPGPU
1506C by 1506D
— < I » o
115 _ 115
Y VY A\ 4

HOST INTERFACE SWITCH
1504

A

Y

PROCESSOR
1502

11

FIG. 15

US 2022/0284582 Al

Sep. 8,2022 Sheet 29 of 63

Patent Application Publication

Pme wmn wmmmn mn e e Amans Amans wane Smnn enm e e

NOZ9L

91 "Old

JOINNOIYILNI ONIY J

V0891 — FH0O0O SOIHAVYHO

Y¥991
SHITdNVYS

Vo9l
snd

V0981 - 3400-dNS

v0.91

SH0HNOSHY A3HVHS

991

3NI13dId
AYLINOID

vya9l
SHITdNVYS

YZa91
sn3

V04691 3H00-8NS

ye9l
aN3T INOYA
O3dIA

0091

H08S3008Hd SOIHAVHO

€91
4N

> o)

0€91
30A

£91 — INIONI VIA3In

€091

HANVYIHLS
ANVYINNOD

091 (\A

AN3-LNOH4 INIM3did

Now_‘&

US 2022/0284582 Al

Sep. 8,2022 Sheet 30 of 63

Patent Application Publication

Ll "Old

dHOVO L T3A3T1 0L

.H._IO/.\O b .“m>mﬁ Ol

— e —
VZIT ZelL et Tt 82 S‘t N«t
INOW dd d- v MO1S 3< 1SV 3< 1Sv4 :®< :o<
;o\ /I \ [\ N LL2L
S 3 2 S Y. S X %0078
O0LLT MHOMLIN SSVYdAY o mot X3
{ 34 HILSIOTY dd MHOMIIN SSVAAG / 374 HILSIDTY H¥IDILNI
A » A A A A A
90LT ¥431NAIHOS 0LV HIATNATIHOS c0L) SPLT ¥IINAIHOS
dd T1dNIS d4 WVHIANIOD/MOTS HITNA3IHOS L84 AHOWIN
A A A A
$EIT ¢yl 3IN3AND
Y1 3N3IN0D 40N INIOd ONILYOTHA/E4393 LN dON AHOWIN
A A
0% HIAWVYNIH HILSIDIH/AHOLYI0TIV
A
petra g / €041 ANIONT H30H0 40 1NO
velL P)
IN3INO doN A IHOVD IOVYL ST
cell gc/l) mMoOOmm
WO 3A000HIIN NOLLONHLSNI / 0041 ¥0OSS3O0Hd
T[0T A
AN INOXNA 9¢/t Y3aHO13434dd
NOILONHLSNI

US 2022/0284582 Al

Sep. 8,2022 Sheet 31 of 63

Patent Application Publication

gIT 0aeT
180d 91X @10d
FIoReT o W 29l WL 1ol ANV ¥3TIOMINOD 210d | | rower
ZINGH ZINGH
wvvet | Pevet TIT TIT T (Zrevet | @wven
AHd | ¥7d1D YLD | AHd
wan | waw | [EP0TET y3Lsnio| [(FHOTET ¥31SNT0| [ON0TEE ¥3LSNTOll paw | wad
ONISSIDONd ONISSIOONd ONISSIO0Nd
ST Sit St
0S8t ®I0T8T »y31sN1D | | 0T8T y31sNT0 | | D08t ¥3L1sn1d o
NdO ONISSIO0Nd ONISSIOO¥d ONISSID0Yd 0981
HITIOHLNOD Old9 ‘0.l ‘IdS
-ININIOVYNYI En STT ki
©I0TET ¥ILSN10 | | (©I0T8T y3LsN10 | | 0T8T ¥3LSNTD
ONISSIDON ONISSIDOHd ONISSIDOHd
ET0%8T ervgl | (Cidv8l —— S — Az i (16%81
znaH || AHd [uTd1o El2d i shi HLD | AHd || zwad
W8H | WIW | |©67T8T w31sn1o | |@6I8T ¥31sn10 | | 6IST waLsnio || WAW | WaH
ONISSIDO¥d ONISSIDON ONISSID0ONd
{81028t (23)028t {9)0Z281 {Q)0Z81 (3JOEST {028l {£)0Z8i {20281 (1028t
gio) 101 101 101 0] 101 101 101 101

0081 HOSSEO0Hd NOILVOIddY ONINYVAT 4340

US 2022/0284582 Al

Sep. 8,2022 Sheet 32 of 63

Patent Application Publication

P61 m —\ w_.n— 0161
A ' I A
\ N r A
9061 061 9061 Y061 9061 7061 906} PO61
1Ndino 10dNI | 1Nd1No LNdNI 1Ndino 1NdNI 1Ndino LAdNI
NOHNAN NOHN3AN | ‘ NOYNZEAN NOHNAEN NOHNAN NOYNAN NOHANEAN NOHNEAN
2061 NOYN3N 2061 NOYN3N 2061 NOYN3N 2061 NO¥N3N
A 8061
9061 7061 90861 06l 9061 Y061 9061 061
1Ndino 10dNl | 1Nd1ino LNdNI 1Ndino LOdNI 1Nd1iNo LNdNI
NOHNZEN NOYN3AN | NOYNAN NOHNIN NO¥NAN NOHNIN NOYNAN NOYN3IN
4061 NOHN3IN 061 NOHNAN 2061 NOHN3N 061 NOHN3IN
8061 T A
2061 7061 a061 v061 9061 P061 9061 7061
1Ndino 1NdNI ¢ 1Ndlno LNdNI 1Ndino LNdNI 1NdinNo LOdNI
NOYN3IN NOHNIAN | NOXNEN NOWNIN NOHNI3N NOHNIN NOHNEAN NOYNIAN
2061 NOYN3AN 061 NOHN=AN 2061 NO¥NAN 2061 NOHYN3AN

(/\ 0061 HOSS300™d JIHAHOWOHNIAN

Patent Application Publication

Sep. 8,2022 Sheet 33 of 63

US 2022/0284582 Al

MEMORY DEVICE s Sl sttt)
2020 :I
PROCE R CORE
INSTRUCTIONS CACHE || REGISTER O Szggl ORE(S) t:
2021 2004 FILE INSTRUCTION f |
2006 SEQUENCE 2009 }
DATA - 2022 115 |
222 | (=) | mit
MEMORY GRAPHICS : |
CONTROLLER PROCESSOR(S) |
DISPLAY DEVICE 2011 2016 5008 i'
l’ " EXTERNAL GRAPHICS 1& [s | | :
PROCESSOR 2012 w i
' I 115 | !
L f INTERFACE BUS(ES) - 2010 !
DATA STORAGE Lo ;:
DEVICE 2024 N/ 1
|
|
TOUCH SENSORS = h
2025 f‘
PLATFORM CONTROLLER HUB ¥
WIRELESS AN 2030 it
TRANSCEIVER 2026 [N—V] |
|
|
FIRMWARE !
INTERFACE 2028 — I
1 r 1. 38
F ey
NETWORK AUDIO | |
CONTROLLER | | CONTROLLER | LEGACY 1/O
2034 2046 | CONTROLLER |
| 2040 |
' |
g T

2000

FIG. 20

USB CONTROLLER(S)

= - !
| KEYBOARD/ | CAMERA |

| MOUSE 2043 : |

2042

-

2044

e e - —

US 2022/0284582 Al

Sep. 8,2022 Sheet 34 of 63

Patent Application Publication

LZ Ol

bl

801¢
HOSS300Hd SOIHAVHO A41VHO3LNI

911¢
(S)LINN
HITIOHLNOD
sneg

viic
43TTO¥INOD
AJOWIN

bile
43TTOH¥LNOD
AV1dSid

0L 1¢ 3400
INIOV NILSAS

g~ ONIY

901¢ — (S)LINN FHOVYD QIUVYHS
—— — .I.J
" NvOTZ | Vi0iZ mﬂ_m
_ {(s)uinn | (S)LINN o/l
| 3HOVD | - -~ IHOVD
====|
T — |_ —
L GIE)
|
NZOT¢ 340D “ VZ01¢ 30D

1A%
ATNAON AHJOWIN
a3aaaaging

001¢ J40SS3I00Hd

US 2022/0284582 Al

Sep. 8,2022 Sheet 35 of 63

Patent Application Publication

¢¢ Old
0ezz
301A3a
AVIdSIa
/N,
Z'S
Y122 — OVAUILNI AHOWIAN
| sosiiaseaiihaseaih et A et st enee i ases s esendiieseadnanadiesan i ases b anaaibesan i bessadiieneadinanas l-_
_ |
| _
_ _
_ _
_ _
| _
INIONS | | WALSAS |
03009 | | | 3NI3did -ans ANM3did || | 3NION3 HITIONINOD
03aIA | || viaaw VIGIN/AE ae |l | ing AVIdSIA
e - I¥~~__ 0122 3NION3
— ONISSIOOYd
il SOIHAVHO

™

00¢¢

HOSS3D0Hd SOIHAVYHO

US 2022/0284582 Al

Sep. 8,2022 Sheet 36 of 63

Patent Application Publication

e e e Aiowapy
| _ o4
- _
“ Gl |
| N |
ae1%e

| geez | (S3HOVO N | (93w00 |
| _

. u __“ SOIHAYHO _
w 0767 " ez S

NOLLVOINNANNOD i YR 4
| szez | Qv [o071 K| 01907 NOILONNA “ e mzﬁmw_ q _Au_ﬂ
| A NOLLONAE iy L _ a3uvHs_ b owiaaw
| P H LY a3uVYHS [.
m NNmN ﬁv ..IM.I.—“. lllll _ mwomN
| > I} Y3INVYIYLS
| HATdAVYS YGiee | ANVININOD
| 1282 (== (S)3HOD _
“ SOHdvED | K= - _
| , |
aNI13did

w = o
| aRor 8Te _
| AVHNY IHOD H344ng _
| SOIHAVYYHD NYNL3IY A i
| aszi4INN _
| |

ANIONT ONISSTIO0™d SOIHAVED

US 2022/0284582 Al

Sep. 8,2022 Sheet 37 of 63

Patent Application Publication

33002 N vZ 'Ol4 Se0vz ,.....i;
WIS 4=0vc Ei 7074 WIS J50r¢ V02
HFIAYS | ATV HTdWYS | S8
J70%2 ac - 51072 ac
HOSSIOONd HOSSIOONd
H3AVHS / \ H3IAVHS
90v2 Fore | TR |ly0pz W oozl o907 Se0% | Deowe
HITdINYS ovaL | Avaiiv N3 | 3yoo ool uFdnvs AL | AvedY N3
VIGan ans - ans e
— 21901 NOILONNA —
s a3xi4 WNOILIGAy I
WIS A50ve TH0%z WIS H50v% TH0vZ
d1dvS | | SETC HTYS | (ST
370ve ac — gIovz as
HOSSIOONd mzﬂwm_a HOSSIOONd
yaavhs / NOILONNA QIXI4 \ g3avHs
59072 =074 TR ||, 0., BAWEWOID | qo0v2 074 2RV 74
HITdINYS oyar | Avauv na || 3507 gl wEanvs VAL | AvaMY N3
vIQan e anS VIQIN
A7/
ozmmN TS0Z - AMOWSIN THOVD <_>:MN VSOhz —
—— HANYS | v 03 IAHONAN QIHVHS — YIS | vauv N3
azove ac VIove ae
HOSSIDOYd HOSSIDOHd
HIAVHS 1/ \ HIAVHS
—— — — V5% — — —
qoovz acorz azove Vo0rz VEOhz 4074
HTIINYS ouaL | Aveay N3 || Suas OISO NOUONNS | MIRE|| uatawvs OIAL | AvedY N3
vIQ3an ans ans VIQan
0gve 557 5652 Y3 TIOULNODOHOIN ViS4 | 5eFZ Inadid NOILONNA |
INMEdid VIG3N SOIHAYHO SOVAMALNI O0S SOIHAVYO || 03Xid ® AuLIWOZD |

US 2022/0284582 Al

Sep. 8,2022 Sheet 38 of 63

Patent Application Publication

_,ii%;f;“ e e Malaty il
[[R, H []
s E ¥ “ i "
162 i p—— 'l f ooy | § 4 et 11
1¥odviva | | s | MIEIEDR
¥ o ' ! 9052
] oo e e —e———— e
1t N80SC || j| §80GC |1} V80SC | IHOVD NOLLONYLISNI
oong on3a P ong |
A% n_::ﬂ-:;) ¥ "
{ [} 1
dHOVD v.ivd m,.......! ...114“ “ : "
P NLIGe || | "11GC |y} VILGS |
o Y i oL K oL |
mn--,qw--,“m ! :
| H it |
o T T e | e
S 1y e Vi p— eesscosoon 0S¢ c0%2
] { 3¢ 1
mmm%\m% LS LS 0 LS i | yanoivdsia | 4oss300yd
Conmosz 0 ammsz | woose |1 9V H3avHS
i 1 i '
oopa | on3 i ona |
| e o v e o e o o
' NBOSZ ! @e0sz ! wveosz |

/ 0052

OI907 NOILLNO3X3

US 2022/0284582 Al

Sep. 8,2022 Sheet 39 of 63

Patent Application Publication

g G6¢ Old

AWA

A

ik
586z 7 Wy
sny L 10
amwis [N
[Ny
vege e i\
sndd | W
anis [HQ
2e%e
LINA HONYHE
[o
LINN ON3S

/N

b

yd

N

\ Z€GZ LINN HOL34 NOILONYLSNI / /

=

OTn 300

S W A W g Wy S

K 80GC - LINN NOILLNDAXE SOIHAVED

¢S W3 LIgdV AvadHL

1

AN

%

Patent Application Publication Sep. 8,2022 Sheet 40 of 63 US 2022/0284582 A1

Parallel Processing Unit (PPU) 2600
To System Bus
7 l
YO Unit Front End Unit
2602
2608 2610
3
4}:}.\ , I
:: Scheduler Unit
5 |l v 2612
& |
gl BT
el A Hub I
2608 /] & [1 210
g |t Work Distribution Unit
E | 2614
& i A
O ::
E: A 4
3
: j/ :" : ¢ 4
¥
GPC H
2618 H
i
| 11 | ¥
JLE® A :‘
H
{
H
4 I'
it eatuivglingugingnoluafging- oy ::::::::::::::::.'.I
2620 ~ i i
\ XBar
P L
Memory |! 11 ¥
§ o 1
(Y) : 5 j > Memory Partition Unit (U) N
2604 1 o — 2622 ¥
bi ¥
[0 IR [
o o1l)t
mrme e ') | i
CoZIIIIZo L cn e s e e e o o e e e . e o o o o ot !

FIG. 26

Patent Application Publication Sep. 8,2022 Sheet 41 of 63 US 2022/0284582 A1

TolFrom XBar
rGenerai Processing
Cluster (GPC) 2700
Pipeline Manager PRE-ROP
> 2702 2704
‘ A
! y _|h
MPC h
> 2710 ! 2
e i
Primitive - |
Engine bon
b
ariz 3 SM E o Raster Engine
a—— 2714 ! '.* : 2708
B ime
KN I R
DPC(V) HE f
2706 Trrrrrscooool! i
R e 1 4
J l '
oy J tatetdddedetabetodedailadd
WDX
27186
l MMU 271
To/From XBar Tol/From Xbar

FIG. 27

Patent Application Publication Sep. 8,2022 Sheet 42 of 63 US 2022/0284582 A1

To/From
XBar

?

Memory Partition Unit
2800

Raster Operations Unit
2802

L2 Cache To/From
[2804 ’ " Xgar

[Memory Interface I

2806

]
l

To/From
Memory

FIG. 28

Patent Application Publication Sep. 8,2022 Sheet 43 of 63 US 2022/0284582 A1

Streaming Multiprocessor 2800

| 115
Instruction Cache
2002
A
\ 4
Scheduler Unit (K) 2904 .
Iy
Dispatch E S
2906 ¥
'
by
!
- "'_"_*_"_“_”_"_"_'_"_'_'_"_'_'_”_"_'_"_"_"_1:"_'_”_"_"_1"_'_'_”_"_“_*_"_'_"_"_"_'_:':_ :
Register File
2908
Core 3 SFU +s LSU b
(1toL) ¥ (1 to M) e (1 to N) ¥
2910 5 2912 ¥ 2914 ¥
t 1 11 1 |
L::::I:::::::'.i Lz::::I:::::::'E L::::1:::::::'_:
interconnect Network

2916 -

!

Shared Memory/L1 Cache
2918

FIG. 29

0¢ "Old

US 2022/0284582 Al

(THYMOHYH | — TN _
< i 9i0¢c o%%\w n 0Loe 800t
S RElel 1300N NOILVLONNY vivg
3 Anding g3 LsISSY-|Y ONIOVII
3 ’
=
~ 2i0¢g
8 vivQ
< JINITD
[+ =]
. a3Eav
W IHYMLAOS ﬂ ﬂ
ﬁ FO0C WILSAS ONINIVYL u
i |
810¢
G00C WN3LSAS ¥20¢
INIWAOTAQ AHLSIOTY
) g 1300

Patent Application Publication

000¢

L€ "Old

v
«
o
o]
[T
JUS— 7T g
8 9cle FZIE WaLSAS IV E S
< anoip — s
& =D 4% >
& L _HD SOIHAYHD/SNAD i
N
\ yaN N
e
o
S
© DETE WHOLLYId DNILONOD 13T Ivevd w
< p 3
~— <
2 0zTE 9TTE :
IR w0
“ (8)301A43Q ()3 %\r/mm S 1Y (S)301AM3S 0
N NOILYZITYNSIA ALNANOD N
> (-
N \.,
=
W A 82T WILSAS NOLLYHLSIHOHO NOILVIITddY A
5 ‘ J gi0¢ 90tE veore | |9
.m FANRS (s)13a0n $ ST1IAOW GIANIVHL~IHd] H3Ldvay 3
= HUIOVNVI INPIEdId Ndino | r p—) 021a S
= FI7E | L ey PTOT SRALSLSIDY b
E in) — Y | ooia ONINIVY | 1300 5ToE m
£ Oit) > | Nowviony | |18
2 (S)aNm3did INFWAOTH3Q vOIE gaisissy-1y| e
g , ’ , JI (s)aNnadid oNiNvd] | e
Aw 9008 WILSAS INIWAOTEIQ Y00E WILSAS ONINIVY |
:
L
£ oole

US 2022/0284582 Al

vice
1Ndino

¢¢ 'Old

NODIQ

A:X
&

Sep. 8,2022 Sheet 46 of 63

HALMM
WooIa

Ziee L[Oree

NOLLV.ININDI
NVOHO

]

T

NOOTY |

Patent Application Publication

|

HIOUNYIN
INFI3dId

Y
“ qc01¢
HaLdVYay
~ NODId

|

L[90cE

5 - waavay
WODId

Y

I X

VOL1IE

A 4

SADIALEIG

|

y

Y02t

Y

(sSyu3anyag

A4

4

SOvd

US 2022/0284582 Al

Sep. 8,2022 Sheet 47 of 63

Patent Application Publication

Vee "Old

Zlee

0oge

SIDIAYIS
0coe gTee 97ec 5T
ININOJWOD INIONT AdVAHaT
Mszmm wOZm_mm_u_Z_ ony <P<D
\
) % OTEE 90 90¢E mmmmmm
NOILLVZITVNSI NOILO3LE NOLLONHLSNODA
~ A d g1 wooia
ONNOSVYALINA
aoLLe

)

[AURY

US 2022/0284582 Al

gee "oOld

Sep. 8,2022 Sheet 48 of 63

Patent Application Publication

rAY4 0EEE
HILHM NOLLYZITYNSIA
Wo2Iq)
§.<aw¢ms_ ON szee)
SEEE IV NOILO3 L3 507E
IV NOILO313Q ['g3 | 3Swv0D NOSTZY 19
INI4 .
) 9z¢ce
v NOILO313q
INIWIAOWN INTILYd 902Z¢
4 H3aavay
veee Woola
IV TOYLINOD
LOA WNSOdXT |

AR

v¥<€ ‘Ol

US 2022/0284582 Al

(o)

o

[

O e e e e —— e = = = = = = = = = = = —— —————————————————————————
(=)}

T T3AON A3NIdTY _ ADVHNIOY AIAOHIN] v JIA0OW TVILIN]
7]

[-?)

= ONINIVY] 13dOWN 13svivQg

o $100 YIANOLSND

& H 4014

&

s

[-*)

wn

_>
B E—

00E WILSAS ONINIvY] TIAOW 901¢ S13CON
A3aNIVYL-Tdd

00ve

Patent Application Publication

ave "Old

US 2022/0284582 Al

NS
S
2 FA%%%
z ST3A0IN d3NIVY | -T3dd
&
=]
[90]
(o
8
S —
o o¥ve
= UINYIS INVISISSY
2 NOILVIONNY
1227
.
8eve [SI%7%5 Peve
viva 7001 NOILVLONNY SIOVIN| MVY
ONINIVY] a3aLsissy-iy

A% 4%

Patent Application Publication

US 2022/0284582 Al

Sep. 8,2022 Sheet 51 of 63

Patent Application Publication

£26¢ 1141
N%mﬂ 125¢€

4)

JQQQQ?Q O#508;
wQQQQQQQQQQQ

LS

QQ@QQQQQQQ..

%QQ%QQQQQ%%Q

* * . hA ,

s, s

’

2,

'~

v ~

/
¥ t
. 5

b 01

6

8 L 9 § ¥ ¢ ¢ |

aoedg yoseag ABojodo |

Patent Application Publication Sep. 8,2022 Sheet 52 of 63 US 2022/0284582 A1

Q000 J0QOT [T
$900 woga 0990
09Q 3 000 099
000G 000g PP
Roey Pogo VPO
Q999 POpO PYYOE
©QoQ 0goo YOO
£99¢ PoPA Kooy
2999 £FO% 000y
QR 9000 9o
9989 9000 w00y

00 9000 H0o0

GO0 OTT0 oo
o o %)

3602
3604
3606

US 2022/0284582 Al

Sep. 8,2022 Sheet 53 of 63

Patent Application Publication

L€ "Old

......................... .
.
H
H
Vv g eeeeead \gfeeeaa-
. H ’ 9 ’
(Y ‘. . H i N 7 . h
. [N . H H pY » * ¢
.
H ’ /
Y LY : : N s
|\o : B B
. o
L AAMRY -
N 9L “ «—> FANS N
A . J . . 4 s,
., .
. N Qmmu R N S Y
1Y . H ‘ ' Sl S
H ’ . ’ H .
) M H ’ ! A .
H 1 / ' S
J 4 H / ' ;S
h ' i '
H ! PO
..... &1 (22
. N v ,
y K 0y ' .
Y] L)
\) N
. o ‘o
Ny beavacepvacana ’
H . ! s »us
H 154 o ',
H) ~ IS
s H XY . r) £
H ' LY ’ S
H 1 L Vi . .
H ' PR { ; .
H L™ K \
¢ .) /]
[*, M
’ Va Y ’ b3
/ W . J 3
’ v, ! ’
! € ------{ Ye-ouuoo
H
:
L A

vLLE 91L¢

M om
Mm&m uonezna.losig Mv&m yoleeg ¢os

[opO 81810813 M [8PO SNONURLOY M
0LLE 90.¢

US 2022/0284582 Al

Sep. 8,2022 Sheet 54 of 63

Patent Application Publication

8¢ "OId

aoeds yoJess
aleds-niny

6¢ "Old

US 2022/0284582 Al

siofe| 7
A

S
% 7 (awbor
= NO 2 B Aty
2 826¢
- eoe ¥Z6¢
m 20In0g
= /
® ol e BETOR D
mw Achmmwv\ Avcvmcwxx\
_ oo \.‘.sx@:vmo_, sse _.
= O b L (jubor
5 70 W 0
o - “
2 M (zu)bor-
P 2268 226
2
3 0Z6¢
.lw ydeis pajaug
-
=
[=P]
g MS%
[~™

avBeavancavaraunicavacannavavarasvavanavanvavavaondiavasd

yL6E

c06¢€
fenuenbeg

US 2022/0284582 Al

Sep. 8,2022 Sheet 56 of 63

Patent Application Publication

0¥ "Old

vooy 2000
(8)r°4 - .
198 Aqisess [L'1'0l=© (2)"4 1S
nding UOHEARDY SPON Aupigisea nduyj

US 2022/0284582 Al

2022 Sheet 57 of 63

9

Sep. 8

Patent Application Publication

Vivy "Old

EXEXL AEd «— -+ — EXIXE Q8d «— — LXEXE O€d € - — ¢£XEXE €— dDig €

(8°0 = 0) WIRASUOD AloWB 1SI1 B UM 8injos)iyoie payolesg (e)

US 2022/0284582 Al

Sep. 8,2022 Sheet 58 of 63

Patent Application Publication

di¥ 'Old

EXEX] JCd «— - - — €XIXE QCd «— — IXEXE JCd € - — EXEXE € dpig <

(g0 = 0) WIBNSUOD AJOWBW 1811 B Y)IM ainjos)iyoie payoless (q)

US 2022/0284582 Al

Sep. 8,2022 Sheet 59 of 63

Patent Application Publication

iy "Old

¢y Ol

{ponixuopeay
01 B g i 9 g ¥ ¢ g L

US 2022/0284582 Al

Sep. 8,2022 Sheet 60 of 63

Patent Application Publication

w W o

gL @
A
i
g1

8

Oc

Patent Application Publication Sep. 8, 2022 Sheet 61 of 63

4300 Z

US 2022/0284582 Al

Determine a maximum memory usage of all operations
in a search space

4302

|

Receive a first input that specifies a first memory
constraint

54304

|

Select a first set of one or more operations that result in
a first memory usage that is equal to or less than a first
percentage of a maximum memory usage

Ba 4306

End

FIG. 43

Patent Application Publication Sep. 8,2022 Sheet 62 of 63 US 2022/0284582 A1

4400
[

Receive a first input that specifies a first memory | 54402
constraint

Determine a first set of search parameters based ona | s~ 4404
first memory constraint

Performa a first search in accordance with a first set of ;4406
search parameters

Receive a second input that specifies a second memory |5~ 4402
constraint

Determine a second set of search parameters based on |5~ 4404
a second memory constraint

Performa a second search in accordance with a second [5~4406
set of search parameters

End

FIG. 44

Patent Application Publication Sep. 8, 2022 Sheet 63 of 63

4500 Z

US 2022/0284582 Al

[dentify multiple candidate connection patterns between
a first layer and a second layer of a search space

B 4502

|

Determine a probability of each of a set of candidate
connection patterns

54504

|

Select a connection pattern, from a set of candidate
connection patterns, based on probability and/or one or
more additional criteria

Ba 4506

End

FIG. 45

US 2022/0284582 Al

SELECTING A NEURAL NETWORK BASED
ON AN AMOUNT OF MEMORY

TECHNICAL FIELD

[0001] At least one embodiment pertains to processing
resources used to perform and facilitate artificial intelli-
gence. For example, at least one embodiment pertains to
processors or computing systems used to train and use
neural networks according to various novel techniques
described herein.

BACKGROUND

[0002] Neural networks can be used for image segmenta-
tion tasks. Image segmentation is a process of partitioning an
image into multiple sets of pixels and labeling every pixel
such that pixels with a same label share certain character-
istics. Image segmentation can classify all pixels of an image
into classes of objects, allowing identification of parts of an
image and understand what objects these parts belong to.

BRIEF DESCRIPTION OF DRAWINGS

[0003] FIG. 1A illustrates inference and/or training logic,
according to at least one embodiment;

[0004] FIG. 1B illustrates inference and/or training logic,
according to at least one embodiment;

[0005] FIG. 2 illustrates training and deployment of a
neural network, according to at least one embodiment;
[0006] FIG. 3 illustrates an example data center system,
according to at least one embodiment;

[0007] FIG. 4A illustrates an example of an autonomous
vehicle, according to at least one embodiment;

[0008] FIG. 4B illustrates an example of camera locations
and fields of view for an autonomous vehicle of FIG. 4A,
according to at least one embodiment;

[0009] FIG. 4C is a block diagram illustrating an example
system architecture for an autonomous vehicle of FIG. 4A,
according to at least one embodiment;

[0010] FIG. 4D is a diagram illustrating a system for
communication between cloud-based server(s) and an
autonomous vehicle of FIG. 4A, according to at least one
embodiment;

[0011] FIG. 5 is a block diagram illustrating a computer
system, according to at least one embodiment;

[0012] FIG. 6 is a block diagram illustrating a computer
system, according to at least one embodiment;

[0013] FIG. 7 illustrates a computer system, according to
at least one embodiment;

[0014] FIG. 8 illustrates a computer system, according to
at least one embodiment;

[0015] FIG. 9A illustrates a computer system, according to
at least one embodiment;

[0016] FIG. 9B illustrates a computer system, according to
at least one embodiment;

[0017] FIG. 9C illustrates a computer system, according to
at least one embodiment;

[0018] FIG. 9D illustrates a computer system, according to
at least one embodiment;

[0019] FIGS. 9E and 9F illustrate a shared programming
model, according to at least one embodiment;

[0020] FIG. 10 illustrates exemplary integrated circuits
and associated graphics processors, according to at least one
embodiment;

Sep. 8§, 2022

[0021] FIGS. 11A-11B illustrate exemplary integrated cir-
cuits and associated graphics processors, according to at
least one embodiment;

[0022] FIGS. 12A-12B illustrate additional exemplary
graphics processor logic according to at least one embodi-
ment;

[0023] FIG. 13 illustrates a computer system, according to
at least one embodiment;

[0024] FIG. 14A illustrates a parallel processor, according
to at least one embodiment;

[0025] FIG. 14B illustrates a partition unit, according to at
least one embodiment;

[0026] FIG. 14C illustrates a processing cluster, according
to at least one embodiment;

[0027] FIG. 14D illustrates a graphics multiprocessor,
according to at least one embodiment;

[0028] FIG. 15 illustrates a multi-graphics processing unit
(GPU) system, according to at least one embodiment;
[0029] FIG. 16 illustrates a graphics processor, according
to at least one embodiment;

[0030] FIG. 17 is a block diagram illustrating a processor
micro-architecture for a processor, according to at least one
embodiment;

[0031] FIG. 18 illustrates a deep learning application
processor, according to at least one embodiment;

[0032] FIG. 19 is a block diagram illustrating an example
neuromorphic processor, according to at least one embodi-
ment;

[0033] FIG. 20 illustrates at least portions of a graphics
processor, according to one or more embodiments;

[0034] FIG. 21 illustrates at least portions of a graphics
processor, according to one or more embodiments;

[0035] FIG. 22 illustrates at least portions of a graphics
processor, according to one or more embodiments;

[0036] FIG. 23 is a block diagram of a graphics processing
engine of a graphics processor in accordance with at least
one embodiment;

[0037] FIG. 24 is a block diagram of at least portions of a
graphics processor core, according to at least one embodi-
ment;

[0038] FIGS. 25A-25B illustrate thread execution logic
including an array of processing elements of a graphics
processor core according to at least one embodiment;
[0039] FIG. 26 illustrates a parallel processing unit
(“PPU”), according to at least one embodiment;

[0040] FIG. 27 illustrates a general processing cluster
(“GPC”), according to at least one embodiment;

[0041] FIG. 28 illustrates a memory partition unit of a
parallel processing unit (“PPU”), according to at least one
embodiment;

[0042] FIG. 29 illustrates a streaming multi-processor,
according to at least one embodiment;

[0043] FIG. 30 is an example data flow diagram for an
advanced computing pipeline, in accordance with at least
one embodiment;

[0044] FIG. 31 is a system diagram for an example system
for training, adapting, instantiating, and deploying machine
learning models in an advanced computing pipeline, in
accordance with at least one embodiment;

[0045] FIG. 32 includes an example illustration of an
advanced computing pipeline 3110A for processing imaging
data, in accordance with at least one embodiment;

US 2022/0284582 Al

[0046] FIG. 33A includes an example data flow diagram
of a virtual instrument supporting an ultrasound device, in
accordance with at least one embodiment;

[0047] FIG. 33B includes an example data flow diagram
of a virtual instrument supporting a CT scanner, in accor-
dance with at least one embodiment;

[0048] FIG. 34A illustrates a data flow diagram for a
process to train a machine learning model, in accordance
with at least one embodiment;

[0049] FIG. 34B is an example illustration of a client-
server architecture to enhance annotation tools with pre-
trained annotation models, in accordance with at least one
embodiment;

[0050] FIG. 35 is a visual representation of a search space
with fully connected edges between adjacent layers for a
differentiable NAS method, according to at least one
embodiment;

[0051] FIG. 36 illustrates a multi-path topology, a single-
path topology, a multi-path topology with four input reso-
Iutions, and a multi-path topology with two input resolu-
tions, according to at least one embodiment;

[0052] FIG. 37 illustrates a search stage and a discretiza-
tion stage of a differentiable NAS method, according to at
least one embodiment;

[0053] FIG. 38 illustrates a differentiable NAS method
with a sequential model with super nodes, according to at
least one embodiment;

[0054] FIG. 39 illustrates a differentiable NAS method
that discretizes a sequential model with topology feasibility
constraints, according to at least one embodiment;

[0055] FIG. 40 illustrates an input feasibility set and an
output feasibility set that represent feasible input and output
connection pattern indexes for a super node with a node
activation, according to at least one embodiment;

[0056] FIGS. 41A-41C illustrates three searched architec-
tures with different memory constraints, according to at least
one embodiment;

[0057] FIG. 42 is a graph illustrating indications in dis-
cretization gaps with and without topology loss in a dis-
cretization algorithm under different memory constraints,
according to at least one embodiment;

[0058] FIG. 43 is a flow diagram of a method of perform-
ing a search of a search space, according to at least one
embodiment;

[0059] FIG. 44 is a flow diagram of a method of perform-
ing a search of a search space, according to at least one
embodiment; and

[0060] FIG. 45 is a flow diagram of a method of perform-
ing a search of a search space, according to at least one
embodiment.

DETAILED DESCRIPTION

Inference and Training Logic

[0061] FIG. 1A illustrates inference and/or training logic
115 used to perform inferencing and/or training operations
associated with one or more embodiments. Details regarding
inference and/or training logic 115 are provided below in
conjunction with FIGS. 1A and/or 1B.

[0062] In at least one embodiment, inference and/or train-
ing logic 115 may include, without limitation, code and/or
data storage 101 to store forward and/or output weight
and/or input/output data, and/or other parameters to config-
ure neurons or layers of a neural network trained and/or used

Sep. 8§, 2022

for inferencing in aspects of one or more embodiments. In
at least one embodiment, training logic 115 may include, or
be coupled to code and/or data storage 101 to store graph
code or other software to control timing and/or order, in
which weight and/or other parameter information is to be
loaded to configure, logic, including integer and/or floating
point units (collectively, arithmetic logic units (ALUs). In at
least one embodiment, code, such as graph code, loads
weight or other parameter information into processor AL Us
based on an architecture of a neural network to which such
code corresponds. In at least one embodiment, code and/or
data storage 101 stores weight parameters and/or input/
output data of each layer of a neural network trained or used
in conjunction with one or more embodiments during for-
ward propagation of input/output data and/or weight param-
eters during training and/or inferencing using aspects of one
or more embodiments. In at least one embodiment, any
portion of code and/or data storage 101 may be included
with other on-chip or off-chip data storage, including a
processor’s L1, L2, or L3 cache or system memory.

[0063] In at least one embodiment, any portion of code
and/or data storage 101 may be internal or external to one or
more processors or other hardware logic devices or circuits.
In at least one embodiment, code and/or code and/or data
storage 101 may be cache memory, dynamic randomly
addressable memory (“DRAM?”), static randomly address-
able memory (“SRAM”), non-volatile memory (e.g., flash
memory), or other storage. In at least one embodiment, a
choice of whether code and/or code and/or data storage 101
is internal or external to a processor, for example, or
comprising DRAM, SRAM, flash, or some other storage
type may depend on available storage on-chip versus off-
chip, latency requirements of training and/or inferencing
functions being performed, batch size of data used in infer-
encing and/or training of a neural network, or some com-
bination of these factors.

[0064] In at least one embodiment, inference and/or train-
ing logic 115 may include, without limitation, a code and/or
data storage 105 to store backward and/or output weight
and/or input/output data corresponding to neurons or layers
of a neural network trained and/or used for inferencing in
aspects of one or more embodiments. In at least one embodi-
ment, code and/or data storage 105 stores weight parameters
and/or input/output data of each layer of a neural network
trained or used in conjunction with one or more embodi-
ments during backward propagation of input/output data
and/or weight parameters during training and/or inferencing
using aspects of one or more embodiments. In at least one
embodiment, training logic 115 may include, or be coupled
to code and/or data storage 105 to store graph code or other
software to control timing and/or order, in which weight
and/or other parameter information is to be loaded to con-
figure, logic, including integer and/or floating point units
(collectively, arithmetic logic units (ALUs).

[0065] In at least one embodiment, code, such as graph
code, causes loading of weight or other parameter informa-
tion into processor ALUs based on an architecture of a
neural network to which such code corresponds. In at least
one embodiment, any portion of code and/or data storage
105 may be included with other on-chip or off-chip data
storage, including a processor’s L1, L2, or L3 cache or
system memory. In at least one embodiment, any portion of
code and/or data storage 105 may be internal or external to
one or more processors or other hardware logic devices or

US 2022/0284582 Al

circuits. In at least one embodiment, code and/or data
storage 105 may be cache memory, DRAM, SRAM, non-
volatile memory (e.g., flash memory), or other storage. In at
least one embodiment, a choice of whether code and/or data
storage 105 is internal or external to a processor, for
example, or comprising DRAM, SRAM, flash memory or
some other storage type may depend on available storage
on-chip versus off-chip, latency requirements of training
and/or inferencing functions being performed, batch size of
data used in inferencing and/or training of a neural network,
or some combination of these factors.

[0066] In at least one embodiment, code and/or data
storage 101 and code and/or data storage 105 may be
separate storage structures. In at least one embodiment, code
and/or data storage 101 and code and/or data storage 105
may be a combined storage structure. In at least one embodi-
ment, code and/or data storage 101 and code and/or data
storage 105 may be partially combined and partially sepa-
rate. In at least one embodiment, any portion of code and/or
data storage 101 and code and/or data storage 105 may be
included with other on-chip or off-chip data storage, includ-
ing a processor’s [.1, L2, or L.3 cache or system memory.

[0067] In at least one embodiment, inference and/or train-
ing logic 115 may include, without limitation, one or more
arithmetic logic unit(s) (“ALU(s)”) 110, including integer
and/or floating point units, to perform logical and/or math-
ematical operations based, at least in part on, or indicated by,
training and/or inference code (e.g., graph code), a result of
which may produce activations (e.g., output values from
layers or neurons within a neural network) stored in an
activation storage 120 that are functions of input/output
and/or weight parameter data stored in code and/or data
storage 101 and/or code and/or data storage 105. In at least
one embodiment, activations stored in activation storage 120
are generated according to linear algebraic and or matrix-
based mathematics performed by ALU(s) 110 in response to
performing instructions or other code, wherein weight val-
ues stored in code and/or data storage 105 and/or data
storage 101 are used as operands along with other values,
such as bias values, gradient information, momentum val-
ues, or other parameters or hyperparameters, any or all of
which may be stored in code and/or data storage 105 or code
and/or data storage 101 or another storage on or off-chip.

[0068] In at least one embodiment, ALU(s) 110 are
included within one or more processors or other hardware
logic devices or circuits, whereas in another embodiment,
ALU(s) 110 may be external to a processor or other hard-
ware logic device or circuit that uses them (e.g., a co-
processor). In at least one embodiment, ALLUs 110 may be
included within a processor’s execution units or otherwise
within a bank of ALLUs accessible by a processor’s execution
units either within same processor or distributed between
different processors of different types (e.g., central process-
ing units, graphics processing units, fixed function units,
etc.). In at least one embodiment, code and/or data storage
101, code and/or data storage 105, and activation storage
120 may share a processor or other hardware logic device or
circuit, whereas in another embodiment, they may be in
different processors or other hardware logic devices or
circuits, or some combination of same and different proces-
sors or other hardware logic devices or circuits. In at least
one embodiment, any portion of activation storage 120 may
be included with other on-chip or off-chip data storage,
including a processor’s L1, .2, or L3 cache or system

Sep. 8§, 2022

memory. Furthermore, inferencing and/or training code may
be stored with other code accessible to a processor or other
hardware logic or circuit and fetched and/or processed using
a processor’s fetch, decode, scheduling, execution, retire-
ment, and/or other logical circuits.

[0069] In at least one embodiment, activation storage 120
may be cache memory, DRAM, SRAM, non-volatile
memory (e.g., flash memory), or other storage. In at least
one embodiment, activation storage 120 may be completely
or partially within or external to one or more processors or
other logical circuits. In at least one embodiment, a choice
of whether activation storage 120 is internal or external to a
processor, for example, or comprising DRAM, SRAM, flash
memory or some other storage type may depend on available
storage on-chip versus off-chip, latency requirements of
training and/or inferencing functions being performed, batch
size of data used in inferencing and/or training of a neural
network, or some combination of these factors.

[0070] In at least one embodiment, inference and/or train-
ing logic 115 illustrated in FIG. 1A may be used in con-
junction with an application-specific integrated circuit
(“ASIC”), such as a TensorFlow® Processing Unit from
Google, an inference processing unit (IPU) from
Graphcore™, or a Nervana® (e.g., “Lake Crest”) processor
from Intel Corp. In at least one embodiment, inference
and/or training logic 115 illustrated in FIG. 1A may be used
in conjunction with central processing unit (“CPU”) hard-
ware, graphics processing unit (“GPU”) hardware, or other
hardware, such as field programmable gate arrays (“FP-
GAs”).

[0071] FIG. 1B illustrates inference and/or training logic
115, according to at least one embodiment. In at least one
embodiment, inference and/or training logic 115 may
include, without limitation, hardware logic in which com-
putational resources are dedicated or otherwise exclusively
used in conjunction with weight values or other information
corresponding to one or more layers of neurons within a
neural network. In at least one embodiment, inference and/or
training logic 115 illustrated in FIG. 1B may be used in
conjunction with an application-specific integrated circuit
(ASIC), such as TensorFlow® Processing Unit from
Google, an inference processing unit (IPU) from
Graphcore™, or a Nervana® (e.g., “Lake Crest”) processor
from Intel Corp. In at least one embodiment, inference
and/or training logic 115 illustrated in FIG. 1B may be used
in conjunction with central processing unit (CPU) hardware,
graphics processing unit (GPU) hardware, or other hard-
ware, such as field programmable gate arrays (FPGAs). In at
least one embodiment, inference and/or training logic 115
includes, without limitation, code and/or data storage 101
and code and/or data storage 105, which may be used to
store code (e.g., graph code), weight values and/or other
information, including bias values, gradient information,
momentum values, and/or other parameter or hyperparam-
eter information. In at least one embodiment illustrated in
FIG. 1B, each of code and/or data storage 101 and code
and/or data storage 105 is associated with a dedicated
computational resource, such as computational hardware
102 and computational hardware 106, respectively. In at
least one embodiment, each of computational hardware 102
and computational hardware 106 comprises one or more
ALUs that perform mathematical functions, such as linear
algebraic functions, only on information stored in code

US 2022/0284582 Al

and/or data storage 101 and code and/or data storage 105,
respectively, result of which is stored in activation storage
120.

[0072] In at least one embodiment, each of code and/or
data storage 101 and 105 and corresponding computational
hardware 102 and 106, respectively, correspond to different
layers of a neural network, such that resulting activation
from one storage/computational pair 101/102 of code and/or
data storage 101 and computational hardware 102 is pro-
vided as an input to a next storage/computational pair
105/106 of code and/or data storage 105 and computational
hardware 106, in order to mirror a conceptual organization
of a neural network. In at least one embodiment, each of
storage/computational pairs 101/102 and 105/106 may cor-
respond to more than one neural network layer. In at least
one embodiment, additional storage/computation pairs (not
shown) subsequent to or in parallel with storage/computa-
tion pairs 101/102 and 105/106 may be included in inference
and/or training logic 115.

Neural Network Training and Deployment

[0073] FIG. 2 illustrates training and deployment of a deep
neural network, according to at least one embodiment. In at
least one embodiment, untrained neural network 206 is
trained using a training dataset 202. In at least one embodi-
ment, training framework 204 is a PyTorch framework,
whereas in other embodiments, training framework 204 is a
TensorFlow, Boost, Caffe, Microsoft Cognitive Toolkit/
CNTK, MXNet, Chainer, Keras, Deeplearning4j, or other
training framework. In at least one embodiment, training
framework 204 trains an untrained neural network 206 and
enables it to be trained using processing resources described
herein to generate a trained neural network 208. In at least
one embodiment, weights may be chosen randomly or by
pre-training using a deep belief network. In at least one
embodiment, training may be performed in either a super-
vised, partially supervised, or unsupervised manner.

[0074] In at least one embodiment, untrained neural net-
work 206 is trained using supervised learning, wherein
training dataset 202 includes an input paired with a desired
output for an input, or where training dataset 202 includes
input having a known output and an output of neural
network 206 is manually graded. In at least one embodi-
ment, untrained neural network 206 is trained in a super-
vised manner and processes inputs from training dataset 202
and compares resulting outputs against a set of expected or
desired outputs. In at least one embodiment, errors are then
propagated back through untrained neural network 206. In at
least one embodiment, training framework 204 adjusts
weights that control untrained neural network 206. In at least
one embodiment, training framework 204 includes tools to
monitor how well untrained neural network 206 is converg-
ing towards a model, such as trained neural network 208,
suitable to generating correct answers, such as in result 214,
based on input data such as a new dataset 212. In at least one
embodiment, training framework 204 trains untrained neural
network 206 repeatedly while adjusting weights to refine an
output of untrained neural network 206 using a loss function
and adjustment algorithm, such as stochastic gradient
descent. In at least one embodiment, training framework 204
trains untrained neural network 206 until untrained neural
network 206 achieves a desired accuracy. In at least one

Sep. 8§, 2022

embodiment, trained neural network 208 can then be
deployed to implement any number of machine learning
operations.

[0075] In at least one embodiment, untrained neural net-
work 206 is trained using unsupervised learning, wherein
untrained neural network 206 attempts to train itself using
unlabeled data. In at least one embodiment, unsupervised
learning training dataset 202 will include input data without
any associated output data or “ground truth” data. In at least
one embodiment, untrained neural network 206 can learn
groupings within training dataset 202 and can determine
how individual inputs are related to untrained dataset 202. In
at least one embodiment, unsupervised training can be used
to generate a self-organizing map in trained neural network
208 capable of performing operations useful in reducing
dimensionality of new dataset 212. In at least one embodi-
ment, unsupervised training can also be used to perform
anomaly detection, which allows identification of data
points in new dataset 212 that deviate from normal patterns
of new dataset 212.

[0076] In at least one embodiment, semi-supervised learn-
ing may be used, which is a technique in which in training
dataset 202 includes a mix of labeled and unlabeled data. In
at least one embodiment, training framework 204 may be
used to perform incremental learning, such as through
transferred learning techniques. In at least one embodiment,
incremental learning enables trained neural network 208 to
adapt to new dataset 212 without forgetting knowledge
instilled within trained neural network 208 during initial
training.

Data Center

[0077] FIG. 3 illustrates an example data center 300, in
which at least one embodiment may be used. In at least one
embodiment, data center 300 includes a data center infra-
structure layer 310, a framework layer 320, a software layer
330, and an application layer 340.

[0078] In at least one embodiment, as shown in FIG. 3,
data center infrastructure layer 310 may include a resource
orchestrator 312, grouped computing resources 314, and
node computing resources (“node C.R.s”) 316(1)-316(N),
where “N” represents a positive integer (which may be a
different integer “N” than used in other figures). In at least
one embodiment, node C.R.s 316(1)-316(N) may include,
but are not limited to, any number of central processing units
(“CPUSs”) or other processors (including accelerators, field
programmable gate arrays (FPGAs), graphics processors,
etc.), memory storage devices 318(1)-318(N) (e.g., dynamic
read-only memory, solid state storage or disk drives), net-
work input/output (“NW 1/O”) devices, network switches,
virtual machines (“VMs”), power modules, and cooling
modules, etc. In at least one embodiment, one or more node
CR.s from among node C.R.s 316(1)-316(N) may be a
server having one or more of above-mentioned computing
resources.

[0079] In at least one embodiment, grouped computing
resources 314 may include separate groupings of node C.R.s
housed within one or more racks (not shown), or many racks
housed in data centers at various geographical locations
(also not shown). In at least one embodiment, separate
groupings of node C.R.s within grouped computing
resources 314 may include grouped compute, network,
memory, or storage resources that may be configured or
allocated to support one or more workloads. In at least one

US 2022/0284582 Al

embodiment, several node C.R.s including CPUs or proces-
sors may be grouped within one or more racks to provide
compute resources to support one or more workloads. In at
least one embodiment, one or more racks may also include
any number of power modules, cooling modules, and net-
work switches, in any combination.

[0080] In at least one embodiment, resource orchestrator
312 may configure or otherwise control one or more node
C.R.s 316(1)-316(N) and/or grouped computing resources
314. In at least one embodiment, resource orchestrator 312
may include a software design infrastructure (“SDI”’) man-
agement entity for data center 300. In at least one embodi-
ment, resource orchestrator 112 may include hardware,
software, or some combination thereof.

[0081] In at least one embodiment, as shown in FIG. 3,
framework layer 320 includes a job scheduler 322, a con-
figuration manager 324, a resource manager 326, and a
distributed file system 328. In at least one embodiment,
framework layer 320 may include a framework to support
software 332 of software layer 330 and/or one or more
application(s) 342 of application layer 340. In at least one
embodiment, software 332 or application(s) 342 may
respectively include web-based service software or applica-
tions, such as those provided by Amazon Web Services,
Google Cloud, and Microsoft Azure. In at least one embodi-
ment, framework layer 320 may be, but is not limited to, a
type of free and open-source software web application
framework such as Apache Spark™ (hereinafter “Spark™)
that may utilize distributed file system 328 for large-scale
data processing (e.g., “big data”). In at least one embodi-
ment, job scheduler 332 may include a Spark driver to
facilitate scheduling of workloads supported by various
layers of data center 300. In at least one embodiment,
configuration manager 324 may be capable of configuring
different layers such as software layer 330 and framework
layer 320 including Spark and distributed file system 328 for
supporting large-scale data processing. In at least one
embodiment, resource manager 326 may be capable of
managing clustered or grouped computing resources
mapped to or allocated for support of distributed file system
328 and job scheduler 322. In at least one embodiment,
clustered or grouped computing resources may include
grouped computing resources 314 at data center infrastruc-
ture layer 310. In at least one embodiment, resource man-
ager 326 may coordinate with resource orchestrator 312 to
manage these mapped or allocated computing resources.
[0082] In at least one embodiment, software 332 included
in software layer 330 may include software used by at least
portions of node C.R.s 316(1)-316(N), grouped computing
resources 314, and/or distributed file system 328 of frame-
work layer 320. In at least one embodiment, one or more
types of software may include, but are not limited to,
Internet web page search software, e-mail virus scan soft-
ware, database software, and streaming video content soft-
ware.

[0083] In at least one embodiment, application(s) 342
included in application layer 340 may include one or more
types of applications used by at least portions of node C.R.s
316(1)-316(N), grouped computing resources 314, and/or
distributed file system 328 of framework layer 320. In at
least one embodiment, one or more types of applications
may include, but are not limited to, any number of a
genomics application, a cognitive compute application, and
a machine learning application, including training or infer-

Sep. 8§, 2022

encing software, machine learning framework software
(e.g., PyTorch, TensorFlow, Caffe, etc.) or other machine
learning applications used in conjunction with one or more
embodiments.

[0084] In at least one embodiment, any of configuration
manager 324, resource manager 326, and resource orches-
trator 312 may implement any number and type of self-
modifying actions based on any amount and type of data
acquired in any technically feasible fashion. In at least one
embodiment, self-modifying actions may relieve a data
center operator of data center 300 from making possibly bad
configuration decisions and possibly avoiding underutilized
and/or poor performing portions of a data center.

[0085] In at least one embodiment, data center 300 may
include tools, services, software, or other resources to train
one or more machine learning models or predict or infer
information using one or more machine learning models
according to one or more embodiments described herein.
For example, in at least one embodiment, a machine learning
model may be trained by calculating weight parameters
according to a neural network architecture using software
and computing resources described above with respect to
data center 300. In at least one embodiment, trained machine
learning models corresponding to one or more neural net-
works may be used to infer or predict information using
resources described above with respect to data center 300 by
using weight parameters calculated through one or more
training techniques described herein.

[0086] In at least one embodiment, data center may use
CPUs, application-specific integrated circuits (ASICs),
GPUs, FPGAs, or other hardware to perform training and/or
inferencing using above-described resources. Moreover, one
or more software and/or hardware resources described above
may be configured as a service to allow users to train or
performing inferencing of information, such as image rec-
ognition, speech recognition, or other artificial intelligence
services.

[0087] Inference and/or training logic 115 are used to
perform inferencing and/or training operations associated
with one or more embodiments. Details regarding inference
and/or training logic 115 are provided herein in conjunction
with FIGS. 1A and/or 1B. In at least one embodiment,
inference and/or training logic 115 may be used in system
FIG. 3 for inferencing or predicting operations based, at
least in part, on weight parameters calculated using neural
network training operations, neural network functions and/
or architectures, or neural network use cases described
herein.

Autonomous Vehicle

[0088] FIG. 4A illustrates an example of an autonomous
vehicle 400, according to at least one embodiment. In at least
one embodiment, autonomous vehicle 400 (alternatively
referred to herein as “vehicle 400”) may be, without limi-
tation, a passenger vehicle, such as a car, a truck, a bus,
and/or another type of vehicle that accommodates one or
more passengers. In at least one embodiment, vehicle 400
may be a semi-tractor-trailer truck used for hauling cargo. In
at least one embodiment, vehicle 400 may be an airplane,
robotic vehicle, or other kinds of vehicles.

[0089] Autonomous vehicles may be described in terms of
automation levels, defined by National Highway Traffic
Safety Administration (“NHTSA”), a division of US Depart-
ment of Transportation, and Society of Automotive Engi-

US 2022/0284582 Al

neers (“SAE”) “Taxonomy and Definitions for Terms
Related to Driving Automation Systems for On-Road Motor
Vehicles” (e.g., Standard No. J3016-201806, published on
Jun. 15, 2018, Standard No. J3016-201609, published on
Sep. 30, 2016, and previous and future versions of this
standard). In at least one embodiment, vehicle 400 may be
capable of functioning in accordance with one or more of
Level 1 through Level 5 of autonomous driving levels. For
example, in at least one embodiment, vehicle 400 may be
capable of conditional automation (Level 3), high automa-
tion (Level 4), and/or full automation (Level 5), depending
on embodiment.

[0090] In at least one embodiment, vehicle 400 may
include, without limitation, components such as a chassis, a
vehicle body, wheels (e.g., 2, 4, 6, 8, 18, etc.), tires, axles,
and other components of a vehicle. In at least one embodi-
ment, vehicle 400 may include, without limitation, a pro-
pulsion system 450, such as an internal combustion engine,
hybrid electric power plant, an all-electric engine, and/or
another propulsion system type. In at least one embodiment,
propulsion system 450 may be connected to a drive train of
vehicle 400, which may include, without limitation, a trans-
mission, to enable propulsion of vehicle 400. In at least one
embodiment, propulsion system 450 may be controlled in
response to receiving signals from a throttle/accelerator(s)
452.

[0091] In at least one embodiment, a steering system 454,
which may include, without limitation, a steering wheel, is
used to steer vehicle 400 (e.g., along a desired path or route)
when propulsion system 450 is operating (e.g., when vehicle
400 is in motion). In at least one embodiment, steering
system 454 may receive signals from steering actuator(s)
456. In at least one embodiment, a steering wheel may be
optional for full automation (Level 5) functionality. In at
least one embodiment, a brake sensor system 446 may be
used to operate vehicle brakes in response to receiving
signals from brake actuator(s) 448 and/or brake sensors.
[0092] In at least one embodiment, controller(s) 436,
which may include, without limitation, one or more system
on chips (“SoCs”) (not shown in FIG. 4A) and/or graphics
processing unit(s) (“GPU(s)”), provide signals (e.g., repre-
sentative of commands) to one or more components and/or
systems of vehicle 400. For instance, in at least one embodi-
ment, controller(s) 436 may send signals to operate vehicle
brakes via brake actuator(s) 448, to operate steering system
454 via steering actuator(s) 456, to operate propulsion
system 450 via throttle/accelerator(s) 452. In at least one
embodiment, controller(s) 436 may include one or more
onboard (e.g., integrated) computing devices that process
sensor signals, and output operation commands (e.g., signals
representing commands) to enable autonomous driving and/
or to assist a human driver in driving vehicle 400. In at least
one embodiment, controller(s) 436 may include a first con-
troller for autonomous driving functions, a second controller
for functional safety functions, a third controller for artificial
intelligence functionality (e.g., computer vision), a fourth
controller for infotainment functionality, a fifth controller
for redundancy in emergency conditions, and/or other con-
trollers. In at least one embodiment, a single controller may
handle two or more of above functionalities, two or more
controllers may handle a single functionality, and/or any
combination thereof.

[0093] In at least one embodiment, controller(s) 436 pro-
vide signals for controlling one or more components and/or

Sep. 8§, 2022

systems of vehicle 400 in response to sensor data received
from one or more sensors (e.g., sensor inputs). In at least one
embodiment, sensor data may be received from, for example
and without limitation, global navigation satellite systems
(“GNSS”) sensor(s) 458 (e.g., Global Positioning System
sensor(s)), RADAR sensor(s) 460, ultrasonic sensor(s) 462,
LIDAR sensor(s) 464, inertial measurement unit (“IMU”)
sensor(s) 466 (e.g., accelerometer(s), gyroscope(s), a mag-
netic compass or magnetic compasses, magnetometer(s),
etc.), microphone(s) 496, stereo camera(s) 468, wide-view
camera(s) 470 (e.g., fisheye cameras), infrared camera(s)
472, surround camera(s) 474 (e.g., 360 degree cameras),
long-range cameras (not shown in FIG. 4A), mid-range
camera(s) (not shown in FIG. 4A), speed sensor(s) 444 (e.g.,
for measuring speed of vehicle 400), vibration sensor(s) 442,
steering sensor(s) 440, brake sensor(s) (e.g., as part of brake
sensor system 446), and/or other sensor types.

[0094] In at least one embodiment, one or more of con-
troller(s) 436 may receive inputs (e.g., represented by input
data) from an instrument cluster 432 of vehicle 400 and
provide outputs (e.g., represented by output data, display
data, etc.) via a human-machine interface (“HMI”) display
434, an audible annunciator, a loudspeaker, and/or via other
components of vehicle 400. In at least one embodiment,
outputs may include information such as vehicle velocity,
speed, time, map data (e.g., a High Definition map (not
shown in FIG. 4A), location data (e.g., vehicle’s 400 loca-
tion, such as on a map), direction, location of other vehicles
(e.g., an occupancy grid), information about objects and
status of objects as perceived by controller(s) 436, etc. For
example, in at least one embodiment, HMI display 434 may
display information about presence of one or more objects
(e.g., a street sign, caution sign, traffic light changing, etc.),
and/or information about driving maneuvers vehicle has
made, is making, or will make (e.g., changing lanes now,
taking exit 34B in two miles, etc.).

[0095] In at least one embodiment, vehicle 400 further
includes a network interface 424 which may use wireless
antenna(s) 426 and/or modem(s) to communicate over one
or more networks. For example, in at least one embodiment,
network interface 424 may be capable of communication
over Long-Term Evolution (“LTE”), Wideband Code Divi-
sion Multiple Access (“WCDMA”), Universal Mobile Tele-
communications System (“UMTS”), Global System for
Mobile communication (“GSM”), IMT-CDMA Multi-Car-
rier (“CDMA2000”) networks, etc. In at least one embodi-
ment, wireless antenna(s) 426 may also enable communi-
cation between objects in environment (e.g., vehicles,
mobile devices, etc.), using local area network(s), such as
Bluetooth, Bluetooth Low Energy (“LE”), Z-Wave, ZigBee,
etc., and/or low power wide-area network(s) (“LPWANs”),
such as LoRaWAN, SigFox, etc. protocols.

[0096] Inference and/or training logic 115 are used to
perform inferencing and/or training operations associated
with one or more embodiments. Details regarding inference
and/or training logic 115 are provided herein in conjunction
with FIGS. 1A and/or 1B. In at least one embodiment,
inference and/or training logic 115 may be used in system
FIG. 4A for inferencing or predicting operations based, at
least in part, on weight parameters calculated using neural
network training operations, neural network functions and/
or architectures, or neural network use cases described
herein.

US 2022/0284582 Al

[0097] FIG. 4B illustrates an example of camera locations
and fields of view for autonomous vehicle 400 of FIG. 4A,
according to at least one embodiment. In at least one
embodiment, cameras and respective fields of view are one
example embodiment and are not intended to be limiting.
For instance, in at least one embodiment, additional and/or
alternative cameras may be included, and/or cameras may be
located at different locations on vehicle 400.

[0098] In at least one embodiment, camera types for
cameras may include, but are not limited to, digital cameras
that may be adapted for use with components and/or systems
of vehicle 400. In at least one embodiment, camera(s) may
operate at automotive safety integrity level (“ASIL”) B
and/or at another ASIL. In at least one embodiment, camera
types may be capable of any image capture rate, such as 60
frames per second (fps), 1220 fps, 240 fps, etc., depending
on embodiment. In at least one embodiment, cameras may
be capable of using rolling shutters, global shutters, another
type of shutter, or a combination thercof. In at least one
embodiment, color filter array may include a red clear clear
clear (“RCCC”) color filter array, a red clear clear blue
(“RCCB”) color filter array, a red blue green clear
(“RBGC”) color filter array, a Foveon X3 color filter array,
a Bayer sensors (“RGGB”) color filter array, a monochrome
sensor color filter array, and/or another type of color filter
array. In at least one embodiment, clear pixel cameras, such
as cameras with an RCCC, an RCCB, and/or an RBGC color
filter array, may be used in an effort to increase light
sensitivity.

[0099] In at least one embodiment, one or more camera(s)
may be used to perform advanced driver assistance systems
(“ADAS”) functions (e.g., as part of a redundant or fail-safe
design). For example, in at least one embodiment, a Multi-
Function Mono Camera may be installed to provide func-
tions including lane departure warning, traffic sign assist,
and intelligent headlamp control. In at least one embodi-
ment, one or more camera(s) (e.g., all cameras) may record
and provide image data (e.g., video) simultaneously.
[0100] In at least one embodiment, one or more camera
may be mounted in a mounting assembly, such as a custom
designed (three-dimensional (“3D”) printed) assembly, in
order to cut out stray light and reflections from within
vehicle 400 (e.g., reflections from dashboard reflected in
windshield mirrors) which may interfere with camera image
data capture abilities. With reference to wing-mirror mount-
ing assemblies, in at least one embodiment, wing-mirror
assemblies may be custom 3D printed so that a camera
mounting plate matches a shape of a wing-mirror. In at least
one embodiment, camera(s) may be integrated into wing-
mirrors. In at least one embodiment, for side-view cameras,
camera(s) may also be integrated within four pillars at each
corner of a cabin.

[0101] In at least one embodiment, cameras with a field of
view that include portions of an environment in front of
vehicle 400 (e.g., front-facing cameras) may be used for
surround view, to help identify forward facing paths and
obstacles, as well as aid in, with help of one or more of
controller(s) 436 and/or control SoCs, providing information
critical to generating an occupancy grid and/or determining
preferred vehicle paths. In at least one embodiment, front-
facing cameras may be used to perform many similar ADAS
functions as LIDAR, including, without limitation, emer-
gency braking, pedestrian detection, and collision avoid-
ance. In at least one embodiment, front-facing cameras may

Sep. 8§, 2022

also be used for ADAS functions and systems including,
without limitation, Lane Departure Warnings (“LDW?),
Autonomous Cruise Control (“ACC”), and/or other func-
tions such as traffic sign recognition.

[0102] In at least one embodiment, a variety of cameras
may be used in a front-facing configuration, including, for
example, a monocular camera platform that includes a
CMOS (“complementary metal oxide semiconductor”) color
imager. In at least one embodiment, a wide-view camera 470
may be used to perceive objects coming into view from a
periphery (e.g., pedestrians, crossing traffic, or bicycles).
Although only one wide-view camera 470 is illustrated in
FIG. 4B, in other embodiments, there may be any number
(including zero) wide-view cameras on vehicle 400. In at
least one embodiment, any number of long-range camera(s)
498 (e.g., a long-view stereo camera pair) may be used for
depth-based object detection, especially for objects for
which a neural network has not yet been trained. In at least
one embodiment, long-range camera(s) 498 may also be
used for object detection and classification, as well as basic
object tracking.

[0103] In at least one embodiment, any number of stereo
camera(s) 468 may also be included in a front-facing con-
figuration. In at least one embodiment, one or more of stereo
camera(s) 468 may include an integrated control unit com-
prising a scalable processing unit, which may provide a
programmable logic (“FPGA”) and a multi-core micro-
processor with an integrated Controller Area Network
(“CAN”) or Ethernet interface on a single chip. In at least
one embodiment, such a unit may be used to generate a 3D
map of an environment of vehicle 400, including a distance
estimate for all points in an image. In at least one embodi-
ment, one or more of stereo camera(s) 468 may include,
without limitation, compact stereo vision sensor(s) that may
include, without limitation, two camera lenses (one each on
left and right) and an image processing chip that may
measure distance from vehicle 400 to target object and use
generated information (e.g., metadata) to activate autono-
mous emergency braking and lane departure warning func-
tions. In at least one embodiment, other types of stereo
camera(s) 468 may be used in addition to, or alternatively
from, those described herein.

[0104] In at least one embodiment, cameras with a field of
view that include portions of environment to sides of vehicle
400 (e.g., side-view cameras) may be used for surround
view, providing information used to create and update an
occupancy grid, as well as to generate side impact collision
warnings. For example, in at least one embodiment, sur-
round camera(s) 474 (e.g., four surround cameras as illus-
trated in FIG. 4B) could be positioned on vehicle 400. In at
least one embodiment, surround camera(s) 474 may include,
without limitation, any number and combination of wide-
view cameras, fisheye camera(s), 360 degree camera(s),
and/or similar cameras. For instance, in at least one embodi-
ment, four fisheye cameras may be positioned on a front, a
rear, and sides of vehicle 400. In at least one embodiment,
vehicle 400 may use three surround camera(s) 474 (e.g., left,
right, and rear), and may leverage one or more other
camera(s) (e.g., a forward-facing camera) as a fourth sur-
round-view camera.

[0105] In at least one embodiment, cameras with a field of
view that include portions of an environment behind vehicle
400 (e.g., rear-view cameras) may be used for parking
assistance, surround view, rear collision warnings, and cre-

US 2022/0284582 Al

ating and updating an occupancy grid. In at least one
embodiment, a wide variety of cameras may be used includ-
ing, but not limited to, cameras that are also suitable as a
front-facing camera(s) (e.g., long-range cameras 498 and/or
mid-range camera(s) 476, stereo camera(s) 468), infrared
camera(s) 472, etc.), as described herein.

[0106] Inference and/or training logic 115 are used to
perform inferencing and/or training operations associated
with one or more embodiments. Details regarding inference
and/or training logic 115 are provided herein in conjunction
with FIGS. 1A and/or 1B. In at least one embodiment,
inference and/or training logic 115 may be used in system
FIG. 4B for inferencing or predicting operations based, at
least in part, on weight parameters calculated using neural
network training operations, neural network functions and/
or architectures, or neural network use cases described
herein.

[0107] FIG. 4C is a block diagram illustrating an example
system architecture for autonomous vehicle 400 of FIG. 4A,
according to at least one embodiment. In at least one
embodiment, each of components, features, and systems of
vehicle 400 in FIG. 4C is illustrated as being connected via
abus 402. In at least one embodiment, bus 402 may include,
without limitation, a CAN data interface (alternatively
referred to herein as a “CAN bus”). In at least one embodi-
ment, a CAN may be a network inside vehicle 400 used to
aid in control of various features and functionality of vehicle
400, such as actuation of brakes, acceleration, braking,
steering, windshield wipers, etc. In at least one embodiment,
bus 402 may be configured to have dozens or even hundreds
of nodes, each with its own unique identifier (e.g., a CAN
ID). In at least one embodiment, bus 402 may be read to find
steering wheel angle, ground speed, engine revolutions per
minute (“RPMs”), button positions, and/or other vehicle
status indicators. In at least one embodiment, bus 402 may
be a CAN bus that is ASIL B compliant.

[0108] In at least one embodiment, in addition to, or
alternatively from CAN, FlexRay and/or Ethernet protocols
may be used. In at least one embodiment, there may be any
number of busses forming bus 402, which may include,
without limitation, zero or more CAN busses, zero or more
FlexRay busses, zero or more Ethernet busses, and/or zero
or more other types of busses using different protocols. In at
least one embodiment, two or more busses may be used to
perform different functions, and/or may be used for redun-
dancy. For example, a first bus may be used for collision
avoidance functionality and a second bus may be used for
actuation control. In at least one embodiment, each bus of
bus 402 may communicate with any of components of
vehicle 400, and two or more busses of bus 402 may
communicate with corresponding components. In at least
one embodiment, each of any number of system(s) on
chip(s) (“SoC(s)”) 404 (such as SoC 404(A) and SoC
404(B), each of controller(s) 436, and/or each computer
within a vehicle may have access to same input data (e.g.,
inputs from sensors of vehicle 400), and may be connected
to a common bus, such CAN bus.

[0109] In at least one embodiment, vehicle 400 may
include one or more controller(s) 436, such as those
described herein with respect to FIG. 4A. In at least one
embodiment, controller(s) 436 may be used for a variety of
functions. In at least one embodiment, controller(s) 436 may
be coupled to any of various other components and systems
of vehicle 400, and may be used for control of vehicle 400,

Sep. 8§, 2022

artificial intelligence of vehicle 400, infotainment for
vehicle 400, and/or other functions.

[0110] In at least one embodiment, vehicle 400 may
include any number of SoCs 404. In at least one embodi-
ment, each of SoCs 404 may include, without limitation,
central processing units (“CPU(s)”) 406, graphics process-
ing units (“GPU(s)”) 408, processor(s) 410, cache(s) 412,
accelerator(s) 414, data store(s) 416, and/or other compo-
nents and features not illustrated. In at least one embodi-
ment, SoC(s) 404 may be used to control vehicle 400 in a
variety of platforms and systems. For example, in at least
one embodiment, SoC(s) 404 may be combined in a system
(e.g., system of vehicle 400) with a High Definition (“HD”)
map 422 which may obtain map refreshes and/or updates via
network interface 424 from one or more servers (not shown
in FIG. 4C).

[0111] In at least one embodiment, CPU(s) 406 may
include a CPU cluster or CPU complex (alternatively
referred to herein as a “CCPLEX”). In at least one embodi-
ment, CPU(s) 406 may include multiple cores and/or level
two (“L.2”) caches. For instance, in at least one embodiment,
CPU(s) 406 may include eight cores in a coherent multi-
processor configuration. In at least one embodiment, CPU(s)
406 may include four dual-core clusters where each cluster
has a dedicated [.2 cache (e.g., a 2 megabyte (MB) L2
cache). In at least one embodiment, CPU(s) 406 (e.g.,
CCPLEX) may be configured to support simultaneous clus-
ter operations enabling any combination of clusters of
CPU(s) 406 to be active at any given time.

[0112] In at least one embodiment, one or more of CPU(s)
406 may implement power management capabilities that
include, without limitation, one or more of following fea-
tures: individual hardware blocks may be clock-gated auto-
matically when idle to save dynamic power; each core clock
may be gated when such core is not actively executing
instructions due to execution of Wait for Interrupt (“WFI”)/
Wait for Event (“WFE”) instructions; each core may be
independently power-gated; each core cluster may be inde-
pendently clock-gated when all cores are clock-gated or
power-gated; and/or each core cluster may be independently
power-gated when all cores are power-gated. In at least one
embodiment, CPU(s) 406 may further implement an
enhanced algorithm for managing power states, where
allowed power states and expected wakeup times are speci-
fied, and hardware/microcode determines which best power
state to enter for core, cluster, and CCPLEX. In at least one
embodiment, processing cores may support simplified
power state entry sequences in software with work offloaded
to microcode.

[0113] In at least one embodiment, GPU(s) 408 may
include an integrated GPU (alternatively referred to herein
as an “iGPU”). In at least one embodiment, GPU(s) 408 may
be programmable and may be efficient for parallel work-
loads. In at least one embodiment, GPU(s) 408 may use an
enhanced tensor instruction set. In at least one embodiment,
GPU(s) 408 may include one or more streaming micropro-
cessors, where each streaming microprocessor may include
a level one (“L.1”) cache (e.g., an L.1 cache with at least 96
KB storage capacity), and two or more streaming micropro-
cessors may share an .2 cache (e.g., an .2 cache with a 512
KB storage capacity). In at least one embodiment, GPU(s)
408 may include at least eight streaming microprocessors. In
at least one embodiment, GPU(s) 408 may use compute
application programming interface(s) (API(s)). In at least

US 2022/0284582 Al

one embodiment, GPU(s) 408 may use one or more parallel
computing platforms and/or programming models (e.g.,
NVIDIA’s CUDA model).

[0114] In at least one embodiment, one or more of GPU(s)
408 may be power-optimized for best performance in auto-
motive and embedded use cases. For example, in at least one
embodiment, GPU(s) 408 could be fabricated on Fin field-
effect transistor (“FinFET”) circuitry. In at least one embodi-
ment, each streaming microprocessor may incorporate a
number of mixed-precision processing cores partitioned into
multiple blocks. For example, and without limitation, 64
PF32 cores and 32 PF64 cores could be partitioned into four
processing blocks. In at least one embodiment, each pro-
cessing block could be allocated 16 FP32 cores, 8 FP64
cores, 16 INT32 cores, two mixed-precision NVIDIA Tensor
cores for deep learning matrix arithmetic, a level zero (“LO”)
instruction cache, a warp scheduler, a dispatch unit, and/or
a 64 KB register file. In at least one embodiment, streaming
microprocessors may include independent parallel integer
and floating-point data paths to provide for efficient execu-
tion of workloads with a mix of computation and addressing
calculations. In at least one embodiment, streaming micro-
processors may include independent thread scheduling capa-
bility to enable finer-grain synchronization and cooperation
between parallel threads. In at least one embodiment,
streaming microprocessors may include a combined L1 data
cache and shared memory unit in order to improve perfor-
mance while simplifying programming.

[0115] In at least one embodiment, one or more of GPU(s)
408 may include a high bandwidth memory (“HBM) and/or
a 16 GB HBM2 memory subsystem to provide, in some
examples, about 900 GB/second peak memory bandwidth.
In at least one embodiment, in addition to, or alternatively
from, HBM memory, a synchronous graphics random-ac-
cess memory (“SGRAM”) may be used, such as a graphics
double data rate type five synchronous random-access
memory (“GDDRS”).

[0116] In at least one embodiment, GPU(s) 408 may
include unified memory technology. In at least one embodi-
ment, address translation services (“AT'S”) support may be
used to allow GPU(s) 408 to access CPU(s) 406 page tables
directly. In at least one embodiment, embodiment, when a
GPU of GPU(s) 408 memory management unit (“MMU”)
experiences a miss, an address translation request may be
transmitted to CPU(s) 406. In response, 2 CPU of CPU(s)
406 may look in its page tables for a virtual-to-physical
mapping for an address and transmit translation back to
GPU(s) 408, in at least one embodiment. In at least one
embodiment, unified memory technology may allow a single
unified virtual address space for memory of both CPU(s)
406 and GPU(s) 408, thereby simplifying GPU(s) 408
programming and porting of applications to GPU(s) 408.
[0117] In at least one embodiment, GPU(s) 408 may
include any number of access counters that may keep track
of frequency of access of GPU(s) 408 to memory of other
processors. In at least one embodiment, access counter(s)
may help ensure that memory pages are moved to physical
memory of a processor that is accessing pages most fre-
quently, thereby improving efficiency for memory ranges
shared between processors.

[0118] In at least one embodiment, one or more of SoC(s)
404 may include any number of cache(s) 412, including
those described herein. For example, in at least one embodi-
ment, cache(s) 412 could include a level three (“L.3”") cache

Sep. 8§, 2022

that is available to both CPU(s) 406 and GPU(s) 408 (e.g.,
that is connected to CPU(s) 406 and GPU(s) 408). In at least
one embodiment, cache(s) 412 may include a write-back
cache that may keep track of states of lines, such as by using
a cache coherence protocol (e.g., MEL, MESI, MSI, etc.). In
at least one embodiment, a L3 cache may include 4 MB of
memory or more, depending on embodiment, although
smaller cache sizes may be used.

[0119] In at least one embodiment, one or more of SoC(s)
404 may include one or more accelerator(s) 414 (e.g.,
hardware accelerators, software accelerators, or a combina-
tion thereof). In at least one embodiment, SoC(s) 404 may
include a hardware acceleration cluster that may include
optimized hardware accelerators and/or large on-chip
memory. In at least one embodiment, large on-chip memory
(e.g., 4 MB of SRAM), may enable a hardware acceleration
cluster to accelerate neural networks and other calculations.
In at least one embodiment, a hardware acceleration cluster
may be used to complement GPU(s) 408 and to off-load
some of tasks of GPU(s) 408 (e.g., to free up more cycles of
GPU(s) 408 for performing other tasks). In at least one
embodiment, accelerator(s) 414 could be used for targeted
workloads (e.g., perception, convolutional neural networks
(“CNNs”), recurrent neural networks (“RNNs”), etc.) that
are stable enough to be amenable to acceleration. In at least
one embodiment, a CNN may include a region-based or
regional convolutional neural networks (“RCNNs”) and Fast
RCNNS (e.g., as used for object detection) or other type of
CNN.

[0120] In at least one embodiment, accelerator(s) 414
(e.g., hardware acceleration cluster) may include one or
more deep learning accelerator (“DLA”). In at least one
embodiment, DLA(s) may include, without limitation, one
or more Tensor processing units (“TPUs™”) that may be
configured to provide an additional ten trillion operations
per second for deep learning applications and inferencing. In
at least one embodiment, TPUs may be accelerators config-
ured to, and optimized for, performing image processing
functions (e.g., for CNNs, RCNNs, etc.). In at least one
embodiment, DLLA(s) may further be optimized for a spe-
cific set of neural network types and floating point opera-
tions, as well as inferencing. In at least one embodiment,
design of DLA(s) may provide more performance per mil-
limeter than a typical general-purpose GPU, and typically
vastly exceeds performance of a CPU. In at least one
embodiment, TPU(s) may perform several functions, includ-
ing a single-instance convolution function, supporting, for
example, INT8, INT16, and FP16 data types for both
features and weights, as well as post-processor functions. In
at least one embodiment, DLA(s) may quickly and effi-
ciently execute neural networks, especially CNNs, on pro-
cessed or unprocessed data for any of a variety of functions,
including, for example and without limitation: a CNN for
object identification and detection using data from camera
sensors; a CNN for distance estimation using data from
camera sensors; a CNN for emergency vehicle detection and
identification and detection using data from microphones; a
CNN for facial recognition and vehicle owner identification
using data from camera sensors; and/or a CNN for security
and/or safety related events.

[0121] In at least one embodiment, DLA(s) may perform
any function of GPU(s) 408, and by using an inference
accelerator, for example, a designer may target either DLA
(s) or GPU(s) 408 for any function. For example, in at least

US 2022/0284582 Al

one embodiment, a designer may focus processing of CNNs
and floating point operations on DLA(s) and leave other
functions to GPU(s) 408 and/or accelerator(s) 414.

[0122] In at least one embodiment, accelerator(s) 414 may
include programmable vision accelerator (“PVA”), which
may alternatively be referred to herein as a computer vision
accelerator. In at least one embodiment, PVA may be
designed and configured to accelerate computer vision algo-
rithms for advanced driver assistance system (“ADAS”)
438, autonomous driving, augmented reality (“AR”) appli-
cations, and/or virtual reality (“VR”) applications. In at least
one embodiment, PVA may provide a balance between
performance and flexibility. For example, in at least one
embodiment, each PVA may include, for example and with-
out limitation, any number of reduced instruction set com-
puter (“RISC”) cores, direct memory access (“DMA”),
and/or any number of vector processors.

[0123] In at least one embodiment, RISC cores may inter-
act with image sensors (e.g., image sensors of any cameras
described herein), image signal processor(s), etc. In at least
one embodiment, each RISC core may include any amount
of memory. In at least one embodiment, RISC cores may use
any of a number of protocols, depending on embodiment. In
at least one embodiment, RISC cores may execute a real-
time operating system (“RTOS”). In at least one embodi-
ment, RISC cores may be implemented using one or more
integrated circuit devices, application specific integrated
circuits (“ASICs”), and/or memory devices. For example, in
at least one embodiment, RISC cores could include an
instruction cache and/or a tightly coupled RAM.

[0124] In at least one embodiment, DMA may enable
components of PVA to access system memory independently
of CPU(s) 406. In at least one embodiment, DMA may
support any number of features used to provide optimization
to a PVA including, but not limited to, supporting multi-
dimensional addressing and/or circular addressing. In at
least one embodiment, DMA may support up to six or more
dimensions of addressing, which may include, without limi-
tation, block width, block height, block depth, horizontal
block stepping, vertical block stepping, and/or depth step-
ping.

[0125] In at least one embodiment, vector processors may
be programmable processors that may be designed to effi-
ciently and flexibly execute programming for computer
vision algorithms and provide signal processing capabilities.
In at least one embodiment, a PVA may include a PVA core
and two vector processing subsystem partitions. In at least
one embodiment, a PVA core may include a processor
subsystem, DMA engine(s) (e.g., two DMA engines), and/or
other peripherals. In at least one embodiment, a vector
processing subsystem may operate as a primary processing
engine of a PVA, and may include a vector processing unit
(“VPU”), an instruction cache, and/or vector memory (e.g.,
“VMEM”). In at least one embodiment, VPU core may
include a digital signal processor such as, for example, a
single instruction, multiple data (“SIMD”), very long
instruction word (“VLIW”) digital signal processor. In at
least one embodiment, a combination of SIMD and VLIW
may enhance throughput and speed.

[0126] In at least one embodiment, each of vector proces-
sors may include an instruction cache and may be coupled
to dedicated memory. As a result, in at least one embodi-
ment, each of vector processors may be configured to
execute independently of other vector processors. In at least

Sep. 8§, 2022

one embodiment, vector processors that are included in a
particular PVA may be configured to employ data parallel-
ism. For instance, in at least one embodiment, plurality of
vector processors included in a single PVA may execute a
common computer vision algorithm, but on different regions
of an image. In at least one embodiment, vector processors
included in a particular PVA may simultaneously execute
different computer vision algorithms, on one image, or even
execute different algorithms on sequential images or por-
tions of an image. In at least one embodiment, among other
things, any number of PVAs may be included in hardware
acceleration cluster and any number of vector processors
may be included in each PVA. In at least one embodiment,
PVA may include additional error correcting code (“ECC”)
memory, to enhance overall system safety.

[0127] In at least one embodiment, accelerator(s) 414 may
include a computer vision network on-chip and static ran-
dom-access memory (“SRAM?”), for providing a high-band-
width, low latency SRAM for accelerator(s) 414. In at least
one embodiment, on-chip memory may include at least 4
MB SRAM, comprising, for example and without limitation,
eight field-configurable memory blocks, that may be acces-
sible by both a PVA and a DLA. In at least one embodiment,
each pair of memory blocks may include an advanced
peripheral bus (“APB”) interface, configuration circuitry, a
controller, and a multiplexer. In at least one embodiment,
any type of memory may be used. In at least one embodi-
ment, a PVA and a DLLA may access memory via a backbone
that provides a PVA and a DLA with high-speed access to
memory. In at least one embodiment, a backbone may
include a computer vision network on-chip that intercon-
nects a PVA and a DLA to memory (e.g., using APB).
[0128] In at least one embodiment, a computer vision
network on-chip may include an interface that determines,
before transmission of any control signal/address/data, that
both a PVA and a DLA provide ready and valid signals. In
at least one embodiment, an interface may provide for
separate phases and separate channels for transmitting con-
trol signals/addresses/data, as well as burst-type communi-
cations for continuous data transfer. In at least one embodi-
ment, an interface may comply with International
Organization for Standardization (“ISO”) 26262 or Interna-
tional Electrotechnical Commission (“IEC”) 61508 stan-
dards, although other standards and protocols may be used.
[0129] In at least one embodiment, one or more of SoC(s)
404 may include a real-time ray-tracing hardware accelera-
tor. In at least one embodiment, real-time ray-tracing hard-
ware accelerator may be used to quickly and efficiently
determine positions and extents of objects (e.g., within a
world model), to generate real-time visualization simula-
tions, for RADAR signal interpretation, for sound propaga-
tion synthesis and/or analysis, for simulation of SONAR
systems, for general wave propagation simulation, for com-
parison to LIDAR data for purposes of localization and/or
other functions, and/or for other uses.

[0130] In at least one embodiment, accelerator(s) 414 can
have a wide array of uses for autonomous driving. In at least
one embodiment, a PVA may be used for key processing
stages in ADAS and autonomous vehicles. In at least one
embodiment, a PVA’s capabilities are a good match for
algorithmic domains needing predictable processing, at low
power and low latency. In other words, a PVA performs well
on semi-dense or dense regular computation, even on small
data sets, which might require predictable run-times with

US 2022/0284582 Al

low latency and low power. In at least one embodiment, such
as in vehicle 400, PVAs might be designed to run classic
computer vision algorithms, as they can be efficient at object
detection and operating on integer math.

[0131] For example, according to at least one embodiment
of technology, a PVA is used to perform computer stereo
vision. In at least one embodiment, a semi-global matching-
based algorithm may be used in some examples, although
this is not intended to be limiting. In at least one embodi-
ment, applications for Level 3-5 autonomous driving use
motion estimation/stereo matching on-the-fly (e.g., structure
from motion, pedestrian recognition, lane detection, etc.). In
at least one embodiment, a PVA may perform computer
stereo vision functions on inputs from two monocular cam-
eras.

[0132] In at least one embodiment, a PVA may be used to
perform dense optical flow. For example, in at least one
embodiment, a PVA could process raw RADAR data (e.g.,
using a 4D Fast Fourier Transform) to provide processed
RADAR data. In at least one embodiment, a PVA is used for
time of flight depth processing, by processing raw time of
flight data to provide processed time of flight data, for
example.

[0133] In at least one embodiment, a DLLA may be used to
run any type of network to enhance control and driving
safety, including for example and without limitation, a
neural network that outputs a measure of confidence for each
object detection. In at least one embodiment, confidence
may be represented or interpreted as a probability, or as
providing a relative “weight” of each detection compared to
other detections. In at least one embodiment, a confidence
measure enables a system to make further decisions regard-
ing which detections should be considered as true positive
detections rather than false positive detections. In at least
one embodiment, a system may set a threshold value for
confidence and consider only detections exceeding threshold
value as true positive detections. In an embodiment in which
an automatic emergency braking (“AEB”) system is used,
false positive detections would cause vehicle to automati-
cally perform emergency braking, which is obviously unde-
sirable. In at least one embodiment, highly confident detec-
tions may be considered as triggers for AEB In at least one
embodiment, a DLA may run a neural network for regress-
ing confidence value. In at least one embodiment, neural
network may take as its input at least some subset of
parameters, such as bounding box dimensions, ground plane
estimate obtained (e.g., from another subsystem), output
from IMU sensor(s) 466 that correlates with vehicle 400
orientation, distance, 3D location estimates of object
obtained from neural network and/or other sensors (e.g.,
LIDAR sensor(s) 464 or RADAR sensor(s) 460), among
others.

[0134] In at least one embodiment, one or more of SoC(s)
404 may include data store(s) 416 (e.g., memory). In at least
one embodiment, data store(s) 416 may be on-chip memory
of SoC(s) 404, which may store neural networks to be
executed on GPU(s) 408 and/or a DLA. In at least one
embodiment, data store(s) 416 may be large enough in
capacity to store multiple instances of neural networks for
redundancy and safety. In at least one embodiment, data
store(s) 416 may comprise [.2 or L3 cache(s).

[0135] In at least one embodiment, one or more of SoC(s)
404 may include any number of processor(s) 410 (e.g.,
embedded processors). In at least one embodiment, proces-

Sep. 8§, 2022

sor(s) 410 may include a boot and power management
processor that may be a dedicated processor and subsystem
to handle boot power and management functions and related
security enforcement. In at least one embodiment, a boot and
power management processor may be a part of a boot
sequence of SoC(s) 404 and may provide runtime power
management services. In at least one embodiment, a boot
power and management processor may provide clock and
voltage programming, assistance in system low power state
transitions, management of SoC(s) 404 thermals and tem-
perature sensors, and/or management of SoC(s) 404 power
states. In at least one embodiment, each temperature sensor
may be implemented as a ring-oscillator whose output
frequency is proportional to temperature, and SoC(s) 404
may use ring-oscillators to detect temperatures of CPU(s)
406, GPU(s) 408, and/or accelerator(s) 414. In at least one
embodiment, if temperatures are determined to exceed a
threshold, then a boot and power management processor
may enter a temperature fault routine and put SoC(s) 404
into a lower power state and/or put vehicle 400 into a
chauffeur to safe stop mode (e.g., bring vehicle 400 to a safe
stop).

[0136] In at least one embodiment, processor(s) 410 may
further include a set of embedded processors that may serve
as an audio processing engine which may be an audio
subsystem that enables full hardware support for multi-
channel audio over multiple interfaces, and a broad and
flexible range of audio I/O interfaces. In at least one embodi-
ment, an audio processing engine is a dedicated processor
core with a digital signal processor with dedicated RAM.
[0137] In at least one embodiment, processor(s) 410 may
further include an always-on processor engine that may
provide necessary hardware features to support low power
sensor management and wake use cases. In at least one
embodiment, an always-on processor engine may include,
without limitation, a processor core, a tightly coupled RAM,
supporting peripherals (e.g., timers and interrupt control-
lers), various I/O controller peripherals, and routing logic.
[0138] In at least one embodiment, processor(s) 410 may
further include a safety cluster engine that includes, without
limitation, a dedicated processor subsystem to handle safety
management for automotive applications. In at least one
embodiment, a safety cluster engine may include, without
limitation, two or more processor cores, a tightly coupled
RAM, support peripherals (e.g., timers, an interrupt control-
ler, etc.), and/or routing logic. In a safety mode, two or more
cores may operate, in at least one embodiment, in a lockstep
mode and function as a single core with comparison logic to
detect any differences between their operations. In at least
one embodiment, processor(s) 410 may further include a
real-time camera engine that may include, without limita-
tion, a dedicated processor subsystem for handling real-time
camera management. In at least one embodiment, processor
(s) 410 may further include a high-dynamic range signal
processor that may include, without limitation, an image
signal processor that is a hardware engine that is part of a
camera processing pipeline.

[0139] In at least one embodiment, processor(s) 410 may
include a video image compositor that may be a processing
block (e.g., implemented on a microprocessor) that imple-
ments video post-processing functions needed by a video
playback application to produce a final image for a player
window. In at least one embodiment, a video image com-
positor may perform lens distortion correction on wide-view

US 2022/0284582 Al

camera(s) 470, surround camera(s) 474, and/or on in-cabin
monitoring camera sensor(s). In at least one embodiment,
in-cabin monitoring camera sensor(s) are preferably moni-
tored by a neural network running on another instance of
SoC 404, configured to identify in cabin events and respond
accordingly. In at least one embodiment, an in-cabin system
may perform, without limitation, lip reading to activate
cellular service and place a phone call, dictate emails,
change a vehicle’s destination, activate or change a vehicle’s
infotainment system and settings, or provide voice-activated
web surfing. In at least one embodiment, certain functions
are available to a driver when a vehicle is operating in an
autonomous mode and are disabled otherwise.

[0140] In at least one embodiment, a video image com-
positor may include enhanced temporal noise reduction for
both spatial and temporal noise reduction. For example, in at
least one embodiment, where motion occurs in a video,
noise reduction weights spatial information appropriately,
decreasing weights of information provided by adjacent
frames. In at least one embodiment, where an image or
portion of an image does not include motion, temporal noise
reduction performed by video image compositor may use
information from a previous image to reduce noise in a
current image.

[0141] In at least one embodiment, a video image com-
positor may also be configured to perform stereo rectifica-
tion on input stereo lens frames. In at least one embodiment,
a video image compositor may further be used for user
interface composition when an operating system desktop is
in use, and GPU(s) 408 are not required to continuously
render new surfaces. In at least one embodiment, when
GPU(s) 408 are powered on and active doing 3D rendering,
a video image compositor may be used to offload GPU(s)
408 to improve performance and responsiveness.

[0142] In at least one embodiment, one or more SoC of
SoC(s) 404 may further include a mobile industry processor
interface (“MIPI”) camera serial interface for receiving
video and input from cameras, a high-speed interface, and/or
avideo input block that may be used for a camera and related
pixel input functions. In at least one embodiment, one or
more of SoC(s) 404 may further include an input/output
controller(s) that may be controlled by software and may be
used for receiving I/O signals that are uncommitted to a
specific role.

[0143] In at least one embodiment, one or more Soc of
SoC(s) 404 may further include a broad range of peripheral
interfaces to enable communication with peripherals, audio
encoders/decoders (“codecs™), power management, and/or
other devices. In at least one embodiment, SoC(s) 404 may
be used to process data from cameras (e.g., connected over
Gigabit Multimedia Serial Link and Ethernet channels),
sensors (e.g., LIDAR sensor(s) 464, RADAR sensor(s) 460,
etc. that may be connected over Ethernet channels), data
from bus 402 (e.g., speed of vehicle 400, steering wheel
position, etc.), data from GNSS sensor(s) 458 (e.g., con-
nected over an Ethernet bus or a CAN bus), etc. In at least
one embodiment, one or more SoC of SoC(s) 404 may
further include dedicated high-performance mass storage
controllers that may include their own DMA engines, and
that may be used to free CPU(s) 406 from routine data
management tasks.

[0144] In at least one embodiment, SoC(s) 404 may be an
end-to-end platform with a flexible architecture that spans
automation Levels 3-5, thereby providing a comprehensive

Sep. 8§, 2022

functional safety architecture that leverages and makes
efficient use of computer vision and ADAS techniques for
diversity and redundancy, and provides a platform for a
flexible, reliable driving software stack, along with deep
learning tools. In at least one embodiment, SoC(s) 404 may
be faster, more reliable, and even more energy-efficient and
space-efficient than conventional systems. For example, in at
least one embodiment, accelerator(s) 414, when combined
with CPU(s) 406, GPU(s) 408, and data store(s) 416, may
provide for a fast, efficient platform for Level 3-5 autono-
mous vehicles.

[0145] In at least one embodiment, computer vision algo-
rithms may be executed on CPUs, which may be configured
using a high-level programming language, such as C, to
execute a wide variety of processing algorithms across a
wide variety of visual data. However, in at least one embodi-
ment, CPUs are oftentimes unable to meet performance
requirements of many computer vision applications, such as
those related to execution time and power consumption, for
example. In at least one embodiment, many CPUs are unable
to execute complex object detection algorithms in real-time,
which is used in in-vehicle ADAS applications and in
practical Level 3-5 autonomous vehicles.

[0146] Embodiments described herein allow for multiple
neural networks to be performed simultaneously and/or
sequentially, and for results to be combined together to
enable Level 3-5 autonomous driving functionality. For
example, in at least one embodiment, a CNN executing on
a DLA or a discrete GPU (e.g., GPU(s) 420) may include
text and word recognition, allowing reading and understand-
ing of traffic signs, including signs for which a neural
network has not been specifically trained. In at least one
embodiment, a DLLA may further include a neural network
that is able to identify, interpret, and provide semantic
understanding of a sign, and to pass that semantic under-
standing to path planning modules running on a CPU
Complex.

[0147] In at least one embodiment, multiple neural net-
works may be run simultaneously, as for Level 3, 4, or 5
driving. For example, in at least one embodiment, a warning
sign stating “Caution: flashing lights indicate icy condi-
tions,” along with an electric light, may be independently or
collectively interpreted by several neural networks. In at
least one embodiment, such warning sign itself may be
identified as a traffic sign by a first deployed neural network
(e.g., a neural network that has been trained), text “flashing
lights indicate icy conditions” may be interpreted by a
second deployed neural network, which informs a vehicle’s
path planning software (preferably executing on a CPU
Complex) that when flashing lights are detected, icy condi-
tions exist. In at least one embodiment, a flashing light may
be identified by operating a third deployed neural network
over multiple frames, informing a vehicle’s path-planning
software of a presence (or an absence) of flashing lights. In
at least one embodiment, all three neural networks may run
simultaneously, such as within a DLA and/or on GPU(s)
408.

[0148] In at least one embodiment, a CNN for facial
recognition and vehicle owner identification may use data
from camera sensors to identify presence of an authorized
driver and/or owner of vehicle 400. In at least one embodi-
ment, an always-on sensor processing engine may be used to
unlock a vehicle when an owner approaches a driver door
and turns on lights, and, in a security mode, to disable such

US 2022/0284582 Al

vehicle when an owner leaves such vehicle. In this way,
SoC(s) 404 provides for security against theft and/or car-
jacking.

[0149] In at least one embodiment, a CNN for emergency
vehicle detection and identification may use data from
microphones 496 to detect and identify emergency vehicle
sirens. In at least one embodiment, SoC(s) 404 uses a CNN
for classifying environmental and urban sounds, as well as
classifying visual data. In at least one embodiment, a CNN
running on a DLA is trained to identify a relative closing
speed of an emergency vehicle (e.g., by using a Doppler
effect). In at least one embodiment, a CNN may also be
trained to identify emergency vehicles specific to a local area
in which a vehicle is operating, as identified by GNSS
sensor(s) 458. In at least one embodiment, when operating
in Europe, a CNN will seek to detect European sirens, and
when in North America, a CNN will seek to identify only
North American sirens. In at least one embodiment, once an
emergency vehicle is detected, a control program may be
used to execute an emergency vehicle safety routine, slow-
ing a vehicle, pulling over to a side of a road, parking a
vehicle, and/or idling a vehicle, with assistance of ultrasonic
sensor(s) 462, until emergency vehicles pass.

[0150] In at least one embodiment, vehicle 400 may
include CPU(s) 418 (e.g., discrete CPU(s), or dCPU(s)), that
may be coupled to SoC(s) 404 via a high-speed interconnect
(e.g., PCle). In at least one embodiment, CPU(s) 418 may
include an X86 processor, for example. CPU(s) 418 may be
used to perform any of a variety of functions, including
arbitrating potentially inconsistent results between ADAS
sensors and SoC(s) 404, and/or monitoring status and health
of controller(s) 436 and/or an infotainment system on a chip
(“infotainment SoC”) 430, for example.

[0151] In at least one embodiment, vehicle 400 may
include GPU(s) 420 (e.g., discrete GPU(s), or dGPU(s)),
that may be coupled to SoC(s) 404 via a high-speed inter-
connect (e.g., NVIDIA’s NVLINK channel). In at least one
embodiment, GPU(s) 420 may provide additional artificial
intelligence functionality, such as by executing redundant
and/or different neural networks, and may be used to train
and/or update neural networks based at least in part on input
(e.g., sensor data) from sensors of a vehicle 400.

[0152] In at least one embodiment, vehicle 400 may
further include network interface 424 which may include,
without limitation, wireless antenna(s) 426 (e.g., one or
more wireless antennas for different communication proto-
cols, such as a cellular antenna, a Bluetooth antenna, etc.).
In at least one embodiment, network interface 424 may be
used to enable wireless connectivity to Internet cloud ser-
vices (e.g., with server(s) and/or other network devices),
with other vehicles, and/or with computing devices (e.g.,
client devices of passengers). In at least one embodiment, to
communicate with other vehicles, a direct link may be
established between vehicle 40 and another vehicle, and/or
an indirect link may be established (e.g., across networks
and over the Internet). In at least one embodiment, direct
links may be provided using a vehicle-to-vehicle commu-
nication link. In at least one embodiment, a vehicle-to-
vehicle communication link may provide vehicle 400 infor-
mation about vehicles in proximity to vehicle 400 (e.g.,
vehicles in front of, on a side of, and/or behind vehicle 400).
In at least one embodiment, such aforementioned function-
ality may be part of a cooperative adaptive cruise control
functionality of vehicle 400.

Sep. 8§, 2022

[0153] In at least one embodiment, network interface 424
may include an SoC that provides modulation and demodu-
lation functionality and enables controller(s) 436 to com-
municate over wireless networks. In at least one embodi-
ment, network interface 424 may include a radio frequency
front-end for up-conversion from baseband to radio fre-
quency, and down conversion from radio frequency to
baseband. In at least one embodiment, frequency conver-
sions may be performed in any technically feasible fashion.
For example, frequency conversions could be performed
through well-known processes, and/or using super-hetero-
dyne processes. In at least one embodiment, radio frequency
front end functionality may be provided by a separate chip.
In at least one embodiment, network interfaces may include
wireless functionality for communicating over LTE,
WCDMA, UMTS, GSM, CDMA2000, Bluetooth, Blu-
etooth LE, Wi-Fi, Z-Wave, ZigBee, LoORaWAN; and/or other
wireless protocols.

[0154] In at least one embodiment, vehicle 400 may
further include data store(s) 428 which may include, without
limitation, oft-chip (e.g., off SoC(s) 404) storage. In at least
one embodiment, data store(s) 428 may include, without
limitation, one or more storage elements including RAM,
SRAM, dynamic random-access memory (“DRAM”), video
random-access memory (“VRAM?”), flash memory, hard
disks, and/or other components and/or devices that may
store at least one bit of data.

[0155] In at least one embodiment, vehicle 400 may
further include GNSS sensor(s) 458 (e.g., GPS and/or
assisted GPS sensors), to assist in mapping, perception,
occupancy grid generation, and/or path planning functions.
In at least one embodiment, any number of GNSS sensor(s)
458 may be used, including, for example and without
limitation, a GPS using a USB connector with an Ethernet-
to-Serial (e.g., RS-232) bridge.

[0156] In at least one embodiment, vehicle 400 may
further include RADAR sensor(s) 460. In at least one
embodiment, RADAR sensor(s) 460 may be used by vehicle
400 for long-range vehicle detection, even in darkness
and/or severe weather conditions. In at least one embodi-
ment, RADAR functional safety levels may be ASIL B. In
at least one embodiment, RADAR sensor(s) 460 may use a
CAN bus and/or bus 402 (e.g., to transmit data generated by
RADAR sensor(s) 460) for control and to access object
tracking data, with access to Ethernet channels to access raw
data in some examples. In at least one embodiment, a wide
variety of RADAR sensor types may be used. For example,
and without limitation, RADAR sensor(s) 460 may be
suitable for front, rear, and side RADAR use. In at least one
embodiment, one or more sensor of RADAR sensors(s) 460
is a Pulse Doppler RADAR sensor.

[0157] In at least one embodiment, RADAR sensor(s) 460
may include different configurations, such as long-range
with narrow field of view, short-range with wide field of
view, short-range side coverage, etc. In at least one embodi-
ment, long-range RADAR may be used for adaptive cruise
control functionality. In at least one embodiment, long-range
RADAR systems may provide a broad field of view realized
by two or more independent scans, such as within a 250 m
(meter) range. In at least one embodiment, RADAR sensor
(s) 460 may help in distinguishing between static and
moving objects, and may be used by ADAS system 438 for
emergency brake assist and forward collision warning. In at
least one embodiment, sensors 460(s) included in a long-

US 2022/0284582 Al

range RADAR system may include, without limitation,
monostatic multimodal RADAR with multiple (e.g., six or
more) fixed RADAR antennae and a high-speed CAN and
FlexRay interface. In at least one embodiment, with six
antennae, a central four antennae may create a focused beam
pattern, designed to record vehicle’s 400 surroundings at
higher speeds with minimal interference from traffic in
adjacent lanes. In at least one embodiment, another two
antennae may expand field of view, making it possible to
quickly detect vehicles entering or leaving a lane of vehicle
400.

[0158] In at least one embodiment, mid-range RADAR
systems may include, as an example, a range of up to 160 m
(front) or 80 m (rear), and a field of view of up to 42 degrees
(front) or 150 degrees (rear). In at least one embodiment,
short-range RADAR systems may include, without limita-
tion, any number of RADAR sensor(s) 460 designed to be
installed at both ends of a rear bumper. When installed at
both ends of a rear bumper, in at least one embodiment, a
RADAR sensor system may create two beams that con-
stantly monitor blind spots in a rear direction and next to a
vehicle. In at least one embodiment, short-range RADAR
systems may be used in ADAS system 438 for blind spot
detection and/or lane change assist.

[0159] In at least one embodiment, vehicle 400 may
further include ultrasonic sensor(s) 462. In at least one
embodiment, ultrasonic sensor(s) 462, which may be posi-
tioned at a front, a back, and/or side location of vehicle 400,
may be used for parking assist and/or to create and update
an occupancy grid. In at least one embodiment, a wide
variety of ultrasonic sensor(s) 462 may be used, and differ-
ent ultrasonic sensor(s) 462 may be used for different ranges
of detection (e.g., 2.5 m, 4 m). In at least one embodiment,
ultrasonic sensor(s) 462 may operate at functional safety
levels of ASIL B.

[0160] In at least one embodiment, vehicle 400 may
include LIDAR sensor(s) 464. In at least one embodiment,
LIDAR sensor(s) 464 may be used for object and pedestrian
detection, emergency braking, collision avoidance, and/or
other functions. In at least one embodiment, LIDAR sensor
(s) 464 may operate at functional safety level ASIL B. In at
least one embodiment, vehicle 400 may include multiple
LIDAR sensors 464 (e.g., two, four, six, etc.) that may use
an FEthernet channel (e.g., to provide data to a Gigabit
Ethernet switch).

[0161] In at least one embodiment, LIDAR sensor(s) 464
may be capable of providing a list of objects and their
distances for a 360-degree field of view. In at least one
embodiment, commercially available LIDAR sensor(s) 464
may have an advertised range of approximately 100 m, with
an accuracy of 2 cm to 3 cm, and with support for a 100
Mbps Ethernet connection, for example. In at least one
embodiment, one or more non-protruding LIDAR sensors
may be used. In such an embodiment, LIDAR sensor(s) 464
may include a small device that may be embedded into a
front, a rear, a side, and/or a corner location of vehicle 400.
In at least one embodiment, LIDAR sensor(s) 464, in such
an embodiment, may provide up to a 120-degree horizontal
and 35-degree vertical field-of-view, with a 200 m range
even for low-reflectivity objects. In at least one embodiment,
front-mounted LIDAR sensor(s) 464 may be configured for
a horizontal field of view between 45 degrees and 135
degrees.

Sep. 8§, 2022

[0162] In at least one embodiment, LIDAR technologies,
such as 3D flash LIDAR, may also be used. In at least one
embodiment, 3D flash LIDAR uses a flash of a laser as a
transmission source, to illuminate surroundings of vehicle
400 up to approximately 200 m. In at least one embodiment,
a flash LIDAR unit includes, without limitation, a receptor,
which records laser pulse transit time and reflected light on
each pixel, which in turn corresponds to a range from
vehicle 400 to objects. In at least one embodiment, flash
LIDAR may allow for highly accurate and distortion-free
images of surroundings to be generated with every laser
flash. In at least one embodiment, four flash LIDAR sensors
may be deployed, one at each side of vehicle 400. In at least
one embodiment, 3D flash LIDAR systems include, without
limitation, a solid-state 3D staring array LIDAR camera
with no moving parts other than a fan (e.g., a non-scanning
LIDAR device). In at least one embodiment, flash LIDAR
device may use a 5 nanosecond class I (eye-safe) laser pulse
per frame and may capture reflected laser light as a 3D range
point cloud and co-registered intensity data.

[0163] In at least one embodiment, vehicle 400 may
further include IMU sensor(s) 466. In at least one embodi-
ment, IMU sensor(s) 466 may be located at a center of a rear
axle of wvehicle 400. In at least one embodiment, IMU
sensor(s) 466 may include, for example and without limi-
tation, accelerometer(s), magnetometer(s), gyroscope(s), a
magnetic compass, magnetic compasses, and/or other sensor
types. In at least one embodiment, such as in six-axis
applications, IMU sensor(s) 466 may include, without limi-
tation, accelerometers and gyroscopes. In at least one
embodiment, such as in nine-axis applications, IMU sensor
(s) 466 may include, without limitation, accelerometers,
gyroscopes, and magnetometers.

[0164] In at least one embodiment, IMU sensor(s) 466
may be implemented as a miniature, high performance
GPS-Aided Inertial Navigation System (“GPS/INS”) that
combines micro-electro-mechanical systems (“MEMS”)
inertial sensors, a high-sensitivity GPS receiver, and
advanced Kalman filtering algorithms to provide estimates
of position, velocity, and attitude. In at least one embodi-
ment, IMU sensor(s) 466 may enable vehicle 400 to estimate
its heading without requiring input from a magnetic sensor
by directly observing and correlating changes in velocity
from a GPS to IMU sensor(s) 466. In at least one embodi-
ment, IMU sensor(s) 466 and GNSS sensor(s) 458 may be
combined in a single integrated unit.

[0165] In at least one embodiment, vehicle 400 may
include microphone(s) 496 placed in and/or around vehicle
400. In at least one embodiment, microphone(s) 496 may be
used for emergency vehicle detection and identification,
among other things.

[0166] In at least one embodiment, vehicle 400 may
further include any number of camera types, including stereo
camera(s) 468, wide-view camera(s) 470, infrared camera(s)
472, surround camera(s) 474, long-range camera(s) 498,
mid-range camera(s) 476, and/or other camera types. In at
least one embodiment, cameras may be used to capture
image data around an entire periphery of vehicle 400. In at
least one embodiment, which types of cameras used depends
on vehicle 400. In at least one embodiment, any combination
of camera types may be used to provide necessary coverage
around vehicle 400. In at least one embodiment, a number of
cameras deployed may differ depending on embodiment.
For example, in at least one embodiment, vehicle 400 could

US 2022/0284582 Al

include six cameras, seven cameras, ten cameras, twelve
cameras, or another number of cameras. In at least one
embodiment, cameras may support, as an example and
without limitation, Gigabit Multimedia Serial Link
(“GMSL”) and/or Gigabit Ethernet communications. In at
least one embodiment, each camera might be as described
with more detail previously herein with respect to FIG. 4A
and FIG. 4B.

[0167] In at least one embodiment, vehicle 400 may
further include vibration sensor(s) 442. In at least one
embodiment, vibration sensor(s) 442 may measure vibra-
tions of components of vehicle 400, such as axle(s). For
example, in at least one embodiment, changes in vibrations
may indicate a change in road surfaces. In at least one
embodiment, when two or more vibration sensors 442 are
used, differences between vibrations may be used to deter-
mine friction or slippage of road surface (e.g., when a
difference in vibration is between a power-driven axle and a
freely rotating axle).

[0168] In at least one embodiment, vehicle 400 may
include ADAS system 438. In at least one embodiment,
ADAS system 438 may include, without limitation, an SoC,
in some examples. In at least one embodiment, ADAS
system 438 may include, without limitation, any number and
combination of an autonomous/adaptive/automatic cruise
control (“ACC”) system, a cooperative adaptive cruise con-
trol (“CACC”) system, a forward crash warning (“FCW”)
system, an automatic emergency braking (“AEB”) system, a
lane departure warning (“LLDW)” system, a lane keep assist
(“LKA”) system, a blind spot warning (“BSW”) system, a
rear cross-traffic warning (“RCTW”) system, a collision
warning (“CW?”) system, a lane centering (“LC”) system,
and/or other systems, features, and/or functionality.

[0169] In at least one embodiment, ACC system may use
RADAR sensor(s) 460, LIDAR sensor(s) 464, and/or any
number of camera(s). In at least one embodiment, ACC
system may include a longitudinal ACC system and/or a
lateral ACC system. In at least one embodiment, a longitu-
dinal ACC system monitors and controls distance to another
vehicle immediately ahead of vehicle 400 and automatically
adjusts speed of vehicle 400 to maintain a safe distance from
vehicles ahead. In at least one embodiment, a lateral ACC
system performs distance keeping, and advises vehicle 400
to change lanes when necessary. In at least one embodiment,
a lateral ACC is related to other ADAS applications, such as
LC and CW.

[0170] In at least one embodiment, a CACC system uses
information from other vehicles that may be received via
network interface 424 and/or wireless antenna(s) 426 from
other vehicles via a wireless link, or indirectly, over a
network connection (e.g., over the Internet). In at least one
embodiment, direct links may be provided by a vehicle-to-
vehicle (“V2V”) communication link, while indirect links
may be provided by an infrastructure-to-vehicle (“I2V”)
communication link. In general, V2V communication pro-
vides information about immediately preceding vehicles
(e.g., vehicles immediately ahead of and in same lane as
vehicle 400), while 12V communication provides informa-
tion about traffic further ahead. In at least one embodiment,
a CACC system may include either or both 12V and V2V
information sources. In at least one embodiment, given
information of vehicles ahead of vehicle 400, a CACC
system may be more reliable and it has potential to improve
traffic flow smoothness and reduce congestion on road.

Sep. 8§, 2022

[0171] In at least one embodiment, an FCW system is
designed to alert a driver to a hazard, so that such driver may
take corrective action. In at least one embodiment, an FCW
system uses a front-facing camera and/or RADAR sensor(s)
460, coupled to a dedicated processor, DSP, FPGA, and/or
ASIC, that is electrically coupled to provide driver feedback,
such as a display, speaker, and/or vibrating component. In at
least one embodiment, an FCW system may provide a
warning, such as in form of a sound, visual warning,
vibration, and/or a quick brake pulse.

[0172] In at least one embodiment, an AEB system detects
an impending forward collision with another vehicle or other
object, and may automatically apply brakes if a driver does
not take corrective action within a specified time or distance
parameter. In at least one embodiment, AEB system may use
front-facing camera(s) and/or RADAR sensor(s) 460,
coupled to a dedicated processor, DSP, FPGA, and/or ASIC.
In at least one embodiment, when an AEB system detects a
hazard, it will typically first alert a driver to take corrective
action to avoid collision and, if that driver does not take
corrective action, that AEB system may automatically apply
brakes in an effort to prevent, or at least mitigate, an impact
of a predicted collision. In at least one embodiment, an AEB
system may include techniques such as dynamic brake
support and/or crash imminent braking.

[0173] In at least one embodiment, an LDW system pro-
vides visual, audible, and/or tactile warnings, such as steer-
ing wheel or seat vibrations, to alert driver when vehicle 400
crosses lane markings. In at least one embodiment, an LDW
system does not activate when a driver indicates an inten-
tional lane departure, such as by activating a turn signal. In
at least one embodiment, an LDW system may use front-side
facing cameras, coupled to a dedicated processor, DSP,
FPGA, and/or ASIC, that is electrically coupled to provide
driver feedback, such as a display, speaker, and/or vibrating
component. In at least one embodiment, an LKA system is
a variation of an LDW system. In at least one embodiment,
an LKA system provides steering input or braking to correct
vehicle 400 if vehicle 400 starts to exit its lane.

[0174] In at least one embodiment, a BSW system detects
and warns a driver of vehicles in an automobile’s blind spot.
In at least one embodiment, a BSW system may provide a
visual, audible, and/or tactile alert to indicate that merging
or changing lanes is unsafe. In at least one embodiment, a
BSW system may provide an additional warning when a
driver uses a turn signal. In at least one embodiment, a BSW
system may use rear-side facing camera(s) and/or RADAR
sensor(s) 460, coupled to a dedicated processor, DSP, FPGA,
and/or ASIC, that is electrically coupled to driver feedback,
such as a display, speaker, and/or vibrating component.
[0175] In at least one embodiment, an RCTW system may
provide visual, audible, and/or tactile notification when an
object is detected outside a rear-camera range when vehicle
400 is backing up. In at least one embodiment, an RCTW
system includes an AEB system to ensure that vehicle brakes
are applied to avoid a crash. In at least one embodiment, an
RCTW system may use one or more rear-facing RADAR
sensor(s) 460, coupled to a dedicated processor, DSP, FPGA,
and/or ASIC, that is electrically coupled to provide driver
feedback, such as a display, speaker, and/or vibrating com-
ponent.

[0176] In at least one embodiment, conventional ADAS
systems may be prone to false positive results which may be
annoying and distracting to a driver, but typically are not

US 2022/0284582 Al

catastrophic, because conventional ADAS systems alert a
driver and allow that driver to decide whether a safety
condition truly exists and act accordingly. In at least one
embodiment, vehicle 400 itself decides, in case of conflict-
ing results, whether to heed result from a primary computer
or a secondary computer (e.g., a first controller or a second
controller of controllers 436). For example, in at least one
embodiment, ADAS system 438 may be a backup and/or
secondary computer for providing perception information to
a backup computer rationality module. In at least one
embodiment, a backup computer rationality monitor may
run redundant diverse software on hardware components to
detect faults in perception and dynamic driving tasks. In at
least one embodiment, outputs from ADAS system 438 may
be provided to a supervisory MCU. In at least one embodi-
ment, if outputs from a primary computer and outputs from
a secondary computer conflict, a supervisory MCU deter-
mines how to reconcile conflict to ensure safe operation.

[0177] In at least one embodiment, a primary computer
may be configured to provide a supervisory MCU with a
confidence score, indicating that primary computer’s confi-
dence in a chosen result. In at least one embodiment, if that
confidence score exceeds a threshold, that supervisory MCU
may follow that primary computer’s direction, regardless of
whether that secondary computer provides a conflicting or
inconsistent result. In at least one embodiment, where a
confidence score does not meet a threshold, and where
primary and secondary computers indicate different results
(e.g., a conflict), a supervisory MCU may arbitrate between
computers to determine an appropriate outcome.

[0178] In at least one embodiment, a supervisory MCU
may be configured to run a neural network(s) that is trained
and configured to determine, based at least in part on outputs
from a primary computer and outputs from a secondary
computer, conditions under which that secondary computer
provides false alarms. In at least one embodiment, neural
network(s) in a supervisory MCU may learn when a sec-
ondary computer’s output may be trusted, and when it
cannot. For example, in at least one embodiment, when that
secondary computer is a RADAR-based FCW system, a
neural network(s) in that supervisory MCU may learn when
an FCW system is identifying metallic objects that are not,
in fact, hazards, such as a drainage grate or manhole cover
that triggers an alarm. In at least one embodiment, when a
secondary computer is a camera-based LDW system, a
neural network in a supervisory MCU may learn to override
LDW when bicyclists or pedestrians are present and a lane
departure is, in fact, a safest maneuver. In at least one
embodiment, a supervisory MCU may include at least one of
a DLA or a GPU suitable for running neural network(s) with
associated memory. In at least one embodiment, a supervi-
sory MCU may comprise and/or be included as a component
of SoC(s) 404.

[0179] In at least one embodiment, ADAS system 438
may include a secondary computer that performs ADAS
functionality using traditional rules of computer vision. In at
least one embodiment, that secondary computer may use
classic computer vision rules (if-then), and presence of a
neural network(s) in a supervisory MCU may improve
reliability, safety, and performance. For example, in at least
one embodiment, diverse implementation and intentional
non-identity makes an overall system more fault-tolerant,
especially to faults caused by software (or software-hard-
ware interface) functionality. For example, in at least one

Sep. 8§, 2022

embodiment, if there is a software bug or error in software
running on a primary computer, and non-identical software
code running on a secondary computer provides a consistent
overall result, then a supervisory MCU may have greater
confidence that an overall result is correct, and a bug in
software or hardware on that primary computer is not
causing a material error.

[0180] In at least one embodiment, an output of ADAS
system 438 may be fed into a primary computer’s perception
block and/or a primary computer’s dynamic driving task
block. For example, in at least one embodiment, if ADAS
system 438 indicates a forward crash warning due to an
object immediately ahead, a perception block may use this
information when identifying objects. In at least one
embodiment, a secondary computer may have its own neural
network that is trained and thus reduces a risk of false
positives, as described herein.

[0181] In at least one embodiment, vehicle 400 may
further include infotainment SoC 430 (e.g., an in-vehicle
infotainment system (IVI)). Although illustrated and
described as an SoC, infotainment system SoC 430, in at
least one embodiment, may not be an SoC, and may include,
without limitation, two or more discrete components. In at
least one embodiment, infotainment SoC 430 may include,
without limitation, a combination of hardware and software
that may be used to provide audio (e.g., music, a personal
digital assistant, navigational instructions, news, radio, etc.),
video (e.g., TV, movies, streaming, etc.), phone (e.g., hands-
free calling), network connectivity (e.g., LTE, WiFi, etc.),
and/or information services (e.g., navigation systems, rear-
parking assistance, a radio data system, vehicle related
information such as fuel level, total distance covered, brake
fuel level, oil level, door open/close, air filter information,
etc.) to vehicle 400. For example, infotainment SoC 430
could include radios, disk players, navigation systems, video
players, USB and Bluetooth connectivity, carputers, in-car
entertainment, WiF1i, steering wheel audio controls, hands
free voice control, a heads-up display (“HUD”), HMI dis-
play 434, a telematics device, a control panel (e.g., for
controlling and/or interacting with various components,
features, and/or systems), and/or other components. In at
least one embodiment, infotainment SoC 430 may further be
used to provide information (e.g., visual and/or audible) to
user(s) of vehicle 400, such as information from ADAS
system 438, autonomous driving information such as
planned vehicle maneuvers, trajectories, surrounding envi-
ronment information (e.g., intersection information, vehicle
information, road information, etc.), and/or other informa-
tion.

[0182] In at least one embodiment, infotainment SoC 430
may include any amount and type of GPU functionality. In
at least one embodiment, infotainment SoC 430 may com-
municate over bus 402 with other devices, systems, and/or
components of vehicle 400. In at least one embodiment,
infotainment SoC 430 may be coupled to a supervisory
MCU such that a GPU of an infotainment system may
perform some self-driving functions in event that primary
controller(s) 436 (e.g., primary and/or backup computers of
vehicle 400) fail. In at least one embodiment, infotainment
SoC 430 may put vehicle 400 into a chauffeur to safe stop
mode, as described herein.

[0183] In at least one embodiment, vehicle 400 may
further include instrument cluster 432 (e.g., a digital dash, an
electronic instrument cluster, a digital instrument panel,

US 2022/0284582 Al

etc.). In at least one embodiment, instrument cluster 432
may include, without limitation, a controller and/or super-
computer (e.g., a discrete controller or supercomputer). In at
least one embodiment, instrument cluster 432 may include,
without limitation, any number and combination of a set of
instrumentation such as a speedometer, fuel level, oil pres-
sure, tachometer, odometer, turn indicators, gearshift posi-
tion indicator, seat belt warning light(s), parking-brake
warning light(s), engine-malfunction light(s), supplemental
restraint system (e.g., airbag) information, lighting controls,
safety system controls, navigation information, etc. In some
examples, information may be displayed and/or shared
among infotainment SoC 430 and instrument cluster 432. In
at least one embodiment, instrument cluster 432 may be
included as part of infotainment SoC 430, or vice versa.

[0184] Inference and/or training logic 115 are used to
perform inferencing and/or training operations associated
with one or more embodiments. Details regarding inference
and/or training logic 115 are provided herein in conjunction
with FIGS. 1A and/or 1B. In at least one embodiment,
inference and/or training logic 115 may be used in system
FIG. 4C for inferencing or predicting operations based, at
least in part, on weight parameters calculated using neural
network training operations, neural network functions and/
or architectures, or neural network use cases described
herein.

[0185] FIG. 4D is a diagram of a system 476 for commu-
nication between cloud-based server(s) and autonomous
vehicle 400 of FIG. 4A, according to at least one embodi-
ment. In at least one embodiment, system 476 may include,
without limitation, server(s) 478, network(s) 490, and any
number and type of vehicles, including vehicle 400. In at
least one embodiment, server(s) 478 may include, without
limitation, a plurality of GPUs 484(A)-484(H) (collectively
referred to herein as GPUs 484), PCle switches 482(A)-482
(D) (collectively referred to herein as PCle switches 482),
and/or CPUs 480(A)-480(B) (collectively referred to herein
as CPUs 480). In at least one embodiment, GPUs 484, CPUs
480, and PCle switches 482 may be interconnected with
high-speed interconnects such as, for example and without
limitation, NVLink interfaces 488 developed by NVIDIA
and/or PCle connections 486. In at least one embodiment,
GPUs 484 are connected via an NVLink and/or NVSwitch
SoC and GPUs 484 and PCle switches 482 are connected via
PCle interconnects. Although eight GPUs 484, two CPUs
480, and four PCle switches 482 are illustrated, this is not
intended to be limiting. In at least one embodiment, each of
server(s) 478 may include, without limitation, any number
of GPUs 484, CPUs 480, and/or PCle switches 482, in any
combination. For example, in at least one embodiment,
server(s) 478 could each include eight, sixteen, thirty-two,
and/or more GPUs 484.

[0186] In at least one embodiment, server(s) 478 may
receive, over network(s) 490 and from vehicles, image data
representative of images showing unexpected or changed
road conditions, such as recently commenced road-work. In
at least one embodiment, server(s) 478 may transmit, over
network(s) 490 and to vehicles, neural networks 492,
updated or otherwise, and/or map information 494, includ-
ing, without limitation, information regarding traffic and
road conditions. In at least one embodiment, updates to map
information 494 may include, without limitation, updates for
HD map 422, such as information regarding construction
sites, potholes, detours, flooding, and/or other obstructions.

Sep. 8§, 2022

In at least one embodiment, neural networks 492, and/or
map information 494 may have resulted from new training
and/or experiences represented in data received from any
number of vehicles in an environment, and/or based at least
in part on training performed at a data center (e.g., using
server(s) 478 and/or other servers).

[0187] In at least one embodiment, server(s) 478 may be
used to train machine learning models (e.g., neural net-
works) based at least in part on training data. In at least one
embodiment, training data may be generated by vehicles,
and/or may be generated in a simulation (e.g., using a game
engine). In at least one embodiment, any amount of training
data is tagged (e.g., where associated neural network ben-
efits from supervised learning) and/or undergoes other pre-
processing. In at least one embodiment, any amount of
training data is not tagged and/or pre-processed (e.g., where
associated neural network does not require supervised learn-
ing). In at least one embodiment, once machine learning
models are trained, machine learning models may be used by
vehicles (e.g., transmitted to vehicles over network(s) 490),
and/or machine learning models may be used by server(s)
478 to remotely monitor vehicles.

[0188] In at least one embodiment, server(s) 478 may
receive data from vehicles and apply data to up-to-date
real-time neural networks for real-time intelligent inferenc-
ing. In at least one embodiment, server(s) 478 may include
deep-learning supercomputers and/or dedicated Al comput-
ers powered by GPU(s) 484, such as a DGX and DGX
Station machines developed by NVIDIA. However, in at
least one embodiment, server(s) 478 may include deep
learning infrastructure that uses CPU-powered data centers.

[0189] In at least one embodiment, deep-learning infra-
structure of server(s) 478 may be capable of fast, real-time
inferencing, and may use that capability to evaluate and
verify health of processors, software, and/or associated
hardware in vehicle 400. For example, in at least one
embodiment, deep-learning infrastructure may receive peri-
odic updates from vehicle 400, such as a sequence of images
and/or objects that vehicle 400 has located in that sequence
of images (e.g., via computer vision and/or other machine
learning object classification techniques). In at least one
embodiment, deep-learning infrastructure may run its own
neural network to identify objects and compare them with
objects identified by vehicle 400 and, if results do not match
and deep-learning infrastructure concludes that Al in vehicle
400 is malfunctioning, then server(s) 478 may transmit a
signal to vehicle 400 instructing a fail-safe computer of
vehicle 400 to assume control, notify passengers, and com-
plete a safe parking maneuver.

[0190] In at least one embodiment, server(s) 478 may
include GPU(s) 484 and one or more programmable infer-
ence accelerators (e.g., NVIDIA’s TensorRT 3 devices). In
at least one embodiment, a combination of GPU-powered
servers and inference acceleration may make real-time
responsiveness possible. In at least one embodiment, such as
where performance is less critical, servers powered by
CPUs, FPGAs, and other processors may be used for infer-
encing. In at least one embodiment, hardware structure(s)
115 are used to perform one or more embodiments. Details
regarding hardware structure(x) 115 are provided herein in
conjunction with FIGS. 1A and/or 1B.

US 2022/0284582 Al

Computer Systems

[0191] FIG. 51is a block diagram illustrating an exemplary
computer system, which may be a system with intercon-
nected devices and components, a system-on-a-chip (SOC)
or some combination thereof formed with a processor that
may include execution units to execute an instruction,
according to at least one embodiment. In at least one
embodiment, a computer system 500 may include, without
limitation, a component, such as a processor 502 to employ
execution units including logic to perform algorithms for
process data, in accordance with present disclosure, such as
in embodiment described herein. In at least one embodi-
ment, computer system 500 may include processors, such as
PENTIUM® Processor family, Xeon™ Itanium®,
XScale™ and/or StrongARM™, Intel® Core™, or Intel®
Nervana™ microprocessors available from Intel Corpora-
tion of Santa Clara, Calif., although other systems (including
PCs having other microprocessors, engineering worksta-
tions, set-top boxes and like) may also be used. In at least
one embodiment, computer system 500 may execute a
version of WINDOWS operating system available from
Microsoft Corporation of Redmond, Wash., although other
operating systems (UNIX and Linux, for example), embed-
ded software, and/or graphical user interfaces, may also be
used.

[0192] Embodiments may be used in other devices such as
handheld devices and embedded applications. Some
examples of handheld devices include cellular phones, Inter-
net Protocol devices, digital cameras, personal digital assis-
tants (“PDAs”), and handheld PCs. In at least one embodi-
ment, embedded applications may include a microcontroller,
a digital signal processor (“DSP”), system on a chip, net-
work computers (“NetPCs”), set-top boxes, network hubs,
wide area network (“WAN”) switches, or any other system
that may perform one or more instructions in accordance
with at least one embodiment.

[0193] In at least one embodiment, computer system 500
may include, without limitation, processor 502 that may
include, without limitation, one or more execution units 508
to perform machine learning model training and/or infer-
encing according to techniques described herein. In at least
one embodiment, computer system 500 is a single processor
desktop or server system, but in another embodiment, com-
puter system 500 may be a multiprocessor system. In at least
one embodiment, processor 502 may include, without limi-
tation, a complex instruction set computer (“CISC”) micro-
processor, a reduced instruction set computing (“RISC”)
microprocessor, a very long instruction word (“VLIW”)
microprocessor, a processor implementing a combination of
instruction sets, or any other processor device, such as a
digital signal processor, for example. In at least one embodi-
ment, processor 502 may be coupled to a processor bus 510
that may transmit data signals between processor 502 and
other components in computer system 500.

[0194] In at least one embodiment, processor 502 may
include, without limitation, a Level 1 (“L1”) internal cache
memory (“cache”) 504. In at least one embodiment, proces-
sor 502 may have a single internal cache or multiple levels
of'internal cache. In at least one embodiment, cache memory
may reside external to processor 502. Other embodiments
may also include a combination of both internal and external
caches depending on particular implementation and needs.
In at least one embodiment, a register file 506 may store
different types of data in various registers including, without

Sep. 8§, 2022

limitation, integer registers, floating point registers, status
registers, and an instruction pointer register.

[0195] In at least one embodiment, execution unit 508,
including, without limitation, logic to perform integer and
floating point operations, also resides in processor 502. In at
least one embodiment, processor 502 may also include a
microcode (“ucode”) read only memory (“ROM”) that
stores microcode for certain macro instructions. In at least
one embodiment, execution unit 508 may include logic to
handle a packed instruction set 509. In at least one embodi-
ment, by including packed instruction set 509 in an instruc-
tion set of a general-purpose processor, along with associ-
ated circuitry to execute instructions, operations used by
many multimedia applications may be performed using
packed data in processor 502. In at least one embodiment,
many multimedia applications may be accelerated and
executed more efficiently by using a full width of a proces-
sor’s data bus for performing operations on packed data,
which may eliminate a need to transfer smaller units of data
across that processor’s data bus to perform one or more
operations one data element at a time.

[0196] In at least one embodiment, execution unit 508
may also be used in microcontrollers, embedded processors,
graphics devices, DSPs, and other types of logic circuits. In
at least one embodiment, computer system 500 may include,
without limitation, a memory 520. In at least one embodi-
ment, memory 520 may be a Dynamic Random Access
Memory (“DRAM”) device, a Static Random Access
Memory (“SRAM”) device, a flash memory device, or
another memory device. In at least one embodiment,
memory 520 may store instruction(s) 519 and/or data 521
represented by data signals that may be executed by pro-
cessor 502.

[0197] In at least one embodiment, a system logic chip
may be coupled to processor bus 510 and memory 520. In
at least one embodiment, a system logic chip may include,
without limitation, a memory controller hub (“MCH”) 516,
and processor 502 may communicate with MCH 516 via
processor bus 510. In at least one embodiment, MCH 516
may provide a high bandwidth memory path 518 to memory
520 for instruction and data storage and for storage of
graphics commands, data and textures. In at least one
embodiment, MCH 516 may direct data signals between
processor 502, memory 520, and other components in com-
puter system 500 and to bridge data signals between pro-
cessor bus 510, memory 520, and a system 1/O interface 522.
In at least one embodiment, a system logic chip may provide
a graphics port for coupling to a graphics controller. In at
least one embodiment, MCH 516 may be coupled to
memory 520 through high bandwidth memory path 518 and
a graphics/video card 512 may be coupled to MCH 516
through an Accelerated Graphics Port (“AGP”) interconnect
514.

[0198] In at least one embodiment, computer system 500
may use system [/O interface 522 as a proprietary hub
interface bus to couple MCH 516 to an I/O controller hub
(“ICH”) 530. In at least one embodiment, ICH 530 may
provide direct connections to some I/O devices via a local
1/O bus. In at least one embodiment, a local [/O bus may
include, without limitation, a high-speed I/O bus for con-
necting peripherals to memory 520, a chipset, and processor
502. Examples may include, without limitation, an audio
controller 529, a firmware hub (“flash BIOS”) 528, a wire-
less transceiver 526, a data storage 524, a legacy 1/O

US 2022/0284582 Al

controller 523 containing user input and keyboard interfaces
525, a serial expansion port 527, such as a Universal Serial
Bus (“USB”) port, and a network controller 534. In at least
one embodiment, data storage 524 may comprise a hard disk
drive, a floppy disk drive, a CD-ROM device, a flash
memory device, or other mass storage device.

[0199] In at least one embodiment, FIG. 5 illustrates a
system, which includes interconnected hardware devices or
“chips”, whereas in other embodiments, FIG. 5 may illus-
trate an exemplary SoC. In at least one embodiment, devices
illustrated in FIG. 5 may be interconnected with proprietary
interconnects, standardized interconnects (e.g., PCle) or
some combination thereof. In at least one embodiment, one
or more components of computer system 500 are intercon-
nected using compute express link (CXL) interconnects.
[0200] Inference and/or training logic 115 are used to
perform inferencing and/or training operations associated
with one or more embodiments. Details regarding inference
and/or training logic 115 are provided herein in conjunction
with FIGS. 1A and/or 1B. In at least one embodiment,
inference and/or training logic 115 may be used in system
FIG. 5 for inferencing or predicting operations based, at
least in part, on weight parameters calculated using neural
network training operations, neural network functions and/
or architectures, or neural network use cases described
herein.

[0201] FIG. 6 is a block diagram illustrating an electronic
device 600 for utilizing a processor 610, according to at least
one embodiment. In at least one embodiment, electronic
device 600 may be, for example and without limitation, a
notebook, a tower server, a rack server, a blade server, a
laptop, a desktop, a tablet, a mobile device, a phone, an
embedded computer, or any other suitable electronic device.
[0202] In at least one embodiment, electronic device 600
may include, without limitation, processor 610 communica-
tively coupled to any suitable number or kind of compo-
nents, peripherals, modules, or devices. In at least one
embodiment, processor 610 is coupled using a bus or
interface, such as a I°C bus, a System Management Bus
(“SMBus”), a Low Pin Count (LPC) bus, a Serial Peripheral
Interface (“SPI”), a High Definition Audio (“HDA”) bus, a
Serial Advance Technology Attachment (“SATA”) bus, a
Universal Serial Bus (“USB”) (versions 1, 2, 3, etc.), or a
Universal Asynchronous Receiver/Transmitter (“UART”)
bus. In at least one embodiment, FIG. 6 illustrates a system,
which includes interconnected hardware devices or “chips”,
whereas in other embodiments, FIG. 6 may illustrate an
exemplary SoC. In at least one embodiment, devices illus-
trated in FIG. 6 may be interconnected with proprietary
interconnects, standardized interconnects (e.g., PCle) or
some combination thereof. In at least one embodiment, one
or more components of FIG. 6 are interconnected using
compute express link (CXL) interconnects.

[0203] In at least one embodiment, FIG. 6 may include a
display 624, a touch screen 625, a touch pad 630, a Near
Field Communications unit (“NEC”) 645, a sensor hub 640,
a thermal sensor 646, an Express Chipset (“EC”) 635, a
Trusted Platform Module (“TPM”) 638, BIOS/firmware/
flash memory (“BIOS, FW Flash™) 622, a DSP 660, a drive
620 such as a Solid State Disk (“SSD”) or a Hard Disk Drive
(“HDD”), a wireless local area network unit (“WLAN")
650, a Bluetooth unit 652, a Wireless Wide Area Network
unit (“WWAN”) 656, a Global Positioning System (GPS)
unit 655, a camera (“USB 3.0 camera”) 654 such as a USB

Sep. 8§, 2022

3.0 camera, and/or a Low Power Double Data Rate
(“LPDDR”) memory unit (“LPDDR3”) 615 implemented in,
for example, an LPDDR3 standard. These components may
each be implemented in any suitable manner.

[0204] In at least one embodiment, other components may
be communicatively coupled to processor 610 through com-
ponents described herein. In at least one embodiment, an
accelerometer 641, an ambient light sensor (“ALS”) 642, a
compass 643, and a gyroscope 644 may be communicatively
coupled to sensor hub 640. In at least one embodiment, a
thermal sensor 639, a fan 637, a keyboard 636, and touch
pad 630 may be communicatively coupled to EC 635. In at
least one embodiment, speakers 663, headphones 664, and a
microphone (“mic”) 665 may be communicatively coupled
to an audio unit (“audio codec and class D amp™) 662, which
may in turn be communicatively coupled to DSP 660. In at
least one embodiment, audio unit 662 may include, for
example and without limitation, an audio coder/decoder
(“codec”) and a class D amplifier. In at least one embodi-
ment, a SIM card (“SIM”) 657 may be communicatively
coupled to WWAN unit 656. In at least one embodiment,
components such as WLAN unit 650 and Bluetooth unit
652, as well as WWAN unit 656 may be implemented in a
Next Generation Form Factor (“NGFF”).

[0205] Inference and/or training logic 115 are used to
perform inferencing and/or training operations associated
with one or more embodiments. Details regarding inference
and/or training logic 115 are provided herein in conjunction
with FIGS. 1A and/or 1B. In at least one embodiment,
inference and/or training logic 115 may be used in system
FIG. 6 for inferencing or predicting operations based, at
least in part, on weight parameters calculated using neural
network training operations, neural network functions and/
or architectures, or neural network use cases described
herein.

[0206] FIG. 7 illustrates a computer system 700, according
to at least one embodiment. In at least one embodiment,
computer system 700 is configured to implement various
processes and methods described throughout this disclosure.
[0207] In at least one embodiment, computer system 700
comprises, without limitation, at least one central processing
unit (“CPU”) 702 that is connected to a communication bus
710 implemented using any suitable protocol, such as PCI
(“Peripheral Component Interconnect™), peripheral compo-
nent interconnect express (“PCI-Express™), AGP (“Acceler-
ated Graphics Port”), HyperTransport, or any other bus or
point-to-point communication protocol(s). In at least one
embodiment, computer system 700 includes, without limi-
tation, a main memory 704 and control logic (e.g., imple-
mented as hardware, software, or a combination thereof) and
data are stored in main memory 704, which may take form
of random access memory (“RAM?”). In at least one embodi-
ment, a network interface subsystem (“network interface”)
722 provides an interface to other computing devices and
networks for receiving data from and transmitting data to
other systems with computer system 700.

[0208] In at least one embodiment, computer system 700,
in at least one embodiment, includes, without limitation,
input devices 708, a parallel processing system 712, and
display devices 706 that can be implemented using a con-
ventional cathode ray tube (“CRT”), a liquid crystal display
(“LCD”), a light emitting diode (“LED”) display, a plasma
display, or other suitable display technologies. In at least one
embodiment, user input is received from input devices 708

US 2022/0284582 Al

such as keyboard, mouse, touchpad, microphone, etc. In at
least one embodiment, each module described herein can be
situated on a single semiconductor platform to form a
processing system.

[0209] Inference and/or training logic 115 are used to
perform inferencing and/or training operations associated
with one or more embodiments. Details regarding inference
and/or training logic 115 are provided herein in conjunction
with FIGS. 1A and/or 1B. In at least one embodiment,
inference and/or training logic 115 may be used in system
FIG. 7 for inferencing or predicting operations based, at
least in part, on weight parameters calculated using neural
network training operations, neural network functions and/
or architectures, or neural network use cases described
herein.

[0210] FIG. 8 illustrates a computer system 800, according
to at least one embodiment. In at least one embodiment,
computer system 800 includes, without limitation, a com-
puter 810 and a USB stick 820. In at least one embodiment,
computer 810 may include, without limitation, any number
and type of processor(s) (not shown) and a memory (not
shown). In at least one embodiment, computer 810 includes,
without limitation, a server, a cloud instance, a laptop, and
a desktop computer.

[0211] In at least one embodiment, USB stick 820
includes, without limitation, a processing unit 830, a USB
interface 840, and USB interface logic 850. In at least one
embodiment, processing unit 830 may be any instruction
execution system, apparatus, or device capable of executing
instructions. In at least one embodiment, processing unit 830
may include, without limitation, any number and type of
processing cores (not shown). In at least one embodiment,
processing unit 830 comprises an application specific inte-
grated circuit (“ASIC”) that is optimized to perform any
amount and type of operations associated with machine
learning. For instance, in at least one embodiment, process-
ing unit 830 is a tensor processing unit (“TPC”) that is
optimized to perform machine learning inference operations.
In at least one embodiment, processing unit 830 is a vision
processing unit (“VPU”) that is optimized to perform
machine vision and machine learning inference operations.
[0212] In at least one embodiment, USB interface 840
may be any type of USB connector or USB socket. For
instance, in at least one embodiment, USB interface 840 is
a USB 3.0 Type-C socket for data and power. In at least one
embodiment, USB interface 840 is a USB 3.0 Type-A
connector. In at least one embodiment, USB interface logic
850 may include any amount and type of logic that enables
processing unit 830 to interface with devices (e.g., computer
810) via USB connector 840.

[0213] Inference and/or training logic 115 are used to
perform inferencing and/or training operations associated
with one or more embodiments. Details regarding inference
and/or training logic 115 are provided herein in conjunction
with FIGS. 1A and/or 1B. In at least one embodiment,
inference and/or training logic 115 may be used in system
FIG. 8 for inferencing or predicting operations based, at
least in part, on weight parameters calculated using neural
network training operations, neural network functions and/
or architectures, or neural network use cases described
herein.

[0214] FIG. 9A illustrates an exemplary architecture in
which a plurality of GPUs 910(1)-910(N) is communica-
tively coupled to a plurality of multi-core processors 905

Sep. 8§, 2022

(1)-905(M) over high-speed links 940(1)-940(N) (e.g.,
buses, point-to-point interconnects, etc.). In at least one
embodiment, high-speed links 940(1)-940(N) support a
communication throughput of 4 GB/s, 30 GB/s, 80 GB/s or
higher. In at least one embodiment, various interconnect
protocols may be used including, but not limited to, PCle 4.0
or 5.0 and NVLink 2.0. In various figures, “N” and “M”
represent positive integers, values of which may be different
from figure to figure.

[0215] Inaddition, and in at least one embodiment, two or
more of GPUs 910 are interconnected over high-speed links
929(1)-929(2), which may be implemented using similar or
different protocols/links than those used for high-speed links
940(1)-940(N). Similarly, two or more of multi-core pro-
cessors 905 may be connected over a high-speed link 928
which may be symmetric multi-processor (SMP) buses
operating at 20 GB/s, 30 GB/s, 120 GB/s or higher. Alter-
natively, all communication between various system com-
ponents shown in FIG. 9A may be accomplished using
similar protocols/links (e.g., over a common interconnection
fabric).

[0216] In at least one embodiment, each multi-core pro-
cessor 905 is communicatively coupled to a processor
memory 901(1)-901(M), via memory interconnects 926(1)-
926(M), respectively, and each GPU 910(1)-910(N) is com-
municatively coupled to GPU memory 920(1)-920(N) over
GPU memory interconnects 950(1)-950(N), respectively. In
at least one embodiment, memory interconnects 926 and 950
may utilize similar or different memory access technologies.
By way of example, and not limitation, processor memories
901(1)-901(M) and GPU memories 920 may be volatile
memories such as dynamic random access memories
(DRAMSs) (including stacked DRAMs), Graphics DDR
SDRAM (GDDR) (e.g., GDDRS, GDDR6), or High Band-
width Memory (HBM) and/or may be non-volatile memo-
ries such as 3D XPoint or Nano-Ram. In at least one
embodiment, some portion of processor memories 901 may
be volatile memory and another portion may be non-volatile
memory (e.g., using a two-level memory (2L.M) hierarchy).
[0217] As described herein, although various multi-core
processors 905 and GPUs 910 may be physically coupled to
a particular memory 901, 920, respectively, and/or a unified
memory architecture may be implemented in which a virtual
system address space (also referred to as “effective address”
space) is distributed among various physical memories. For
example, processor memories 901(1)-901(M) may each
comprise 64 GB of system memory address space and GPU
memories 920(1)-920(N) may each comprise 32 GB of
system memory address space resulting in a total of 256 GB
addressable memory when M=2 and N=4. Other values for
N and M are possible.

[0218] FIG. 9B illustrates additional details for an inter-
connection between a multi-core processor 907 and a graph-
ics acceleration module 946 in accordance with one exem-
plary embodiment. In at least one embodiment, graphics
acceleration module 946 may include one or more GPU
chips integrated on a line card which is coupled to processor
907 via high-speed link 940 (e.g., a PCle bus, NVLink, etc.).
In at least one embodiment, graphics acceleration module
946 may alternatively be integrated on a package or chip
with processor 907.

[0219] In at least one embodiment, processor 907 includes
a plurality of cores 960A-960D, each with a translation
lookaside buffer (“TLB”) 961A-961D and one or more

US 2022/0284582 Al

caches 962A-962D. In at least one embodiment, cores
960A-960D may include various other components for
executing instructions and processing data that are not
illustrated. In at least one embodiment, caches 962A-962D
may comprise Level 1 (LL1) and Level 2 (L2) caches. In
addition, one or more shared caches 956 may be included in
caches 962A-962D and shared by sets of cores 960A-960D.
For example, one embodiment of processor 907 includes 24
cores, each with its own L1 cache, twelve shared L2 caches,
and twelve shared L3 caches. In this embodiment, one or
more [.2 and [.3 caches are shared by two adjacent cores. In
at least one embodiment, processor 907 and graphics accel-
eration module 946 connect with system memory 914,
which may include processor memories 901(1)-901(M) of
FIG. 9A.

[0220] In at least one embodiment, coherency is main-
tained for data and instructions stored in various caches
962A-962D, 956 and system memory 914 via inter-core
communication over a coherence bus 964. In at least one
embodiment, for example, each cache may have cache
coherency logic/circuitry associated therewith to communi-
cate to over coherence bus 964 in response to detected reads
or writes to particular cache lines. In at least one embodi-
ment, a cache snooping protocol is implemented over coher-
ence bus 964 to snoop cache accesses.

[0221] In at least one embodiment, a proxy circuit 925
communicatively couples graphics acceleration module 946
to coherence bus 964, allowing graphics acceleration mod-
ule 946 to participate in a cache coherence protocol as a peer
of cores 960A-960D. In particular, in at least one embodi-
ment, an interface 935 provides connectivity to proxy circuit
925 over high-speed link 940 and an interface 937 connects
graphics acceleration module 946 to high-speed link 940.

[0222] In at least one embodiment, an accelerator integra-
tion circuit 936 provides cache management, memory
access, context management, and interrupt management
services on behalf of a plurality of graphics processing
engines 931(1)-931(N) of graphics acceleration module 946.
In at least one embodiment, graphics processing engines
931(1)-931(N) may each comprise a separate graphics pro-
cessing unit (GPU). In at least one embodiment, graphics
processing engines 931(1)-931(N) alternatively may com-
prise different types of graphics processing engines within a
GPU, such as graphics execution units, media processing
engines (e.g., video encoders/decoders), samplers, and blit
engines. In at least one embodiment, graphics acceleration
module 946 may be a GPU with a plurality of graphics
processing engines 931(1)-931(N) or graphics processing
engines 931(1)-931(N) may be individual GPUs integrated
on a common package, line card, or chip.

[0223] In at least one embodiment, accelerator integration
circuit 936 includes a memory management unit (MMU)
939 for performing various memory management functions
such as virtual-to-physical memory translations (also
referred to as effective-to-real memory translations) and
memory access protocols for accessing system memory 914.
In at least one embodiment, MMU 939 may also include a
translation lookaside buffer (TLB) (not shown) for caching
virtual/effective to physical/real address translations. In at
least one embodiment, a cache 938 can store commands and
data for efficient access by graphics processing engines
931(1)-931(N). In at least one embodiment, data stored in
cache 938 and graphics memories 933(1)-933(M) is kept
coherent with core caches 962A-962D, 956 and system

Sep. 8§, 2022

memory 914, possibly using a fetch unit 944. As mentioned,
this may be accomplished via proxy circuit 925 on behalf of
cache 938 and memories 933(1)-933(M) (e.g., sending
updates to cache 938 related to modifications/accesses of
cache lines on processor caches 962A-962D, 956 and receiv-
ing updates from cache 938).

[0224] In at least one embodiment, a set of registers 945
store context data for threads executed by graphics process-
ing engines 931(1)-931(N) and a context management cir-
cuit 948 manages thread contexts. For example, context
management circuit 948 may perform save and restore
operations to save and restore contexts of various threads
during contexts switches (e.g., where a first thread is saved
and a second thread is stored so that a second thread can be
execute by a graphics processing engine). For example, on
a context switch, context management circuit 948 may store
current register values to a designated region in memory
(e.g., identified by a context pointer). It may then restore
register values when returning to a context. In at least one
embodiment, an interrupt management circuit 947 receives
and processes interrupts received from system devices.

[0225] In at least one embodiment, virtual/effective
addresses from a graphics processing engine 931 are trans-
lated to real/physical addresses in system memory 914 by
MMU 939. In at least one embodiment, accelerator integra-
tion circuit 936 supports multiple (e.g., 4, 8, 16) graphics
accelerator modules 946 and/or other accelerator devices. In
at least one embodiment, graphics accelerator module 946
may be dedicated to a single application executed on pro-
cessor 907 or may be shared between multiple applications.
In at least one embodiment, a virtualized graphics execution
environment is presented in which resources of graphics
processing engines 931(1)-931(N) are shared with multiple
applications or virtual machines (VMs). In at least one
embodiment, resources may be subdivided into “slices”
which are allocated to different VMs and/or applications
based on processing requirements and priorities associated
with VMs and/or applications.

[0226] In at least one embodiment, accelerator integration
circuit 936 performs as a bridge to a system for graphics
acceleration module 946 and provides address translation
and system memory cache services. In addition, in at least
one embodiment, accelerator integration circuit 936 may
provide virtualization facilities for a host processor to man-
age virtualization of graphics processing engines 931(1)-
931(N), interrupts, and memory management.

[0227] In at least one embodiment, because hardware
resources of graphics processing engines 931(1)-931(N) are
mapped explicitly to a real address space seen by host
processor 907, any host processor can address these
resources directly using an effective address value. In at least
one embodiment, one function of accelerator integration
circuit 936 is physical separation of graphics processing
engines 931(1)-931(N) so that they appear to a system as
independent units.

[0228] In at least one embodiment, one or more graphics
memories 933(1)-933(M) are coupled to each of graphics
processing engines 931(1)-931(N), respectively and N=M.
In at least one embodiment, graphics memories 933(1)-933
(M) store instructions and data being processed by each of
graphics processing engines 931(1)-931(N). In at least one
embodiment, graphics memories 933(1)-933(M) may be
volatile memories such as DRAMs (including stacked

US 2022/0284582 Al

DRAMs), GDDR memory (e.g., GDDRS5, GDDR6), or
HBM, and/or may be non-volatile memories such as 3D
XPoint or Nano-Ram.

[0229] In at least one embodiment, to reduce data traffic
over high-speed link 940, biasing techniques can be used to
ensure that data stored in graphics memories 933(1)-933(M)
is data that will be used most frequently by graphics pro-
cessing engines 931(1)-931(N) and preferably not used by
cores 960A-960D (at least not frequently). Similarly, in at
least one embodiment, a biasing mechanism attempts to
keep data needed by cores (and preferably not graphics
processing engines 931(1)-931(N)) within caches 962A-
962D, 956 and system memory 914.

[0230] FIG. 9C illustrates another exemplary embodiment
in which accelerator integration circuit 936 is integrated
within processor 907. In this embodiment, graphics process-
ing engines 931(1)-931(N) communicate directly over high-
speed link 940 to accelerator integration circuit 936 via
interface 937 and interface 935 (which, again, may be any
form of bus or interface protocol). In at least one embodi-
ment, accelerator integration circuit 936 may perform simi-
lar operations as those described with respect to FIG. 9B, but
potentially at a higher throughput given its close proximity
to coherence bus 964 and caches 962A-962D, 956. In at least
one embodiment, an accelerator integration circuit supports
different programming models including a dedicated-pro-
cess programming model (no graphics acceleration module
virtualization) and shared programming models (with virtu-
alization), which may include programming models which
are controlled by accelerator integration circuit 936 and
programming models which are controlled by graphics
acceleration module 946.

[0231] In at least one embodiment, graphics processing
engines 931(1)-931(N) are dedicated to a single application
or process under a single operating system. In at least one
embodiment, a single application can funnel other applica-
tion requests to graphics processing engines 931(1)-931(N),
providing virtualization within a VM/partition.

[0232] In at least one embodiment, graphics processing
engines 931(1)-931(N), may be shared by multiple VM/ap-
plication partitions. In at least one embodiment, shared
models may use a system hypervisor to virtualize graphics
processing engines 931(1)-931(N) to allow access by each
operating system. In at least one embodiment, for single-
partition systems without a hypervisor, graphics processing
engines 931(1)-931(N) are owned by an operating system.
In at least one embodiment, an operating system can virtu-
alize graphics processing engines 931(1)-931(N) to provide
access to each process or application.

[0233] In at least one embodiment, graphics acceleration
module 946 or an individual graphics processing engine
931(1)-931(N) selects a process element using a process
handle. In at least one embodiment, process elements are
stored in system memory 914 and are addressable using an
effective address to real address translation technique
described herein. In at least one embodiment, a process
handle may be an implementation-specific value provided to
a host process when registering its context with graphics
processing engine 931(1)-931(N) (that is, calling system
software to add a process element to a process element
linked list). In at least one embodiment, a lower 16-bits of
a process handle may be an offset of a process element
within a process element linked list.

Sep. 8§, 2022

[0234] FIG. 9D illustrates an exemplary accelerator inte-
gration slice 990. In at least one embodiment, a “slice”
comprises a specified portion of processing resources of
accelerator integration circuit 936. In at least one embodi-
ment, an application is effective address space 982 within
system memory 914 stores process elements 983. In at least
one embodiment, process elements 983 are stored in
response to GPU invocations 981 from applications 980
executed on processor 907. In at least one embodiment, a
process element 983 contains process state for correspond-
ing application 980. In at least one embodiment, a work
descriptor (WD) 984 contained in process element 983 can
be a single job requested by an application or may contain
a pointer to a queue of jobs. In at least one embodiment, WD
984 is a pointer to a job request queue in an application’s
effective address space 982.

[0235] In at least one embodiment, graphics acceleration
module 946 and/or individual graphics processing engines
931(1)-931(N) can be shared by all or a subset of processes
in a system. In at least one embodiment, an infrastructure for
setting up process states and sending a WD 984 to a graphics
acceleration module 946 to start a job in a virtualized
environment may be included.

[0236] In at least one embodiment, a dedicated-process
programming model is implementation-specific. In at least
one embodiment, in this model, a single process owns
graphics acceleration module 946 or an individual graphics
processing engine 931. In at least one embodiment, when
graphics acceleration module 946 is owned by a single
process, a hypervisor initializes accelerator integration cir-
cuit 936 for an owning partition and an operating system
initializes accelerator integration circuit 936 for an owning
process when graphics acceleration module 946 is assigned.

[0237] In at least one embodiment, in operation, a WD
fetch unit 991 in accelerator integration slice 990 fetches
next WD 984, which includes an indication of work to be
done by one or more graphics processing engines of graph-
ics acceleration module 946. In at least one embodiment,
data from WD 984 may be stored in registers 945 and used
by MMU 939, interrupt management circuit 947 and/or
context management circuit 948 as illustrated. For example,
one embodiment of MMU 939 includes segment/page walk
circuitry for accessing segment/page tables 986 within an
OS virtual address space 985. In at least one embodiment,
interrupt management circuit 947 may process interrupt
events 992 received from graphics acceleration module 946.
In at least one embodiment, when performing graphics
operations, an effective address 993 generated by a graphics
processing engine 931(1)-931(N) is translated to a real
address by MMU 939.

[0238] In at least one embodiment, registers 945 are
duplicated for each graphics processing engine 931(1)-931
(N) and/or graphics acceleration module 946 and may be
initialized by a hypervisor or an operating system. In at least
one embodiment, each of these duplicated registers may be
included in an accelerator integration slice 990. Exemplary
registers that may be initialized by a hypervisor are shown
in Table 1.

US 2022/0284582 Al

TABLE 1

Hypervisor Initialized Registers

Register

Description

Slice Control Register

Real Address (RA) Scheduled Processes Area Pointer
Authority Mask Override Register

Interrupt Vector Table Entry Offset

Interrupt Vector Table Entry Limit

State Register

Logical Partition ID

Real address (RA) Hypervisor Accelerator Utilization Record
Pointer

Storage Description Register

- BEN G VRN NSV SR

=]

[0239] Exemplary registers that may be initialized by an
operating system are shown in Table 2.

TABLE 2

Operating System Initialized Registers

Register
Description
1 Process and Thread Identification
2 Effective Address (EA) Context Save/Restore Pointer
3 Virtual Address (VA) Accelerator Utilization Record Pointer
4 Virtual Address (VA) Storage Segment Table Pointer
5 Authority Mask
6 Work descriptor

[0240] In at least one embodiment, each WD 984 is
specific to a particular graphics acceleration module 946
and/or graphics processing engines 931(1)-931(N). In at
least one embodiment, it contains all information required
by a graphics processing engine 931(1)-931(N) to do work,
or it can be a pointer to a memory location where an
application has set up a command queue of work to be
completed.

[0241] FIG. 9E illustrates additional details for one exem-
plary embodiment of a shared model. This embodiment
includes a hypervisor real address space 998 in which a
process element list 999 is stored. In at least one embodi-
ment, hypervisor real address space 998 is accessible via a
hypervisor 996 which virtualizes graphics acceleration mod-
ule engines for operating system 995.

[0242] In at least one embodiment, shared programming
models allow for all or a subset of processes from all or a
subset of partitions in a system to use a graphics acceleration
module 946. In at least one embodiment, there are two
programming models where graphics acceleration module
946 is shared by multiple processes and partitions, namely
time-sliced shared and graphics directed shared.

[0243] In at least one embodiment, in this model, system
hypervisor 996 owns graphics acceleration module 946 and
makes its function available to all operating systems 995. In
at least one embodiment, for a graphics acceleration module
946 to support virtualization by system hypervisor 996,
graphics acceleration module 946 may adhere to certain
requirements, such as (1) an application’s job request must
be autonomous (that is, state does not need to be maintained
between jobs), or graphics acceleration module 946 must
provide a context save and restore mechanism, (2) an
application’s job request is guaranteed by graphics accel-
eration module 946 to complete in a specified amount of

23

Sep. 8§, 2022

time, including any translation faults, or graphics accelera-
tion module 946 provides an ability to preempt processing of
a job, and (3) graphics acceleration module 946 must be
guaranteed fairness between processes when operating in a
directed shared programming model.

[0244] In at least one embodiment, application 980 is
required to make an operating system 995 system call with
a graphics acceleration module type, a work descriptor
(WD), an authority mask register (AMR) value, and a
context save/restore area pointer (CSRP). In at least one
embodiment, graphics acceleration module type describes a
targeted acceleration function for a system call. In at least
one embodiment, graphics acceleration module type may be
a system-specific value. In at least one embodiment, WD is
formatted specifically for graphics acceleration module 946
and can be in a form of a graphics acceleration module 946
command, an effective address pointer to a user-defined
structure, an effective address pointer to a queue of com-
mands, or any other data structure to describe work to be
done by graphics acceleration module 946.

[0245] In at least one embodiment, an AMR value is an
AMR state to use for a current process. In at least one
embodiment, a value passed to an operating system is
similar to an application setting an AMR. In at least one
embodiment, if accelerator integration circuit 936 (not
shown) and graphics acceleration module 946 implementa-
tions do not support a User Authority Mask Override Reg-
ister (UAMOR), an operating system may apply a current
UAMOR value to an AMR value before passing an AMR in
a hypervisor call. In at least one embodiment, hypervisor
996 may optionally apply a current Authority Mask Override
Register (AMOR) value before placing an AMR into process
element 983. In at least one embodiment, CSRP is one of
registers 945 containing an effective address of an area in an
application’s effective address space 982 for graphics accel-
eration module 946 to save and restore context state. In at
least one embodiment, this pointer is optional if no state is
required to be saved between jobs or when a job is pre-
empted. In at least one embodiment, context save/restore
area may be pinned system memory.

[0246] Uponreceiving a system call, operating system 995
may verify that application 980 has registered and been
given authority to use graphics acceleration module 946. In
at least one embodiment, operating system 995 then calls
hypervisor 996 with information shown in Table 3.

TABLE 3

OS to Hypervisor Call Parameters

Parameter

Description

1 A work descriptor (WD)

2 An Authority Mask Register (AMR) value (potentially
masked)

3 An effective address (EA) Context Save/Restore Area Pointer

(CSRP)

A process ID (PID) and optional thread ID (TID)

5 A virtual address (VA) accelerator utilization record pointer
(AURP)

6 Virtual address of storage segment table pointer (SSTP)

7 A logical interrupt service number (LISN)

[0247] In at least one embodiment, upon receiving a
hypervisor call, hypervisor 996 verifies that operating sys-
tem 995 has registered and been given authority to use

US 2022/0284582 Al

graphics acceleration module 946. In at least one embodi-
ment, hypervisor 996 then puts process element 983 into a
process element linked list for a corresponding graphics
acceleration module 946 type. In at least one embodiment,
a process element may include information shown in Table
4.

TABLE 4

Process Element Information

Description

1 A work descriptor (WD)

2 An Authority Mask Register (AMR) value (potentially masked).

3 An effective address (EA) Context Save/Restore Area Pointer
(CSRP)

4 Aprocess ID (PID) and optional thread ID (TID)

5 Avirtual address (VA) accelerator utilization record pointer

(AURP)

Virtual address of storage segment table pointer (SSTP)

A logical interrupt service number (LISN)

Interrupt vector table, derived from hypervisor call parameters

A state register (SR) value

A logical partition ID (LPID)

A real address (RA) hypervisor accelerator utilization record

pointer

12 Storage Descriptor Register (SDR)

— O D o -1 Oy

—

[0248] In at least one embodiment, hypervisor initializes a
plurality of accelerator integration slice 990 registers 945.
[0249] As illustrated in FIG. 9F, in at least one embodi-
ment, a unified memory is used, addressable via a common
virtual memory address space used to access physical pro-
cessor memories 901(1)-901(N) and GPU memories 920(1)-
920(N). In this implementation, operations executed on
GPUs 910(1)-910(N) utilize a same virtual/effective
memory address space to access processor memories 901
(1)-901(M) and vice versa, thereby simplifying programma-
bility. In at least one embodiment, a first portion of a
virtual/effective address space is allocated to processor
memory 901(1), a second portion to second processor
memory 901(N), a third portion to GPU memory 920(1), and
so on. In at least one embodiment, an entire virtual/effective
memory space (sometimes referred to as an effective address
space) is thereby distributed across each of processor memo-
ries 901 and GPU memories 920, allowing any processor or
GPU to access any physical memory with a virtual address
mapped to that memory.

[0250] In at least one embodiment, bias/coherence man-
agement circuitry 994A-994EF within one or more of MMUs
939A-939E ensures cache coherence between caches of one
or more host processors (e.g., 905) and GPUs 910 and
implements biasing techniques indicating physical memo-
ries in which certain types of data should be stored. In at
least one embodiment, while multiple instances of bias/
coherence management circuitry 994A-994E are illustrated
in FIG. 9F, bias/coherence circuitry may be implemented
within an MMU of one or more host processors 905 and/or
within accelerator integration circuit 936.

[0251] One embodiment allows GPU memories 920 to be
mapped as part of system memory, and accessed using
shared virtual memory (SVM) technology, but without suf-
fering performance drawbacks associated with full system
cache coherence. In at least one embodiment, an ability for
GPU memories 920 to be accessed as system memory
without onerous cache coherence overhead provides a ben-

Sep. 8§, 2022

eficial operating environment for GPU offload. In at least
one embodiment, this arrangement allows software of host
processor 905 to setup operands and access computation
results, without overhead of tradition I/O DMA data copies.
In at least one embodiment, such traditional copies involve
driver calls, interrupts and memory mapped /O (MMIO)
accesses that are all inefficient relative to simple memory
accesses. In at least one embodiment, an ability to access
GPU memories 920 without cache coherence overheads can
be critical to execution time of an offloaded computation. In
at least one embodiment, in cases with substantial streaming
write memory traffic, for example, cache coherence over-
head can significantly reduce an effective write bandwidth
seen by a GPU 910. In at least one embodiment, efficiency
of operand setup, efficiency of results access, and efficiency
of GPU computation may play a role in determining effec-
tiveness of a GPU offload.

[0252] In at least one embodiment, selection of GPU bias
and host processor bias is driven by a bias tracker data
structure. In at least one embodiment, a bias table may be
used, for example, which may be a page-granular structure
(e.g., controlled at a granularity of a memory page) that
includes 1 or 2 bits per GPU-attached memory page. In at
least one embodiment, a bias table may be implemented in
a stolen memory range of one or more GPU memories 920,
with or without a bias cache in a GPU 910 (e.g., to cache
frequently/recently used entries of a bias table). Alterna-
tively, in at least one embodiment, an entire bias table may
be maintained within a GPU.

[0253] In at least one embodiment, a bias table entry
associated with each access to a GPU attached memory 920
is accessed prior to actual access to a GPU memory, causing
following operations. In at least one embodiment, local
requests from a GPU 910 that find their page in GPU bias are
forwarded directly to a corresponding GPU memory 920. In
at least one embodiment, local requests from a GPU that find
their page in host bias are forwarded to processor 905 (e.g.,
over a high-speed link as described herein). In at least one
embodiment, requests from processor 905 that find a
requested page in host processor bias complete a request like
a normal memory read. Alternatively, requests directed to a
GPU-biased page may be forwarded to a GPU 910. In at
least one embodiment, a GPU may then transition a page to
a host processor bias if it is not currently using a page. In at
least one embodiment, a bias state of a page can be changed
either by a software-based mechanism, a hardware-assisted
software-based mechanism, or, for a limited set of cases, a
purely hardware-based mechanism.

[0254] In at least one embodiment, one mechanism for
changing bias state employs an API call (e.g., OpenCL),
which, in turn, calls a GPU’s device driver which, in turn,
sends a message (or enqueues a command descriptor) to a
GPU directing it to change a bias state and, for some
transitions, perform a cache flushing operation in a host. In
at least one embodiment, a cache flushing operation is used
for a transition from host processor 905 bias to GPU bias,
but is not for an opposite transition.

[0255] In at least one embodiment, cache coherency is
maintained by temporarily rendering GPU-biased pages
uncacheable by host processor 905. In at least one embodi-
ment, to access these pages, processor 905 may request
access from GPU 910, which may or may not grant access
right away. In at least one embodiment, thus, to reduce
communication between processor 905 and GPU 910 it is

US 2022/0284582 Al

beneficial to ensure that GPU-biased pages are those which
are required by a GPU but not host processor 905 and vice
versa.

[0256] Hardware structure(s) 115 are used to perform one
or more embodiments. Details regarding a hardware struc-
ture(s) 115 may be provided herein in conjunction with
FIGS. 1A and/or 1B.

[0257] FIG. 10 illustrates exemplary integrated circuits
and associated graphics processors that may be fabricated
using one or more IP cores, according to various embodi-
ments described herein. In addition to what is illustrated,
other logic and circuits may be included in at least one
embodiment, including additional graphics processors/
cores, peripheral interface controllers, or general-purpose
processor cores.

[0258] FIG. 10 is a block diagram illustrating an exem-
plary system on a chip integrated circuit 1000 that may be
fabricated using one or more IP cores, according to at least
one embodiment. In at least one embodiment, integrated
circuit 1000 includes one or more application processor(s)
1005 (e.g., CPUs), at least one graphics processor 1010, and
may additionally include an image processor 1015 and/or a
video processor 1020, any of which may be a modular IP
core. In at least one embodiment, integrated circuit 1000
includes peripheral or bus logic including a USB controller
1025, a UART controller 1030, an SPI/SDIO controller
1035, and an I°2S/1°2C controller 1040. In at least one
embodiment, integrated circuit 1000 can include a display
device 1045 coupled to one or more of a high-definition
multimedia interface (HDMI) controller 1050 and a mobile
industry processor interface (MIPI) display interface 1055.
In at least one embodiment, storage may be provided by a
flash memory subsystem 1060 including flash memory and
a flash memory controller. In at least one embodiment, a
memory interface may be provided via a memory controller
1065 for access to SDRAM or SRAM memory devices. In
at least one embodiment, some integrated circuits addition-
ally include an embedded security engine 1070.

[0259] Inference and/or training logic 115 are used to
perform inferencing and/or training operations associated
with one or more embodiments. Details regarding inference
and/or training logic 115 are provided herein in conjunction
with FIGS. 1A and/or 1B. In at least one embodiment,
inference and/or training logic 115 may be used in integrated
circuit 1000 for inferencing or predicting operations based,
at least in part, on weight parameters calculated using neural
network training operations, neural network functions and/
or architectures, or neural network use cases described
herein.

[0260] FIGS. 11A-11B illustrate exemplary integrated cir-
cuits and associated graphics processors that may be fabri-
cated using one or more IP cores, according to various
embodiments described herein. In addition to what is illus-
trated, other logic and circuits may be included in at least
one embodiment, including additional graphics processors/
cores, peripheral interface controllers, or general-purpose
processor cores.

[0261] FIGS. 11A-11B are block diagrams illustrating
exemplary graphics processors for use within an SoC,
according to embodiments described herein. FIG. 11A illus-
trates an exemplary graphics processor 1110 of a system on
a chip integrated circuit that may be fabricated using one or
more IP cores, according to at least one embodiment. FIG.
11B illustrates an additional exemplary graphics processor

Sep. 8§, 2022

1140 of a system on a chip integrated circuit that may be
fabricated using one or more IP cores, according to at least
one embodiment. In at least one embodiment, graphics
processor 1110 of FIG. 11A is a low power graphics pro-
cessor core. In at least one embodiment, graphics processor
1140 of FIG. 11B is a higher performance graphics processor
core. In at least one embodiment, each of graphics proces-
sors 1110, 1140 can be variants of graphics processor 1010
of FIG. 10.

[0262] In at least one embodiment, graphics processor
1110 includes a vertex processor 1105 and one or more
fragment processor(s) 1115A-1115N (e.g., 1115A, 1115B,
1115C, 1115D, through 1115N-1, and 1115N). In at least one
embodiment, graphics processor 1110 can execute different
shader programs via separate logic, such that vertex proces-
sor 1105 is optimized to execute operations for vertex shader
programs, while one or more fragment processor(s) 1115A-
1115N execute fragment (e.g., pixel) shading operations for
fragment or pixel shader programs. In at least one embodi-
ment, vertex processor 1105 performs a vertex processing
stage of a 3D graphics pipeline and generates primitives and
vertex data. In at least one embodiment, fragment processor
(s) 1115A-1115N use primitive and vertex data generated by
vertex processor 1105 to produce a framebuffer that is
displayed on a display device. In at least one embodiment,
fragment processor(s) 1115A-1115N are optimized to
execute fragment shader programs as provided for in an
OpenGL API, which may be used to perform similar opera-
tions as a pixel shader program as provided for in a Direct
3D APL

[0263] In at least one embodiment, graphics processor
1110 additionally includes one or more memory manage-
ment units (MMUs) 1120A-1120B, cache(s) 1125A-1125B,
and circuit interconnect(s) 1130A-1130B. In at least one
embodiment, one or more MMU(s) 1120A-1120B provide
for virtual to physical address mapping for graphics proces-
sor 1110, including for vertex processor 1105 and/or frag-
ment processor(s) 1115A-1115N, which may reference ver-
tex or image/texture data stored in memory, in addition to
vertex or image/texture data stored in one or more cache(s)
1125A-1125B. In at least one embodiment, one or more
MMU(s) 1120A-1120B may be synchronized with other
MMUs within a system, including one or more MMUs
associated with one or more application processor(s) 1005,
image processors 1015, and/or video processors 1020 of
FIG. 10, such that each processor 1005-1020 can participate
in a shared or unified virtual memory system. In at least one
embodiment, one or more circuit interconnect(s) 1130A-
1130B enable graphics processor 1110 to interface with
other IP cores within SoC, either via an internal bus of SoC
or via a direct connection.

[0264] In at least one embodiment, graphics processor
1140 includes one or more shader core(s) 1155A-1155N
(e.g., 1155A, 1155B, 1155C, 1155D, 1155E, 1155F, through
1155N-1, and 1155N) as shown in FIG. 11B, which pro-
vides for a unified shader core architecture in which a single
core or type or core can execute all types of programmable
shader code, including shader program code to implement
vertex shaders, fragment shaders, and/or compute shaders.
In at least one embodiment, a number of shader cores can
vary. In at least one embodiment, graphics processor 1140
includes an inter-core task manager 1145, which acts as a
thread dispatcher to dispatch execution threads to one or
more shader cores 1155A-1155N and a tiling unit 1158 to

US 2022/0284582 Al

accelerate tiling operations for tile-based rendering, in
which rendering operations for a scene are subdivided in
image space, for example to exploit local spatial coherence
within a scene or to optimize use of internal caches.
[0265] Inference and/or training logic 115 are used to
perform inferencing and/or training operations associated
with one or more embodiments. Details regarding inference
and/or training logic 115 are provided herein in conjunction
with FIGS. 1A and/or 1B. In at least one embodiment,
inference and/or training logic 115 may be used in integrated
circuit 11A and/or 11B for inferencing or predicting opera-
tions based, at least in part, on weight parameters calculated
using neural network training operations, neural network
functions and/or architectures, or neural network use cases
described herein.

[0266] FIGS. 12A-12B illustrate additional exemplary
graphics processor logic according to embodiments
described herein. FIG. 12A illustrates a graphics core 1200
that may be included within graphics processor 1010 of FI1G.
10, in at least one embodiment, and may be a unified shader
core 1155A-1155N as in FIG. 11B in at least one embodi-
ment. FIG. 12B illustrates a highly-parallel general-purpose
graphics processing unit (“GPGPU”) 1230 suitable for
deployment on a multi-chip module in at least one embodi-
ment.

[0267] In at least one embodiment, graphics core 1200
includes a shared instruction cache 1202, a texture unit
1218, and a cache/shared memory 1220 that are common to
execution resources within graphics core 1200. In at least
one embodiment, graphics core 1200 can include multiple
slices 1201A-1201N or a partition for each core, and a
graphics processor can include multiple instances of graph-
ics core 1200. In at least one embodiment, slices 1201A-
1201N can include support logic including a local instruc-
tion cache 1204A-1204N, a thread scheduler 1206 A-1206N,
a thread dispatcher 1208A-1208N, and a set of registers
1210A-1210N. In at least one embodiment, slices 1201A-
1201N can include a set of additional function units (AFUs
1212A-1212N), floating-point units (FPUs 1214A-1214N),
integer arithmetic logic units (ALUs 1216A-1216N),
address computational units (ACUs 1213A-1213N), double-
precision floating-point units (DPFPUs 1215A-1215N), and
matrix processing units (MPUs 1217A-1217N).

[0268] In at least one embodiment, FPUs 1214A-1214N
can perform single-precision (32-bit) and half-precision
(16-bit) floating point operations, while DPFPUs 1215A-
1215N perform double precision (64-bit) floating point
operations. In at least one embodiment, ALUs 1216A-
1216N can perform variable precision integer operations at
8-bit, 16-bit, and 32-bit precision, and can be configured for
mixed precision operations. In at least one embodiment,
MPUs 1217A-1217N can also be configured for mixed
precision matrix operations, including half-precision float-
ing point and 8-bit integer operations. In at least one
embodiment, MPUs 1217-1217N can perform a variety of
matrix operations to accelerate machine learning application
frameworks, including enabling support for accelerated gen-
eral matrix to matrix multiplication (GEMM). In at least one
embodiment, AFUs 1212A-1212N can perform additional
logic operations not supported by floating-point or integer
units, including trigonometric operations (e.g., sine, cosine,
etc.).

[0269] Inference and/or training logic 115 are used to
perform inferencing and/or training operations associated

Sep. 8§, 2022

with one or more embodiments. Details regarding inference
and/or training logic 115 are provided herein in conjunction
with FIGS. 1A and/or 1B. In at least one embodiment,
inference and/or training logic 115 may be used in graphics
core 1200 for inferencing or predicting operations based, at
least in part, on weight parameters calculated using neural
network training operations, neural network functions and/
or architectures, or neural network use cases described
herein.

[0270] FIG. 12B illustrates a general-purpose processing
unit (GPGPU) 1230 that can be configured to enable highly-
parallel compute operations to be performed by an array of
graphics processing units, in at least one embodiment. In at
least one embodiment, GPGPU 1230 can be linked directly
to other instances of GPGPU 1230 to create a multi-GPU
cluster to improve training speed for deep neural networks.
In at least one embodiment, GPGPU 1230 includes a host
interface 1232 to enable a connection with a host processor.
In at least one embodiment, host interface 1232 is a PCI
Express interface. In at least one embodiment, host interface
1232 can be a vendor-specific communications interface or
communications fabric. In at least one embodiment, GPGPU
1230 receives commands from a host processor and uses a
global scheduler 1234 to distribute execution threads asso-
ciated with those commands to a set of compute clusters
1236A-1236H. In at least one embodiment, compute clusters
1236A-1236H share a cache memory 1238. In at least one
embodiment, cache memory 1238 can serve as a higher-
level cache for cache memories within compute clusters
1236A-1236H.

[0271] In at least one embodiment, GPGPU 1230 includes
memory 1244A-1244B coupled with compute clusters
1236A-1236H via a set of memory controllers 1242A-
1242B. In at least one embodiment, memory 1244 A-1244B
can include various types of memory devices including
dynamic random access memory (DRAM) or graphics ran-
dom access memory, such as synchronous graphics random
access memory (SGRAM), including graphics double data
rate (GDDR) memory.

[0272] In at least one embodiment, compute clusters
1236A-1236H each include a set of graphics cores, such as
graphics core 1200 of FIG. 12A, which can include multiple
types of integer and floating point logic units that can
perform computational operations at a range of precisions
including suited for machine learning computations. For
example, in at least one embodiment, at least a subset of
floating point units in each of compute clusters 1236A-
1236H can be configured to perform 16-bit or 32-bit floating
point operations, while a different subset of floating point
units can be configured to perform 64-bit floating point
operations.

[0273] In at least one embodiment, multiple instances of
GPGPU 1230 can be configured to operate as a compute
cluster. In at least one embodiment, communication used by
compute clusters 1236A-1236H for synchronization and
data exchange varies across embodiments. In at least one
embodiment, multiple instances of GPGPU 1230 commu-
nicate over host interface 1232. In at least one embodiment,
GPGPU 1230 includes an /O hub 1239 that couples
GPGPU 1230 with a GPU link 1240 that enables a direct
connection to other instances of GPGPU 1230. In at least
one embodiment, GPU link 1240 is coupled to a dedicated
GPU-to-GPU bridge that enables communication and syn-
chronization between multiple instances of GPGPU 1230. In

US 2022/0284582 Al

at least one embodiment, GPU link 1240 couples with a
high-speed interconnect to transmit and receive data to other
GPGPUs or parallel processors. In at least one embodiment,
multiple instances of GPGPU 1230 are located in separate
data processing systems and communicate via a network
device that is accessible via host interface 1232. In at least
one embodiment GPU link 1240 can be configured to enable
a connection to a host processor in addition to or as an
alternative to host interface 1232.

[0274] In at least one embodiment, GPGPU 1230 can be
configured to train neural networks. In at least one embodi-
ment, GPGPU 1230 can be used within an inferencing
platform. In at least one embodiment, in which GPGPU
1230 is used for inferencing, GPGPU 1230 may include
fewer compute clusters 1236A-1236H relative to when
GPGPU 1230 is used for training a neural network. In at
least one embodiment, memory technology associated with
memory 1244A-1244B may differ between inferencing and
training configurations, with higher bandwidth memory
technologies devoted to training configurations. In at least
one embodiment, an inferencing configuration of GPGPU
1230 can support inferencing specific instructions. For
example, in at least one embodiment, an inferencing con-
figuration can provide support for one or more 8-bit integer
dot product instructions, which may be used during infer-
encing operations for deployed neural networks.

[0275] Inference and/or training logic 115 are used to
perform inferencing and/or training operations associated
with one or more embodiments. Details regarding inference
and/or training logic 115 are provided herein in conjunction
with FIGS. 1A and/or 1B. In at least one embodiment,
inference and/or training logic 115 may be used in GPGPU
1230 for inferencing or predicting operations based, at least
in part, on weight parameters calculated using neural net-
work training operations, neural network functions and/or
architectures, or neural network use cases described herein.
[0276] FIG. 13 is a block diagram illustrating a computing
system 1300 according to at least one embodiment. In at
least one embodiment, computing system 1300 includes a
processing subsystem 1301 having one or more processor(s)
1302 and a system memory 1304 communicating via an
interconnection path that may include a memory hub 1305.
In at least one embodiment, memory hub 1305 may be a
separate component within a chipset component or may be
integrated within one or more processor(s) 1302. In at least
one embodiment, memory hub 1305 couples with an 1/O
subsystem 1311 via a communication link 1306. In at least
one embodiment, 1/O subsystem 1311 includes an I/O hub
1307 that can enable computing system 1300 to receive
input from one or more input device(s) 1308. In at least one
embodiment, I/O hub 1307 can enable a display controller,
which may be included in one or more processor(s) 1302, to
provide outputs to one or more display device(s) 1310A. In
at least one embodiment, one or more display device(s)
1310A coupled with I/O hub 1307 can include a local,
internal, or embedded display device.

[0277] In at least one embodiment, processing subsystem
1301 includes one or more parallel processor(s) 1312
coupled to memory hub 1305 via a bus or other communi-
cation link 1313. In at least one embodiment, communica-
tion link 1313 may use one of any number of standards
based communication link technologies or protocols, such
as, but not limited to PCI Express, or may be a vendor-
specific communications interface or communications fab-

Sep. 8§, 2022

ric. In at least one embodiment, one or more parallel
processor(s) 1312 form a computationally focused parallel
or vector processing system that can include a large number
of processing cores and/or processing clusters, such as a
many-integrated core (MIC) processor. In at least one
embodiment, some or all of parallel processor(s) 1312 form
a graphics processing subsystem that can output pixels to
one of one or more display device(s) 1310A coupled via [/O
Hub 1307. In at least one embodiment, parallel processor(s)
1312 can also include a display controller and display
interface (not shown) to enable a direct connection to one or
more display device(s) 1310B.

[0278] In at least one embodiment, a system storage unit
1314 can connect to /O hub 1307 to provide a storage
mechanism for computing system 1300. In at least one
embodiment, an [/O switch 1316 can be used to provide an
interface mechanism to enable connections between I/O hub
1307 and other components, such as a network adapter 1318
and/or a wireless network adapter 1319 that may be inte-
grated into platform, and various other devices that can be
added via one or more add-in device(s) 1320. In at least one
embodiment, network adapter 1318 can be an Ethernet
adapter or another wired network adapter. In at least one
embodiment, wireless network adapter 1319 can include one
or more of a Wi-Fi, Bluetooth, near field communication
(NFC), or other network device that includes one or more
wireless radios.

[0279] In at least one embodiment, computing system
1300 can include other components not explicitly shown,
including USB or other port connections, optical storage
drives, video capture devices, and like, may also be con-
nected to I/O hub 1307. In at least one embodiment, com-
munication paths interconnecting various components in
FIG. 13 may be implemented using any suitable protocols,
such as PCI (Peripheral Component Interconnect) based
protocols (e.g., PCI-Express), or other bus or point-to-point
communication interfaces and/or protocol(s), such as NV-
Link high-speed interconnect, or interconnect protocols.
[0280] In at least one embodiment, parallel processor(s)
1312 incorporate circuitry optimized for graphics and video
processing, including, for example, video output circuitry,
and constitutes a graphics processing unit (GPU). In at least
one embodiment, parallel processor(s) 1312 incorporate
circuitry optimized for general purpose processing. In at
least embodiment, components of computing system 1300
may be integrated with one or more other system elements
on a single integrated circuit. For example, in at least one
embodiment, parallel processor(s) 1312, memory hub 1305,
processor(s) 1302, and I/O hub 1307 can be integrated into
a system on chip (SoC) integrated circuit. In at least one
embodiment, components of computing system 1300 can be
integrated into a single package to form a system in package
(SIP) configuration. In at least one embodiment, at least a
portion of components of computing system 1300 can be
integrated into a multi-chip module (MCM), which can be
interconnected with other multi-chip modules into a modular
computing system.

[0281] Inference and/or training logic 115 are used to
perform inferencing and/or training operations associated
with one or more embodiments. Details regarding inference
and/or training logic 115 are provided herein in conjunction
with FIGS. 1A and/or 1B. In at least one embodiment,
inference and/or training logic 115 may be used in system
FIG. 1300 for inferencing or predicting operations based, at

US 2022/0284582 Al

least in part, on weight parameters calculated using neural
network training operations, neural network functions and/
or architectures, or neural network use cases described
herein.

Processors

[0282] FIG. 14A illustrates a parallel processor 1400
according to at least one embodiment. In at least one
embodiment, various components of parallel processor 1400
may be implemented using one or more integrated circuit
devices, such as programmable processors, application spe-
cific integrated circuits (ASICs), or field programmable gate
arrays (FPGA). In at least one embodiment, illustrated
parallel processor 1400 is a variant of one or more parallel
processor(s) 1312 shown in FIG. 13 according to an exem-
plary embodiment.

[0283] In atleast one embodiment, parallel processor 1400
includes a parallel processing unit 1402. In at least one
embodiment, parallel processing unit 1402 includes an /O
unit 1404 that enables communication with other devices,
including other instances of parallel processing unit 1402. In
at least one embodiment, I/O unit 1404 may be directly
connected to other devices. In at least one embodiment, I/O
unit 1404 connects with other devices via use of a hub or
switch interface, such as a memory hub 1405. In at least one
embodiment, connections between memory hub 1405 and
1/O unit 1404 form a communication link 1413. In at least
one embodiment, I/O unit 1404 connects with a host inter-
face 1406 and a memory crossbar 1416, where host interface
1406 receives commands directed to performing processing
operations and memory crossbar 1416 receives commands
directed to performing memory operations.

[0284] In at least one embodiment, when host interface
1406 receives a command buffer via I/O unit 1404, host
interface 1406 can direct work operations to perform those
commands to a front end 1408. In at least one embodiment,
front end 1408 couples with a scheduler 1410, which is
configured to distribute commands or other work items to a
processing cluster array 1412. In at least one embodiment,
scheduler 1410 ensures that processing cluster array 1412 is
properly configured and in a valid state before tasks are
distributed to a cluster of processing cluster array 1412. In
at least one embodiment, scheduler 1410 is implemented via
firmware logic executing on a microcontroller. In at least one
embodiment, microcontroller implemented scheduler 1410
is configurable to perform complex scheduling and work
distribution operations at coarse and fine granularity,
enabling rapid preemption and context switching of threads
executing on processing array 1412. In at least one embodi-
ment, host software can prove workloads for scheduling on
processing cluster array 1412 via one of multiple graphics
processing paths. In at least one embodiment, workloads can
then be automatically distributed across processing array
cluster 1412 by scheduler 1410 logic within a microcon-
troller including scheduler 1410.

[0285] In at least one embodiment, processing cluster
array 1412 can include up to “N” processing clusters (e.g.,
cluster 1414A, cluster 1414B, through cluster 1414N),
where “N” represents a positive integer (which may be a
different integer “N” than used in other figures). In at least
one embodiment, each cluster 1414A-1414N of processing
cluster array 1412 can execute a large number of concurrent
threads. In at least one embodiment, scheduler 1410 can
allocate work to clusters 1414A-1414N of processing cluster

Sep. 8§, 2022

array 1412 using various scheduling and/or work distribu-
tion algorithms, which may vary depending on workload
arising for each type of program or computation. In at least
one embodiment, scheduling can be handled dynamically by
scheduler 1410, or can be assisted in part by compiler logic
during compilation of program logic configured for execu-
tion by processing cluster array 1412. In at least one
embodiment, different clusters 1414A-1414N of processing
cluster array 1412 can be allocated for processing different
types of programs or for performing different types of
computations.

[0286] In at least one embodiment, processing cluster
array 1412 can be configured to perform various types of
parallel processing operations. In at least one embodiment,
processing cluster array 1412 is configured to perform
general-purpose parallel compute operations. For example,
in at least one embodiment, processing cluster array 1412
can include logic to execute processing tasks including
filtering of video and/or audio data, performing modeling
operations, including physics operations, and performing
data transformations.

[0287] In at least one embodiment, processing cluster
array 1412 is configured to perform parallel graphics pro-
cessing operations. In at least one embodiment, processing
cluster array 1412 can include additional logic to support
execution of such graphics processing operations, including
but not limited to, texture sampling logic to perform texture
operations, as well as tessellation logic and other vertex
processing logic. In at least one embodiment, processing
cluster array 1412 can be configured to execute graphics
processing related shader programs such as, but not limited
to, vertex shaders, tessellation shaders, geometry shaders,
and pixel shaders. In at least one embodiment, parallel
processing unit 1402 can transfer data from system memory
via I/O unit 1404 for processing. In at least one embodiment,
during processing, transferred data can be stored to on-chip
memory (e.g., parallel processor memory 1422) during
processing, then written back to system memory.

[0288] In at least one embodiment, when parallel process-
ing unit 1402 is used to perform graphics processing,
scheduler 1410 can be configured to divide a processing
workload into approximately equal sized tasks, to better
enable distribution of graphics processing operations to
multiple clusters 1414A-1414N of processing cluster array
1412. In at least one embodiment, portions of processing
cluster array 1412 can be configured to perform different
types of processing. For example, in at least one embodi-
ment, a first portion may be configured to perform vertex
shading and topology generation, a second portion may be
configured to perform tessellation and geometry shading,
and a third portion may be configured to perform pixel
shading or other screen space operations, to produce a
rendered image for display. In at least one embodiment,
intermediate data produced by one or more of clusters
1414A-1414N may be stored in buffers to allow intermedi-
ate data to be transmitted between clusters 1414A-1414N for
further processing.

[0289] In at least one embodiment, processing cluster
array 1412 can receive processing tasks to be executed via
scheduler 1410, which receives commands defining process-
ing tasks from front end 1408. In at least one embodiment,
processing tasks can include indices of data to be processed,
e.g., surface (patch) data, primitive data, vertex data, and/or
pixel data, as well as state parameters and commands

US 2022/0284582 Al

defining how data is to be processed (e.g., what program is
to be executed). In at least one embodiment, scheduler 1410
may be configured to fetch indices corresponding to tasks or
may receive indices from front end 1408. In at least one
embodiment, front end 1408 can be configured to ensure
processing cluster array 1412 is configured to a valid state
before a workload specified by incoming command buffers
(e.g., batch-buffers, push buffers, etc.) is initiated.

[0290] In at least one embodiment, each of one or more
instances of parallel processing unit 1402 can couple with a
parallel processor memory 1422. In at least one embodi-
ment, parallel processor memory 1422 can be accessed via
memory crossbar 1416, which can receive memory requests
from processing cluster array 1412 as well as /O unit 1404.
In at least one embodiment, memory crossbar 1416 can
access parallel processor memory 1422 via a memory inter-
face 1418. In at least one embodiment, memory interface
1418 can include multiple partition units (e.g., partition unit
1420A, partition unit 1420B, through partition unit 1420N)
that can each couple to a portion (e.g., memory unit) of
parallel processor memory 1422. In at least one embodi-
ment, a number of partition units 1420A-1420N is config-
ured to be equal to a number of memory units, such that a
first partition unit 1420A has a corresponding first memory
unit 1424 A, a second partition unit 1420B has a correspond-
ing memory unit 1424B, and an N-th partition unit 1420N
has a corresponding N-th memory unit 1424N. In at least
one embodiment, a number of partition units 1420A-1420N
may not be equal to a number of memory units.

[0291] In at least one embodiment, memory units 1424 A-
1424N can include various types of memory devices, includ-
ing dynamic random access memory (DRAM) or graphics
random access memory, such as synchronous graphics ran-
dom access memory (SGRAM), including graphics double
data rate (GDDR) memory. In at least one embodiment,
memory units 1424A-1424N may also include 3D stacked
memory, including but not limited to high bandwidth
memory (HBM). In at least one embodiment, render targets,
such as frame buffers or texture maps may be stored across
memory units 1424A-1424N, allowing partition units
1420A-1420N to write portions of each render target in
parallel to efficiently use available bandwidth of parallel
processor memory 1422. In at least one embodiment, a local
instance of parallel processor memory 1422 may be
excluded in favor of a unified memory design that utilizes
system memory in conjunction with local cache memory.

[0292] In at least one embodiment, any one of clusters
1414A-1414N of processing cluster array 1412 can process
data that will be written to any of memory units 1424A-
1424N within parallel processor memory 1422. In at least
one embodiment, memory crossbar 1416 can be configured
to transfer an output of each cluster 1414A-1414N to any
partition unit 1420A-1420N or to another cluster 1414 A-
1414N, which can perform additional processing operations
on an output. In at least one embodiment, each cluster
1414A-1414N can communicate with memory interface
1418 through memory crossbar 1416 to read from or write
to various external memory devices. In at least one embodi-
ment, memory crossbar 1416 has a connection to memory
interface 1418 to communicate with I/O unit 1404, as well
as a connection to a local instance of parallel processor
memory 1422, enabling processing units within different
processing clusters 1414A-1414N to communicate with
system memory or other memory that is not local to parallel

Sep. 8§, 2022

processing unit 1402. In at least one embodiment, memory
crossbar 1416 can use virtual channels to separate traffic
streams between clusters 1414A-1414N and partition units
1420A-1420N.

[0293] In at least one embodiment, multiple instances of
parallel processing unit 1402 can be provided on a single
add-in card, or multiple add-in cards can be interconnected.
In at least one embodiment, different instances of parallel
processing unit 1402 can be configured to interoperate even
if different instances have different numbers of processing
cores, different amounts of local parallel processor memory,
and/or other configuration differences. For example, in at
least one embodiment, some instances of parallel processing
unit 1402 can include higher precision floating point units
relative to other instances. In at least one embodiment,
systems incorporating one or more instances of parallel
processing unit 1402 or parallel processor 1400 can be
implemented in a variety of configurations and form factors,
including but not limited to desktop, laptop, or handheld
personal computers, servers, workstations, game consoles,
and/or embedded systems.

[0294] FIG. 14B is a block diagram of a partition unit
1420 according to at least one embodiment. In at least one
embodiment, partition unit 1420 is an instance of one of
partition units 1420A-1420N of FIG. 14A. In at least one
embodiment, partition unit 1420 includes an [.2 cache 1421,
a frame buffer interface 1425, and a ROP 1426 (raster
operations unit). In at least one embodiment, [.2 cache 1421
is a read/write cache that is configured to perform load and
store operations received from memory crossbar 1416 and
ROP 1426. In at least one embodiment, read misses and
urgent write-back requests are output by 1.2 cache 1421 to
frame buffer interface 1425 for processing. In at least one
embodiment, updates can also be sent to a frame buffer via
frame buffer interface 1425 for processing. In at least one
embodiment, frame buffer interface 1425 interfaces with one
of memory units in parallel processor memory, such as
memory units 1424 A-1424N of FIG. 14 (e.g., within parallel
processor memory 1422).

[0295] In at least one embodiment, ROP 1426 is a pro-
cessing unit that performs raster operations such as stencil,
7 test, blending, etc. In at least one embodiment, ROP 1426
then outputs processed graphics data that is stored in graph-
ics memory. In at least one embodiment, ROP 1426 includes
compression logic to compress depth or color data that is
written to memory and decompress depth or color data that
is read from memory. In at least one embodiment, compres-
sion logic can be lossless compression logic that makes use
of one or more of multiple compression algorithms. In at
least one embodiment, a type of compression that is per-
formed by ROP 1426 can vary based on statistical charac-
teristics of data to be compressed. For example, in at least
one embodiment, delta color compression is performed on
depth and color data on a per-tile basis.

[0296] In at least one embodiment, ROP 1426 is included
within each processing cluster (e.g., cluster 1414A-1414N
of FIG. 14A) instead of within partition unit 1420. In at least
one embodiment, read and write requests for pixel data are
transmitted over memory crossbar 1416 instead of pixel
fragment data. In at least one embodiment, processed graph-
ics data may be displayed on a display device, such as one
of one or more display device(s) 1310 of FIG. 13, routed for

US 2022/0284582 Al

further processing by processor(s) 1302, or routed for further
processing by one of processing entities within parallel
processor 1400 of FIG. 14A.

[0297] FIG. 14C is a block diagram of a processing cluster
1414 within a parallel processing unit according to at least
one embodiment. In at least one embodiment, a processing
cluster is an instance of one of processing clusters 1414A-
1414N of FIG. 14A. In at least one embodiment, processing
cluster 1414 can be configured to execute many threads in
parallel, where “thread” refers to an instance of a particular
program executing on a particular set of input data. In at
least one embodiment, single-instruction, multiple-data
(SIMD) instruction issue techniques are used to support
parallel execution of a large number of threads without
providing multiple independent instruction units. In at least
one embodiment, single-instruction, multiple-thread (SIMT)
techniques are used to support parallel execution of a large
number of generally synchronized threads, using a common
instruction unit configured to issue instructions to a set of
processing engines within each one of processing clusters.
[0298] In at least one embodiment, operation of process-
ing cluster 1414 can be controlled via a pipeline manager
1432 that distributes processing tasks to SIMT parallel
processors. In at least one embodiment, pipeline manager
1432 receives instructions from scheduler 1410 of FIG. 14A
and manages execution of those instructions via a graphics
multiprocessor 1434 and/or a texture unit 1436. In at least
one embodiment, graphics multiprocessor 1434 is an exem-
plary instance of a SIMT parallel processor. However, in at
least one embodiment, various types of SIMT parallel pro-
cessors of differing architectures may be included within
processing cluster 1414. In at least one embodiment, one or
more instances of graphics multiprocessor 1434 can be
included within a processing cluster 1414. In at least one
embodiment, graphics multiprocessor 1434 can process data
and a data crossbar 1440 can be used to distribute processed
data to one of multiple possible destinations, including other
shader units. In at least one embodiment, pipeline manager
1432 can facilitate distribution of processed data by speci-
fying destinations for processed data to be distributed via
data crossbar 1440.

[0299] In at least one embodiment, each graphics multi-
processor 1434 within processing cluster 1414 can include
an identical set of functional execution logic (e.g., arithmetic
logic units, load-store units, etc.). In at least one embodi-
ment, functional execution logic can be configured in a
pipelined manner in which new instructions can be issued
before previous instructions are complete. In at least one
embodiment, functional execution logic supports a variety
of operations including integer and floating point arithmetic,
comparison operations, Boolean operations, bit-shifting, and
computation of various algebraic functions. In at least one
embodiment, same functional-unit hardware can be lever-
aged to perform different operations and any combination of
functional units may be present.

[0300] In at least one embodiment, instructions transmit-
ted to processing cluster 1414 constitute a thread. In at least
one embodiment, a set of threads executing across a set of
parallel processing engines is a thread group. In at least one
embodiment, a thread group executes a common program on
different input data. In at least one embodiment, each thread
within a thread group can be assigned to a different pro-
cessing engine within a graphics multiprocessor 1434. In at
least one embodiment, a thread group may include fewer

Sep. 8§, 2022

threads than a number of processing engines within graphics
multiprocessor 1434. In at least one embodiment, when a
thread group includes fewer threads than a number of
processing engines, one or more of processing engines may
be idle during cycles in which that thread group is being
processed. In at least one embodiment, a thread group may
also include more threads than a number of processing
engines within graphics multiprocessor 1434. In at least one
embodiment, when a thread group includes more threads
than number of processing engines within graphics multi-
processor 1434, processing can be performed over consecu-
tive clock cycles. In at least one embodiment, multiple
thread groups can be executed concurrently on a graphics
multiprocessor 1434.

[0301] In at least one embodiment, graphics multiproces-
sor 1434 includes an internal cache memory to perform load
and store operations. In at least one embodiment, graphics
multiprocessor 1434 can forego an internal cache and use a
cache memory (e.g., L1 cache 1448) within processing
cluster 1414. In at least one embodiment, each graphics
multiprocessor 1434 also has access to L2 caches within
partition units (e.g., partition units 1420A-1420N of FIG.
14A) that are shared among all processing clusters 1414 and
may be used to transfer data between threads. In at least one
embodiment, graphics multiprocessor 1434 may also access
off-chip global memory, which can include one or more of
local parallel processor memory and/or system memory. In
at least one embodiment, any memory external to parallel
processing unit 1402 may be used as global memory. In at
least one embodiment, processing cluster 1414 includes
multiple instances of graphics multiprocessor 1434 and can
share common instructions and data, which may be stored in
L1 cache 1448.

[0302] In atleast one embodiment, each processing cluster
1414 may include an MMU 1445 (memory management
unit) that is configured to map virtual addresses into physical
addresses. In at least one embodiment, one or more instances
of MMU 1445 may reside within memory interface 1418 of
FIG. 14A. In at least one embodiment, MMU 1445 includes
a set of page table entries (PTEs) used to map a virtual
address to a physical address of a tile and optionally a cache
line index. In at least one embodiment, MMU 1445 may
include address translation lookaside buffers (TLB) or
caches that may reside within graphics multiprocessor 1434
or [.1 1448 cache or processing cluster 1414. In at least one
embodiment, a physical address is processed to distribute
surface data access locally to allow for efficient request
interleaving among partition units. In at least one embodi-
ment, a cache line index may be used to determine whether
a request for a cache line is a hit or miss.

[0303] In at least one embodiment, a processing cluster
1414 may be configured such that each graphics multipro-
cessor 1434 is coupled to a texture unit 1436 for performing
texture mapping operations, e.g., determining texture
sample positions, reading texture data, and filtering texture
data. In at least one embodiment, texture data is read from
an internal texture L1 cache (not shown) or from an L1
cache within graphics multiprocessor 1434 and is fetched
from an [.2 cache, local parallel processor memory, or
system memory, as needed. In at least one embodiment, each
graphics multiprocessor 1434 outputs processed tasks to
data crossbar 1440 to provide processed task to another
processing cluster 1414 for further processing or to store
processed task in an L2 cache, local parallel processor

US 2022/0284582 Al

memory, or system memory via memory crossbar 1416. In
at least one embodiment, a preROP 1442 (pre-raster opera-
tions unit) is configured to receive data from graphics
multiprocessor 1434, and direct data to ROP units, which
may be located with partition units as described herein (e.g.,
partition units 1420A-1420N of FIG. 14A). In at least one
embodiment, preROP 1442 unit can perform optimizations
for color blending, organizing pixel color data, and perform-
ing address translations.

[0304] Inference and/or training logic 115 are used to
perform inferencing and/or training operations associated
with one or more embodiments. Details regarding inference
and/or training logic 115 are provided herein in conjunction
with FIGS. 1A and/or 1B. In at least one embodiment,
inference and/or training logic 115 may be used in graphics
processing cluster 1414 for inferencing or predicting opera-
tions based, at least in part, on weight parameters calculated
using neural network training operations, neural network
functions and/or architectures, or neural network use cases
described herein.

[0305] FIG. 14D shows a graphics multiprocessor 1434
according to at least one embodiment. In at least one
embodiment, graphics multiprocessor 1434 couples with
pipeline manager 1432 of processing cluster 1414. In at least
one embodiment, graphics multiprocessor 1434 has an
execution pipeline including but not limited to an instruction
cache 1452, an instruction unit 1454, an address mapping
unit 1456, a register file 1458, one or more general purpose
graphics processing unit (GPGPU) cores 1462, and one or
more load/store units 1466. In at least one embodiment,
GPGPU cores 1462 and load/store units 1466 are coupled
with cache memory 1472 and shared memory 1470 via a
memory and cache interconnect 1468.

[0306] In at least one embodiment, instruction cache 1452
receives a stream of instructions to execute from pipeline
manager 1432. In at least one embodiment, instructions are
cached in instruction cache 1452 and dispatched for execu-
tion by an instruction unit 1454. In at least one embodiment,
instruction unit 1454 can dispatch instructions as thread
groups (e.g., warps), with each thread of thread group
assigned to a different execution unit within GPGPU cores
1462. In at least one embodiment, an instruction can access
any of a local, shared, or global address space by specifying
an address within a unified address space. In at least one
embodiment, address mapping unit 1456 can be used to
translate addresses in a unified address space into a distinct
memory address that can be accessed by load/store units
1466.

[0307] In at least one embodiment, register file 1458
provides a set of registers for functional units of graphics
multiprocessor 1434. In at least one embodiment, register
file 1458 provides temporary storage for operands connected
to data paths of functional units (e.g., GPGPU cores 1462,
load/store units 1466) of graphics multiprocessor 1434. In at
least one embodiment, register file 1458 is divided between
each of functional units such that each functional unit is
allocated a dedicated portion of register file 1458. In at least
one embodiment, register file 1458 is divided between
different warps being executed by graphics multiprocessor
1434.

[0308] In at least one embodiment, GPGPU cores 1462
can each include floating point units (FPUs) and/or integer
arithmetic logic units (ALUs) that are used to execute
instructions of graphics multiprocessor 1434. In at least one

Sep. 8§, 2022

embodiment, GPGPU cores 1462 can be similar in archi-
tecture or can differ in architecture. In at least one embodi-
ment, a first portion of GPGPU cores 1462 include a single
precision FPU and an integer ALU while a second portion of
GPGPU cores include a double precision FPU. In at least
one embodiment, FPUs can implement IEEE 754-2008
standard floating point arithmetic or enable variable preci-
sion floating point arithmetic. In at least one embodiment,
graphics multiprocessor 1434 can additionally include one
or more fixed function or special function units to perform
specific functions such as copy rectangle or pixel blending
operations. In at least one embodiment, one or more of
GPGPU cores 1462 can also include fixed or special func-
tion logic.

[0309] In at least one embodiment, GPGPU cores 1462
include SIMD logic capable of performing a single instruc-
tion on multiple sets of data. In at least one embodiment,
GPGPU cores 1462 can physically execute SIMD4, SIMDS,
and SIMDI16 instructions and logically execute SIMDI1,
SIMD2, and SIMD32 instructions. In at least one embodi-
ment, SIMD instructions for GPGPU cores can be generated
at compile time by a shader compiler or automatically
generated when executing programs written and compiled
for single program multiple data (SPMD) or SIMT archi-
tectures. In at least one embodiment, multiple threads of a
program configured for an SIMT execution model can
executed via a single SIMD instruction. For example, in at
least one embodiment, eight SIMT threads that perform
same or similar operations can be executed in parallel via a
single SIMDS8 logic unit.

[0310] In at least one embodiment, memory and cache
interconnect 1468 is an interconnect network that connects
each functional unit of graphics multiprocessor 1434 to
register file 1458 and to shared memory 1470. In at least one
embodiment, memory and cache interconnect 1468 is a
crossbar interconnect that allows load/store unit 1466 to
implement load and store operations between shared
memory 1470 and register file 1458. In at least one embodi-
ment, register file 1458 can operate at a same frequency as
GPGPU cores 1462, thus data transfer between GPGPU
cores 1462 and register file 1458 can have very low latency.
In at least one embodiment, shared memory 1470 can be
used to enable communication between threads that execute
on functional units within graphics multiprocessor 1434. In
at least one embodiment, cache memory 1472 can be used
as a data cache for example, to cache texture data commu-
nicated between functional units and texture unit 1436. In at
least one embodiment, shared memory 1470 can also be
used as a program managed cache. In at least one embodi-
ment, threads executing on GPGPU cores 1462 can pro-
grammatically store data within shared memory in addition
to automatically cached data that is stored within cache
memory 1472.

[0311] In at least one embodiment, a parallel processor or
GPGPU as described herein is communicatively coupled to
host/processor cores to accelerate graphics operations,
machine-learning operations, pattern analysis operations,
and various general purpose GPU (GPGPU) functions. In at
least one embodiment, a GPU may be communicatively
coupled to host processor/cores over a bus or other inter-
connect (e.g., a high-speed interconnect such as PCle or
NVLink). In at least one embodiment, a GPU may be
integrated on a package or chip as cores and communica-
tively coupled to cores over an internal processor bus/

US 2022/0284582 Al

interconnect internal to a package or chip. In at least one
embodiment, regardless a manner in which a GPU is con-
nected, processor cores may allocate work to such GPU in
a form of sequences of commands/instructions contained in
awork descriptor. In at least one embodiment, that GPU then
uses dedicated circuitry/logic for efficiently processing these
commands/instructions.

[0312] Inference and/or training logic 115 are used to
perform inferencing and/or training operations associated
with one or more embodiments. Details regarding inference
and/or training logic 115 are provided herein in conjunction
with FIGS. 1A and/or 1B. In at least one embodiment,
inference and/or training logic 115 may be used in graphics
multiprocessor 1434 for inferencing or predicting operations
based, at least in part, on weight parameters calculated using
neural network training operations, neural network functions
and/or architectures, or neural network use cases described
herein.

[0313] FIG. 15 illustrates a multi-GPU computing system
1500, according to at least one embodiment. In at least one
embodiment, multi-GPU computing system 1500 can
include a processor 1502 coupled to multiple general pur-
pose graphics processing units (GPGPUs) 1506A-D via a
host interface switch 1504. In at least one embodiment, host
interface switch 1504 is a PCI express switch device that
couples processor 1502 to a PCI express bus over which
processor 1502 can communicate with GPGPUs 1506A-D.
In at least one embodiment, GPGPUs 1506A-D can inter-
connect via a set of high-speed point-to-point GPU-to-GPU
links 1516. In at least one embodiment, GPU-to-GPU links
1516 connect to each of GPGPUs 1506A-D via a dedicated
GPU link. In at least one embodiment, P2P GPU links 1516
enable direct communication between each of GPGPUs
1506 A-D without requiring communication over host inter-
face bus 1504 to which processor 1502 is connected. In at
least one embodiment, with GPU-to-GPU traffic directed to
P2P GPU links 1516, host interface bus 1504 remains
available for system memory access or to communicate with
other instances of multi-GPU computing system 1500, for
example, via one or more network devices. While in at least
one embodiment GPGPUs 1506A-D connect to processor
1502 via host interface switch 1504, in at least one embodi-
ment processor 1502 includes direct support for P2P GPU
links 1516 and can connect directly to GPGPUs 1506A-D.

[0314] Inference and/or training logic 115 are used to
perform inferencing and/or training operations associated
with one or more embodiments. Details regarding inference
and/or training logic 115 are provided herein in conjunction
with FIGS. 1A and/or 1B. In at least one embodiment,
inference and/or training logic 115 may be used in multi-
GPU computing system 1500 for inferencing or predicting
operations based, at least in part, on weight parameters
calculated using neural network training operations, neural
network functions and/or architectures, or neural network
use cases described herein.

[0315] FIG. 16 is a block diagram of a graphics processor
1600, according to at least one embodiment. In at least one
embodiment, graphics processor 1600 includes a ring inter-
connect 1602, a pipeline front-end 1604, a media engine
1637, and graphics cores 1680A-1680N. In at least one
embodiment, ring interconnect 1602 couples graphics pro-
cessor 1600 to other processing units, including other graph-
ics processors or one or more general-purpose processor

Sep. 8§, 2022

cores. In at least one embodiment, graphics processor 1600
is one of many processors integrated within a multi-core
processing system.

[0316] In at least one embodiment, graphics processor
1600 receives batches of commands via ring interconnect
1602. In at least one embodiment, incoming commands are
interpreted by a command streamer 1603 in pipeline front-
end 1604. In at least one embodiment, graphics processor
1600 includes scalable execution logic to perform 3D geom-
etry processing and media processing via graphics core(s)
1680A-1680N. In at least one embodiment, for 3D geometry
processing commands, command streamer 1603 supplies
commands to geometry pipeline 1636. In at least one
embodiment, for at least some media processing commands,
command streamer 1603 supplies commands to a video front
end 1634, which couples with media engine 1637. In at least
one embodiment, media engine 1637 includes a Video
Quality Engine (VQE) 1630 for video and image post-
processing and a multi-format encode/decode (MFX) 1633
engine to provide hardware-accelerated media data encod-
ing and decoding. In at least one embodiment, geometry
pipeline 1636 and media engine 1637 each generate execu-
tion threads for thread execution resources provided by at
least one graphics core 1680.

[0317] In at least one embodiment, graphics processor
1600 includes scalable thread execution resources featuring
graphics cores 1680A-1680N (which can be modular and are
sometimes referred to as core slices), each having multiple
sub-cores 1650A-50N, 1660A-1660N (sometimes referred
to as core sub-slices). In at least one embodiment, graphics
processor 1600 can have any number of graphics cores
1680A. In at least one embodiment, graphics processor 1600
includes a graphics core 1680A having at least a first
sub-core 1650A and a second sub-core 1660A. In at least
one embodiment, graphics processor 1600 is a low power
processor with a single sub-core (e.g., 1650A). In at least
one embodiment, graphics processor 1600 includes multiple
graphics cores 1680A-1680N, each including a set of first
sub-cores 1650A-1650N and a set of second sub-cores
1660A-1660N. In at least one embodiment, each sub-core in
first sub-cores 1650A-1650N includes at least a first set of
execution units 1652A-1652N and media/texture samplers
1654A-1654N. In at least one embodiment, each sub-core in
second sub-cores 1660A-1660N includes at least a second
set of execution units 1662A-1662N and samplers 1664 A-
1664N. In at least one embodiment, each sub-core 1650A-
1650N, 1660A-1660N shares a set of shared resources
1670A-1670N. In at least one embodiment, shared resources
include shared cache memory and pixel operation logic.
[0318] Inference and/or training logic 115 are used to
perform inferencing and/or training operations associated
with one or more embodiments. Details regarding inference
and/or training logic 115 are provided herein in conjunction
with FIGS. 1A and/or 1B. In at least one embodiment,
inference and/or training logic 115 may be used in graphics
processor 1600 for inferencing or predicting operations
based, at least in part, on weight parameters calculated using
neural network training operations, neural network functions
and/or architectures, or neural network use cases described
herein.

[0319] FIG. 17 is a block diagram illustrating micro-
architecture for a processor 1700 that may include logic
circuits to perform instructions, according to at least one
embodiment. In at least one embodiment, processor 1700

US 2022/0284582 Al

may perform instructions, including x86 instructions, ARM
instructions, specialized instructions for application-specific
integrated circuits (ASICs), etc. In at least one embodiment,
processor 1700 may include registers to store packed data,
such as 64-bit wide MMX™ registers in microprocessors
enabled with MMX technology from Intel Corporation of
Santa Clara, Calif. In at least one embodiment, MMX
registers, available in both integer and floating point forms,
may operate with packed data elements that accompany
single instruction, multiple data (“SIND”) and streaming
SIMD extensions (“SSE”) instructions. In at least one
embodiment, 128-bit wide XMM registers relating to SSE2,
SSE3, SSE4, AVX, or beyond (referred to generically as
“SSEx”) technology may hold such packed data operands.
In at least one embodiment, processor 1700 may perform
instructions to accelerate machine learning or deep learning
algorithms, training, or inferencing.

[0320] In at least one embodiment, processor 1700
includes an in-order front end (“front end”) 1701 to fetch
instructions to be executed and prepare instructions to be
used later in a processor pipeline. In at least one embodi-
ment, front end 1701 may include several units. In at least
one embodiment, an instruction prefetcher 1726 fetches
instructions from memory and feeds instructions to an
instruction decoder 1728 which in turn decodes or interprets
instructions. For example, in at least one embodiment,
instruction decoder 1728 decodes a received instruction into
one or more operations called “micro-instructions” or
“micro-operations” (also called “micro ops” or “vops”) that
a machine may execute. In at least one embodiment, instruc-
tion decoder 1728 parses an instruction into an opcode and
corresponding data and control fields that may be used by
micro-architecture to perform operations in accordance with
at least one embodiment. In at least one embodiment, a trace
cache 1730 may assemble decoded uops into program
ordered sequences or traces in a uop queue 1734 for execu-
tion. In at least one embodiment, when trace cache 1730
encounters a complex instruction, a microcode ROM 1732
provides uops needed to complete an operation.

[0321] In at least one embodiment, some instructions may
be converted into a single micro-op, whereas others need
several micro-ops to complete full operation. In at least one
embodiment, if more than four micro-ops are needed to
complete an instruction, instruction decoder 1728 may
access microcode ROM 1732 to perform that instruction. In
at least one embodiment, an instruction may be decoded into
a small number of micro-ops for processing at instruction
decoder 1728. In at least one embodiment, an instruction
may be stored within microcode ROM 1732 should a
number of micro-ops be needed to accomplish such opera-
tion. In at least one embodiment, trace cache 1730 refers to
an entry point programmable logic array (“PLA”) to deter-
mine a correct micro-instruction pointer for reading micro-
code sequences to complete one or more instructions from
microcode ROM 1732 in accordance with at least one
embodiment. In at least one embodiment, after microcode
ROM 1732 finishes sequencing micro-ops for an instruction,
front end 1701 of a machine may resume fetching micro-ops
from trace cache 1730.

[0322] In at least one embodiment, out-of-order execution
engine (“out of order engine”) 1703 may prepare instruc-
tions for execution. In at least one embodiment, out-of-order
execution logic has a number of buffers to smooth out and
re-order flow of instructions to optimize performance as they

Sep. 8§, 2022

go down a pipeline and get scheduled for execution. In at
least one embodiment, out-of-order execution engine 1703
includes, without limitation, an allocator/register renamer
1740, a memory uop queue 1742, an integer/floating point
uop queue 1744, a memory scheduler 1746, a fast scheduler
1702, a slow/general floating point scheduler (“slow/general
FP scheduler”) 1704, and a simple floating point scheduler
(“simple FP scheduler”) 1706. In at least one embodiment,
fast schedule 1702, slow/general floating point scheduler
1704, and simple floating point scheduler 1706 are also
collectively referred to herein as “uop schedulers 1702,
1704, 1706.” In at least one embodiment, allocator/register
renamer 1740 allocates machine buffers and resources that
each vop needs in order to execute. In at least one embodi-
ment, allocator/register renamer 1740 renames logic regis-
ters onto entries in a register file. In at least one embodiment,
allocator/register renamer 1740 also allocates an entry for
each uop in one of two uop queues, memory uop queue 1742
for memory operations and integer/floating point uop queue
1744 for non-memory operations, in front of memory sched-
uler 1746 and uop schedulers 1702, 1704, 1706. In at least
one embodiment, uop schedulers 1702, 1704, 1706, deter-
mine when a uop is ready to execute based on readiness of
their dependent input register operand sources and avail-
ability of execution resources uops need to complete their
operation. In at least one embodiment, fast scheduler 1702
may schedule on each half of a main clock cycle while
slow/general floating point scheduler 1704 and simple float-
ing point scheduler 1706 may schedule once per main
processor clock cycle. In at least one embodiment, uop
schedulers 1702, 1704, 1706 arbitrate for dispatch ports to
schedule uops for execution.

[0323] In at least one embodiment, execution block 1711
includes, without limitation, an integer register file/bypass
network 1708, a floating point register file/bypass network
(“FP register file/bypass network™) 1710, address generation
units (“AGUs”) 1712 and 1714, fast Arithmetic Logic Units
(ALUs) (“fast ALUs”) 1716 and 1718, a slow Arithmetic
Logic Unit (“slow ALU”) 1720, a floating point ALU (“FP”)
1722, and a floating point move unit (“FP move”) 1724. In
at least one embodiment, integer register file/bypass network
1708 and floating point register file/bypass network 1710 are
also referred to herein as “register files 1708, 1710.” In at
least one embodiment, AGUSs 1712 and 1714, fast ALUs
1716 and 1718, slow ALU 1720, floating point ALU 1722,
and floating point move unit 1724 are also referred to herein
as “execution units 1712, 1714, 1716, 1718, 1720, 1722, and
1724.” In at least one embodiment, execution block 1711
may include, without limitation, any number (including
zero) and type of register files, bypass networks, address
generation units, and execution units, in any combination.

[0324] In at least one embodiment, register networks
1708, 1710 may be arranged between uop schedulers 1702,
1704, 1706, and execution units 1712, 1714, 1716, 1718,
1720, 1722, and 1724. In at least one embodiment, integer
register file/bypass network 1708 performs integer opera-
tions. In at least one embodiment, floating point register
file/bypass network 1710 performs floating point operations.
In at least one embodiment, each of register networks 1708,
1710 may include, without limitation, a bypass network that
may bypass or forward just completed results that have not
yet been written into a register file to new dependent uops.
In at least one embodiment, register networks 1708, 1710
may communicate data with each other. In at least one

US 2022/0284582 Al

embodiment, integer register file/bypass network 1708 may
include, without limitation, two separate register files, one
register file for a low-order thirty-two bits of data and a
second register file for a high order thirty-two bits of data.
In at least one embodiment, floating point register file/
bypass network 1710 may include, without limitation, 128-
bit wide entries because floating point instructions typically
have operands from 64 to 128 bits in width.

[0325] In at least one embodiment, execution units 1712,
1714, 1716, 1718, 1720, 1722, 1724 may execute instruc-
tions. In at least one embodiment, register networks 1708,
1710 store integer and floating point data operand values
that micro-instructions need to execute. In at least one
embodiment, processor 1700 may include, without limita-
tion, any number and combination of execution units 1712,
1714,1716, 1718, 1720, 1722, 1724. In at least one embodi-
ment, floating point ALU 1722 and floating point move unit
1724, may execute floating point, MMX, SIMD, AVX and
SSE, or other operations, including specialized machine
learning instructions. In at least one embodiment, floating
point ALU 1722 may include, without limitation, a 64-bit by
64-bit floating point divider to execute divide, square root,
and remainder micro ops. In at least one embodiment,
instructions involving a floating point value may be handled
with floating point hardware. In at least one embodiment,
ALU operations may be passed to fast ALUs 1716, 1718. In
at least one embodiment, fast ALUS 1716, 1718 may
execute fast operations with an effective latency of half a
clock cycle. In at least one embodiment, most complex
integer operations go to slow ALU 1720 as slow ALU 1720
may include, without limitation, integer execution hardware
for long-latency type of operations, such as a multiplier,
shifts, flag logic, and branch processing. In at least one
embodiment, memory load/store operations may be
executed by AGUs 1712, 1714. In at least one embodiment,
fast ALU 1716, fast ALU 1718, and slow ALU 1720 may
perform integer operations on 64-bit data operands. In at
least one embodiment, fast AL U 1716, fast ALU 1718, and
slow ALLU 1720 may be implemented to support a variety of
data bit sizes including sixteen, thirty-two, 128, 256, etc. In
at least one embodiment, floating point ALU 1722 and
floating point move unit 1724 may be implemented to
support a range of operands having bits of various widths,
such as 128-bit wide packed data operands in conjunction
with SIMD and multimedia instructions.

[0326] In at least one embodiment, uop schedulers 1702,
1704, 1706 dispatch dependent operations before a parent
load has finished executing. In at least one embodiment, as
uops may be speculatively scheduled and executed in pro-
cessor 1700, processor 1700 may also include logic to
handle memory misses. In at least one embodiment, if a data
load misses in a data cache, there may be dependent opera-
tions in flight in a pipeline that have left a scheduler with
temporarily incorrect data. In at least one embodiment, a
replay mechanism tracks and re-executes instructions that
use incorrect data. In at least one embodiment, dependent
operations might need to be replayed and independent ones
may be allowed to complete. In at least one embodiment,
schedulers and a replay mechanism of at least one embodi-
ment of a processor may also be designed to catch instruc-
tion sequences for text string comparison operations.

[0327] Inatleastone embodiment, “registers” may refer to
on-board processor storage locations that may be used as
part of instructions to identify operands. In at least one

Sep. 8§, 2022

embodiment, registers may be those that may be usable from
outside of a processor (from a programmer’s perspective). In
at least one embodiment, registers might not be limited to a
particular type of circuit. Rather, in at least one embodiment,
a register may store data, provide data, and perform func-
tions described herein. In at least one embodiment, registers
described herein may be implemented by circuitry within a
processor using any number of different techniques, such as
dedicated physical registers, dynamically allocated physical
registers using register renaming, combinations of dedicated
and dynamically allocated physical registers, etc. In at least
one embodiment, integer registers store 32-bit integer data.
A register file of at least one embodiment also contains eight
multimedia SIND registers for packed data.

[0328] Inference and/or training logic 115 are used to
perform inferencing and/or training operations associated
with one or more embodiments. Details regarding inference
and/or training logic 115 are provided herein in conjunction
with FIGS. 1A and/or 1B. In at least one embodiment
portions or all of inference and/or training logic 115 may be
incorporated into execution block 1711 and other memory or
registers shown or not shown. For example, in at least one
embodiment, training and/or inferencing techniques
described herein may use one or more of AL Us illustrated in
execution block 1711. Moreover, weight parameters may be
stored in on-chip or off-chip memory and/or registers
(shown or not shown) that configure ALUs of execution
block 1711 to perform one or more machine learning algo-
rithms, neural network architectures, use cases, or training
techniques described herein.

[0329] FIG. 18 illustrates a deep learning application
processor 1800, according to at least one embodiment. In at
least one embodiment, deep learning application processor
1800 uses instructions that, if executed by deep learning
application processor 1800, cause deep learning application
processor 1800 to perform some or all of processes and
techniques described throughout this disclosure. In at least
one embodiment, deep learning application processor 1800
is an application-specific integrated circuit (ASIC). In at
least one embodiment, application processor 1800 performs
matrix multiply operations either “hard-wired” into hard-
ware as a result of performing one or more instructions or
both. In at least one embodiment, deep learning application
processor 1800 includes, without limitation, processing
clusters 1810(1)-1810(12), Inter-Chip Links (“ICLs”) 1820
(1)-1820(12), Inter-Chip Controllers (“ICCs”) 1830(1)-1830
(2), high-bandwidth memory second generation (“HBM2”)
1840(1)-1840(4), memory controllers (“Mem Citrlrs™) 1842
(1)-1842(4), high bandwidth memory physical layer (“HBM
PHY”) 1844(1)-1844(4), a management-controller central
processing unit (“management-controller CPU”) 1850, a
Serial Peripheral Interface, Inter-Integrated Circuit, and
General Purpose Input/Output block (“SPI, I°C, GPIO”)
1860, a peripheral component interconnect express control-
ler and direct memory access block (“PCle Controller and
DMA”) 1870, and a sixteen-lane peripheral component
interconnect express port (“PCI Express x 16”) 1880.

[0330] In at least one embodiment, processing clusters
1810 may perform deep learning operations, including infer-
ence or prediction operations based on weight parameters
calculated one or more training techniques, including those
described herein. In at least one embodiment, each process-
ing cluster 1810 may include, without limitation, any num-
ber and type of processors. In at least one embodiment, deep

US 2022/0284582 Al

learning application processor 1800 may include any num-
ber and type of processing clusters 1800. In at least one
embodiment, Inter-Chip Links 1820 are bi-directional. In at
least one embodiment, Inter-Chip Links 1820 and Inter-Chip
Controllers 1830 enable multiple deep learning application
processors 1800 to exchange information, including activa-
tion information resulting from performing one or more
machine learning algorithms embodied in one or more
neural networks. In at least one embodiment, deep learning
application processor 1800 may include any number (includ-
ing zero) and type of ICLs 1820 and ICCs 1830.

[0331] In at least one embodiment, HBM2s 1840 provide
a total of 32 Gigabytes (GB) of memory. In at least one
embodiment, HBM2 1840(i) is associated with both
memory controller 1842(7) and HBM PHY 1844(i) where “i”
is an arbitrary integer. In at least one embodiment, any
number of HBM2s 1840 may provide any type and total
amount of high bandwidth memory and may be associated
with any number (including zero) and type of memory
controllers 1842 and HBM PHYs 1844. In at least one
embodiment, SPI, I°C, GPIO 1860, PCle Controller and
DMA 1870, and/or PCle 1880 may be replaced with any
number and type of blocks that enable any number and type
of communication standards in any technically feasible
fashion.

[0332] Inference and/or training logic 115 are used to
perform inferencing and/or training operations associated
with one or more embodiments. Details regarding inference
and/or training logic 115 are provided herein in conjunction
with FIGS. 1A and/or 1B. In at least one embodiment, deep
learning application processor is used to train a machine
learning model, such as a neural network, to predict or infer
information provided to deep learning application processor
1800. In at least one embodiment, deep learning application
processor 1800 is used to infer or predict information based
on a trained machine learning model (e.g., neural network)
that has been trained by another processor or system or by
deep learning application processor 1800. In at least one
embodiment, processor 1800 may be used to perform one or
more neural network use cases described herein.

[0333] FIG. 19 is a block diagram of a neuromorphic
processor 1900, according to at least one embodiment. In at
least one embodiment, neuromorphic processor 1900 may
receive one or more inputs from sources external to neuro-
morphic processor 1900. In at least one embodiment, these
inputs may be transmitted to one or more neurons 1902
within neuromorphic processor 1900. In at least one
embodiment, neurons 1902 and components thereof may be
implemented using circuitry or logic, including one or more
arithmetic logic units (ALUs). In at least one embodiment,
neuromorphic processor 1900 may include, without limita-
tion, thousands or millions of instances of neurons 1902, but
any suitable number of neurons 1902 may be used. In at least
one embodiment, each instance of neuron 1902 may include
aneuron input 1904 and a neuron output 1906. In at least one
embodiment, neurons 1902 may generate outputs that may
be transmitted to inputs of other instances of neurons 1902.
For example, in at least one embodiment, neuron inputs
1904 and neuron outputs 1906 may be interconnected via
synapses 1908.

[0334] In at least one embodiment, neurons 1902 and
synapses 1908 may be interconnected such that neuromor-
phic processor 1900 operates to process or analyze infor-
mation received by neuromorphic processor 1900. In at least

Sep. 8§, 2022

one embodiment, neurons 1902 may transmit an output
pulse (or “fire” or “spike”) when inputs received through
neuron input 1904 exceed a threshold. In at least one
embodiment, neurons 1902 may sum or integrate signals
received at neuron inputs 1904. For example, in at least one
embodiment, neurons 1902 may be implemented as leaky
integrate-and-fire neurons, wherein if a sum (referred to as
a “membrane potential”) exceeds a threshold value, neuron
1902 may generate an output (or “fire”) using a transfer
function such as a sigmoid or threshold function. In at least
one embodiment, a leaky integrate-and-fire neuron may sum
signals received at neuron inputs 1904 into a membrane
potential and may also apply a decay factor (or leak) to
reduce a membrane potential. In at least one embodiment, a
leaky integrate-and-fire neuron may fire if multiple input
signals are received at neuron inputs 1904 rapidly enough to
exceed a threshold value (i.e., before a membrane potential
decays too low to fire). In at least one embodiment, neurons
1902 may be implemented using circuits or logic that
receive inputs, integrate inputs into a membrane potential,
and decay a membrane potential. In at least one embodi-
ment, inputs may be averaged, or any other suitable transfer
function may be used. Furthermore, in at least one embodi-
ment, neurons 1902 may include, without limitation, com-
parator circuits or logic that generate an output spike at
neuron output 1906 when result of applying a transfer
function to neuron input 1904 exceeds a threshold. In at least
one embodiment, once neuron 1902 fires, it may disregard
previously received input information by, for example, reset-
ting a membrane potential to 0 or another suitable default
value. In at least one embodiment, once membrane potential
is reset to 0, neuron 1902 may resume normal operation after
a suitable period of time (or refractory period).

[0335] In at least one embodiment, neurons 1902 may be
interconnected through synapses 1908. In at least one
embodiment, synapses 1908 may operate to transmit signals
from an output of a first neuron 1902 to an input of a second
neuron 1902. In at least one embodiment, neurons 1902 may
transmit information over more than one instance of synapse
1908. In at least one embodiment, one or more instances of
neuron output 1906 may be connected, via an instance of
synapse 1908, to an instance of neuron input 1904 in same
neuron 1902. In at least one embodiment, an instance of
neuron 1902 generating an output to be transmitted over an
instance of synapse 1908 may be referred to as a “pre-
synaptic neuron” with respect to that instance of synapse
1908. In at least one embodiment, an instance of neuron
1902 receiving an input transmitted over an instance of
synapse 1908 may be referred to as a “post-synaptic neuron”
with respect to that instance of synapse 1908. Because an
instance of neuron 1902 may receive inputs from one or
more instances of synapse 1908, and may also transmit
outputs over one or more instances of synapse 1908, a single
instance of neuron 1902 may therefore be both a “pre-
synaptic neuron” and “post-synaptic neuron,” with respect
to various instances of synapses 1908, in at least one
embodiment.

[0336] In at least one embodiment, neurons 1902 may be
organized into one or more layers. In at least one embodi-
ment, each instance of neuron 1902 may have one neuron
output 1906 that may fan out through one or more synapses
1908 to one or more neuron inputs 1904. In at least one
embodiment, neuron outputs 1906 of neurons 1902 in a first
layer 1910 may be connected to neuron inputs 1904 of

US 2022/0284582 Al

neurons 1902 in a second layer 1912. In at least one
embodiment, layer 1910 may be referred to as a “feed-
forward layer.” In at least one embodiment, each instance of
neuron 1902 in an instance of first layer 1910 may fan out
to each instance of neuron 1902 in second layer 1912. In at
least one embodiment, first layer 1910 may be referred to as
a “fully connected feed-forward layer.” In at least one
embodiment, each instance of neuron 1902 in an instance of
second layer 1912 may fan out to fewer than all instances of
neuron 1902 in a third layer 1914. In at least one embodi-
ment, second layer 1912 may be referred to as a “sparsely
connected feed-forward layer.” In at least one embodiment,
neurons 1902 in second layer 1912 may fan out to neurons
1902 in multiple other layers, including to neurons 1902 also
in second layer 1912. In at least one embodiment, second
layer 1912 may be referred to as a “recurrent layer.” In at
least one embodiment, neuromorphic processor 1900 may
include, without limitation, any suitable combination of
recurrent layers and feed-forward layers, including, without
limitation, both sparsely connected feed-forward layers and
fully connected feed-forward layers.

[0337] In at least one embodiment, neuromorphic proces-
sor 1900 may include, without limitation, a reconfigurable
interconnect architecture or dedicated hard-wired intercon-
nects to connect synapse 1908 to neurons 1902. In at least
one embodiment, neuromorphic processor 1900 may
include, without limitation, circuitry or logic that allows
synapses to be allocated to different neurons 1902 as needed
based on neural network topology and neuron fan-in/out.
For example, in at least one embodiment, synapses 1908
may be connected to neurons 1902 using an interconnect
fabric, such as network-on-chip, or with dedicated connec-
tions. In at least one embodiment, synapse interconnections
and components thereof may be implemented using circuitry
or logic.

[0338] FIG. 20 is a block diagram of a processing system,
according to at least one embodiment. In at least one
embodiment, system 2000 includes one or more processors
2002 and one or more graphics processors 2008, and may be
a single processor desktop system, a multiprocessor work-
station system, or a server system having a large number of
processors 2002 or processor cores 2007. In at least one
embodiment, system 2000 is a processing platform incor-
porated within a system-on-a-chip (SoC) integrated circuit
for use in mobile, handheld, or embedded devices.

[0339] In at least one embodiment, system 2000 can
include, or be incorporated within a server-based gaming
platform, a game console, including a game and media
console, a mobile gaming console, a handheld game con-
sole, or an online game console. In at least one embodiment,
system 2000 is a mobile phone, a smart phone, a tablet
computing device or a mobile Internet device. In at least one
embodiment, processing system 2000 can also include,
couple with, or be integrated within a wearable device, such
as a smart watch wearable device, a smart eyewear device,
an augmented reality device, or a virtual reality device. In at
least one embodiment, processing system 2000 is a televi-
sion or set top box device having one or more processors
2002 and a graphical interface generated by one or more
graphics processors 2008.

[0340] In atleast one embodiment, one or more processors
2002 each include one or more processor cores 2007 to
process instructions which, when executed, perform opera-
tions for system and user software. In at least one embodi-

Sep. 8§, 2022

ment, each of one or more processor cores 2007 is config-
ured to process a specific instruction sequence 2009. In at
least one embodiment, instruction sequence 2009 may facili-
tate Complex Instruction Set Computing (CISC), Reduced
Instruction Set Computing (RISC), or computing via a Very
Long Instruction Word (VLIW). In at least one embodiment,
processor cores 2007 may each process a different instruc-
tion sequence 2009, which may include instructions to
facilitate emulation of other instruction sequences. In at least
one embodiment, processor core 2007 may also include
other processing devices, such a Digital Signal Processor
(DSP).

[0341] In at least one embodiment, processor 2002
includes a cache memory 2004. In at least one embodiment,
processor 2002 can have a single internal cache or multiple
levels of internal cache. In at least one embodiment, cache
memory is shared among various components of processor
2002. In at least one embodiment, processor 2002 also uses
an external cache (e.g., a Level-3 (L3) cache or Last Level
Cache (LLC)) (not shown), which may be shared among
processor cores 2007 using known cache coherency tech-
niques. In at least one embodiment, a register file 2006 is
additionally included in processor 2002, which may include
different types of registers for storing different types of data
(e.g., integer registers, floating point registers, status regis-
ters, and an instruction pointer register). In at least one
embodiment, register file 2006 may include general-purpose
registers or other registers.

[0342] In at least one embodiment, one or more processor
(s) 2002 are coupled with one or more interface bus(es) 2010
to transmit communication signals such as address, data, or
control signals between processor 2002 and other compo-
nents in system 2000. In at least one embodiment, interface
bus 2010 can be a processor bus, such as a version of a
Direct Media Interface (DMI) bus. In at least one embodi-
ment, interface bus 2010 is not limited to a DMI bus, and
may include one or more Peripheral Component Intercon-
nect buses (e.g., PCI, PCI Express), memory busses, or other
types of interface busses. In at least one embodiment pro-
cessor(s) 2002 include an integrated memory controller
2016 and a platform controller hub 2030. In at least one
embodiment, memory controller 2016 facilitates communi-
cation between a memory device and other components of
system 2000, while platform controller hub (PCH) 2030
provides connections to /O devices via a local /O bus.

[0343] In at least one embodiment, a memory device 2020
can be a dynamic random access memory (DRAM) device,
a static random access memory (SRAM) device, flash
memory device, phase-change memory device, or some
other memory device having suitable performance to serve
as process memory. In at least one embodiment, memory
device 2020 can operate as system memory for system 2000,
to store data 2022 and instructions 2021 for use when one or
more processors 2002 executes an application or process. In
at least one embodiment, memory controller 2016 also
couples with an optional external graphics processor 2012,
which may communicate with one or more graphics pro-
cessors 2008 in processors 2002 to perform graphics and
media operations. In at least one embodiment, a display
device 2011 can connect to processor(s) 2002. In at least one
embodiment, display device 2011 can include one or more
of'an internal display device, as in a mobile electronic device
or a laptop device, or an external display device attached via
a display interface (e.g., DisplayPort, etc.). In at least one

US 2022/0284582 Al

embodiment, display device 2011 can include a head
mounted display (HMD) such as a stereoscopic display
device for use in virtual reality (VR) applications or aug-
mented reality (AR) applications.

[0344] In at least one embodiment, platform controller hub
2030 enables peripherals to connect to memory device 2020
and processor 2002 via a high-speed 1/O bus. In at least one
embodiment, I/O peripherals include, but are not limited to,
an audio controller 2046, a network controller 2034, a
firmware interface 2028, a wireless transceiver 2026, touch
sensors 2025, a data storage device 2024 (e.g., hard disk
drive, flash memory, etc.). In at least one embodiment, data
storage device 2024 can connect via a storage interface (e.g.,
SATA) or via a peripheral bus, such as a Peripheral Com-
ponent Interconnect bus (e.g., PCI, PCI Express). In at least
one embodiment, touch sensors 2025 can include touch
screen sensors, pressure sensors, or fingerprint sensors. In at
least one embodiment, wireless transceiver 2026 can be a
Wi-Fi transceiver, a Bluetooth transceiver, or a mobile
network transceiver such as a 3G, 4G, or Long Term
Evolution (LTE) transceiver. In at least one embodiment,
firmware interface 2028 enables communication with sys-
tem firmware, and can be, for example, a unified extensible
firmware interface (UEFI). In at least one embodiment,
network controller 2034 can enable a network connection to
a wired network. In at least one embodiment, a high-
performance network controller (not shown) couples with
interface bus 2010. In at least one embodiment, audio
controller 2046 is a multi-channel high definition audio
controller. In at least one embodiment, system 2000 includes
an optional legacy I/O controller 2040 for coupling legacy
(e.g., Personal System 2 (PS/2)) devices to system 2000. In
at least one embodiment, platform controller hub 2030 can
also connect to one or more Universal Serial Bus (USB)
controllers 2042 connect input devices, such as keyboard
and mouse 2043 combinations, a camera 2044, or other USB
input devices.

[0345] In at least one embodiment, an instance of memory
controller 2016 and platform controller hub 2030 may be
integrated into a discreet external graphics processor, such
as external graphics processor 2012. In at least one embodi-
ment, platform controller hub 2030 and/or memory control-
ler 2016 may be external to one or more processor(s) 2002.
For example, in at least one embodiment, system 2000 can
include an external memory controller 2016 and platform
controller hub 2030, which may be configured as a memory
controller hub and peripheral controller hub within a system
chipset that is in communication with processor(s) 2002.

[0346] Inference and/or training logic 115 are used to
perform inferencing and/or training operations associated
with one or more embodiments. Details regarding inference
and/or training logic 115 are provided herein in conjunction
with FIGS. 1A and/or 1B. In at least one embodiment
portions or all of inference and/or training logic 115 may be
incorporated into graphics processor 2000. For example, in
at least one embodiment, training and/or inferencing tech-
niques described herein may use one or more of ALUs
embodied in a 3D pipeline. Moreover, in at least one
embodiment, inferencing and/or training operations
described herein may be done using logic other than logic
illustrated in FIG. 1A or 1B. In at least one embodiment,
weight parameters may be stored in on-chip or off-chip
memory and/or registers (shown or not shown) that config-
ure ALUs of graphics processor 2000 to perform one or

Sep. 8§, 2022

more machine learning algorithms, neural network architec-
tures, use cases, or training techniques described herein.
[0347] FIG. 21 is a block diagram of a processor 2100
having one or more processor cores 2102A-2102N, an
integrated memory controller 2114, and an integrated graph-
ics processor 2108, according to at least one embodiment. In
at least one embodiment, processor 2100 can include addi-
tional cores up to and including additional core 2102N
represented by dashed lined boxes. In at least one embodi-
ment, each of processor cores 2102A-2102N includes one or
more internal cache units 2104A-2104N. In at least one
embodiment, each processor core also has access to one or
more shared cached units 2106.

[0348] In at least one embodiment, internal cache units
2104A-2104N and shared cache units 2106 represent a
cache memory hierarchy within processor 2100. In at least
one embodiment, cache memory units 2104A-2104N may
include at least one level of instruction and data cache within
each processor core and one or more levels of shared
mid-level cache, such as a Level 2 (L.2), Level 3 (L3), Level
4 (L4), or other levels of cache, where a highest level of
cache before external memory is classified as an LL.C. In at
least one embodiment, cache coherency logic maintains
coherency between various cache units 2106 and 2104A-
2104N.

[0349] In at least one embodiment, processor 2100 may
also include a set of one or more bus controller units 2116
and a system agent core 2110. In at least one embodiment,
bus controller units 2116 manage a set of peripheral buses,
such as one or more PCI or PCI express busses. In at least
one embodiment, system agent core 2110 provides manage-
ment functionality for various processor components. In at
least one embodiment, system agent core 2110 includes one
or more integrated memory controllers 2114 to manage
access to various external memory devices (not shown).
[0350] In at least one embodiment, one or more of pro-
cessor cores 2102A-2102N include support for simultaneous
multi-threading. In at least one embodiment, system agent
core 2110 includes components for coordinating and oper-
ating cores 2102A-2102N during multi-threaded processing.
In at least one embodiment, system agent core 2110 may
additionally include a power control unit (PCU), which
includes logic and components to regulate one or more
power states of processor cores 2102A-2102N and graphics
processor 2108.

[0351] In at least one embodiment, processor 2100 addi-
tionally includes graphics processor 2108 to execute graph-
ics processing operations. In at least one embodiment,
graphics processor 2108 couples with shared cache units
2106, and system agent core 2110, including one or more
integrated memory controllers 2114. In at least one embodi-
ment, system agent core 2110 also includes a display con-
troller 2111 to drive graphics processor output to one or
more coupled displays. In at least one embodiment, display
controller 2111 may also be a separate module coupled with
graphics processor 2108 via at least one interconnect, or may
be integrated within graphics processor 2108.

[0352] In at least one embodiment, a ring-based intercon-
nect unit 2112 is used to couple internal components of
processor 2100. In at least one embodiment, an alternative
interconnect unit may be used, such as a point-to-point
interconnect, a switched interconnect, or other techniques.
In at least one embodiment, graphics processor 2108 couples
with ring interconnect 2112 via an I/O link 2113.

US 2022/0284582 Al

[0353] In at least one embodiment, /O link 2113 repre-
sents at least one of multiple varieties of I/O interconnects,
including an on package 1/O interconnect which facilitates
communication between various processor components and
a high-performance embedded memory module 2118, such
as an eDRAM module. In at least one embodiment, each of
processor cores 2102A-2102N and graphics processor 2108
use embedded memory module 2118 as a shared Last Level
Cache.

[0354] In at least one embodiment, processor cores
2102A-2102N are homogeneous cores executing a common
instruction set architecture. In at least one embodiment,
processor cores 2102A-2102N are heterogeneous in terms of
instruction set architecture (ISA), where one or more of
processor cores 2102A-2102N execute a common instruc-
tion set, while one or more other cores of processor cores
2102A-2102N executes a subset of a common instruction set
or a different instruction set. In at least one embodiment,
processor cores 2102A-2102N are heterogeneous in terms of
microarchitecture, where one or more cores having a rela-
tively higher power consumption couple with one or more
power cores having a lower power consumption. In at least
one embodiment, processor 2100 can be implemented on
one or more chips or as an SoC integrated circuit.

[0355] Inference and/or training logic 115 are used to
perform inferencing and/or training operations associated
with one or more embodiments. Details regarding inference
and/or training logic 115 are provided herein in conjunction
with FIGS. 1A and/or 1B. In at least one embodiment
portions or all of inference and/or training logic 115 may be
incorporated into graphics processor 2110. For example, in
at least one embodiment, training and/or inferencing tech-
niques described herein may use one or more of ALUs
embodied in a 3D pipeline, graphics core(s) 2102, shared
function logic, or other logic in FIG. 21. Moreover, in at
least one embodiment, inferencing and/or training opera-
tions described herein may be done using logic other than
logic illustrated in FIG. 1A or 1B. In at least one embodi-
ment, weight parameters may be stored in on-chip or off-
chip memory and/or registers (shown or not shown) that
configure AL Us of processor 2100 to perform one or more
machine learning algorithms, neural network architectures,
use cases, or training techniques described herein.

[0356] FIG. 22 is a block diagram of a graphics processor
2200, which may be a discrete graphics processing unit, or
may be a graphics processor integrated with a plurality of
processing cores. In at least one embodiment, graphics
processor 2200 communicates via a memory mapped /O
interface to registers on graphics processor 2200 and with
commands placed into memory. In at least one embodiment,
graphics processor 2200 includes a memory interface 2214
to access memory. In at least one embodiment, memory
interface 2214 is an interface to local memory, one or more
internal caches, one or more shared external caches, and/or
to system memory.

[0357] In at least one embodiment, graphics processor
2200 also includes a display controller 2202 to drive display
output data to a display device 2220. In at least one
embodiment, display controller 2202 includes hardware for
one or more overlay planes for display device 2220 and
composition of multiple layers of video or user interface
elements. In at least one embodiment, display device 2220
can be an internal or external display device. In at least one
embodiment, display device 2220 is a head mounted display

Sep. 8§, 2022

device, such as a virtual reality (VR) display device or an
augmented reality (AR) display device. In at least one
embodiment, graphics processor 2200 includes a video
codec engine 2206 to encode, decode, or transcode media to,
from, or between one or more media encoding formats,
including, but not limited to Moving Picture Experts Group
(MPEG) formats such as MPEG-2, Advanced Video Coding
(AVC) formats such as H.264/MPEG-4 AVC, as well as the
Society of Motion Picture & Television Engineers (SMPTE)
421M/VC-1, and Joint Photographic Experts Group (JPEG)
formats such as JPEG, and Motion JPEG (MJPEG) formats.
[0358] In at least one embodiment, graphics processor
2200 includes a block image transter (BLIT) engine 2204 to
perform two-dimensional (2D) rasterizer operations includ-
ing, for example, bit-boundary block transfers. However, in
at least one embodiment, 2D graphics operations are per-
formed using one or more components of a graphics pro-
cessing engine (GPE) 2210. In at least one embodiment,
GPE 2210 is a compute engine for performing graphics
operations, including three-dimensional (3D) graphics
operations and media operations.

[0359] In at least one embodiment, GPE 2210 includes a
3D pipeline 2212 for performing 3D operations, such as
rendering three-dimensional images and scenes using pro-
cessing functions that act upon 3D primitive shapes (e.g.,
rectangle, triangle, etc.). In at least one embodiment, 3D
pipeline 2212 includes programmable and fixed function
elements that perform various tasks and/or spawn execution
threads to a 3D/Media sub-system 2215. While 3D pipeline
2212 can be used to perform media operations, in at least one
embodiment, GPE 2210 also includes a media pipeline 2216
that is used to perform media operations, such as video
post-processing and image enhancement.

[0360] In at least one embodiment, media pipeline 2216
includes fixed function or programmable logic units to
perform one or more specialized media operations, such as
video decode acceleration, video de-interlacing, and video
encode acceleration in place of, or on behalf of, video codec
engine 2206. In at least one embodiment, media pipeline
2216 additionally includes a thread spawning unit to spawn
threads for execution on 3D/Media sub-system 2215. In at
least one embodiment, spawned threads perform computa-
tions for media operations on one or more graphics execu-
tion units included in 3D/Media sub-system 2215.

[0361] In at least one embodiment, 3D/Media subsystem
2215 includes logic for executing threads spawned by 3D
pipeline 2212 and media pipeline 2216. In at least one
embodiment, 3D pipeline 2212 and media pipeline 2216
send thread execution requests to 3D/Media subsystem
2215, which includes thread dispatch logic for arbitrating
and dispatching various requests to available thread execu-
tion resources. In at least one embodiment, execution
resources include an array of graphics execution units to
process 3D and media threads. In at least one embodiment,
3D/Media subsystem 2215 includes one or more internal
caches for thread instructions and data. In at least one
embodiment, subsystem 2215 also includes shared memory,
including registers and addressable memory, to share data
between threads and to store output data.

[0362] Inference and/or training logic 115 are used to
perform inferencing and/or training operations associated
with one or more embodiments. Details regarding inference
and/or training logic 115 are provided herein in conjunction
with FIGS. 1A and/or 1B. In at least one embodiment

US 2022/0284582 Al

portions or all of inference and/or training logic 115 may be
incorporated into graphics processor 2200. For example, in
at least one embodiment, training and/or inferencing tech-
niques described herein may use one or more of ALUs
embodied in 3D pipeline 2212. Moreover, in at least one
embodiment, inferencing and/or training operations
described herein may be done using logic other than logic
illustrated in FIG. 1A or 1B. In at least one embodiment,
weight parameters may be stored in on-chip or off-chip
memory and/or registers (shown or not shown) that config-
ure ALUs of graphics processor 2200 to perform one or
more machine learning algorithms, neural network architec-
tures, use cases, or training techniques described herein.

[0363] FIG. 23 is a block diagram of a graphics processing
engine 2310 of a graphics processor in accordance with at
least one embodiment. In at least one embodiment, graphics
processing engine (GPE) 2310 is a version of GPE 2210
shown in FIG. 22. In at least one embodiment, a media
pipeline 2316 is optional and may not be explicitly included
within GPE 2310. In at least one embodiment, a separate
media and/or image processor is coupled to GPE 2310.

[0364] In at least one embodiment, GPE 2310 is coupled
to or includes a command streamer 2303, which provides a
command stream to a 3D pipeline 2312 and/or media
pipeline 2316. In at least one embodiment, command
streamer 2303 is coupled to memory, which can be system
memory, or one or more of internal cache memory and
shared cache memory. In at least one embodiment, com-
mand streamer 2303 receives commands from memory and
sends commands to 3D pipeline 2312 and/or media pipeline
2316. In at least one embodiment, commands are instruc-
tions, primitives, or micro-operations fetched from a ring
buffer, which stores commands for 3D pipeline 2312 and
media pipeline 2316. In at least one embodiment, a ring
buffer can additionally include batch command buffers stor-
ing batches of multiple commands. In at least one embodi-
ment, commands for 3D pipeline 2312 can also include
references to data stored in memory, such as, but not limited
to, vertex and geometry data for 3D pipeline 2312 and/or
image data and memory objects for media pipeline 2316. In
at least one embodiment, 3D pipeline 2312 and media
pipeline 2316 process commands and data by performing
operations or by dispatching one or more execution threads
to a graphics core array 2314. In at least one embodiment,
graphics core array 2314 includes one or more blocks of
graphics cores (e.g., graphics core(s) 2315A, graphics core
(s) 2315B), each block including one or more graphics
cores. In at least one embodiment, each graphics core
includes a set of graphics execution resources that includes
general-purpose and graphics specific execution logic to
perform graphics and compute operations, as well as fixed
function texture processing and/or machine learning and
artificial intelligence acceleration logic, including inference
and/or training logic 115 in FIG. 1A and FIG. 1B.

[0365] In at least one embodiment, 3D pipeline 2312
includes fixed function and programmable logic to process
one or more shader programs, such as vertex shaders,
geometry shaders, pixel shaders, fragment shaders, compute
shaders, or other shader programs, by processing instruc-
tions and dispatching execution threads to graphics core
array 2314. In at least one embodiment, graphics core array
2314 provides a unified block of execution resources for use
in processing shader programs. In at least one embodiment,
a multi-purpose execution logic (e.g., execution units)

Sep. 8§, 2022

within graphics core(s) 2315A-2315B of graphic core array
2314 includes support for various 3D API shader languages
and can execute multiple simultaneous execution threads
associated with multiple shaders.

[0366] In at least one embodiment, graphics core array
2314 also includes execution logic to perform media func-
tions, such as video and/or image processing. In at least one
embodiment, execution units additionally include general-
purpose logic that is programmable to perform parallel
general-purpose computational operations, in addition to
graphics processing operations.

[0367] In at least one embodiment, output data generated
by threads executing on graphics core array 2314 can output
data to memory in a unified return buffer (URB) 2318. In at
least one embodiment, URB 2318 can store data for multiple
threads. In at least one embodiment, URB 2318 may be used
to send data between different threads executing on graphics
core array 2314. In at least one embodiment, URB 2318 may
additionally be used for synchronization between threads on
graphics core array 2314 and fixed function logic within
shared function logic 2320.

[0368] In at least one embodiment, graphics core array
2314 is scalable, such that graphics core array 2314 includes
a variable number of graphics cores, each having a variable
number of execution units based on a target power and
performance level of GPE 2310. In at least one embodiment,
execution resources are dynamically scalable, such that
execution resources may be enabled or disabled as needed.
[0369] In at least one embodiment, graphics core array
2314 is coupled to shared function logic 2320 that includes
multiple resources that are shared between graphics cores in
graphics core array 2314. In at least one embodiment, shared
functions performed by shared function logic 2320 are
embodied in hardware logic units that provide specialized
supplemental functionality to graphics core array 2314. In at
least one embodiment, shared function logic 2320 includes
but is not limited to a sampler unit 2321, a math unit 2322,
and inter-thread communication (ITC) logic 2323. In at least
one embodiment, one or more cache(s) 2325 are included in,
or coupled to, shared function logic 2320.

[0370] In at least one embodiment, a shared function is
used if demand for a specialized function is insufficient for
inclusion within graphics core array 2314. In at least one
embodiment, a single instantiation of a specialized function
is used in shared function logic 2320 and shared among
other execution resources within graphics core array 2314.
In at least one embodiment, specific shared functions within
shared function logic 2320 that are used extensively by
graphics core array 2314 may be included within shared
function logic 2616 within graphics core array 2314. In at
least one embodiment, shared function logic 2616 within
graphics core array 2314 can include some or all logic within
shared function logic 2320. In at least one embodiment, all
logic elements within shared function logic 2320 may be
duplicated within shared function logic 2326 of graphics
core array 2314. In at least one embodiment, shared function
logic 2320 is excluded in favor of shared function logic 2326
within graphics core array 2314.

[0371] Inference and/or training logic 115 are used to
perform inferencing and/or training operations associated
with one or more embodiments. Details regarding inference
and/or training logic 115 are provided herein in conjunction
with FIGS. 1A and/or 1B. In at least one embodiment
portions or all of inference and/or training logic 115 may be

US 2022/0284582 Al

incorporated into graphics processor 2310. For example, in
at least one embodiment, training and/or inferencing tech-
niques described herein may use one or more of ALUs
embodied in 3D pipeline 2312, graphics core(s) 2315,
shared function logic 2326, shared function logic 2320, or
other logic in FIG. 23. Moreover, in at least one embodi-
ment, inferencing and/or training operations described
herein may be done using logic other than logic illustrated
in FIG. 1A or 1B. In at least one embodiment, weight
parameters may be stored in on-chip or off-chip memory
and/or registers (shown or not shown) that configure AL Us
of graphics processor 2310 to perform one or more machine
learning algorithms, neural network architectures, use cases,
or training techniques described herein.

[0372] FIG. 24 is a block diagram of hardware logic of a
graphics processor core 2400, according to at least one
embodiment described herein. In at least one embodiment,
graphics processor core 2400 is included within a graphics
core array. In at least one embodiment, graphics processor
core 2400, sometimes referred to as a core slice, can be one
or multiple graphics cores within a modular graphics pro-
cessor. In at least one embodiment, graphics processor core
2400 is exemplary of one graphics core slice, and a graphics
processor as described herein may include multiple graphics
core slices based on target power and performance enve-
lopes. In at least one embodiment, each graphics core 2400
can include a fixed function block 2430 coupled with
multiple sub-cores 2401A-2401F, also referred to as sub-
slices, that include modular blocks of general-purpose and
fixed function logic.

[0373] In at least one embodiment, fixed function block
2430 includes a geometry and fixed function pipeline 2436
that can be shared by all sub-cores in graphics processor
2400, for example, in lower performance and/or lower
power graphics processor implementations. In at least one
embodiment, geometry and fixed function pipeline 2436
includes a 3D fixed function pipeline, a video front-end unit,
a thread spawner and thread dispatcher, and a unified return
buffer manager, which manages unified return buffers.
[0374] In at least one embodiment, fixed function block
2430 also includes a graphics SoC interface 2437, a graphics
microcontroller 2438, and a media pipeline 2439. In at least
one embodiment, graphics SoC interface 2437 provides an
interface between graphics core 2400 and other processor
cores within a system on a chip integrated circuit. In at least
one embodiment, graphics microcontroller 2438 is a pro-
grammable sub-processor that is configurable to manage
various functions of graphics processor 2400, including
thread dispatch, scheduling, and pre-emption. In at least one
embodiment, media pipeline 2439 includes logic to facilitate
decoding, encoding, pre-processing, and/or post-processing
of multimedia data, including image and video data. In at
least one embodiment, media pipeline 2439 implements
media operations via requests to compute or sampling logic
within sub-cores 2401A-2401F.

[0375] In at least one embodiment, SoC interface 2437
enables graphics core 2400 to communicate with general-
purpose application processor cores (e.g., CPUs) and/or
other components within an SoC, including memory hier-
archy elements such as a shared last level cache memory,
system RAM, and/or embedded on-chip or on-package
DRAM. In at least one embodiment, SoC interface 2437 can
also enable communication with fixed function devices
within an SoC, such as camera imaging pipelines, and

Sep. 8§, 2022

enables use of and/or implements global memory atomics
that may be shared between graphics core 2400 and CPUs
within an SoC. In at least one embodiment, graphics SoC
interface 2437 can also implement power management con-
trols for graphics processor core 2400 and enable an inter-
face between a clock domain of graphics processor core
2400 and other clock domains within an SoC. In at least one
embodiment, SoC interface 2437 enables receipt of com-
mand buffers from a command streamer and global thread
dispatcher that are configured to provide commands and
instructions to each of one or more graphics cores within a
graphics processor. In at least one embodiment, commands
and instructions can be dispatched to media pipeline 2439,
when media operations are to be performed, or a geometry
and fixed function pipeline (e.g., geometry and fixed func-
tion pipeline 2436, and/or a geometry and fixed function
pipeline 2414) when graphics processing operations are to
be performed.

[0376] In at least one embodiment, graphics microcon-
troller 2438 can be configured to perform various scheduling
and management tasks for graphics core 2400. In at least one
embodiment, graphics microcontroller 2438 can perform
graphics and/or compute workload scheduling on various
graphics parallel engines within execution unit (EU) arrays
2402A-2402F, 2404A-2404F within sub-cores 2401A-
2401F. In at least one embodiment, host software executing
on a CPU core of an SoC including graphics core 2400 can
submit workloads to one of multiple graphic processor
paths, which invokes a scheduling operation on an appro-
priate graphics engine. In at least one embodiment, sched-
uling operations include determining which workload to run
next, submitting a workload to a command streamer, pre-
empting existing workloads running on an engine, monitor-
ing progress of a workload, and notifying host software
when a workload is complete. In at least one embodiment,
graphics microcontroller 2438 can also facilitate low-power
or idle states for graphics core 2400, providing graphics core
2400 with an ability to save and restore registers within
graphics core 2400 across low-power state transitions inde-
pendently from an operating system and/or graphics driver
software on a system.

[0377] In at least one embodiment, graphics core 2400
may have greater than or fewer than illustrated sub-cores
2401A-2401F, up to N modular sub-cores. For each set of N
sub-cores, in at least one embodiment, graphics core 2400
can also include shared function logic 2410, shared and/or
cache memory 2412, geometry/fixed function pipeline 2414,
as well as additional fixed function logic 2416 to accelerate
various graphics and compute processing operations. In at
least one embodiment, shared function logic 2410 can
include logic units (e.g., sampler, math, and/or inter-thread
communication logic) that can be shared by each N sub-
cores within graphics core 2400. In at least one embodiment,
shared and/or cache memory 2412 can be a last-level cache
for N sub-cores 2401A-2401F within graphics core 2400
and can also serve as shared memory that is accessible by
multiple sub-cores. In at least one embodiment, geometry/
fixed function pipeline 2414 can be included instead of
geometry/fixed function pipeline 2436 within fixed function
block 2430 and can include similar logic units.

[0378] In at least one embodiment, graphics core 2400
includes additional fixed function logic 2416 that can
include various fixed function acceleration logic for use by
graphics core 2400. In at least one embodiment, additional

US 2022/0284582 Al

fixed function logic 2416 includes an additional geometry
pipeline for use in position-only shading. In position-only
shading, at least two geometry pipelines exist, whereas in a
full geometry pipeline within geometry and fixed function
pipelines 2414, 2436, and a cull pipeline, which is an
additional geometry pipeline that may be included within
additional fixed function logic 2416. In at least one embodi-
ment, a cull pipeline is a trimmed down version of a full
geometry pipeline. In at least one embodiment, a full pipe-
line and a cull pipeline can execute different instances of an
application, each instance having a separate context. In at
least one embodiment, position only shading can hide long
cull runs of discarded triangles, enabling shading to be
completed earlier in some instances. For example, in at least
one embodiment, cull pipeline logic within additional fixed
function logic 2416 can execute position shaders in parallel
with a main application and generally generates critical
results faster than a full pipeline, as a cull pipeline fetches
and shades position attributes of vertices, without perform-
ing rasterization and rendering of pixels to a frame buffer. In
at least one embodiment, a cull pipeline can use generated
critical results to compute visibility information for all
triangles without regard to whether those triangles are
culled. In at least one embodiment, a full pipeline (which in
this instance may be referred to as a replay pipeline) can
consume visibility information to skip culled triangles to
shade only visible triangles that are finally passed to a
rasterization phase.

[0379] In at least one embodiment, additional fixed func-
tion logic 2416 can also include machine-learning accelera-
tion logic, such as fixed function matrix multiplication logic,
for implementations including optimizations for machine
learning training or inferencing.

[0380] In at least one embodiment, within each graphics
sub-core 2401 A-2401F includes a set of execution resources
that may be used to perform graphics, media, and compute
operations in response to requests by graphics pipeline,
media pipeline, or shader programs. In at least one embodi-
ment, graphics sub-cores 2401A-2401F include multiple EU
arrays 2402A-2402F, 2404A-2404F, thread dispatch and
inter-thread communication (TD/IC) logic 2403 A-2403F, a
3D (e.g., texture) sampler 2405A-2405F, a media sampler
2406A-2406F, a shader processor 2407A-2407F, and shared
local memory (SLM) 2408A-2408F. In at least one embodi-
ment, EU arrays 2402A-2402F, 2404 A-2404F cach include
multiple execution units, which are general-purpose graph-
ics processing units capable of performing floating-point and
integer/fixed-point logic operations in service of a graphics,
media, or compute operation, including graphics, media, or
compute shader programs. In at least one embodiment,
TD/IC logic 2403A-2403F performs local thread dispatch
and thread control operations for execution units within a
sub-core and facilitates communication between threads
executing on execution units of a sub-core. In at least one
embodiment, 3D samplers 2405A-2405F can read texture or
other 3D graphics related data into memory. In at least one
embodiment, 3D samplers can read texture data differently
based on a configured sample state and texture format
associated with a given texture. In at least one embodiment,
media samplers 2406A-2406F can perform similar read
operations based on a type and format associated with media
data. In at least one embodiment, each graphics sub-core
2401A-2401F can alternately include a unified 3D and
media sampler. In at least one embodiment, threads execut-

Sep. 8§, 2022

ing on execution units within each of sub-cores 2401A-
2401F can make use of shared local memory 2408A-2408F
within each sub-core, to enable threads executing within a
thread group to execute using a common pool of on-chip
memory.

[0381] Inference and/or training logic 115 are used to
perform inferencing and/or training operations associated
with one or more embodiments. Details regarding inference
and/or training logic 115 are provided herein in conjunction
with FIGS. 1A and/or 1B. In at least one embodiment,
portions or all of inference and/or training logic 115 may be
incorporated into graphics processor 2410. For example, in
at least one embodiment, training and/or inferencing tech-
niques described herein may use one or more of ALUs
embodied in a 3D pipeline, graphics microcontroller 2438,
geometry and fixed function pipeline 2414 and 2436, or
other logic in FIG. 24. Moreover, in at least one embodi-
ment, inferencing and/or training operations described
herein may be done using logic other than logic illustrated
in FIG. 1A or 1B. In at least one embodiment, weight
parameters may be stored in on-chip or off-chip memory
and/or registers (shown or not shown) that configure AL Us
of graphics processor 2400 to perform one or more machine
learning algorithms, neural network architectures, use cases,
or training techniques described herein.

[0382] FIGS. 25A-25B illustrate thread execution logic
2500 including an array of processing elements of a graphics
processor core according to at least one embodiment. FIG.
25A illustrates at least one embodiment, in which thread
execution logic 2500 is used. FIG. 25B illustrates exemplary
internal details of a graphics execution unit 2508, according
to at least one embodiment.

[0383] As illustrated in FIG. 25A, in at least one embodi-
ment, thread execution logic 2500 includes a shader proces-
sor 2502, a thread dispatcher 2504, an instruction cache
2506, a scalable execution unit array including a plurality of
execution units 2507A-2507N and 2508A-2508N, a sampler
2510, a data cache 2512, and a data port 2514. In at least one
embodiment, a scalable execution unit array can dynami-
cally scale by enabling or disabling one or more execution
units (e.g., any of execution unit 2508A-N or 2507A-N)
based on computational requirements of a workload, for
example. In at least one embodiment, scalable execution
units are interconnected via an interconnect fabric that links
to each execution unit. In at least one embodiment, thread
execution logic 2500 includes one or more connections to
memory, such as system memory or cache memory, through
one or more of instruction cache 2506, data port 2514,
sampler 2510, and execution units 2507 or 2508. In at least
one embodiment, each execution unit (e.g., 2507A) is a
stand-alone programmable general-purpose computational
unit that is capable of executing multiple simultaneous
hardware threads while processing multiple data elements in
parallel for each thread. In at least one embodiment, array of
execution units 2507 and/or 2508 is scalable to include any
number individual execution units.

[0384] In at least one embodiment, execution units 2507
and/or 2508 are primarily used to execute shader programs.
In at least one embodiment, shader processor 2502 can
process various shader programs and dispatch execution
threads associated with shader programs via a thread dis-
patcher 2504. In at least one embodiment, thread dispatcher
2504 includes logic to arbitrate thread initiation requests
from graphics and media pipelines and instantiate requested

US 2022/0284582 Al

threads on one or more execution units in execution units
2507 and/or 2508. For example, in at least one embodiment,
a geometry pipeline can dispatch vertex, tessellation, or
geometry shaders to thread execution logic for processing.
In at least one embodiment, thread dispatcher 2504 can also
process runtime thread spawning requests from executing
shader programs.

[0385] In at least one embodiment, execution units 2507
and/or 2508 support an instruction set that includes native
support for many standard 3D graphics shader instructions,
such that shader programs from graphics libraries (e.g.,
Direct 3D and OpenGL) are executed with a minimal
translation. In at least one embodiment, execution units
support vertex and geometry processing (e.g., vertex pro-
grams, geometry programs, and/or vertex shaders), pixel
processing (e.g., pixel shaders, fragment shaders) and gen-
eral-purpose processing (e.g., compute and media shaders).
In at least one embodiment, each of execution units 2507
and/or 2508, which include one or more arithmetic logic
units (ALUs), is capable of multi-issue single instruction
multiple data (SIMD) execution and multi-threaded opera-
tion enables an efficient execution environment despite
higher latency memory accesses. In at least one embodi-
ment, each hardware thread within each execution unit has
a dedicated high-bandwidth register file and associated
independent thread-state. In at least one embodiment, execu-
tion is multi-issue per clock to pipelines capable of integer,
single and double precision floating point operations, SIMD
branch capability, logical operations, transcendental opera-
tions, and other miscellaneous operations. In at least one
embodiment, while waiting for data from memory or one of
shared functions, dependency logic within execution units
2507 and/or 2508 causes a waiting thread to sleep until
requested data has been returned. In at least one embodi-
ment, while an awaiting thread is sleeping, hardware
resources may be devoted to processing other threads. For
example, in at least one embodiment, during a delay asso-
ciated with a vertex shader operation, an execution unit can
perform operations for a pixel shader, fragment shader, or
another type of shader program, including a different vertex
shader.

[0386] In at least one embodiment, each execution unit in
execution units 2507 and/or 2508 operates on arrays of data
elements. In at least one embodiment, a number of data
elements is an “execution size,” or number of channels for
an instruction. In at least one embodiment, an execution
channel is a logical unit of execution for data element
access, masking, and flow control within instructions. In at
least one embodiment, a number of channels may be inde-
pendent of a number of physical arithmetic logic units
(ALUs) or floating point units (FPUs) for a particular
graphics processor. In at least one embodiment, execution
units 2507 and/or 2508 support integer and floating-point
data types.

[0387] In at least one embodiment, an execution unit
instruction set includes SIMD instructions. In at least one
embodiment, various data elements can be stored as a
packed data type in a register and execution unit will process
various elements based on data size of elements. For
example, in at least one embodiment, when operating on a
256-bit wide vector, 256 bits of a vector are stored in a
register and an execution unit operates on a vector as four
separate 64-bit packed data elements (Quad-Word (QW)
size data elements), eight separate 32-bit packed data ele-

Sep. 8§, 2022

ments (Double Word (DW) size data elements), sixteen
separate 16-bit packed data elements (Word (W) size data
elements), or thirty-two separate 8-bit data elements (byte
(B) size data elements). However, in at least one embodi-
ment, different vector widths and register sizes are possible.

[0388] In at least one embodiment, one or more execution
units can be combined into a fused execution unit 2509A-
2509N having thread control logic (2511A-2511N) that is
common to fused EUs such as execution unit 2507A fused
with execution unit 2508 A into fused execution unit 2509A.
In at least one embodiment, multiple EUs can be fused into
an EU group. In at least one embodiment, each EU in a fused
EU group can be configured to execute a separate SIMD
hardware thread, with a number of EUs in a fused EU group
possibly varying according to various embodiments. In at
least one embodiment, various SIMD widths can be per-
formed per-EU, including but not limited to SIMDS,
SIMD16, and SIMD32. In at least one embodiment, each
fused graphics execution unit 2509A-2509N includes at
least two execution units. For example, in at least one
embodiment, fused execution unit 2509A includes a first EU
2507A, second EU 2508A, and thread control logic 2511A
that is common to first EU 2507 A and second EU 2508A. In
at least one embodiment, thread control logic 2511A con-
trols threads executed on fused graphics execution unit
2509A, allowing each EU within fused execution units
2509A-2509N to execute using a common instruction
pointer register.

[0389] In at least one embodiment, one or more internal
instruction caches (e.g., 2506) are included in thread execu-
tion logic 2500 to cache thread instructions for execution
units. In at least one embodiment, one or more data caches
(e.g., 2512) are included to cache thread data during thread
execution. In at least one embodiment, sampler 2510 is
included to provide texture sampling for 3D operations and
media sampling for media operations. In at least one
embodiment, sampler 2510 includes specialized texture or
media sampling functionality to process texture or media
data during sampling process before providing sampled data
to an execution unit.

[0390] During execution, in at least one embodiment,
graphics and media pipelines send thread initiation requests
to thread execution logic 2500 via thread spawning and
dispatch logic. In at least one embodiment, once a group of
geometric objects has been processed and rasterized into
pixel data, pixel processor logic (e.g., pixel shader logic,
fragment shader logic, etc.) within shader processor 2502 is
invoked to further compute output information and cause
results to be written to output surfaces (e.g., color buffers,
depth buffers, stencil buffers, etc.). In at least one embodi-
ment, a pixel shader or a fragment shader calculates values
of various vertex attributes that are to be interpolated across
a rasterized object. In at least one embodiment, pixel pro-
cessor logic within shader processor 2502 then executes an
application programming interface (API)-supplied pixel or
fragment shader program. In at least one embodiment, to
execute a shader program, shader processor 2502 dispatches
threads to an execution unit (e.g., 2508A) via thread dis-
patcher 2504. In at least one embodiment, shader processor
2502 uses texture sampling logic in sampler 2510 to access
texture data in texture maps stored in memory. In at least one
embodiment, arithmetic operations on texture data and input

US 2022/0284582 Al

geometry data compute pixel color data for each geometric
fragment, or discards one or more pixels from further
processing.

[0391] In at least one embodiment, data port 2514 pro-
vides a memory access mechanism for thread execution
logic 2500 to output processed data to memory for further
processing on a graphics processor output pipeline. In at
least one embodiment, data port 2514 includes or couples to
one or more cache memories (e.g., data cache 2512) to cache
data for memory access via a data port.

[0392] As illustrated in FIG. 25B, in at least one embodi-
ment, a graphics execution unit 2508 can include an instruc-
tion fetch unit 2537, a general register file array (GRF) 2524,
an architectural register file array (ARF) 2526, a thread
arbiter 2522, a send unit 2530, a branch unit 2532, a set of
SIMD floating point units (FPUs) 2534, and a set of dedi-
cated integer SIMD ALUs 2535. In at least one embodiment,
GRF 2524 and ARF 2526 includes a set of general register
files and architecture register files associated with each
simultaneous hardware thread that may be active in graphics
execution unit 2508. In at least one embodiment, per thread
architectural state is maintained in ARF 2526, while data
used during thread execution is stored in GRF 2524. In at
least one embodiment, execution state of each thread,
including instruction pointers for each thread, can be held in
thread-specific registers in ARF 2526.

[0393] Inatleast one embodiment, graphics execution unit
2508 has an architecture that is a combination of Simulta-
neous Multi-Threading (SMT) and fine-grained Interleaved
Multi-Threading (IMT). In at least one embodiment, archi-
tecture has a modular configuration that can be fine-tuned at
design time based on a target number of simultaneous
threads and number of registers per execution unit, where
execution unit resources are divided across logic used to
execute multiple simultaneous threads.

[0394] In atleast one embodiment, graphics execution unit
2508 can co-issue multiple instructions, which may each be
different instructions. In at least one embodiment, thread
arbiter 2522 of graphics execution unit thread 2508 can
dispatch instructions to one of send unit 2530, branch unit
2532, or SIMD FPU(s) 2534 for execution. In at least one
embodiment, each execution thread can access 128 general-
purpose registers within GRF 2524, where each register can
store 32 bytes, accessible as a SIMD 8-element vector of
32-bit data elements. In at least one embodiment, each
execution unit thread has access to 4 kilobytes within GRF
2524, although embodiments are not so limited, and greater
or fewer register resources may be provided in other
embodiments. In at least one embodiment, up to seven
threads can execute simultaneously, although a number of
threads per execution unit can also vary according to
embodiments. In at least one embodiment, in which seven
threads may access 4 kilobytes, GRF 2524 can store a total
of 28 kilobytes. In at least one embodiment, flexible address-
ing modes can permit registers to be addressed together to
build effectively wider registers or to represent strided
rectangular block data structures.

[0395] In at least one embodiment, memory operations,
sampler operations, and other longer-latency system com-
munications are dispatched via “send” instructions that are
executed by message passing to send unit 2530. In at least
one embodiment, branch instructions are dispatched to
branch unit 2532 to facilitate SIMD divergence and eventual
convergence.

Sep. 8§, 2022

[0396] In atleast one embodiment, graphics execution unit
2508 includes one or more SIMD floating point units
(FPU(s)) 2534 to perform floating-point operations. In at
least one embodiment, FPU(s) 2534 also support integer
computation. In at least one embodiment, FPU(s) 2534 can
SIMD execute up to M number of 32-bit floating-point (or
integer) operations, or SIMD execute up to 2M 16-bit
integer or 16-bit floating-point operations. In at least one
embodiment, at least one FPU provides extended math
capability to support high-throughput transcendental math
functions and double precision 64-bit floating-point. In at
least one embodiment, a set of 8-bit integer SIMD ALUs
2535 are also present, and may be specifically optimized to
perform operations associated with machine learning com-
putations.

[0397] In at least one embodiment, arrays of multiple
instances of graphics execution unit 2508 can be instantiated
in a graphics sub-core grouping (e.g., a sub-slice). In at least
one embodiment, execution unit 2508 can execute instruc-
tions across a plurality of execution channels. In at least one
embodiment, each thread executed on graphics execution
unit 2508 is executed on a different channel.

[0398] Inference and/or training logic 115 are used to
perform inferencing and/or training operations associated
with one or more embodiments. Details regarding inference
and/or training logic 115 are provided herein in conjunction
with FIGS. 1A and/or 1B. In at least one embodiment,
portions or all of inference and/or training logic 115 may be
incorporated into thread execution logic 2500. Moreover, in
at least one embodiment, inferencing and/or training opera-
tions described herein may be done using logic other than
logic illustrated in FIG. 1A or 1B. In at least one embodi-
ment, weight parameters may be stored in on-chip or off-
chip memory and/or registers (shown or not shown) that
configure AL Us thread of execution logic 2500 to perform
one or more machine learning algorithms, neural network
architectures, use cases, or training techniques described
herein.

[0399] FIG. 26 illustrates a parallel processing unit
(“PPU”) 2600, according to at least one embodiment. In at
least one embodiment, PPU 2600 is configured with
machine-readable code that, if executed by PPU 2600,
causes PPU 2600 to perform some or all of processes and
techniques described throughout this disclosure. In at least
one embodiment, PPU 2600 is a multi-threaded processor
that is implemented on one or more integrated circuit
devices and that utilizes multithreading as a latency-hiding
technique designed to process computer-readable instruc-
tions (also referred to as machine-readable instructions or
simply instructions) on multiple threads in parallel. In at
least one embodiment, a thread refers to a thread of execu-
tion and is an instantiation of a set of instructions configured
to be executed by PPU 2600. In at least one embodiment,
PPU 2600 is a graphics processing unit (“GPU”) configured
to implement a graphics rendering pipeline for processing
three-dimensional (“3D”) graphics data in order to generate
two-dimensional (“2D") image data for display on a display
device such as a liquid crystal display (“LCD”) device. In at
least one embodiment, PPU 2600 is utilized to perform
computations such as linear algebra operations and machine-
learning operations. FIG. 26 illustrates an example parallel
processor for illustrative purposes only and should be con-
strued as a non-limiting example of processor architectures

US 2022/0284582 Al

contemplated within scope of this disclosure and that any
suitable processor may be employed to supplement and/or
substitute for same.

[0400] In at least one embodiment, one or more PPUs
2600 are configured to accelerate High Performance Com-
puting (“HPC”), data center, and machine learning applica-
tions. In at least one embodiment, PPU 2600 is configured
to accelerate deep learning systems and applications includ-
ing following non-limiting examples: autonomous vehicle
platforms, deep learning, high-accuracy speech, image, text
recognition systems, intelligent video analytics, molecular
simulations, drug discovery, disease diagnosis, weather fore-
casting, big data analytics, astronomy, molecular dynamics
simulation, financial modeling, robotics, factory automation,
real-time language translation, online search optimizations,
and personalized user recommendations, and more.

[0401] In at least one embodiment, PPU 2600 includes,
without limitation, an Input/Output (“I/O”) unit 2606, a
front-end unit 2610, a scheduler unit 2612, a work distri-
bution unit 2614, a hub 2616, a crossbar (“XBar”) 2620, one
or more general processing clusters (“GPCs”) 2618, and one
or more partition units (“memory partition units”) 2622. In
at least one embodiment, PPU 2600 is connected to a host
processor or other PPUs 2600 via one or more high-speed
GPU interconnects (“GPU interconnects™) 2608. In at least
one embodiment, PPU 2600 is connected to a host processor
or other peripheral devices via a system bus 2602. In at least
one embodiment, PPU 2600 is connected to a local memory
comprising one or more memory devices (“memory”) 2604.
In at least one embodiment, memory devices 2604 include,
without limitation, one or more dynamic random access
memory (“DRAM?”) devices. In at least one embodiment,
one or more DRAM devices are configured and/or config-
urable as high-bandwidth memory (“HBM”) subsystems,
with multiple DRAM dies stacked within each device.
[0402] In at least one embodiment, high-speed GPU inter-
connect 2608 may refer to a wire-based multi-lane commu-
nications link that is used by systems to scale and include
one or more PPUs 2600 combined with one or more central
processing units (“CPUs™), supports cache coherence
between PPUs 2600 and CPUs, and CPU mastering. In at
least one embodiment, data and/or commands are transmit-
ted by high-speed GPU interconnect 2608 through hub 2616
to/from other units of PPU 2600 such as one or more copy
engines, video encoders, video decoders, power manage-
ment units, and other components which may not be explic-
itly illustrated in FIG. 26.

[0403] In at least one embodiment, I/O unit 2606 is
configured to transmit and receive communications (e.g.,
commands, data) from a host processor (not illustrated in
FIG. 26) over system bus 2602. In at least one embodiment,
1/0 unit 2606 communicates with host processor directly via
system bus 2602 or through one or more intermediate
devices such as a memory bridge. In at least one embodi-
ment, [/O unit 2606 may communicate with one or more
other processors, such as one or more of PPUs 2600 via
system bus 2602. In at least one embodiment, I/O unit 2606
implements a Peripheral Component Interconnect Express
(“PCle”) interface for communications over a PCle bus. In
at least one embodiment, /O unit 2606 implements inter-
faces for communicating with external devices.

[0404] In at least one embodiment, I/O unit 2606 decodes
packets received via system bus 2602. In at least one
embodiment, at least some packets represent commands

Sep. 8§, 2022

configured to cause PPU 2600 to perform various opera-
tions. In at least one embodiment, I/O unit 2606 transmits
decoded commands to various other units of PPU 2600 as
specified by commands. In at least one embodiment, com-
mands are transmitted to front-end unit 2610 and/or trans-
mitted to hub 2616 or other units of PPU 2600 such as one
or more copy engines, a video encoder, a video decoder, a
power management unit, etc. (not explicitly illustrated in
FIG. 26). In at least one embodiment, I/O unit 2606 is
configured to route communications between and among
various logical units of PPU 2600.

[0405] In at least one embodiment, a program executed by
host processor encodes a command stream in a buffer that
provides workloads to PPU 2600 for processing. In at least
one embodiment, a workload comprises instructions and
data to be processed by those instructions. In at least one
embodiment, a buffer is a region in a memory that is
accessible (e.g., read/write) by both a host processor and
PPU 2600—a host interface unit may be configured to
access that buffer in a system memory connected to system
bus 2602 via memory requests transmitted over system bus
2602 by 1/O unit 2606. In at least one embodiment, a host
processor writes a command stream to a buffer and then
transmits a pointer to a start of a command stream to PPU
2600 such that front-end unit 2610 receives pointers to one
or more command streams and manages one or more com-
mand streams, reading commands from command streams
and forwarding commands to various units of PPU 2600.
[0406] In at least one embodiment, front-end unit 2610 is
coupled to scheduler unit 2612 that configures various GPCs
2618 to process tasks defined by one or more command
streams. In at least one embodiment, scheduler unit 2612 is
configured to track state information related to various tasks
managed by scheduler unit 2612 where state information
may indicate which of GPCs 2618 a task is assigned to,
whether task is active or inactive, a priority level associated
with task, and so forth. In at least one embodiment, sched-
uler unit 2612 manages execution of a plurality of tasks on
one or more of GPCs 2618.

[0407] In at least one embodiment, scheduler unit 2612 is
coupled to work distribution unit 2614 that is configured to
dispatch tasks for execution on GPCs 2618. In at least one
embodiment, work distribution unit 2614 tracks a number of
scheduled tasks received from scheduler unit 2612 and work
distribution unit 2614 manages a pending task pool and an
active task pool for each of GPCs 2618. In at least one
embodiment, pending task pool comprises a number of slots
(e.g., 32 slots) that contain tasks assigned to be processed by
a particular GPC 2618; an active task pool may comprise a
number of slots (e.g., 4 slots) for tasks that are actively being
processed by GPCs 2618 such that as one of GPCs 2618
completes execution of a task, that task is evicted from that
active task pool for GPC 2618 and another task from a
pending task pool is selected and scheduled for execution on
GPC 2618. In at least one embodiment, if an active task is
idle on GPC 2618, such as while waiting for a data depen-
dency to be resolved, then that active task is evicted from
GPC 2618 and returned to that pending task pool while
another task in that pending task pool is selected and
scheduled for execution on GPC 2618.

[0408] In at least one embodiment, work distribution unit
2614 communicates with one or more GPCs 2618 via XBar
2620. In at least one embodiment, XBar 2620 is an inter-
connect network that couples many of units of PPU 2600 to

US 2022/0284582 Al

other units of PPU 2600 and can be configured to couple
work distribution unit 2614 to a particular GPC 2618. In at
least one embodiment, one or more other units of PPU 2600
may also be connected to XBar 2620 via hub 2616.
[0409] In at least one embodiment, tasks are managed by
scheduler unit 2612 and dispatched to one of GPCs 2618 by
work distribution unit 2614. In at least one embodiment,
GPC 2618 is configured to process task and generate results.
In at least one embodiment, results may be consumed by
other tasks within GPC 2618, routed to a different GPC 2618
via XBar 2620, or stored in memory 2604. In at least one
embodiment, results can be written to memory 2604 via
partition units 2622, which implement a memory interface
for reading and writing data to/from memory 2604. In at
least one embodiment, results can be transmitted to another
PPU 2604 or CPU via high-speed GPU interconnect 2608.
In at least one embodiment, PPU 2600 includes, without
limitation, a number U of partition units 2622 that is equal
to a number of separate and distinct memory devices 2604
coupled to PPU 2600, as described in more detail herein in
conjunction with FIG. 28.

[0410] In at least one embodiment, a host processor
executes a driver kernel that implements an application
programming interface (“API”) that enables one or more
applications executing on a host processor to schedule
operations for execution on PPU 2600. In at least one
embodiment, multiple compute applications are simultane-
ously executed by PPU 2600 and PPU 2600 provides
isolation, quality of service (“QoS”), and independent
address spaces for multiple compute applications. In at least
one embodiment, an application generates instructions (e.g.,
in form of API calls) that cause a driver kernel to generate
one or more tasks for execution by PPU 2600 and that driver
kernel outputs tasks to one or more streams being processed
by PPU 2600. In at least one embodiment, each task com-
prises one or more groups of related threads, which may be
referred to as a warp. In at least one embodiment, a warp
comprises a plurality of related threads (e.g., 32 threads) that
can be executed in parallel. In at least one embodiment,
cooperating threads can refer to a plurality of threads includ-
ing instructions to perform task and that exchange data
through shared memory. In at least one embodiment, threads
and cooperating threads are described in more detail in
conjunction with FIG. 28.

[0411] Inference and/or training logic 115 are used to
perform inferencing and/or training operations associated
with one or more embodiments. Details regarding inference
and/or training logic 115 are provided herein in conjunction
with FIGS. 1A and/or 1B. In at least one embodiment, deep
learning application processor is used to train a machine
learning model, such as a neural network, to predict or infer
information provided to PPU 2600. In at least one embodi-
ment, deep learning application processor 2600 is used to
infer or predict information based on a trained machine
learning model (e.g., neural network) that has been trained
by another processor or system or by PPU 2600. In at least
one embodiment, PPU 2600 may be used to perform one or
more neural network use cases described herein.

[0412] FIG. 27 illustrates a general processing cluster
(“GPC”) 2700, according to at least one embodiment. In at
least one embodiment, GPC 2700 is GPC 2618 of FIG. 26.
In at least one embodiment, each GPC 2700 includes,
without limitation, a number of hardware units for process-
ing tasks and each GPC 2700 includes, without limitation, a

Sep. 8§, 2022

pipeline manager 2702, a pre-raster operations unit
(“preROP”) 2704, a raster engine 2708, a work distribution
crossbar (“WDX”) 2716, a memory management unit
(“MMU”) 2718, one or more Data Processing Clusters
(“DPCs”) 2706, and any suitable combination of parts.

[0413] In atleast one embodiment, operation of GPC 2700
is controlled by pipeline manager 2702. In at least one
embodiment, pipeline manager 2702 manages configuration
of one or more DPCs 2706 for processing tasks allocated to
GPC 2700. In at least one embodiment, pipeline manager
2702 configures at least one of one or more DPCs 2706 to
implement at least a portion of a graphics rendering pipeline.
In at least one embodiment, DPC 2706 is configured to
execute a vertex shader program on a programmable stream-
ing multi-processor (“SM”) 2714. In at least one embodi-
ment, pipeline manager 2702 is configured to route packets
received from a work distribution unit to appropriate logical
units within GPC 2700, in at least one embodiment, and
some packets may be routed to fixed function hardware units
in preROP 2704 and/or raster engine 2708 while other
packets may be routed to DPCs 2706 for processing by a
primitive engine 2712 or SM 2714. In at least one embodi-
ment, pipeline manager 2702 configures at least one of
DPCs 2706 to implement a neural network model and/or a
computing pipeline.

[0414] In at least one embodiment, preROP unit 2704 is
configured, in at least one embodiment, to route data gen-
erated by raster engine 2708 and DPCs 2706 to a Raster
Operations (“ROP”) unit in partition unit 2622, described in
more detail above in conjunction with FIG. 26. In at least
one embodiment, preROP unit 2704 is configured to perform
optimizations for color blending, organize pixel data, per-
form address translations, and more. In at least one embodi-
ment, raster engine 2708 includes, without limitation, a
number of fixed function hardware units configured to
perform various raster operations, in at least one embodi-
ment, and raster engine 2708 includes, without limitation, a
setup engine, a coarse raster engine, a culling engine, a
clipping engine, a fine raster engine, a tile coalescing engine,
and any suitable combination thereof. In at least one
embodiment, setup engine receives transformed vertices and
generates plane equations associated with geometric primi-
tive defined by vertices; plane equations are transmitted to a
coarse raster engine to generate coverage information (e.g.,
an X, y coverage mask for a tile) for primitive; output of a
coarse raster engine is transmitted to a culling engine where
fragments associated with a primitive that fail a z-test are
culled, and transmitted to a clipping engine where fragments
lying outside a viewing frustum are clipped. In at least one
embodiment, fragments that survive clipping and culling are
passed to a fine raster engine to generate attributes for pixel
fragments based on plane equations generated by a setup
engine. In at least one embodiment, an output of raster
engine 2708 comprises fragments to be processed by any
suitable entity, such as by a fragment shader implemented
within DPC 2706.

[0415] In at least one embodiment, each DPC 2706
included in GPC 2700 comprises, without limitation, an
M-Pipe Controller (“MPC”) 2710; primitive engine 2712;
one or more SMs 2714; and any suitable combination
thereof. In at least one embodiment, MPC 2710 controls
operation of DPC 2706, routing packets received from
pipeline manager 2702 to appropriate units in DPC 2706. In
at least one embodiment, packets associated with a vertex

US 2022/0284582 Al

are routed to primitive engine 2712, which is configured to
fetch vertex attributes associated with a vertex from
memory; in contrast, packets associated with a shader pro-
gram may be transmitted to SM 2714.

[0416] In at least one embodiment, SM 2714 comprises,
without limitation, a programmable streaming processor that
is configured to process tasks represented by a number of
threads. In at least one embodiment, SM 2714 is multi-
threaded and configured to execute a plurality of threads
(e.g., 32 threads) from a particular group of threads concur-
rently and implements a Single-Instruction, Multiple-Data
(“SIMD”) architecture where each thread in a group of
threads (e.g., a warp) is configured to process a different set
of data based on same set of instructions. In at least one
embodiment, all threads in group of threads execute a
common set of instructions. In at least one embodiment, SM
2714 implements a Single-Instruction, Multiple Thread
(“SIMT”) architecture wherein each thread in a group of
threads is configured to process a different set of data based
on that common set of instructions, but where individual
threads in a group of threads are allowed to diverge during
execution. In at least one embodiment, a program counter,
call stack, and execution state is maintained for each warp,
enabling concurrency between warps and serial execution
within warps when threads within a warp diverge. In another
embodiment, a program counter, call stack, and execution
state is maintained for each individual thread, enabling equal
concurrency between all threads, within and between warps.
In at least one embodiment, execution state is maintained for
each individual thread and threads executing common
instructions may be converged and executed in parallel for
better efficiency. At least one embodiment of SM 2714 is
described in more detail herein.

[0417] In at least one embodiment, MMU 2718 provides
an interface between GPC 2700 and a memory partition unit
(e.g., partition unit 2622 of FIG. 26) and MMU 2718
provides translation of virtual addresses into physical
addresses, memory protection, and arbitration of memory
requests. In at least one embodiment, MMU 2718 provides
one or more translation lookaside buffers (“TLBs”) for
performing translation of virtual addresses into physical
addresses in memory.

[0418] Inference and/or training logic 115 are used to
perform inferencing and/or training operations associated
with one or more embodiments. Details regarding inference
and/or training logic 115 are provided herein in conjunction
with FIGS. 1A and/or 1B. In at least one embodiment, deep
learning application processor is used to train a machine
learning model, such as a neural network, to predict or infer
information provided to GPC 2700. In at least one embodi-
ment, GPC 2700 is used to infer or predict information based
on a trained machine learning model (e.g., neural network)
that has been trained by another processor or system or by
GPC 2700. In at least one embodiment, GPC 2700 may be
used to perform one or more neural network use cases
described herein.

[0419] FIG. 28 illustrates a memory partition unit 2800 of
a parallel processing unit (“PPU”), in accordance with at
least one embodiment. In at least one embodiment, memory
partition unit 2800 includes, without limitation, a Raster
Operations (“ROP”) unit 2802, a level two (“L2”) cache
2804, a memory interface 2806, and any suitable combina-
tion thereof. In at least one embodiment, memory interface
2806 is coupled to memory. In at least one embodiment,

Sep. 8§, 2022

memory interface 2806 may implement 32, 64, 128, 1024-
bit data buses, or like, for high-speed data transfer. In at least
one embodiment, PPU incorporates U memory interfaces
2806 where U is a positive integer, with one memory
interface 2806 per pair of partition units 2800, where each
pair of partition units 2800 is connected to a corresponding
memory device. For example, in at least one embodiment,
PPU may be connected to up to Y memory devices, such as
high bandwidth memory stacks or graphics double-data-rate,
version 5, synchronous dynamic random access memory
(“GDDRS5 SDRAM™).

[0420] In atleast one embodiment, memory interface 2806
implements a high bandwidth memory second generation
(“HBM2”) memory interface and Y equals half of U. In at
least one embodiment, HBM2 memory stacks are located on
a physical package with a PPU, providing substantial power
and area savings compared with conventional GDDRS
SDRAM systems. In at least one embodiment, each HBM2
stack includes, without limitation, four memory dies with
Y=4, with each HBM2 stack including two 128-bit channels
per die for a total of 8 channels and a data bus width of 1024
bits. In at least one embodiment, that memory supports
Single-Error ~ Correcting Double-Error Detecting
(“SECDED”) Error Correction Code (“ECC”) to protect
data. In at least one embodiment, ECC can provide higher
reliability for compute applications that are sensitive to data
corruption.

[0421] In at least one embodiment, PPU implements a
multi-level memory hierarchy. In at least one embodiment,
memory partition unit 2800 supports a unified memory to
provide a single unified virtual address space for central
processing unit (“CPU”) and PPU memory, enabling data
sharing between virtual memory systems. In at least one
embodiment frequency of accesses by a PPU to a memory
located on other processors is traced to ensure that memory
pages are moved to physical memory of PPU that is access-
ing pages more frequently. In at least one embodiment,
high-speed GPU interconnect 2608 supports address trans-
lation services allowing PPU to directly access a CPU’s
page tables and providing full access to CPU memory by a
PPU.

[0422] In at least one embodiment, copy engines transfer
data between multiple PPUs or between PPUs and CPUs. In
at least one embodiment, copy engines can generate page
faults for addresses that are not mapped into page tables and
memory partition unit 2800 then services page faults, map-
ping addresses into page table, after which copy engine
performs a transfer. In at least one embodiment, memory is
pinned (i.e., non-pageable) for multiple copy engine opera-
tions between multiple processors, substantially reducing
available memory. In at least one embodiment, with hard-
ware page faulting, addresses can be passed to copy engines
without regard as to whether memory pages are resident, and
a copy process is transparent.

[0423] Data from memory 2604 of FIG. 26 or other system
memory is fetched by memory partition unit 2800 and stored
in L2 cache 2804, which is located on-chip and is shared
between various GPCs, in accordance with at least one
embodiment. Each memory partition unit 2800, in at least
one embodiment, includes, without limitation, at least a
portion of L2 cache associated with a corresponding
memory device. In at least one embodiment, lower level
caches are implemented in various units within GPCs. In at
least one embodiment, each of SMs 2714 in FIG. 27 may

US 2022/0284582 Al

implement a Level 1 (“L1”) cache wherein that L1 cache is
private memory that is dedicated to a particular SM 2714
and data from L2 cache 2804 is fetched and stored in each
L1 cache for processing in functional units of SMs 2714. In
at least one embodiment, 1.2 cache 2804 is coupled to
memory interface 2806 and XBar 2620 shown in FIG. 26.
[0424] ROP unit 2802 performs graphics raster operations
related to pixel color, such as color compression, pixel
blending, and more, in at least one embodiment. ROP unit
2802, in at least one embodiment, implements depth testing
in conjunction with raster engine 2708, receiving a depth for
a sample location associated with a pixel fragment from a
culling engine of raster engine 2708. In at least one embodi-
ment, depth is tested against a corresponding depth in a
depth buffer for a sample location associated with a frag-
ment. In at least one embodiment, if that fragment passes
that depth test for that sample location, then ROP unit 2802
updates depth buffer and transmits a result of that depth test
to raster engine 2708. It will be appreciated that a number of
partition units 2800 may be different than a number of GPCs
and, therefore, each ROP unit 2802 can, in at least one
embodiment, be coupled to each GPC. In at least one
embodiment, ROP unit 2802 tracks packets received from
different GPCs and determines whether a result generated by
ROP unit 2802 is to be routed to through XBar 2620.
[0425] FIG. 29 illustrates a streaming multi-processor
(“SM”) 2900, according to at least one embodiment. In at
least one embodiment, SM 2900 is SM of FIG. 27. In at least
one embodiment, SM 2900 includes, without limitation, an
instruction cache 2902, one or more scheduler units 2904, a
register file 2908, one or more processing cores (“cores”
2910, one or more special function units (“SFUs™) 2912, one
or more load/store units (“LSUs™) 2914, an interconnect
network 2916, a shared memory/level one (“L.1”) cache
2918, and/or any suitable combination thereof.

[0426] In at least one embodiment, a work distribution
unit dispatches tasks for execution on general processing
clusters (“GPCs”) of parallel processing units (“PPUs”) and
each task is allocated to a particular Data Processing Cluster
(“DPC”) within a GPC and, if a task is associated with a
shader program, that task is allocated to one of SMs 2900.
In at least one embodiment, scheduler unit 2904 receives
tasks from a work distribution unit and manages instruction
scheduling for one or more thread blocks assigned to SM
2900. In at least one embodiment, scheduler unit 2904
schedules thread blocks for execution as warps of parallel
threads, wherein each thread block is allocated at least one
warp. In at least one embodiment, each warp executes
threads. In at least one embodiment, scheduler unit 2904
manages a plurality of different thread blocks, allocating
warps to different thread blocks and then dispatching
instructions from plurality of different cooperative groups to
various functional units (e.g., processing cores 2910, SFUs
2912, and L.SUs 2914) during each clock cycle.

[0427] In at least one embodiment, Cooperative Groups
may refer to a programming model for organizing groups of
communicating threads that allows developers to express
granularity at which threads are communicating, enabling
expression of richer, more efficient parallel decompositions.
In at least one embodiment, cooperative launch APIs support
synchronization amongst thread blocks for execution of
parallel algorithms. In at least one embodiment, applications
of conventional programming models provide a single,
simple construct for synchronizing cooperating threads: a

Sep. 8§, 2022

barrier across all threads of a thread block (e.g., syncthreads(
) function). However, in at least one embodiment, program-
mers may define groups of threads at smaller than thread
block granularities and synchronize within defined groups to
enable greater performance, design flexibility, and software
reuse in form of collective group-wide function interfaces.
In at least one embodiment, Cooperative Groups enables
programmers to define groups of threads explicitly at sub-
block (i.e., as small as a single thread) and multi-block
granularities, and to perform collective operations such as
synchronization on threads in a cooperative group. In at least
one embodiment, that programming model supports clean
composition across software boundaries, so that libraries
and utility functions can synchronize safely within their
local context without having to make assumptions about
convergence. In at least one embodiment, Cooperative
Groups primitives enable new patterns of cooperative par-
allelism, including, without limitation, producer-consumer
parallelism, opportunistic parallelism, and global synchro-
nization across an entire grid of thread blocks.

[0428] In at least one embodiment, a dispatch unit 2906 is
configured to transmit instructions to one or more functional
units and scheduler unit 2904 and includes, without limita-
tion, two dispatch units 2906 that enable two different
instructions from a common warp to be dispatched during
each clock cycle. In at least one embodiment, each scheduler
unit 2904 includes a single dispatch unit 2906 or additional
dispatch units 2906.

[0429] In at least one embodiment, each SM 2900, in at
least one embodiment, includes, without limitation, register
file 2908 that provides a set of registers for functional units
of SM 2900. In at least one embodiment, register file 2908
is divided between each functional unit such that each
functional unit is allocated a dedicated portion of register file
2908. In at least one embodiment, register file 2908 is
divided between different warps being executed by SM 2900
and register file 2908 provides temporary storage for oper-
ands connected to data paths of functional units. In at least
one embodiment, each SM 2900 comprises, without limita-
tion, a plurality of L. processing cores 2910, where L is a
positive integer. In at least one embodiment, SM 2900
includes, without limitation, a large number (e.g., 128 or
more) of distinct processing cores 2910. In at least one
embodiment, each processing core 2910 includes, without
limitation, a fully-pipelined, single-precision, double-preci-
sion, and/or mixed precision processing unit that includes,
without limitation, a floating point arithmetic logic unit and
an integer arithmetic logic unit. In at least one embodiment,
floating point arithmetic logic units implement IEEE 754-
2008 standard for floating point arithmetic. In at least one
embodiment, processing cores 2910 include, without limi-
tation, 64 single-precision (32-bit) floating point cores, 64
integer cores, 32 double-precision (64-bit) floating point
cores, and 8 tensor cores.

[0430] Tensor cores are configured to perform matrix
operations in accordance with at least one embodiment. In at
least one embodiment, one or more tensor cores are included
in processing cores 2910. In at least one embodiment, tensor
cores are configured to perform deep learning matrix arith-
metic, such as convolution operations for neural network
training and inferencing. In at least one embodiment, each
tensor core operates on a 4x4 matrix and performs a matrix
multiply and accumulate operation, D=AxB+C, where A, B,
C, and D are 4x4 matrices.

US 2022/0284582 Al

[0431] In at least one embodiment, matrix multiply inputs
A and B are 16-bit floating point matrices and accumulation
matrices C and D arel6-bit floating point or 32-bit floating
point matrices. In at least one embodiment, tensor cores
operate on 16-bit floating point input data with 32-bit
floating point accumulation. In at least one embodiment,
16-bit floating point multiply uses 64 operations and results
in a full precision product that is then accumulated using
32-bit floating point addition with other intermediate prod-
ucts for a 4x4x4 matrix multiply. Tensor cores are used to
perform much larger two-dimensional or higher dimensional
matrix operations, built up from these smaller elements, in
at least one embodiment. In at least one embodiment, an
API, such as a CUDA 9 C++ APIL exposes specialized
matrix load, matrix multiply and accumulate, and matrix
store operations to efficiently use tensor cores from a
CUDA-C++ program. In at least one embodiment, at a
CUDA level, a warp-level interface assumes 16x16 size
matrices spanning all 32 threads of warp.

[0432] In at least one embodiment, each SM 2900 com-
prises, without limitation, M SFUs 2912 that perform special
functions (e.g., attribute evaluation, reciprocal square root,
and like). In at least one embodiment, SFUs 2912 include,
without limitation, a tree traversal unit configured to traverse
a hierarchical tree data structure. In at least one embodiment,
SFUs 2912 include, without limitation, a texture unit con-
figured to perform texture map filtering operations. In at
least one embodiment, texture units are configured to load
texture maps (e.g., a 2D array of texels) from memory and
sample texture maps to produce sampled texture values for
use in shader programs executed by SM 2900. In at least one
embodiment, texture maps are stored in shared memory/L.1
cache 2918. In at least one embodiment, texture units
implement texture operations such as filtering operations
using mip-maps (e.g., texture maps of varying levels of
detail), in accordance with at least one embodiment. In at
least one embodiment, each SM 2900 includes, without
limitation, two texture units.

[0433] Each SM 2900 comprises, without limitation, N
LSUs 2914 that implement load and store operations
between shared memory/[.1 cache 2918 and register file
2908, in at least one embodiment. Interconnect network
2916 connects each functional unit to register file 2908 and
LSU 2914 to register file 2908 and shared memory/L.1 cache
2918 in at least one embodiment. In at least one embodi-
ment, interconnect network 2916 is a crossbar that can be
configured to connect any functional units to any registers in
register file 2908 and connect L.SUs 2914 to register file
2908 and memory locations in shared memory/L1 cache
2918.

[0434] In at least one embodiment, shared memory/I.1
cache 2918 is an array of on-chip memory that allows for
data storage and communication between SM 2900 and
primitive engine and between threads in SM 2900, in at least
one embodiment. In at least one embodiment, shared
memory/L.1 cache 2918 comprises, without limitation, 128
KB of storage capacity and is in a path from SM 2900 to a
partition unit. In at least one embodiment, shared memory/
L1 cache 2918, in at least one embodiment, is used to cache
reads and writes. In at least one embodiment, one or more of
shared memory/L.1 cache 2918, L2 cache, and memory are
backing stores.

[0435] Combining data cache and shared memory func-
tionality into a single memory block provides improved

Sep. 8§, 2022

performance for both types of memory accesses, in at least
one embodiment. In at least one embodiment, capacity is
used or is usable as a cache by programs that do not use
shared memory, such as if shared memory is configured to
use half of a capacity, and texture and load/store operations
can use remaining capacity. Integration within shared
memory/[.1 cache 2918 enables shared memory/L.1 cache
2918 to function as a high-throughput conduit for streaming
data while simultaneously providing high-bandwidth and
low-latency access to frequently reused data, in accordance
with at least one embodiment. In at least one embodiment,
when configured for general purpose parallel computation, a
simpler configuration can be used compared with graphics
processing. In at least one embodiment, fixed function
graphics processing units are bypassed, creating a much
simpler programming model. In a general purpose parallel
computation configuration, a work distribution unit assigns
and distributes blocks of threads directly to DPCs, in at least
one embodiment. In at least one embodiment, threads in a
block execute a common program, using a unique thread ID
in calculation to ensure each thread generates unique results,
using SM 2900 to execute program and perform calcula-
tions, shared memory/[.1 cache 2918 to communicate
between threads, and L.SU 2914 to read and write global
memory through shared memory/[.1 cache 2918 and
memory partition unit. In at least one embodiment, when
configured for general purpose parallel computation, SM
2900 writes commands that scheduler unit 2904 can use to
launch new work on DPCs.

[0436] In at least one embodiment, a PPU is included in or
coupled to a desktop computer, a laptop computer, a tablet
computer, servers, supercomputers, a smart-phone (e.g., a
wireless, hand-held device), personal digital assistant
(“PDA”), a digital camera, a vehicle, a head mounted
display, a hand-held electronic device, and more. In at least
one embodiment, a PPU is embodied on a single semicon-
ductor substrate. In at least one embodiment, a PPU is
included in a system-on-a-chip (“SoC”) along with one or
more other devices such as additional PPUs, memory, a
reduced instruction set computer (“RISC”) CPU, a memory
management unit (“MMU”), a digital-to-analog converter
(“DAC”), and like.

[0437] In atleast one embodiment, a PPU may be included
on a graphics card that includes one or more memory
devices. In at least one embodiment, that graphics card may
be configured to interface with a PCle slot on a motherboard
of'a desktop computer. In at least one embodiment, that PPU
may be an integrated graphics processing unit (“iGPU”)
included in chipset of a motherboard.

[0438] Inference and/or training logic 115 are used to
perform inferencing and/or training operations associated
with one or more embodiments. Details regarding inference
and/or training logic 115 are provided herein in conjunction
with FIGS. 1A and/or 1B. In at least one embodiment, deep
learning application processor is used to train a machine
learning model, such as a neural network, to predict or infer
information provided to SM 2900. In at least one embodi-
ment, SM 2900 is used to infer or predict information based
on a trained machine learning model (e.g., neural network)
that has been trained by another processor or system or by
SM 2900. In at least one embodiment, SM 2900 may be used
to perform one or more neural network use cases described
herein.

US 2022/0284582 Al

[0439] Embodiments are disclosed related a virtualized
computing platform for advanced computing, such as image
inferencing and image processing in medical applications.
Without limitation, embodiments may include radiography,
magnetic resonance imaging (MRI), nuclear medicine, ultra-
sound, sonography, elastography, photoacoustic imaging,
tomography, echocardiography, functional near-infrared
spectroscopy, and magnetic particle imaging, or a combina-
tion thereof. In at least one embodiment, a virtualized
computing platform and associated processes described
herein may additionally or alternatively be used, without
limitation, in forensic science analysis, sub-surface detec-
tion and imaging (e.g., oil exploration, archaeology, pale-
ontology, etc.), topography, oceanography, geology, osteol-
ogy, meteorology, intelligent area or object tracking and
monitoring, sensor data processing (e.g., RADAR, SONAR,
LIDAR, etc.), and/or genomics and gene sequencing.

[0440] With reference to FIG. 30, FIG. 30 is an example
data flow diagram for a process 3000 of generating and
deploying an image processing and inferencing pipeline, in
accordance with at least one embodiment. In at least one
embodiment, process 3000 may be deployed for use with
imaging devices, processing devices, genomics devices,
gene sequencing devices, radiology devices, and/or other
device types at one or more facilities 3002, such as medical
facilities, hospitals, healthcare institutes, clinics, research or
diagnostic labs, etc. In at least one embodiment, process
3000 may be deployed to perform genomics analysis and
inferencing on sequencing data. Examples of genomic
analyses that may be performed using systems and processes
described herein include, without limitation, variant calling,
mutation detection, and gene expression quantification.

[0441] In at least one embodiment, process 3000 may be
executed within a training system 3004 and/or a deployment
system 3006. In at least one embodiment, training system
3004 may be used to perform training, deployment, and
implementation of machine learning models (e.g., neural
networks, object detection algorithms, computer vision
algorithms, etc.) for use in deployment system 3006. In at
least one embodiment, deployment system 3006 may be
configured to offload processing and compute resources
among a distributed computing environment to reduce infra-
structure requirements at facility 3002. In at least one
embodiment, deployment system 3006 may provide a
streamlined platform for selecting, customizing, and imple-
menting virtual instruments for use with imaging devices
(e.g., MRI, CT Scan, X-Ray, Ultrasound, etc.) or sequencing
devices at facility 3002. In at least one embodiment, virtual
instruments may include software-defined applications for
performing one or more processing operations with respect
to imaging data generated by imaging devices, sequencing
devices, radiology devices, and/or other device types. In at
least one embodiment, one or more applications in a pipeline
may use or call upon services (e.g., inference, visualization,
compute, Al, etc.) of deployment system 3006 during execu-
tion of applications.

[0442] In at least one embodiment, some of applications
used in advanced processing and inferencing pipelines may
use machine learning models or other Al to perform one or
more processing steps. In at least one embodiment, machine
learning models may be trained at facility 3002 using data
3008 (such as imaging data) generated at facility 3002 (and
stored on one or more picture archiving and communication
system (PACS) servers at facility 3002), may be trained

Sep. 8§, 2022

using imaging or sequencing data 3008 from another facility
or facilities (e.g., a different hospital, lab, clinic, etc.), or a
combination thereof. In at least one embodiment, training
system 3004 may be used to provide applications, services,
and/or other resources for generating working, deployable
machine learning models for deployment system 3006.

[0443] In at least one embodiment, a model registry 3024
may be backed by object storage that may support version-
ing and object metadata. In at least one embodiment, object
storage may be accessible through, for example, a cloud
storage (e.g., a cloud 3126 of FIG. 31) compatible applica-
tion programming interface (API) from within a cloud
platform. In at least one embodiment, machine learning
models within model registry 3024 may uploaded, listed,
modified, or deleted by developers or partners of a system
interacting with an API. In at least one embodiment, an API
may provide access to methods that allow users with appro-
priate credentials to associate models with applications, such
that models may be executed as part of execution of con-
tainerized instantiations of applications.

[0444] In at least one embodiment, a training pipeline
3104 (FIG. 31) may include a scenario where facility 3002
is training their own machine learning model, or has an
existing machine learning model that needs to be optimized
or updated. In at least one embodiment, imaging data 3008
generated by imaging device(s), sequencing devices, and/or
other device types may be received. In at least one embodi-
ment, once imaging data 3008 is received, Al-assisted
annotation 3010 may be used to aid in generating annota-
tions corresponding to imaging data 3008 to be used as
ground truth data for a machine learning model. In at least
one embodiment, Al-assisted annotation 3010 may include
one or more machine learning models (e.g., convolutional
neural networks (CNNs)) that may be trained to generate
annotations corresponding to certain types of imaging data
3008 (e.g., from certain devices) and/or certain types of
anomalies in imaging data 3008. In at least one embodiment,
Al-assisted annotations 3010 may then be used directly, or
may be adjusted or fine-tuned using an annotation tool (e.g.,
by a researcher, a clinician, a doctor, a scientist, etc.), to
generate ground truth data. In at least one embodiment, in
some examples, labeled clinic data 3012 (e.g., annotations
provided by a clinician, doctor, scientist, technician, etc.)
may be used as ground truth data for training a machine
learning model. In at least one embodiment, Al-assisted
annotations 3010, labeled clinic data 3012, or a combination
thereof may be used as ground truth data for training a
machine learning model. In at least one embodiment, a
trained machine learning model may be referred to as an
output model 3016, and may be used by deployment system
3006, as described herein.

[0445] In at least one embodiment, training pipeline 3104
(FIG. 31) may include a scenario where facility 3002 needs
a machine learning model for use in performing one or more
processing tasks for one or more applications in deployment
system 3006, but facility 3002 may not currently have such
a machine learning model (or may not have a model that is
optimized, efficient, or effective for such purposes). In at
least one embodiment, an existing machine learning model
may be selected from model registry 3024. In at least one
embodiment, model registry 3024 may include machine
learning models trained to perform a variety of different
inference tasks on imaging data. In at least one embodiment,
machine learning models in model registry 3024 may have

US 2022/0284582 Al

been trained on imaging data from different facilities than
facility 3002 (e.g., facilities remotely located). In at least one
embodiment, machine learning models may have been
trained on imaging data from one location, two locations, or
any number of locations. In at least one embodiment, when
being trained on imaging data from a specific location,
training may take place at that location, or at least in a
manner that protects confidentiality of imaging data or
restricts imaging data from being transferred off-premises
(e.g., to comply with HIPAA regulations, privacy regula-
tions, etc.). In at least one embodiment, once a model is
trained—or partially trained—at one location, a machine
learning model may be added to model registry 3024. In at
least one embodiment, a machine learning model may then
be retrained, or updated, at any number of other facilities,
and a retrained or updated model may be made available in
model registry 3024. In at least one embodiment, a machine
learning model may then be selected from model registry
3024—and referred to as output model 3016—and may be
used in deployment system 3006 to perform one or more
processing tasks for one or more applications of a deploy-
ment system.

[0446] In at least one embodiment, training pipeline 3104
(FIG. 31) may be used in a scenario that includes facility
3002 requiring a machine learning model for use in per-
forming one or more processing tasks for one or more
applications in deployment system 3006, but facility 3002
may not currently have such a machine learning model (or
may not have a model that is optimized, efficient, or effective
for such purposes). In at least one embodiment, a machine
learning model selected from model registry 3024 might not
be fine-tuned or optimized for imaging data 3008 generated
at facility 3002 because of differences in populations,
genetic variations, robustness of training data used to train
a machine learning model, diversity in anomalies of training
data, and/or other issues with training data. In at least one
embodiment, Al-assisted annotation 3010 may be used to
aid in generating annotations corresponding to imaging data
3008 to be used as ground truth data for retraining or
updating a machine learning model. In at least one embodi-
ment, labeled clinic data 3012 (e.g., annotations provided by
a clinician, doctor, scientist, etc.) may be used as ground
truth data for training a machine learning model. In at least
one embodiment, retraining or updating a machine learning
model may be referred to as model training 3014. In at least
one embodiment, model training 3014—e.g., Al-assisted
annotations 3010, labeled clinic data 3012, or a combination
thereof—may be used as ground truth data for retraining or
updating a machine learning model.

[0447] In at least one embodiment, deployment system
3006 may include software 3018, services 3020, hardware
3022, and/or other components, features, and functionality.
In at least one embodiment, deployment system 3006 may
include a software “stack,” such that software 3018 may be
built on top of services 3020 and may use services 3020 to
perform some or all of processing tasks, and services 3020
and software 3018 may be built on top of hardware 3022 and
use hardware 3022 to execute processing, storage, and/or
other compute tasks of deployment system 3006.

[0448] In at least one embodiment, software 3018 may
include any number of different containers, where each
container may execute an instantiation of an application. In
at least one embodiment, each application may perform one
or more processing tasks in an advanced processing and

Sep. 8§, 2022

inferencing pipeline (e.g., inferencing, object detection, fea-
ture detection, segmentation, image enhancement, calibra-
tion, etc.). In at least one embodiment, for each type of
imaging device (e.g., CT, MRI, X-Ray, ultrasound, sonog-
raphy, echocardiography, etc.), sequencing device, radiology
device, genomics device, etc., there may be any number of
containers that may perform a data processing task with
respect to imaging data 3008 (or other data types, such as
those described herein) generated by a device. In at least one
embodiment, an advanced processing and inferencing pipe-
line may be defined based on selections of different con-
tainers that are desired or required for processing imaging
data 3008, in addition to containers that receive and con-
figure imaging data for use by each container and/or for use
by facility 3002 after processing through a pipeline (e.g., to
convert outputs back to a usable data type, such as digital
imaging and communications in medicine (DICOM) data,
radiology information system (RIS) data, clinical informa-
tion system (CIS) data, remote procedure call (RPC) data,
data substantially compliant with a representation state
transfer (REST) interface, data substantially compliant with
a file-based interface, and/or raw data, for storage and
display at facility 3002). In at least one embodiment, a
combination of containers within software 3018 (e.g., that
make up a pipeline) may be referred to as a virtual instru-
ment (as described in more detail herein), and a virtual
instrument may leverage services 3020 and hardware 3022
to execute some or all processing tasks of applications
instantiated in containers.

[0449] In at least one embodiment, a data processing
pipeline may receive input data (e.g., imaging data 3008) in
a DICOM, RIS, CIS, REST compliant, RPC, raw, and/or
other format in response to an inference request (e.g., a
request from a user of deployment system 3006, such as a
clinician, a doctor, a radiologist, etc.). In at least one
embodiment, input data may be representative of one or
more images, video, and/or other data representations gen-
erated by one or more imaging devices, sequencing devices,
radiology devices, genomics devices, and/or other device
types. In at least one embodiment, data may undergo pre-
processing as part of data processing pipeline to prepare data
for processing by one or more applications. In at least one
embodiment, post-processing may be performed on an out-
put of one or more inferencing tasks or other processing
tasks of a pipeline to prepare an output data for a next
application and/or to prepare output data for transmission
and/or use by a user (e.g., as a response to an inference
request). In at least one embodiment, inferencing tasks may
be performed by one or more machine learning models, such
as trained or deployed neural networks, which may include
output models 3016 of training system 3004.

[0450] In at least one embodiment, tasks of data process-
ing pipeline may be encapsulated in a container(s) that each
represent a discrete, fully functional instantiation of an
application and virtualized computing environment that is
able to reference machine learning models. In at least one
embodiment, containers or applications may be published
into a private (e.g., limited access) arca of a container
registry (described in more detail herein), and trained or
deployed models may be stored in model registry 3024 and
associated with one or more applications. In at least one
embodiment, images of applications (e.g., container images)
may be available in a container registry, and once selected
by a user from a container registry for deployment in a

US 2022/0284582 Al

pipeline, an image may be used to generate a container for
an instantiation of an application for use by a user’s system.

[0451] In at least one embodiment, developers (e.g., soft-
ware developers, clinicians, doctors, etc.) may develop,
publish, and store applications (e.g., as containers) for
performing image processing and/or inferencing on supplied
data. In at least one embodiment, development, publishing,
and/or storing may be performed using a software develop-
ment kit (SDK) associated with a system (e.g., to ensure that
an application and/or container developed is compliant with
or compatible with a system). In at least one embodiment, an
application that is developed may be tested locally (e.g., at
a first facility, on data from a first facility) with an SDK
which may support at least some of services 3020 as a
system (e.g., system 3100 of FIG. 31). In at least one
embodiment, because DICOM objects may contain any-
where from one to hundreds of images or other data types,
and due to a variation in data, a developer may be respon-
sible for managing (e.g., setting constructs for, building
pre-processing into an application, etc.) extraction and
preparation of incoming DICOM data. In at least one
embodiment, once validated by system 3100 (e.g., for accu-
racy, safety, patient privacy, etc.), an application may be
available in a container registry for selection and/or imple-
mentation by a user (e.g., a hospital, clinic, lab, healthcare
provider, etc.) to perform one or more processing tasks with
respect to data at a facility (e.g., a second facility) of a user.

[0452] In at least one embodiment, developers may then
share applications or containers through a network for
access and use by users of a system (e.g., system 3100 of
FIG. 31). In at least one embodiment, completed and vali-
dated applications or containers may be stored in a container
registry and associated machine learning models may be
stored in model registry 3024. In at least one embodiment,
a requesting entity (e.g., a user at a medical facility)—who
provides an inference or image processing request—may
browse a container registry and/or model registry 3024 for
an application, container, dataset, machine learning model,
etc., select a desired combination of elements for inclusion
in data processing pipeline, and submit an imaging process-
ing request. In at least one embodiment, a request may
include input data (and associated patient data, in some
examples) that is necessary to perform a request, and/or may
include a selection of application(s) and/or machine learning
models to be executed in processing a request. In at least one
embodiment, a request may then be passed to one or more
components of deployment system 3006 (e.g., a cloud) to
perform processing of data processing pipeline. In at least
one embodiment, processing by deployment system 3006
may include referencing selected elements (e.g., applica-
tions, containers, models, etc.) from a container registry
and/or model registry 3024. In at least one embodiment,
once results are generated by a pipeline, results may be
returned to a user for reference (e.g., for viewing in a
viewing application suite executing on a local, on-premises
workstation or terminal). In at least one embodiment, a
radiologist may receive results from an data processing
pipeline including any number of application and/or con-
tainers, where results may include anomaly detection in
X-rays, CT scans, MRIs, etc.

[0453] In at least one embodiment, to aid in processing or
execution of applications or containers in pipelines, services
3020 may be leveraged. In at least one embodiment, services
3020 may include compute services, artificial intelligence

Sep. 8§, 2022

(AD) services, visualization services, and/or other service
types. In at least one embodiment, services 3020 may
provide functionality that is common to one or more appli-
cations in software 3018, so functionality may be abstracted
to a service that may be called upon or leveraged by
applications. In at least one embodiment, functionality pro-
vided by services 3020 may run dynamically and more
efficiently, while also scaling well by allowing applications
to process data in parallel (e.g., using a parallel computing
platform 3130 (FIG. 31)). In at least one embodiment, rather
than each application that shares a same functionality
offered by a service 3020 being required to have a respective
instance of service 3020, service 3020 may be shared
between and among various applications. In at least one
embodiment, services may include an inference server or
engine that may be used for executing detection or segmen-
tation tasks, as non-limiting examples. In at least one
embodiment, a model training service may be included that
may provide machine learning model training and/or retrain-
ing capabilities. In at least one embodiment, a data augmen-
tation service may further be included that may provide
GPU accelerated data (e.g., DICOM, RIS, CIS, REST
compliant, RPC, raw, etc.) extraction, resizing, scaling,
and/or other augmentation. In at least one embodiment, a
visualization service may be used that may add image
rendering effects—such as ray-tracing, rasterization, denois-
ing, sharpening, etc.—to add realism to two-dimensional
(2D) and/or three-dimensional (3D) models. In at least one
embodiment, virtual instrument services may be included
that provide for beam-forming, segmentation, inferencing,
imaging, and/or support for other applications within pipe-
lines of virtual instruments.

[0454] In at least one embodiment, where a service 3020
includes an Al service (e.g., an inference service), one or
more machine learning models associated with an applica-
tion for anomaly detection (e.g., tumors, growth abnormali-
ties, scarring, etc.) may be executed by calling upon (e.g., as
an API call) an inference service (e.g., an inference server)
to execute machine learning model(s), or processing thereof,
as part of application execution. In at least one embodiment,
where another application includes one or more machine
learning models for segmentation tasks, an application may
call upon an inference service to execute machine learning
models for performing one or more of processing operations
associated with segmentation tasks. In at least one embodi-
ment, software 3018 implementing advanced processing and
inferencing pipeline that includes segmentation application
and anomaly detection application may be streamlined
because each application may call upon a same inference
service to perform one or more inferencing tasks.

[0455] In at least one embodiment, hardware 3022 may
include GPUs, CPUs, graphics cards, an Al/deep learning
system (e.g., an Al supercomputer, such as NVIDIA’s DGX
supercomputer system), a cloud platform, or a combination
thereof. In at least one embodiment, different types of
hardware 3022 may be used to provide efficient, purpose-
built support for software 3018 and services 3020 in deploy-
ment system 3006. In at least one embodiment, use of GPU
processing may be implemented for processing locally (e.g.,
at facility 3002), within an Al/deep learning system, in a
cloud system, and/or in other processing components of
deployment system 3006 to improve efficiency, accuracy,
and efficacy of image processing, image reconstruction,
segmentation, MRI exams, stroke or heart attack detection

US 2022/0284582 Al

(e.g., in real-time), image quality in rendering, etc. In at least
one embodiment, a facility may include imaging devices,
genomics devices, sequencing devices, and/or other device
types on-premises that may leverage GPUs to generate
imaging data representative of a subject’s anatomy.

[0456] In at least one embodiment, software 3018 and/or
services 3020 may be optimized for GPU processing with
respect to deep learning, machine learning, and/or high-
performance computing, as non-limiting examples. In at
least one embodiment, at least some of computing environ-
ment of deployment system 3006 and/or training system
3004 may be executed in a datacenter one or more super-
computers or high performance computing systems, with
GPU optimized software (e.g., hardware and software com-
bination of NVIDIA’s DGX system). In at least one embodi-
ment, datacenters may be compliant with provisions of
HIPAA, such that receipt, processing, and transmission of
imaging data and/or other patient data is securely handled
with respect to privacy of patient data. In at least one
embodiment, hardware 3022 may include any number of
GPUs that may be called upon to perform processing of data
in parallel, as described herein. In at least one embodiment,
cloud platform may further include GPU processing for
GPU-optimized execution of deep learning tasks, machine
learning tasks, or other computing tasks. In at least one
embodiment, cloud platform (e.g., NVIDIA’s NGC) may be
executed using an Al/deep learning supercomputer(s) and/or
GPU-optimized software (e.g., as provided on NVIDIA’s
DGX systems) as a hardware abstraction and scaling plat-
form. In at least one embodiment, cloud platform may
integrate an application container clustering system or
orchestration system (e.g., KUBERNETES) on multiple
GPUs to enable seamless scaling and load balancing.

[0457] FIG. 31 is a system diagram for an example system
3100 for generating and deploying an imaging deployment
pipeline, in accordance with at least one embodiment. In at
least one embodiment, system 3100 may be used to imple-
ment process 3000 of FIG. 30 and/or other processes includ-
ing advanced processing and inferencing pipelines. In at
least one embodiment, system 3100 may include training
system 3004 and deployment system 3006. In at least one
embodiment, training system 3004 and deployment system
3006 may be implemented using software 3018, services
3020, and/or hardware 3022, as described herein.

[0458] In at least one embodiment, system 3100 (e.g.,
training system 3004 and/or deployment system 3006) may
implemented in a cloud computing environment (e.g., using
cloud 3126). In at least one embodiment, system 3100 may
be implemented locally with respect to a healthcare services
facility, or as a combination of both cloud and local com-
puting resources. In at least one embodiment, in embodi-
ments where cloud computing is implemented, patient data
may be separated from, or unprocessed by, by one or more
components of system 3100 that would render processing
non-compliant with HIPAA and/or other data handling and
privacy regulations or laws. In at least one embodiment,
access to APIs in cloud 3126 may be restricted to authorized
users through enacted security measures or protocols. In at
least one embodiment, a security protocol may include web
tokens that may be signed by an authentication (e.g., AuthN,
AuthZ, Gluecon, etc.) service and may carry appropriate
authorization. In at least one embodiment, APIs of virtual
instruments (described herein), or other instantiations of

Sep. 8§, 2022

system 3100, may be restricted to a set of public IPs that
have been vetted or authorized for interaction.

[0459] In at least one embodiment, various components of
system 3100 may communicate between and among one
another using any of a variety of different network types,
including but not limited to local area networks (LANs)
and/or wide area networks (WANs) via wired and/or wire-
less communication protocols. In at least one embodiment,
communication between facilities and components of sys-
tem 3100 (e.g., for transmitting inference requests, for
receiving results of inference requests, etc.) may be com-
municated over a data bus or data busses, wireless data
protocols (Wi-Fi), wired data protocols (e.g., Ethernet), etc.

[0460] In at least one embodiment, training system 3004
may execute training pipelines 3104, similar to those
described herein with respect to FIG. 30. In at least one
embodiment, where one or more machine learning models
are to be used in deployment pipelines 3110 by deployment
system 3006, training pipelines 3104 may be used to train or
retrain one or more (e.g., pre-trained) models, and/or imple-
ment one or more of pre-trained models 3106 (e.g., without
a need for retraining or updating). In at least one embodi-
ment, as a result of training pipelines 3104, output model(s)
3016 may be generated. In at least one embodiment, training
pipelines 3104 may include any number of processing steps,
such as but not limited to imaging data (or other input data)
conversion or adaption (e.g., using DICOM adapter 3102A
to convert DICOM images to another format suitable for
processing by respective machine learning models, such as
Neuroimaging Informatics Technology Initiative (NIfTT)
format), Al-assisted annotation 3010, labeling or annotating
of imaging data 3008 to generate labeled clinic data 3012,
model selection from a model registry, model training 3014,
training, retraining, or updating models, and/or other pro-
cessing steps. In at least one embodiment, for different
machine learning models used by deployment system 3006,
different training pipelines 3104 may be used. In at least one
embodiment, training pipeline 3104 similar to a first
example described with respect to FIG. 30 may be used for
a first machine learning model, training pipeline 3104 simi-
lar to a second example described with respect to FIG. 30
may be used for a second machine learning model, and
training pipeline 3104 similar to a third example described
with respect to FIG. 30 may be used for a third machine
learning model. In at least one embodiment, any combina-
tion of tasks within training system 3004 may be used
depending on what is required for each respective machine
learning model. In at least one embodiment, one or more of
machine learning models may already be trained and ready
for deployment so machine learning models may not
undergo any processing by training system 3004, and may
be implemented by deployment system 3006.

[0461] In at least one embodiment, output model(s) 3016
and/or pre-trained model(s) 3106 may include any types of
machine learning models depending on implementation or
embodiment. In at least one embodiment, and without
limitation, machine learning models used by system 3100
may include machine learning model(s) using linear regres-
sion, logistic regression, decision trees, support vector
machines (SVM), Naive Bayes, k-nearest neighbor (Knn), K
means clustering, random forest, dimensionality reduction
algorithms, gradient boosting algorithms, neural networks
(e.g., auto-encoders, convolutional, recurrent, perceptrons,
Long/Short Term Memory (LSTM), Hopfield, Boltzmann,

US 2022/0284582 Al

deep belief, deconvolutional, generative adversarial, liquid
state machine, etc.), and/or other types of machine learning
models.

[0462] In at least one embodiment, training pipelines 3104
may include Al-assisted annotation, as described in more
detail herein with respect to at least FIG. 34B. In at least one
embodiment, labeled clinic data 3012 (e.g., traditional anno-
tation) may be generated by any number of techniques. In at
least one embodiment, labels or other annotations may be
generated within a drawing program (e.g., an annotation
program), a computer aided design (CAD) program, a
labeling program, another type of program suitable for
generating annotations or labels for ground truth, and/or
may be hand drawn, in some examples. In at least one
embodiment, ground truth data may be synthetically pro-
duced (e.g., generated from computer models or renderings),
real produced (e.g., designed and produced from real-world
data), machine-automated (e.g., using feature analysis and
learning to extract features from data and then generate
labels), human annotated (e.g., labeler, or annotation expert,
defines location of labels), and/or a combination thereof. In
at least one embodiment, for each instance of imaging data
3008 (or other data type used by machine learning models),
there may be corresponding ground truth data generated by
training system 3004. In at least one embodiment, Al-
assisted annotation may be performed as part of deployment
pipelines 3110; either in addition to, or in lieu of Al-assisted
annotation included in training pipelines 3104. In at least
one embodiment, system 3100 may include a multi-layer
platform that may include a software layer (e.g., software
3018) of diagnostic applications (or other application types)
that may perform one or more medical imaging and diag-
nostic functions. In at least one embodiment, system 3100
may be communicatively coupled to (e.g., via encrypted
links) PACS server networks of one or more facilities. In at
least one embodiment, system 3100 may be configured to
access and referenced data (e.g., DICOM data, RIS data, raw
data, CIS data, REST compliant data, RPC data, raw data,
etc.) from PACS servers (e.g., via a DICOM adapter 3102,
or another data type adapter such as RIS, CIS, REST
compliant, RPC, raw, etc.) to perform operations, such as
training machine learning models, deploying machine learn-
ing models, image processing, inferencing, and/or other
operations.

[0463] In at least one embodiment, a software layer may
be implemented as a secure, encrypted, and/or authenticated
API through which applications or containers may be
invoked (e.g., called) from an external environment(s) (e.g.,
facility 3002). In at least one embodiment, applications may
then call or execute one or more services 3020 for perform-
ing compute, Al, or visualization tasks associated with
respective applications, and software 3018 and/or services
3020 may leverage hardware 3022 to perform processing
tasks in an effective and efficient manner.

[0464] In at least one embodiment, deployment system
3006 may execute deployment pipelines 3110. In at least one
embodiment, deployment pipelines 3110 may include any
number of applications that may be sequentially, non-se-
quentially, or otherwise applied to imaging data (and/or
other data types) generated by imaging devices, sequencing
devices, genomics devices, etc.—including Al-assisted
annotation, as described above. In at least one embodiment,
as described herein, a deployment pipeline 3110 for an
individual device may be referred to as a virtual instrument

Sep. 8§, 2022

for a device (e.g., a virtual ultrasound instrument, a virtual
CT scan instrument, a virtual sequencing instrument, etc.).
In at least one embodiment, for a single device, there may be
more than one deployment pipeline 3110 depending on
information desired from data generated by a device. In at
least one embodiment, where detections of anomalies are
desired from an MRI machine, there may be a first deploy-
ment pipeline 3110, and where image enhancement is
desired from output of an MRI machine, there may be a
second deployment pipeline 3110.

[0465] In at least one embodiment, applications available
for deployment pipelines 3110 may include any application
that may be used for performing processing tasks on imag-
ing data or other data from devices. In at least one embodi-
ment, different applications may be responsible for image
enhancement, segmentation, reconstruction, anomaly detec-
tion, object detection, feature detection, treatment planning,
dosimetry, beam planning (or other radiation treatment pro-
cedures), and/or other analysis, image processing, or infer-
encing tasks. In at least one embodiment, deployment sys-
tem 3006 may define constructs for each of applications,
such that users of deployment system 3006 (e.g., medical
facilities, labs, clinics, etc.) may understand constructs and
adapt applications for implementation within their respec-
tive facility. In at least one embodiment, an application for
image reconstruction may be selected for inclusion in
deployment pipeline 3110, but data type generated by an
imaging device may be different from a data type used
within an application. In at least one embodiment, DICOM
adapter 3102B (and/or a DICOM reader) or another data
type adapter or reader (e.g., RIS, CIS, REST compliant,
RPC, raw, etc.) may be used within deployment pipeline
3110 to convert data to a form useable by an application
within deployment system 3006. In at least one embodiment,
access to DICOM, RIS, CIS, REST compliant, RPC, raw,
and/or other data type libraries may be accumulated and
pre-processed, including decoding, extracting, and/or per-
forming any convolutions, color corrections, sharpness,
gamma, and/or other augmentations to data. In at least one
embodiment, DICOM, RIS, CIS, REST compliant, RPC,
and/or raw data may be unordered and a pre-pass may be
executed to organize or sort collected data. In at least one
embodiment, because various applications may share com-
mon image operations, in some embodiments, a data aug-
mentation library (e.g., as one of services 3020) may be used
to accelerate these operations. In at least one embodiment, to
avoid bottlenecks of conventional processing approaches
that rely on CPU processing, parallel computing platform
3130 may be used for GPU acceleration of these processing
tasks.

[0466] In at least one embodiment, an image reconstruc-
tion application may include a processing task that includes
use of a machine learning model. In at least one embodi-
ment, a user may desire to use their own machine learning
model, or to select a machine learning model from model
registry 3024. In at least one embodiment, a user may
implement their own machine learning model or select a
machine learning model for inclusion in an application for
performing a processing task. In at least one embodiment,
applications may be selectable and customizable, and by
defining constructs of applications, deployment and imple-
mentation of applications for a particular user are presented
as a more seamless user experience. In at least one embodi-
ment, by leveraging other features of system 3100—such as

US 2022/0284582 Al

services 3020 and hardware 3022—deployment pipelines
3110 may be even more user friendly, provide for easier
integration, and produce more accurate, efficient, and timely
results.

[0467] In at least one embodiment, deployment system
3006 may include a user interface 3114 (e.g., a graphical
user interface, a web interface, etc.) that may be used to
select applications for inclusion in deployment pipeline(s)
3110, arrange applications, modify or change applications or
parameters or constructs thereof, use and interact with
deployment pipeline(s) 3110 during set-up and/or deploy-
ment, and/or to otherwise interact with deployment system
3006. In at least one embodiment, although not illustrated
with respect to training system 3004, user interface 3114 (or
a different user interface) may be used for selecting models
for use in deployment system 3006, for selecting models for
training, or retraining, in training system 3004, and/or for
otherwise interacting with training system 3004.

[0468] In at least one embodiment, pipeline manager 3112
may be used, in addition to an application orchestration
system 3128, to manage interaction between applications or
containers of deployment pipeline(s) 3110 and services 3020
and/or hardware 3022. In at least one embodiment, pipeline
manager 3112 may be configured to facilitate interactions
from application to application, from application to service
3020, and/or from application or service to hardware 3022.
In at least one embodiment, although illustrated as included
in software 3018, this is not intended to be limiting, and in
some examples (e.g., as illustrated in FIG. 32) pipeline
manager 3112 may be included in services 3020. In at least
one embodiment, application orchestration system 3128
(e.g., Kubernetes, DOCKER, etc.) may include a container
orchestration system that may group applications into con-
tainers as logical units for coordination, management, scal-
ing, and deployment. In at least one embodiment, by asso-
ciating applications from deployment pipeline(s) 3110 (e.g.,
a reconstruction application, a segmentation application,
etc.) with individual containers, each application may
execute in a self-contained environment (e.g., at a kernel
level) to increase speed and efficiency.

[0469] In atleast one embodiment, each application and/or
container (or image thereof) may be individually developed,
modified, and deployed (e.g., a first user or developer may
develop, modify, and deploy a first application and a second
user or developer may develop, modify, and deploy a second
application separate from a first user or developer), which
may allow for focus on, and attention to, a task of a single
application and/or container(s) without being hindered by
tasks of another application(s) or container(s). In at least one
embodiment, communication, and cooperation between dif-
ferent containers or applications may be aided by pipeline
manager 3112 and application orchestration system 3128. In
at least one embodiment, so long as an expected input and/or
output of each container or application is known by a system
(e.g., based on constructs of applications or containers),
application orchestration system 3128 and/or pipeline man-
ager 3112 may facilitate communication among and
between, and sharing of resources among and between, each
of applications or containers. In at least one embodiment,
because one or more of applications or containers in deploy-
ment pipeline(s) 3110 may share same services and
resources, application orchestration system 3128 may
orchestrate, load balance, and determine sharing of services
or resources between and among various applications or

Sep. 8§, 2022

containers. In at least one embodiment, a scheduler may be
used to track resource requirements of applications or con-
tainers, current usage or planned usage of these resources,
and resource availability. In at least one embodiment, a
scheduler may thus allocate resources to different applica-
tions and distribute resources between and among applica-
tions in view of requirements and availability of a system. In
some examples, a scheduler (and/or other component of
application orchestration system 3128) may determine
resource availability and distribution based on constraints
imposed on a system (e.g., user constraints), such as quality
of service (QoS), urgency of need for data outputs (e.g., to
determine whether to execute real-time processing or
delayed processing), etc.

[0470] In at least one embodiment, services 3020 lever-
aged by and shared by applications or containers in deploy-
ment system 3006 may include compute services 3116, Al
services 3118, visualization services 3120, and/or other
service types. In at least one embodiment, applications may
call (e.g., execute) one or more of services 3020 to perform
processing operations for an application. In at least one
embodiment, compute services 3116 may be leveraged by
applications to perform super-computing or other high-
performance computing (HPC) tasks. In at least one embodi-
ment, compute service(s) 3116 may be leveraged to perform
parallel processing (e.g., using a parallel computing plat-
form 3130) for processing data through one or more of
applications and/or one or more tasks of a single application,
substantially simultaneously. In at least one embodiment,
parallel computing platform 3130 (e.g., NVIDIA’s CUDA)
may enable general purpose computing on GPUs (GPGPU)
(e.g., GPUs 3122). In at least one embodiment, a software
layer of parallel computing platform 3130 may provide
access to virtual instruction sets and parallel computational
elements of GPUs, for execution of compute kernels. In at
least one embodiment, parallel computing platform 3130
may include memory and, in some embodiments, a memory
may be shared between and among multiple containers,
and/or between and among different processing tasks within
a single container. In at least one embodiment, inter-process
communication (IPC) calls may be generated for multiple
containers and/or for multiple processes within a container
to use same data from a shared segment of memory of
parallel computing platform 3130 (e.g., where multiple
different stages of an application or multiple applications are
processing same information). In at least one embodiment,
rather than making a copy of data and moving data to
different locations in memory (e.g., a read/write operation),
same data in same location of a memory may be used for any
number of processing tasks (e.g., at a same time, at different
times, etc.). In at least one embodiment, as data is used to
generate new data as a result of processing, this information
of'a new location of data may be stored and shared between
various applications. In at least one embodiment, location of
data and a location of updated or modified data may be part
of a definition of how a payload is understood within
containers.

[0471] In at least one embodiment, Al services 3118 may
be leveraged to perform inferencing services for executing
machine learning model(s) associated with applications
(e.g., tasked with performing one or more processing tasks
of an application). In at least one embodiment, Al services
3118 may leverage Al system 3124 to execute machine
learning model(s) (e.g., neural networks, such as CNNs) for

US 2022/0284582 Al

segmentation, reconstruction, object detection, feature
detection, classification, and/or other inferencing tasks. In at
least one embodiment, applications of deployment pipeline
(s) 3110 may use one or more of output models 3016 from
training system 3004 and/or other models of applications to
perform inference on imaging data (e.g., DICOM data, RIS
data, CIS data, REST compliant data, RPC data, raw data,
etc.). In at least one embodiment, two or more examples of
inferencing using application orchestration system 3128
(e.g., a scheduler) may be available. In at least one embodi-
ment, a first category may include a high priority/low
latency path that may achieve higher service level agree-
ments, such as for performing inference on urgent requests
during an emergency, or for a radiologist during diagnosis.
In at least one embodiment, a second category may include
a standard priority path that may be used for requests that
may be non-urgent or where analysis may be performed at
a later time. In at least one embodiment, application orches-
tration system 3128 may distribute resources (e.g., services
3020 and/or hardware 3022) based on priority paths for
different inferencing tasks of Al services 3118.

[0472] In at least one embodiment, shared storage may be
mounted to Al services 3118 within system 3100. In at least
one embodiment, shared storage may operate as a cache (or
other storage device type) and may be used to process
inference requests from applications. In at least one embodi-
ment, when an inference request is submitted, a request may
be received by a set of API instances of deployment system
3006, and one or more instances may be selected (e.g., for
best fit, for load balancing, etc.) to process a request. In at
least one embodiment, to process a request, a request may be
entered into a database, a machine learning model may be
located from model registry 3024 if not already in a cache,
a validation step may ensure appropriate machine learning
model is loaded into a cache (e.g., shared storage), and/or a
copy of a model may be saved to a cache. In at least one
embodiment, a scheduler (e.g., of pipeline manager 3112)
may be used to launch an application that is referenced in a
request if an application is not already running or if there are
not enough instances of an application. In at least one
embodiment, if an inference server is not already launched
to execute a model, an inference server may be launched. In
at least one embodiment, any number of inference servers
may be launched per model. In at least one embodiment, in
a pull model, in which inference servers are clustered,
models may be cached whenever load balancing is advan-
tageous. In at least one embodiment, inference servers may
be statically loaded in corresponding, distributed servers.

[0473] In at least one embodiment, inferencing may be
performed using an inference server that runs in a container.
In at least one embodiment, an instance of an inference
server may be associated with a model (and optionally a
plurality of versions of a model). In at least one embodiment,
if an instance of an inference server does not exist when a
request to perform inference on a model is received, a new
instance may be loaded. In at least one embodiment, when
starting an inference server, a model may be passed to an
inference server such that a same container may be used to
serve different models so long as inference server is running
as a different instance.

[0474] In at least one embodiment, during application
execution, an inference request for a given application may
be received, and a container (e.g., hosting an instance of an
inference server) may be loaded (if not already), and a start

Sep. 8§, 2022

procedure may be called. In at least one embodiment,
pre-processing logic in a container may load, decode, and/or
perform any additional pre-processing on incoming data
(e.g., using a CPU(s) and/or GPU(s)). In at least one
embodiment, once data is prepared for inference, a container
may perform inference as necessary on data. In at least one
embodiment, this may include a single inference call on one
image (e.g., a hand X-ray), or may require inference on
hundreds of images (e.g., a chest CT). In at least one
embodiment, an application may summarize results before
completing, which may include, without limitation, a single
confidence score, pixel level-segmentation, voxel-level seg-
mentation, generating a visualization, or generating text to
summarize findings. In at least one embodiment, different
models or applications may be assigned different priorities.
For example, some models may have a real-time (TAT less
than one minute) priority while others may have lower
priority (e.g., TAT less than 10 minutes). In at least one
embodiment, model execution times may be measured from
requesting institution or entity and may include partner
network traversal time, as well as execution on an inference
service.

[0475] In at least one embodiment, transfer of requests
between services 3020 and inference applications may be
hidden behind a software development kit (SDK), and
robust transport may be provide through a queue. In at least
one embodiment, a request will be placed in a queue via an
API for an individual application/tenant ID combination and
an SDK will pull a request from a queue and give a request
to an application. In at least one embodiment, a name of a
queue may be provided in an environment from where an
SDK will pick it up. In at least one embodiment, asynchro-
nous communication through a queue may be useful as it
may allow any instance of an application to pick up work as
it becomes available. In at least one embodiment, results
may be transferred back through a queue, to ensure no data
is lost. In at least one embodiment, queues may also provide
an ability to segment work, as highest priority work may go
to a queue with most instances of an application connected
to it, while lowest priority work may go to a queue with a
single instance connected to it that processes tasks in an
order received. In at least one embodiment, an application
may run on a GPU-accelerated instance generated in cloud
3126, and an inference service may perform inferencing on
a GPU.

[0476] In at least one embodiment, visualization services
3120 may be leveraged to generate visualizations for view-
ing outputs of applications and/or deployment pipeline(s)
3110. In at least one embodiment, GPUs 3122 may be
leveraged by visualization services 3120 to generate visu-
alizations. In at least one embodiment, rendering effects,
such as ray-tracing, may be implemented by visualization
services 3120 to generate higher quality visualizations. In at
least one embodiment, visualizations may include, without
limitation, 2D image renderings, 3D volume renderings, 3D
volume reconstruction, 2D tomographic slices, virtual real-
ity displays, augmented reality displays, etc. In at least one
embodiment, virtualized environments may be used to gen-
erate a virtual interactive display or environment (e.g., a
virtual environment) for interaction by users of a system
(e.g., doctors, nurses, radiologists, etc.). In at least one
embodiment, visualization services 3120 may include an
internal visualizer, cinematics, and/or other rendering or

US 2022/0284582 Al

image processing capabilities or functionality (e.g., ray
tracing, rasterization, internal optics, etc.).

[0477] In at least one embodiment, hardware 3022 may
include GPUs 3122, Al system 3124, cloud 3126, and/or any
other hardware used for executing training system 3004
and/or deployment system 3006. In at least one embodiment,
GPUs 3122 (e.g., NVIDIA’s TESLA and/or QUADRO
GPUs) may include any number of GPUs that may be used
for executing processing tasks of compute services 3116, Al
services 3118, visualization services 3120, other services,
and/or any of features or functionality of software 3018. For
example, with respect to Al services 3118, GPUs 3122 may
be used to perform pre-processing on imaging data (or other
data types used by machine learning models), post-process-
ing on outputs of machine learning models, and/or to per-
form inferencing (e.g., to execute machine learning models).
In at least one embodiment, cloud 3126, Al system 3124,
and/or other components of system 3100 may use GPUs
3122. In at least one embodiment, cloud 3126 may include
a GPU-optimized platform for deep learning tasks. In at least
one embodiment, Al system 3124 may use GPUs, and cloud
3126—or at least a portion tasked with deep learning or
inferencing—may be executed using one or more Al sys-
tems 3124. As such, although hardware 3022 is illustrated as
discrete components, this is not intended to be limiting, and
any components of hardware 3022 may be combined with,
or leveraged by, any other components of hardware 3022.

[0478] In at least one embodiment, Al system 3124 may
include a purpose-built computing system (e.g., a super-
computer or an HPC) configured for inferencing, deep
learning, machine learning, and/or other artificial intelli-
gence tasks. In at least one embodiment, Al system 3124
(e.g., NVIDIA’s DGX) may include GPU-optimized soft-
ware (e.g., a software stack) that may be executed using a
plurality of GPUs 3122, in addition to CPUs, RAM, storage,
and/or other components, features, or functionality. In at
least one embodiment, one or more Al systems 3124 may be
implemented in cloud 3126 (e.g., in a data center) for
performing some or all of Al-based processing tasks of
system 3100.

[0479] In at least one embodiment, cloud 3126 may
include a GPU-accelerated infrastructure (e.g., NVIDIA’s
NGC) that may provide a GPU-optimized platform for
executing processing tasks of system 3100. In at least one
embodiment, cloud 3126 may include an Al system(s) 3124
for performing one or more of Al-based tasks of system
3100 (e.g., as a hardware abstraction and scaling platform).
In at least one embodiment, cloud 3126 may integrate with
application orchestration system 3128 leveraging multiple
GPUs to enable seamless scaling and load balancing
between and among applications and services 3020. In at
least one embodiment, cloud 3126 may tasked with execut-
ing at least some of services 3020 of system 3100, including
compute services 3116, Al services 3118, and/or visualiza-
tion services 3120, as described herein. In at least one
embodiment, cloud 3126 may perform small and large batch
inference (e.g., executing NVIDIA’s TENSOR RT), provide
an accelerated parallel computing API and platform 3130
(e.g., NVIDIA’s CUDA), execute application orchestration
system 3128 (e.g., KUBERNETES), provide a graphics
rendering API and platform (e.g., for ray-tracing, 2D graph-
ics, 3D graphics, and/or other rendering techniques to pro-
duce higher quality cinematics), and/or may provide other
functionality for system 3100.

Sep. 8§, 2022

[0480] In at least one embodiment, in an effort to preserve
patient confidentiality (e.g., where patient data or records are
to be used off-premises), cloud 3126 may include a regis-
try—such as a deep learning container registry. In at least
one embodiment, a registry may store containers for instan-
tiations of applications that may perform pre-processing,
post-processing, or other processing tasks on patient data. In
at least one embodiment, cloud 3126 may receive data that
includes patient data as well as sensor data in containers,
perform requested processing for just sensor data in those
containers, and then forward a resultant output and/or visu-
alizations to appropriate parties and/or devices (e.g., on-
premises medical devices used for visualization or diagno-
ses), all without having to extract, store, or otherwise access
patient data. In at least one embodiment, confidentiality of
patient data is preserved in compliance with HIPAA and/or
other data regulations.

[0481] FIG. 32 includes an example illustration of a
deployment pipeline 3110A for processing imaging data, in
accordance with at least one embodiment. In at least one
embodiment, system 3100—and specifically deployment
system 3006—may be used to customize, update, and/or
integrate deployment pipeline(s) 3110A into one or more
production environments. In at least one embodiment,
deployment pipeline 3110A of FIG. 32 includes a non-
limiting example of a deployment pipeline 3110A that may
be custom defined by a particular user (or team of users) at
a facility (e.g., at a hospital, clinic, lab, research environ-
ment, etc.). In at least one embodiment, to define deploy-
ment pipelines 3110A for a CT scanner 3202, a user may
select—from a container registry, for example—one or more
applications that perform specific functions or tasks with
respect to imaging data generated by CT scanner 3202. In at
least one embodiment, applications may be applied to
deployment pipeline 3110A as containers that may leverage
services 3020 and/or hardware 3022 of system 3100. In
addition, deployment pipeline 3110A may include additional
processing tasks or applications that may be implemented to
prepare data for use by applications (e.g., DICOM adapter
3102B and DICOM reader 3206 may be used in deployment
pipeline 3110A to prepare data for use by CT reconstruction
3208, organ segmentation 3210, etc.). In at least one
embodiment, deployment pipeline 3110A may be custom-
ized or selected for consistent deployment, one time use, or
for another frequency or interval. In at least one embodi-
ment, a user may desire to have CT reconstruction 3208 and
organ segmentation 3210 for several subjects over a specific
interval, and thus may deploy pipeline 3110A for that period
of time. In at least one embodiment, a user may select, for
each request from system 3100, applications that a user
wants to perform processing on that data for that request. In
at least one embodiment, deployment pipeline 3110A may
be adjusted at any interval and, because of adaptability and
scalability of a container structure within system 3100, this
may be a seamless process.

[0482] In at least one embodiment, deployment pipeline
3110A of FIG. 32 may include CT scanner 3202 generating
imaging data of a patient or subject. In at least one embodi-
ment, imaging data from CT scanner 3202 may be stored on
a PACS server(s) 3204 associated with a facility housing CT
scanner 3202. In at least one embodiment, PACS server(s)
3204 may include software and/or hardware components
that may directly interface with imaging modalities (e.g., CT
scanner 3202) at a facility. In at least one embodiment,

US 2022/0284582 Al

DICOM adapter 3102B may enable sending and receipt of
DICOM objects using DICOM protocols. In at least one
embodiment, DICOM adapter 3102B may aid in preparation
or configuration of DICOM data from PACS server(s) 3204
for use by deployment pipeline 3110A. In at least one
embodiment, once DICOM data is processed through
DICOM adapter 3102B, pipeline manager 3112 may route
data through to deployment pipeline 3110A. In at least one
embodiment, DICOM reader 3206 may extract image files
and any associated metadata from DICOM data (e.g., raw
sinogram data, as illustrated in visualization 3216A). In at
least one embodiment, working files that are extracted may
be stored in a cache for faster processing by other applica-
tions in deployment pipeline 3110A. In at least one embodi-
ment, once DICOM reader 3206 has finished extracting
and/or storing data, a signal of completion may be commu-
nicated to pipeline manager 3112. In at least one embodi-
ment, pipeline manager 3112 may then initiate or call upon
one or more other applications or containers in deployment
pipeline 3110A.

[0483] In at least one embodiment, CT reconstruction
3208 application and/or container may be executed once
data (e.g., raw sinogram data) is available for processing by
CT reconstruction 3208 application. In at least one embodi-
ment, CT reconstruction 3208 may read raw sinogram data
from a cache, reconstruct an image file out of raw sinogram
data (e.g., as illustrated in visualization 3216B), and store
resulting image file in a cache. In at least one embodiment,
at completion of reconstruction, pipeline manager 3112 may
be signaled that reconstruction task is complete. In at least
one embodiment, once reconstruction is complete, and a
reconstructed image file may be stored in a cache (or other
storage device), organ segmentation 3210 application and/or
container may be triggered by pipeline manager 3112. In at
least one embodiment, organ segmentation 3210 application
and/or container may read an image file from a cache,
normalize or convert an image file to format suitable for
inference (e.g., convert an image file to an input resolution
of' a machine learning model), and run inference against a
normalized image. In at least one embodiment, to run
inference on a normalized image, organ segmentation 3210
application and/or container may rely on services 3020, and
pipeline manager 3112 and/or application orchestration sys-
tem 3128 may facilitate use of services 3020 by organ
segmentation 3210 application and/or container. In at least
one embodiment, for example, organ segmentation 3210
application and/or container may leverage Al services 3118
to perform inference on a normalized image, and Al services
3118 may leverage hardware 3022 (e.g., Al system 3124) to
execute Al services 3118. In at least one embodiment, a
result of an inference may be a mask file (e.g., as illustrated
in visualization 3216C) that may be stored in a cache (or
other storage device).

[0484] In at least one embodiment, once applications that
process DICOM data and/or data extracted from DICOM
data have completed processing, a signal may be generated
for pipeline manager 3112. In at least one embodiment,
pipeline manager 3112 may then execute DICOM writer
3212 to read results from a cache (or other storage device),
package results into a DICOM format (e.g., as DICOM
output 3214) for use by users at a facility who generated a
request. In at least one embodiment, DICOM output 3214
may then be transmitted to DICOM adapter 3102B to
prepare DICOM output 3214 for storage on PACS server(s)

Sep. 8§, 2022

3204 (e.g., for viewing by a DICOM viewer at a facility). In
at least one embodiment, in response to a request for
reconstruction and segmentation, visualizations 3216B and
3216C may be generated and available to a user for diag-
noses, research, and/or for other purposes.

[0485] Although illustrated as consecutive application in
deployment pipeline 3110A, CT reconstruction 3208 and
organ segmentation 3210 applications may be processed in
parallel in at least one embodiment. In at least one embodi-
ment, where applications do not have dependencies on one
another, and data is available for each application (e.g., after
DICOM reader 3206 extracts data), applications may be
executed at a same time, substantially at a same time, or with
some overlap. In at least one embodiment, where two or
more applications require similar services 3020, a scheduler
of system 3100 may be used to load balance and distribute
compute or processing resources between and among vari-
ous applications. In at least one embodiment, in some
embodiments, parallel computing platform 3130 may be
used to perform parallel processing for applications to
decrease run-time of deployment pipeline 3110A to provide
real-time results.

[0486] In at least one embodiment, and with reference to
FIGS. 33A-33B, deployment system 3006 may be imple-
mented as one or more virtual instruments to perform
different functionalities—such as image processing, seg-
mentation, enhancement, Al, visualization, and inferenc-
ing—with imaging devices (e.g., CT scanners, X-ray
machines, MRI machines, etc.), sequencing devices, genom-
ics devices, and/or other device types. In at least one
embodiment, system 3100 may allow for creation and pro-
vision of virtual instruments that may include a software-
defined deployment pipeline 3110 that may receive raw/
unprocessed input data generated by a device(s) and output
processed/reconstructed data. In at least one embodiment,
deployment pipelines 3110 (e.g., 3110A and 3110B) that
represent virtual instruments may implement intelligence
into a pipeline, such as by leveraging machine learning
models, to provide containerized inference support to a
system. In at least one embodiment, virtual instruments may
execute any number of containers each including instantia-
tions of applications. In at least one embodiment, such as
where real-time processing is desired, deployment pipelines
3110 representing virtual instruments may be static (e.g.,
containers and/or applications may be set), while in other
examples, container and/or applications for virtual instru-
ments may be selected (e.g., on a per-request basis) from a
pool of applications or resources (e.g., within a container
registry).

[0487] In at least one embodiment, system 3100 may be
instantiated or executed as one or more virtual instruments
on-premise at a facility in, for example, a computing system
deployed next to or otherwise in communication with a
radiology machine, an imaging device, and/or another
device type at a facility. In at least one embodiment, how-
ever, an on-premise installation may be instantiated or
executed within a computing system of a device itself (e.g.,
a computing system integral to an imaging device), in a local
datacenter (e.g., a datacenter on-premise), and/or in a cloud-
environment (e.g., in cloud 3126). In at least one embodi-
ment, deployment system 3006, operating as a virtual instru-
ment, may be instantiated by a supercomputer or other HPC
system in some examples. In at least one embodiment,
on-premise installation may allow for high-bandwidth uses

US 2022/0284582 Al

(via, for example, higher throughput local communication
interfaces, such as RF over Ethernet) for real-time process-
ing. In at least one embodiment, real-time or near real-time
processing may be particularly useful where a virtual instru-
ment supports an ultrasound device or other imaging modal-
ity where immediate visualizations are expected or required
for accurate diagnoses and analyses. In at least one embodi-
ment, a cloud-computing architecture may be capable of
dynamic bursting to a cloud computing service provider, or
other compute cluster, when local demand exceeds on-
premise capacity or capability. In at least one embodiment,
a cloud architecture, when implemented, may be tuned for
training neural networks or other machine learning models,
as described herein with respect to training system 3004. In
at least one embodiment, with training pipelines in place,
machine learning models may be continuously learn and
improve as they process additional data from devices they
support. In at least one embodiment, virtual instruments may
be continually improved using additional data, new data,
existing machine learning models, and/or new or updated
machine learning models.

[0488] In at least one embodiment, a computing system
may include some or all of hardware 3022 described herein,
and hardware 3022 may be distributed in any of a number of
ways including within a device, as part of a computing
device coupled to and located proximate a device, in a local
datacenter at a facility, and/or in cloud 3126. In at least one
embodiment, because deployment system 3006 and associ-
ated applications or containers are created in software (e.g.,
as discrete containerized instantiations of applications),
behavior, operation, and configuration of virtual instru-
ments, as well as outputs generated by virtual instruments,
may be modified or customized as desired, without having
to change or alter raw output of a device that a virtual
instrument supports.

[0489] FIG. 33A includes an example data flow diagram
of a virtual instrument supporting an ultrasound device, in
accordance with at least one embodiment. In at least one
embodiment, deployment pipeline 3110B may leverage one
or more of services 3020 of system 3100. In at least one
embodiment, deployment pipeline 3110B and services 3020
may leverage hardware 3022 of a system either locally or in
cloud 3126. In at least one embodiment, although not
illustrated, process 3300 may be facilitated by pipeline
manager 3112, application orchestration system 3128, and/
or parallel computing platform 3130.

[0490] In at least one embodiment, process 3300 may
include receipt of imaging data from an ultrasound device
3302. In at least one embodiment, imaging data may be
stored on PACS server(s) in a DICOM format (or other
format, such as RIS, CIS, REST compliant, RPC, raw, etc.),
and may be received by system 3100 for processing through
deployment pipeline 3110 selected or customized as a virtual
instrument (e.g., a virtual ultrasound) for ultrasound device
3302. In at least one embodiment, imaging data may be
received directly from an imaging device (e.g., ultrasound
device 3302) and processed by a virtual instrument. In at
least one embodiment, a transducer or other signal converter
communicatively coupled between an imaging device and a
virtual instrument may convert signal data generated by an
imaging device to image data that may be processed by a
virtual instrument. In at least one embodiment, raw data
and/or image data may be applied to DICOM reader 3206 to
extract data for use by applications or containers of deploy-

Sep. 8§, 2022

ment pipeline 3110B. In at least one embodiment, DICOM
reader 3206 may leverage data augmentation library 3314
(e.g., NVIDIA’s DALI) as a service 3020 (e.g., as one of
compute service(s) 3116) for extracting, resizing, rescaling,
and/or otherwise preparing data for use by applications or
containers.

[0491] In at least one embodiment, once data is prepared,
a reconstruction 3306 application and/or container may be
executed to reconstruct data from ultrasound device 3302
into an image file. In at least one embodiment, after recon-
struction 3306, or at a same time as reconstruction 3306, a
detection 3308 application and/or container may be executed
for anomaly detection, object detection, feature detection,
and/or other detection tasks related to data. In at least one
embodiment, an image file generated during reconstruction
3306 may be used during detection 3308 to identify anoma-
lies, objects, features, etc. In at least one embodiment,
detection 3308 application may leverage an inference engine
3316 (e.g., as one of Al service(s) 3118) to perform infer-
ence on data to generate detections. In at least one embodi-
ment, one or more machine learning models (e.g., from
training system 3004) may be executed or called by detec-
tion 3308 application.

[0492] In at least one embodiment, once reconstruction
3306 and/or detection 3308 is/are complete, data output
from these application and/or containers may be used to
generate visualizations 3310, such as visualization 3312
(e.g., a grayscale output) displayed on a workstation or
display terminal. In at least one embodiment, visualization
may allow a technician or other user to visualize results of
deployment pipeline 3110B with respect to ultrasound
device 3302. In at least one embodiment, visualization 3310
may be executed by leveraging a render component 3318 of
system 3100 (e.g., one of visualization service(s) 3120). In
at least one embodiment, render component 3318 may
execute a 2D, OpenGL, or ray-tracing service to generate
visualization 3312.

[0493] FIG. 33B includes an example data flow diagram
of a virtual instrument supporting a CT scanner, in accor-
dance with at least one embodiment. In at least one embodi-
ment, deployment pipeline 3110C may leverage one or more
of'services 3020 of system 3100. In at least one embodiment,
deployment pipeline 3110C and services 3020 may leverage
hardware 3022 of a system either locally or in cloud 3126.
In at least one embodiment, although not illustrated, process
3320 may be facilitated by pipeline manager 3112, applica-
tion orchestration system 3128, and/or parallel computing
platform 3130.

[0494] In at least one embodiment, process 3320 may
include CT scanner 3322 generating raw data that may be
received by DICOM reader 3206 (e.g., directly, via a PACS
server 3204, after processing, etc.). In at least one embodi-
ment, a Virtual CT (instantiated by deployment pipeline
3110C) may include a first, real-time pipeline for monitoring
a patient (e.g., patient movement detection Al 3326) and/or
for adjusting or optimizing exposure of CT scanner 3322
(e.g., using exposure control Al 3324). In at least one
embodiment, one or more of applications (e.g., 3324 and
3326) may leverage a service 3020, such as Al service(s)
3118. In at least one embodiment, outputs of exposure
control Al 3324 application (or container) and/or patient
movement detection Al 3326 application (or container) may
be used as feedback to CT scanner 3322 and/or a technician

US 2022/0284582 Al

for adjusting exposure (or other settings of CT scanner 3322)
and/or informing a patient to move less.

[0495] In at least one embodiment, deployment pipeline
3110C may include a non-real-time pipeline for analyzing
data generated by CT scanner 3322. In at least one embodi-
ment, a second pipeline may include CT reconstruction 3208
application and/or container, a coarse detection Al 3328
application and/or container, a fine detection Al 3332 appli-
cation and/or container (e.g., where certain results are
detected by coarse detection Al 3328), a visualization 3330
application and/or container, and a DICOM writer 3212
(and/or other data type writer, such as RIS, CIS, REST
compliant, RPC, raw, etc.) application and/or container. In at
least one embodiment, raw data generated by CT scanner
3322 may be passed through pipelines of deployment pipe-
line 3110C (instantiated as a virtual CT instrument) to
generate results. In at least one embodiment, results from
DICOM writer 3212 may be transmitted for display and/or
may be stored on PACS server(s) 3204 for later retrieval,
analysis, or display by a technician, practitioner, or other
user.

[0496] FIG. 34A illustrates a data flow diagram for a
process 3400 to train, retrain, or update a machine learning
model, in accordance with at least one embodiment. In at
least one embodiment, process 3400 may be executed using,
as a non-limiting example, system 3100 of FIG. 31. In at
least one embodiment, process 3400 may leverage services
3020 and/or hardware 3022 of system 3100, as described
herein. In at least one embodiment, refined models 3412
generated by process 3400 may be executed by deployment
system 3006 for one or more containerized applications in
deployment pipelines 3110.

[0497] In at least one embodiment, model training 3014
may include retraining or updating an initial model 3404
(e.g., a pre-trained model) using new training data (e.g., new
input data, such as customer dataset 3406, and/or new
ground truth data associated with input data). In at least one
embodiment, to retrain, or update, initial model 3404, output
or loss layer(s) of initial model 3404 may be reset, or
deleted, and/or replaced with an updated or new output or
loss layer(s). In at least one embodiment, initial model 3404
may have previously fine-tuned parameters (e.g., weights
and/or biases) that remain from prior training, so training or
retraining 3014 may not take as long or require as much
processing as training a model from scratch. In at least one
embodiment, during model training 3014, by having reset or
replaced output or loss layer(s) of initial model 3404,
parameters may be updated and re-tuned for a new data set
based on loss calculations associated with accuracy of
output or loss layer(s) at generating predictions on new,
customer dataset 3406 (e.g., image data 3008 of FIG. 30).

[0498] In at least one embodiment, pre-trained models
3106 may be stored in a data store, or registry (e.g., model
registry 3024 of FIG. 30). In at least one embodiment,
pre-trained models 3106 may have been trained, at least in
part, at one or more facilities other than a facility executing
process 3400. In at least one embodiment, to protect privacy
and rights of patients, subjects, or clients of different facili-
ties, pre-trained models 3106 may have been trained, on-
premise, using customer or patient data generated on-prem-
ise. In at least one embodiment, pre-trained models 3106
may be trained using cloud 3126 and/or other hardware
3022, but confidential, privacy protected patient data may
not be transferred to, used by, or accessible to any compo-

Sep. 8§, 2022

nents of cloud 3126 (or other off premise hardware). In at
least one embodiment, where a pre-trained model 3106 is
trained at using patient data from more than one facility,
pre-trained model 3106 may have been individually trained
for each facility prior to being trained on patient or customer
data from another facility. In at least one embodiment, such
as where a customer or patient data has been released of
privacy concerns (e.g., by waiver, for experimental use,
etc.), or where a customer or patient data is included in a
public data set, a customer or patient data from any number
of facilities may be used to train pre-trained model 3106
on-premise and/or off premise, such as in a datacenter or
other cloud computing infrastructure.

[0499] In at least one embodiment, when selecting appli-
cations for use in deployment pipelines 3110, a user may
also select machine learning models to be used for specific
applications. In at least one embodiment, a user may not
have a model for use, so a user may select a pre-trained
model 3106 to use with an application. In at least one
embodiment, pre-trained model 3106 may not be optimized
for generating accurate results on customer dataset 3406 of
a facility of a user (e.g., based on patient diversity, demo-
graphics, types of medical imaging devices used, etc.). In at
least one embodiment, prior to deploying pre-trained model
3106 into deployment pipeline 3110 for use with an appli-
cation(s), pre-trained model 3106 may be updated, retrained,
and/or fine-tuned for use at a respective facility.

[0500] In at least one embodiment, a user may select
pre-trained model 3106 that is to be updated, retrained,
and/or fine-tuned, and pre-trained model 3106 may be
referred to as initial model 3404 for training system 3004
within process 3400. In at least one embodiment, customer
dataset 3406 (e.g., imaging data, genomics data, sequencing
data, or other data types generated by devices at a facility)
may be used to perform model training 3014 (which may
include, without limitation, transfer learning) on initial
model 3404 to generate refined model 3412. In at least one
embodiment, ground truth data corresponding to customer
dataset 3406 may be generated by training system 3004. In
at least one embodiment, ground truth data may be gener-
ated, at least in part, by clinicians, scientists, doctors,
practitioners, at a facility (e.g., as labeled clinic data 3012 of
FIG. 30).

[0501] In at least one embodiment, Al-assisted annotation
3010 may be used in some examples to generate ground
truth data. In at least one embodiment, Al-assisted annota-
tion 3010 (e.g., implemented using an Al-assisted annotation
SDK) may leverage machine learning models (e.g., neural
networks) to generate suggested or predicted ground truth
data for a customer dataset. In at least one embodiment, user
3410 may use annotation tools within a user interface (a
graphical user interface (GUI)) on computing device 3408.
[0502] In at least one embodiment, user 3410 may interact
with a GUI via computing device 3408 to edit or fine-tune
annotations or auto-annotations. In at least one embodiment,
a polygon editing feature may be used to move vertices of
a polygon to more accurate or fine-tuned locations.

[0503] In at least one embodiment, once customer dataset
3406 has associated ground truth data, ground truth data
(e.g., from Al-assisted annotation, manual labeling, etc.)
may be used by during model training 3014 to generate
refined model 3412. In at least one embodiment, customer
dataset 3406 may be applied to initial model 3404 any
number of times, and ground truth data may be used to

US 2022/0284582 Al

update parameters of initial model 3404 until an acceptable
level of accuracy is attained for refined model 3412. In at
least one embodiment, once refined model 3412 is gener-
ated, refined model 3412 may be deployed within one or
more deployment pipelines 3110 at a facility for performing
one or more processing tasks with respect to medical imag-
ing data.

[0504] In at least one embodiment, refined model 3412
may be uploaded to pre-trained models 3106 in model
registry 3024 to be selected by another facility. In at least
one embodiment, his process may be completed at any
number of facilities such that refined model 3412 may be
further refined on new datasets any number of times to
generate a more universal model.

[0505] FIG. 34B is an example illustration of a client-
server architecture 3432 to enhance annotation tools with
pre-trained annotation models, in accordance with at least
one embodiment. In at least one embodiment, Al-assisted
annotation tools 3436 may be instantiated based on a client-
server architecture 3432. In at least one embodiment, anno-
tation tools 3436 in imaging applications may aid radiolo-
gists, for example, identify organs and abnormalities. In at
least one embodiment, imaging applications may include
software tools that help user 3410 to identify, as a non-
limiting example, a few extreme points on a particular organ
of interest in raw images 3434 (e.g., in a 3D MRI or CT
scan) and receive auto-annotated results for all 2D slices of
a particular organ. In at least one embodiment, results may
be stored in a data store as training data 3438 and used as
(for example and without limitation) ground truth data for
training. In at least one embodiment, when computing
device 3408 sends extreme points for Al-assisted annotation
3010, a deep learning model, for example, may receive this
data as input and return inference results of a segmented
organ or abnormality. In at least one embodiment, pre-
instantiated annotation tools, such as Al-Assisted Annota-
tion Tool 3436B in FIG. 34B, may be enhanced by making
API calls (e.g., API Call 3444) to a server, such as an
Annotation Assistant Server 3440 that may include a set of
pre-trained models 3442 stored in an annotation model
registry, for example. In at least one embodiment, an anno-
tation model registry may store pre-trained models 3442
(e.g., machine learning models, such as deep learning mod-
els) that are pre-trained to perform Al-assisted annotation on
a particular organ or abnormality. In at least one embodi-
ment, these models may be further updated by using training
pipelines 3104. In at least one embodiment, pre-installed
annotation tools may be improved over time as new labeled
clinic data 3012 is added.

[0506] Inference and/or training logic 115 are used to
perform inferencing and/or training operations associated
with one or more embodiments. Details regarding inference
and/or training logic 115 are provided herein in conjunction
with FIGS. 1A and/or 1B.

Differentiable Neural Network Topology Search (DINTS)

[0507] Medical image segmentation faces some unique
challenges like lacking manual labels and vast memory
usage for processing 3D high-resolution images. Manually
designed networks (e.g., U-Net) have been used for medical
image segmentation tasks, but such manually designed
networks are often not optimal. Diversity of these segmen-
tation tasks could be extremely high since image character-
istics and appearances can be completely distinct for differ-

Sep. 8§, 2022

ent modalities and presentations of diseases can vary
considerably. Automated medical image segmentation is
essential for many clinical applications like finding new
biomarkers and monitoring disease progression. Similar
challenges exist for other neural network-based image pro-
cessing tasks as well as neural network-based tasks per-
formed on data other than image data. Different machine
learning tasks have different optimal neural network archi-
tectures, and design of neural network architectures to
provide optimal solutions is challenging.

[0508] Neural architecture search (NAS) focuses on
designing a neural network automatically. NAS can be
categorized into three dimensions: a search space, a search
method, and performance estimation. A search space defines
what architectures (e.g., which neural networks) can be
searched, which can be further divided into a network
topology level and cell level. A more flexible search space
has more potential to contain better performing neural
network architectures. Search method and performance esti-
mation focus on finding an optimal architecture from a
search space. Some existing NAS methods use evolutionary
or reinforcement learning-based algorithms, which are too
slow to be practicable (e.g., it can take 333 GPU days to
search just one 3D segmentation network). Other existing
NAS methods that are faster are only capable of finding
single-path network topologies. A path may include an
operation, upscaling and/or downscaling that connects two
layers of a neural network. For a multi-path topology, two
different layers are connected by at least two different types
of operations and/or two different scales of inputs, whereas
for a single-path topology different layers are connected by
only a single operation and/or a single scale of inputs. For
example, a multi-path topology may include at a layer a first
input downsampled from a higher scale and a second input
from a current scale. Limited single-path network topologies
that can be generated from existing NAS techniques make a
direct application of a successful network to a new task less
likely to be optimal. In addition, existing NAS methods do
not include any capability to specify an amount of memory
to be used for performing a NAS search or an amount of
memory to be used by a neural network having an auto-
matically generated neural network architecture.

[0509] In at least one embodiment, a process or comprises
one or more circuits to perform a differentiable network
topology search of a neural network architecture search
space to identify a neural network with a multi-path topol-
ogy for an image-based task. In at least one embodiment, a
processor comprises one or more circuits to cause one or
more neural networks to be selected from a plurality of
neural networks based, at least in part, on an amount of
memory to be used by one or more neural networks. In at
least one embodiment, a processor comprises one or more
circuits to select a neural network architecture based on a
plurality of connection patterns, each comprising a distinct
combination of paths between layers of a neural network.

[0510] FIG. 35 is a visual representation of a topology
search space 3502 with fully connected edges between
adjacent layers for a differentiable NAS method 3500,
according to at least one embodiment. In at least one
embodiment, topology search space 3502 include a first
number, L, of layers (e.g., 12 layers) and each layer includes
multiple feature nodes from a second number, D, of reso-
Iutions or scales (e.g., 4 resolutions), resulting in multiple
candidate input edges 3521 between adjacent layers

US 2022/0284582 Al

(E=3D-2 candidate input edges). In at least one embodi-
ment, edges 3521 or paths are represented by dashed lines
between feature nodes 3523. In at least one embodiment, a
candidate input edge contains a cell operation and, in some
cases, an upsample operation or a downsample operation
(factor 2) is used before a cell operation if a candidate input
edge is an upsample edge (represented as an upward facing
arrow) or a downsample edge (represented as a downward
facing arrow). In at least one embodiment, a feature node is
a summation of output features such as feature maps from
each candidate input edge. In at least one embodiment, as
illustrated in FIG. 35, a first feature node 3504 includes a
first candidate input edge 3506 with a first cell operation, a
second candidate input edge 3508 with a second cell opera-
tion, a third candidate input edge 3510 with a third cell
operation, and a summation 3512 of output features from
each candidate input edge. In at least one embodiment, first
candidate input edge 3506 is a downsample edge and
performs a downsample operation 3514, second candidate
input edge 3508 is a direct pass edge, and third candidate
input edge 3510 is a upsample edge that performs an
upsample operation 3516. In at least one embodiment, cell
operations are defined on candidate input edges. In at least
one embodiment, feature nodes include feature maps. In at
least one embodiment, edges in topology search space 3502
are selected for features to flow from input to output from a
candidate network topology (also referred to as a candidate
neural network architecture).

[0511] In at least one embodiment, each edge in topology
search space 3502 includes a cell search space 3518 which
contains a set of operations to select from. In at least one
embodiment, cell search space 3518 is a set of operations
where input and output feature maps have a same spatial
resolution. In at least one embodiment, cell search space
3518 includes multiple blocks and connects among blocks
that can be searched. In at least one embodiment, searched
cells can be repeated over all cells in a network topology
level. In at least one embodiment, differentiable NAS
method 3500 searches operations of each cell independently
with one or more operation selected from a set of operations.
In at least one embodiment, for a NAS search performed for
3D images such as 3D medical images or other input feature
vectors with similar dimensionality, a set of operations of a
cell can include one or more types of operations, including:
i) a skip connection operation in which no operation is
performed; ii) a 3x3x3 3D convolution operation; iii) a
pseudo 3D (P3D) 3x3x1 operation, which is a 3x3x1
convolution operation followed by a 1x1x3 convolution
operation; iv) a P3D 3x1x3 operation, which is a 3x1x3
convolution operation followed by a 1°3x1 convolution
operation; v) a P3D 1x3x3 operation, which is a 1x3x3
convolution operation followed by a 3x1x1 convolution
operation. In at least one embodiment, other operations can
be part of a set of operations of a cell. In at least one
embodiment, a cell can also include an activation function
(e.g., rectified linear unit (Rel.U) activation) and instance
normalization, which are used before and after those other
operations respectively, except for a skip-connection opera-
tion. In at least one embodiment, feature spatial changes can
be performed by upsampling and downsampling operations
in edges searched at a topology level, allowing a set of
operations to exclude some operations such as multi-scale
feature aggregation operations like atrous convolution and
pooling operations.

Sep. 8§, 2022

[0512] In at least one embodiment, as illustrated in FIG.
35, topology search space 3502 contains input pre-defined
operations 3520 that can receive an input image 3522 (e.g.,
a 3D or 2D image) and generate multiple multi-resolution
images 3524 by downsampling input image 3522 by differ-
ent scales (e.g., Y2, %, %) along each axis of said input
image. In at least one embodiment, as illustrated in FIG. 35,
topology search space 3502 contains output pre-defined
operations 3526 that can generate an output image 3528 by
upsampling features from multiple resolutions from topol-
ogy search space 3502. In at least one embodiment, output
pre-defined operations 3526 perform upsampling on mul-
tiple multi-resolution features from topology search space
3502. In at least one embodiment, input pre-defined opera-
tions 3520 and output pre-defined operations 3526 are
referred to as a stem that includes cell operations at various
scales. In at least one embodiment, input image 3522 is a
same scale and/or resolution as output image 3528. In at
least one embodiment, a first layer (layer 0) can receive a
stack of multi-resolution images (e.g., a stack of images all
generated from an initial input image, where each image in
a stack has a different resolution) and perform convolutions
(e.g., 3x3x3 3D convolutions with stride 2) to generate
multi-resolution features for topology search space 3502. In
at least one embodiment, topology search space 3502
includes twelve layers, pre-defined operations for a first
layer, and pre-defined operations for a last layer.

[0513] In at least one embodiment, differentiable NAS
method 3500 performs a joint two-level search in a network
topology level of search space 3502 to find a flow of feature
maps across different spatial scales between layers and a cell
level of search space 3518 to find one or more operations to
perform at layers. In at least one embodiment, differentiable
NAS method 3500, to identity a candidate neural network
architecture, selects input candidate edges in topology
search space 3502 for features to flow from input to output
and selects an operation from a set of operations of each cell
associated with each input candidate edge selected. In at
least one embodiment, differentiable NAS method 3500 can
identify a variety of topologies, including a single-path
topology and a multi-path topology, using a flexible search
space that includes topology search space 3502 and cell
search space 3518 for each input candidate edge between
adjacent layers.

[0514] In at least one embodiment, processing logic per-
forms a joint two-level search of a topology search space and
a cell search space to identify one or more neural networks
for an image-based task. In at least one embodiment, pro-
cessing logic performs a joint two-level search of a topology
search space and a cell search space to identify one or more
neural networks for an image segmentation task (e.g., 3D
image segmentation task). In at least one embodiment, a
topology search space comprises a set of layers, each layer
comprising a set of candidate feature nodes each at a
different image scale for a first selection of one or more
candidate feature nodes and/or paths or edges such as
upsampling paths and downsampling paths between layers
for one or more neural networks. In at least one embodiment,
each candidate feature node comprises a set of candidate
edges or paths that connect to a feature node in a previous
layer.

[0515] In at least one embodiment, a cell search space
comprises a set of candidate operations for a second selec-
tion of one or more of a set of candidate operations at each

US 2022/0284582 Al

of a set of candidate edges or paths. In at least one embodi-
ment, each of a set of candidate operations of a candidate
feature node is to receive an input feature map and provides
an output feature map after performing a candidate opera-
tion. In at least one embodiment, an input feature map and
an output feature map have a same spatial resolution. In at
least one embodiment, each candidate feature node is a
summation of output features from each of a set of candidate
edges. In at least one embodiment, during a joint two-level
search, processing logic searches a topology search space
with a set of input features, each at a different image scale,
and searches a topology search space for a connection
pattern between each adjacent layer of a set of layers, a
connection pattern comprising one or more of a set of
candidate edges. In at least one embodiment, a first candi-
date feature node of a set of candidate feature nodes com-
prises: a first candidate edge comprising a downsample
operation and a first cell search space comprising a first set
of candidate operations; a second candidate edge comprising
a second cell search space comprising a second set of
candidate operations; and a third candidate edge comprising
an upsample operation and a third cell search space com-
prising a third set of candidate operations.

[0516] In at least one embodiment, a topology search
space is a multi-scale search space and processing logic
converts a multi-scale search space into a sequential search
space comprising a super node for each respective layer of
a set of layers. In at least one embodiment, each super node
comprises a set of candidate feature nodes at a respective
layer. In at least one embodiment, processing logic identifies
a set of candidate connection patterns between a first layer
and a second layer. In at least one embodiment, each of a set
of candidate connection patterns comprises a different com-
bination of one or more of a set of candidate edges between
a first layer and a second layer. In at least one embodiment,
processing logic determines a probability of each of a set of
candidate connection patterns and selects a connection pat-
tern, from a set of candidate connection patterns, based on
probability. In at least one embodiment, processing logic
selects a connection pattern based on probability, such as a
connection pattern having a highest probability or another
probability as a highest probability violates another con-
straint. In at least one embodiment, processing logic selects
a connection pattern with a highest probability that also
satisfies one or more other selection criteria. In at least one
embodiment, one or more other selection criteria include a
valid edges criterion. In at least one embodiment, a valid
edges criterion is satisfied if both an input and an output of
a path or edge connect to feature nodes. In at least one
embodiment, a connection pattern between two layers
includes multiple candidate edges 3521. In at least one
embodiment, a connection pattern between two layers
includes a single candidate edge 3521.

[0517] In at least one embodiment, differentiable NAS
method 3500 can support a variety of topologies and can
select input resolutions, such as illustrated in FIG. 36. In at
least one embodiment, more or fewer than 12 layers are
searched to design a neural network. In at least one embodi-
ment, more or fewer than four scales of inputs are searched
to design a neural network.

[0518] Inference and/or training logic 115 are used to
perform inferencing and/or training operations associated
with one or more embodiments of differentiable NAS
method 3500. In at least one embodiment, once NSA method

Sep. 8§, 2022

3500 is performed, a neural network having an optimized
neural network architecture is generated. In at least one
embodiment, inference and training logic 115 are used to
perform inference and/or training operations on a generated
neural network having an optimized neural network archi-
tecture. Details regarding inference and/or training logic 115
are provided herein in conjunction with FIGS. 1A and/or 1B.
[0519] FIG. 36 illustrates a multi-path topology 3602, a
single-path topology 3604, a multi-path topology with four
input resolutions 3606, and a multi-path topology with two
input resolutions 3608, according to at least one embodi-
ment. In at least one embodiment, as described herein, a
differentiable NAS method can perform a joint two-level
search in a search space to identify a neural network
architecture having any one of multi-path topology 3602,
single-path topology 3604, multi-path topology with four
input resolutions 3606, and multi-path topology with two
input resolutions 3608.

[0520] FIG. 37 illustrates a search stage and a discretiza-
tion stage of a differentiable NAS method 3700, according
to at least one embodiment. In at least one embodiment,
instead of searching a discrete set of candidate architectures
in a search space, differentiable NAS method 3700 performs
a differentiable search where a discrete set of candidate
architectures, as represented in search space 3702, are
relaxed into continuous model representations 3704 in a
search stage 706. In at least one embodiment, search stage
3706 results in a set of probabilities for combinations of
edges or paths between feature nodes at different scales in
layers. In at least one embodiment, relaxed continuous
model representations 3704 allow gradient-based searching
(e.g., gradient-descent searching) of search space 3702 in
search stage 3706. In at least one embodiment, probabilities
of connecting different feature nodes at different scales of
layers are computed and maintained in continuous model
3704.

[0521] In at least one embodiment, after gradient-based
searching in search stage 3706, continuous model represen-
tations 3704 are converted back to a discrete architecture
3708 having distinct paths or edges between layers during a
discretization stage 3710. In at least one embodiment, during
discretization stage 3710 one or more operations are selected
for feature nodes and one or more paths or edges are selected
for connecting feature nodes of different layers. In at least
one embodiment, during discretization stage 3710, differen-
tiable NAS method 3700 selects a candidate operation from
N candidate operations (e.g., O,, O,, . . . O,) for each
computational node and each operation (e.g., O,) is paired
with a first trainable parameter, where X, o, O,(x,,),
where x,,, is an input feature. In at least one embodiment, a
discrete operation is relaxed by a continuous model repre-
sentation, «,, which can be optimized using gradient
descent. In at least one embodiment, after optimization, an
operation O, with a larger trainable parameter, o, will be
selected. In at least one embodiment, a smaller trainable
parameter, *, can still make a significant difference on an
output feature, x,,,,,. and following layers, as long as «; is not
Zero.

[0522] In at least one embodiment, during edge selection
in discretization stage 3710, each candidate input edge is
paired with a second trainable parameter, § (where 0=zf=1),
and second parameters paired with candidate input edges
that point to a same feature node sum to one. In at least one
embodiment, after discretization stage 3710, instead of

our’

US 2022/0284582 Al

keeping a single path and discarding candidate input edges
with smaller trainable parameters, differentiable NAS
method 3700 maintains non-zero candidate input edges for
edge selection using a discretization algorithm that converts
a continuous model to a discrete model and guarantees a
topology (also referred to as a “topology guaranteed dis-
cretization algorithm™) and a topology loss as described
herein.

[0523] In at least one embodiment, if a differentiable NAS
search uses a single-path constraint which assumes that only
one input edge is kept for each node, a final searched model
only has a single path from input to output which limits its
complexity and can cause a sub-optimal discrete final archi-
tecture with a large performance gap, called a “discretization
gap.” In at least one embodiment, during search stage 306,
each candidate input edge in continuous model representa-
tions 3704 is given a probability and probabilities of can-
didate input edge to a node sum to one (§,+f,+p;=1). In at
least one embodiment, as illustrated in FIG. 37, a discreti-
zation gap 3712 results from discarding some edges with
small but non-zero probabilities in a searched continuous
model representations 3704 during discretization stage 3710
and if a discretization algorithm uses a single-path topology
constraint because edges causing infeasible topologies are
not allowed even if they have large probabilities in continu-
ous model representations 3704. In at least one embodiment,
without using a single-path constraint, differentiable NAS
method 3700 finds a single path 3714 between layers of
discrete model representations 3708. In at least one embodi-
ment, using a topology guaranteed discretization algorithm
and a topology loss, differentiable NAS method 3700 miti-
gates discretization gap 3712. In at least one embodiment,
instead of extracting a single-path discrete model from a
searched continuous model, differentiable NAS method
3700 extracts connection patterns that include one or more
paths between layers including edges 3716 with non-zero
probabilities in continuous model representations 3704. In at
least one embodiment, extracting connection patterns to
support flexible topologies makes a direct application of a
successful neural network to a new task more likely to be
optimal.

[0524] In at least one embodiment, a differentiable NAS
method 3700 relaxes a discrete architecture into continuous
representations and allows a direct gradient-based search. In
at least one embodiment, converting continuous representa-
tions back to a discrete architecture causes a “discretization
gap” and can have a large memory usage during a search
stage. In at least one embodiment, a searched model can be
retrained while increasing a filter number, a batch size, or a
patch size to gain better performance. In at least one
embodiment for 3D medical image segmentation, a change
of retraining scheme, which can be done when transferring
to a new task that requires a larger input size, can still cause
out-of-memory problems. In at least one embodiment, to
solve a “discretization gap,” differentiable NAS method
3700 uses a topology loss to push continuous representations
close to binary as described in more detail below.

[0525] In at least one embodiment, instead of determining
a score for each candidate input edge at a node and selecting
a candidate input edge having a highest score for a single-
path topology, differentiable NAS method 3700 considers all
candidate input edges in sets of connection patterns between
two layers as possibilities and selects an input connection
pattern between each set of two layers. In at least one

Sep. 8§, 2022

embodiment, differentiable NAS method 3700 considers
multiple candidate input edges (paths) and/or combinations
of candidate input edges between two layers as being
possible, where each candidate input edge represents a
connection between a first feature node at an image scale
(e.g., full scale, /> scale, a V4 scale, a Y5 scale and a Vis scale)
at a first layer and a second feature node at an image scale
at a second layer. In at least one embodiment, a first feature
node is at a first image scale and a second feature node is at
a second image scale that is different from first image scale.
In at least one embodiment, a first feature node and a second
feature node are at a same image scale. In at least one
embodiment, differentiable NAS method 3700 generates a
set of connection patterns, where there is a separate con-
nection pattern for each possible combination of candidate
input edges (paths) that can connect two layers. In at least
one embodiment, differentiable NAS method 3700 scores
each connection pattern, as opposed to scoring individual
candidate input edges, and this is repeated for each pair of
adjacent layers. In at least one embodiment, differentiable
NAS method 3700 selects a connection pattern that together
has a highest combined score and that results in valid
connections. In at least one embodiment, a valid connection
occurs when a feature node has an input edge and an output
edge. In at least one embodiment, differentiable NAS
method 3700 tests multiple connection patterns during a
search stage to automatically discover a neural network
architecture for an image-based task, such as 2D or 3D
image segmentation, image classification, or similar tasks.

[0526] Inference and/or training logic 115 are used to
perform inferencing and/or training operations associated
with one or more embodiments of differentiable NAS
method 3700. In at least one embodiment, inference and/or
training logic 115 are used to perform inferencing and/or
training on a neural network generated according to differ-
entiable NAS method 3700. Details regarding inference
and/or training logic 115 are provided herein in conjunction
with FIGS. 1A and/or 1B.

[0527] FIG. 38 illustrates a differentiable NAS method
3800 with a sequential model 3804 with super nodes,
according to at least one embodiment. In at least one
embodiment, differential NAS method 3800 converts a
multi-scale search space 3802 into a sequential model 3804
using super nodes. In at least one embodiment, feature nodes
at a same layer, 1, are combined as a super node, s,. In at least
one embodiment, for multi-scale search space 3802 with L.
layers and D resolution levels (image scales), feature nodes
in a same layer, i, are combined as super nodes and features
flow sequentially from these L. super nodes as shown with
super nodes 3806 (s,), 3808 (s,), 3810 (s;_,), 3812 (s;). In
at least one embodiment, there are a number of candidate
input edges to each super node E (E=3D-2), and a network
topology search by differentiable NAS method 3800 seclects
an optimal set of input edges for each super node. In at least
one embodiment, a connection pattern is a set of selected
edges and there can be a number of feasible candidate
connection patterns, M(M=2%-1). In at least one embodi-
ment, a j-th connection pattern, cp,, is an indication vector
of length E, where cp,(e)=1, if e-th edge is selected in j-th
pattern.

[0528] In at least one embodiment, differentiable NAS
method 3800 performs a network topology search using an
input connection operation. In at least one embodiment, an
input connection operation is defined to s, with connection

US 2022/0284582 Al

pattern cp; as cji, where cp; defines a network topology of
that also includes cell operations on selected edges in cp, and
¢/ and ¢! identify input/output connection patterns for a
super node, s, as cp, cp, respectively. In at least one
embodiment, using this formulation, differentiable NAS
method 3800 performs a network topology search by select-
ing an input connection pattern for each super node and
competition is among all M connection patterns, not among
candidate input edges. In at least one embodiment, differ-
entiable NAS method 3800 can associate a variable nji to
each connection operation ¢, for every super node, s,, and
every input connection pattern j. In at least one embodiment,
input features at layer 0 are denoted as s, and a sequential
feature flow equation is expressed in equation (1) below.

oo 5!
si= (hecisii=12, .., L
=1

M .
Z”‘f w=1,n; =094, j
=

In at least one embodiment, differentiable NAS method 3800
parametrizes variable nji with a set of edge probability
parameters (p,’), e=1, . . . E, since M is growing exponen-
tially with D, as expressed in equation (2) below.

E Aepje) |) ()
[T a-r b

M E .
dl-cpj(e) . P le)
E | | (1-pi ()
=1 e=1

O<pi<lVie

In at least one embodiment, for an example with a search
space with 12 layers (L=12) and four resolution levels
(D=4), a network topology parameter number is reduced
from MxL (1023x12) to ExL (10x12). In at least one
embodiment, under this formulation, probabilities n of con-
nections are highly correlated such that if an input edge, e,
to a super node, si, has a lower probability, all candidate
patterns to a super node, si, with a selected input edge, e, will
have lower probabilities. In at least one embodiment, as
illustrated in FIG. 38, a set of selected edges 3814 (solid
lines as opposed to dashed lines for non-selected edges) that
connects a first super node, s,_,, and a second super node, s,
is a selected candidate connection pattern. In at least one
embodiment, a topology search selects one candidate con-
nection pattern to connect adjacent super nodes sequentially.
[0529] In at least one embodiment, differentiable NAS
method 3800 uses a cell operation relaxation as described
above for a cell level search. In at least one embodiment,
each cell on a candidate input edge, e, to a given super node,
si, has its own cell architecture parameters, o, o™, . . .
, 0, and will be optimized during a search stage. In at
least one embodiment, a variable ¢, in equation (1) above
contains cell operations defined on selected edges and
contains relaxed cell architecture parameters o, allowing a
gradient-based search for topology and cell levels jointly.

[0530] In at least one embodiment, once a continuous
model is optimized in a search stage, a final discrete archi-
tecture is derived from an optimized continuous architecture

Sep. 8§, 2022

representation n, which is derived from a set of edge
probability parameters (p,’) and cell architecture probability
parameters, . In at least one embodiment, a variable 1/
represents a probability of using an input connection pattern
cphd ' for a super node s,. In at least one embodiment, an
easiest way for topology discretization is to select an input
connection pattern cpji with a maximum probability 7,
since a network topology search space is converted into a
sequential space. In at least one embodiment, a topology
infeasibility is considered since a particular topology may
not be feasible. In at least one embodiment, topology
infeasiability occurs when a feature node has an input edge
but no output edge or has an output edge but no input edge,
such as illustrated in FIG. 39.

[0531] Inference and/or training logic 115 are used to
perform inferencing and/or training operations associated
with one or more embodiments of differentiable NAS
method 3800. Details regarding inference and/or training
logic 115 are provided herein in conjunction with FIGS. 1A
and/or 1B.

[0532] FIG. 39 illustrates a differentiable NAS method
3900 that discretizes a sequential model 3902 with topology
feasibility constraints, according to at least one embodiment.
In at least one embodiment, differential NAS method 3900
evaluates topology feasibility of a sequential model 3902. In
at least one embodiment, as illustrated in FIG. 39, a super
node 3904 includes two of three nodes that are infeasible
topologies as a first feature node 3906 has an input edge
3908 but no output edge, and a second feature node 3910 has
an output edge 3912 but no input edge. These edges or paths
are therefore invalid. In at least one embodiment, as illus-
trated in FIG. 39, a super node 3904 includes a third feature
node 3914 that is a feasible topology since it has an input
edge 3916 and an output edge 3918. In at least one embodi-
ment, for every connection pattern cp,, a feasiable set, F(j)
is generated. In at least one embodiment, if a super node
with an input pattern, j, and output pattern, k, is topologi-
cally feasible, then k € F(j). In at least one embodiment,
differentiable NAS method 3900 can denote an array of
selected input connection pattern indexes for L. super nodes
as | and can perform a topology discretization by sampling
an index I from its probability distribution p(I) using a
maximum likelihood (or minimizing a negative log-likeli-
hood), as expressed in equations (3) and (4) below.

i=1

1) {1_[% m® Vil + 1) € FU) ”
(D) =

0, else

L))
I= argminz = —logn!™), V i:l(i + 1) € FU®©)
i=1

In at least one embodiment, differentiable NAS method 3900
builds a directed graph 3920, G, using parameters 1 and a
feasibility set F, where a node ¢/ is connected with an
adjacent node ¢,”** and ¢,/~! if adjacent nodes are feasible
(ifj € F(M) and k € F(j)), as illustrated in FIG. 39. In at least
one embodiment, directed graph 3920, G, contains a number
of nodes 3922 (LxM+2), which represent connection opera-
tions and an input edge cost to a node cji in terms of a
negative log-likelihood—log(n,). In at least one embodi-
ment, a source 3924 connects to all first layer nodes 3922
and all L-th layer nodes 3922 connect to a sink 3926 with an

US 2022/0284582 Al

edge cost of a constant value (e.g., 0.001). In at least one
embodiment, [nodes 3922 on a shortest path 3928 from
source 3924 to sink 3926 in directed graph 3920, G, repre-
sents an optimal final architecture with feasible connection
operations. In at least one embodiment, differentiable NAS
method 3900 uses equation (4) to determine a path with a
minimum cost from source 3924 to sink 3924 and an optimal
index, I, using Dijkstra algorithm. In at least one embodi-
ment, differentiable NAS method 3900 selects an operation
with a largest cell architecture parameters a for cell opera-
tions on selected edges from an optimal index, I.

[0533] In at least one embodiment, to minimize a discreti-
zation gap between a continuous model representation and a
final discretized model representation (final architecture),
entropy losses can be used by differentiable NAS method
3900 to encourage binarization of cell architecture param-
eters a and parameters 1 of input connections, as set forth in
equations (5).

1 L E N) 5)
L“:L*E*N;;;m'{ xlog(o)
1 K& .
t,= T :lzm*log(nj)

i

S

[0534] In at least one embodiment, even with architecture
parameters o« and m being almost binarized, there may still
be a large gap due to topology constraints in a discretization
algorithm, since topology feasibility indicates that an acti-
vated feature node with at least one input edge must have an
output edge while an in-activated feature node cannot have
an output edge. In at least one embodiment, each super node
has D feature nodes, thus there are 2°-1 node activation
patterns. In at least one embodiment, a variable A is defined
as a set of all node activation patterns and each element of
a set (a € A) is an indication function of length D, where
a(i)=1 of an i-th node of a super node is activated. In at least
one embodiment, differentiable NAS method 3900 defines
two feasibility sets, F,,(a) and F_, (a), representing all
feasible input and output connection pattern indexes for a
super node with node activation, a, as shown in FIG. 40.
[0535] Inference and/or training logic 115 are used to
perform inferencing and/or training operations associated
with one or more embodiments of differentiable NAS
method 3900. Details regarding inference and/or training
logic 115 are provided herein in conjunction with FIGS. 1A
and/or 1B.

[0536] FIG. 40 illustrates a differentiable NAS method
4000 that minimizes a discretization gap, according to at
least one embodiment. In at least one embodiment, as
illustrated in FIG. 40, input feasibility set 4002 and output
feasibility set 4004 represent feasible input and output
connection pattern indexes for a super node with a node
activation, according to at least one embodiment. In at least
one embodiment, connection patterns in input feasibility set
4002 with activation pattern a (a=[0,1,1]) and all feasible
output connection patterns are in output feasibility set 4004.
In at least one embodiment, a pattern a=[0,1,1] indicates that
two of three nodes of a super node are activated. In at least
one embodiment, differentiable NAS method 4000 uses a
topology loss function that can be minimized to encourage
all super nodes to be topologically feasible in a search stage

Sep. 8§, 2022

that is aware of topology constraints, thereby reducing a
discretization gap caused by topology constraints in a dis-
cretization stage. In at least one embodiment, differentiable
NAS method 4000 uses a topology loss as expressed in
equations (6) and (7) below.

Ph@=) n ®)

JeFin@)

Pral@y = >

JEFpu(@)

L1 _ _)) M
L, = —Zl D (Pha(@logl Phyg(@) + 1 = pl(@Nlog(l = phyy(@),

cA

where p,,(a) is a probability that an activation pattern for a
super node, s, is activation pattern, a, and p,,‘(a) is a
probability that a super node, s,, with activation pattern a is
feasible. In at least one embodiment, by minimizing f.,,, a
search stage of differentiable NAS method 4000 is aware of
topology constraints and encourages all super nodes to be
topologically feasible, thus reducing a discretization gap
caused during a discretization step.

[0537] In at least one embodiment, a searched model is
retrained under different training settings like patch size
(e.g., 4x larger image patch), filter number (e.g., 6x more
filters), or tasks, which can cause out of memory problems
for 3D images during re-training. In at least one embodi-
ment, a differentiable NAS method can use a memory
budget mechanism in a search stage for a neural network
architecture. In at least one embodiment, a cell’s expected
memory usage is estimated by M**=%, _ |~ « ** M, where
M,, is memory usage of operation O, (e.g., an estimated
tensor size). In at least one embodiment, an expected
memory usage M, of a searched model can be represented in
equation (8) below.

®

L M E N
M, = ZZn&*(Z [Z Mn]*cpj(e),
pyy n=1

=L j=1

[0538] In at least one embodiment, differentiable NAS
method 4000 uses a budget as a percentage o of a maximum
memory usage M, of which all parameters « and 1 equal
to one, as set forth in equations (9) and (10) below.

L M E ,u ©)
w-dS *(Z[ZMH]*W
[Ty =1 =l
M. (10)
l'_m = Va —o'|1

[0539] In at least one embodiment, a differentiable neural
network topology search uses an optimization strategy in
which a training set is partitioned into a first training subset,
trainl, and a second training subset, train2, and network
weights, w (e.g., convolution kernels) are optimized using a
segmentation loss optimization algorithm, L., on trainl,
and network architecture weights, « and n using an archi-

US 2022/0284582 Al

recture optimization algorithm, L, ,,, on train2 alternatively.
In at least one embodiment, a segmentation loss optimiza-
tion, Lseg, for weight w is an even sum of dice and
cross-entropy loss in segmentation, while t and tall are
current and total iterations for architecture optimization such
that searching is focused more on segmentation loss L, at
a starting point, as set forth in equation (11) below.

4 (1D
Larch = Loeg + = # (Loe + Ly + A Ly + L)
all

[0540] Inatleast one embodiment, a topology loss, L, can
be empirically scaled to a same range of other losses by
using a multiplier, A, such as 0.001 (e.g., A2=0.001).

[0541] In at least one embodiment, a differentiable neural
network topology search, as described herein, can be per-
formed for an image-based task, such as medical image
segmentation tasks. In at least one embodiment, medical
image segmentation tasks can cover different anatomies of
interest, modalities, and imaging sources. In at least one
embodiment, for example, a differentiable neural network
topology search can be performed on an annotated medical
image dataset and can deploy a searched model on one or
more medical image segmentation tasks. In at least one
embodiment, images are sampled to have a 1.0x1.0x1.0
mm? voxel resolution. In at least one embodiment, a differ-
entiable neural network topology search, as described
herein, can be performed for a medical image segmentation
task for each of a pancreas, a liver, a lung, a brain, a colon,
a heart, a prostate, a spleen, or other anatomies.

[0542] In atleast one embodiment, a search space includes
L=12 layers and D=4 resolution levels, such as illustrated in
FIG. 35. In at least one embodiment, a stem cell at a first
scale (scale 1) has sixteen filters, and a number of filters are
doubled for each decrease in spatial size (e.g., by half) in
each axis, for example, a second scale (scale %) has thirty-
two filters. In at least one embodiment, a differentiable
neural network topology search is performed on a training
dataset following a 5-fold data split with 4 for training and
a last set for validation. In at least one embodiment, a
stochastic gradient descent (SGD) optimizer can be used,
such as with momentum set to 0.9 and weight decay of 4e~>
set for network weights, w. In at least one embodiment,
weight w is trained for a first set of warm-up iterations (e.g.,
1K) and followed by a second set of iterations (e.g., 10K
iterations) without updating architecture. In at least one
embodiment, architecture parameters x and m are initialized
with Gaussian N(1, 0.01), N(0, 0.01) respectively before
softmax and sigmoid. In at least one embodiment, in a
following set of iterations (e.g., 10K iterations), weight w is
jointly optimized with SGD optimizer and architecture
parameters « and 1 with an Adam optimizer (e.g., learning
rate 0.008, weight decay 0). In at least one embodiment, a
learning rate of SGD linearly increases from 0.025 to 0.2 in
a first set of iterations and decays with a factor of 0.5 at
following sets of iterations (e.g 8K, 16K). In at least one
embodiment, a search is conducted on a set of GPUs (e.g.,
8 GPUs) with a batch size (e.g., 8) (e.g., each GPU with one
96x96x96 patch). In at least one embodiment, patches are
randomly augmented with 2D rotation by 90, 180, and 270
degrees in an x-y plane and flip in all three axes. In at least
one embodiment, in a search stage, a discretized model is
identified.

Sep. 8§, 2022

[0543] In at least one embodiment, after a search stage, a
discretized model is retrained with doubled filter number
and doubled batch size. In at least one embodiment, an SGD
optimizer can be used with a first set of warm-up iterations
(e.g, 1K) and a set of training iterations (e.g., 40K) and a
decay learning rate by a factor of 0.5 at sets of iterations
(e.g., 8K, 16K, 24K, 32K) after warm-up iterations. In at
least one embodiment, a learning rate schedule can be
similar to a start stage in a warm-up and a first set of
iterations (e.g., 20K). In at least one embodiment, during a
latter set of iterations (e.g., 20K) can be used for better
convergence. In at least one embodiment, to test generaliz-
ability of a searched model, a searched model can be
retrained on other image segmentation tasks. In at least one
embodiment, a differentiable neural network topology
search, as described herein, can be performed in less than
333 GPU days, such as 5.8 GPU days.

[0544] In at least one embodiment, a differentiable neural
network topology search, as described herein, can be per-
formed with varying memory constraints, allowing searched
models to have highly flexible topologies given different
memory constraints and allowing searched models to be
searched jointly at a network topology level and a cell level.
In at least one embodiment, increasing a memory constraint
results in a searched model being denser in connection and
can achieve better performance while requiring more GPU
memory, such as illustrated in searched architectures with
different memory constraints of FIGS. 41A-41C. In at least
one embodiment, a memory constraint for a neural network
and/or a NAS search based on known properties of a device
that will perform inferences using a neural network and/or
on properties of a device that will perform an NAS search.
Accordingly, in at least one embodiment, if an available
memory of an edge device that will execute a neural network
is known, then that available memory may be used to set a
memory constraint used to search for a neural network. In at
least one embodiment, memory, such as GPU memory, can
be estimated using functions in training, as described above.
In at least one embodiment, a differentiable neural network
topology search, as described herein, can be performed with
different memory constraints to evaluate performance,
allowing a reduction in memory usage with an acceptable
level of accuracy. In at least one embodiment, a memory-
aware search of a differentiable neural network topology
search, as described herein, can be used to further reduce
memory usage from a NAS perspective. In at least one
embodiment, this can result in a reduction in memory used
to perform a NAS and/or a reduction in memory used by a
trained neural network selected based on a result of a NAS.

[0545] Inference and/or training logic 115 are used to
perform inferencing and/or training operations associated
with one or more embodiments of differentiable NAS
method 4000. Details regarding inference and/or training
logic 115 are provided herein in conjunction with FIGS. 1A
and/or 1B.

[0546] FIGS. 41A-41C illustrates three searched architec-
tures 4100, 4110, 4120 with different memory constraints,
according to at least one embodiment. In at least one
embodiment, a differentiable neural network topology
search can identify a first neural network architecture 4100
in FIG. 41 A using a first memory constraint (e.g., 0=0.8), a
second neural network architecture 4110 in FIG. 41B using
a second memory constraint (e.g., 0=0.5), and a third neural
network architecture 4120 in FIG. 41C using a third memory

US 2022/0284582 Al

constraint (e.g., 0=0.2). In at least one embodiment, as
illustrated in FIGS. 41A-41C, increasing a memory con-
straint can increase a number of connections between layers
in a neural network, leading to better performance in an
image-based task but also leading to increased memory
usage.

[0547] In at least one embodiment, a discretization algo-
rithm of a differentiable neural network topology search, as
described herein, do not discard topologically infeasible
edges (most importantly edges with large probabilities),
reducing a discretization gap between feature flow in an
optimized continuous model, such as set forth in equation
(1), and a discrete model. In at least one embodiment, a
differentiable neural network topology search, as described
herein, includes a topology loss that encourages connections
with large probabilities to be feasible, thus will not be
discarded and causing a gap, such as illustrated in FIG. 42
below.

[0548] FIG. 42 is a graph illustrating indications in dis-
cretization gaps with and without topology loss in a dis-
cretization algorithm under different memory constraints,
according to at least one embodiment. In at least one
embodiment, a discretization algorithm without a topology
loss results in a first indication of discretization gap 4202
during an architecture search with a first memory constraint
(e.g., 0=0.8). In at least one embodiment, a discretization
algorithm with a topology loss, as described herein, results
in a second indication of discretization gap 4204 with a same
first memory constraint (e.g., 0=0.8) that is lower than first
indication of discretization gap 4202. In at least one embodi-
ment, a discretization algorithm without a topology loss
results in a third indication of discretization gap 4206 during
an architecture search with a second memory constraint
(e.g., 0=0.5). In at least one embodiment, a discretization
algorithm with a topology loss, as described herein, results
in a fourth indication of discretization gap 4208 with a same
second memory constraint (e.g., 0=0.5) that is lower than
third indication of discretization gap 4206. In at least one
embodiment, a discretization algorithm without a topology
loss results in a fifth indication of discretization gap 4210
during an architecture search with a third memory constraint
(e.g., 0=0.2). In at least one embodiment, a discretization
algorithm with a topology loss, as described herein, results
in a sixth indication of discretization gap 4212 with a same
third memory constraint (e.g., 0=0.2) that is lower than fifth
indication of discretization gap 4210. In at least one embodi-
ment, as illustrated in FIG. 42, a topology loss (dashed lines)
is decreased compared to no topology loss (solid lines),
demonstrating an importance of topology loss in a discreti-
zation algorithm as described herein.

[0549] In at least one embodiment, a differentiable neural
network topology search, as described herein, can imple-
ment a topology loss by denoting i) C,,,. as a topology
decoded by selecting a connection j with a largest probabil-
ity nji for each layer i, even if infeasible, and ii) C,,, as a
topology decoded by a discretization algorithm of a differ-
entiable neural network topology search as described herein.
Topologies C,,,, and C,,, are indication matrices of size
[L,E] representing whether an edge is selected and an
indication of discretization gap, G, is expressed as
G=2,_,"2,_,%|C,.x(i. ©)-C,, (i, €)]. In at least one embodi-
ment, as illustrated in FIG. 42, larger G represents a larger
gap between feature flows before and after discretization. In
at least one embodiment, as illustrated in FIG. 42, with

Sep. 8§, 2022

topology loss, a gap between Cmax and Ctop is reduced,
which is more important for smaller memory constraints
(e.g., smaller 0) where a searched architecture is more
sparse and more likely to have topology infeasibility.

[0550] In at least one embodiment, a differentiable net-
work topology search framework (DiNTS) can be used for
3D medical image segmentation tasks. In at least one
embodiment, by converting feature nodes with varying
spatial resolutions into super nodes, operations can focus on
connection patterns rather than individual edges, enabling
more flexible network topologies and a discretization-aware
search framework. In at least one embodiment, a differen-
tiable network topology search framework (DiNTS) can
discover highly flexible, high-performance neural network
architectures for medical image segmentation tasks, as well
as other image-based tasks. In at least one embodiment,
medical images can be 3D medical images and a differen-
tiable network topology search framework (DiNTS) can use
a memory constraint to identify different neural network
architectures using different memory constraints during a
search.

[0551] In at least one embodiment, one or more circuits
perform a new NAS method for automatically searching a
NAS search space to discover an optimal architecture for a
neural network with a multi-path topology for an image-
based task like medical image segmentation. In at least one
embodiment, a new NAS method, called Differentiable
Neural Network Topology Search (DiNTS) performs a dif-
ferentiable network topology search that separately searches
for an optimal network topology and for optimal cell opera-
tions to discover a neural network architecture for an image-
based task. In at least one embodiment, a NAS search space
for segmentation contains a network topology level and a
cell level. In at least one embodiment, a network topology
level controls connections among cells and a flow of feature
maps across different spatial scales, and a cell level controls
specific operations on feature maps within each cell. In at
least one embodiment, a differentiable search scheme is
capable of performing a joint two-level search in a network
topology level and a cell level in a NAS search space and
finding multi-path topologies with reduced use of processor
resources. In at least one embodiment, resulting architec-
tures with multi-path topologies can have better perfor-
mance than an architecture with a single path from input to
output. In at least one embodiment, a differentiable NAS
search uses a topology guaranteed discretization algorithm
and a discretization aware topology loss for a search stage to
minimize a discretization gap. In at least one embodiment,
a differentiable search scheme can use a memory-usage
constraint during searching to discover neural networks for
different memory requirements. In at least one embodiment,
a memory usage criterion can be set and a search can be
performed in a manner that does not exceed a memory usage
criterion. In at least one embodiment, a memory usage aware
search method is able to search 3D networks with different
GPU memory requirements.

[0552] FIG. 43 is a flow diagram of a method 4300 of
performing a search of a search space, according to at least
one embodiment. In at least one embodiment, method 4300
is performed by processing logic comprising hardware,
firmware, software, or any combination thereof. In at least
one embodiment, method 4300 begins by processing logic
determining a maximum memory usage of all operations
associated with one or more candidate feature nodes of

US 2022/0284582 Al

search space (block 4302). In at least one embodiment,
processing logic receives a first input that specifies a first
memory constraint (block 4304). In at least one embodi-
ment, a first memory constraint is specified as a first per-
centage of a maximum memory usage. In at least one
embodiment, processing logic selects a first set of one or
more operations associated with one or more candidate
feature modes for one or more neural networks to be selected
(block 4306). In at least one embodiment, a first memory
usage of a first set of one or more operations is equal to or
less than a first percentage of a maximum memory usage;
and method 4300 ends.

[0553] In at least one embodiment, method 4300 includes
performing a second search of a search space by receiving
a second input that specifies a second memory constraint as
a second percentage of a maximum memory usage. In at
least one embodiment, processing logic selects a second set
of one or more operations associated with one or more
candidate feature modes for one or more neural networks to
be selected. In at least one embodiment, a second memory
usage of a second set of one or more operations is equal to
or less than a second percentage of a maximum memory
usage.

[0554] In at least one embodiment, method 4300 includes
performing a third search of a search space by receiving a
third input that specifies a third memory constraint as a third
percentage of a maximum memory usage. In at least one
embodiment, processing logic selects a third set of one or
more operations associated with one or more candidate
feature modes for one or more neural networks to be
selected. In at least one embodiment, a second memory
usage of a second set of one or more operations is equal to
or less than a second percentage of a maximum memory
usage.

[0555] In at least one embodiment, a first set of one or
more operations, a second set of one or more operations, and
a third set of one or more operations are different, such as
illustrated in FIGS. 41A-41C based on a first memory
constraint, a second memory constraint, and a third memory
constraint, respectively.

[0556] Inference and/or training logic 115 are used to
perform inferencing and/or training operations associated
with one or more embodiments of method 4300. Details
regarding inference and/or training logic 115 are provided
herein in conjunction with FIGS. 1A and/or 1B.

[0557] FIG. 44 is a flow diagram of a method 4400 of
performing multiple searches of a search space, according to
at least one embodiment. In at least one embodiment,
method 4300 is performed by processing logic comprising
hardware, firmware, software, or any combination thereof.
In at least one embodiment, method 4400 begins by pro-
cessing logic receiving input data that specifies a first
memory constraint (block 4402). In at least one embodi-
ment, processing logic determines a first set of one or more
search parameters based on a first memory constraint. In at
least one embodiment, processing logic performs a first
search in accordance with a first set of one or more search
parameters (block 4404). In at least one embodiment, first
results of a first search for one or more neural networks
include a first set of one or more operations associated with
one or more candidate feature nodes of a search space that
satisfy a first memory constraint. In at least one embodi-
ment, method 4400 receives input data that specifies a
second memory constraint (block 4406). In at least one

Sep. 8§, 2022

embodiment, processing logic determines a second set of
one or more search parameters based on a second memory
constraint (block 4408). In at least one embodiment, pro-
cessing logic performs a second search in accordance with
a second set of one or more search parameters. In at least one
embodiment, second results of a second search for one or
more neural networks include a second set of one or more
operations associated with one or more candidate feature
nodes of a search space that satisfy a second memory
constraint. In at least one embodiment, processing logic
performs a search of a search space using a topology-
guaranteed discretization algorithm and a discretization-
aware topology loss.

[0558] Inference and/or training logic 115 are used to
perform inferencing and/or training operations associated
with one or more embodiments of method 4400. Details
regarding inference and/or training logic 115 are provided
herein in conjunction with FIGS. 1A and/or 1B.

[0559] FIG. 45 is a flow diagram of a method 4500 of
performing a search of a search space, according to at least
one embodiment. In at least one embodiment, method 4500
is performed by processing logic comprising hardware,
firmware, software, or any combination thereof. In at least
one embodiment, method 4500 begins by processing logic
identifying multiple candidate connection patterns between
a first layer and a second layer of a search space, a first layer
and a second layer each including a set of candidate feature
nodes at a different image scale (block 4502). In at least one
embodiment, each candidate feature node includes multiple
candidate edges that connect to a feature node in a previous
layer. In at least one embodiment, processing logic deter-
mines a probability of each of a set of candidate connection
patterns (block 4504) and selects a connection pattern, from
a set of candidate connection patterns, based on probability
(block 4506); and method 4500 ends. In at least one embodi-
ment, at block 4506 a candidate connection pattern having
a highest probability is selected. In at least one embodiment,
one or more criteria are used to select a candidate connection
pattern for connecting two layers. In at least one embodi-
ment, one or more candidate connection patterns are dis-
carded based on invalid connections. For example, candidate
connection patterns that connect to inactive feature nodes of
either a first layer or a second layer may be discarded. In at
least one embodiment, a remaining candidate connection
pattern with a highest probability after discarding any can-
didate connection patterns with invalid connections is
selected.

[0560] In at least one embodiment, processing logic per-
forms a search by identifying a second set of candidate
connection patterns between a second layer and a third layer
of a search space, a third layer including a set of candidate
feature nodes at a different image scale. In at least one
embodiment, processing logic determines a feasible set of
candidate connection patterns, from a set of candidate con-
nection patterns based on whether a respective candidate
feature node includes an input connection in a set of can-
didate connection patterns and an output connection in a
second set of candidate connection patterns. In at least one
embodiment, processing logic selects, from a feasible set of
candidate connection patterns, a connection pattern having a
highest probability.

[0561] In at least one embodiment, processing logic per-
forms a joint two-level search of a search space by identi-
fying a connection pattern, from a set of connection patterns,

US 2022/0284582 Al

between each of a set of layers in a search space for one or
more neural networks to be selected, wherein each of a set
of layers includes a set of candidate feature nodes at a
different image scale, wherein each candidate feature node
includes a set of candidate edges that connect to a feature
node in a previous layer. In at least one embodiment, each
of a set of connection patterns includes a different combi-
nation of candidate edges. In at least one embodiment,
processing logic identifies, for each of a respective candidate
edges in a connection pattern, an operation from a set of
candidate operations for one or more neural networks to be
selected.

[0562] Inference and/or training logic 115 are used to
perform inferencing and/or training operations associated
with one or more embodiments of method 4500. Details
regarding inference and/or training logic 115 are provided
herein in conjunction with FIGS. 1A and/or 1B.

[0563] At least one embodiment of the disclosure can be
described in view of the following clauses:

[0564] In clause 1, a processor comprising: one or more
circuits to cause one or more neural networks to be selected
from a plurality of neural networks based, at least in part, on
an amount of memory to be used by the one or more neural
networks.

[0565] Inclause 2, a processor of clause 1, wherein the one
or more circuits are further to perform a search to select the
one or more neural networks from the plurality of neural
networks that satisfy a memory constraint.

[0566] In clause 3, a processor of any of clauses 1-2,
wherein the one or more circuits are further to cause one or
more additional neural networks to be selected from the
plurality of neural networks or from a second plurality of
neural networks, wherein the one or more additional neural
networks are different from the one or more neural networks
and satisfy a second memory constraint that is different from
a first memory satisfied by the one or more neural networks.
[0567] In clause 4, a processor of any of clauses 1-3,
wherein the one or more circuits are further to perform a
search to select the one or more neural networks from the
plurality of neural networks in accordance with a set of one
or more search parameters determined at least in part on the
amount of memory to be used by the one or more neural
networks.

[0568] In clause 5, a processor of any of clauses 1-4,
wherein a percentage of a maximum memory usage of
operations associated with one or more candidate feature
nodes of a search space comprising the plurality of neural
networks is less than or equal to the amount of memory.
[0569] In clause 6, a processor of any of clauses 1-5,
wherein the one or more circuits further cause the one or
more neural networks to be selected by performing a joint
two-level search of a topology search space and a cell search
space to identify the one or more neural networks for an
image-based task.

[0570] In clause 7, a system comprises: one or more
processors to cause one or more neural networks to be
selected from a plurality of neural networks based, at least
in part, on an amount of memory to be used by the one or
more neural networks; and one or more memories to store
parameters corresponding to the one or more neural net-
works.

[0571] In clause 8, a system of clause 7, wherein the one
or more processors are further to perform a first search to

Sep. 8§, 2022

select the one or more neural networks from the plurality of
neural networks that satisfy a first memory constraint.
[0572] Inclause 9, a system of any of clauses 7-8, wherein
the one or more processors are further to select a connection
pattern, from a plurality of candidate connection patterns
between a first layer and a second layer of the one or more
neural networks, based at least in part on probabilities of
each of the plurality of candidate connection patterns.
[0573] In clause 10, a system of any of clauses 7-9,
wherein the one or more processors are further to select a
feature node from a set of candidate features nodes for one
or more layers of the one or more neural networks, wherein
the set of candidate feature nodes comprises feature nodes at
different image scales that comprise a plurality of candidate
edges that connect to a feature node in a previous layer.
[0574] In clause 11, a system of any of clauses 7-10,
wherein the one or more processors further cause the one or
more neural networks to be selected by performing a joint
two-level search of a topology search space and a cell search
space to identify the one or more neural networks for an
image-based task.

[0575] In clause 12, a system of any of clauses 7-11,
wherein the one or more neural networks are to perform an
image segmentation task.

[0576] In clause 13, a system of any of clauses 7-12,
wherein the one or more processors further cause the one or
more neural networks to be selected by performing a search
of a topology search space comprising a plurality of candi-
date edges that connect candidate feature nodes of a plurality
of layers and a cell search space comprising a plurality of
candidate operations.

[0577] In clause 14, a system of any of clauses 7-13,
wherein the one or more processors are further to select a
connection pattern, from a plurality of candidate connection
patterns between layers of the one or more neural networks,
based at least in part on probabilities of the plurality of
candidate connection patterns.

[0578] In clause 15, a datacenter comprising: one or more
processors to cause one or more neural networks to be
selected from a plurality of neural networks to perform a
medical image segmentation task based, at least in part, on
an amount of memory to be used by the one or more neural
networks.

[0579] Inclause 16, a datacenter of clause 15, wherein the
one or more processors are further to perform a search to
select the one or more neural networks from the plurality of
neural networks that satisfy a memory constraint.

[0580] In clause 17, a datacenter of any of clauses 15-16,
wherein the one or more processors are further to cause one
or more additional neural networks to be selected from the
plurality of neural networks or from a second plurality of
neural networks, wherein the one or more additional neural
networks are different from the one or more neural networks
and satisfy a second memory constraint that is different from
a first memory satisfied by the one or more neural networks.
[0581] In clause 18, a datacenter of any of clauses 15-17,
wherein the one or more processors are to perform a joint
two-level search of a topology search space and a cell search
space to identify the one or more neural networks for the
medical image segmentation task.

[0582] In clause 19, a datacenter of any of clauses 15-18,
wherein the one or more processors are to perform a search
of a search space to cause the one or more neural networks
to be selected, wherein the search comprises selecting a

US 2022/0284582 Al

connection pattern between layers of the one or more neural
networks, from a plurality of candidate connection patterns,
based at least in part on probabilities of the plurality of
candidate connection patterns.

[0583] In clause 20, a datacenter of any of clauses 15-19,
wherein the one or more processors are to perform a search
of a search space to cause the one or more neural networks
to be selected, wherein the search comprises selecting a
connection pattern from a feasible set of candidate connec-
tion patterns between layers of the one or more neural
networks, wherein each feasible connection pattern in the
feasible set of candidate connection patterns comprises valid
input connections and output connections between the lay-
ers.

[0584] Inclause 21, a method comprising: selecting one or
more neural networks from a plurality of neural networks
based, at least in part, on an amount of memory to be used
by the one or more neural networks.

[0585] In clause 22, a method of clause 21, further com-
prising selecting a first set of one or more operations for the
one or more neural networks that satisfy a first memory
constraint.

[0586] In clause 23, a method of any of clauses 21-22,
further comprising performing a search of a search space to
select the one or more neural networks, wherein performing
the search comprises selecting a connection pattern, from a
plurality of candidate connection patterns between layers of
the one or more neural networks, based at least in part on
probabilities of the plurality of candidate connection pat-
terns.

[0587] In clause 24, a method of any of clauses 21-23,
further comprising performing a joint two-level search of a
topology search space and a cell search space to identity the
one or more neural networks for an image-based task.
[0588] In clause 25, a method of any of clauses 21-24,
wherein the one or more neural networks are to perform an
image segmentation task.

[0589] In clause 26, a method of any of clauses 21-25,
further comprising performing a search of a multi-scale
topology search space by converting the multi-scale topol-
ogy search space into a sequential search space comprising
a super node for each respective layer of a plurality of layers,
wherein each super node comprises a set of candidate
feature nodes at the respective layer.

[0590] In clause 27, a processor comprising: one or more
circuits to cause one or more neural networks to be selected
from a plurality of neural networks based, at least in part, on
an amount of memory to be used by the one or more neural
networks.

[0591] In clause 28, a processor of clause 27, wherein the
one or more circuits further cause the one or more neural
networks to be selected by performing a first search of a
search space, wherein the first search comprises: determine
a maximum memory usage of all operations associated with
one or more candidate feature nodes of the search space;
receive a first input that specifies a first memory constraint
as a first percentage of the maximum memory usage; and
select a first set of one or more operations associated with
one or more candidate feature nodes for the one or more
neural networks to be selected, wherein a first memory usage
of the first set of one or more operations is equal to or less
than the first percentage of the maximum memory usage.
[0592] In clause 29, a processor of any of clauses 27-28,
wherein the one or more circuits further cause the one or

Sep. 8§, 2022

more neural networks to be selected by performing a second
search of the search space, wherein the second search
comprises: receive a second input that specifies a second
memory constraint as a second percentage of the maximum
memory usage; and select a second set of one or more
operations associated with one or more candidate feature
modes for the one or more neural networks to be selected,
wherein a second memory usage of the second set of one or
more operations is equal to or less than the second percent-
age of the maximum memory usage.

[0593] In clause 30, a processor of any of clauses 27-29,
wherein the one or more circuits further cause the one or
more neural networks to be selected by performing a first
search of a search space using a first memory constraint,
wherein the first search comprises: receive input data that
specifies the first memory constraint; determine a first set of
one or more search parameters based on the first memory
constraint; and perform the first search in accordance with
the first set of one or more search parameters, wherein first
results of the first search for the one or more neural networks
comprises a first set of one or more operations associated
with one or more candidate feature nodes of the search space
that satisfy the first memory constraint.

[0594] In clause 31, a processor of any of clauses 27-30,
wherein the one or more circuits further cause the one or
more neural networks to be selected by performing a second
search of the search space using a second memory constraint
that is different than the first memory constraint, wherein the
second search comprises: receive input data that specifies
the second memory constraint; determine a second set of one
or more search parameters based on the second memory
constraint; and perform the second search in accordance
with the second set of one or more search parameters,
wherein second results of the second search for the one or
more neural networks comprises a second set of one or more
operations associated with one or more candidate feature
nodes of the search space that satisty the second memory
constraint.

[0595] In clause 32, a processor of any of clauses 27-31,
wherein the one or more circuits further cause the one or
more neural networks to be selected by performing a joint
two-level search of a topology search space and a cell search
space to identify the one or more neural networks for an
image-based task.

[0596] In clause 33, a system comprising: one or more
processors to cause one or more neural networks to be
selected from a plurality of neural networks based, at least
in part, on an amount of memory to be used by the one or
more neural networks; and one or more memories to store
parameters corresponding to the one or more neural net-
works.

[0597] Inclause 34, a system of clause 33, wherein the one
or more processors further cause the one or more neural
networks to be selected by performing a first search of a
search space, wherein the first search comprises: determine
a maximum memory usage of all operations associated with
one or more candidate feature nodes of the search space;
receive a first input that specifies a first memory constraint
as a first percentage of the maximum memory usage; and
select a first set of one or more operations associated with
one or more candidate feature modes for the one or more
neural networks to be selected, wherein a first memory usage
of the first set of one or more operations is equal to or less
than the first percentage of the maximum memory usage.

US 2022/0284582 Al

[0598] In clause 35, a system of any of clauses 33-34,
wherein the one or more processors further cause the one or
more neural networks to be selected by performing a search
of a search space, wherein the search comprises: identify a
plurality of candidate connection patterns between a first
layer and a second layer of the search space, the first layer
and the second layer each comprising a set of candidate
feature nodes at a different image scale, wherein each
candidate feature node comprises a plurality of candidate
edges that connect to a feature node in one or more previous
layers; determine a probability of each of the plurality of
candidate connection patterns; and select a connection pat-
tern, from the plurality of candidate connection patterns,
having a highest probability.

[0599] In clause 36, a system of any of clauses 33-35,
wherein the one or more processors further cause the one or
more neural networks to be selected by performing a joint
two-level search of a topology search space and a cell search
space to identify the one or more neural networks for an
image-based task.

[0600] In clause 37, a system of any of clauses 33-36,
wherein the image-based task is an image segmentation task.
[0601] In clause 38, a system of any of clauses 33-37,
wherein: the topology search space comprises a plurality of
layers, each layer comprising a set of candidate feature
nodes each at a different image scale for a first selection of
one or more candidate feature nodes for the one or more
neural networks, wherein each candidate feature node com-
prises a plurality of candidate edges that connect to a feature
node in one or more previous layers; and the cell search
space comprises a plurality of candidate operations for a
second selection of one of the plurality of candidate opera-
tions at each of the plurality of candidate edges.

[0602] In clause 39, a system of any of clauses 33-38,
wherein each of the plurality of candidate operations is to
receive an input feature map and provide an output feature
map, the input feature map and the output feature map
having a same spatial resolution, wherein each candidate
feature node is a summation of output features from each of
the plurality of candidate edges of the candidate feature
node, wherein the one or more processors, during the joint
two-level search, search the topology search space with a
plurality of input features, each at a different image scale,
and wherein the one or more processors, during the joint
two-level search, search the topology search space for a
connection pattern between each of the plurality of layers,
the connection pattern comprising one or more of the
plurality of candidate edges.

[0603] In clause 40, a system of any of clauses 33-39,
wherein the topology search space is a multi-scale search
space, and wherein the one or more processors further cause
the one or more neural networks to: convert the multi-scale
search space into a sequential search space comprising a
super node for each respective layer of the plurality of
layers, wherein each super node comprises the set of can-
didate feature nodes at the respective layer; identify a
plurality of candidate connection patterns between a first
layer and a second layer, each of the plurality of candidate
connection patterns comprising a different combination of
one or more of the plurality of candidate edges between the
first layer and the second layer; determine a probability of
each of the plurality of candidate connection patterns; and
select a connection pattern, from the plurality of candidate
connection patterns, based on the probability.

Sep. 8§, 2022

[0604] In clause 41, a datacenter comprising: or more
processors to cause one or more neural networks to be
selected from a plurality of neural networks to perform a
medical image segmentation task based, at least in part, on
an amount of memory to be used by the one or more neural
networks.

[0605] In clause 42, a datacenter of clause 41, wherein the
one or more processors further cause the one or more neural
networks to be selected by performing a first search of a
search space, wherein the first search comprises: determine
a maximum memory usage of all operations associated with
one or more candidate feature nodes of the search space;
receive a first input that specifies a first memory constraint
as a first percentage of the maximum memory usage; and
select a first set of one or more operations associated with
one or more candidate feature modes for the one or more
neural networks to be selected, wherein a first memory usage
of the first set of one or more operations is equal to or less
than the first percentage of the maximum memory usage.
[0606] In clause 43, a datacenter of any of clauses 41-42,
wherein the one or more processors further cause the one or
more neural networks to be selected by performing a second
search of the search space, wherein the second search
comprises: receive a second input that specifies a second
memory constraint as a second percentage of the maximum
memory usage; and select a second set of one or more
operations associated with one or more candidate feature
modes for the one or more neural networks to be selected,
wherein a second memory usage of the second set of one or
more operations is equal to or less than the second percent-
age of the maximum memory usage.

[0607] In clause 44, a datacenter of any of clauses 41-43,
wherein the one or more processors further cause the one or
more neural networks to be selected by performing a joint
two-level search of a topology search space and a cell search
space to identify the one or more neural networks for the
medical image segmentation task.

[0608] In clause 45, a datacenter of any of clauses 41-44,
wherein the one or more processors further cause the one or
more neural networks to be selected by performing a search
of a search space, wherein the search comprises: identify a
plurality of candidate connection patterns between a first
layer and a second layer of the search space, the first layer
and the second layer each comprising a set of candidate
feature nodes at a different image scale, wherein each
candidate feature node comprises a plurality of candidate
edges that connect to a feature node in one or more previous
layers; determine a probability of each of the plurality of
candidate connection patterns; and select a connection pat-
tern, from the plurality of candidate connection patterns,
based on the probability.

[0609] In clause 46, a datacenter of any of clauses 41-45,
wherein the search further comprises: identify a second
plurality of candidate connection patterns between the sec-
ond layer and a third layer of the search space, the third layer
comprising a set of candidate feature nodes at a different
image scale; determine a feasible set of candidate connec-
tion patterns, from the plurality of candidate connection
patterns based on whether a respective candidate feature
node comprises an input connection in the plurality of
candidate connection patterns and an output connection in
the second plurality of candidate connection patterns; and
select, from the feasible set of candidate connection patterns,
the connection pattern based on the probability.

US 2022/0284582 Al

[0610] In clause 47, a method comprising: receiving an
input indicative of an amount of memory to be used; and
selecting one or more neural networks from a plurality of
neural networks based, at least in part, on the amount of
memory to be used by the one or more neural networks.
[0611] In clause 48, a method of clause 47, further com-
prising performing a first search of a search space, wherein
performing the first search comprises: determining a maxi-
mum memory usage of all operations associated with one or
more candidate feature nodes of the search space; receiving
a first input that specifies a first memory constraint as a first
percentage of the maximum memory usage; and selecting a
first set of one or more operations associated with one or
more candidate feature modes for the one or more neural
networks to be selected, wherein a first memory usage of the
first set of one or more operations is equal to or less than the
first percentage of the maximum memory usage.

[0612] In clause 49, a datacenter of any of clauses 47-48,
further comprising performing a search of a search space,
wherein the search comprises: identifying a plurality of
candidate connection patterns between a first layer and a
second layer of the search space, the first layer and the
second layer each comprising a set of candidate feature
nodes at a different image scale, wherein each candidate
feature node comprises a plurality of candidate edges that
connect to a feature node in one or more previous layers;
determining a probability of each of the plurality of candi-
date connection patterns; and selecting a connection pattern,
from the plurality of candidate connection patterns, having
a highest probability.

[0613] In clause 50, a datacenter of any of clauses 47-49,
further comprising performing a joint two-level search of a
topology search space and a cell search space to identity the
one or more neural networks for an image-based task.
[0614] In clause 51, a datacenter of any of clauses 47-50,
wherein the image-based task is an image segmentation task.
[0615] In clause 52, a datacenter of any of clauses 47-51,
wherein the topology search space is a multi-scale search
space, and wherein the method further comprises: convert-
ing the multi-scale search space into a sequential search
space comprising a super node for each respective layer of
a plurality of layers, wherein each super node comprises a
set of candidate feature nodes at the respective layer; iden-
tifying a plurality of candidate connection patterns between
a first layer and a second layer, each of the plurality of
candidate connection patterns comprising a different com-
bination of one or more of a plurality of candidate edges
between the first layer and the second layer; determining a
probability of each of the plurality of candidate connection
patterns; and selecting a connection pattern, from the plu-
rality of candidate connection patterns, based on the prob-
ability.

[0616] In at least one embodiment, a single semiconductor
platform may refer to a sole unitary semiconductor-based
integrated circuit or chip. In at least one embodiment,
multi-chip modules may be used with increased connectivity
which simulates on-chip operation, and make substantial
improvements over utilizing a conventional central process-
ing unit (“CPU”) and bus implementation. In at least one
embodiment, various modules may also be situated sepa-
rately or in various combinations of semiconductor plat-
forms per desires of user.

[0617] In at least one embodiment, referring back to FIG.
7, computer programs in form of machine-readable execut-

Sep. 8§, 2022

able code or computer control logic algorithms are stored in
main memory 704 and/or secondary storage. Computer
programs, if executed by one or more processors, enable
system 700 to perform various functions in accordance with
at least one embodiment. In at least one embodiment,
memory 704, storage, and/or any other storage are possible
examples of computer-readable media. In at least one
embodiment, secondary storage may refer to any suitable
storage device or system such as a hard disk drive and/or a
removable storage drive, representing a floppy disk drive, a
magnetic tape drive, a compact disk drive, digital versatile
disk (“DVD”) drive, recording device, universal serial bus
(“USB”) flash memory, etc. In at least one embodiment,
architecture and/or functionality of various previous figures
are implemented in context of CPU 702, parallel processing
system 712, an integrated circuit capable of at least a portion
of capabilities of both CPU 702, parallel processing system
712, a chipset (e.g., a group of integrated circuits designed
to work and sold as a unit for performing related functions,
etc.), and/or any suitable combination of integrated circuit
(s).

[0618] In at least one embodiment, architecture and/or
functionality of various previous figures are implemented in
context of a general computer system, a circuit board
system, a game console system dedicated for entertainment
purposes, an application-specific system, and more. In at
least one embodiment, computer system 700 may take form
of'a desktop computer, a laptop computer, a tablet computer,
servers, supercomputers, a smart-phone (e.g., a wireless,
hand-held device), personal digital assistant (“PDA”), a
digital camera, a vehicle, a head mounted display, a hand-
held electronic device, a mobile phone device, a television,
workstation, game consoles, embedded system, and/or any
other type of logic.

[0619] In at least one embodiment, parallel processing
system 712 includes, without limitation, a plurality of par-
allel processing units (“PPUs”) 714 and associated memo-
ries 716. In at least one embodiment, PPUs 714 are con-
nected to a host processor or other peripheral devices via an
interconnect 718 and a switch 720 or multiplexer. In at least
one embodiment, parallel processing system 712 distributes
computational tasks across PPUs 714 which can be paral-
lelizable—for example, as part of distribution of computa-
tional tasks across multiple graphics processing unit
(“GPU”) thread blocks. In at least one embodiment, memory
is shared and accessible (e.g., for read and/or write access)
across some or all of PPUs 714, although such shared
memory may incur performance penalties relative to use of
local memory and registers resident to a PPU 714. In at least
one embodiment, operation of PPUs 714 is synchronized
through use of a command such as _syncthreads(), wherein
all threads in a block (e.g., executed across multiple PPUs
714) to reach a certain point of execution of code before
proceeding.

[0620] Other variations are within spirit of present disclo-
sure. Thus, while disclosed techniques are susceptible to
various modifications and alternative constructions, certain
illustrated embodiments thereof are shown in drawings and
have been described above in detail. It should be understood,
however, that there is no intention to limit disclosure to
specific form or forms disclosed, but on contrary, intention
is to cover all modifications, alternative constructions, and
equivalents falling within spirit and scope of disclosure, as
defined in appended claims.

US 2022/0284582 Al

[0621] Use of terms “a” and “an” and “the” and similar
referents in context of describing disclosed embodiments
(especially in context of following claims) are to be con-
strued to cover both singular and plural, unless otherwise
indicated herein or clearly contradicted by context, and not
as a definition of a term. Terms “comprising,” “having,”
“including,” and “containing” are to be construed as open-
ended terms (meaning “including, but not limited to,”)
unless otherwise noted. “Connected,” when unmodified and
referring to physical connections, is to be construed as partly
or wholly contained within, attached to, or joined together,
even if there is something intervening. Recitation of ranges
of values herein are merely intended to serve as a shorthand
method of referring individually to each separate value
falling within range, unless otherwise indicated herein and
each separate value is incorporated into specification as if it
were individually recited herein. In at least one embodiment,
use of term “set” (e.g., “a set of items”™) or “subset” unless
otherwise noted or contradicted by context, is to be con-
strued as a nonempty collection comprising one or more
members. Further, unless otherwise noted or contradicted by
context, term “subset” of a corresponding set does not
necessarily denote a proper subset of corresponding set, but
subset and corresponding set may be equal.

[0622] Conjunctive language, such as phrases of form “at
least one of A, B, and C,” or “at least one of A, B and C,”
unless specifically stated otherwise or otherwise clearly
contradicted by context, is otherwise understood with con-
text as used in general to present that an item, term, etc., may
be either A or B or C, or any nonempty subset of set of A and
B and C. For instance, in illustrative example of a set having
three members, conjunctive phrases “at least one of A, B,
and C” and “at least one of A, B and C” refer to any of
following sets: {A}, {B}, {C}, {A, B}, {A, C}, {B, C}, {A,
B, C}. Thus, such conjunctive language is not generally
intended to imply that certain embodiments require at least
one of A, at least one of B and at least one of C each to be
present. In addition, unless otherwise noted or contradicted
by context, term “plurality” indicates a state of being plural
(e.g., “a plurality of items” indicates multiple items). In at
least one embodiment, number of items in a plurality is at
least two, but can be more when so indicated either explic-
itly or by context. Further, unless stated otherwise or oth-
erwise clear from context, phrase “based on” means “based
at least in part on” and not “based solely on.”

[0623] Operations of processes described herein can be
performed in any suitable order unless otherwise indicated
herein or otherwise clearly contradicted by context. In at
least one embodiment, a process such as those processes
described herein (or variations and/or combinations thereof)
is performed under control of one or more computer systems
configured with executable instructions and is implemented
as code (e.g., executable instructions, one or more computer
programs or one or more applications) executing collec-
tively on one or more processors, by hardware or combina-
tions thereof. In at least one embodiment, code is stored on
a computer-readable storage medium, for example, in form
of'a computer program comprising a plurality of instructions
executable by one or more processors. In at least one
embodiment, a computer-readable storage medium is a
non-transitory computer-readable storage medium that
excludes transitory signals (e.g., a propagating transient
electric or electromagnetic transmission) but includes non-
transitory data storage circuitry (e.g., buffers, cache, and

Sep. 8§, 2022

queues) within transceivers of transitory signals. In at least
one embodiment, code (e.g., executable code or source
code) is stored on a set of one or more non-transitory
computer-readable storage media having stored thereon
executable instructions (or other memory to store executable
instructions) that, when executed (i.e., as a result of being
executed) by one or more processors of a computer system,
cause computer system to perform operations described
herein. In at least one embodiment, set of non-transitory
computer-readable storage media comprises multiple non-
transitory computer-readable storage media and one or more
of individual non-transitory storage media of multiple non-
transitory computer-readable storage media lack all of code
while multiple non-transitory computer-readable storage
media collectively store all of code. In at least one embodi-
ment, executable instructions are executed such that differ-
ent instructions are executed by different processors—for
example, a non-transitory computer-readable storage
medium store instructions and a main central processing unit
(“CPU”) executes some of instructions while a graphics
processing unit (“GPU”) executes other instructions. In at
least one embodiment, different components of a computer
system have separate processors and different processors
execute different subsets of instructions.

[0624] Accordingly, in at least one embodiment, computer
systems are configured to implement one or more services
that singly or collectively perform operations of processes
described herein and such computer systems are configured
with applicable hardware and/or software that enable per-
formance of operations. Further, a computer system that
implements at least one embodiment of present disclosure is
a single device and, in another embodiment, is a distributed
computer system comprising multiple devices that operate
differently such that distributed computer system performs
operations described herein and such that a single device
does not perform all operations.

[0625] Use of any and all examples, or exemplary lan-
guage (e.g., “such as”) provided herein, is intended merely
to better illuminate embodiments of disclosure and does not
pose a limitation on scope of disclosure unless otherwise
claimed. No language in specification should be construed
as indicating any non-claimed element as essential to prac-
tice of disclosure.

[0626] All references, including publications, patent appli-
cations, and patents, cited herein are hereby incorporated by
reference to same extent as if each reference were individu-
ally and specifically indicated to be incorporated by refer-
ence and were set forth in its entirety herein.

[0627] In description and claims, terms “coupled” and
“connected,” along with their derivatives, may be used. It
should be understood that these terms may be not intended
as synonyms for each other. Rather, in particular examples,
“connected” or “coupled” may be used to indicate that two
or more elements are in direct or indirect physical or
electrical contact with each other. “Coupled” may also mean
that two or more elements are not in direct contact with each
other, but yet still co-operate or interact with each other.
[0628] Unless specifically stated otherwise, it may be
appreciated that throughout specification terms such as
“processing,” “computing,” “calculating,” “determining,” or
like, refer to action and/or processes of a computer or
computing system, or similar electronic computing device,
that manipulate and/or transform data represented as physi-
cal, such as electronic, quantities within computing system’s

US 2022/0284582 Al

registers and/or memories into other data similarly repre-
sented as physical quantities within computing system’s
memories, registers or other such information storage, trans-
mission or display devices.

[0629] In a similar manner, term “processor” may refer to
any device or portion of a device that processes electronic
data from registers and/or memory and transform that elec-
tronic data into other electronic data that may be stored in
registers and/or memory. As non-limiting examples, “pro-
cessor” may be a CPU or a GPU. A “computing platform”
may comprise one or more processors. As used herein,
“software” processes may include, for example, software
and/or hardware entities that perform work over time, such
as tasks, threads, and intelligent agents. Also, each process
may refer to multiple processes, for carrying out instructions
in sequence or in parallel, continuously or intermittently. In
at least one embodiment, terms “system” and “method” are
used herein interchangeably insofar as system may embody
one or more methods and methods may be considered a
system.

[0630] In present document, references may be made to
obtaining, acquiring, receiving, or inputting analog or digital
data into a subsystem, computer system, or computer-imple-
mented machine. In at least one embodiment, process of
obtaining, acquiring, receiving, or inputting analog and
digital data can be accomplished in a variety of ways such
as by receiving data as a parameter of a function call or a call
to an application programming interface. In at least one
embodiment, processes of obtaining, acquiring, receiving, or
inputting analog or digital data can be accomplished by
transferring data via a serial or parallel interface. In at least
one embodiment, processes of obtaining, acquiring, receiv-
ing, or inputting analog or digital data can be accomplished
by transferring data via a computer network from providing
entity to acquiring entity. In at least one embodiment,
references may also be made to providing, outputting,
transmitting, sending, or presenting analog or digital data. In
various examples, processes of providing, outputting, trans-
mitting, sending, or presenting analog or digital data can be
accomplished by transferring data as an input or output
parameter of a function call, a parameter of an application
programming interface or interprocess communication
mechanism.

[0631] Although descriptions herein set forth example
implementations of described techniques, other architec-
tures may be used to implement described functionality, and
are intended to be within scope of this disclosure. Further-
more, although specific distributions of responsibilities may
be defined above for purposes of description, various func-
tions and responsibilities might be distributed and divided in
different ways, depending on circumstances.

[0632] Furthermore, although subject matter has been
described in language specific to structural features and/or
methodological acts, it is to be understood that subject
matter claimed in appended claims is not necessarily limited
to specific features or acts described. Rather, specific fea-
tures and acts are disclosed as exemplary forms of imple-
menting the claims.

What is claimed is:

1. A processor comprising: one or more circuits to cause
one or more neural networks to be selected from a plurality
of neural networks based, at least in part, on an amount of
memory to be used by the one or more neural networks.

Sep. 8§, 2022

2. The processor of claim 1, wherein the one or more
circuits are further to perform a search to select the one or
more neural networks from the plurality of neural networks
that satisfy a memory constraint.

3. The processor of claim 1, wherein the one or more
circuits are further to cause one or more additional neural
networks to be selected from the plurality of neural networks
or from a second plurality of neural networks, wherein the
one or more additional neural networks are different from
the one or more neural networks and satisfy a second
memory constraint that is different from a first memory
satisfied by the one or more neural networks.

4. The processor of claim 1, wherein the one or more
circuits are further to perform a search to select the one or
more neural networks from the plurality of neural networks
in accordance with a set of one or more search parameters
determined at least in part on the amount of memory to be
used by the one or more neural networks.

5. The processor of claim 1, wherein a percentage of a
maximum memory usage of operations associated with one
or more candidate feature nodes of a search space compris-
ing the plurality of neural networks is less than or equal to
the amount of memory.

6. The processor of claim 1, wherein the one or more
circuits further cause the one or more neural networks to be
selected by performing a joint two-level search of a topology
search space and a cell search space to identify the one or
more neural networks for an image-based task.

7. A system comprising:

one or more processors to cause one or more neural

networks to be selected from a plurality of neural
networks based, at least in part, on an amount of
memory to be used by the one or more neural networks;
and

one or more memories to store parameters corresponding

to the one or more neural networks.

8. The system of claim 7, wherein the one or more
processors are further to perform a first search to select the
one or more neural networks from the plurality of neural
networks that satisfy a first memory constraint.

9. The system of claim 7, wherein the one or more
processors are further to select a connection pattern, from a
plurality of candidate connection patterns between a first
layer and a second layer of the one or more neural networks,
based at least in part on probabilities of each of the plurality
of candidate connection patterns.

10. The system of claim 7, wherein the one or more
processors are further to select a feature node from a set of
candidate features nodes for one or more layers of the one
or more neural networks, wherein the set of candidate
feature nodes comprises feature nodes at different image
scales that comprise a plurality of candidate edges that
connect to a feature node in a previous layer.

11. The system of claim 7, wherein the one or more
processors further cause the one or more neural networks to
be selected by performing a joint two-level search of a
topology search space and a cell search space to identity the
one or more neural networks for an image-based task.

12. The system of claim 7, wherein the one or more neural
networks are to perform an image segmentation task.

13. The system of claim 7, wherein the one or more
processors further cause the one or more neural networks to
be selected by performing a search of a topology search
space comprising a plurality of candidate edges that connect

US 2022/0284582 Al

candidate feature nodes of a plurality of layers and a cell
search space comprising a plurality of candidate operations.

14. The system of claim 7, wherein the one or more
processors are further to select a connection pattern, from a
plurality of candidate connection patterns between layers of
the one or more neural networks, based at least in part on
probabilities of the plurality of candidate connection pat-
terns.

15. A datacenter comprising: one or more processors to
cause one or more neural networks to be selected from a
plurality of neural networks to perform a medical image
segmentation task based, at least in part, on an amount of
memory to be used by the one or more neural networks.

16. The datacenter of claim 15, wherein the one or more
processors are further to perform a search to select the one
or more neural networks from the plurality of neural net-
works that satisfy a memory constraint.

17. The datacenter of claim 15, wherein the one or more
processors are further to cause one or more additional neural
networks to be selected from the plurality of neural networks
or from a second plurality of neural networks, wherein the
one or more additional neural networks are different from
the one or more neural networks and satisfy a second
memory constraint that is different from a first memory
satisfied by the one or more neural networks.

18. The datacenter of claim 15, wherein the one or more
processors are to perform a joint two-level search of a
topology search space and a cell search space to identity the
one or more neural networks for the medical image seg-
mentation task.

19. The datacenter of claim 15, wherein the one or more
processors are to perform a search of a search space to cause
the one or more neural networks to be selected, wherein the
search comprises selecting a connection pattern between
layers of the one or more neural networks, from a plurality
of candidate connection patterns, based at least in part on
probabilities of the plurality of candidate connection pat-
terns.

Sep. 8§, 2022

20. The datacenter of claim 15, wherein the one or more
processors are to perform a search of a search space to cause
the one or more neural networks to be selected, wherein the
search comprises selecting a connection pattern from a
feasible set of candidate connection patterns between layers
of the one or more neural networks, wherein each feasible
connection pattern in the feasible set of candidate connec-
tion patterns comprises valid input connections and output
connections between the layers.

21. A method comprising:

selecting one or more neural networks from a plurality of

neural networks based, at least in part, on an amount of
memory to be used by the one or more neural networks.

22. The method of claim 21, further comprising selecting
a first set of one or more operations for the one or more
neural networks that satisfy a first memory constraint.

23. The method of claim 21, further comprising perform-
ing a search of a search space to select the one or more
neural networks, wherein performing the search comprises
selecting a connection pattern, from a plurality of candidate
connection patterns between layers of the one or more neural
networks, based at least in part on probabilities of the
plurality of candidate connection patterns.

24. The method of claim 21, further comprising perform-
ing a joint two-level search of a topology search space and
a cell search space to identify the one or more neural
networks for an image-based task.

25. The method of claim 21, wherein the one or more
neural networks are to perform an image segmentation task.

26. The method of claim 21, further comprising perform-
ing a search of a multi-scale topology search space by
converting the multi-scale topology search space into a
sequential search space comprising a super node for each
respective layer of a plurality of layers, wherein each super
node comprises a set of candidate feature nodes at the
respective layer.

