
US 20220327399A1
IN

(19) United States
(12) Patent Application Publication (10) Pub . No .: US 2022/0327399 A1

CHEN et al . (43) Pub . Date : Oct. 13 , 2022

(54) PROBLEM DECOMPOSITION IN A LARGE
SCALE COMPLEX COMBINATORIAL
PROBLEM

(52) U.S. CI .
CPC GO6N 5/04 (2013.01)

(57) ABSTRACT (71) Applicant : FUJITSU LIMITED , Kawasaki - shi
(JP)

(72) Inventors : Wei - Peng CHEN , Fremont , CA (US) ;
Hiroyasu KAWANO , Sunnyvale , CA
(US)

(73) Assignee : FUJITSU LIMITED , Kawasaki - shi
(JP)

A method and system of solving a large - scale complex
combinatorial problem including receiving the large - scale
complex combinatorial problem as an input , converting a
decision variable space of the large - scale complex combi
natorial problem into a plurality of basic attribute units
which correspond to a subset of total decision variables of
the large - scale complex combinatorial problem , decompos
ing the large - scale complex combinatorial problem into a
plurality of sub - problems of the plurality of basic attribute
units , using a optimization solver , solving the plurality of
sub - problems in parallel , outputting a plurality of candidate
solutions corresponding to the solutions of the plurality of
sub - problems , and using a optimization solver and the
plurality of candidate solutions , solving the large scale
complex combinatorial problem .

(21) Appl . No .: 17 / 219,626
(22) Filed : Mar. 31 , 2021

Publication Classification

(51) Int . Ci .
GOON 5/04 (2006.01)

System
110

Processor
111

Memory
112

Data Storage
113

Communication Unit
114

Patent Application Publication Oct. 13 , 2022 Sheet 1 of 5 US 2022/0327399 A1

System 110 Processor TIT Memory 112 Data Storage 113 Communication Unit 114 FIG . 1

D = 0 ,,, D - 1)

= 0,1)

Factory production gan

Patent Application Publication

220

Product type : n Productmodel : c

17.11.177 V.2 . 24. 24. 12. 227177

200

230

Oct. 13 , 2022 Sheet 2 of 5

210

factory : m nachine : 6

Ontem

FIG . 2

US 2022/0327399 A1

305

Receive a Large - Scale Complex Combinatorial Problem and Perform Pre - Processing LG

Patent Application Publication

310

300

Decompose the Large - Scale Complex Combinatorial Problem Into a Plurality of Sub - Problems

315

Solve the plurality of Sub Problems in Parallel

Oct. 13 , 2022 Sheet 3 of 5

320

Use Solutions of the Plurality of Sub - Problems as Candidates for Solving the Large - Scale Complex Combinatorial Problem

325

Solving the Large - Scale Complex Combinatorial Problem

US 2022/0327399 A1

FIG . 3

405

Convert the Large - Scale Complex Combinatorial Problem into a Plurality
of Attribute Sets with the Minimum Attribute Units

Patent Application Publication

410

400

Identify Attributes With Many - to - One Mapping in the Minimum Attribute Sets

Oct. 13 , 2022 Sheet 4 of 5

415

Merge the Minimum Attribute Sets with Many - to - One Mapping into Primary Basic Attribute Sets

420

Output the Primary Basic Attribute Units

US 2022/0327399 A1

FIG . 4

510

NOTICE

505

Determine if there are any Independent Sub Problems

Extract the Independent Sub - Problems

YES

Patent Application Publication

FIG . 5

Compose Blocks of Sub - Problems at Various Granularity among Different Attributes

520

500

Export the Blocks Among the Priority of Attributes with Appropriate Size to Become the Candidates of Sub - Problems

Oct. 13 , 2022 Sheet 5 of 5

525

2 Merge the Exported Blocks to Form Candidates of a Set Partition Problem

535

wwww

US 2022/0327399 A1

530

Determine the Final Sub - Problems Using the Set Partition Problem

Output Final Sub - Problems

US 2022/0327399 Al Oct. 13 , 2022
1

PROBLEM DECOMPOSITION IN A LARGE
SCALE COMPLEX COMBINATORIAL

PROBLEM

described above . Rather , this background is only provided to
illustrate one example technology area where some embodi
ments described in the present disclosure may be practiced .

FIELD OF THE INVENTION

[0001] The embodiments discussed in the present disclo
sure are related to methods and systems for decomposing a
large scale complex combinatorial problem .

BACKGROUND

BRIEF SUMMARY

[0007] According to an aspect of the invention described
herein , a computer - implemented method of solving a large
scale complex combinatorial problem is described . The
method includes receiving the large - scale complex combi
natorial problem as an input , converting the large - scale
complex combinatorial problem into a plurality of basic
attribute units which correspond to a subset of total decision
variables of the large - scale complex combinatorial problem ,
decomposing the plurality of basic attribute units into a
plurality of sub - problems , using a optimization solver , solv
ing the plurality of sub - problems in parallel , outputting a
plurality of candidate solutions corresponding to the solu
tions of the plurality of sub - problems , and using a optimi
zation solver and the plurality of candidate solutions to solve
the large scale complex combinatorial problem .
[0008] The objects and advantages of the embodiments
will be realized and achieved at least by the elements ,
features , and combinations particularly pointed out in the
claims .
[0009] Both the foregoing general description and the
following detailed description are given as examples and are
explanatory and are not restrictive of the invention , as
claimed .

BRIEF DESCRIPTION OF THE DRAWINGS

[0002] Many industries require decisions which are dis
crete choices . These choices fall into the scope of combi
natorial optimization problems . Combinatorial Optimization
is a subfield of mathematical optimization having a number
of real - world and practical applications related to operations
research , algorithm theory , and computational complexity
theory . It has important applications in several fields , includ
ing artificial intelligence , machine learning , auction theory ,
software engineering , applied mathematics and theoretical
computer science . Given the number of applications in a
variety of different fields , there is a high demand for
combinatorial optimization solvers .
[0003] Typically , these solvers are used to address large
scale problems , which contain a large number of decision
variables . Given the size of the problems , however , and the
number of variables , there can be difficulty finding optimi
zation solvers which are capable of providing the hardware
solutions and / or computational power provided by the soft
ware implementation required to solve large scale combi
natorial optimization problems . Further , even when such
solvers are available , they may be too costly to be practically
or easily implemented .
[0004] Examples of conventional optimization solvers
include the CplexTM Optimizer or the GurobiTM Solver , open
source software solvers such as SCIP , as well as newly
emerging Quantum - inspired computing machines including
simulated annealing machines such as the Fujitsu Digital
AnnealerTM . As previously discussed , however , despite the
availability of these ystems , such machines still have
capacity limitations in their hardware and / or software imple
mentations which may limit the scale of the problems they
are capable of solving . For example , such systems may have
limitations in the number of binary variables which may be
solved . As may be understood , these limitations in turn limit
the practical applications that the combinatorial optimiza
tion problems are attempting to solve . For example , the
D - Wave 2000QTM quantum computer supports up to 2,048
Qbits , and the Fujitsu Digital AnnealerTM supports up to
8,192 Qbits .
[0005] One example of a system and method that are
currently used for solving a large scale combinatorial opti
mization problem has been developed by D - Wave in the
Qbsolve , which is a decomposing solver which finds a
minimum value of a large quadratic unconstrained binary
optimization (QUBO) by splitting it into pieces . The pieces
are solved using a classical solver running the tabu algo
rithm . As may be understood by one of skill in the art ,
however , the tabu based approach only provides a generic
solution for the large scale problem and a novel solution is
required .
[0006] The subject matter claimed in the present disclo
sure is not limited to embodiments that solve any disadvan
tages or that operate only in environments such as those

[0010] The embodiments Example embodiments will be
described and explained with additional specificity and
detail through the use of the accompanying drawings in
which :
[0011] FIG . 1 is a diagram representing an example envi
ronment related to performing decomposition of a large
scale complex combinatorial problem in accordance with
some embodiments of the invention ;
[0012] FIG . 2 is a three - dimensional graph illustrating s
set of production schedules as an example of a large - scale
complex combinatorial problem in accordance with some
embodiments of the invention ;
[0013] FIG . 3 is a block diagram illustrating a method of
decomposing and solving a large - scale combinatorial prob
lem according to some embodiments in accordance with
some embodiments of the invention ;
[0014] FIG . 4 is a block diagram illustrating a method of
performing pre - processing of a large - scale combinatorial
problem according to some embodiments in accordance with
some embodiments of the invention ; and
[0015] FIG . 5 is a block diagram illustrating a method of
decomposing a large - scale combinatorial problem according
to some embodiments in accordance with some embodi
ments of the invention .

a

a

DESCRIPTION OF EMBODIMENTS

[0016] The embodiments discussed in the present disclo
sure are related to methods and systems for decomposing a
large - scale complex combinatorial problem in a computing
device . More specifically , embodiments described herein are
directed to systems and methods for decomposing a math
ematical equation that is input . The equation is decomposed
into a series of smaller sub - problems , which may then be

US 2022/0327399 Al Oct. 13 , 2022
2

2

solved to generate multiple best candidates , which may then
be used to solve the large - scale complex combinatorial
problem . As is described more fully below , by reducing the
number of decision variables in the various sub - problems ,
different optimization solvers may be used to find solutions
to the large - scale complex problem because the processing
power required to solve the remaining sub - problems is
below the capacity limit of the solvers . As may be under
stood , using the methods and systems described herein , it is
possible to decompose even large - scale complex combina
torial problems efficiently and effectively . Because large
scale complex combinatorial problems have a wide variety
of practical applications in a variety of different fields , the
ability to efficiently and effectively solve such problems
provides benefits not currently available .
[0017] FIG . 1 illustrates a block diagram of an example
computing system 110 configured to decompose and solve
large - scale complex combinatorial problems , which in some
instances may include production scheduling problems ,
according to at least one embodiment of the present disclo
sure . The computing system 110 may be configured to
implement or direct one or more operations associated with
decomposing a large - scale complex combinatorial problem
into a series of sub - problems which may then be solved
without exceeding the computational capacity of the com
puting system 110 .
[0018] The computing system 110 may be or may be used
in association with a digital annealer solver , such as a digital
annealer solver offered by Fujitsu® . Alternately or addition
ally , the computing system 110 may comprise or be used in
associated with combinatorial optimization solvers such as
Cplex , Gurobi , among others . Alternately or additionally , the
combinatorial optimization may be solved using heuristics
such as the Tabu search or simulated annealing . Alternately
or additionally , the combinatorial optimization may be
solved using constrained satisfiability (SAT) solvers , such as
the SAT solvers provided in Google's OR tool .
[0019] The computing system 110 may include a proces
sor 111 , a memory 112 , and a data storage 113. The proces
sor 111 , the memory 112 , the data storage 113 , and a
communication unit 114 may be communicatively coupled ,
which enables the computing system 110 to communicate
with other computing devices .
[0020] In general , the processor 111 may include any
suitable special - purpose or general - purpose computer , com
puting entity , or processing device including various com
puter hardware or software modules and may be configured
to execute instructions stored on any applicable computer
readable storage media . For example , the processor 111 may
include a microprocessor , a microcontroller , a digital signal
processor (DSP) , an application - specific integrated circuit
(ASIC) , a Field - Programmable Gate Array (FPGA) , or any
other digital or analog circuitry configured to interpret
and / or to execute program instructions and / or to process
data . Although illustrated as a single processor in FIG . 1 , the
processor 111 may include any number of processors con
figured to , individually or collectively , perform or direct
performance of any number of operations described in the
present disclosure . Additionally , one or more of the proces
sors may be present on one or more different electronic
devices , such as different servers .
[0021] In some embodiments , the processor 111 may be
configured to interpret and / or execute program instructions
and / or process data stored in the memory 112 , the data

storage 113 , or the memory 112 and the data storage 113. In
some embodiments , the processor 111 may fetch program
instructions from the data storage 113 and load the program
instructions in the memory 112. After the program instruc
tions are loaded into memory 112 , the processor 111 may
execute the program instructions .
[0022] The memory 112 and the data storage 113 may
include computer - readable storage media for carrying or
having computer - executable instructions or data structures
stored thereon . Such computer - readable storage media may
include any available non - transitory media that may be
accessed by a general - purpose or special - purpose computer ,
such as the processor 111. By way of example , and not
limitation , such computer - readable storage media may
include tangible or non - transitory computer - readable stor
age media including Random Access Memory (RAM) ,
Read - Only Memory (ROM) , Electrically Erasable Program
mable Read - Only Memory (EEPROM) , Compact Disc
Read - Only Memory (CD - ROM) or other optical disk stor
age , magnetic disk storage or other magnetic storage
devices , flash memory devices (e.g. , solid state memory
devices) , or any other non - transitory storage medium which
may be used to carry or store particular program code in the
form of computer - executable instructions or data structures
and which may be accessed by a general - purpose or special
purpose computer . In these and other embodiments , the term
" non - transitory ” as explained in the present disclosure
should be construed to exclude only those types of transitory
media that were found to fall outside the scope of patentable
subject matter in the Federal Circuit decision of In re
Nuijten , 500 F.3d 1346 (Fed . Cir . 2007) . Combinations of
the above may also be included within the scope of com
puter - readable media .
[0023] Combinations of the above may also be included
within the scope of computer - readable storage media . Com
puter - executable instructions may include , for example ,
instructions and data configured to cause the processor 111
to perform a certain operation or group of operations .
[0024] Modifications , additions , or omissions may be
made to the computing system 110 without departing from
the scope of the present disclosure . For example , in some
embodiments , the computing system 110 may include any
number of other components that may not be explicitly
illustrated or described .

a

Practical Application : Production Scheduling
[0025] Although the system and methods described herein
may be used in a variety of different settings and applica
tions , the problems which can arise and which may be
solved and alleviated will be described with respect to
production scheduling . As may be understood by one of
skill , production scheduling problem is one of the key
problems in supply chain management , and moreover pro
duction scheduling problems typically comprise large - scale
complex combinatorial problems which are often too large
to be solved .
[0026] More particularly , in the problem of production
scheduling as manufacturer companies receive orders from
their customers which specify the quantity of demands , the companies need to plan the production scheduling to meet
the demands with consideration of stock management . In
order to do so , companies prepare a list of candidate
production schedules including the details of scheduling ,
such as which machine at which factory should be used to

US 2022/0327399 A1 Oct. 13 , 2022
3

level on day t . Both the daily predicted demand de , m , t
of a product model c at each factory m at day t and the
targeted stock level Pc , m , t of a product model c at each
factory m at day t are specified .

[0038] The above objective function is subject to the
following constraints :

[0039] (C1) Conflict in machine scheduling : Candidates
of the optimized production schedule which use the
same machine at the same time may be generated . To
avoid such a conflict from occurring , a constraint of no
more than one schedule occupy the same machine is
applied . Qb , y represents the set of schedules use the
machine b at the day t .

[0040] The optimization formulation based the
described problem may be written as :

, t

on

+

KEK DED ; CEC KEK
min **** + P1 Ehd.cktk – red * -red)
P2 E (Sn.mk ** =) On , m
NENMEM KEK

t - 1

P ; & E tem ' * • ** - Edema – Pc.m .; ?????? - - m

CEC ; m & M ET = t = 0

subject to

Xk? + X ka s1
V ki , k2 € Obt's beB ; DET

manufacture a particular product model of a given product
during a specified time . The given scheduling may also
include the quantity of each product model which may be
manufactured at a given time at a particular factory or on a
particular machine . The problem of production scheduling
problem is to select the set of production schedules to satisfy
demands while minimizing the cost of selected production
schedules . In such an instance , multiple variables exist in
such a problem , such as identifying which of many available
factories , machines , and / or workers should be assigned to
the task of producing the product , the time spent to produce
the goods , the timing at which it should be performed . As
may be understood , in a particular application , additional
variables may also be required .
[0027] In one instance , the given inputs may include :

[0028] K production schedules to be chosen (one binary
variable for each schedule) where K is a large number
exceeding the capability limit of solver ,

[0029] One schedule , which includes the detailed pro
duction schedule (machine and period) and amount of
the product produced by a particular machine along
with specific product model it produces ,

[0030] M factories , with each factory m having a num
ber of machines B represents the set of machines { b }
at the factory m .

[0031] For any machine at any time only one schedule
can use it .

[0032] There are N types of products . Each type of prod
ucts n may have multiple product models . C , represents the
set of product models belong to product n .
[0033] In this example , one schedule may include a span
of multiple machines located at different factories . For
instance , one product model of a machine can be used as
components of another product model manufactured at
another machine . At the same time , for any one machine at
any given time , only one schedule may control the use of the
machine .
[0034] In this example , the objective function is to mini
mize the sum of the cost of the selected production schedules
and the penalty of the following considerations for a given
period of time T :

[0035] (P1) Compliant with long term production plan :
the constraint is to ensure the final production matches
to the predicted production plan over the d - th segment
of given period T as close as possible . The penalty is
computed based on the deviation of the total delivery of
each product model c over the d - th segment of given
period T against the initial target rc , d . For instance , a
company may take a segment as monthly basis or
quarter basis .

[0036] (P2) Compliant with factory production plan : To
consider the resource (machine and labor) allocation at
each factory , the constraint is to ensure the final pro
duction matches to the predicted production plan of
each product model c at each factory m . The penalty is
computed based on the deviation of the final amount of
each product type n at each factory m during the entire
period T against the initial target In , m .

[0037] (P3) Compliant with short term stock manage
ment plan : To consider the short term variation in stock
of each product type n against the targeted stock level
at a particular day t , the penalty is computed based on
the deviation of the accumulative stock of each product
model c at each factory m against the targeted stock

k

2

t

[0041] Where :
[0042] V is the cost associated with production sched

ule k ,
[0043] Xt is the binary variable to represent each can

didate of production schedule k ,
[0044] P1 , P2 , P3 are constants applying to the deviation

of predefined targets to determine the penalties corre
sponding to abovementioned compliances (P1) - (P3) ,

[0045] hd.ck is the amount of delivery for product model
c during the d - th segment by production schedule k ,

[0046] Sn , m , k is the amount of delivery for product type
n at factory m during the entire period T by production
schedule k , and

[0047] fc , m , t , k is the amount of delivery for product
model c at factory m at day t by production schedule k .

[0048] As may be realized by one of skill , however , the
size of binary variables K in the problem described above
results in a problem which is too large for a computerized
solver to solve .
[0049] As may be understood , the production scheduling
problem may be described as a vector space of decision
variables . More specifically , one binary variable xk may be
used to represent each candidate of production schedule k .
When a production schedule candidate k is selected , the
decision variable xk is set to be 1 ; otherwise , the decision
variable xx is set to be 0. As each production schedule is
associated with multiple attributes , including factory (s) m ,
product type (s) n , product model (s) c , machine (s) to use b ,
product completion date (s) t , segment of the period d , etc.
Hence , the problem can be represented in a vector space of
variables having a multi - dimensional space , where the num
ber of dimensions corresponds to the number of attributes .

2

US 2022/0327399 A1 Oct. 13 , 2022
4

a
In the previously described example , the problem may be
represented in a six - dimensional vector space .
[0050] One problem , however , is that in this problem some
attributes are correlated with each other . When the relation
ship of multiple - to - one mapping exist in the correlated
attributes , the attribute of coarse granularity can be " hidden "
as the value of coarse attribute can be found via the
correlated and finer - granularity attribute .
[0051] For example , in the production scheduling prob
lem , it can be determined that there are 3 pairs of multi - to
one mapping relationships among 6 attributed considered ,
including : multiple product models may belong to one
product type , multiple machines may belong to one factory ,
and multiple days may belong to one segment of the entire
period . Therefore , the vector space can be simplified to be
shown as 3 dimensional space 200 , as is shown in FIG . 2 .
The three - dimensional vector space 200 corresponds to
[time (production date , production segment) , product (type
and model) , location (factory and machine)] .
[0052] Each 3D graph block shown in FIG . 2 represents a
set of production schedules which are associated with the
attributes corresponding to those in the block . For example ,
the production schedules which are associated with long
term production plan of product model c over the d - th
segment of given period T are shown are shown as block 210
in the vector space 200 shown in FIG . 2 , the production
schedules which are associated with factory production plan
of product model c at factory m are shown are shown as
block 220 , and the production schedules which are associ
ated with short term stock management plan of product type
n against the targeted stock level at a particular day t are
shown as block 230 .
[0053] For instance , if a production schedule k visits a
factory m , then production schedule k is included into the
block containing the factory attribute m . All the candidates
of production schedules are included in the whole set
{ M , N , T } block
[0054] As was previously described , because the total
production schedule number K is a large number , it likely
exceeds the capacity limit of solver to handle . As such , there
is a need to decompose the problem into smaller problems
so that the smaller problems , and consequently , the larger
problems may be solved .

basic blocks . At block 310 , the problem is decomposed at the
computing system 110 into a plurality of sub - problems by
formulating the problem as a set partition problem solved to
achieve minimum interference between the plurality of
sub - problems . At block 315 , the plurality of sub - problems
are solved in parallel by the computing system 110. At block
320 , each of the plurality of sub - problems output one or
multiple answers are recorded . These answers then serve as
the candidates in the final main problem at block 325. More
specifically , at block 325 the main problem is solved using
the candidates generated by all the plurality of sub - problems
and a solution for the production scheduling problem is
obtained .
[0057] FIG . 4 is a flowchart of an example method 400
illustrating the pre - processing performed at block 305 of
FIG . 3 , according to at least one embodiment described in
the present disclosure . The method 400 may be performed
by any suitable system , apparatus , or device . For example ,
as is described more fully below , one or more operations of
the method 400 may be performed by one or more elements
of the computing system 110 of FIG . 1 or multiples of the
computing system 110 of FIG . 1. Although illustrated with
discrete blocks , the steps and operations associated with one
or more of the blocks of the method 400 may be divided into
additional blocks , combined into fewer blocks , or elimi
nated , depending on the particular implementation .
[0058] The method 400 begins at block 405 , where a
plurality of attribute sets are constructed with the most basic
or minimum attribute units . For example , in the case of
production scheduling problem , described above , the pro
duction scheduling problem can be constructed into sets of
production schedules with the most basic attribute units . In
the production scheduling problem , sets of production
schedules involved with each minimum basic unit (e.g.
date = t , product model c , and machine b) can be constructed ,
resulting in the following two minimum basic units :

Core sets : C1 , C , 6 = QbRmnSmeVIET , CE CEB
Affected sets : A (0,6 = Qb , URm.m.USmeVIET ,

CELEB
[0059] where Qo , represents the set of production sched
ules involved in machine b and date t , Rm.nt represents the
set of production schedules involved in factory m , product
type n , and day t , and Sm , e represents the set of production
schedules involved in factory m , product model c .
[0060] At block 410 , attributes with many - to - one mapping
are identified . At block 415 , the minimum basic units are
merged into primary basic units when attributes with many
to - one mapping are identified at block 410 .
[0061] In the case of production scheduling problem ,
multiple product models { c } are identified at block 410 as
belonging to one product type n and multiple machines { b }
belong to a single factory m . As a result of this many - to - one
mapping , unit of (c , b) , the box from (cb) is merged to the
corresponding (n , m) box to form primary basic units
described below as the unit of (n , m) is larger than the unit
(c , b) .
[0062] Hence , in the production scheduling problem
described above , the two primary basic units are con
structed :

,

a

Decomposing and Solving the Large Scale
Complex Combinatorial Problem

[0055] FIG . 3 is a flowchart of an example method 300 for
decomposing and solving large scale combinatorial optimi
zation problems , according to at least one embodiment
described in the present disclosure . The method 300 may be
performed by any suitable system , apparatus , or device . For
example , as is described more fully below , one or more
operations of the method 300 may be performed by one or
more elements of the computing system 110 of FIG . 1 or
multiples of the computing system 100 of FIG . 1. More
particularly , it should be understood that although illustrated
with discrete blocks , the steps and operations associated
with one or more of the blocks of the method 300 may be
divided into additional blocks , combined into fewer blocks ,
or eliminated , depending on the particular implementation .
[0056] The method 300 begins at block 305 , where input
data of the production scheduling problems is received by
the computing system 110. In addition , at block 305 , pre
processing is performed on the input data to identify a set of

Core sets : Cumn = UcEn , bemobVIET , MEM , NEN t , c ,
2

Affected sets : Atm , n = Ucen , bemAt ,, bVIET , MEM , NEN

US 2022/0327399 Al Oct. 13 , 2022
5

[0063] As was previously , described after pre - processing
is performed , the total production schedule number is K ,
exceeding the capacity limit of solver to handle , there is a
need to decompose the problem into smaller problems .
[0064] As previously described , a sub - problem is defined
as consideration of a block in the multidimensional - space of
variables . In the case of the production schedule problem ,
the pre - processing has reduced to the 3 - D space of [time t ,
product (type or model) n , and location (machine or factory)
m] . A block can be represented as : (T , N , M) where T is a set
of time instances t , N is a set of product instances n , M is a
set of location instances m . The most basic unit of a block
as defined in pre - processing of method 400 is (t , c , b) for a
particular day t , product model c , and machine b .
[0065] The core sets defined in blocks 405 , 410 , and 415
determine the necessary production schedules required to be
considered within the sub - problems . On the other hand , the
affected sets defined in blocks 405 , 410 , and 415 include any
production schedules which are related to the production
schedules in the core sets . When the intersection of two
affected sets of two blocks is empty , it can be determined
that two sub - problems are independent .
[0066] As may be understood , the main challenge in
decomposing the problem is that the affected sets in the
overall space intersect with each other . Consequently , it can
be difficult to dissect the 3D or multidimensional space into
independent sub - problems .
[0067] FIG . 5 is a flowchart of an example method 500 for
decomposing the scale combinatorial optimization problem
as a sub - process of block 310 of FIG . 3 , according to at least
one embodiment described in the present disclosure . The
method 500 may be performed by any suitable system ,
apparatus , or device . For example , as is described more fully
below , one or more operations of the method 500 may be
performed by one or more elements of the computing system
110 of FIG . 1 or multiples of the computing system 110 of
FIG . 1. Although illustrated with discrete blocks , the steps
and operations associated with one or more of the blocks of
the method 500 may be divided into additional blocks ,
combined into fewer blocks , or eliminated , depending on the
particular implementation .
[0068] The method 500 of decomposing the large - scale
complex combinatorial problem begins at block 505 , where
it is determined if any independent sub - problems exist . In
the scheduling problem example , if a block (Ti , Ni , M ;) is
identified which does not intersect with other blocks , the
block can be removed as an independent block at block 510 .
In addition , in some instances , to avoid processing a small
sub - problem , the size of block is limited to be greater than
some value for some attributes . For instance , in the produc
tion scheduling problem , the size of time attribute may be
required to be at least half of the total period and as such any
blocks where the time attribute is less than half the total
period may not be considered as independent blocks to be
removed at block 510 .
[0069] In the example of the production scheduling prob
lem , for each attribute , each block with granularity greater
than the minimum unit is iterated , and the following algo
rithm may be used :
[0070] If Affected_set (T. , N , MUAffected_set (T ' , N ' ,
M ' ;) =) , where T ; and T'i are different sets along the time
attribute , Ni and N ' ; are different sets along the product
attribute , M ; and M ' ; are different sets along the location

attribute of factories , the set (Ti , Ni , M ;) is retrieved as
independent set , and is processed at block 510 as described
below .
[0071] At block 510 , the independent sub - problems are
extracted . Further , if the size of an independent sub - problem
is large enough to handle , the block (Ti , Ni , M ,) is extracted
and stored as one final sub - problem , which is outputted as a
final sub - problem at block 535 .
[0072] At block 515 , blocks of sub - problems are com
posed having various levels of granularity along different
attributes . In some instances , composing the blocks of
sub - problems comprises merging blocks from the basic
blocks to achieve sub - problems with different granularity
levels . As may be understood , one objective is to find the
appropriate size of sub - problems . Typically , this includes
finding sub - problems which are as large as possible without
exceeding the computational power of the computing system
110. To do so , the minimum granularity of each attribute is
first determined . For instance , in the production scheduling
problem , the minimum granularity for time , product , and
location may be assigned to be equivalent to half of total
period , one factory , and one product model , respectively .
[0073] Next , the priority of attributes considered for dis
section may be determined . For example , in the example of
the production scheduling problem , a priority may be estab
lished such that the whole space is dissected according first
to product type first , second to factory , third to product
model , and time attribute lastly .
[0074] Then the core sets may be generated having various
granularities of different attributes . This process may
include :
[0075] 1) Generate Coren : the blocks associated with the
same product type n : Core , = U ded , cEn , mem Cored , c m , where
d is the index of time attribute (first or second half of the
total period) .
[0076] 2) Generate Coren , mi the locks associated with the
same product type n and the same factory m : Coren , m = U LED ,

a

„ MEM

cExCored , com

cm

d , com C , m

[0077] 3) Generate Corec , mi the blocks associated with the
same product model c and the same factory m : Corec ,
m = # ded Cored ,
[0078] 4) Generate Cored , c , mi the blocks associated with
the same time period d , the same product model c and the
same factory m : Cored , = UE { Te } Core ,
[0079] Returning now to FIG . 5 , at block 520 , the blocks
are exported along the priority of attributes with appropriate
size to become the candidates of sub - problems . During this
process , the maximal sub - problem size (i.e. the maximal
number of binary variables able to be handled by the solver)
is determined and defined as TH .
[0080] Returning to the production scheduling problem ,
exporting the blocks along the priority of attributes in the
order described above of product type , factory , product
model , half time period , and days , the blocks can be
exported as described below :
[0081] 1. Sort Core , as ascending order
[0082] 2. If | Core , / < TH , export Core , as a candidate of
sub - problem ; else steps 3-4
[0083] 3. Sort | Coren , ml as ascending order
[0084] 4. If | Coren , m << TH , export Coren.ml as a candidate
of sub - problem ; else steps 5-6
[0085] 5. Sort Corec.mas ascending order
[0086] 6. If | Corec , mk < TH , output Corec.m as a candidate of
a sub - problem ; else step 7-8

m

, m

is

i

i

US 2022/0327399 A1 Oct. 13 , 2022
6

[0098] The index matrix of the set partitioning algorithm
is represented as I = [L] where

,

lij = { if SicCj .
elsewise .

[0087] 7. Sort ICored , c , ml as ascending order
[0088] 8. If ICored.c.ml < TH , output Coredom as a candi
date of sub - problem else step 9 ;
[0089] 9. Merge consecutive t belong to the same half
period d such that the union of the merge size is less then
TH . The merged set is then exported as a candidate of a
sub - problem , as is described more fully below .
[0090] An example of an output that may be generated
according to the steps described above using the production
scheduling problem as the example , where the first 24 of
total 124 sets are evaluated and the output is in the form of
(time , c , m) is shown below :

[0099] In some embodiments , only candidates that cannot
include one more set without exceeding the capacity limit of
the solver will be considered . For example , if we start to add
set 0 , the candidate 0 : [0 , 1 , 2 , 3] is acceptable and would be
considered but 0 : [0 , 1 , 2] will not be included .
[0100] An example of an output that may be generated
according to the steps described above at block 525 , where
there are a total of 7,490 possible combinations representing
candidates in a set partition problem where a sample of 21
possible combinations is shown below :

=

-

=

0 : [(T , [37] , [0 , 1 , 2 , 3]]
1 : [(T , [3 , 36 , 52] , [0]]
2 : [(T , [3 , 36 , 52] , [3]]
3 : [(T , [3 , 36 , 52] , [1]]
4 : [(T , [3 , 36 , 52] , [2]]
5 : [(T , [22 , 24 , 28 , 31 , 43 , 49 , 60] , [1]]
6 : [(T , [22 , 24 , 28 , 31 , 43 , 49 , 60] , [3]]
7 : [(T , [22 , 24 , 28 , 31 , 43 , 49 , 60] , [2]]
8 : [(T , [10 , 21] , [0]]
9 : [{ T , [10 , 21] , [2]]

10 : [(T , [10 , 21] , [1]]
11 : [(T , [10 , 21] , [3]]
12 : [(T , [8 , 19 , 32 , 44 , 51 , 58] , [0]]
13 : [(T , [8 , 19 , 32 , 44 , 51 , 58] , [1]]
14 : [(T , [8 , 19 , 32 , 44 , 51 , 58] , [3]]
15 : [(T , [8 , 19 , 32 , 44 , 51 , 58] , [2]]
16 : [(T , [6 , 12 , 25 , 27 , 35 , 42] , [0]]
17 : [(T , [6 , 12 , 25 , 27 , 35 , 42] , [1]]
18 : [(T , [5 , 15 , 50] , [3]]
19 : [(T , [5 , 15 , 50] , [0]]
20 : [(T , [2 , 7 , 9 , 16 , 29 , 34 , 39 , 41 , 45 , 46 ,
48 , 53 , 54 , 55 , 56 , 57 , 59] , [0]]
21 : [(T , [2 , 7 , 9 , 16 , 29 , 34 , 39 , 41 , 45 , 46 ,
48 , 53 , 54 , 55 , 56 , 57 , 59] , [1]]
22 : [(1H , [23] , [3]]
23 : [(2H , [23] , [3]]

Size 0 : 274
Size 1 : 780
Size 2 : 1030
Size 3 : 1310
Size 4 : 1397
Size 5 : 818
Size 6 : 1573
Size 7 : 2953
Size 8 : 1120
Size 9 : 1357

Size 10 : 2210
Size 11 : 2484
Size 12 : 1070
Size 13 : 1630
Size 14 : 1840
Size 15 : 3164
Size 16 : 920
Size 17 : 2949
Size 18 : 2975
Size 19 : 3049
Size 20 : 1680

0 : [0 , 1 , 2 , 3]
1 : [0 , 1 , 2 , 3 , 30 , 31 , 32 , 33]
2 : [0 , 1 , 2 , 3 , 30 , 31 , 32 , 33 , 36]
3 : [0 , 2 , 3 , 5]
4 : [0 , 2 , 3 , 5 , 30 , 31]
5 : [0 , 2 , 3 , 5 , 30 , 31 , 36]
6 : [0 , 3 , 4]
7 : [0 , 3 , 4 , 30 , 31 , 32]
8 : [0 , 3 , 4 , 30 , 31 , 32 , 36]
9 : [0 , 3 , 4 , 30 , 31 , 32 , 36 , 64 , 65]
10 : [0 , 3 , 4 , 30 , 31 , 32 , 36 , 64 , 65 , 74]
11 : [0 , 4 , 5 , 16]
12 : [0 , 4 , 5 , 16 , 30]
13 : [0 , 4 , 5 , 16 , 30 , 36]
14 : [0 , 5 , 6]
15 : [0 , 5 , 6 , 26]
16 : [0 , 5 , 6 , 26 , 64 , 65]
17 : [0 , 6 , 8]
18 : [0 , 6 , 8 , 30 , 31 , 32]
19 : [0 , 6 , 8 , 30 , 31 , 32 , 36]
20 : [0 , 6 , 8 , 30 , 31 , 32 , 36 , 64 , 65]

TAffected_set [O] 82011
| Affected_set [1]] = 82011
| Affected_set [2] 1 = = 82011
TAffected_set [3] 1 81993
| Affected_set [4] 82009
TAffected_set [5]] = 82009
| Affected_set [6] l = 81921
| Affected_set [7]) = 81934
| Affected_set [8]] = 81934
| Affected_set [9] 1 81965

| Affected_set [10] 82056
| Affected_set [11] ! 81883
| Affected_set [12] l = 81883
| Affected_set [13] I = 81883
| Affected_set [14]] = 81887
Affected_set [15] 1 = 82037
Affected_set [16] = 82063
| Affected_set [17] = 81567
| Affected_set [18]] 82053
Affected_set [19] 1 = 82096
TAffected_set [20] = 82109

-

=

Size 21 : 2780

== Size 22 : 1488
Size 23 : 2900 -

[0101] Returning to FIG . 5 , at block 530 , the outputs of
block 525 are received and a final set of sub - problems are
generated from an optimal solution of a set - partition prob
lem . In the production scheduling problem , the outputs are
received as :

C = { C ; = vssS ;; LB < IC ; < UB } ;

[0102] An index matrix of the set partitioning algorithm
represented as

1 = [lj] where lij = { 1 if SicCj .
elsewise .

= =

[0091] Returning to the method 500 shown in FIG . 5 , at
block 525 the sets are merged to form candidates of a “ set
partition " algorithm . In the production scheduling problem ,
the initial max production schedule number may be set as the
value of TH (e.g. 8,000) .
[0092] To merge the sets , all the generated candidates of
sub - problems (set S 32 [Si]) , which in this instance is the
output of block 520 are inputted . In the production sched
uling problem , this includes :
[0093] 1) The sets of Core , where ICoren < TH
[0094] 2) If n ' (n ' e N) not covered in 1) , the sets of
Coren'm where ICorenim < TH
[0095] 3) If c ' (c'e n ') , m ' (V m'e M) not covered in 1)
and 2) , the sets of Corec.m . Where Corec , mik < TH
[0096] 4) If c ' (ce n ') , m " (Vm " EM) , not covered in 1) ,
2) , and 3) , the sets of Core d.c " , m " Where Cored , c ' , m ' m | < TH
[0097] After the all the candidates of sub - problems have
been inputted , combinations are created for any set in listed
in 1) -4) above where the merged set is less than TH . In some
instances , these sets may be created recursively . The com
binations of S ; are enumerated and the candidate sets C for
the set partitioning problem are extracted . The set included
in C have the merged size between the lower LB and upper
bound UB of a problem size . That is ,

C = { C ; = usesS : LB < ICI < UB }

2 ' m

d

[0103] A weight vector W = [w ;] where w? = 1A ;) , i.e. the size
of Affected_set of C ;
[0104] For example , using the output listed above in the
table as the output of block 525 , the third set C3 = [0 , 2 , 3,5] ,
= > 10,3 = 12,3 = 13,3 = 13,5 = 1 ; Azl = 81993 .
[0105] Next , at block 530 a “ set - partition ” problem is
formulated to select the " best " decomposition . Let x ; repre
sent a binary variable to include whether C ; is selected in the
final set of sub - problems . The objective function is to
minimize the number of selected sub - problems and mini
mize the size of “ Affected_sets ” IA ; l . The constraint is to

US 2022/0327399 Al Oct. 13 , 2022
7

make sure all the generated sub - problems S during block
520 are covered by the selected sub - problems :

min 14 ; 1x ;

bution for the purpose of tie - breaker . The formulation of a
subproblem can be represented as below :
min ???? + ? ? (?has , 84 – rasa

= D ;;

2
+ ***** KEY d = D . ; CET

s.t. lijX ; = 1 VS ; ES
j ??P , ?

deD ; ; c & C ; KEY
10.c , k k read +

i

a

? , ?
neN : mM

80,0 , ** – 9n , m
KEV

On , m + ??P , ? En , mkXy
neN ; M ; EY ; , m &

2
1-1

+ ? ? ? ? ? ? ? ?? - Pz Je , m , ' , k *** - (? ' ?? .) - ????? . key CEC ; ; m & M t € 7 | 1 = 0

unit of Cored , c , m 2

azPs 3 (E. Z femr * • ** - (+ dn.me) – Promo ? ??? ? . * *
C & C ; m & M ,

' = 0 = 1,4o) - mon) t € T ELE keY ;
subject to

+ Xk? + Xk? = 1
V ki , k2 € Obts beB ; LET

[0106] As a result , Y sub - problems were generated where
Y = { C ; where x ; = 1 } . At block 535 , these final sub - problems
are outputted for parallel solving at block 315 of FIG . 3 .
[0107] Although the previous embodiment describes one
method 500 for decomposing the large scale complex com
binatorial problem , other variations to the above method 500
may be performed without departing from the intended
scope of the claims recited herein . For example , in one
alternative embodiment , the vector space may be decom
posed with the same granularity of some attributes . For
instance , a sub - problem may be considered as covering one

(the blocks associated with the same time
period d , the same product model c and the same factory m) .
[0108] In another embodiment , the order of the attributes
that are prioritized in block 530 may be altered . More
specifically , in the example described above , the order of
attributes prioritized in the division of problem vector space
was product , location , and time . It should be understood that
other orders could be considered for division . For instance ,
the vector space could be divided based on the location
attribute as a first priority .
[0109] In other embodiments , different strategies of
decomposition may be used such that the results of different
strategies of decomposition may lead to overlaps of decom
positions . More specifically , because the solutions of sub
problems only serve as " good candidates , " the good candi
dates from various decomposition strategies could also be
combined together to serve as final candidates of the main
problem . In this alternative embodiment , the problem
decomposition is herein referred to as a “ set covering
problem . " In the set covering problem a " set - cover " problem
may be formulated to select the “ best ” decomposition . Let x ;
represent a binary variable to include C ; in the final set of
sub - problems . The objective function is to minimize the
number of selected sub - problems and minimize the size of
“ Affected_sets ” | A ; l . The constraint is to make sure all the
generated sub - problems S from the algorithm of block 520
are covered by at least one of the selected sub - problems :

min 14 ; lx ;

[0112] An alternative formulation of subproblems can be
considered with partial contribution as shown below may be
applied :

min vz ** + P. Ehd , e , ktk – PCT1 , dc • Pend ????? + ? ? (? - key
+

d = Dace KEY PCLas To 9 [

??P , ? Hack ** – PCT1.d , e • red
2
+

dDa ; c & C : KEY 1

m + ? , ? & n , m , ktk – PCT2,1 , m · Un , m
NEN , MY

+ P3 ??P , ? 8n , m , kty – PCT2 , n.m · 9n , m
EN ; M ; LKY mn Conto)

. ? ?? ElEx = 0
2
+ tcm , ' k *** – PCT3.com ((. dn.me) + Pn.me E - = 0

CECIMEM ET ;

??P ; ? ???? , ? ' ? ' ?? - ; E Efe , myl * * =

s.t. lix ; 21 VS ; ES 1 € T ; C
0 C & C imfM , keyi

1

PCT3 , c , m Thus (E_ deme) + Puno) ?? .) = 0

subject to

+ Xky + xky s 1

V ki , k2 E Qbits beB ; tET

[0110] Returning to block 320 of FIG . 3 , the plurality of
sub - problems generated by the problem decomposition are
then solved in parallel . The plurality of sub - problems can be
treated as independent from each other and therefore , solved
simultaneously .
[0111] During this parallel solving of the sub - problems , a
computational solver may be used to get the top n best
answers for each sub - problem . Parameters a below may be
set as very small constants , such that , in general , the
contribution of the vector space which is not considered is
not taken into account in solving a current sub - problem .
Instead , only a small weight is used to consider the contri

[0113] The result of problem decomposition may cover a
subset of vector space considered in some constraints . For
instance , the first penalty term P1 considers the accumula
tive load of a product model c across the entire set of

US 2022/0327399 Al Oct. 13 , 2022
8

factories . However , a sub - problem may only cover { m } , a
subset of the entire set of factories . Therefore , a formulation
of partial contribution PCT) , dc is applied in the computation 1 ' ,
of objective function . The formulation of all partial contri
bution weights are shown below :

9cm PCT1,0 , c 2 EG ?.? - ? , 9cm
rad PCT2 , n , m ? . ???? , rad cen

9cm PCT3 , c , m c ? Sed ac , m
[0114] As each of the sub - problems are solved during
block 320 , each sub - problem generates solutions which may
be considered as solutions to the final large - scale complex
combinatorial problem . In the case of the production sched
uling problem , each sub - problem generates a list of produc
tion schedules as the candidates to be considered in the final
main problem at block 325 .
[0115] It should be understood that a computational solver
such as Digital Annealer may generate multiple answers .
Further , some sub - problems could have up to 128 different
answers and other has only one answer . In order to control
the size of the candidates to be less then TH , a process may
be used to identify the best candidates from the candidate
pool or to otherwise reduce the size of the potential candi
dates .
[0116] In one embodiment , the algorithm for generating
the final candidates may be : Z : Final_candidate_list = []
For n = 1 to 128 :

[0117] For k in all sub - problems :
[0118] Include sub - problem [k] .ans [n] into Final_ca

ndidate_list
[0119] If the size of Final_candidate_list > TH : break

[0120] As may be understood , it may also be possible to
consider different strategies to select the final candidates for
the final main problem . For instance , the candidates may be
selected from a different division of sub - problems . For
example , when there are two sets of sub - problems based on
two different divisions , the top best candidates generated
from each strategy can be considered in the candidates of
final main problem .
[0121] At block 325 , as the size of final candidate set Z is
smaller than TH , a optimization solver is then used to solve
the main problem :

min vnxx + P 2 (Mac.kik – reid

[0122] As may be understood , using the ability to decom
pose a large - scale complex combinatorial problem as is
described using the system and methods herein , it is possible
to efficiently and effectively solve problems which have not
previously been able to be easily solved , even using
advanced optimization solvers which are currently available
in the art . Consequently , the method and systems described
herein provide benefits which have not previously been
possible and improve existing optimization solvers ' ability
to process and solve problems . As an example of just one
such problem which is now better suited for solution , the
production scheduling problem is described herein as a
single practical application of the system and methods
described herein . It should be understood that other appli
cations may also benefit from the problem decomposition
method and system described herein .
[0123] Further , it should be understood that as used in the
present disclosure , the terms “ module " or " component ” may
refer to specific hardware implementations configured to
perform the actions of the module or component and / or
software objects or software routines that may be stored on
and / or executed by general purpose hardware (e.g. , com
puter - readable media , processing devices , etc.) of the com
puting system . In some embodiments , the different compo
nents , modules , engines , and services described in the
present disclosure may be implemented as objects or pro
cesses that execute on the computing system (e.g. , as sepa
rate threads) . While some of the system and methods
described in the present disclosure are generally described as
being implemented in software (stored on and / or executed
by general purpose hardware) , specific hardware implemen
tations or a combination of software and specific hardware
implementations are also possible and contemplated . In this
description , a " computing entity " may be any computing
system as previously defined in the present disclosure , or
any module or combination of modulates running on a
computing system .
[0124] Terms used in the present disclosure and especially
in the appended claims (e.g. , bodies of the appended claims)
are generally intended as " open " terms (e.g. , the term
“ including " should be interpreted as “ including , but not
limited to , " the term “ having " should be interpreted as
“ having at least , " the term “ includes ” should be interpreted
as “ includes , but is not limited to , " etc.) .
[0125] Additionally , if a specific number of an introduced
claim recitation is intended , such an intent will be explicitly
recited in the claim , and in the absence of such recitation no
such intent is present . For example , as an aid to understand
ing , the following appended claims may contain usage of the
introductory phrases “ at least one ” and “ one or more ” to
introduce claim recitations . However , the use of such
phrases should not be construed to imply that the introduc
tion of a claim recitation by the indefinite articles “ a ” or “ an ”
limits any particular claim containing such introduced claim
recitation to embodiments containing only one such recita
tion , even when the same claim includes the introductory
phrases “ one or more " or " at least one ” and indefinite
articles such as “ a ” or “ an ” (e.g. , " a " and / or “ an ” should be
interpreted to mean “ at least one ” or “ one or more ”) ; the
same holds true for the use of definite articles used to
introduce claim recitations .
[0126] In addition , even if a specific number of an intro
duced claim recitation is explicitly recited , those skilled in
the art will recognize that such recitation should be inter

2

2
+

KEZ deD ; CEC KEZ reddet
? : ? (? E (? » , » . ?.? hom "
* ? ? (?.?.? . - ? . .. - P ; ESX x 200nm , 1 – Pe.me - Pem)

An , m +

neN ; meM KEK
-1

CEC & M

subject to
+ X ky + xk2 s1

V ki , k2 € Obt ; beB ; LET

US 2022/0327399 A1 Oct. 13 , 2022
9

a

preted to mean at least the recited number (e.g. , the bare
recitation of “ two recitations , ” without other modifiers ,
means at least two recitations , or two or more recitations) .
Furthermore , in those instances where a convention analo
gous to “ at least one of A , B , and C , etc. ” or “ one or more
of A , B , and C , etc. ” is used , in general such a construction
is intended to include A alone , B alone , C alone , A and B
together , A and C together , B and C together , or A , B , and
C together , etc. Additionally , the use of the term “ and / or ” is
intended to be construed in this manner .
(0127] Further , any disjunctive word or phrase presenting
two or more alternative terms , whether in the description ,
claims , or drawings , should be understood to contemplate
the possibilities of including one of the terms , either of the
terms , or both terms . For example , the phrase “ A or B ”
should be understood to include the possibilities of “ A ” or
“ B ” or “ A and B ” even if the term " and / or ” is used
elsewhere .
[0128] All examples and conditional language recited in
the present disclosure are intended for pedagogical objects
to aid the reader in understanding the present disclosure and
the concepts contributed by the inventor to furthering the art ,
and are to be construed as being without limitation to such
specifically recited examples and conditions . Although
embodiments of the present disclosure have been described
in detail , various changes , substitutions , and alterations
could be made hereto without departing from the spirit and
scope of the present disclosure .
What is claimed is :
1. A computer - implemented method of solving a large

scale complex combinatorial problem , the method compris
ing :

receiving the large - scale complex combinatorial problem
as an input ;

converting a decision variable space of the large - scale
complex combinatorial problem into a plurality of basic
attribute units which correspond to a subset of total
decision variables of the large - scale complex combi
natorial problem ;

decomposing the large - scale complex combinatorial
problem into a plurality of sub- problems of the plu
rality of basic attribute units ;

using an optimization solver , solving the plurality of
sub - problems in parallel , outputting a plurality of can
didate solutions corresponding to the solutions of the
plurality of sub- problems ; and

using the optimization solver and the plurality of candi
date solutions to solve the large scale complex combi
natorial problem .

2. The computer - implemented method of claim 1 ,
wherein converting the decision variable space of the large
scale complex combinatorial problem into the plurality of
basic attribute units comprises constructing the plurality of
basic attribute units in a vector space corresponding to the
total decision variables .

3. The computer - implemented method of claim 1 ,
wherein decomposing the plurality of basic attribute units
into a plurality of sub - problems comprises minimizing inter
ference between any two sub - problems .

4. The computer implemented method of claim 3 , wherein
decomposing the plurality of basic attribute units into a
plurality of sub - problems comprises using set partitioning to
minimize the interference between any two sub - problems .

5. The computer - implemented method of claim 3 , further
comprising applying a priority to attributes represented in
the plurality of basic attribute units to generate the plurality
of sub - problems .

6. The computer - implemented method of claim 3 , further
comprising sub - problems at various granularity among dif
ferent attributes of the basic attribute units to generate the
plurality of sub - problems .

7. The computer implemented method claim 1 , wherein
solving the plurality of sub- problems in parallel to output
the plurality of candidate solutions comprises identifying
multiple best candidates generated from each sub - problem
of the plurality of sub - problems .

8. The computer implemented method of claim 1 , wherein
the computing processing power required to solve each of
the plurality of sub - problems and the large - scale complex
combinatorial problem is below a predetermined threshold
of the optimization solver .

9. The computer implemented method of claim 1 , wherein
the large - scale complex combinatorial problem includes a
production scheduling problem for generating production
schedules directing which resources and facilities should be
directed at producing a given product at a particular time .

10. One or more computer - readable media configured to
store instructions that when executed by a system cause or
direct the system to perform actions , the actions comprising :

receiving a large - scale complex combinatorial problem as
an input ;

converting a decision variable space of the large - scale
complex combinatorial problem into a plurality of basic
attribute units which correspond to a subset of total
decision variables of the large - scale complex combi
natorial problem ;

decomposing the large - scale complex combinatorial
problem into a plurality of sub- problems of the plu
rality of basic attribute units ;

solving the plurality of sub - problems in parallel , output
ting a plurality of candidate solutions corresponding to
the solutions of the plurality of sub - problems ; and

using the plurality of candidate solutions to solve the large
scale complex combinatorial problem .

11. The one or more computer - readable media of claim
10 , wherein converting the decision variable space of the
large - scale complex combinatorial problem into the plural
ity of basic attribute units comprises constructing the plu
rality of basic attribute units in a vector space corresponding
to the total decision variables .

12. The one or more computer - readable media of claim
10 , wherein decomposing the plurality of basic attribute
units into a plurality of sub - problems comprises minimizing
interference between any two sub - problems .

13. The one or more computer - readable media of claim
12 , wherein decomposing the plurality of basic attribute
units into a plurality of sub - problems comprises using set
partitioning to minimize the interference between any two
sub - problems .

14. The one or more computer - readable media of claim
10 , wherein solving the plurality of sub - problems in parallel
to output the plurality of candidate solutions comprises
identifying multiple best candidates generated from each
sub - problem of the plurality of sub - problems .

15. The one or more computer - readable media of claim
10 , wherein the computing processing power required to
solve each of the plurality of sub - problems and the large

US 2022/0327399 Al Oct. 13 , 2022
10

scale complex combinatorial problem is below a predeter
mined threshold of the system .

16. The one or more computer - readable media of claim
10 , wherein the large - scale complex combinatorial problem
is a production scheduling problem for generating produc
tion schedules directing which resources and facilities
should be directed at producing a given product at a par
ticular time .

17. A system comprising :
one or more computer - readable storage media configured

to store instructions ; and
one or more processors communicatively coupled to the

one or more computer - readable storage media and
configured to , in response to execution of the instruc
tions , cause the system to perform operations , the
operations comprising :
receiving a large - scale complex combinatorial problem

as an input ;
converting a decision variable space of the large - scale

complex combinatorial problem into a plurality of
basic attribute units which correspond to a subset of
total decision variables of the large - scale complex
combinatorial problem ;

decomposing the large - scale complex combinatorial
problem into a plurality of sub- problems of the
plurality of basic attribute units ;

using an optimization solver , solving the plurality of
sub - problems in parallel , outputting a plurality of
candidate solutions corresponding to the solutions of
the plurality of sub - problems ; and

using the optimization solver and the plurality of can
didate solutions to solve the large scale complex
combinatorial problem .

18. The system of claim 17 , wherein converting the
decision variable space of the large - scale complex combi
natorial problem into the plurality of basic attribute units
comprises constructing the plurality of basic attribute units
in a vector space corresponding to the total decision vari
ables .

19. The system of claim 17 , wherein decomposing the
plurality of basic attribute units into a plurality of sub
problems comprises minimizing interference between any
two sub - problems using set - partitioning .

20. The system of claim 17 , wherein the computing
processing power required to solve each of the plurality of
sub - problems and the large - scale complex combinatorial
problem is below a predetermined threshold of the optimi
zation solver .

*

