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PROBLEM DECOMPOSITION IN A LARGE 
SCALE COMPLEX COMBINATORIAL 

PROBLEM 

described above . Rather , this background is only provided to 
illustrate one example technology area where some embodi 
ments described in the present disclosure may be practiced . 

FIELD OF THE INVENTION 

[ 0001 ] The embodiments discussed in the present disclo 
sure are related to methods and systems for decomposing a 
large scale complex combinatorial problem . 

BACKGROUND 

BRIEF SUMMARY 

[ 0007 ] According to an aspect of the invention described 
herein , a computer - implemented method of solving a large 
scale complex combinatorial problem is described . The 
method includes receiving the large - scale complex combi 
natorial problem as an input , converting the large - scale 
complex combinatorial problem into a plurality of basic 
attribute units which correspond to a subset of total decision 
variables of the large - scale complex combinatorial problem , 
decomposing the plurality of basic attribute units into a 
plurality of sub - problems , using a optimization solver , solv 
ing the plurality of sub - problems in parallel , outputting a 
plurality of candidate solutions corresponding to the solu 
tions of the plurality of sub - problems , and using a optimi 
zation solver and the plurality of candidate solutions to solve 
the large scale complex combinatorial problem . 
[ 0008 ] The objects and advantages of the embodiments 
will be realized and achieved at least by the elements , 
features , and combinations particularly pointed out in the 
claims . 
[ 0009 ] Both the foregoing general description and the 
following detailed description are given as examples and are 
explanatory and are not restrictive of the invention , as 
claimed . 

BRIEF DESCRIPTION OF THE DRAWINGS 

[ 0002 ] Many industries require decisions which are dis 
crete choices . These choices fall into the scope of combi 
natorial optimization problems . Combinatorial Optimization 
is a subfield of mathematical optimization having a number 
of real - world and practical applications related to operations 
research , algorithm theory , and computational complexity 
theory . It has important applications in several fields , includ 
ing artificial intelligence , machine learning , auction theory , 
software engineering , applied mathematics and theoretical 
computer science . Given the number of applications in a 
variety of different fields , there is a high demand for 
combinatorial optimization solvers . 
[ 0003 ] Typically , these solvers are used to address large 
scale problems , which contain a large number of decision 
variables . Given the size of the problems , however , and the 
number of variables , there can be difficulty finding optimi 
zation solvers which are capable of providing the hardware 
solutions and / or computational power provided by the soft 
ware implementation required to solve large scale combi 
natorial optimization problems . Further , even when such 
solvers are available , they may be too costly to be practically 
or easily implemented . 
[ 0004 ] Examples of conventional optimization solvers 
include the CplexTM Optimizer or the GurobiTM Solver , open 
source software solvers such as SCIP , as well as newly 
emerging Quantum - inspired computing machines including 
simulated annealing machines such as the Fujitsu Digital 
AnnealerTM . As previously discussed , however , despite the 
availability of these ystems , such machines still have 
capacity limitations in their hardware and / or software imple 
mentations which may limit the scale of the problems they 
are capable of solving . For example , such systems may have 
limitations in the number of binary variables which may be 
solved . As may be understood , these limitations in turn limit 
the practical applications that the combinatorial optimiza 
tion problems are attempting to solve . For example , the 
D - Wave 2000QTM quantum computer supports up to 2,048 
Qbits , and the Fujitsu Digital AnnealerTM supports up to 
8,192 Qbits . 
[ 0005 ] One example of a system and method that are 
currently used for solving a large scale combinatorial opti 
mization problem has been developed by D - Wave in the 
Qbsolve , which is a decomposing solver which finds a 
minimum value of a large quadratic unconstrained binary 
optimization ( QUBO ) by splitting it into pieces . The pieces 
are solved using a classical solver running the tabu algo 
rithm . As may be understood by one of skill in the art , 
however , the tabu based approach only provides a generic 
solution for the large scale problem and a novel solution is 
required . 
[ 0006 ] The subject matter claimed in the present disclo 
sure is not limited to embodiments that solve any disadvan 
tages or that operate only in environments such as those 

[ 0010 ] The embodiments Example embodiments will be 
described and explained with additional specificity and 
detail through the use of the accompanying drawings in 
which : 
[ 0011 ] FIG . 1 is a diagram representing an example envi 
ronment related to performing decomposition of a large 
scale complex combinatorial problem in accordance with 
some embodiments of the invention ; 
[ 0012 ] FIG . 2 is a three - dimensional graph illustrating s 
set of production schedules as an example of a large - scale 
complex combinatorial problem in accordance with some 
embodiments of the invention ; 
[ 0013 ] FIG . 3 is a block diagram illustrating a method of 
decomposing and solving a large - scale combinatorial prob 
lem according to some embodiments in accordance with 
some embodiments of the invention ; 
[ 0014 ] FIG . 4 is a block diagram illustrating a method of 
performing pre - processing of a large - scale combinatorial 
problem according to some embodiments in accordance with 
some embodiments of the invention ; and 
[ 0015 ] FIG . 5 is a block diagram illustrating a method of 
decomposing a large - scale combinatorial problem according 
to some embodiments in accordance with some embodi 
ments of the invention . 

a 

a 

DESCRIPTION OF EMBODIMENTS 

[ 0016 ] The embodiments discussed in the present disclo 
sure are related to methods and systems for decomposing a 
large - scale complex combinatorial problem in a computing 
device . More specifically , embodiments described herein are 
directed to systems and methods for decomposing a math 
ematical equation that is input . The equation is decomposed 
into a series of smaller sub - problems , which may then be 
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solved to generate multiple best candidates , which may then 
be used to solve the large - scale complex combinatorial 
problem . As is described more fully below , by reducing the 
number of decision variables in the various sub - problems , 
different optimization solvers may be used to find solutions 
to the large - scale complex problem because the processing 
power required to solve the remaining sub - problems is 
below the capacity limit of the solvers . As may be under 
stood , using the methods and systems described herein , it is 
possible to decompose even large - scale complex combina 
torial problems efficiently and effectively . Because large 
scale complex combinatorial problems have a wide variety 
of practical applications in a variety of different fields , the 
ability to efficiently and effectively solve such problems 
provides benefits not currently available . 
[ 0017 ] FIG . 1 illustrates a block diagram of an example 
computing system 110 configured to decompose and solve 
large - scale complex combinatorial problems , which in some 
instances may include production scheduling problems , 
according to at least one embodiment of the present disclo 
sure . The computing system 110 may be configured to 
implement or direct one or more operations associated with 
decomposing a large - scale complex combinatorial problem 
into a series of sub - problems which may then be solved 
without exceeding the computational capacity of the com 
puting system 110 . 
[ 0018 ] The computing system 110 may be or may be used 
in association with a digital annealer solver , such as a digital 
annealer solver offered by Fujitsu® . Alternately or addition 
ally , the computing system 110 may comprise or be used in 
associated with combinatorial optimization solvers such as 
Cplex , Gurobi , among others . Alternately or additionally , the 
combinatorial optimization may be solved using heuristics 
such as the Tabu search or simulated annealing . Alternately 
or additionally , the combinatorial optimization may be 
solved using constrained satisfiability ( SAT ) solvers , such as 
the SAT solvers provided in Google's OR tool . 
[ 0019 ] The computing system 110 may include a proces 
sor 111 , a memory 112 , and a data storage 113. The proces 
sor 111 , the memory 112 , the data storage 113 , and a 
communication unit 114 may be communicatively coupled , 
which enables the computing system 110 to communicate 
with other computing devices . 
[ 0020 ] In general , the processor 111 may include any 
suitable special - purpose or general - purpose computer , com 
puting entity , or processing device including various com 
puter hardware or software modules and may be configured 
to execute instructions stored on any applicable computer 
readable storage media . For example , the processor 111 may 
include a microprocessor , a microcontroller , a digital signal 
processor ( DSP ) , an application - specific integrated circuit 
( ASIC ) , a Field - Programmable Gate Array ( FPGA ) , or any 
other digital or analog circuitry configured to interpret 
and / or to execute program instructions and / or to process 
data . Although illustrated as a single processor in FIG . 1 , the 
processor 111 may include any number of processors con 
figured to , individually or collectively , perform or direct 
performance of any number of operations described in the 
present disclosure . Additionally , one or more of the proces 
sors may be present on one or more different electronic 
devices , such as different servers . 
[ 0021 ] In some embodiments , the processor 111 may be 
configured to interpret and / or execute program instructions 
and / or process data stored in the memory 112 , the data 

storage 113 , or the memory 112 and the data storage 113. In 
some embodiments , the processor 111 may fetch program 
instructions from the data storage 113 and load the program 
instructions in the memory 112. After the program instruc 
tions are loaded into memory 112 , the processor 111 may 
execute the program instructions . 
[ 0022 ] The memory 112 and the data storage 113 may 
include computer - readable storage media for carrying or 
having computer - executable instructions or data structures 
stored thereon . Such computer - readable storage media may 
include any available non - transitory media that may be 
accessed by a general - purpose or special - purpose computer , 
such as the processor 111. By way of example , and not 
limitation , such computer - readable storage media may 
include tangible or non - transitory computer - readable stor 
age media including Random Access Memory ( RAM ) , 
Read - Only Memory ( ROM ) , Electrically Erasable Program 
mable Read - Only Memory ( EEPROM ) , Compact Disc 
Read - Only Memory ( CD - ROM ) or other optical disk stor 
age , magnetic disk storage or other magnetic storage 
devices , flash memory devices ( e.g. , solid state memory 
devices ) , or any other non - transitory storage medium which 
may be used to carry or store particular program code in the 
form of computer - executable instructions or data structures 
and which may be accessed by a general - purpose or special 
purpose computer . In these and other embodiments , the term 
" non - transitory ” as explained in the present disclosure 
should be construed to exclude only those types of transitory 
media that were found to fall outside the scope of patentable 
subject matter in the Federal Circuit decision of In re 
Nuijten , 500 F.3d 1346 ( Fed . Cir . 2007 ) . Combinations of 
the above may also be included within the scope of com 
puter - readable media . 
[ 0023 ] Combinations of the above may also be included 
within the scope of computer - readable storage media . Com 
puter - executable instructions may include , for example , 
instructions and data configured to cause the processor 111 
to perform a certain operation or group of operations . 
[ 0024 ] Modifications , additions , or omissions may be 
made to the computing system 110 without departing from 
the scope of the present disclosure . For example , in some 
embodiments , the computing system 110 may include any 
number of other components that may not be explicitly 
illustrated or described . 

a 

Practical Application : Production Scheduling 
[ 0025 ] Although the system and methods described herein 
may be used in a variety of different settings and applica 
tions , the problems which can arise and which may be 
solved and alleviated will be described with respect to 
production scheduling . As may be understood by one of 
skill , production scheduling problem is one of the key 
problems in supply chain management , and moreover pro 
duction scheduling problems typically comprise large - scale 
complex combinatorial problems which are often too large 
to be solved . 
[ 0026 ] More particularly , in the problem of production 
scheduling as manufacturer companies receive orders from 
their customers which specify the quantity of demands , the companies need to plan the production scheduling to meet 
the demands with consideration of stock management . In 
order to do so , companies prepare a list of candidate 
production schedules including the details of scheduling , 
such as which machine at which factory should be used to 
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level on day t . Both the daily predicted demand de , m , t 
of a product model c at each factory m at day t and the 
targeted stock level Pc , m , t of a product model c at each 
factory m at day t are specified . 

[ 0038 ] The above objective function is subject to the 
following constraints : 

[ 0039 ] ( C1 ) Conflict in machine scheduling : Candidates 
of the optimized production schedule which use the 
same machine at the same time may be generated . To 
avoid such a conflict from occurring , a constraint of no 
more than one schedule occupy the same machine is 
applied . Qb , y represents the set of schedules use the 
machine b at the day t . 

[ 0040 ] The optimization formulation based the 
described problem may be written as : 
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manufacture a particular product model of a given product 
during a specified time . The given scheduling may also 
include the quantity of each product model which may be 
manufactured at a given time at a particular factory or on a 
particular machine . The problem of production scheduling 
problem is to select the set of production schedules to satisfy 
demands while minimizing the cost of selected production 
schedules . In such an instance , multiple variables exist in 
such a problem , such as identifying which of many available 
factories , machines , and / or workers should be assigned to 
the task of producing the product , the time spent to produce 
the goods , the timing at which it should be performed . As 
may be understood , in a particular application , additional 
variables may also be required . 
[ 0027 ] In one instance , the given inputs may include : 

[ 0028 ] K production schedules to be chosen ( one binary 
variable for each schedule ) where K is a large number 
exceeding the capability limit of solver , 

[ 0029 ] One schedule , which includes the detailed pro 
duction schedule ( machine and period ) and amount of 
the product produced by a particular machine along 
with specific product model it produces , 

[ 0030 ] M factories , with each factory m having a num 
ber of machines B represents the set of machines { b } 
at the factory m . 

[ 0031 ] For any machine at any time only one schedule 
can use it . 

[ 0032 ] There are N types of products . Each type of prod 
ucts n may have multiple product models . C , represents the 
set of product models belong to product n . 
[ 0033 ] In this example , one schedule may include a span 
of multiple machines located at different factories . For 
instance , one product model of a machine can be used as 
components of another product model manufactured at 
another machine . At the same time , for any one machine at 
any given time , only one schedule may control the use of the 
machine . 
[ 0034 ] In this example , the objective function is to mini 
mize the sum of the cost of the selected production schedules 
and the penalty of the following considerations for a given 
period of time T : 

[ 0035 ] ( P1 ) Compliant with long term production plan : 
the constraint is to ensure the final production matches 
to the predicted production plan over the d - th segment 
of given period T as close as possible . The penalty is 
computed based on the deviation of the total delivery of 
each product model c over the d - th segment of given 
period T against the initial target rc , d . For instance , a 
company may take a segment as monthly basis or 
quarter basis . 

[ 0036 ] ( P2 ) Compliant with factory production plan : To 
consider the resource ( machine and labor ) allocation at 
each factory , the constraint is to ensure the final pro 
duction matches to the predicted production plan of 
each product model c at each factory m . The penalty is 
computed based on the deviation of the final amount of 
each product type n at each factory m during the entire 
period T against the initial target In , m . 

[ 0037 ] ( P3 ) Compliant with short term stock manage 
ment plan : To consider the short term variation in stock 
of each product type n against the targeted stock level 
at a particular day t , the penalty is computed based on 
the deviation of the accumulative stock of each product 
model c at each factory m against the targeted stock 

k 

2 

t 

[ 0041 ] Where : 
[ 0042 ] V is the cost associated with production sched 

ule k , 
[ 0043 ] Xt is the binary variable to represent each can 

didate of production schedule k , 
[ 0044 ] P1 , P2 , P3 are constants applying to the deviation 

of predefined targets to determine the penalties corre 
sponding to abovementioned compliances ( P1 ) - ( P3 ) , 

[ 0045 ] hd.ck is the amount of delivery for product model 
c during the d - th segment by production schedule k , 

[ 0046 ] Sn , m , k is the amount of delivery for product type 
n at factory m during the entire period T by production 
schedule k , and 

[ 0047 ] fc , m , t , k is the amount of delivery for product 
model c at factory m at day t by production schedule k . 

[ 0048 ] As may be realized by one of skill , however , the 
size of binary variables K in the problem described above 
results in a problem which is too large for a computerized 
solver to solve . 
[ 0049 ] As may be understood , the production scheduling 
problem may be described as a vector space of decision 
variables . More specifically , one binary variable xk may be 
used to represent each candidate of production schedule k . 
When a production schedule candidate k is selected , the 
decision variable xk is set to be 1 ; otherwise , the decision 
variable xx is set to be 0. As each production schedule is 
associated with multiple attributes , including factory ( s ) m , 
product type ( s ) n , product model ( s ) c , machine ( s ) to use b , 
product completion date ( s ) t , segment of the period d , etc. 
Hence , the problem can be represented in a vector space of 
variables having a multi - dimensional space , where the num 
ber of dimensions corresponds to the number of attributes . 

2 
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In the previously described example , the problem may be 
represented in a six - dimensional vector space . 
[ 0050 ] One problem , however , is that in this problem some 
attributes are correlated with each other . When the relation 
ship of multiple - to - one mapping exist in the correlated 
attributes , the attribute of coarse granularity can be " hidden " 
as the value of coarse attribute can be found via the 
correlated and finer - granularity attribute . 
[ 0051 ] For example , in the production scheduling prob 
lem , it can be determined that there are 3 pairs of multi - to 
one mapping relationships among 6 attributed considered , 
including : multiple product models may belong to one 
product type , multiple machines may belong to one factory , 
and multiple days may belong to one segment of the entire 
period . Therefore , the vector space can be simplified to be 
shown as 3 dimensional space 200 , as is shown in FIG . 2 . 
The three - dimensional vector space 200 corresponds to 
[ time ( production date , production segment ) , product ( type 
and model ) , location ( factory and machine ) ] . 
[ 0052 ] Each 3D graph block shown in FIG . 2 represents a 
set of production schedules which are associated with the 
attributes corresponding to those in the block . For example , 
the production schedules which are associated with long 
term production plan of product model c over the d - th 
segment of given period T are shown are shown as block 210 
in the vector space 200 shown in FIG . 2 , the production 
schedules which are associated with factory production plan 
of product model c at factory m are shown are shown as 
block 220 , and the production schedules which are associ 
ated with short term stock management plan of product type 
n against the targeted stock level at a particular day t are 
shown as block 230 . 
[ 0053 ] For instance , if a production schedule k visits a 
factory m , then production schedule k is included into the 
block containing the factory attribute m . All the candidates 
of production schedules are included in the whole set 
{ M , N , T } block 
[ 0054 ] As was previously described , because the total 
production schedule number K is a large number , it likely 
exceeds the capacity limit of solver to handle . As such , there 
is a need to decompose the problem into smaller problems 
so that the smaller problems , and consequently , the larger 
problems may be solved . 

basic blocks . At block 310 , the problem is decomposed at the 
computing system 110 into a plurality of sub - problems by 
formulating the problem as a set partition problem solved to 
achieve minimum interference between the plurality of 
sub - problems . At block 315 , the plurality of sub - problems 
are solved in parallel by the computing system 110. At block 
320 , each of the plurality of sub - problems output one or 
multiple answers are recorded . These answers then serve as 
the candidates in the final main problem at block 325. More 
specifically , at block 325 the main problem is solved using 
the candidates generated by all the plurality of sub - problems 
and a solution for the production scheduling problem is 
obtained . 
[ 0057 ] FIG . 4 is a flowchart of an example method 400 
illustrating the pre - processing performed at block 305 of 
FIG . 3 , according to at least one embodiment described in 
the present disclosure . The method 400 may be performed 
by any suitable system , apparatus , or device . For example , 
as is described more fully below , one or more operations of 
the method 400 may be performed by one or more elements 
of the computing system 110 of FIG . 1 or multiples of the 
computing system 110 of FIG . 1. Although illustrated with 
discrete blocks , the steps and operations associated with one 
or more of the blocks of the method 400 may be divided into 
additional blocks , combined into fewer blocks , or elimi 
nated , depending on the particular implementation . 
[ 0058 ] The method 400 begins at block 405 , where a 
plurality of attribute sets are constructed with the most basic 
or minimum attribute units . For example , in the case of 
production scheduling problem , described above , the pro 
duction scheduling problem can be constructed into sets of 
production schedules with the most basic attribute units . In 
the production scheduling problem , sets of production 
schedules involved with each minimum basic unit ( e.g. 
date = t , product model c , and machine b ) can be constructed , 
resulting in the following two minimum basic units : 

Core sets : C1 , C , 6 = QbRmnSmeVIET , CE CEB 
Affected sets : A ( 0,6 = Qb , URm.m.USmeVIET , 

CELEB 
[ 0059 ] where Qo , represents the set of production sched 
ules involved in machine b and date t , Rm.nt represents the 
set of production schedules involved in factory m , product 
type n , and day t , and Sm , e represents the set of production 
schedules involved in factory m , product model c . 
[ 0060 ] At block 410 , attributes with many - to - one mapping 
are identified . At block 415 , the minimum basic units are 
merged into primary basic units when attributes with many 
to - one mapping are identified at block 410 . 
[ 0061 ] In the case of production scheduling problem , 
multiple product models { c } are identified at block 410 as 
belonging to one product type n and multiple machines { b } 
belong to a single factory m . As a result of this many - to - one 
mapping , unit of ( c , b ) , the box from ( cb ) is merged to the 
corresponding ( n , m ) box to form primary basic units 
described below as the unit of ( n , m ) is larger than the unit 
( c , b ) . 
[ 0062 ] Hence , in the production scheduling problem 
described above , the two primary basic units are con 
structed : 

, 

a 

Decomposing and Solving the Large Scale 
Complex Combinatorial Problem 

[ 0055 ] FIG . 3 is a flowchart of an example method 300 for 
decomposing and solving large scale combinatorial optimi 
zation problems , according to at least one embodiment 
described in the present disclosure . The method 300 may be 
performed by any suitable system , apparatus , or device . For 
example , as is described more fully below , one or more 
operations of the method 300 may be performed by one or 
more elements of the computing system 110 of FIG . 1 or 
multiples of the computing system 100 of FIG . 1. More 
particularly , it should be understood that although illustrated 
with discrete blocks , the steps and operations associated 
with one or more of the blocks of the method 300 may be 
divided into additional blocks , combined into fewer blocks , 
or eliminated , depending on the particular implementation . 
[ 0056 ] The method 300 begins at block 305 , where input 
data of the production scheduling problems is received by 
the computing system 110. In addition , at block 305 , pre 
processing is performed on the input data to identify a set of 

Core sets : Cumn = UcEn , bemobVIET , MEM , NEN t , c , 
2 

Affected sets : Atm , n = Ucen , bemAt ,, bVIET , MEM , NEN 



US 2022/0327399 Al Oct. 13 , 2022 
5 

[ 0063 ] As was previously , described after pre - processing 
is performed , the total production schedule number is K , 
exceeding the capacity limit of solver to handle , there is a 
need to decompose the problem into smaller problems . 
[ 0064 ] As previously described , a sub - problem is defined 
as consideration of a block in the multidimensional - space of 
variables . In the case of the production schedule problem , 
the pre - processing has reduced to the 3 - D space of [ time t , 
product ( type or model ) n , and location ( machine or factory ) 
m ] . A block can be represented as : ( T , N , M ) where T is a set 
of time instances t , N is a set of product instances n , M is a 
set of location instances m . The most basic unit of a block 
as defined in pre - processing of method 400 is ( t , c , b ) for a 
particular day t , product model c , and machine b . 
[ 0065 ] The core sets defined in blocks 405 , 410 , and 415 
determine the necessary production schedules required to be 
considered within the sub - problems . On the other hand , the 
affected sets defined in blocks 405 , 410 , and 415 include any 
production schedules which are related to the production 
schedules in the core sets . When the intersection of two 
affected sets of two blocks is empty , it can be determined 
that two sub - problems are independent . 
[ 0066 ] As may be understood , the main challenge in 
decomposing the problem is that the affected sets in the 
overall space intersect with each other . Consequently , it can 
be difficult to dissect the 3D or multidimensional space into 
independent sub - problems . 
[ 0067 ] FIG . 5 is a flowchart of an example method 500 for 
decomposing the scale combinatorial optimization problem 
as a sub - process of block 310 of FIG . 3 , according to at least 
one embodiment described in the present disclosure . The 
method 500 may be performed by any suitable system , 
apparatus , or device . For example , as is described more fully 
below , one or more operations of the method 500 may be 
performed by one or more elements of the computing system 
110 of FIG . 1 or multiples of the computing system 110 of 
FIG . 1. Although illustrated with discrete blocks , the steps 
and operations associated with one or more of the blocks of 
the method 500 may be divided into additional blocks , 
combined into fewer blocks , or eliminated , depending on the 
particular implementation . 
[ 0068 ] The method 500 of decomposing the large - scale 
complex combinatorial problem begins at block 505 , where 
it is determined if any independent sub - problems exist . In 
the scheduling problem example , if a block ( Ti , Ni , M ; ) is 
identified which does not intersect with other blocks , the 
block can be removed as an independent block at block 510 . 
In addition , in some instances , to avoid processing a small 
sub - problem , the size of block is limited to be greater than 
some value for some attributes . For instance , in the produc 
tion scheduling problem , the size of time attribute may be 
required to be at least half of the total period and as such any 
blocks where the time attribute is less than half the total 
period may not be considered as independent blocks to be 
removed at block 510 . 
[ 0069 ] In the example of the production scheduling prob 
lem , for each attribute , each block with granularity greater 
than the minimum unit is iterated , and the following algo 
rithm may be used : 
[ 0070 ] If Affected_set ( T. , N , MUAffected_set ( T ' , N ' , 
M ' ; ) = ) , where T ; and T'i are different sets along the time 
attribute , Ni and N ' ; are different sets along the product 
attribute , M ; and M ' ; are different sets along the location 

attribute of factories , the set ( Ti , Ni , M ; ) is retrieved as 
independent set , and is processed at block 510 as described 
below . 
[ 0071 ] At block 510 , the independent sub - problems are 
extracted . Further , if the size of an independent sub - problem 
is large enough to handle , the block ( Ti , Ni , M , ) is extracted 
and stored as one final sub - problem , which is outputted as a 
final sub - problem at block 535 . 
[ 0072 ] At block 515 , blocks of sub - problems are com 
posed having various levels of granularity along different 
attributes . In some instances , composing the blocks of 
sub - problems comprises merging blocks from the basic 
blocks to achieve sub - problems with different granularity 
levels . As may be understood , one objective is to find the 
appropriate size of sub - problems . Typically , this includes 
finding sub - problems which are as large as possible without 
exceeding the computational power of the computing system 
110. To do so , the minimum granularity of each attribute is 
first determined . For instance , in the production scheduling 
problem , the minimum granularity for time , product , and 
location may be assigned to be equivalent to half of total 
period , one factory , and one product model , respectively . 
[ 0073 ] Next , the priority of attributes considered for dis 
section may be determined . For example , in the example of 
the production scheduling problem , a priority may be estab 
lished such that the whole space is dissected according first 
to product type first , second to factory , third to product 
model , and time attribute lastly . 
[ 0074 ] Then the core sets may be generated having various 
granularities of different attributes . This process may 
include : 
[ 0075 ] 1 ) Generate Coren : the blocks associated with the 
same product type n : Core , = U ded , cEn , mem Cored , c m , where 
d is the index of time attribute ( first or second half of the 
total period ) . 
[ 0076 ] 2 ) Generate Coren , mi the locks associated with the 
same product type n and the same factory m : Coren , m = U LED , 

a 

„ MEM 

cExCored , com 

cm 

d , com C , m 

[ 0077 ] 3 ) Generate Corec , mi the blocks associated with the 
same product model c and the same factory m : Corec , 
m = # ded Cored , 
[ 0078 ] 4 ) Generate Cored , c , mi the blocks associated with 
the same time period d , the same product model c and the 
same factory m : Cored , = UE { Te } Core , 
[ 0079 ] Returning now to FIG . 5 , at block 520 , the blocks 
are exported along the priority of attributes with appropriate 
size to become the candidates of sub - problems . During this 
process , the maximal sub - problem size ( i.e. the maximal 
number of binary variables able to be handled by the solver ) 
is determined and defined as TH . 
[ 0080 ] Returning to the production scheduling problem , 
exporting the blocks along the priority of attributes in the 
order described above of product type , factory , product 
model , half time period , and days , the blocks can be 
exported as described below : 
[ 0081 ] 1. Sort Core , as ascending order 
[ 0082 ] 2. If | Core , / < TH , export Core , as a candidate of 
sub - problem ; else steps 3-4 
[ 0083 ] 3. Sort | Coren , ml as ascending order 
[ 0084 ] 4. If | Coren , m << TH , export Coren.ml as a candidate 
of sub - problem ; else steps 5-6 
[ 0085 ] 5. Sort Corec.mas ascending order 
[ 0086 ] 6. If | Corec , mk < TH , output Corec.m as a candidate of 
a sub - problem ; else step 7-8 

m 

, m 

is 

i 

i 
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[ 0098 ] The index matrix of the set partitioning algorithm 
is represented as I = [ L ] where 

, 

lij = { if SicCj . 
elsewise . 

[ 0087 ] 7. Sort ICored , c , ml as ascending order 
[ 0088 ] 8. If ICored.c.ml < TH , output Coredom as a candi 
date of sub - problem else step 9 ; 
[ 0089 ] 9. Merge consecutive t belong to the same half 
period d such that the union of the merge size is less then 
TH . The merged set is then exported as a candidate of a 
sub - problem , as is described more fully below . 
[ 0090 ] An example of an output that may be generated 
according to the steps described above using the production 
scheduling problem as the example , where the first 24 of 
total 124 sets are evaluated and the output is in the form of 
( time , c , m ) is shown below : 

[ 0099 ] In some embodiments , only candidates that cannot 
include one more set without exceeding the capacity limit of 
the solver will be considered . For example , if we start to add 
set 0 , the candidate 0 : [ 0 , 1 , 2 , 3 ] is acceptable and would be 
considered but 0 : [ 0 , 1 , 2 ] will not be included . 
[ 0100 ] An example of an output that may be generated 
according to the steps described above at block 525 , where 
there are a total of 7,490 possible combinations representing 
candidates in a set partition problem where a sample of 21 
possible combinations is shown below : 

= 

- 

= 

0 : [ ( T , [ 37 ] , [ 0 , 1 , 2 , 3 ] ] 
1 : [ ( T , [ 3 , 36 , 52 ] , [ 0 ] ] 
2 : [ ( T , [ 3 , 36 , 52 ] , [ 3 ] ] 
3 : [ ( T , [ 3 , 36 , 52 ] , [ 1 ] ] 
4 : [ ( T , [ 3 , 36 , 52 ] , [ 2 ] ] 
5 : [ ( T , [ 22 , 24 , 28 , 31 , 43 , 49 , 60 ] , [ 1 ] ] 
6 : [ ( T , [ 22 , 24 , 28 , 31 , 43 , 49 , 60 ] , [ 3 ] ] 
7 : [ ( T , [ 22 , 24 , 28 , 31 , 43 , 49 , 60 ] , [ 2 ] ] 
8 : [ ( T , [ 10 , 21 ] , [ 0 ] ] 
9 : [ { T , [ 10 , 21 ] , [ 2 ] ] 

10 : [ ( T , [ 10 , 21 ] , [ 1 ] ] 
11 : [ ( T , [ 10 , 21 ] , [ 3 ] ] 
12 : [ ( T , [ 8 , 19 , 32 , 44 , 51 , 58 ] , [ 0 ] ] 
13 : [ ( T , [ 8 , 19 , 32 , 44 , 51 , 58 ] , [ 1 ] ] 
14 : [ ( T , [ 8 , 19 , 32 , 44 , 51 , 58 ] , [ 3 ] ] 
15 : [ ( T , [ 8 , 19 , 32 , 44 , 51 , 58 ] , [ 2 ] ] 
16 : [ ( T , [ 6 , 12 , 25 , 27 , 35 , 42 ] , [ 0 ] ] 
17 : [ ( T , [ 6 , 12 , 25 , 27 , 35 , 42 ] , [ 1 ] ] 
18 : [ ( T , [ 5 , 15 , 50 ] , [ 3 ] ] 
19 : [ ( T , [ 5 , 15 , 50 ] , [ 0 ] ] 
20 : [ ( T , [ 2 , 7 , 9 , 16 , 29 , 34 , 39 , 41 , 45 , 46 , 
48 , 53 , 54 , 55 , 56 , 57 , 59 ] , [ 0 ] ] 
21 : [ ( T , [ 2 , 7 , 9 , 16 , 29 , 34 , 39 , 41 , 45 , 46 , 
48 , 53 , 54 , 55 , 56 , 57 , 59 ] , [ 1 ] ] 
22 : [ ( 1H , [ 23 ] , [ 3 ] ] 
23 : [ ( 2H , [ 23 ] , [ 3 ] ] 

Size 0 : 274 
Size 1 : 780 
Size 2 : 1030 
Size 3 : 1310 
Size 4 : 1397 
Size 5 : 818 
Size 6 : 1573 
Size 7 : 2953 
Size 8 : 1120 
Size 9 : 1357 

Size 10 : 2210 
Size 11 : 2484 
Size 12 : 1070 
Size 13 : 1630 
Size 14 : 1840 
Size 15 : 3164 
Size 16 : 920 
Size 17 : 2949 
Size 18 : 2975 
Size 19 : 3049 
Size 20 : 1680 

0 : [ 0 , 1 , 2 , 3 ] 
1 : [ 0 , 1 , 2 , 3 , 30 , 31 , 32 , 33 ] 
2 : [ 0 , 1 , 2 , 3 , 30 , 31 , 32 , 33 , 36 ] 
3 : [ 0 , 2 , 3 , 5 ] 
4 : [ 0 , 2 , 3 , 5 , 30 , 31 ] 
5 : [ 0 , 2 , 3 , 5 , 30 , 31 , 36 ] 
6 : [ 0 , 3 , 4 ] 
7 : [ 0 , 3 , 4 , 30 , 31 , 32 ] 
8 : [ 0 , 3 , 4 , 30 , 31 , 32 , 36 ] 
9 : [ 0 , 3 , 4 , 30 , 31 , 32 , 36 , 64 , 65 ] 
10 : [ 0 , 3 , 4 , 30 , 31 , 32 , 36 , 64 , 65 , 74 ] 
11 : [ 0 , 4 , 5 , 16 ] 
12 : [ 0 , 4 , 5 , 16 , 30 ] 
13 : [ 0 , 4 , 5 , 16 , 30 , 36 ] 
14 : [ 0 , 5 , 6 ] 
15 : [ 0 , 5 , 6 , 26 ] 
16 : [ 0 , 5 , 6 , 26 , 64 , 65 ] 
17 : [ 0 , 6 , 8 ] 
18 : [ 0 , 6 , 8 , 30 , 31 , 32 ] 
19 : [ 0 , 6 , 8 , 30 , 31 , 32 , 36 ] 
20 : [ 0 , 6 , 8 , 30 , 31 , 32 , 36 , 64 , 65 ] 

TAffected_set [ O ] 82011 
| Affected_set [ 1 ] ] = 82011 
| Affected_set [ 2 ] 1 = = 82011 
TAffected_set [ 3 ] 1 81993 
| Affected_set [ 4 ] 82009 
TAffected_set [ 5 ] ] = 82009 
| Affected_set [ 6 ] l = 81921 
| Affected_set [ 7 ] ) = 81934 
| Affected_set [ 8 ] ] = 81934 
| Affected_set [ 9 ] 1 81965 

| Affected_set [ 10 ] 82056 
| Affected_set [ 11 ] ! 81883 
| Affected_set [ 12 ] l = 81883 
| Affected_set [ 13 ] I = 81883 
| Affected_set [ 14 ] ] = 81887 
Affected_set [ 15 ] 1 = 82037 
Affected_set [ 16 ] = 82063 
| Affected_set [ 17 ] = 81567 
| Affected_set [ 18 ] ] 82053 
Affected_set [ 19 ] 1 = 82096 
TAffected_set [ 20 ] = 82109 

- 

= 

Size 21 : 2780 

== Size 22 : 1488 
Size 23 : 2900 - 

[ 0101 ] Returning to FIG . 5 , at block 530 , the outputs of 
block 525 are received and a final set of sub - problems are 
generated from an optimal solution of a set - partition prob 
lem . In the production scheduling problem , the outputs are 
received as : 

C = { C ; = vssS ;; LB < IC ; < UB } ; 

[ 0102 ] An index matrix of the set partitioning algorithm 
represented as 

1 = [ lj ] where lij = { 1 if SicCj . 
elsewise . 

= = 

[ 0091 ] Returning to the method 500 shown in FIG . 5 , at 
block 525 the sets are merged to form candidates of a “ set 
partition " algorithm . In the production scheduling problem , 
the initial max production schedule number may be set as the 
value of TH ( e.g. 8,000 ) . 
[ 0092 ] To merge the sets , all the generated candidates of 
sub - problems ( set S 32 [ Si ] ) , which in this instance is the 
output of block 520 are inputted . In the production sched 
uling problem , this includes : 
[ 0093 ] 1 ) The sets of Core , where ICoren < TH 
[ 0094 ] 2 ) If n ' ( n ' e N ) not covered in 1 ) , the sets of 
Coren'm where ICorenim < TH 
[ 0095 ] 3 ) If c ' ( c'e n ' ) , m ' ( V m'e M ) not covered in 1 ) 
and 2 ) , the sets of Corec.m . Where Corec , mik < TH 
[ 0096 ] 4 ) If c ' ( ce n ' ) , m " ( Vm " EM ) , not covered in 1 ) , 
2 ) , and 3 ) , the sets of Core d.c " , m " Where Cored , c ' , m ' m | < TH 
[ 0097 ] After the all the candidates of sub - problems have 
been inputted , combinations are created for any set in listed 
in 1 ) -4 ) above where the merged set is less than TH . In some 
instances , these sets may be created recursively . The com 
binations of S ; are enumerated and the candidate sets C for 
the set partitioning problem are extracted . The set included 
in C have the merged size between the lower LB and upper 
bound UB of a problem size . That is , 

C = { C ; = usesS : LB < ICI < UB } 

2 ' m 

d 

[ 0103 ] A weight vector W = [ w ; ] where w? = 1A ; ) , i.e. the size 
of Affected_set of C ; 
[ 0104 ] For example , using the output listed above in the 
table as the output of block 525 , the third set C3 = [ 0 , 2 , 3,5 ] , 
= > 10,3 = 12,3 = 13,3 = 13,5 = 1 ; Azl = 81993 . 
[ 0105 ] Next , at block 530 a “ set - partition ” problem is 
formulated to select the " best " decomposition . Let x ; repre 
sent a binary variable to include whether C ; is selected in the 
final set of sub - problems . The objective function is to 
minimize the number of selected sub - problems and mini 
mize the size of “ Affected_sets ” IA ; l . The constraint is to 
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make sure all the generated sub - problems S during block 
520 are covered by the selected sub - problems : 

min 14 ; 1x ; 

bution for the purpose of tie - breaker . The formulation of a 
subproblem can be represented as below : 
min ???? + ? ? ( ?has , 84 – rasa 

= D ;; 

2 
+ ***** KEY d = D . ; CET 

s.t. lijX ; = 1 VS ; ES 
j ??P , ? 

deD ; ; c & C ; KEY 
10.c , k k read + 

i 

a 

? , ? 
neN : mM 

80,0 , ** – 9n , m 
KEV 

On , m + ??P , ? En , mkXy 
neN ; M ; EY ; , m & 

2 
1-1 

+ ? ? ? ? ? ? ? ?? - Pz Je , m , ' , k *** - ( ? ' ?? . ) - ????? . key CEC ; ; m & M t € 7 | 1 = 0 

unit of Cored , c , m 2 

azPs 3 ( E. Z femr * • ** - ( + dn.me ) – Promo ? ??? ? . * * 
C & C ; m & M , 

' = 0 = 1,4o ) - mon ) t € T ELE keY ; 
subject to 

+ Xk? + Xk? = 1 
V ki , k2 € Obts beB ; LET 

[ 0106 ] As a result , Y sub - problems were generated where 
Y = { C ; where x ; = 1 } . At block 535 , these final sub - problems 
are outputted for parallel solving at block 315 of FIG . 3 . 
[ 0107 ] Although the previous embodiment describes one 
method 500 for decomposing the large scale complex com 
binatorial problem , other variations to the above method 500 
may be performed without departing from the intended 
scope of the claims recited herein . For example , in one 
alternative embodiment , the vector space may be decom 
posed with the same granularity of some attributes . For 
instance , a sub - problem may be considered as covering one 

( the blocks associated with the same time 
period d , the same product model c and the same factory m ) . 
[ 0108 ] In another embodiment , the order of the attributes 
that are prioritized in block 530 may be altered . More 
specifically , in the example described above , the order of 
attributes prioritized in the division of problem vector space 
was product , location , and time . It should be understood that 
other orders could be considered for division . For instance , 
the vector space could be divided based on the location 
attribute as a first priority . 
[ 0109 ] In other embodiments , different strategies of 
decomposition may be used such that the results of different 
strategies of decomposition may lead to overlaps of decom 
positions . More specifically , because the solutions of sub 
problems only serve as " good candidates , " the good candi 
dates from various decomposition strategies could also be 
combined together to serve as final candidates of the main 
problem . In this alternative embodiment , the problem 
decomposition is herein referred to as a “ set covering 
problem . " In the set covering problem a " set - cover " problem 
may be formulated to select the “ best ” decomposition . Let x ; 
represent a binary variable to include C ; in the final set of 
sub - problems . The objective function is to minimize the 
number of selected sub - problems and minimize the size of 
“ Affected_sets ” | A ; l . The constraint is to make sure all the 
generated sub - problems S from the algorithm of block 520 
are covered by at least one of the selected sub - problems : 

min 14 ; lx ; 

[ 0112 ] An alternative formulation of subproblems can be 
considered with partial contribution as shown below may be 
applied : 

min vz ** + P. Ehd , e , ktk – PCT1 , dc • Pend ????? + ? ? ( ? - key 
+ 

d = Dace KEY PCLas To 9 [ 

??P , ? Hack ** – PCT1.d , e • red 
2 
+ 

dDa ; c & C : KEY 1 

m + ? , ? & n , m , ktk – PCT2,1 , m · Un , m 
NEN , MY 

+ P3 ??P , ? 8n , m , kty – PCT2 , n.m · 9n , m 
EN ; M ; LKY mn Conto ) 

. ? ?? ElEx = 0 
2 
+ tcm , ' k *** – PCT3.com ( ( . dn.me ) + Pn.me E - = 0 

CECIMEM ET ; 

??P ; ? ???? , ? ' ? ' ?? - ; E Efe , myl * * = 

s.t. lix ; 21 VS ; ES 1 € T ; C 
0 C & C imfM , keyi 

1 

PCT3 , c , m Thus ( E_ deme ) + Puno ) ?? . ) = 0 

subject to 

+ Xky + xky s 1 

V ki , k2 E Qbits beB ; tET 

[ 0110 ] Returning to block 320 of FIG . 3 , the plurality of 
sub - problems generated by the problem decomposition are 
then solved in parallel . The plurality of sub - problems can be 
treated as independent from each other and therefore , solved 
simultaneously . 
[ 0111 ] During this parallel solving of the sub - problems , a 
computational solver may be used to get the top n best 
answers for each sub - problem . Parameters a below may be 
set as very small constants , such that , in general , the 
contribution of the vector space which is not considered is 
not taken into account in solving a current sub - problem . 
Instead , only a small weight is used to consider the contri 

[ 0113 ] The result of problem decomposition may cover a 
subset of vector space considered in some constraints . For 
instance , the first penalty term P1 considers the accumula 
tive load of a product model c across the entire set of 
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factories . However , a sub - problem may only cover { m } , a 
subset of the entire set of factories . Therefore , a formulation 
of partial contribution PCT ) , dc is applied in the computation 1 ' , 
of objective function . The formulation of all partial contri 
bution weights are shown below : 

9cm PCT1,0 , c 2 EG ?.? - ? , 9cm 
rad PCT2 , n , m ? . ???? , rad cen 

9cm PCT3 , c , m c ? Sed ac , m 
[ 0114 ] As each of the sub - problems are solved during 
block 320 , each sub - problem generates solutions which may 
be considered as solutions to the final large - scale complex 
combinatorial problem . In the case of the production sched 
uling problem , each sub - problem generates a list of produc 
tion schedules as the candidates to be considered in the final 
main problem at block 325 . 
[ 0115 ] It should be understood that a computational solver 
such as Digital Annealer may generate multiple answers . 
Further , some sub - problems could have up to 128 different 
answers and other has only one answer . In order to control 
the size of the candidates to be less then TH , a process may 
be used to identify the best candidates from the candidate 
pool or to otherwise reduce the size of the potential candi 
dates . 
[ 0116 ] In one embodiment , the algorithm for generating 
the final candidates may be : Z : Final_candidate_list = [ ] 
For n = 1 to 128 : 

[ 0117 ] For k in all sub - problems : 
[ 0118 ] Include sub - problem [ k ] .ans [ n ] into Final_ca 

ndidate_list 
[ 0119 ] If the size of Final_candidate_list > TH : break 

[ 0120 ] As may be understood , it may also be possible to 
consider different strategies to select the final candidates for 
the final main problem . For instance , the candidates may be 
selected from a different division of sub - problems . For 
example , when there are two sets of sub - problems based on 
two different divisions , the top best candidates generated 
from each strategy can be considered in the candidates of 
final main problem . 
[ 0121 ] At block 325 , as the size of final candidate set Z is 
smaller than TH , a optimization solver is then used to solve 
the main problem : 

min vnxx + P 2 ( Mac.kik – reid 

[ 0122 ] As may be understood , using the ability to decom 
pose a large - scale complex combinatorial problem as is 
described using the system and methods herein , it is possible 
to efficiently and effectively solve problems which have not 
previously been able to be easily solved , even using 
advanced optimization solvers which are currently available 
in the art . Consequently , the method and systems described 
herein provide benefits which have not previously been 
possible and improve existing optimization solvers ' ability 
to process and solve problems . As an example of just one 
such problem which is now better suited for solution , the 
production scheduling problem is described herein as a 
single practical application of the system and methods 
described herein . It should be understood that other appli 
cations may also benefit from the problem decomposition 
method and system described herein . 
[ 0123 ] Further , it should be understood that as used in the 
present disclosure , the terms “ module " or " component ” may 
refer to specific hardware implementations configured to 
perform the actions of the module or component and / or 
software objects or software routines that may be stored on 
and / or executed by general purpose hardware ( e.g. , com 
puter - readable media , processing devices , etc. ) of the com 
puting system . In some embodiments , the different compo 
nents , modules , engines , and services described in the 
present disclosure may be implemented as objects or pro 
cesses that execute on the computing system ( e.g. , as sepa 
rate threads ) . While some of the system and methods 
described in the present disclosure are generally described as 
being implemented in software ( stored on and / or executed 
by general purpose hardware ) , specific hardware implemen 
tations or a combination of software and specific hardware 
implementations are also possible and contemplated . In this 
description , a " computing entity " may be any computing 
system as previously defined in the present disclosure , or 
any module or combination of modulates running on a 
computing system . 
[ 0124 ] Terms used in the present disclosure and especially 
in the appended claims ( e.g. , bodies of the appended claims ) 
are generally intended as " open " terms ( e.g. , the term 
“ including " should be interpreted as “ including , but not 
limited to , " the term “ having " should be interpreted as 
“ having at least , " the term “ includes ” should be interpreted 
as “ includes , but is not limited to , " etc. ) . 
[ 0125 ] Additionally , if a specific number of an introduced 
claim recitation is intended , such an intent will be explicitly 
recited in the claim , and in the absence of such recitation no 
such intent is present . For example , as an aid to understand 
ing , the following appended claims may contain usage of the 
introductory phrases “ at least one ” and “ one or more ” to 
introduce claim recitations . However , the use of such 
phrases should not be construed to imply that the introduc 
tion of a claim recitation by the indefinite articles “ a ” or “ an ” 
limits any particular claim containing such introduced claim 
recitation to embodiments containing only one such recita 
tion , even when the same claim includes the introductory 
phrases “ one or more " or " at least one ” and indefinite 
articles such as “ a ” or “ an ” ( e.g. , " a " and / or “ an ” should be 
interpreted to mean “ at least one ” or “ one or more ” ) ; the 
same holds true for the use of definite articles used to 
introduce claim recitations . 
[ 0126 ] In addition , even if a specific number of an intro 
duced claim recitation is explicitly recited , those skilled in 
the art will recognize that such recitation should be inter 

2 

2 
+ 

KEZ deD ; CEC KEZ reddet 
? : ? ( ? E ( ? » , » . ?.? hom " 
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a 

preted to mean at least the recited number ( e.g. , the bare 
recitation of “ two recitations , ” without other modifiers , 
means at least two recitations , or two or more recitations ) . 
Furthermore , in those instances where a convention analo 
gous to “ at least one of A , B , and C , etc. ” or “ one or more 
of A , B , and C , etc. ” is used , in general such a construction 
is intended to include A alone , B alone , C alone , A and B 
together , A and C together , B and C together , or A , B , and 
C together , etc. Additionally , the use of the term “ and / or ” is 
intended to be construed in this manner . 
( 0127 ] Further , any disjunctive word or phrase presenting 
two or more alternative terms , whether in the description , 
claims , or drawings , should be understood to contemplate 
the possibilities of including one of the terms , either of the 
terms , or both terms . For example , the phrase “ A or B ” 
should be understood to include the possibilities of “ A ” or 
“ B ” or “ A and B ” even if the term " and / or ” is used 
elsewhere . 
[ 0128 ] All examples and conditional language recited in 
the present disclosure are intended for pedagogical objects 
to aid the reader in understanding the present disclosure and 
the concepts contributed by the inventor to furthering the art , 
and are to be construed as being without limitation to such 
specifically recited examples and conditions . Although 
embodiments of the present disclosure have been described 
in detail , various changes , substitutions , and alterations 
could be made hereto without departing from the spirit and 
scope of the present disclosure . 
What is claimed is : 
1. A computer - implemented method of solving a large 

scale complex combinatorial problem , the method compris 
ing : 

receiving the large - scale complex combinatorial problem 
as an input ; 

converting a decision variable space of the large - scale 
complex combinatorial problem into a plurality of basic 
attribute units which correspond to a subset of total 
decision variables of the large - scale complex combi 
natorial problem ; 

decomposing the large - scale complex combinatorial 
problem into a plurality of sub- problems of the plu 
rality of basic attribute units ; 

using an optimization solver , solving the plurality of 
sub - problems in parallel , outputting a plurality of can 
didate solutions corresponding to the solutions of the 
plurality of sub- problems ; and 

using the optimization solver and the plurality of candi 
date solutions to solve the large scale complex combi 
natorial problem . 

2. The computer - implemented method of claim 1 , 
wherein converting the decision variable space of the large 
scale complex combinatorial problem into the plurality of 
basic attribute units comprises constructing the plurality of 
basic attribute units in a vector space corresponding to the 
total decision variables . 

3. The computer - implemented method of claim 1 , 
wherein decomposing the plurality of basic attribute units 
into a plurality of sub - problems comprises minimizing inter 
ference between any two sub - problems . 

4. The computer implemented method of claim 3 , wherein 
decomposing the plurality of basic attribute units into a 
plurality of sub - problems comprises using set partitioning to 
minimize the interference between any two sub - problems . 

5. The computer - implemented method of claim 3 , further 
comprising applying a priority to attributes represented in 
the plurality of basic attribute units to generate the plurality 
of sub - problems . 

6. The computer - implemented method of claim 3 , further 
comprising sub - problems at various granularity among dif 
ferent attributes of the basic attribute units to generate the 
plurality of sub - problems . 

7. The computer implemented method claim 1 , wherein 
solving the plurality of sub- problems in parallel to output 
the plurality of candidate solutions comprises identifying 
multiple best candidates generated from each sub - problem 
of the plurality of sub - problems . 

8. The computer implemented method of claim 1 , wherein 
the computing processing power required to solve each of 
the plurality of sub - problems and the large - scale complex 
combinatorial problem is below a predetermined threshold 
of the optimization solver . 

9. The computer implemented method of claim 1 , wherein 
the large - scale complex combinatorial problem includes a 
production scheduling problem for generating production 
schedules directing which resources and facilities should be 
directed at producing a given product at a particular time . 

10. One or more computer - readable media configured to 
store instructions that when executed by a system cause or 
direct the system to perform actions , the actions comprising : 

receiving a large - scale complex combinatorial problem as 
an input ; 

converting a decision variable space of the large - scale 
complex combinatorial problem into a plurality of basic 
attribute units which correspond to a subset of total 
decision variables of the large - scale complex combi 
natorial problem ; 

decomposing the large - scale complex combinatorial 
problem into a plurality of sub- problems of the plu 
rality of basic attribute units ; 

solving the plurality of sub - problems in parallel , output 
ting a plurality of candidate solutions corresponding to 
the solutions of the plurality of sub - problems ; and 

using the plurality of candidate solutions to solve the large 
scale complex combinatorial problem . 

11. The one or more computer - readable media of claim 
10 , wherein converting the decision variable space of the 
large - scale complex combinatorial problem into the plural 
ity of basic attribute units comprises constructing the plu 
rality of basic attribute units in a vector space corresponding 
to the total decision variables . 

12. The one or more computer - readable media of claim 
10 , wherein decomposing the plurality of basic attribute 
units into a plurality of sub - problems comprises minimizing 
interference between any two sub - problems . 

13. The one or more computer - readable media of claim 
12 , wherein decomposing the plurality of basic attribute 
units into a plurality of sub - problems comprises using set 
partitioning to minimize the interference between any two 
sub - problems . 

14. The one or more computer - readable media of claim 
10 , wherein solving the plurality of sub - problems in parallel 
to output the plurality of candidate solutions comprises 
identifying multiple best candidates generated from each 
sub - problem of the plurality of sub - problems . 

15. The one or more computer - readable media of claim 
10 , wherein the computing processing power required to 
solve each of the plurality of sub - problems and the large 
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scale complex combinatorial problem is below a predeter 
mined threshold of the system . 

16. The one or more computer - readable media of claim 
10 , wherein the large - scale complex combinatorial problem 
is a production scheduling problem for generating produc 
tion schedules directing which resources and facilities 
should be directed at producing a given product at a par 
ticular time . 

17. A system comprising : 
one or more computer - readable storage media configured 

to store instructions ; and 
one or more processors communicatively coupled to the 

one or more computer - readable storage media and 
configured to , in response to execution of the instruc 
tions , cause the system to perform operations , the 
operations comprising : 
receiving a large - scale complex combinatorial problem 

as an input ; 
converting a decision variable space of the large - scale 

complex combinatorial problem into a plurality of 
basic attribute units which correspond to a subset of 
total decision variables of the large - scale complex 
combinatorial problem ; 

decomposing the large - scale complex combinatorial 
problem into a plurality of sub- problems of the 
plurality of basic attribute units ; 

using an optimization solver , solving the plurality of 
sub - problems in parallel , outputting a plurality of 
candidate solutions corresponding to the solutions of 
the plurality of sub - problems ; and 

using the optimization solver and the plurality of can 
didate solutions to solve the large scale complex 
combinatorial problem . 

18. The system of claim 17 , wherein converting the 
decision variable space of the large - scale complex combi 
natorial problem into the plurality of basic attribute units 
comprises constructing the plurality of basic attribute units 
in a vector space corresponding to the total decision vari 
ables . 

19. The system of claim 17 , wherein decomposing the 
plurality of basic attribute units into a plurality of sub 
problems comprises minimizing interference between any 
two sub - problems using set - partitioning . 

20. The system of claim 17 , wherein the computing 
processing power required to solve each of the plurality of 
sub - problems and the large - scale complex combinatorial 
problem is below a predetermined threshold of the optimi 
zation solver . 

* 


