
Processed by Luminess, 75001 PARIS (FR)

(19)
EP

4
29

0
77

5
A

1
EP004290775A1

(11) EP 4 290 775 A1
(12) EUROPEAN PATENT APPLICATION

published in accordance with Art. 153(4) EPC

(43) Date of publication:
13.12.2023 Bulletin 2023/50

(21) Application number: 22778332.1

(22) Date of filing: 24.01.2022

(51) International Patent Classification (IPC):
H03M 7/30 (2006.01)

(52) Cooperative Patent Classification (CPC):
H03M 7/30

(86) International application number:
PCT/CN2022/073432

(87) International publication number:
WO 2022/206144 (06.10.2022 Gazette 2022/40)

(84) Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB
GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO
PL PT RO RS SE SI SK SM TR
Designated Extension States:
BA ME
Designated Validation States:
KH MA MD TN

(30) Priority: 30.03.2021 CN 202110343760

(71) Applicant: Huawei Technologies Co., Ltd.
Shenzhen, Guangdong 518129 (CN)

(72) Inventors:
• WU, Jinkang

Shenzhen, Guangdong 518129 (CN)
• TU, Jianhong

Shenzhen, Guangdong 518129 (CN)
• SHEN, Jianqiang

Shenzhen, Guangdong 518129 (CN)
• QUAN, Shaohui

Shenzhen, Guangdong 518129 (CN)

(74) Representative: Gill Jennings & Every LLP
The Broadgate Tower
20 Primrose Street
London EC2A 2ES (GB)

(54) DATA COMPRESSION METHOD AND APPARATUS

(57) This application provides a data compression
method, including: To-be-compressed data and a length
limit value for data compression is obtained. When a
length of data obtained by compressing the to-be-com-
pressed data is greater than the length limit value, the
to-be-compressed data is segmented based on the
length limit value in a process of compressing the
to-be-compressed data, so that the to-be-compressed
data includes at least two compressed files after com-
pression, and a length of each compressed file is less
than the length limit value. In this way, application re-
quirements are met.

EP 4 290 775 A1

2

5

10

15

20

25

30

35

40

45

50

55

Description

[0001] This application claims priority to Chinese Patent Application No. 202110343760.2, filed with the China National
Intellectual Property Administration on March 30, 2021 and entitled "DATA COMPRESSION METHOD AND APPARA-
TUS", which is incorporated herein by reference in its entirety.

TECHNICAL FIELD

[0002] This application relates to the data storage field, and in particular, to a data compression method and apparatus.

BACKGROUND

[0003] With advent of the information age, a large amount of data has been produced. In many fields, data needs to
be compressed according to compression algorithms. There may be different mechanisms of compression algorithms
such as duplicate content search, entropy encoding, and the like. The duplicate content search mechanism-based
compression algorithms include a Lempel-Ziv (Lempel-Ziv, LZ) encoding algorithm, a run-length encoding (run-length
encoding, RLE) algorithm, and the like. The entropy encoding mechanism-based compression algorithms include a
Huffman encoding algorithm, an arithmetic encoding algorithm, and the like.
[0004] Currently, during data compression, one compression algorithm is usually used to compress all to-be-com-
pressed data, and a length of compressed data is unknown before compression. However, many applications such as
a mail application and a database application have a length limit for to-be-processed data. Data that does not meet the
length limit cannot be processed. For example, for the email application, a transmission error will occur if a length of
data exceeds the limit.

SUMMARY

[0005] This application provides a data compression method. According to the method, when a length of to-be-com-
pressed data after compression is greater than a length limit value, compressed data is segmented based on the length
limit value during compression, so that the compressed data includes a plurality of pieces of sub compressed data, and
a length of the sub compressed data is less than the limit value, so that the data can be processed by applications, and
application requirements are met. This application further provides an apparatus, a device, a computer-readable storage
medium, and a computer program product corresponding to the foregoing method.
[0006] According to a first aspect, this application provides a data compression method. The method may be performed
by a computer device. The computer device may be a terminal or a server. For ease of description, an example in which
the computer device is a terminal is used for description.
[0007] Specifically, the terminal obtains to-be-compressed data and a length limit value for data compression. When
a length of data obtained by compressing the to-be-compressed data is greater than the length limit value, the terminal
segments the to-be-compressed data based on the length limit value in a process of compressing the to-be-compressed
data, so that the to-be-compressed data includes at least two compressed files after compression, and a length of each
compressed file is less than the length limit value.
[0008] Even if the length of the data obtained by compressing the to-be-compressed data is greater than the limit
value, according to the method, the compressed data can be segmented into a plurality of compressed files whose
lengths are less than or equal to the length limit value, so that the data can be successfully processed by applications,
and application requirements are met.
[0009] In some possible implementations, the terminal may predict a length of each compressed data block one by
one, and accumulate lengths of a currently predicted data block and data blocks before the currently predicted block to
obtain a first predicted compression length. When the first predicted compression length is greater than the length limit
value, the terminal may perform compression based on the data blocks before the currently predicted data block, where
compressed data forms a first compressed file, and the first compressed file belongs to the at least two compressed files.
[0010] A time consumed for predicting the compressed lengths of the data blocks is much less than a time consumed
for compressing the data blocks and then determining the compressed lengths. Therefore, the compressed lengths are
predicted first, then the to-be-compressed data is segmented based on prediction results, and compression is performed
based on segmented data, thereby effectively improving compression efficiency.
[0011] In some possible implementations, there are N data blocks before the currently predicted data block. Therefore,
when the first predicted compression length obtained by accumulating the lengths of the currently predicted data block
and the data blocks before the currently predicted data block is greater than the length limit value, the terminal may roll
back a data block, and perform merging and compression on some or all data blocks (for example, first to (N - k)th data
blocks, where N is a natural number greater than or equal to 2, and k is a natural number less than N) of the N data

EP 4 290 775 A1

3

5

10

15

20

25

30

35

40

45

50

55

blocks before the currently predicted data block. When a length of the compressed data is less than or equal to the
length limit value, the compressed data is used as the first compressed file.
[0012] By performing data block rollback when the first predicted compression length is greater than the length limit
value, a quantity of compression times can be effectively reduced, thereby improving the compression efficiency.
[0013] In some possible implementations, when a length of data obtained by merging and compressing the first to (N
- k)th data blocks is less than or equal to the length limit value, the terminal may continue to predict a compressed length
of a data block after the (N - k)th data block, to continue to segment remaining data of the to-be-compressed data. In
this way, repeated compression can be avoided, a computing amount is reduced, and computing resource overheads
are reduced.
[0014] In some possible implementations, there are N data blocks before the currently predicted data block, and the
terminal performs compression based on the data blocks before the currently predicted data block. Specifically, the
terminal may first perform merging and compression on the first to (N - k)th data blocks, where N is a natural number
greater than or equal to 2, and k is a natural number less than N. When the length of the compressed data is greater
than the length limit value, the terminal may roll back a data block and perform merging and compression on data blocks
after rollback. For example, the terminal may perform merging and compression on first to (N - k - 1)th data blocks.
[0015] Through step-by-step rollback, the quantity of compression times can be reduced, the compression efficiency
is improved, and compression overheads are reduced.
[0016] In some possible implementations, the to-be-compressed data may be a data stream that is not divided into
blocks. The terminal may perform block division on the data stream to obtain a plurality of data blocks. When a segmen-
tation position of data does not affect the data, the terminal may further perform block division based on the following
block division method, to ensure that a reduction rate is improved while lengths of all compressed files formed by merging
and compressing the data blocks do not exceed the limited length.
[0017] Specifically, the terminal first performs block division on the to-be-compressed data for a first time, for example,
performs block division according to an average block division method, to obtain a plurality of initial data blocks. The
terminal may record boundary values of the plurality of initial data blocks, and the boundary value may be represented
by a sequence number of a last byte of the initial data block.
[0018] The terminal may further perform matching on the plurality of initial data blocks. For example, the terminal may
perform matching according to an LZ encoding algorithm, to obtain a four-tuple of each initial data block. The four-tuple
includes inter-block four-tuples, which is specifically a four-tuple generated when different data blocks are successfully
matched. When one data block is successfully matched with a plurality of data blocks, the terminal records a four-tuple
generated when the data block is matched with a data block closest to the data block. The four-tuple includes an
unmatched character sequence, an unmatched character length, a match length, and a match offset. A matched character
sequence and a match character sequence may form a match.
[0019] The terminal may determine, based on a boundary of the initial data block and a four-tuple (for example, a
match offset in the four-tuple) of the initial data block, whether the boundary and the match intersect. If a character
representing the boundary is between the matched character sequence and the match character sequence, the boundary
and the match intersect. Based on this, the terminal may take statistics of quantities of intersections of boundaries of
the initial data blocks and matches. The terminal may select an optimal position for block division based on the quantities
of intersections. For example, the terminal may select a boundary having a minimum quantity of intersections with the
match or a boundary less than a preset value as the optimal position for block division. The terminal merges, based on
the optimal positions for block division, data blocks between the optimal positions for block division, to obtain final data
blocks.
[0020] When the compression algorithm requires rollback by block division, the rollback is performed based on the
optimal position for block division. In this case, data on two sides of the optimal position for block division separately
participates in compression. Because a quantity of matches of inputted data that needs to cross the position is small,
and lengths of the matches are short, when compression is performed in this block division manner, a loss of an overall
compression ratio is smaller compared to that before block division.
[0021] According to a second aspect, this application provides a data compression apparatus. The apparatus includes:

a communication unit, configured to obtain to-be-compressed data and a length limit value for data compression; and
a compression unit, configured to, when a length of data obtained by compressing the to-be-compressed data is
greater than the length limit value, segment the to-be-compressed data based on the length limit value in a process
of compressing the to-be-compressed data, so that the to-be-compressed data includes at least two compressed
files after compression, and a length of each compressed file is less than the length limit value.

[0022] In some possible implementations, the compression unit is specifically configured to:

predict a length of each compressed data block one by one, and accumulate lengths of a currently predicted data

EP 4 290 775 A1

4

5

10

15

20

25

30

35

40

45

50

55

block and data blocks before the currently predicted block to obtain a first predicted compression length; and
when the first predicted compression length is greater than the length limit value, perform compression based on
the data blocks before the currently predicted data block, where compressed data forms a first compressed file, and
the first compressed file belongs to the at least two compressed files.

[0023] In some possible implementations, there are N data blocks before the currently predicted data block, and the
compression unit is specifically configured to:

perform merging and compression on first to (N - k)th data blocks, where N is a natural number greater than or equal
to 2, and k is a natural number less than N; and
when a length of the compressed data is less than or equal to the length limit value, use the compressed data as
the first compressed file.

[0024] In some possible implementations, the compression unit is further configured to:
continue to predict a compressed length of a data block after the (N -k)th data block, to continue to segment remaining
data of the to-be-compressed data.
[0025] In some possible implementations, there are N data blocks before the currently predicted data block, and the
compression unit is specifically configured to:

perform merging and compression on first to (N - k)th data blocks, where N is a natural number greater than or equal
to 2, and k is a natural number less than N; and
when a length of the compressed data is greater than the length limit value, perform merging and compression on
first to (N - k - 1)th data blocks.

[0026] According to a third aspect, this application provides a device. The device includes a processor and a memory.
The processor and the memory communicate with each other. The processor is configured to execute instructions stored
in the memory, to enable the device to perform the data compression method according to the first aspect or any
implementation of the first aspect.
[0027] According to a fourth aspect, this application provides a computer-readable storage medium. The computer-
readable storage medium stores instructions, and the instructions instruct a device to perform the data compression
method according to the first aspect or any implementation of the first aspect.
[0028] According to a fifth aspect, this application provides a computer program product including instructions. When
the computer program product is run on a device, the device is enabled to perform the data compression method
according to the first aspect or any implementation of the first aspect.
[0029] In this application, the implementations according to the foregoing aspects may be further combined to provide
more implementations.

BRIEF DESCRIPTION OF DRAWINGS

[0030] To describe the technical method in embodiments of this application more clearly, the following briefly describes
the accompanying drawings used for the embodiments.

FIG. 1 is a schematic diagram of a structure of a terminal according to an embodiment of this application;
FIG. 2 is a flowchart of a data compression method according to an embodiment of this application;
FIG. 3 is a schematic diagram of a graphical user interface according to an embodiment of this application;
FIG. 4 is a schematic diagram of block division of data according to an embodiment of this application;
FIG. 5 is a schematic flowchart of a data compression method according to an embodiment of this application;
FIG. 6 is a schematic flowchart of a data compression method according to an embodiment of this application; and
FIG. 7 is a schematic diagram of a structure of a data compression apparatus according to an embodiment of this
application.

DESCRIPTION OF EMBODIMENTS

[0031] In embodiments of this application, the terms "first" and "second" are used merely for the purpose of description,
and shall not be construed as indicating or implying relative importance or implying a quantity of indicated technical
features. Therefore, features defining "first" and "second" may explicitly or implicitly include one or more such features.
[0032] First, some technical terms used in embodiments of this application are described.
[0033] Data compression: Data compression is a process of representing information with data bits (or other informa-

EP 4 290 775 A1

5

5

10

15

20

25

30

35

40

45

50

55

tion-related units) fewer than those without encoding based on a specific encoding mechanism. Data compression is
specifically implemented according to data compression algorithms. According to different encoding mechanisms, the
data compression algorithms may be classified into different types such as compression algorithms based on a duplicate
content search mechanism and compression algorithms based on an entropy encoding mechanism. The compression
algorithms based on the duplicate content search mechanism include an LZ encoding algorithm, an RLE algorithm, and
the like. The LZ encoding algorithm is used as an example. A compression principle of the LZ encoding algorithm is to
traverse inputted data to generate a historical dictionary, and a repeated piece of data is stored in a form of a dictionary
index that occupies less space. The compression algorithms based on the entropy encoding mechanism include a
Huffman encoding algorithm, an arithmetic encoding algorithm, and the like. The Huffman encoding algorithm is used
as an example. A compression principle of the Huffman encoding algorithm is to re-encode characters based on a fact
that different characters have different occurrence frequencies in the inputted data to implement compression.
[0034] Currently, during data compression, a compression algorithm is usually used to compress all to-be-compressed
data, and a length of compressed data is unknown before compression. However, many applications, such as a mail
application and a database application, have a length limit for to-be-processed data. Data that does not meet the length
limit cannot be processed. For example, for the email application, a transmission error occurs if a length of data exceeds
the limit. Based on this, the industry urgently needs to provide a data compression method, to limit the length of the
compressed data, so as to meet application requirements.
[0035] An embodiment of this application provides a data compression method. Before data compression, a length
limit value of data of an application processing the data is first obtained. When a length of data obtained by compressing
to-be-compressed data is greater than the length limit value, compressed data is segmented based on the length limit
value in a process of data compression, so that the compressed data includes at least two pieces of sub compressed
data, and a length of the sub compressed data is less than the limit value. In this way, even if the length of the data
obtained by compressing the to-be-compressed data is greater than the limit value, the data can be successfully proc-
essed by the application.
[0036] This embodiment of this application may be applied to different application scenarios. For example, this em-
bodiment may be applied to an email application. The email application has a limit on a size of an email attachment.
Assuming that a size of an attachment allowed to be uploaded in the email application is within 20 megabytes (megabyte,
MB), an attachment with a size greater than 20 MB may be compressed, and a plurality of compressed files with sizes
less than 20 MB are obtained. For another example, this embodiment may be applied to an information management
system. The information management system has a limit on a size of an attachment uploaded by a user. In this case,
the attachment may be compressed, and the attachment is compressed into a plurality of compressed files with sizes
less than the length limit value.
[0037] The mail application and the information management system are merely examples for describing an application
scenario. The data compression method may further be applied to another scenario in which a compressed length is
limited. For example, the method may be applied to a scenario in which a bottleneck occurs in a transmission bandwidth
and transmission reliability, or applied to a scenario in which a compressed length is limited due to a storage granularity
or a network transmission requirement during video compression or the like.
[0038] The data compression method provided in this embodiment of this application may be performed by a computer
device. The computer device may be a terminal or a server. The terminal includes but is not limited to a device such as
a desktop computer, a notebook computer, a tablet computer, or a smartphone. The server may be a local server (such
as a server in a privately owned data center) or a cloud server (such as a server in a data center of a cloud service
provider). Further, the method may be performed by a single computer device, or may be performed by a cluster formed
by a plurality of computer devices, and stability and reliability of a data compression service can be improved when the
method is performed by the cluster.
[0039] For ease of understanding, the following uses an example in which a terminal performs the data compression
method for description.
[0040] First, a hardware structure of the terminal is described. FIG. 1 is a schematic diagram of a structure of a terminal
according to an embodiment of this application. As shown in FIG. 1, a terminal 100 includes a bus 101, a processor 102,
a communication interface 103, and a memory 104. The processor 102, the memory 104, and the communication
interface 103 communicate with each other through the bus 101.
[0041] The bus 101 may be a peripheral component interconnect (peripheral component interconnect, PCI) bus, an
extended industry standard architecture (extended industry standard architecture, EISA) bus, or the like. The bus may
be classified into an address bus, a data bus, a control bus, or the like. For ease of description, the bus in FIG. 13 is
represented by using only one bold line, but which does not indicate that there is only one bus or one type of bus.
[0042] The processor 102 may be any one or more of processors such as a central processing unit (central processing
unit, CPU), a graphics processing unit (graphics processing unit, GPU), a microprocessor (microprocessor, MP), or a
digital signal processor (digital signal processor, DSP).
[0043] The communication interface 103 is configured to communicate with the outside. For example, the communi-

EP 4 290 775 A1

6

5

10

15

20

25

30

35

40

45

50

55

cation interface 103 is configured to obtain to-be-compressed data, obtain a length limit value for data compression, or
output at least two compressed files whose lengths are less than the length limit value, or the like.
[0044] The memory 104 may include a volatile memory (volatile memory), for example, a random access memory
(random access memory, RAM). The memory 104 may further include a non-volatile memory (non-volatile memory),
for example, a read-only memory (read-only memory, ROM), a flash memory, a hard disk drive (hard disk drive, HDD),
or a solid-state drive (solid-state drive, SSD).
[0045] The memory 104 stores executable code, and the processor 102 executes the executable code to perform the
foregoing data compression method.
[0046] FIG. 1 describes in detail a hardware structure of the terminal 100 configured to perform the data compression
method. The following describes in detail the data compression method provided in this embodiment of this application
from a perspective of the terminal 100 with reference to the accompanying drawings.
[0047] Refer to a flowchart of the data compression method shown in FIG. 2, the method includes:
[0048] S202: The terminal 100 obtains to-be-compressed data and a length limit value for data compression.
[0049] Specifically, the terminal 100 may provide a user interface. The user interface may be a graphical user interface
(graphical user interface, GUI) or a command user interface (command user interface, CUI). The terminal 100 may
receive data inputted by a user through the GUI or the GUI and the length limit value for data compression. The length
limit value for data compression is a limit value for a length of the to-be-compressed data after being compressed by an
application processing the to-be-compressed data. The terminal 100 may directly receive the data inputted by the user,
or may receive a storage path of the data inputted by the user, and then obtain the data according to the storage path.
[0050] The following uses the GUI as an example to describe how the terminal obtains the to-be-compressed data
and the length limit value for data compression.
[0051] Refer to a schematic interface diagram of the GUI shown in FIG. 3, as shown in FIG. 3, the GUI bears a storage
address input control 302 and a length limit value input control 304. The storage address input control 302 is configured
to input a storage address of data, and the storage address input control 302 supports a drop-down input manner. The
length limit value input control 304 is configured to input a length limit value. The GUI further bears a submit control 306
and a cancel control 308. After inputting the storage address of the data through the storage address input control 302
and inputting the length limit value through the length limit value input control 304, the user may click the submit control
306 to trigger a submission operation. The terminal 100 may obtain the data and the length limit value in response to
the submission operation of the user.
[0052] It should be noted that, in some embodiments, an application may alternatively set a length limit value by default.
In this way, the GUI may not bear the foregoing length limit value input control 304, the user does not need to configure
the length limit value, but inputs a storage address of the to-be-compressed data through the GUI. The terminal 100
obtains the to-be-compressed data according to the storage address and obtains the length limit value according to a
default setting.
[0053] S204: The terminal 100 obtains a plurality of data blocks based on the to-be-compressed data.
[0054] The data may include a plurality of data blocks. The plurality of data blocks included in the data may be inherent,
or may be obtained by the terminal 100 by performing block division on the data. For example, the terminal 100 may
perform average block division on the data based on a quantity of the data blocks or a length of a data block, to obtain
the plurality of data blocks. It should be noted that, when a total length of the data cannot be exactly divided by the
quantity of the data blocks or the length of a data block, a length of a specific data block may not be equal to a length
of the other data blocks. For example, when the length of the data is 130 KB and the length of a single data block is 8
KB, the data may be divided into 15 data blocks of 8 KB and a data block of 10 KB.
[0055] For a scenario in which the data is not explicitly divided into blocks, for example, the inputted data is a consecutive
input with a long length, and a segmentation position of the data does not affect the data, this embodiment of this
application may further provide a block division method, to improve a reduction rate while all compressed files formed
by merging and compressing the data blocks do not exceed a specified length.
[0056] Refer to a schematic flowchart of block division of data shown in FIG. 4, original data is a consecutive data
stream, and the terminal 100 may divide the data into a plurality of initial data blocks with an equal size in an average
block division manner. The terminal 100 may record boundary values of the plurality of initial data blocks, and the
boundary value may be represented by a sequence number of a last byte of the initial data block. Subsequently, the
terminal 100 may further perform matching on the plurality of initial data blocks. For example, the terminal 100 may
perform matching according to an LZ encoding algorithm, to obtain a four-tuple of each initial data block. The four-tuple
includes inter-block four-tuples, which is specifically a four-tuple generated when different data blocks are successfully
matched. When one data block is successfully matched with a plurality of data blocks, in this embodiment of this appli-
cation, a four-tuple generated when the data block is matched with a data block closest to the data block is recorded.
The four-tuple includes an unmatched character sequence, an unmatched character length, a match length, and a match
offset.
[0057] For ease of understanding, this application provides a specific example. In this example, it is assumed that a

EP 4 290 775 A1

7

5

10

15

20

25

30

35

40

45

50

55

length of the data stream is 500 bytes (byte, B). The terminal 100 performs block division based on an average block
division method to obtain a plurality of initial data blocks, and boundaries of the initial data blocks are positions 100B,
200B, ..., 400B, and the like. The data stream and the boundaries of the initial data blocks are specifically as follows:
(......QWER......XYZ......TYUI......, (100B),QWER......TYUI......XYZ......, (200B),
......LMN......TYUI......OPQ......SDF......, (300B),LMN......, (400B),SDF......OPQ......)
[0058] The ellipsis represents a character that fails to be matched, "QWER" and the like represent characters that are
successfully matched, and (100B), (200B), and the like represent the boundaries of the initial data blocks. "QWER" in
a first data block is successfully matched with "QWER" in a second data block, "XYZ" in the first data block is successfully
matched with "XYZ" in the second data block, "TYUI" in the first data block is successfully matched with "TYUI" in the
second data block, "TYUI" in the second data block is successfully matched "TYUI" in a third data block, "LMN" in the
third data block is successfully matched with "LMN" in a fourth data block, "OPQ" in the third data block is successfully
matched with "OPQ" in a fifth data block, and "SDF" in the third data block is successfully matched with "SDF" in the
fifth data block.
[0059] The terminal 100 may record, based on the foregoing matching results, quantities of intersections of the bound-
aries and matches. That a boundary and a match intersect means that a boundary character is between the match
characters. Based on this, in the foregoing example, the terminal 100 may determine that a quantity of intersections of
the boundary 100B and matches is 3, a quantity of intersections of the boundary 200B and a match is 1, a quantity of
intersections of the boundary 300B and matches is 3, and a quantity of intersections of the boundary 400B and matches
is 2. The terminal 100 may select an optimal position for block division based on the quantities of intersections of the
boundaries and the matches, and merges the initial data blocks based on the optimal position for block division to obtain
final data blocks. The terminal 100 may select a boundary having a minimum quantity of intersections with the match
or a boundary less than a preset value as the optimal position for block division. For example, the terminal 100 may
select 200B as the optimal position for block division. Further, the terminal 100 may alternatively select 400B as the
optimal position for block division.
[0060] When the compression algorithm requires rollback by block division, the rollback is performed based on the
optimal position for block division. In this case, data on two sides of the optimal position for block division separately
participates in compression. Because a quantity of matches of inputted data that needs to cross the position is smallest,
and lengths of the matches are shortest, when compression is performed in this block division manner, a loss of an
overall compression ratio is smaller compared to that before block division.
[0061] S206: The terminal 100 predicts a length of each compressed data block one by one.
[0062] In some possible implementations, when a compression algorithm based on an entropy encoding mechanism
is used for the data blocks, the terminal 100 may predict a predicted value of the compressed length of each data block
one by one based on a Shannon-Fano entropy limit. Specifically, the Shannon-Fano entropy limit is calculated according
to the following formula:

where
x indicates a character inputted through entropy encoding, p(x) indicates an occurrence probability of the character x,
H(x) indicates the Shannon-Fano entropy limit that is specifically a minimum quantity of bits (bit) of per inputted byte
after entropy encoding. Based on this, the predicted value of the compressed length of the data block can be determined
based on an entropy encoding input length (for example, a quantity of bytes) and the Shannon - Fano entropy limit,
which is specifically shown as follows:

where
lenin indicates an input length, for example, a quantity of bytes of an entropy encoding input, and lenoutx indicates an
output length, for example, a predicted value of a length obtained after entropy encoding is performed on an input. It
should be noted that, when the terminal 100 directly performs entropy encoding on a data block, the input length may
be a length of the data block.
[0063] In some possible implementations, the terminal 100 may alternatively first perform matching on the data blocks,
for example, perform matching on the data blocks one by one according to an LZ encoding algorithm, to obtain a four-
tuple of each data block, and the four-tuple includes an inter-block four-tuple and an intra-block four-tuple. For the inter-
block four-tuple, refer to the foregoing related content descriptions. The intra-block four-tuple refers to a four-tuple
generated when matching in the data block succeeds. Similar to the inter-block four-tuple, the intra-block four-tuple also

EP 4 290 775 A1

8

5

10

15

20

25

30

35

40

45

50

55

includes an unmatched character sequence, an unmatched character length, a match length, and a match offset. The
terminal 100 may use the four-tuple as an entropy encoding input to perform entropy encoding, to implement compression
on the data block. Correspondingly, the input length may be a length of the four-tuple. The terminal 100 may determine,
based on the length of the four-tuple and the Shannon-Fano entropy limit, the predicted value of the length obtained
after entropy encoding is performed on the input.
[0064] The terminal 100 may separately perform character frequency statistics based on each element (such as the
unmatched character sequence, the unmatched character length, the match length, and the match offset) of the four-
tuple, that is, a quantity of occurrences of each type of character in each element is counted, and the occurrence
probability p(x) of the character x is obtained by dividing the character frequency by a total quantity of the characters.
In this way, the terminal 100 may use p(x) to determine the Shannon-Fano entropy limit H(x) according to the foregoing
formula (1).
[0065] In some possible implementations, the terminal 100 may further manage process data generated in a prediction
process. The process data may include the four-tuples generated when matching is performed on the data blocks, and
boundary information corresponding to the four-tuples of the data blocks. The terminal 100 may store the four-tuples of
the data blocks and the boundary information of the four-tuples. The boundary information includes quantities of the
four-tuples of the data blocks. For example, the terminal 100 performs matching on a data block and obtains 10 four-
tuples. The terminal 100 may store the 10 four-tuples corresponding to the data block and store a quantity (for example,
10) of the four-tuples corresponding to the data block. In this way, the terminal 100 may distinguish four-tuples of different
data blocks according to the boundary information, and may further quickly obtain a corresponding four-tuple, to implement
a fast data block rollback.
[0066] In some other possible implementations, the terminal 100 may further obtain a historical compression rate, and
the historical compression rate includes a compression rate of data compression by the terminal 100 before current
compression. The compression rate of data compression includes an overall compression rate, and the overall com-
pression rate may provide a reference for a compression rate of the data block. Based on this, the terminal 100 may
predict a compressed length of a data block based on a length of the data block and the historical compression rate.
For example, the terminal 100 may determine a product of the length of the data block and the historical compression
rate as the predicted value of the compressed length of the data block. In some embodiments, the terminal 100 may
determine an average value of the historical compression rate, for example, determine an average value of overall
compression rates in five latest times, and then determine the predicted value of the compressed length of the data
block based on the length of the data block and the average value of the historical compression rate.
[0067] Further, the terminal 100 may update the historical compression rate, so that the historical compression rate
can be close to an actual compression rate, thereby implementing accurate prediction of the compressed length. Spe-
cifically, the terminal 100 may determine a current compression rate based on the length of the data and a length of
compressed data of the data, and then update the historical compression rate based on the current compression rate.
The updated historical compression rate can be used for a next round of prediction. When managing the historical
compression rate, the terminal 100 may adopt a first in first output (first in first output, FIFO) policy or the like for
management.
[0068] S208: The terminal 100 accumulates lengths of a currently predicted data block and data blocks before the
currently predicted data block to obtain a first predicted compression length, and determines whether the first predicted
compression length is greater than the length limit value. When the first predicted compression length is greater than
the length limit value, S210 is performed. When the first predicted compression length is less than or equal to the length
limit value, S212 is performed.
[0069] It is assumed that there are N data blocks before the currently predicted data block. The terminal 100 accumulates
predicted compression lengths of the N data blocks and a predicted compression length of the current data block, to
obtain the first predicted compression length. When the first predicted compression length is greater than the length
limit value, it indicates a high probability that compressed lengths of the N + 1 data blocks are greater than the length
limit value, and the terminal 100 may perform data block rollback, for example, one data block is rolled back. In this
case, a probability of obtaining a compressed file whose compressed length is less than or equal to the length limit value
is high. Based on this, the terminal may perform S210. When the first predicted compression length is less than or equal
to the length limit value, it indicates a high probability that the compressed lengths of the N + 1 data blocks are less than
the length limit value, and the terminal 100 may still add a new data block for being merged and compressed, thereby
improving an input granularity as much as possible. Based on this, the terminal 100 may perform S212.
[0070] S210: The terminal 100 performs merging and compression on first to (N - k)th data blocks. When a length of
compressed data is less than or equal to the length limit value, S214 is performed. When the length of the compressed
data is greater than the length limit value, S216 is performed.
[0071] N is a natural number greater than or equal to 2, and k is a natural number less than N. For example, a value
of k may be 0, 1, or the like. The terminal 100 may merge some or all data blocks of the N data blocks before the currently
predicted data block. For example, the terminal 100 may merge the N data blocks, and then implement compression

EP 4 290 775 A1

9

5

10

15

20

25

30

35

40

45

50

55

on a merged data block. The terminal 100 may select a corresponding compression algorithm according to an actual
requirement, to implement compression on the merged data block. For example, the terminal 100 may select a com-
pression algorithm based on entropy encoding, for example, a Huffman encoding algorithm or an arithmetic encoding
algorithm, or select a compression algorithm based on duplicate content search, for example, an LZ encoding algorithm
or an RLE algorithm, to implement compression on the merged data block.
[0072] When the terminal 100 determines the four-tuples of the data blocks according to the LZ encoding algorithm
and predicts the compressed lengths based on the four-tuples of the data blocks, the terminal 100 may use the foregoing
four-tuples to perform entropy encoding according to the LZ encoding algorithm, to implement compression on the
merged data block. When the terminal 100 predicts the compressed lengths of the data blocks based on the historical
compression rate, the terminal 100 may select the compression algorithm based on entropy encoding or the compression
algorithm based on duplicate content search (for example, the LZ encoding algorithm) for encoding, to implement
compression on the merged data block.
[0073] S212: The terminal 100 jumps to a next data block, uses the next data block as the currently predicted data
block, and performs S208.
[0074] Specifically, the terminal 100 gradually accumulates predicted compression lengths of new data blocks. When
a sum of the predicted compression lengths of the data blocks is less than or equal to the length limit value, the terminal
100 jumps to a next data block, and continues to accumulate. When the sum of the lengths is greater than the length
limit value, the terminal 100 may stop accumulating. In this way, the terminal 100 may determine proper segmentation
points in these data blocks, to segment a plurality of data blocks, and further perform merging and compression on the
segmented data blocks.
[0075] S214: The terminal 100 uses the compressed data as a first compressed file and then performs S218.
[0076] The length of the compressed data is less than or equal to the length limit value, and a small quantity of data
blocks are rolled back to be compressed in a case that the predicted compression length is greater than the length limit
value. Therefore, the length of the compressed data is close to the length limit value, and the terminal 100 may use the
compressed data as the first compressed file. In this way, requirements of applications for the length limit value are met,
and a granularity of the compressed file is avoided to be excessively small.
[0077] S216: The terminal 100 performs merging and compression on first to (N - k - 1)th data blocks.
[0078] The length of the compressed data is greater than the length limit value, and the terminal 100 may roll back a
data block, and then perform merging and compression on data blocks after rollback. The embodiment shown in FIG.
2 is described by using an example of performing merging and compression on the first to (N - k - 1)th data blocks after
one data block is rolled back. In another possible implementation of this embodiment of this application, the terminal
100 may alternatively roll back a plurality of data blocks each time, for example, two data blocks may be rolled back.
[0079] S218: The terminal 100 continues to predict a compressed length of a data block after the (N - k)th data block,
to continue to segment remaining data of the to-be-compressed data.
[0080] Because the first data block and the (N - k)th data block have been merged and compressed and the first
compressed file is obtained, the terminal 100 may continue to predict a compressed length of a data block after the (N
- k)th data block, and continue to segment remaining data of the to-be-compressed data in a same manner.
[0081] It should be noted that, according to the data compression method provided in this embodiment of this appli-
cation, when a length of data obtained by compressing the to-be-compressed data is greater than the length limit value,
the to-be-compressed data is segmented based on the length limit value in a process of compressing the to-be-com-
pressed data, so that the to-be-compressed data includes at least two compressed files after compression, and a length
of each compressed file is less than the length limit value. When the length of the data obtained by compressing the to-
be-compressed data is less than or equal to the length limit value, the to-be-compressed data may be directly entirely
compressed without performing the foregoing block division and prediction processes. It should be further noted that,
when the to-be-compressed data is compressed into at least two compressed files whose lengths are less than or equal
to the length limit value, the terminal 100 may further obtain a complete compressed file, and perform decompression
based on the complete compressed file, to restore the to-be-compressed data.
[0082] Based on the foregoing content description, this embodiment of this application provides a data compression
method. In the method, compressed lengths of data blocks are predicted, and the data blocks are merged and compressed
based on prediction results, so that a length of compressed data is limited, for example, the length of the compressed
data is limited within a target compression length, so that service requirements are met. In addition, according to the
method, a length of the data blocks after merging and compression can be close to the target compression length, and
an input of a maximum granularity is ensured, thereby ensuring a compression rate. Further, in the method, there is no
need to repeatedly perform compression confirmation on same data, thereby ensuring compression performance. This
method supports an automatic limitation on the compressed length, and a user does not need to conduct a test manually,
thereby simplifying user operations and improving user experience.
[0083] The following describes an example in which data compression is performed according to a compression
algorithm based on entropy encoding and data compression is performed according to a compression algorithm based

EP 4 290 775 A1

10

5

10

15

20

25

30

35

40

45

50

55

on duplicate content search.
[0084] Refer to a schematic flowchart of a data compression method shown in FIG. 5, the method includes the following
steps:
[0085] S502: A terminal 100 receives data inputted by a user.
[0086] S504: The terminal 100 performs block division on the data inputted by the user, to obtain a plurality of data
blocks.
[0087] Specifically, the terminal 100 may perform block division on the inputted data according to an average block
division method, to obtain the plurality of data blocks. Further, the terminal 100 may further determine, based on match
offsets obtained by performing matching on the data blocks, quantities of intersections of boundaries of the data blocks
and matches, determine an optimal position for block division based on the quantities of intersections, and merge the
data blocks based on the position for block division to obtain final data blocks.
[0088] S506: The terminal 100 performs matching on the plurality of data blocks one by one according to an LZ
encoding algorithm, to obtain four-tuples of the plurality of data blocks.
[0089] The four-tuple includes an unmatched character, an unmatched character length, a match length, and a match
offset. The unmatched character refers to a character sequence before the matching starts, the unmatched character
length refers to a length of the character sequence before the matching starts, and the match length refers to a length
of a match character sequence. The match offset refers to an offset of the match character sequence relative to a
matched character sequence in the unmatched character.
[0090] For ease of understanding, descriptions are made below with reference to a specific example. Assuming that
a data block includes a character sequence "ASDFGSDFKHJ", the terminal 100 may determine that an unmatched
character is "ASDFG", an unmatched character length is 5, and a match character sequence is "SDF". Based on this,
a match length is 3. An offset from "SDF" after "ASDFG" to "SDF" in "ASDFG" is 4. Based on this, a match offset is 4.
In this case, a first four-tuple may be denoted as ("ASDFG", 5, 3, 4). Then, the terminal 100 continues to perform matching
on remaining characters. Specifically, matching is performed on each character from right to left. In this way, a second
four-tuple ("KHJ", 3, 0, 0) may be determined.
[0091] It should be noted that, the foregoing example mainly describes an intra-block four-tuple. The terminal 100 may
further perform matching across the data blocks to obtain an inter-block four-tuple. For example, when other data blocks
are further included before the foregoing data block, the foregoing data block may continue to be matched with the data
blocks before the foregoing data block, to obtain the inter-block four-tuple.
[0092] S508: The terminal 100 stores a four-tuple of each data block and boundary information of the four-tuple of
each data block.
[0093] The terminal 100 may store the four-tuples generated in a matching process, to manage process data including
the four-tuples. Further, the terminal 100 may further store the boundary information of the four-tuples, for example, a
quantity of four-tuples generated when performing matching on a data block, so that the data block can be quickly rolled
back based on the boundary information upon subsequent data block rollback.
[0094] S510: The terminal 100 predicts a length of each compressed data block one by one based on the four-tuple.
[0095] The terminal 100 may separately perform character frequency statistics on each element in the four-tuples of
the data blocks, and obtain an occurrence probability of a character by dividing the character frequency by a total quantity
of the characters. Then, the compressed length is predicted based on a Shannon-Fano entropy limit and an entropy
encoding input. An entropy value prediction process mainly includes a character frequency statistics process and an
entropy value calculation process, but the entropy value calculation process consumes a short time and can be ignored.
In an entropy encoding process, compared with operations such as table creation and encoding that occupy more than
90% of a consumed time, character frequency statistics occupy only a short time, that is, a time for predicting the
compressed length is far less than an actual compression time. Compression efficiency can be effectively improved by
first predicting and then compressing.
[0096] It should be noted that, entropy encoding may be separately performed on each element by separately per-
forming character frequency statistics on each element of the four-tuples. For an element with a small quantity of
characters, an occurrence probability of the character may be effectively improved, so that an encoding effect of the
corresponding element can be improved.
[0097] S512: The terminal 100 accumulates lengths of a currently predicted data block and data blocks before the
currently predicted data block to obtain a first predicted compression length, and determines whether the first predicted
compression length is greater than the length limit value. If the first predicted compression length is greater than the
length limit value, S514 is performed. If the first predicted compression length is less than or equal to the length limit
value, S522 is performed.
[0098] S514: The terminal 100 performs merging and compression on first to (N - k)th data blocks. When a length of
compressed data is less than or equal to the length limit value, S516 is performed. When the length of the compressed
data is greater than the length limit value, S518 is performed.
[0099] The terminal 100 may perform entropy encoding on the data blocks based on four-tuples of the first to (N - k)th

EP 4 290 775 A1

11

5

10

15

20

25

30

35

40

45

50

55

data blocks, to implement merging and compression on the data blocks.
[0100] S516: The terminal 100 uses the compressed data as a first compressed file.
[0101] S518: The terminal 100 rolls back one data block based on boundaries of the four-tuples, and performs merging
and compression on first to (N - k - 1)th data blocks.
[0102] S520: The terminal 100 continues to predict a compressed length of a data block after the (N - k)th data block,
to continue to segment remaining data of the to-be-compressed data.
[0103] S522: The terminal 100 jumps to a next data block and then performs S512.
[0104] For specific implementations of S512 to S522, refer to the related content descriptions in the embodiment
shown in FIG. 2. Details are not described herein again.
[0105] FIG. 5 describes an example in which data compression is performed according to a compression algorithm
based on entropy encoding. The following describes an example in which data compression is performed according to
a compression algorithm based on duplicate content search.
[0106] Refer to a schematic flowchart of a data compression method shown in FIG. 6, the method includes:
[0107] S602. A terminal 100 receives data inputted by a user.
[0108] S604: The terminal 100 performs block division on the data inputted by the user, to obtain a plurality of data
blocks.
[0109] For specific implementations of S602 to S604, refer to the foregoing related content descriptions. Details are
not described herein again.
[0110] S606: The terminal 100 predicts a length of each compressed data block one by one based on a length of the
data block and a historical compression rate.
[0111] The terminal 100 maintains an overall compression rate corresponding to each compression process, and
overall compression rates before current compression may be collectively referred to as a historical compression rate.
The terminal 100 may predict the compressed length of the data block based on an average value of latest n compression
rates and the length of the data block.
[0112] S608: The terminal 100 accumulates lengths of a currently predicted data block and data blocks before the
currently predicted data block to obtain a first predicted compression length, and determines whether the first predicted
compression length is greater than the length limit value. If the first predicted compression length is greater than the
length limit value, S610 is performed. If the first predicted compression length is less than or equal to the length limit
value, S618 is performed.
[0113] S610: The terminal 100 performs merging and compression on first to (N - k)th data blocks. When a length of
compressed data is less than or equal to the length limit value, S612 is performed. When the length of the compressed
data is greater than the length limit value, S614 is performed.
[0114] S612: The terminal 100 uses the compressed data as a first compressed file and then performs S616.
[0115] S614: The terminal 100 rolls back one data block, and performs merging and compression on first to (N - k -
1)th data blocks.
[0116] Specifically, the terminal 100 may perform merging and compression on the first to (N - k - 1) data blocks
according to the compression algorithm based on duplicate content search.
[0117] S616: The terminal 100 continues to predict a compressed length of a data block after the (N - k)th data block,
to continue to segment remaining data of the to-be-compressed data.
[0118] S618: The terminal 100 jumps to a next data block and then performs S608.
[0119] S620: When all data blocks of the to-be-compressed data are compressed to form at least two compressed
files, the terminal 100 determines a current compression rate, and updates the historical compression rate based on the
current compression rate.
[0120] Specifically, the terminal 100 may determine the current compression rate based on a length of the to-be-
compressed data and a total length of the compressed files, and then maintain the current compression rate in a database
or a data table, to update the historical compression rate.
[0121] The foregoing describes in detail the data compression methods provided in embodiments of this application
with reference to FIG. 1 to FIG. 6. The following describes an apparatus provided in embodiments of this application
with reference to the accompanying drawings.
[0122] Refer to a schematic diagram of a structure of a data compression apparatus shown in FIG. 7, the data com-
pression apparatus 700 may be a software apparatus including a software unit module with a data compression function,
or the data compression apparatus 700 may be a hardware apparatus including a hardware unit module with a corre-
sponding function. The apparatus 700 includes: a communication unit 702 and a compression unit 704.
[0123] The communication unit 702 is configured to obtain to-be-compressed data and a length limit value for data
compression.
[0124] For a specific implementation in which the communication unit 702 obtains the to-be-compressed data and the
length limit value for data compression, refer to the related content descriptions of S202 in the embodiment shown in
FIG. 2. Details are not described herein again.

EP 4 290 775 A1

12

5

10

15

20

25

30

35

40

45

50

55

[0125] The compression unit 704 is configured to, when a length of data obtained by compressing the to-be-compressed
data is greater than the length limit value, segment the to-be-compressed data based on the length limit value in a
process of compressing the to-be-compressed data, so that the to-be-compressed data includes at least two compressed
files after compression, and a length of each compressed file is less than the length limit value.
[0126] For a specific implementation in which the compression unit 704 segments the to-be-compressed data based
on the length limit value in the process of compressing the to-be-compressed data, so that the to-be-compressed data
includes at least two compressed files after compression, refer to the related content descriptions of S204 to S218 in
the embodiment shown in FIG. 2. Details are not described herein again.
[0127] In some possible implementations, the compression unit 704 is specifically configured to:

predict a length of each compressed data block one by one, and accumulate lengths of a currently predicted data
block and data blocks before the currently predicted block to obtain a first predicted compression length; and
when the first predicted compression length is greater than the length limit value, perform compression based on
the data blocks before the currently predicted data block, where compressed data forms a first compressed file, and
the first compressed file belongs to the at least two compressed files.

[0128] For a specific implementation in which the compression unit 704 predicts the compressed length of each data
block one by one, and accumulates the lengths of the currently predicted data block and the data blocks before the
currently predicted block to obtain the first predicted compression length, refer to the related content descriptions of
S206 to S208. Details are not described herein again.
[0129] For a specific implementation in which the compression unit 704 performs compression based on the data
blocks before the currently predicted data block and the compressed data forms the first compressed file, refer to the
related content descriptions of S210 and S214. Details are not described herein again.
[0130] In some possible implementations, there are N data blocks before the currently predicted data block, and the
compression unit 704 is specifically configured to:

perform merging and compression on first to (N - k)th data blocks, where N is a natural number greater than or equal
to 2, and k is a natural number less than N; and
when a length of the compressed data is less than or equal to the length limit value, use the compressed data as
the first compressed file.

[0131] For a specific implementation in which the compression unit 704 performs merging and compression on the
first to (N - k)th data blocks, and when the length of the compressed data is less than or equal to the length limit value,
uses the compressed data as the first compressed file, refer to the related content descriptions of S210 and S214. Details
are not described herein again.
[0132] In some possible implementations, the compression unit 704 is further configured to:
continue to predict a compressed length of a data block after the (N -k)th data block, to continue to segment remaining
data of the to-be-compressed data.
[0133] For a specific implementation in which the compression unit 704 continues to predict the compressed length
of the data block after the (N - k)th data block, to continue to segment the remaining data of the to-be-compressed data,
refer to the related content descriptions of S218. Details are not described herein again.
[0134] In some possible implementations, there are N data blocks before the currently predicted data block, and the
compression unit is specifically configured to:

perform merging and compression on first to (N - k)th data blocks, where N is a natural number greater than or equal
to 2, and k is a natural number less than N; and
when a length of the compressed data is greater than the length limit value, perform merging and compression on
first to (N - k - 1)th data blocks.

[0135] For a specific implementation in which the compression unit 704 performs merging and compression on the
first to (N - k)th data blocks, and when the length of the compressed data is greater than the length limit value, performs
merging and compression on the first to (N - k - 1)th data blocks, refer to the related content descriptions of S210 and
S216. Details are not described herein again.
[0136] The data compression apparatus 700 according to embodiments of this application may correspondingly perform
the methods described in embodiments of this application, and the foregoing and other operations and/or functions of
the modules/units of the data compression apparatus 700 are separately configured to implement corresponding pro-
cedures of the methods in the embodiment shown in FIG. 2. For brevity, details are not described herein again.
[0137] An embodiment of this application further provides a device. The device is configured to implement functions

EP 4 290 775 A1

13

5

10

15

20

25

30

35

40

45

50

55

of the data processing apparatus 700 in the embodiment shown in FIG. 7. The device may be a terminal such as a
notebook computer or a desktop computer, or may be a local server or a cloud server. For ease of understanding, an
example in which the device is a terminal is used for description.
[0138] Refer to a schematic diagram of a structure of a terminal 100 shown in FIG. 1, the terminal 100 includes a bus
101, a processor 102, a communication interface 103, and a memory 104. The processor 102, the memory 104, and
the communication interface 103 communicate with each other through the bus 101.
[0139] The communication interface 103 is configured to communicate with the outside. For example, the communi-
cation interface 103 is configured to obtain to-be-compressed data, obtain a length limit value for data compression, or
output at least two compressed files whose lengths are less than the length limit value, or the like. The memory 104
stores executable code, and the processor 102 executes the executable code to perform the foregoing data compression
method.
[0140] An embodiment of this application further provides a computer-readable storage medium. The computer-read-
able storage medium includes instructions, and the instructions instruct a computer to perform the foregoing data com-
pression methods applied to the data compression apparatus 700.
[0141] An embodiment of this application further provides a computer-readable storage medium. The computer-read-
able storage medium includes instructions, and the instructions instruct a computer to perform the foregoing data com-
pression methods applied to the data compression apparatus 700.
[0142] An embodiment of this application further provides a computer program product. When the computer program
product is executed by a computer, the computer performs any method of the foregoing data compression methods.
The computer program product may be a software installation package. In a case that any method of the foregoing data
compression methods needs to be used, the computer program product may be downloaded and the computer program
product is executed by a computer.

Claims

1. A data compression method, wherein the method comprises:

obtaining to-be-compressed data and a length limit value for data compression; and
when a length of data obtained by compressing the to-be-compressed data is greater than the length limit value,
segmenting the to-be-compressed data based on the length limit value in a process of compressing the to-be-
compressed data, so that the to-be-compressed data comprises at least two compressed files after compression,
and a length of each compressed file is less than the length limit value.

2. The method according to claim 1, wherein the segmenting the to-be-compressed data based on the length limit
value comprises:

predicting a length of each compressed data block one by one, and accumulating a length of a currently predicted
data block and lengths of data blocks before the currently predicted data block to obtain a first predicted com-
pression length; and
when the first predicted compression length is greater than the length limit value, performing compression based
on the data blocks before the currently predicted data block, wherein compressed data forms a first compressed
file, and the first compressed file belongs to the at least two compressed files.

3. The method according to claim 2, wherein there are N data blocks before the currently predicted data block, and
the performing compression based on the data blocks before the currently predicted data block comprises:

performing merging and compression on first to (N - k)th data blocks, wherein N is a natural number greater
than or equal to 2, and k is a natural number less than N; and
when a length of the compressed data is less than or equal to the length limit value, using the compressed data
as the first compressed file.

4. The method according to claim 3, wherein the method further comprises:
continuing to predict a compressed length of a data block after the (N - k)th data block, to continue to segment
remaining data of the to-be-compressed data.

5. The method according to claim 2, wherein there are N data blocks before the currently predicted data block, and
the performing compression based on the data blocks before the currently predicted data block comprises:

EP 4 290 775 A1

14

5

10

15

20

25

30

35

40

45

50

55

performing merging and compression on first to (N - k)th data blocks, wherein N is a natural number greater
than or equal to 2, and k is a natural number less than N; and
when a length of the compressed data is greater than the length limit value, performing merging and compression
on first to (N - k - 1)th data blocks.

6. A data compression apparatus, wherein the apparatus comprises:

a communication unit, configured to obtain to-be-compressed data and a length limit value for data compression;
and
a compression unit, configured to, when a length of data obtained by compressing the to-be-compressed data
is greater than the length limit value, segment the to-be-compressed data based on the length limit value in a
process of compressing the to-be-compressed data, so that the to-be-compressed data comprises at least two
compressed files after compression, and a length of each compressed file is less than the length limit value.

7. The apparatus according to claim 6, wherein the compression unit is specifically configured to:

predict a length of each compressed data block one by one, and accumulate a length of a currently predicted
data block and lengths of data blocks before the currently predicted data block to obtain a first predicted com-
pression length; and
when the first predicted compression length is greater than the length limit value, perform compression based
on the data blocks before the currently predicted data block, wherein compressed data forms a first compressed
file, and the first compressed file belongs to the at least two compressed files.

8. The apparatus according to claim 7, wherein there are N data blocks before the currently predicted data block, and
the compression unit is specifically configured to:

perform merging and compression on first to (N - k)th data blocks, wherein N is a natural number greater than
or equal to 2, and k is a natural number less than N; and
when a length of the compressed data is less than or equal to the length limit value, use the compressed data
as the first compressed file.

9. The apparatus according to claim 8, wherein the compression unit is further configured to:
continue to predict a compressed length of a data block after the (N - k)th data block, to continue to segment remaining
data of the to-be-compressed data.

10. The apparatus according to claim 7, wherein there are N data blocks before the currently predicted data block, and
the compression unit is specifically configured to:

perform merging and compression on first to (N - k)th data blocks, where N is a natural number greater than or
equal to 2, and k is a natural number less than N; and
when a length of the compressed data is greater than the length limit value, perform merging and compression
on first to (N - k - 1)th data blocks.

11. A device, wherein the device comprises a processor and a memory, the memory stores computer-readable instruc-
tions, and the processor executes the computer-readable instructions to perform the method according to any one
of claims 1 to 5.

12. A computerreadable storage medium, comprising: computer-readable instructions, wherein when the computer-
readable instructions are run on a computer, the computer is enabled to perform the method according to any one
of claims 1 to 5.

13. A computer program product, comprising: computer-readable instructions, wherein when the computer-readable
instructions are run on a computer, the computer is enabled to perform the method according to any one of claims
1 to 5.

EP 4 290 775 A1

15

EP 4 290 775 A1

16

EP 4 290 775 A1

17

EP 4 290 775 A1

18

EP 4 290 775 A1

19

EP 4 290 775 A1

20

EP 4 290 775 A1

21

EP 4 290 775 A1

22

5

10

15

20

25

30

35

40

45

50

55

EP 4 290 775 A1

23

5

10

15

20

25

30

35

40

45

50

55

EP 4 290 775 A1

24

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European
patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be
excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• CN 202110343760 [0001]

	bibliography
	abstract
	description
	claims
	drawings
	search report
	cited references

