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(57) ABSTRACT

Systems, apparatuses, methods, and computer-readable
media, are provided for distributed machine learning (ML)
training using heterogeneous compute nodes in a heteroge-
neous computing environment, where the heterogeneous
compute nodes are connected to a master node via respective
wireless links. ML, computations are performed by indi-
vidual heterogeneous compute nodes on respective training
datasets, and a master combines the outputs of the ML
computations obtained from individual heterogeneous com-
pute nodes. The ML computations are balanced across the
heterogeneous compute nodes based on knowledge of net-
work conditions and operational constraints experienced by
the heterogeneous compute nodes. Other embodiments may
be described and/or claimed.
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TECHNOLOGIES FOR DISTRIBUTING
GRADIENT DESCENT COMPUTATION IN A
HETEROGENEOUS MULTI-ACCESS EDGE

COMPUTING (MEC) NETWORKS

RELATED APPLICATIONS

[0001] The present application claims priority under 35
U.S.C. § 119 to U.S. Provisional Application No. 62/728,
640 filed on Sep. 7, 2018 (Attorney Docket No. AB3886-7)
and U.S. Provisional Application No. 62/728,647 filed on
Sep. 7, 2018 (Attorney Docket No. AB4057-7), the contents
of each of which are hereby incorporated by reference in
their entireties.

FIELD

[0002] Various embodiments generally relate to the fields
of computing, and in particular, relate to MEC (“Multi-
access Hdge Computing” or “Mobile Edge Computing™)
technologies.

BACKGROUND

[0003] The background description provided herein is for
the purpose of generally presenting the context of the
disclosure. Unless otherwise indicated herein, the materials
described in this section are not prior art to the claims in this
application and are not admitted to be prior art by inclusion
in this section.

[0004] Many forms of machine learning (ML), such as
supervised learning, perform a training process on a rela-
tively large dataset to estimate an underlying ML model.
Linear regression is one type of supervised ML algorithm
that is used for classification, stock market analysis, weather
prediction, and the like. Gradient descent (GD) algorithms
are often used in linear regression. Given a function defined
by a set of parameters, a GD algorithm starts with an initial
set of parameter values, and iteratively moves toward a set
of parameter values that minimize the function. This itera-
tive minimization is achieved by taking steps in the negative
direction of the function gradient. Example use cases for GD
algorithms include localization in wireless sensor networks
and distributed path-planning for drones.

[0005] Intypical GD implementations, a model is updated
iteratively, where computing multiplication of large matrices
and vectors are required in each epoch. Since the training
phase for GD algorithms requires a large amount of iterative
computations, running GD algorithms can be computation-
ally intensive. Additionally, computation time bottlenecks
rapidly as the model order grows in size.

[0006] Distributed computing has been used to reduce
training time by offloading GD computations to multiple
secondary computing nodes located in a server farm, for
example. In this approach, during each training epoch (or
iteration), partial gradients are computed by different sec-
ondary nodes and communicated to a master node for
aggregation in order to obtain a complete gradient for that
epoch. Since this approach involves duplicating the training
dataset for each secondary node, it is limited to homoge-
neous computing environments included the same or similar
computing systems that are connected to one another via
deterministic wired links.

[0007] However, distributing GP computations to hetero-
geneous computing environments, such as those comprising
multiple client or edge devices is difficult because, in most
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cases, the available edge devices have different configura-
tions, capabilities, and operate under different conditions.
Additionally, many of the edge devices communicate using
wireless links, which have lower reliability (i.e., in terms of
link quality and achievable data rates) when compared to
wired links used in server farms. The heterogeneous nature
of these computing environments may result in longer lag
times at each training epoch due to slower computing
devices and/or computing devices with low quality radio
links. For these reasons, the conventional distributed ML
training approach cannot be straightforwardly applied to
heterogeneous computing environments.

BRIEF DESCRIPTION OF THE FIGURES

[0008] Embodiments will be readily understood by the
following detailed description in conjunction with the
accompanying drawings. To facilitate this description, like
reference numerals designate like structural elements.
Embodiments are illustrated by way of example and not by
way of limitation in the figures of the accompanying draw-
ings.

[0009] FIG. 1 depicts an example heterogeneous comput-
ing environment in which various example embodiments
may be practiced.

[0010] FIGS. 2-5 show example distributed ML proce-
dures in accordance with various embodiments. In particu-
lar, FIG. 2 depicts an example distributed machine learning
procedure according to a first embodiment, FIG. 3 depicts a
load partitioning process according to the first embodiment,
FIG. 4 depicts an example distributed machine learning
procedure according to a second embodiment, and FIG. 5§
depicts a load partitioning process according to the second
embodiment.

[0011] FIG. 6 depicts an example Multi-access edge Com-
puting (MEC) framework in accordance with some embodi-
ments.

[0012] FIG. 7 depicts an example MEC system architec-
ture according to various embodiments.

[0013] FIG. 8 depicts an example an example MEC sys-
tem architecture in a Network Function Virtualization
(NFV) environment according to various embodiments.
[0014] FIG. 9 depicts an example of infrastructure equip-
ment according to various embodiments.

[0015] FIG. 10 depicts an example of a computer platform
according to various embodiments.

[0016] FIG. 11 illustrates an example non-transitory com-
puter-readable storage media that may be suitable for use to
store instructions (or data that creates the instructions) that
cause an apparatus, in response to execution of the instruc-
tions by the apparatus, to practice selected aspects of the
present disclosure.

[0017] FIG. 12 illustrates an arrangement showing inter-
connections that may be present between a network and
Internet of Things (IoT) networks, according to various
embodiments.

[0018] FIG. 13 illustrates an example domain topology
according to various embodiments.

[0019] FIG. 14 illustrates an example cloud computing
network or cloud in communication with a number of IoT
devices according to various embodiments.

[0020] FIG. 15 illustrates an arrangement of a cloud
computing network or cloud in communication with a mesh
network of IoT devices or IoT fog according to various
embodiments.
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DETAILED DESCRIPTION

[0021] The present disclosure is related to distributed
machine learning (ML) in distributed heterogeneous com-
puting environments, where computational resources of
multiple edge compute nodes are utilized for collaborative
learning for an underlying ML model. Distributed hetero-
geneous computing environments are computing environ-
ments where compute (processing) and storage resources are
available at multiple edge compute nodes, with varying
capabilities and operational constraints. Generally, an ML
algorithm is a computer program that learns from experience
with respect to some task and some performance measure,
and an ML model may be any object or data structure created
after an ML algorithm is trained with one or more training
datasets. After training, an ML model may be used to make
predictions on new datasets. Although the term “ML algo-
rithm” refers to different concepts than the term “ML
model,” these terms as discussed herein may be used inter-
changeably for the purposes of the present disclosure.
[0022] Gradient Descent (GD) algorithms and/or its vari-
ants are one critical component of many ML algorithms
where training is performed on a large amount of data to
estimate an underlying ML model. Linear regression is one
such method that is used for many use cases including, for
example, classification, stock market analysis, weather pre-
diction, localization in wireless sensor networks (WSNs),
and distributed path-planning for drones and automated
driving applications. As a first step towards training ML
algorithms in heterogeneous computing environments,
embodiments provide distributed training via GD algorithm
to estimate the underlying model for linear regression.
Although the embodiments herein are discussed in terms of
GD algorithms for linear regression, the distributed training
embodiments discussed herein are applicable to more com-
plex ML algorithms such as deep neural networks and the
like.

[0023] One of the key challenges in GD algorithms is the
computational cost incurred during the training phase. In
typical GD implementations, an ML reference model is
updated iteratively, where multiplication of large matrices
and vectors needs to be computed in each epoch. Thus,
computation time rapidly becomes a bottleneck as the model
order grows.

[0024] In recent years, distributed computing has been
used as a solution for reducing training time by parallelizing
the GD computations to multiple compute nodes in a homo-
geneous computing environment, such as a server farm, data
center, or cloud computing services. In homogeneous com-
puting environments, compute nodes (e.g., individual serv-
ers) are dedicated to computing the gradients. In these
solutions, during each epoch, each compute node computes
a partial gradient. The partial gradients are typically
obtained by summing up the gradients corresponding to the
data points assigned to a compute node. Each compute node
communicates their partial gradient back to a master node
after the partial gradients are computed. The master node
computes a full or complete gradient by combining all of the
partial gradients received from all worker compute nodes.
The master compute node updates the reference model, and
then communicates the updated reference model to all
worker compute node for the next epoch.

[0025] However, these homogeneous computing environ-
ments usually include compute nodes that have a same or
similar platform configuration and/or computing speed,
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which allows the training data to be uniformly divided
among the worker compute nodes. Additionally, the worker
compute nodes and the master node communicate with one
another over high data rate wired links with little to no
uncertainty in link quality or throughput. Due to the compute
node uniformity and little to no link uncertainty in homo-
geneous computing environments, these solutions cannot be
straightforwardly applied to heterogeneous computing envi-
ronments that include wireless links with variable and/or
fluctuating data rates and link quality. This is because in
these solutions, the training data is usually duplicated across
all or most of the worker compute nodes. However, blindly
duplicating training data across multiple compute nodes in a
heterogeneous computing environment, without accounting
for relative processing speeds, link quality, available battery
life, and/or other operational parameters creates large redun-
dancy overhead where, in many cases, an uncoded system
may outperform coded solutions.

[0026] Recently, there have been some attempts to distrib-
ute GD computations across heterogeneous computing envi-
ronments. Unlike homogenous computing environments, the
compute nodes in heterogeneous computing environments
are non-dedicated computing devices running multiple pro-
cesses concurrently. Distributed GD is challenging in het-
erogeneous computing environments because the compute
nodes have different computing capabilities and are also
connected to a master node via respective wireless links that
exhibit dynamic variations in link quality and achievable
data rates. In heterogeneous computing environments, the
compute nodes still need to compute their partial gradients
and communicate those partial gradients to a master node. In
current distributed GD solutions, the wait time for each
epoch at the master node is dominated by the time needed to
receive the partial gradients from compute nodes with
relatively slow computational capabilities and/or with weak
or low quality links. For example, the wait time at the master
node for one or more training epochs may be prolonged by
compute nodes with weak or low quality links, which may
require multiple retransmissions to overcome radio link
failures. Compute nodes from which the master node has to
wait due to, for example, low quality links or slow process-
ing capabilities, are typically known as “stragglers.” The
issue of straggler nodes is especially relevant for computa-
tions that are distributed over wireless networks, where
dynamic variations in wireless link quality can lead to loss
of data. Accounting for such variations in distributed com-
puting tasks is not well addressed by existing solutions.

[0027] In order to tackle straggler issues, some current
solutions use repetition coding to duplicate data across
different compute nodes. In these solutions, at each epoch,
the master node needs to wait only for the first arriving
unique set of partial gradients, which may reduce the delays
from straggler nodes. However, in these solutions, there
could be significant decoding complexity involved when
aggregating the partial gradients at the master node, which
leads to increased resource consumption and contributes to
the full gradient computation delays.

[0028] The existing solutions described previously are
either not applicable to heterogeneous computing environ-
ments and/or incur significant computational and signaling
overhead when applies to heterogeneous computing envi-
ronments. Furthermore, the existing solutions described
previously also involve significant decoding complexity
when aggregating partial gradients at the master node. The
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embodiments discussed herein make distributed gradient
computing feasible for heterogeneous computing environ-
ments, by addressing the aforementioned issues and also
addressing load balancing issues in distributing training data
and computational tasks.

[0029] In order to utilize compute and storage resources of
edge compute nodes, data needs to be communicated over an
underlying communication network. With the emergence of
ultra-dense wireless edge networks, it is increasingly likely
that most data transmissions occur through wireless links. In
order to minimize the overall training time, embodiments
herein provide a data distribution policy that accounts for
communication overhead associated with wireless data
transmissions.

[0030] According to first embodiments, computing tasks
of an underlying ML model are distributed to a plurality of
edge compute nodes in a heterogeneous computing envi-
ronment, where the plurality of edge compute nodes are
connected to a wireless network via respective links with a
master node, such as one or more application servers, one or
more MEC servers, or some other suitable computing sys-
tem. In one example, computational task of a GD algorithm
are distributed to the plurality of edge compute nodes in the
heterogeneous computing environment. In various embodi-
ments, the master node exploits statistical knowledge of
quality metrics related to communication links and process-
ing delays (and/or processing capabilities of the edge com-
pute nodes) when assigning ML tasks to individual edge
compute nodes. In embodiments, random coding is used to
encode the training data at an optimal (or near optimal)
coding redundancy, and a load balancing policy is used to
partition the computation load across the plurality of edge
compute nodes. In embodiments, the master node obtains
partial gradients computed by the plurality of edge compute
nodes, and aggregates the partial gradients to obtain a full
gradient with little to no decoding complexity. The com-
puted full gradient is then sent back to the edge compute
nodes to further refine the ML model until the ML model
converges. These embodiments address heterogeneity in
communication links and processing rates to enable distrib-
uted GD computation. These embodiments also provide
minimal coding redundancy to minimize expected epoch
time, which in turn reduces the total training time. These
embodiments also outperform uncoded systems in hetero-
geneous computing environments, while providing little to
no decoding complexity to aggregate partial gradients. Other
embodiments may be described and/or claimed.

[0031] In these embodiments, a multi-access edge com-
puting (MEC) framework may be used to implement col-
laborative learning for an underlying ML. model. Application
computation offloading is one of the use cases enabled by
MEC technology. MEC is a network architecture that allows
cloud computing capabilities and computing services to be
performed at the edge of a cellular network. MEC provides
mechanisms that allow applications to be run and to perform
related processing tasks closer to network subscribers (also
referred to as “edge users” or “edge nodes™ and the like). In
this way, network congestion may be reduced and applica-
tions may have better performance. MEC technology is
designed to be implemented at the cellular base stations, and
may enable flexible and rapid deployment of new applica-
tions and services for subscribers. Combining elements of
information technology and telecommunications network-
ing, MEC also allows cellular operators to open their radio
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access network (RAN) to authorized third-parties, such as
application developers and content providers. In these
embodiments, a MEC system offloads one or more compu-
tations or tasks for developing an ML model to various edge
compute nodes during a training process. For example, a
MEC system can offload training data for partial gradient
computations to individual edge compute nodes. Addition-
ally, in these embodiments, the central parameter system
discussed previously may be a MEC system, and may
include a MEC platform (MEP) manager, a selected MEC
host, or some other suitable element of a MEC system. Other
embodiments may be described and/or claimed.

[0032] According to second embodiments, rather than
distributing data to individual edge compute nodes, the
central parameter system may instruct individual edge com-
pute nodes to perform ML training tasks using data already
located at the edge compute nodes. In addition to the issues
discussed previously for distributed ML in heterogeneous
computing environments, user privacy becomes a major
issue when implementing distributed ML training processes
using data available at different edge compute nodes. Ensur-
ing user privacy protections for users who collaborate in
distributed ML, model computations since some of these
users may want to keep their raw data secure on their device.
Failure to account for privacy concerns may result in under-
utilization of the processing capabilities of edge networks,
including MEC networks, since some users may not opt-in
to allowing their data to be used for collaborative unless
these concerns can be alleviated.

[0033] A conventional strategy to carry out processing of
data provided by edge compute nodes includes requiring
each edge compute node to upload their entire dataset to a
computing service, then utilizing dedicated servers to carry
out the GD computations. Therefore, the issues discussed
above are relevant to this conventional strategy. Further-
more, uploading client data to a computing service may
become prohibitive due to communication cost as well as
privacy concerns.

[0034] Another approach for decentralized distributed GD
involves using gossip algorithms (or gossip protocols). In
this approach, the compute nodes are connected to each
other via a communication network, and each compute node
updates its local model using its own data and using model
updates obtained from neighbor compute nodes. This
approach leads to relatively slow convergence since making
update rules for gossip algorithms is difficult. Further, gossip
protocol solutions lead to poor quality of models learnt by
individual compute nodes since they do not take into
account all updated generated by all compute nodes.
[0035] Recently, federated learning has been proposed for
distributed GD computation, where learning takes place by
a federation of client compute nodes that are coordinated by
a central server. Each client compute node fetches a global
model, updates the global model using its local data, and
communicates the updated model to the central server.
Thereatfter, the central server selects a random set of client
compute nodes in each epoch to provide additional updates
and waits for the selected client compute nodes to return
their updated models. The central server averages the
received models to obtain the final global model. Federated
learning is more efficient than asynchronous update methods
as it avoids the prohibitive number of model updates both at
the central server and worker compute nodes. By random
selection of workers in each epoch, they offer speedups
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compared to full batch GD methods. However, federated
learning based on random polling can become relatively
slow since federated learning does not consider operational
conditions of client compute nodes as discussed previously.
[0036] In sum, the existing approaches to distributed ML
learning do not consider heterogeneity in processing capa-
bilities, communication rates, channel quality, available
battery life, and/or other operational parameters when allo-
cating computations to individual compute nodes. The fail-
ure to account for different operational parameters when
allocating computational tasks and/or for updating corre-
sponding models causes bottlenecks in the overall execution
of the ML training process. Furthermore, coded computing
mechanisms have not been developed for distributed ML or
GD workloads.

[0037] The disclosed embodiments enable coding on dis-
tributed datasets while ensuring user privacy of training data
provided by each edge compute node. Embodiments herein
provide coding mechanisms for federated learning based GD
algorithms trained from decentralized data available at a
plurality of edge compute nodes.

[0038] In the second embodiments, the individual edge
compute nodes encode locally available data for ML train-
ing. At each epoch, the edge compute nodes locally compute
partial gradients from local uncoded training data. The
master node estimates or otherwise determines a size of a
subset of the local data that individual edge compute nodes
should process during the ML training process. The esti-
mated or determined subset size is based on the operational
parameters of the individual edge compute nodes. In some
embodiments, random (en)coding is performed by each edge
compute node to disjointly encode the training data at
optimal or near-optimal coding redundancy. In some
embodiments, the subset of the local data and/or the (en)
coded training data at each edge compute node is weighted
based on operational parameters, such as expected comput-
ing delay, signal quality for communicating raw data, com-
puting (processing) power and/or budget, and/or other
operational parameters, which allows the master node to
combat the straggler effect.

[0039] The encoded data is uploaded or otherwise pro-
vided to the master node for partial gradient computation. In
these embodiments, only corresponding partial gradients are
shared with the master node; the edge compute nodes do not
share their (en)coding coefficients (or keys) with each other
or with the master node. Partial gradient computations are
performed by the master node on the provided encoded data
points, while a majority of gradient computation is done
privately by each edge compute node on its local uncoded
data points. In each epoch, partial gradients received from
the edge compute nodes and partial gradients computed
from (en)coded training data available at the master node are
aggregated or combined such that little to no decoding
complexity is incurred. The master node combines the
partial gradients obtained from the encoded data points with
the partial gradients obtained from the uncoded data points
iteratively until the underlying ML, model converges. Other
embodiments may be described and/or claimed.

[0040] Similar to the previously described embodiments,
the computations are balanced across the plurality of edge
compute nodes based on statistical knowledge of various
operational parameters including, but not limited to, link
quality, processing speed, and battery life. Like the first
embodiments discussed previously, these privacy based
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embodiments may also be implemented using a MEC frame-
work, where the master node is a MEC system, including
one or more MEC (or MEC hosts) or some other suitable
MEC element/entity. In these embodiments, the MEC sys-
tem (or one or more MEC servers/hosts designated as the
master node) offloads ML, computations to one or more
MEC servers/hosts, while using coding to preserve privacy
and improve reliability. The embodiments discussed herein
exploit heterogeneity and stochastic behavior of computing
and communication in heterogeneous computing environ-
ments to allocate optimal or near-optimal gradient compu-
tation tasks to edge compute nodes. Additionally, disjointed
encoding of training data at each edge compute node, with
the sharing of only (en)coded training data to the master
node ensures data protection and alleviates privacy con-
cerns. These embodiments also outperform uncoded systems
in heterogeneous computing environments without incurring
decoding complexity. Simulation results have shown that
these embodiments reduce training time is reduced by
approximately 50% when compared to uncoded federate
learning mechanisms, and while ensuring data privacy is
fully preserved. Other embodiments may be described and/
or claimed.

1. Machine Learning
Environments

[0041] Referring now to FIG. 1, where an example het-
erogeneous computing environment 100 in accordance with
various embodiments, is shown. Environment 100 may be
referred to as a heterogeneous environment because collabo-
rating nodes have disparate operational parameters, includ-
ing different device/system capabilities and different opera-
tional contexts and/or constraints. For example,
environment 100 includes a plurality of heterogeneous com-
pute nodes 101, 201 some of which may have different
compute node capabilities and some of which operate under
different operational contexts and/or constraints. The het-
erogeneous compute nodes 101, 201 (also referred to as
“edge compute nodes 101, 201" or the like) includes user
equipment (UEs) 101 (e.g., including UE 101a, UE 1015,
UE 101¢, and UEs 101x) and one or more multi-access edge
computing (MEC) hosts 201 (sometimes referred to as MEC
servers 201).

[0042] In environment 100, a MEC system 200 may
execute machine learning (ML) functionalities, namely
training process (model) 3, and distributes different compu-
tational tasks B, B, Ps, Ps1, and P, (wWhere d is a number)
of the training process (model) f§ to different heterogeneous
compute nodes, including UE 101a, UE 1015, and UE 101¢,
and MEC server 201a and MEC server 201c. The MEC
system 200 includes a collection of MEC servers 201
(including MEC server 201a, MEC server 2015, and MEC
server 201c¢ in FIG. 1) and MEC management systems (not
shown by FIG. 1) necessary to run MEC applications (e.g.,
MEAs 636 of FIGS. 6-7 and MEAs 836 of FIG. 8) within an
operator network or a subset of an operator network. The
MEC servers 201a, 2005, 200¢ (collectively referred to as
“MEC servers 201” or “MEC server 201”) are physical
computer systems (e.g., server compute nodes) that include
a MEC platform (e.g., MEP 637 of FIGS. 6-7 and MEP-
VNF 837 of FIG. 8) and a virtualization infrastructure (e.g.,
V1 638 of FIG. 7 and/or NFVI 804 of FIG. 8), and provide
compute, storage, and network resources to MEC applica-
tions. The MEC servers 201 may also be referred to as
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“MEC hosts 2017 or “edge servers.” The virtualization
infrastructure (V1) of the MEC servers 201 provide virtual-
ized environments and virtualized resources (e.g., “virtual-
ized infrastructure™) for the MEC hosts 201, and the MEC
applications may run as virtual machines (VMs) and/or
application containers on top of the VI. The components
and/or entities of the MEC system 200 are discussed in more
detail infra with respect to FIGS. 6-8.

[0043] For edge-cloud ML or distributed learning, ML
training is performed on a dataset to learn parameters of an
underlying model 3, where the dataset and computational
tasks of the ML training process are distributed across a
plurality of edge nodes 101, 201. In various embodiments,
one or more MEC servers 201 execute computationally
intensive tasks of an unknown model f§ (also referred to as
a “training process”) since the MEC servers 201 may have
higher performance capabilities as compared to UEs 101. In
the example of FIG. 1, MEC server 2015 has been selected
to execute computationally intensive tasks of the unknown
model [, while less computationally intensive functional-
ities, namely tasks f;, 5, B3, ., and B, are executed by
edge compute nodes 101, 201. Additionally, the edge nodes
101, 201 may require training datasets X;, X,, X3, X,,,_;, and
X, (where m is a number) to perform respective tasks 3, p.,
B3, Pay» and B The training datasets X, X5, X5, X,,,.1, and x,,,
are subsets of a full training dataset X (i.e., where X equals
a combination of training datasets x|, X5, X3, X,,_;, and x,,),
and the computational tasks ,, f,, Ps, ©.,, and B, are
subsets of the unknown model [ for the underlying ML
model/algorithm. As discussed in more detail infra, the
training datasets X,, X,, X3, X,,,_; and x,, may be provided to
the edge nodes 101, 201 by the MEC servers 201, or may be
user data already stored by, or otherwise accessible by the
edge nodes 101, 201. By off-loading ML training tasks to
individual edge nodes 101, 201, the ML training process
may be accelerated and/or may provide a more efficient use
of computational resources.

[0044] Inembodiments, a new instance of training process
(model) p may be started on an appropriate MEC server 201
(e.g., MEC server 2016 in the example of FIG. 1) in
response to a request from a user (e.g., a UE 101, owner/
operator of a service provider system including server(s)
130, etc.). In response to requests from various users,
connectivity may be established between edge nodes 101,
201 and the instance of the already running training process
(model) . The training process (model) f may have a set of
requirements (e.g., latency, processing resources, storage
resources, network resources, location, network capability,
security conditions, etc.) that need to be fulfilled by indi-
vidual edge nodes 101, 201, and the MEC system 200 may
select one or more MEC servers 201 (e.g., MEC server 2015
in the example of FI1G. 1) that fulfills all of the requirements,
and the selected MEC server(s) 201 may select individual
edge nodes 101, 201 to perform particular tasks [3,-f,, on a
specific dataset x,-x,,. When all selected edge nodes 101,
201 that were connected to a specific instance of the training
process (model) [ have disconnected, the instance of the
training process (model) f may be terminated.

[0045] As mentioned previously, computing tasks §,-f; of
the underlying ML model {3 are distributed to the plurality of
edge compute nodes 101, 201 in heterogeneous computing
environment 100. where the plurality of edge compute nodes
101, 201 are connected to a wireless network via respective
links 103, 105, 107 to the MEC system 200. As an example,
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the underlying ML model is a gradient descent (GD) algo-
rithm and each of the computing tasks f3,-f3; distributed to
the plurality of edge compute nodes 101, 201 are related to
computing respective partial gradients. In various embodi-
ments, the MEC system 200 (or selected MEC server 2015
in the example of FIG. 1) exploits statistical knowledge of
operational parameters of each edge compute node 101, 201
when assigning ML tasks to each of the edge compute nodes
101, 201. In embodiments, the MEC system 200 may
consult a load balancing policy (or multiple load balancing
policies) to partition the computational load across the
plurality of edge compute nodes 101, 201, and calculate a
coding redundancy for encoding the training datasets x,-x,,
for each edge node 101, 201. The load balancing policy may
define one or more actions and the conditions under which
the actions are executed. In these embodiments, the load
balancing policy may include, for example, algorithms,
weight factors for individual pieces of data, analysis tech-
niques/functions, system rules, policy definitions, ML mod-
els to be solved or otherwise obtained, ML algorithms to use
to obtain the ML models, etc. In some embodiments, the
load balancing policy may include executable code, which
can include software modules or computational logic which,
when operated by the MEC system 200, executes various
load balancing calculations based on the operational param-
eters of the edge nodes 101, 201, and partitions the training
data X into the training datasets x,-x,, for respective edge
nodes 101, 201 based on the load balancing calculations. As
an example, the load balancing policy may define the
particular type or types of operational parameters (discussed
infra) that should be collected by the MEC system 200. In
another example, the load balancing policy may define
criteria to be used by the MEC system 200 for determining
threshold criteria or a desired level of reliability for selecting
a particular edge compute node 101, 201 to perform com-
putational tasks . In this example, the threshold criteria
may be based on a desired epoch time for computing a full
gradient from obtained partial gradients from each edge
compute node 101, 201. In another example, the load
balancing policy may define criteria (e.g., load allocation
criteria) to be used by the MEC system 200 for determining
how to partition the training data into different datasets
X1 -K,e

[0046] Different load balancing policies or configurations
may be used by the MEC system 200 to select offloading
targets and/or partition mechanisms based on the operational
parameters. The policies/configurations may emphasize or
prioritize different operational parameters and/or for differ-
ent ML training applications. For example, the load balanc-
ing policy may indicate to select edge compute nodes 101,
201 based on latency budget minimization (e.g., selecting
based on latency performance over computational capabili-
ties/constraints and/or energy consumption); based on com-
putation minimization (e.g., selecting based on computa-
tional capabilities/constraints over latency performance);
based on a latency budget threshold; based on a computa-
tional capability/constraint budget; based on an energy con-
sumption threshold; minimizing computational load while
being within a latency threshold; minimizing latency while
being within a computational load threshold; minimizing
energy consumption while being within a latency threshold
and/or a computational load threshold; minimizing latency
while being within an energy consumption threshold and/or
a computational load threshold; and/or the like. In some
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embodiments, a selection of edge compute nodes 101, 201
may be compiled into a shortlist of target nodes based on a
first set of operational parameters, and a subset of the target
nodes may be selected from the shortlist based on a second
set of operational parameters. For example, a shortlist of
candidate edge compute nodes 101, 201 having a threshold
link quality measurement could be compiled, and a set of the
candidate edge compute nodes 101, 201 having a best
computational performance among the candidates may be
selected from the shortlist as the optimum offloading can-
didate edge compute nodes 101, 201. In some embodiments,
a suitable weighting algorithm may be used to emphasize
some operational parameters over other operational param-
eters. Other weighting, ranking, prioritization, and selection
mechanisms or methods may be used in various embodi-
ments.

[0047] In some embodiments, the load balancing policy
may indicate a load allocation criterion, which is used to
partition the encoded training data. The load allocation
criterion may be based on a desired computation time (e.g.,
a maximum amount of time) for computing the partial
gradients. In one example, the load allocation criterion may
be, or may be based on, a minimax criterion, which maxi-
mizes the number of partial gradients received from each
edge compute node 101, 201 for a minimum epoch time.

[0048] The operational parameters of the edge compute
nodes 101, 201 includes compute node capabilities and
operational constraints or contexts. The compute node capa-
bilities may include, for example, configuration information
(e.g., a hardware platform make and model, hardware com-
ponent types and arrangement within the hardware platform,
associated peripheral and/or attached devices/systems, pro-
cessor architecture, currently running operating systems
and/or applications and/or their requirements, subscription
data (e.g., data plan and permissions for network access),
security levels or permissions (e.g., possible authentication
and/or authorization required to access the edge compute
node 101, 201), etc.); computational capacity (e.g., a total
processor speed of one or more processors, a total number
of VMs capable of being operated by the edge compute node
101, 201, a memory or storage size, an average computation
time per workload, a reuse degree of computational
resources, etc.); current or predicted computational load
and/or computational resources (e.g., processor utilization or
occupied processor resources, memory or storage utiliza-
tion, etc.); current or predicted unoccupied computational
resources (e.g., available or unused memory and/or proces-
sor resources, available VMs, etc.); network capabilities
(e.g., link adaptation capabilities, configured and/or maxi-
mum transmit power, achievable data rate per channel usage,
antenna configurations, supported radio technologies or
functionalities of a device (e.g., whether a UE 101 supports
Bluetooth/BLE; whether an (R)AN node 111 supports LTE-
WLAN aggregation (LWA) and/or LTE/WLAN Radio Level
Integration with IPsec Tunnel (LWIP), etc.), subscription
information of particular UEs 101, etc.); energy budget (e.g.,
battery power budget); and/or other like capabilities.

[0049] The operational contexts and/or constraints may be
any type of information about how a particular compute
node is operating and/or the conditions under which the
compute node is operating. The operational contexts and/or
constraints include, for example, channel state conditions
and/or quality of fronthaul links 103, 105, and/or 107, and
state conditions and/or quality of backhaul links/interfaces

May 9, 2019

112, 114, 115, 125; overload conditions experienced by UEs
101 and/or (R)AN nodes 111 and 106; application param-
eters such as computational needs, input/output character-
istics, and volume of exchanged data with an edge server, or
the like; conditions of individual hardware components
(e.g., temperature, load, utilization, current or predicted
available power, energy consumption measurements, etc.);
environmental information of an environment surrounding a
compute node (e.g., temperature, ambient light, sound/
volume, altitude, humidity, moisture, information/data
related to geographic objects (e.g., mountains) and/or
human-created objects (e.g., buildings, highways, etc.),
weather data for a given location, the geolocation or other
positioning information, and/or other like environmental
measurements); OS and/or application parameters and
requirements; and/or other like contextual information. In
some embodiments, the operational contexts and/or con-
straints may be based on a pre-assessment of an operational
state of the edge compute nodes 101, 102, which may be
based on previously indicated operational contexts and/or
constraints for different offloading opportunities. This may
involve, for example, evaluating both computation and
communication resources needed for different offloading
opportunities. The threshold criteria or a desired level of
reliability mentioned previously may be based on a certain
amount or type of compute node capabilities (e.g., a certain
processor speed) and/or a type of operational constraints
under which the compute node is operating (e.g., a desired
link quality, a desired surrounding temperature, a desired
processor temperature, etc.).

[0050] The fronthaul and/or backhaul link conditions may
include network performance information related to network
traffic measurements (e.g., measurements of the amount and
type of traffic flowing through or across one or more network
nodes), as well as various performance measurements. The
performance measurements may include information/data
related to bandwidth, channel/link throughput and/or data
rate, latency, jitter, error rate, a number of active UEs 101
and/or user sessions, packet delay, call and/or connection
drops, loss rate, data volume measurements, round trip times
(RTTs) and/or round-trip delay times (RTDs), QoS param-
eters, etc. The fronthaul link conditions may include the
aforementioned traffic and performance measurements, as
well as information/data related to signal strength measure-
ments (e.g., reference signal received power (RSRP),
received signal strength indicator (RSSI), etc.), signal qual-
ity measurements (e.g., reference signal received quality
(RSRQ), energy per bit to noise power spectral density ratio
(E,/Ny), signal-to-noise ratio (SNR), signal-to-interference-
plus-noise ratio (SINR), etc.), channel state information
(CSI), channel or network access information (e.g., a num-
ber of radio resource control (RRC) connection/setup/recon-
figuration attempts, a number of random access and/or
random access channel (RACH) attempts, a number of radio
link failures (RLFs), a number of handovers (HOs)/HO
attempts/HO failures, etc.), and/or the like.

[0051] Any of the aforementioned operational parameters
may be measured or otherwise determined stochasticly or
deterministicly. The stochastic operational parameters (or
stochastic components of the operational parameters) may
be randomly determined or measured, or may have a random
probability distribution or pattern that is analyzed statisti-
cally but may not be predicted precisely. The determininistic
operational parameters (or determininistic components of
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the operational parameters) may be measurements or infor-
mation produced without randomness. In other words, the
determininistic operational parameters when measured or
determined are likely to produce the same outcome given a
particular situation and/or context.

[0052] As mentioned previously, in a first embodiment,
the MEC system 200 distributes encoded training datasets
X,;-X,, to individual edge compute nodes 101, 201, and
calculates a full gradient from the partial gradients computed
by the edge compute nodes 101, 201 using the encoded
training datasets X,-X,,. In some such embodiments, the
MEC system 200 may provide or indicate an identifier of
remote resource(s) and/or remote memory/storage location
(s) where the training datasets x,-x,, and/or respective com-
putational tasks [,-f, can be located and accessed. In
various embodiments, the MEC system 200 determines a
coding redundancy to encode the training datasets x;-X,,,. A
redundancy is coded into the training datasets to avoid wait
time and bottleneck issues due to straggler nodes as dis-
cussed previously. The MEC system 200 determines the
coding redundancy based on the operational parameters of
each edge compute node 101, 201, which is used to encode
the respective training datasets x,-x,,. In some embodi-
ments, the coding redundancy is a function of the number of
data points in the full training dataset X. In an example
where the full training dataset X includes one thousand
(1000) data points to be distributed among ten (10) edge
compute nodes 101, 201, a redundancy for encoding the
training dataset X may be determined to be eleven hundred
(1100) data points based, for example, on the load balancing
policy discussed previously. In this example, the coding
redundancy is one hundred (100) additional data points, and
each of the ten edge compute nodes 101, 201 may receive a
training dataset x, with a portion of the additional one
hundred (100) data points of the coding redundancy. Con-
tinuing with this example, if the training dataset X is to be
equally divided among the ten edge compute nodes 101,
201, then the training dataset x, for each of the ten edge
compute nodes 101, 201 may be encoded to include one
hundred ten (110) data points. By encoding a redundancy
into the training datasets for each edge compute node 101,
201, the MEC system 200 does not have to wait for each
partial gradient to be obtained from each of the ten edge
compute nodes 101, 201 to compute the full gradient.
Instead, the MEC system 200 only has to wait computations
performed on one thousand data points of the distributed
training datasets. In this way, the MEC system 200 can avoid
the wait time and bottleneck issues due to straggler compute
nodes as discussed previously.

[0053] According to second embodiments, rather than
distributing training datasets x,-x,, to individual edge com-
pute nodes 101, 201, the training datasets x,-X,, may be
locally available or accessible at each of the edge compute
nodes 101, 201, and the MEC system 200 instructs the edge
compute nodes 101, 201 to perform training tasks ;-p,
using the locally available/accessible training datasets
X;-X,,. The locally available/accessible datasets x,-x,, may
be stored in local storage/memory circuitry of the edge
compute nodes 101, 201; may be accessed via a direct link
105 from a remote sensor, loT UE(s) 101, or some other UE
101; and/or may be accessed from a remote storage system
(e.g., cloud storage or via a platform provided by server(s)
130). As an example with reference to FIG. 1, the datasets
x,; and X, may be stored in local memory of UEs 101a and
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10154, respectively, while the dataset x5 may be accessed by
UE 101c from individual UEs 101x over direct links 105. In
this example, the dataset x; may include sensor data cap-
tured by IoT UEs 101x.

[0054] In these embodiments, the MEC system 200 deter-
mines a size of a subset of the local training datasets x,-X,,
that the individual edge compute nodes 101, 201 should
process, the particular tasks §,-f,; to be used to process the
local training datasets x,-X,,, and the coding redundancy to
be used to encode the locally available data. In some such
embodiments, the MEC system 200 may provide or indicate
an identifier or remote resource(s) and/or remote memory/
storage location(s) where the aforementioned information
can be located and accessed. In various embodiments, the
size of the local training datasets x,-X,, to be processed
and/or the coding redundancy is based on the operational
parameters of the individual edge compute nodes 101, 201.
In some embodiments, the size of the local training datasets
X,-X,, at each edge compute node 101, 201 is weighted based
on operational parameters. The coding redundancy and the
weights are used to reduce wait times and bottlenecks due to
straggler nodes. In these embodiments, the individual edge
compute nodes 101, 201 encode their locally available
training datasets X, -X,,, according to the coding redundancy
indicated by the MEC system 200. At each epoch, the edge
compute nodes 101, 201 locally perform tasks f3,-B, to
compute partial gradients on local uncoded training datasets
x,/X,,- These and other aspects of the embodiments are
discussed in more detail infra with respect to FIG. 2-5.

[0055] Referring back to FIG. 1, the environment 100 is
shown to include a user equipment (UE) 101a, UE 1015, UE
101c¢, and individual UEs 101x (collectively referred to as
“UE 101 or “UEs 101”). The UEs 101 may also be referred
to as “edge devices,” “compute nodes,” “edge compute
nodes,” and/or the like. In this example, the UE 101a is
illustrated as a smartphone, UE 1015 is illustrated as a tablet
computer (e.g., handheld touchscreen mobile computing
device connectable to one or more cellular networks), and
UE 101c is illustrated as a laptop computer. However, these
UEs 101 may comprise any mobile or non-mobile comput-
ing device, such as Personal Data Assistants (PDAs), pagers,
desktop computers, wireless handsets, vehicle-embedded
systems or a vehicle-to-everything (V2X) devices, or any
type of computing device including a wireless communica-
tions interface.

[0056] Environment 100 also includes IoT UEs 101x,
which are uniquely identifiable embedded computing
devices (e.g., within the Internet infrastructure) that com-
prise a network access layer designed for low-power IoT
applications utilizing short-lived UE connections. An loT
UE 101x can utilize technologies such as M2M or MTC for
exchanging data with an MTC server (e.g., a server 130), a
MEC server 201 and/or MEC system, or device via a PLMN,
ProSe or D2D communication, sensor networks, or IoT
networks. The M2M or MTC exchange of data may be a
machine-initiated exchange of data. An IoT network
describes an interconnecting loT UEs 102, such as the loT
UEs 102 in FIG. 1 being connected to one another over
respective direct links 105. The IoT UEs 102 may execute
background applications (e.g., keep-alive messages, status
updates, etc.) to facilitate the connections of the IoT net-
work. Where the IoT devices 102 are, or are embedded in,
sensor devices, the IoT network may be a wireless sensor
network (WSN).
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[0057] The UEs 101 may be configured to connect, for
example, communicatively couple, with RAN 110. In
embodiments, the RAN 110 may be an NG RAN or a 5G
RAN, an E-UTRAN, or a legacy RAN, such as a UTRAN
or GERAN. As used herein, the term “NG RAN” or the like
may refer to a RAN 110 that operates in an NR or 5G system
100, and the term “E-UTRAN” or the like may refer to a
RAN 110 that operates in an LTE or 4G system 100. The
UEs 101 utilize respective connections (or channels) 103,
respectively, each of which comprises a physical commu-
nications interface or layer. In this example, the connections
103 are illustrated as an air interface to enable communica-
tive coupling, and can be consistent with cellular commu-
nications protocols, such as a GSM protocol, a CDMA
network protocol, a PTT protocol, a POC protocol, a UMTS
protocol, a 3GPP LTE protocol, a 5G protocol, a NR
protocol, and/or any of the other communications protocols
discussed herein. In embodiments, the UEs 101 may directly
exchange communication data via a ProSe interface 105.
The ProSe interface 105 may alternatively be referred to as
a SL interface 105 and may comprise one or more logical
channels, including but not limited to a PSCCH, a PSSCH,
a PSDCH, and a PSBCH.

[0058] In embodiments, the UEs 101 may further directly
exchange communication data via respective direct inter-
faces 105. In some implementations the interface 105 may
be a WiFi based link or a personal area network (PAN) based
link (e.g., IEEE 802.15.4 based protocols including ZigBee,
IPv6 over Low power Wireless Personal Area Networks
(6LoWPAN), WirelessHART, MiWi, Thread, etc.; WiFi-
direct; Bluetooth/Bluetooth Low Energy (BLE) protocols).
In other implementations, the interface 105 may be an LTE
Proximity Services (ProSe) link. The ProSe interface 105
may alternatively be referred to as a sidelink interface, and
may comprise one or more logical channels, including but
not limited to a Physical Sidelink Control Channel
(PSCCH), a Physical Sidelink Shared Channel (PSSCH), a
Physical Sidelink Discovery Channel (PSDCH), and a
Physical Sidelink Broadcast Channel (PSBCH). In various
implementations, the SL interface 105 may be used in
vehicular applications and communications technologies,
which are often referred to as V2X systems. V2X is a mode
of communication where UEs (for example, UEs 101)
communicate with each other directly over the PCS5/SL
interface 105 and can take place when the UEs 101 are
served by Access Nodes (ANs) 111 or when one or more
UEs are outside a coverage area of a RAN. V2X may be
classified into four different types: vehicle-to-vehicle (V2V),
vehicle-to-infrastructure (V2I), vehicle-to-network (V2N),
and vehicle-to-pedestrian (V2P). These V2X applications
can use “co-operative awareness” to provide more intelli-
gent services for end-users. For example, UEs 101, (R)AN
nodes 111, application servers 130, and pedestrian UEs 101,
may collect knowledge of their local environment (for
example, information received from other vehicles or sensor
equipment in proximity) to process and share that knowl-
edge in order to provide more intelligent services, such as
cooperative collision warning, autonomous driving, and the
like. In these implementations, the UEs 101 may be imple-
mented/employed as Vehicle Embedded Communications
Systems (VECS) or the like.

[0059] The UEs 1015 and 101c¢ are shown to be configured
to access an access point (AP) 106 via respective connec-
tions 107. The connections 107 can comprise a local wire-
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less connection, such as a connection consistent with any
IEEE 802.11 protocol, wherein the AP 106 would comprise
a wireless fidelity (WiFi®) router. In this example, the AP
106 is shown to be connected to the Internet without
connecting to the core network 120 of the wireless system.
In various embodiments, the UE 1015, RAN 110, and AP
106 may be configured to utilize LWA operation and/or
LWIP operation. The LWA operation may involve the UE
1015 in RRC CONNECTED being configured by a RAN
nodes 111a-b to utilize radio resources of LTE and WLAN.
LWIP operation may involve the UE 1016 using WLAN
radio resources (e.g., connection 107) via [Psec protocol
tunneling to authenticate and encrypt packets (e.g., IP pack-
ets) sent over the connection 107. IPsec tunneling includes
encapsulating the entirety of original IP packets and adding
a new packet header, thereby protecting the original header
of the IP packets.

[0060] The RAN 110 can include one or more AN nodes
or RAN nodes 111a¢ and 1115 (collectively referred to as
“RAN nodes 1117 or “RAN node 111”) that enable the
connections 103 and 104. As used herein, the terms “access
node,” “access point,” or the like may describe equipment
that provides the radio baseband functions for data and/or
voice connectivity between a network and one or more
users. These access nodes can be referred to as BS, gNBs,
RAN nodes, eNBs, NodeBs, RSUs, TRxPs or TRPs, and so
forth, and can comprise ground stations (e.g., terrestrial
access points) or satellite stations providing coverage within
a geographic area (e.g., a cell). As used herein, the term “NG
RAN node” or the like may refer to a RAN node 111 that
operates in an NR or 5G system 100 (for example, a gNB),
and the term “E-UTRAN node” or the like may refer to a
RAN node 111 that operates in an LTE or 4G system 100
(e.g., an eNB). According to various embodiments, the RAN
nodes 111 may be implemented as one or more of a
dedicated physical device such as a macrocell base station,
and/or a low power (LP) base station for providing femto-
cells, picocells or other like cells having smaller coverage
areas, smaller user capacity, or higher bandwidth compared
to macrocells.

[0061] In some embodiments, all or parts of the RAN
nodes 111 may be implemented as one or more software
entities running on server computers as part of a virtual
network, which may be referred to as a CRAN and/or a
virtual baseband unit pool (vBBUP). In these embodiments,
the CRAN or vBBUP may implement a RAN function split,
such as a PDCP split wherein RRC and PDCP layers are
operated by the CRAN/vBBUP and other [.2 protocol enti-
ties are operated by individual RAN nodes 111; a MAC/
PHY split wherein RRC, PDCP, RLC, and MAC layers are
operated by the CRAN/vBBUP and the PHY layer is oper-
ated by individual RAN nodes 111; or a “lower PHY” split
wherein RRC, PDCP, RLC, MAC layers and upper portions
of the PHY layer are operated by the CRAN/vBBUP and
lower portions of the PHY layer are operated by individual
RAN nodes 111. This virtualized framework allows the
freed-up processor cores of the RAN nodes 111 to perform
other virtualized applications. In some implementations, an
individual RAN node 111 may represent individual gNB-
DUs that are connected to a gNB-CU via individual F 1
interfaces (not shown by FIG. 1). In these implementations,
the gNB-DUs include one or more remote radio heads or
RFEMs (see, e.g., FIG. 9), and the gNB-CU may be operated
by a server that is located in the RAN 110 (not shown) or by
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a server pool in a similar manner as the CRAN/vBBUP.
Additionally or alternatively, one or more of the RAN nodes
111 may be next generation eNBs (ng-eNBs), which are
RAN nodes that provide E-UTRA user plane and control
plane protocol terminations toward the UEs 101, and are
connected to a 5GC (e.g., CN XR220 of Figure XR2) via an
NG interface (discussed infra).

[0062] In V2X scenarios one or more of the RAN nodes
111 may be or act as RSUs. The term “Road Side Unit” or
“RSU” may refer to any transportation infrastructure entity
used for V2X communications. An RSU may be imple-
mented in or by a suitable RAN node or a stationary (or
relatively stationary) UE, where an RSU implemented in or
by a UE may be referred to as a “UE-type RSU,” an RSU
implemented in or by an eNB may be referred to as an
“eNB-type RSU,” an RSU implemented in or by a gNB may
be referred to as a “gNB-type RSU,” and the like. In one
example, an RSU is a computing device coupled with radio
frequency circuitry located on a roadside that provides
connectivity support to passing vehicle UEs 101 (vUEs
101). The RSU may also include internal data storage
circuitry to store intersection map geometry, traffic statistics,
media, as well as applications/software to sense and control
ongoing vehicular and pedestrian traffic. The RSU may
operate on the 5.9 GHz Direct Short Range Communications
(DSRC) band to provide very low latency communications
required for high speed events, such as crash avoidance,
traffic warnings, and the like. Additionally or alternatively,
the RSU may operate on the cellular V2X band to provide
the aforementioned low latency communications, as well as
other cellular communications services. Additionally or
alternatively, the RSU may operate as a Wi-Fi hotspot (2.4
GHz band) and/or provide connectivity to one or more
cellular networks to provide uplink and downlink commu-
nications. The computing device(s) and some or all of the
radiofrequency circuitry of the RSU may be packaged in a
weatherproof enclosure suitable for outdoor installation, and
may include a network interface controller to provide a
wired connection (e.g., Ethernet) to a traffic signal controller
and/or a backhaul network.

[0063] Any of the RAN nodes 111 can terminate the air
interface protocol and can be the first point of contact for the
UEs 101. In some embodiments, any of the RAN nodes 111
can fulfill various logical functions for the RAN 110 includ-
ing, but not limited to, radio network controller (RNC)
functions such as radio bearer management, uplink and
downlink dynamic radio resource management and data
packet scheduling, and mobility management.

[0064] In embodiments, the UEs 101 can be configured to
communicate using OFDM communication signals with
each other or with any of the RAN nodes 111 over a
multicarrier communication channel in accordance with
various communication techniques, such as, but not limited
to, an OFDMA communication technique (e.g., for down-
link communications) or a SC-FDMA communication tech-
nique (e.g., for uplink and ProSe or sidelink communica-
tions), although the scope of the embodiments is not limited
in this respect. The OFDM signals can comprise a plurality
of orthogonal subcarriers.

[0065] In some embodiments, a downlink resource grid
can be used for downlink transmissions from any of the
RAN nodes 111 to the UEs 101, while uplink transmissions
can utilize similar techniques. The grid can be a time-
frequency grid, called a resource grid or time-frequency
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resource grid, which is the physical resource in the downlink
in each slot. Such a time-frequency plane representation is
a common practice for OFDM systems, which makes it
intuitive for radio resource allocation. Each column and each
row of the resource grid corresponds to one OFDM symbol
and one OFDM subcarrier, respectively. The duration of the
resource grid in the time domain corresponds to one slot in
aradio frame. The smallest time-frequency unit in a resource
grid is denoted as a resource element. Each resource grid
comprises a number of resource blocks, which describe the
mapping of certain physical channels to resource elements.
Each resource block comprises a collection of resource
elements; in the frequency domain, this may represent the
smallest quantity of resources that currently can be allo-
cated. There are several different physical downlink chan-
nels that are conveyed using such resource blocks.

[0066] According to various embodiments, the UEs 101
and the RAN nodes 111 communicate data (for example,
transmit and receive) data over a licensed medium (also
referred to as the “licensed spectrum” and/or the “licensed
band”) and an unlicensed shared medium (also referred to as
the “unlicensed spectrum” and/or the “unlicensed band”).
The licensed spectrum may include channels that operate in
the frequency range of approximately 400 MHz to approxi-
mately 3.8 GHz, whereas the unlicensed spectrum may
include the 5 GHz band.

[0067] To operate in the unlicensed spectrum, the UEs 101
and the RAN nodes 111 may operate using LAA, eLAA,
and/or feLAA mechanisms. In these implementations, the
UEs 101 and the RAN nodes 111 may perform one or more
known medium-sensing operations and/or carrier-sensing
operations in order to determine whether one or more
channels in the unlicensed spectrum is unavailable or oth-
erwise occupied prior to transmitting in the unlicensed
spectrum. The medium/carrier sensing operations may be
performed according to a listen-before-talk (LBT) protocol.
[0068] LBT is a mechanism whereby equipment (for
example, UEs 101, RAN nodes 111, etc.) senses a medium
(for example, a channel or carrier frequency) and transmits
when the medium is sensed to be idle (or when a specific
channel in the medium is sensed to be unoccupied). The
medium sensing operation may include CCA, which utilizes
at least ED to determine the presence or absence of other
signals on a channel in order to determine if a channel is
occupied or clear. This LBT mechanism allows cellular/
LAA networks to coexist with incumbent systems in the
unlicensed spectrum and with other LAA networks. ED may
include sensing RF energy across an intended transmission
band for a period of time and comparing the sensed RF
energy to a predefined or configured threshold.

[0069] Typically, the incumbent systems in the 5 GHz
band are WLANs based on IEEE 802.11 technologies.
WLAN employs a contention-based channel access mecha-
nism, called CSMA/CA. Here, when a WLAN node (e.g., a
mobile station (MS) such as UEs 101, AP 106, or the like)
intends to transmit, the WLAN node may first perform CCA
before transmission. Additionally, a backoff mechanism is
used to avoid collisions in situations where more than one
WLAN node senses the channel as idle and transmits at the
same time. The backoff mechanism may be a counter that is
drawn randomly within the CWS, which is increased expo-
nentially upon the occurrence of collision and reset to a
minimum value when the transmission succeeds. The LBT
mechanism designed for LAA is somewhat similar to the
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CSMA/CA of WLAN. In some implementations, the LBT
procedure for DL or UL transmission bursts including
PDSCH or PUSCH transmissions, respectively, may have an
LAA contention window that is variable in length between
X and Y ECCA slots, where X and Y are minimum and
maximum values for the CWSs for LAA. In one example,
the minimum CWS for an LAA transmission may be 9
microseconds (us); however, the size of the CWS and a
MCOT (for example, a transmission burst) may be based on
governmental regulatory requirements.

[0070] The LAA mechanisms are built upon CA technolo-
gies of LTE-Advanced systems. In CA, each aggregated
carrier is referred to as a CC. A CC may have a bandwidth
of 1.4, 3, 5, 10, 15 or 20 MHz and a maximum of five CCs
can be aggregated, and therefore, a maximum aggregated
bandwidth is 100 MHz. In FDD systems, the number of
aggregated carriers can be different for DL and UL, where
the number of UL CCs is equal to or lower than the number
of DL component carriers. In some cases, individual CCs
can have a different bandwidth than other CCs. In TDD
systems, the number of CCs as well as the bandwidths of
each CC is usually the same for DL and UL.

[0071] CA also comprises individual serving cells to pro-
vide individual CCs. The coverage of the serving cells may
differ, for example, because CCs on different frequency
bands will experience different pathloss. A primary service
cell or PCell may provide a PCC for both UL and DL, and
may handle RRC and NAS related activities. The other
serving cells are referred to as SCells, and each SCell may
provide an individual SCC for both UL and DL. The SCCs
may be added and removed as required, while changing the
PCC may require the UE 101 to undergo a handover. In
LAA, elLAA, and feLAA, some or all of the SCells may
operate in the unlicensed spectrum (referred to as “LAA
SCells™), and the LAA SCells are assisted by a PCell
operating in the licensed spectrum. When a UE is configured
with more than one LAA SCell, the UE may receive UL
grants on the configured LAA SCells indicating different
PUSCH starting positions within a same subframe.

[0072] The PDSCH carries user data and higher-layer
signaling to the UEs 101. The PDCCH carries information
about the transport format and resource allocations related to
the PDSCH channel, among other things. It may also inform
the UEs 101 about the transport format, resource allocation,
and HARQ information related to the uplink shared channel.
Typically, downlink scheduling (assigning control and
shared channel resource blocks to the UE 1015 within a cell)
may be performed at any of the RAN nodes 111 based on
channel quality information fed back from any of the UEs
101. The downlink resource assignment information may be
sent on the PDCCH used for (e.g., assigned to) each of the
UEs 101.

[0073] The PDCCH uses CCEs to convey the control
information. Before being mapped to resource elements, the
PDCCH complex-valued symbols may first be organized
into quadruplets, which may then be permuted using a
sub-block interleaver for rate matching. Each PDCCH may
be transmitted using one or more of these CCEs, where each
CCE may correspond to nine sets of four physical resource
elements known as REGs. Four Quadrature Phase Shift
Keying (QPSK) symbols may be mapped to each REG. The
PDCCH can be transmitted using one or more CCEs,
depending on the size of the DCI and the channel condition.
There can be four or more different PDCCH formats defined
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in LTE with different numbers of CCEs (e.g., aggregation
level, L.=1, 2, 4, or 8). Some embodiments may use concepts
for resource allocation for control channel information that
are an extension of the above-described concepts. For
example, some embodiments may utilize an EPDCCH that
uses PDSCH resources for control information transmission.
The EPDCCH may be transmitted using one or more
ECCEs. Similar to above, each ECCE may correspond to
nine sets of four physical resource elements known as an
EREGs. An ECCE may have other numbers of EREGs in
some situations.

[0074] The RAN nodes 111 may be configured to com-
municate with one another via interface 112. In embodi-
ments where the system 100 is an LTE system (e.g., when
CN 120 is an Evolved Packet Core (EPC) 120), the interface
112 may be an X2 interface 112. The X2 interface may be
defined between two or more RAN nodes 111 (e.g., two or
more eNBs and the like) that connect to EPC 120, and/or
between two eNBs connecting to EPC 120. In some imple-
mentations, the X2 interface may include an X2 user plane
interface (X2-U) and an X2 control plane interface (X2-C).
The X2-U may provide flow control mechanisms for user
data packets transferred over the X2 interface, and may be
used to communicate information about the delivery of user
data between eNBs. For example, the X2-U may provide
specific sequence number information for user data trans-
ferred from a MeNB to an SeNB; information about suc-
cessful in sequence delivery of PDCP PDUs to a UE 101
from an SeNB for user data; information of PDCP PDUs that
were not delivered to a UE 101; information about a current
minimum desired buffer size at the SeNB for transmitting to
the UE user data; and the like. The X2-C may provide
intra-LTE access mobility functionality, including context
transfers from source to target eNBs, user plane transport
control, etc.; load management functionality; as well as
inter-cell interference coordination functionality.

[0075] In embodiments where the system 100 is a 5G or
NR system (e.g., when CN 120 is an Fifth Generation Core
(5GC)) 120, the interface 112 may be an Xn interface 112.
The Xn interface is defined between two or more RAN
nodes 111 (e.g., two or more gNBs and the like) that connect
to 5GC 120, between a RAN node 111 (e.g., a gNB)
connecting to 5GC 120 and an eNB, and/or between two
eNBs connecting to 5GC 120. In some implementations, the
Xn interface may include an Xn user plane (Xn-U) interface
and an Xn control plane (Xn-C) interface. The Xn-U may
provide non-guaranteed delivery of user plane PDUs and
support/provide data forwarding and flow control function-
ality. The Xn-C may provide management and error han-
dling functionality, functionality to manage the Xn-C inter-
face; mobility support for UE 101 in a connected mode (e.g.,
CM-CONNECTED) including functionality to manage the
UE mobility for connected mode between one or more RAN
nodes 111. The mobility support may include context trans-
fer from an old (source) serving RAN node 111 to new
(target) serving RAN node 111; and control of user plane
tunnels between old (source) serving RAN node 111 to new
(target) serving RAN node 111. A protocol stack of the Xn-U
may include a transport network layer built on Internet
Protocol (IP) transport layer, and a GTP-U layer on top of a
UDP and/or IP layer(s) to carry user plane PDUs. The Xn-C
protocol stack may include an application layer signaling
protocol (referred to as Xn Application Protocol (Xn-AP))
and a transport network layer that is built on SCTP. The
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SCTP may be on top of an IP layer, and may provide the
guaranteed delivery of application layer messages. In the
transport IP layer, point-to-point transmission is used to
deliver the signaling PDUs. In other implementations, the
Xn-U protocol stack and/or the Xn-C protocol stack may be
same or similar to the user plane and/or control plane
protocol stack(s) shown and described herein.

[0076] The RAN 110 is shown to be communicatively
coupled to a core network—in this embodiment, core net-
work (CN) 120. The CN 120 may comprise a plurality of
network elements 122, which are configured to offer various
data and telecommunications services to customers/sub-
scribers (e.g., users of UEs 101) who are connected to the
CN 120 via the RAN 110. The components of the CN 120
may be implemented in one physical node or separate
physical nodes including components to read and execute
instructions from a machine-readable or computer-readable
medium (e.g., a non-transitory machine-readable storage
medium). In some embodiments, NFV may be utilized to
virtualize any or all of the above-described network node
functions via executable instructions stored in one or more
computer-readable storage mediums (described in further
detail below). A logical instantiation of the CN 120 may be
referred to as a network slice, and a logical instantiation of
a portion of the CN 120 may be referred to as a network
sub-slice. NFV architectures and infrastructures may be
used to virtualize one or more network functions, alterna-
tively performed by proprietary hardware, onto physical
resources comprising a combination of industry-standard
server hardware, storage hardware, or switches. In other
words, NFV systems can be used to execute virtual or
reconfigurable implementations of one or more EPC com-
ponents/functions.

[0077] The CN 120 includes various core network ele-
ments or application functions (AFs) such as those discussed
previously. The CN 120 is shown to be communicatively
coupled to an application server 130 and a network 150 via
an IP communications interface 125. the one or more server
(s) 130 comprise one or more physical and/or virtualized
systems for providing functionality (or services) to one or
more clients (e.g., UEs 101) over a network (e.g., network
150). The server(s) 130 may include various computer
devices with rack computing architecture component(s),
tower computing architecture component(s), blade comput-
ing architecture component(s), and/or the like. The server(s)
130 may represent a cluster of servers, a server farm, a cloud
computing service, or other grouping or pool of servers,
which may be located in one or more datacenters. The
server(s) 130 may also be connected to, or otherwise asso-
ciated with one or more data storage devices (not shown).
Moreover, the server(s) 130 may include an operating sys-
tem (OS) that provides executable program instructions for
the general administration and operation of the individual
server computer devices, and may include a computer-
readable medium storing instructions that, when executed by
a processor of the servers, may allow the servers to perform
their intended functions. Suitable implementations for the
OS and general functionality of servers are known or
commercially available, and are readily implemented by
persons having ordinary skill in the art. Generally, the
server(s) 130 offer applications or services that use IP/net-
work resources. As examples, the server(s) 130 may provide
trafic management services, cloud analytics, content
streaming services, immersive gaming experiences, social
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networking and/or microblogging services, and/or other like
services. In addition, the various services provided by the
server(s) 130 may include initiating and controlling software
and/or firmware updates for applications or individual com-
ponents implemented by the UEs 101. The server(s) 130 can
also be configured to support one or more communication
services (e.g., Voice-over-Internet Protocol (VoIP) sessions,
PTT sessions, group communication sessions, social net-
working services, etc.) for the UEs 101 via the CN 120.

[0078] In some embodiments, the CN 120 may be a SGC
(referred to as “SGC 120” or the like), and the RAN 110 may
be connected with the CN 120 via an NG interface 113. In
embodiments, the NG interface 113 may be split into two
parts, an NG user plane (NG-U) interface 114, which carries
traffic data between the RAN nodes 111 and a UPF, and the
S1 control plane (NG-C) interface 115, which is a signaling
interface between the RAN nodes 111 and AMFs.

[0079] In some embodiments, the CN 120 may be a 5G
CN (referred to as “SGC 120” or the like), while in other
embodiments, the CN 120 may be an EPC). Where CN 120
is an EPC (referred to as “EPC 120” or the like), the RAN
110 may be connected with the CN 120 via an S1 interface
113. In embodiments, the S1 interface 113 may be split into
two parts, an S1 user plane (S1-U) interface 114, which
carries traffic data between the RAN nodes 111 and the
S-GW, and the S1-MME interface 115, which is a signaling
interface between the RAN nodes 111 and MMES.

[0080] The network 150 comprises computers, network
connections among the computers, and software routines to
enable communication between the computers over network
connections. In this regard, the network 150 comprises one
or more network elements that may include one or more
processors, communications systems (e.g., including net-
work interface controllers, one or more transmitters/receiv-
ers connected to one or more antennas, etc.), and computer
readable media. Examples of such network elements may
include wireless access points (WAPs), home/business serv-
ers (with or without radio frequency (RF) communications
circuitry), routers, switches, hubs, radio beacons, base sta-
tions, picocell or small cell base stations, and/or any other
like network device. Connection to the network 150 may be
via a wired or a wireless connection using the various
communication protocols discussed infra. As used herein, a
wired or wireless communication protocol may refer to a set
of standardized rules or instructions implemented by a
communication device/system to communicate with other
devices, including instructions for packetizing/depacketiz-
ing data, modulating/demodulating signals, implementation
of protocols stacks, and the like. More than one network may
be involved in a communication session between the illus-
trated devices. Connection to the network 150 may require
that the computers execute software routines which enable,
for example, the seven layers of the OSI model of computer
networking or equivalent in a wireless (cellular) phone
network. Network 150 may be used to enable relatively
long-range communication such as, for example, between
the one or more server(s) 130 and one or more UEs 101. The
network 150 may represent the Internet, one or more cellular
networks, local area networks, or wide area networks includ-
ing proprietary and/or enterprise networks, Transfer Control
Protocol (TCP)/Internet Protocol (IP)-based network, or
combinations thereof. In such embodiments, the network
150 may be associated with network operator who owns or
controls equipment and other elements necessary to provide
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network-related services, such as one or more base stations
or access points, one or more servers for routing digital data
or telephone calls (for example, a core network or backbone
network), etc.

[0081] As shown by FIG. 1, each of the (R)AN nodes 111
and AP 106 are co-located with MEC servers 201a, 2005,
and 200c, respectively. These implementations may be
small-cell clouds (SCCs) where a MEC server 201 is co-
located with a small cell (e.g., pico-cell, femto-cell, etc.), or
may be mobile micro clouds (MCCs) where a MEC server
201 is co-located with a macro-cell (e.g., an eNB, gNB,
etc.). The MEC servers 201 may be deployed in a multitude
of arrangements other than as shown by FIG. 1. In a first
example, the MEC servers 201 may be co-located or oper-
ated by RNCs, which may be the case for legacy network
deployments, such as 3G networks. In a second example, the
MEC servers 201 may be deployed at cell aggregation sites
or at multi-RAT aggregation points that can be located either
within an enterprise or used in public coverage areas. In a
third example, the MEC servers 201 may be deployed at the
edge of Core Network (CN) 120. These implementations
may be used in follow-me clouds (FMC), where cloud
services running at distributed data centers follow the UEs
101 as they roam throughout the network.

[0082] The (R)AN nodes 111 are shown to be communi-
catively coupled to a CN 120—via interface 114 or 115. In
embodiments, the CN 120 may be an evolved packet core
(EPC) network, a NextGen Packet Core (NPC) network, a
5G core (5GC), or some other type of CN. The CN 120 may
be associated with a network operator who owns or controls
equipment and other elements necessary to provide network-
related services, such as the (R)AN nodes 111, one or more
servers and/or network function virtualization infrastructure
(NFVI) for implementing the various elements of the CN
120 and various elements of the MEC system 200. In some
embodiments, Network Functions Virtualization (NFV) is
utilized to virtualize any or all of the above described
network node functions via executable instructions stored in
one or more computer readable storage mediums.

[0083] According to various embodiments, task offloading
may be “opportunistic”, wherein the MEC system 200 (or
MEC server 2015 selected as the master node in the example
of FIG. 1) may offload ML training tasks f,-f, and/or
training datasets X, -x,,, to a UE 101 taking into account the
computational complexity of the ML training tasks ;-p,
and/or the amount of computational and network/signaling
resources available at the UE 101. For example, a MEC
server 201 may offload a certain number and/or type of tasks
[,-Ps and/or a size and/or type of training data X,-X,, based
on the quality or strength of its link 103, 105, 107, the
strength or quality of the computational resources available
at the UE 101, an amount of available memory or a current
memory utilization of the UE 101, and/or based on other
operational parameters of (or experienced by) the UE 101.
For some identified tasks, the MEC system 200 may evalu-
ate the offloading opportunity (e.g., the “tradeoft”) with
respect to available UEs 101, in which case the MEC system
200 may offload tasks ;- and training datasets x,-x,, to
certain UEs 101 that are capable of providing output data
from performing their respective tasks §,-f3; (e.g., calculated
partial gradients) back to the MEC server 201 in a desired
period of time.

[0084] In a first example and with reference to FIG. 1, the
first link 103 that communicatively couples UE 101a with
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(R)AN node 1114 is a lower quality channel than the second
link 103 that communicatively couples UE 1016 with
(R)AN node 1115. In one version of this first example, the
MEC server 2015 may partition the training data X such that
the training dataset x, for UE 1015 has more data points than
the training dataset x; for UE 101a. By allowing the UE
101a with a lower quality link 103 to perform computations
on fewer data points, the UE 101a may provide the output
data to the MEC server 201 within the desired period of
time. In another version of this first example, the MEC
server 2015 may balance the computational load of the
underlying ML model y such that more tasks 3, for UE 1015
includes more computations or more complex computations
than tasks f§; for UE 101a. By allowing the UE 101a with a
lower quality link 103 to perform fewer computations or less
complex computations on its dataset x,, the UE 101a may
provide the output data to the MEC server 201 within the
desired period of time. In another version of this first
example, the training dataset X, is locally available at the UE
101a and the training dataset X, is locally available at the UE
1015, and the MEC server 2015 may provide encoding
criteria to the UE 101a to encode fewer data points within
the training dataset x, than the number of data points of the
training dataset x, to be encoded by UE 1015, such that the
UE 1014 and UE 1015 provide their encoded datasets to the
MEC server 201 within a same or similar amount of time.

[0085] In a second example and with reference to FIG. 1,
the UE 1015 is communicatively coupled with (R)AN node
1115 via a low quality cellular link 103, and communica-
tively coupled with AP 106 with a better quality WiFi link
107. In this example, the MEC server 2015 may offload tasks
[, with training dataset x, or encoding criteria to UE 1015,
and request the UE 1015 to provide the output data to MEC
server 201¢ co-located with, or implemented by, AP 106.
[0086] In athird example and with reference to FIG. 1, the
UE 10156 is communicatively coupled with (R)AN node
1115 via relatively low quality link 103. In this example, the
UE 1015 may evaluate and request a relatively close or
proximate UE 101c¢ having better computation capabilities
and a better communication link 107 to AP 106 than the link
103 with the (R)AN node 1114. In this example, the UE
1015 may offload one or more computational tasks to the
proximate UE 101¢ using a direct link 105 or via a direct,
line of sight (LOS) link with a local small cell (e.g., AP 106
in the example of FIG. 1).

[0087] Based on the operational parameters discussed
previously, offloading tradeoffs may be evaluated and opti-
mal or best offloading opportunities may be determined
based on the tradeoffs. In a first example, the MEC server
2015 may evaluate tradeoffs and find an optimal offloading
opportunity, and the MEC server 2015 may send requests
directly to one or more edge compute nodes 101, 102 to
offload certain tasks f§;-f,. In a second example, the MEC
server 2015 may request other MEC servers 201a and 201¢
to assign one or more tasks f3,-f3; to various edge compute
nodes 101. In a third example, the MEC server 2015 may
consider tasks f3,-f; at the application level (e.g., computa-
tional capabilities, etc.), and the MEC server 2015 may
request the other MEC servers 201a and 201c¢ to consider
link/channel criteria for offloading tasks f3,-f3; to individual
edge node 101.

[0088] As an example of the first embodiment, the MEC
server 2015 includes encoding circuitry coupled with pro-
cessor circuitry, where the encoding circuitry is arranged to
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encode a raw dataset into an encoded training dataset X. The
raw dataset may be collected from one or more edge
compute nodes 101, 201 and/or from some other data
source. The encoded training dataset X includes a number of
extra data points based on the determined coding redun-
dancy. The number of extra data points included in the
encoded training dataset X may be the same number of data
points as the number of data points in the raw dataset, or the
number of extra data points in the encoded training dataset
X may be greater than the number of data points in the raw
dataset. The encoding circuitry may be arranged to encode
the raw dataset using a random linear encoder. Operation of
the random linear encoder enables to MEC server 2015 to
select each element of a random generator matrix indepen-
dently from a normal distribution, a Bernoulli distribution,
or some other suitable distribution. The random generator
matrix has ¢ number of rows and m number of columns such
that any m subset of ¢ rows is a near-orthogonal mxm
matrix, where ¢c>mz1.

[0089] The processor circuitry is arranged to partition the
encoded training dataset X into a set of training data
partitions X, X,, X3, X,, ;, and X,,,, and assigns each training
data partition X, X,, X3, X,,,_;, and x,,, to corresponding edge
compute nodes 101, 201 that are available to perform
computations for a distributed ML training process. The
number of data points included in each training data parti-
tion X;, X,, X;, X,,;, and X,, is based on one or more
operational parameters of the corresponding edge compute
nodes 101, 201. The MEC server 2015 also includes com-
munication circuitry communicatively coupled with the pro-
cessor circuitry. The communication circuitry is arranged to
transmit each training data partition X,, X,, X3, X,, ;, and X,,
to corresponding edge compute nodes 101, 201, and receive
computed partial gradients from a subset of the correspond-
ing edge compute nodes 101, 201. The processor circuitry is
arranged to determine updated ML training parameters (e.g.,
a full or complete gradient) based on an aggregation of the
received computed partial gradients, and the communication
circuitry is arranged to transmit the updated ML training
parameters to the corresponding heterogeneous compute
nodes.

[0090] In this example, the processor circuitry is arranged
to determine the coding redundancy value based on the
operational parameters and a load allocation criterion. The
load allocation criterion may be based on a minimax crite-
rion. The minimax criterion is a value that maximizes a
number of partial gradients to be received from each het-
erogeneous compute node while minimizing the epoch time.

[0091] As an example of the second embodiment, the
MEC server 2015 includes processor circuitry arranged to
determine a coding redundancy for each edge compute node
101, 201 available to perform computations for a distributed
ML training process. The coding redundancy indicates a
number of encoded data points, which are generated from
uncoded data (or raw data) available at each edge compute
node 101, 201 to be included in a respective encoded
training data partition X,, X,, X3, X,,_;, and x,, based on
operational parameters of each edge compute node 101, 201.
The MEC server 2015 also includes communication cir-
cuitry communicatively coupled with the processor cir-
cuitry. The communication circuitry is arranged to transmit
an indication of the number of data points and the coding
redundancy to each edge compute node 101, 201, receives
encoded training data partitions X, X,, X5, X,,,_;, and x,, from
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a set of the edge compute nodes 101, 201, and also receives
first partial gradients based on the uncoded (or raw) data
from the set of the edge compute nodes 101, 201. In this
example, the processor circuitry is arranged to determine
second partial gradients based on the encoded training data
partitions X, X,, X3, X,,_;, and x,,, and determine updated
ML training parameters (e.g., a full or complete gradient)
based on an aggregation of the first partial gradients with the
second partial gradients. The communication circuitry is
arranged to transmit the updated ML training parameters
and/or the aggregated partial gradients to corresponding
edge compute nodes 101, 201. The communication circuitry
may also be arranged to transmit a probability value with the
indication of the number of data points and the coding
redundancy to each edge compute node 101, 201. The
probability value indicates a probability that the first partial
gradient will be received within a predetermined epoch time.
Each edge compute node 101, 201 uses the probability value
to weight the uncoded data before encoding is performed.

[0092] In this example, the processor circuitry is arranged
to determine the coding redundancy based on the operational
parameters and a load allocation criterion. The load alloca-
tion criterion may be, or may be based on, a minimax
criterion. The minimax criterion is a value that maximizes a
number of partial gradients to be received from each edge
compute nodes 101, 201 while minimizing a desired epoch
time. The desired epoch time is based on a computation time
for computation of the partial gradients at each edge com-
pute node 101, 201, and an amount of time for receiving the
partial gradients from respective edge compute node 101,
201. The computation time may also be based on one or
more deterministic components and/or one or more stochas-
tic components of the operational parameters of each edge
compute node 101, 201. The processor circuitry may also be
arranged to determine the coding redundancy based on a
desired number of encoded data points to be accepted for
determination of the second partial gradients. Additionally,
the number of data points to be included in the encoded
training data partition, as indicated by the coding redun-
dancy, may be a fraction of a total number of uncoded data
points distributed across all computing nodes.

[0093] In this example, each edge compute node 101, 201
includes encoding circuitry arranged to encode their locally
available or accessible uncoded (or raw) data into respective
training data partitions X;, X,, X5, X,,,_;, and x,,,. The encoding
circuitry of each edge compute node 101, 201 may use a
random linear encoder. In this example, the encoding cir-
cuitry of each edge compute node 101, 201 may operate a
respective random linear encoder to select each element of
a random generator matrix independently from a normal
distribution, a Bernoulli distribution, or some other suitable
distribution. The random generator matrix includes & num-
ber of rows and m number of columns such that any m subset
of § rows is a near-orthogonal mxm matrix, where d>mz=1.

[0094] FIGS. 2-5 show example distributed ML proce-
dures 200-500, respectively, in accordance with various
embodiments. For illustrative purposes, the various opera-
tions of processes 200-500 is described as being performed
by one or more data collector nodes 2102 (e.g., including
UEs 101a-c and/or IoT UEs 101x of FIG. 1), one or more
edge compute nodes 2101 (e.g., including UEs 101, one or
more MEC servers/hosts 201, (R)AN nodes 111, AP 106,
RSUs, relay nodes, distributed units, etc. FIG. 1), and a
master node 2112 (e.g., the MEC system 200 or a selected
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MEC server 2016 in FIG. 1). Additionally, the various
messages/signaling communicated between the data collec-
tor nodes 2102, edge compute nodes 2101, and the master
node 2112 may be sent and received over various interfaces
discussed infra with respect to FIGS. 6-15, and using the
various mechanisms discussed herein including those dis-
cussed infra with respect to FIGS. 6-15. While particular
examples and orders of operations are illustrated FIGS. 2-5,
the depicted orders of operations should not be construed to
limit the scope of the embodiments in any way. Rather, the
depicted operations may be re-ordered, broken into addi-
tional operations, combined, and/or omitted altogether while
remaining within the spirit and scope of the present disclo-
sure.

[0095] FIG. 2 depicts an example distributed machine
learning procedure 200 according to a first embodiment. The
distributed machine learning procedure 200 is used for
embodiments where training dataset and computational
tasks are distributed to one or more edge compute nodes
2101. Procedure 200 begins at operation 203 where edge
compute nodes 2101 provide operational parameters to the
master node 2112, which includes indications of compute
node capabilities and operational constraints as discussed
previously. The edge compute nodes 2101 may identify their
operational parameters using suitable APIs and/or applica-
tion binary interfaces (ABIs), middleware, drivers, configu-
ration files, trusted application(s), RF measurement mecha-
nisms, and/or other like mechanisms to obtain or identify
their respective operational parameters. In some embodi-
ments, the data collector nodes 2102 may also provide their
operational parameters to the master node 2112 in a same or
similar manner as the edge compute nodes 2101. The
identified operational parameters may be packaged into
appropriate messages for communication according to know
mechanisms and protocols. Meanwhile, at operation 206,
one or more data collector nodes 2102 and edge compute
nodes 2101 provide data to the master node 2112, which
may include raw sensor data or other suitable types of data.
The data may be captured using and packaged into appro-
priate messages for communication according to know
mechanisms and protocols, such as those discussed herein.
Operations 203 and 206 may repeat as necessary, for
example, on a periodic basis, during procedure 200 includ-
ing during operation of the other operations of procedure
200 discussed infra.

[0096] At operation 209, the master node 2112 determines
a redundancy and load partitions based on the operational
parameters and a load balancing policy. At operation 212,
the master node 2112 encodes the data with the coding
redundancy to obtain individual training datasets. At opera-
tion 215, the master node 2112 provides the encoded training
datasets to respective edge compute nodes 2101, and at
operation 218, the master node 2112 provides computational
tasks (compute assignments) to the respective edge compute
nodes 2101 for calculating output data, such as partial
gradients when the underlying ML algorithm is a GD
algorithm. At operation 221, each edge compute node 2101
computes a partial gradient, and at operation 224, the edge
compute nodes 2101 individually provide their respective
partial gradients to the master node 2112 once they complete
their local calculations. At operation 227, the master node
2112 aggregates the partial gradients to obtain a complete
gradient. Note that, because the coding redundancy was
encoded into the individual training datasets at operation
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212, the master node 2112 does not have to wait for each
compute node 2101 to provide their partial gradients in order
to compute the complete gradient. In addition, the master
node 2112 may update the underlying model, and at opera-
tion 230, the master node 2112 provides the updated or
refined model back to the edge compute nodes 2101 for the
next epoch in the iterative training process. In some embodi-
ments, the complete gradient is provided to the edge com-
pute nodes at operation 230. At operation 233, the edge
compute nodes 2101 calculate an updated partial gradient,
which is then provided to the master node 2112 at operation
236 for further aggregation similar to operation 227 (not
shown by FIG. 2). Operations 224-236 repeat until the
underlying model sufficiently converges.
[0097] In the example of FIG. 2, training is performed for
a supervised machine learning problem (e.g., a GD algo-
_____ 1o learn
training data, k is a number of data points (or training
symbols) in X, where k=k to m, and y, is an associated
model level related to each of the data in X, (e.g., where the
underlying model is a single or multi-level model). Each
training label is a row vector of training symbols X,=[x, ,,
ce xk,d]ERl"d, and y,ER is an associated scalar measure-
ment. Under the linear model, the training data can be
represented by equation 0.

Y=XP+n

[0098] Inequation O, f§ is the model to be created, X is the
input data, and Y is/are the output variables. In addition, for
equation O,

(equation 0)

is an mxd training symbol matrix,

A
ﬁé[ : ]
Ba

is a dx1 unknown model parameter matrix,

i

is an mx] measurement noise (e.g., Gaussian) matrix, and

i

is an mx] measurement vector collected for training.
[0099] Gradient descent (GD) is an optimization algo-
rithm used to minimize a target function by iteratively

[

(b3
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moving in the direction of a steepest descent as defined by
a negative of the gradient. An objective of GD in machine
learning (ML) is to utilize a training dataset D in order to
accurately estimate the unknown model § over one or more
epochs r. In ML, GD is used to update the parameters of the
unknown model 8. Parameters refer to coefficients in linear
regression and weights in a neural network. These objectives
are realized in an iterative fashion by computing f” at the
r-th epoch, and evaluating a gradient associated with the
squared-error cost function defined by f (f“))=Xp"-Y]P.
The cost function indicates how accurate the model f is at
making predictions for a given set of parameters. The cost
function has a corresponding curve and corresponding gra-
dients, where the slope of the cost function curve indicates
how the parameters should be changed to make the model
more accurate. In other words, the model f§ is used to make
predictions, and the cost function is used to update the
parameters for the model 3. The gradient of the aforemen-
tioned squared-error cost function is given by equation 1,
and B is updated at each epoch r according to equation 2

(equation 1)

Vs f(B7) =X (X7 -Y)

e )

(equation 2)

[0100] Inequation 2, m is the total number of observations
(i.e., data points), | is a learning rate (also referred to as an
update parameter or step size) for moving down a particular
gradient, where O<u=<l1, and VBf(B(’)) is a prediction based
on the model . In general, 1 is designed to be a relatively
small value, such as 0.01 or 0.001 to improve precision and
avoid overshot issues. However, using a low learning rate
may be more time consuming when calculating the gradient.
Additionally, B may be initialized arbitrarily. GD involves
computing equations 1 and 2 in tandem until the model
parameters converge sufficiently. The gradient in equation 1
requires multiplications involving matrices and vectors of
large sizes. Therefore, GD becomes computationally pro-
hibitive as dataset and model parameters become massive.

[0101] In order to meet computation demand of equation
1 according to a first embodiment, one approach is to
distribute the training dataset across many edge compute
nodes 2101 that can locally compute partial gradients from
respective data subsets (see e.g., operation 224 in FIG. 2)
and communicate the computed partial gradients back to the
master node 2112 for aggregation (see e.g., operation 227 in
FIG. 2). More specifically, equation 1 can be decomposed
into m partial sums as shown by equation 3.

mn (equation 3)
Vol (B =D X K = o)

k=1

[0102] In an uncoded distributed gradient computing, the
training dataset D is uniformly distributed to edge compute
nodes 2101. The edge compute nodes 2101 compute the
partial sums corresponding to their respective data subsets in
equation 3 to evaluate partial gradients and send them back
to the master node 2112 for aggregation (see e.g., operation
227 in FIG. 2). The master node 2112 can then use equation
2 to update the model and communicate the updated model
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back to the working compute nodes 2101 (see e.g., operation
230 in FIG. 2), and this process is repeated at each epoch
until the model converges.

[0103] In a heterogeneous computing environment (e.g.,
environment 100 of FIG. 1), non-dedicated compute nodes
2101 are used for on-demand distributed gradient comput-
ing. Therefore, each compute node 2101 may have different
operational parameters (e.g., processing speeds/rates,
memory constraints, active running processes, link/channel
conditions, different operating environments, etc.). One way
to statistically represent the heterogeneity of the heteroge-
neous computing environment 100 is to model the compu-
tation time at each compute node 2101 as a shifted expo-
nential random variable T, given by equation 3.1.

0 =T+ s

[0104] In equation 3.1, the deterministic component T,
depends on the processing rate and the number of data points
assigned to the k-th device (e.g., compute node 2101,), and
the random component T,, models randomness coming
from memory read/write cycles required during multiply-
accumulate operations for computing the partial gradient at
the k-th device (e.g., compute node 2101,). As mentioned
previously, the wireless communication links 103, 107
between the master node 2112 and worker nodes 2101 may
have stochastic fluctuations in link quality. In order to
maintain reliable service, link adaptation becomes impera-
tive where wireless links are periodically measured and
achievable data rates are adjusted. In particular, a wireless
link between the master node 2112 and the k-th edge
compute node 2101, may be given by (r;, p,), where r, is the
achievable bits per channel use in order to have an erasure
probability smaller than p,. In various embodiments, the rate
1, is dynamically adapted with respect to the changing link
quality in order to maintain a constant erasure probability p
(or p,) during the entire gradient computation (see e.g.,
operation 227 of FIG. 2). As alluded to previously, an
uncoded gradient computation carried out according to
equation 3 may perform poorly due to the straggler effect
coming from either the computation time and/or the link
quality or both. Therefore, in various embodiments, the
training datasets are encoded with a suitable coding redun-
dancy (see e.g., operations 209 and 2112 of FIG. 2).
Examples of coding redundancy calculation and load bal-
ancing (partitioning) according to the first embodiment is
discussed in more detail with respect to Figure m12.
[0105] According to the first embodiment, the training
data may be (en)coded to tackle the straggler effect
described previously. In various embodiments, linear ran-
dom coding is performed on a training dataset D. In par-
ticular, a random generator matrix G, with elements drawn
independently from a standard normal distribution, applied
at the master node on the training dataset to obtain a coded
training dataset D=(X, ¥), where X=G X, and Y=G Y.
[0106] The dimension of G is a measure of coding redun-
dancy. If G is a cxm matrix, then the fraction

(equation 3.1)

B
v
—

is the coding overhead incurred. Here, ¢ is the coding
redundancy, and m is the number of data points that are used
to calculate the gradient (i.e., the m partial sums discussed
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previously). In other words, m is the number of data points
over which a partial gradient is calculated. The amount of
redundancy depends on the operational parameter heteroge-
neities {(Tp, 1)}my .- The coded dataset is partitioned
into n disjointed groups, {X;. Yoler . . ,» where
X, ER¥? and Y ,ER™!, such that X,_,” 1,=c. The n dis-
jointed groups may be referred to as “partitions,” and each
partition is assigned to its respective edge compute node
2101 (see e.g., operation 209 of FIG. 2). In one example,
encoding circuitry of the master node 2112 may encode each
training dataset using a random linear encoder. In this
example, the encoding circuitry may operate the random
linear encoder to select each element of a random generator
matrix independently from a normal distribution or from a
Bernoulli distribution. The random generator matrix
includes ¢ number of rows and m number of columns such
that any m subset of ¢ rows is a near-orthogonal mxm
matrix, where ¢c>mz1.

[0107] FIG. 3 depicts a load partitioning process 300
according to the first embodiment. Process 300 is used for
computing a coding redundancy ¢ and for performing load
balancing or partitioning (see e.g., operation 209 of FIG. 2),
which is eventually followed by decoding and aggregation
of obtained partial gradients (see e.g., operation 227 of FIG.
2). Process 300 begins at operation 303 where individual
edge compute nodes 2101 provide operational parameters to
the master node 2112. In this example, the edge compute
nodes 2101 provide a link/channel quality indication for
their respective links 103, 107 (e.g., given as (r;, p;), where
k is a number from 1 to n), and a processing capabilities
indication (e.g., given as (a;, W), where k is a number from
1 to n), which are then feed into a load balancing (or data
partitioning) engine 310 at operation 306. The load balanc-
ing engine 310 is operated by the master node 2112 to
execute the illustrated algorithm including operations 309-
327.

[0108] At operation 309, the load balancing engine 310
identifies, determines, or reads in various parameters includ-
ing a fixed time t, a unit time At (which may indicate a
predicted processing time for an edge compute node 2101
for a given number of data points or some other suitable time
value), and a tolerance parameter Am. For the fixed time t,
the aggregate return until time t for any epoch is defined as
a random variable as shown by equation 4.

n n

Reh= Reh)=) il

i=1 i=1

(equation 4)

[0109] In equation 4, for a load allocation 1, the aggregate
return denotes the total number of points in the (en)coded
dataset that have been processed at the edge compute nodes
2101, and the corresponding partial gradients that have been
(or will be) received at the master node until time t in any
epoch r. At operation 312, the load balancing engine 310
determines a load allocation for each edge compute node
2101, where i is a number from 1 to n. For each edge
compute node 2101:, 1,*(t) is defined by equation 5.

1*(t)=arg;, max E(R(11,)
[0110] Equation 5, in turn, maximizes the expectation of

the aggregate return defined in equation 4. In equation 5,
L*(t) is the load allocation (or partition) for a particular

(equation 5)
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compute node 2101, at time t, where the sum of all of the
load partitions 1,*(t) for all edge compute nodes 2101 is
equal to the coding redundancy c. The coding redundancy ¢
may be the total number of encoded data points to be
distributed, where 1,%(t) is a certain portion of those encoded
datapoints. At operation 315, the load balancing engine 310
determines a maximum aggregate return until time t
(MART). Based on equation 5, the maximum expected
aggregate return until time t (MART) is denoted by equation
6.

n (equation 6)
ER(s; I'(0) = Z E(R(5; [ ()

i=1

[0111] At operation 318, the load balancing engine 310
determines whether the MART is greater than or equal to the
number of data points m and less than or equal to a
combination of the number of data points m and the toler-
ance parameter Am In embodiments, t* (or At) may be
obtained based on a solution to the optimization problem of
equation 7. In equation 7, Am is the tolerance parameter.

minz (equation 7)

such that m < E(R(5; *(D)) <m + Am

[0112] If'the determination at operation 318 (e.g., equation
7) is true, the load balancing engine 310 ends the load
balancing/partitioning algorithm, and generates the coding
redundancy ¢ and the load partitions 1,*(t) for each edge
compute node 2101. If the determination at operation 318
(e.g., equation 7) is false, the load balancing engine 310
proceeds to operation 321 to determine whether the MART
is less than the number of data points m. If the determination
at operation 321 is true, then the load balancing engine 310
increments the fixed time t by the unit time At at operation
327. If the determination at operation 321 is true, then the
load balancing engine 310 decrements the fixed time t by the
unit time At at operation 324. This process repeats until
operation 318 (e.g., equation 7) is determined to be true, at
which point, the load balancing engine 310 ends the load
balancing/partitioning algorithm, and generates the coding
redundancy ¢ and the load partitions 1,*(t) for each edge
compute node 2101. Then the load balancing engine 310
provides the coding redundancy ¢ and the load partitions
L*(t) for each edge compute node 2101 to, for example,
encoding circuitry of the master node 2112 to be encoded for
each edge compute node 2101 at operation 330.

[0113] According to various embodiments, the master
node 2112 decodes the partial gradients by aggregating the
partial gradients. At each epoch, the master node receives
partial gradients corresponding to the subsets of the coded
dataset assigned to the working compute nodes 2101. Irre-
spective of the amount of coding redundancy c, it suffices to
collect enough partial gradients that cover at least m coded
data points. The k-th edge compute nodes 2101 computes
the partial gradient corresponding to its assigned subset of
the coded dataset as shown by equation 8.1, and sends the
computed partial gradient back to the master node. The
master node waits for coded partial gradients received from
the first p edge compute nodes 2101 such that 2,_# 1,=m.
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After the master node receives coded partial gradients from
the first p edge compute nodes 2101, the master node
combines the received partial gradients to obtain a full or
complete coded gradient according to equation 8.2.

X (X B -1 (equation 8.1)

(equation 8.2)

1=

Xy (XeB = 3,)

EY
[N

[0114] In equation 8.2, q represents the g-th row from the
coded dataset D. When the random generator matrix G can
be written as

N

wherein g, ER™™™ is a row vector, equation § can be written
as equation 9.

(b3

m (equation 9)
Z X' o' (0. X BD Y)=

84(8qX BT —gg¥) =
a=1

> X'gigq(X f7-Y) = X’[Z g;gq](x B -1
g=1 g=1

[0115] From the weak law of large numbers,

L
ZZ 8,84
g=1

will be an identity matrix. Therefore, the combined coded
gradient given by equation 8.2 can be normalized by m to
obtain an approximation of the uncoded full gradient in
equation 1, which is shown by equation 10.

LS s (equation 10)
lim = > | Xg(%gf7 =3,)= X'(xX B - 1)

Mmoo M
g=1

[0116] Based on equation 10, the embodiments herein
provide zero decoding complexity at the master node 2112.
[0117] A simulation was performed for the first embodi-
ment, which included a simulation of a heterogeneous
computing environment with 24 edge compute nodes 2101
and one master node 2112. The simulation used an LTE
network, where each edge compute node 2101 was assigned
3 resource blocks with uplink and downlink channels having
similar channel quality statistics. Furthermore, the link
capacities (normalized) were generated using {1, kFacl,
kFac1?, ..., kFac1**} and a random permutation of the link
capacities were assigned to the edge compute nodes 2101.
Similarly, the processing capabilities/constraints (normal-
ized) for the edge compute nodes 2101 were generated using
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{1, kFac2, kFac2?, . . ., kFac2**}. The training dataset was
m=7200 data points, and the dimension of the model was
d=500. The training dataset was generated using the stan-
dard method, y=Xp"**+n, where X and n were sampled
from a standard normal distribution.

[0118] The results of the simulation compared the perfor-
mance of the distributed ML scheme of the first embodiment
with an uncoded scheme and a repetition scheme, where
(kFacl, kFac2)=(0.9, 0.9). The results of the simulation
included a comparison of a least squares (LS) estimate of the
true (uncoded) model, an uncoded error curve for the
uncoded scheme with equal allocation, a coded LS estimate
of the true (uncoded) model with a coded dataset, a coded
error curve of the distributed ML scheme of the first embodi-
ment, and repetition error curve corresponding to the rep-
etition scheme. For the repetition scheme, each data point
was processed at two edge compute nodes 2101, and thus,
the coding overhead was ¢=2 m. The coding overhead for
the distributed ML scheme of the first embodiment was
¢=1.27 m. Using the distributed ML scheme according to the
first embodiment, the model [ converges to the least squares
solution with the coded dataset. Although the error in
estimation of the true model f is larger in comparison to the
uncoded and repetition schemes, the overall time for con-
vergence is much less than the uncoded and repetition
schemes.

[0119] The results of the simulation also included com-
paring the ratio of the mean convergence times for the
distributed ML scheme of the first embodiment for different
realizations of (kfacl, kFac2). The mean was obtained using
twenty different datasets, and a stopping criterion was used
for convergence, which is shown by equation 11.

(equation 11)

18+ - gI°

-8
T

[0120] The simulation results show that the distributed
ML scheme of the first embodiment has a superior perfor-
mance in comparison to the uncoded scheme for all hetero-
geneity levels. When the system is homogeneous, for
example, when (kFacl, kFac2)=(1, 1), the distributed ML
scheme of the first embodiment has similar performance as
the uncoded scheme.

[0121] While the first embodiment is related to scenarios
where the training dataset was centrally available at the
master node 2112, a distributed ML scheme of a second
embodiment is described infra where data resides with the
edge compute nodes 2101, and the edge compute nodes
2101 perform the encoding computations themselves. In the
second embodiment, the data collectors 2102 and the edge
compute nodes 2101 may be considered identical, and the
master node 2112 determines and distributes the appropriate
level of redundant computations rather than performing load
balancing across all nodes 2101, 2102, and completes the
coordination and aggregation function of the partial gradi-
ents computed locally at the nodes 2101, 2102.

[0122] FIG. 4 depicts an example distributed machine
learning procedure 400 according to a second embodiment.
The distributed machine learning procedure 400 is used for
embodiments where training data is locally accessible by
one or more edge compute nodes 2101, and computational
tasks and encoding parameters are distributed to those edge
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compute nodes 2101. Procedure 400 begins at operation 403
where edge compute nodes 2101 provide operational param-
eters to the master node 2112, which includes indications of
compute node capabilities and operational constraints as
discussed previously. In some embodiments, the data col-
lector nodes 2102 may also provide their operational param-
eters to the master node 2112 in a same or similar manner as
the edge compute nodes 2101. Meanwhile, at operation 406,
one or more data collector nodes 2102 and/or edge compute
nodes 2101 provide data parameters to the master node
2112, which may include information about the particular
type of data locally accessible by the edge compute nodes
2101 and data collectors 2102 and an indication of the
number of data points included in the locally accessible data.
The operational parameters and data parameters may be
identified using suitable APIs, ABIs, middleware, drivers,
configuration files, trusted application(s), RF measurement
mechanisms, etc. Additionally, the identified operational
parameters and data parameters may be packaged into
appropriate messages for communication according to know
mechanisms and protocols, such as those discussed herein.
Operations 403 and 406 may repeat as necessary, for
example, on a periodic basis, during procedure 400 includ-
ing during operation of the other operations of procedure
400 discussed infra.

[0123] At operation 409, the master node 2112 determines
a redundancy and load partitions based on the operational
parameters, data parameters, and a load balancing policy. At
operation 412, the master node 2112 provides compute
parameters to the edge compute nodes 2101. In this embodi-
ment, the compute parameters may include information
about the type of data to be processed by an edge compute
node 2101, the number of data points to be processed by an
edge compute node 2101 (e.g., a load partition for the edge
compute node 2101), a coding redundancy for the edge
compute node 2101, a particular encoding scheme to be used
to encode the training data, computational tasks (compute
assignments) for calculating output data such as partial
gradients when the underlying ML algorithm is a GD
algorithm, and other suitable information or parameters. At
operation 415, the edge compute nodes 2101 individually
encode their locally available data according to the received
compute parameters to obtain individual training datasets,
and at operation 418, the edge compute nodes 2101 indi-
vidually provide their encoded training datasets to the mas-
ter node 2112.

[0124] At operation 421, each edge compute node 2101
individually computes a partial gradient on the uncoded
version of the encoded data provided to the master node
2112. Meanwhile at operation 424, master node 2112 com-
putes partial gradients on the encoded datasets provided at
operation 418. At operation 427, the edge compute nodes
2101 individually provide their respective partial gradients
to the master node 2112 once they complete their local
calculations. At operation 430, the master node 2112 aggre-
gates the partial gradients, including the partial gradients
calculated by the edge compute nodes 2101 and the partial
gradients calculated by the master node 2112, to obtain a
complete gradient. Note that, because the coding redun-
dancy was encoded into the individual training datasets at
operation 418, the master node 2112 does not have to wait
for each compute node 2101 to provide their computed
partial gradients in order to compute the complete gradient.
In addition, the master node 2112 may update the underlying
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model, and at operation 433, the master node 2112 provides
the updated or refined model back to the edge compute
nodes 2101 for the next epoch in the iterative training
process. In some embodiments, the complete or combined
gradient is provided to the edge compute nodes at operation
433. At operations 436 and 439, the master node 2112 and
the edge compute nodes 2101 calculate an updated partial
gradient, respectively. The updated partial gradients com-
puted by the edge compute nodes 2101 are then provided to
the master node 2112 at operation 442 for further aggrega-
tion similar to operation 227 (not shown by FIG. 2). Opera-
tions 421-442 repeat until the underlying model sufficiently
converges.

[0125] In the example of FIG. 4, training is performed for
a supervised machine learning problem (e.g., a GD algo-
rithm) based on a training dataset that is distributed across
edge compute nodes 2101, where each edge compute node
2101 locally compute partial gradients and communicate
those partial gradients to the master node 2112 (see e.g.,
operations 421 and 427 in FIG. 4). The master node 2112
aggregates the received partial gradients to update the model
and communicates the updated model back to the edge
compute nodes 2101 (see e.g., operations 424, 430, and 433
in FIG. 4). More specifically, it is straightforward to observe
that equation 1 discussed previously with respect to FIG. 2
can be decomposed into n partial sums as shown by equation
12:

o difal (equation 12)
VerEM =3 > X xPB - )
=l k=1
[0126] In equation 12, (X, y,) is the k-th element of

the training dataset stored at the i-th edge compute node
2101 (also referred to as “edge compute node 2101/ or the
like), 1,4 i3 the number of training data elements available
at the edge compute node 21017,
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is the entire training dataset distributed across n edge
compute nodes 2101.

[0127] In an uncoded distributed gradient computing, the
edge compute nodes 2101 compute the partial sums corre-
sponding to their respective data subsets in equation 12 to
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evaluate partial gradients, and send them back to the master
node 2112 for aggregation. The master node 2112 can then
use equation 2 discussed previously to update the model and
communicate the updated model back to the edge compute
nodes 2101. This process (e.g., process 400) is iterated until
sufficient convergence is achieved.

[0128] As mentioned previously, the heterogeneous com-
puting environment 100 may be statistically represented as
using a model of the computation time at each device as a
shifted exponential random variable T, given as T,=T, ,+
T}, where the deterministic component T, ; depends on the
processing rate and the number of data points assigned to the
k-th device, and the random component T,, models the
randomness coming from memory read/write cycles
required during multiply-accumulate operations for comput-
ing the partial gradient at the k-th device. In addition, the
wireless communication links between the master node and
the k-th edge compute node 2101 is given by (t;, q;), where
1, is the achievable bits per channel use in order to have an
erasure probability smaller than g,. It is a typical practice to
dynamically adapt the rate r, with respect to the changing
link quality in order to maintain a constant erasure prob-
ability q during the entire gradient computation. Examples
ot how the coding redundancy is calculated and how the load
partitioning is achieved according to the second embodiment
is discussed in more detail with respect to FIG. 5, which is
used to address the straggler effect.

[0129] As alluded to previously, encoding the training data
in the second embodiment involves use of the master node
2112 (e.g., a MEC system or one or more selected MEC
servers 201) with relatively large processing and communi-
cation capabilities to aid the execution of ML algorithms,
such as the GD algorithms as discussed herein, by executing
partial gradients from encoded training data at each epoch to
combat the straggling effects. In various embodiments,
linear random coding is performed on an entire training
dataset D that is distributed across all edge compute nodes
2101. In particular, the i-th edge compute node 2101 uses a
random generator matrix G, of dimension dx1,”“ with
elements drawn independently from a standard normal dis-
tribution, applies the random generator matrix G, to the
weighted local training dataset to obtain a (en)coded training
dataset (X@, Y®), where XP=G,W.X®, YO=G,W,Y®, and
W, is a weight matrix (see e.g., operation 415 in FIG. 4).
[0130] In the second embodiment, the coding redundancy
d depends on the heterogeneity in computing capabilities
and constraints, communication capabilities and constraints,
and power (energy) budget observed across the edge com-
pute nodes 2101 (including UEs 101 and MEC servers 201).
The coding redundancy d may be explicitly computed using
a load balancing algorithm discussed infra with respect to
FIG. 5. The matrix W, is an 1,”%“/x] "4’ diagonal matrix
that weighs each training data point differently. The weight
computation is also discussed infra with respect to FIG. 5.
[0131] The locally (en)coded training dataset (X®, Y®) is
transmitted to the master node 2112 (see e.g., operation 418
in FIG. 4), while the generator coefficients are not shared
with the master node 2112 or other edge compute nodes
2101. In other words, the G and W are unknown at the
master node 2112. The uncoded data (or raw data) and/or
security keys are not shared with the master node 2112 or
other edge compute nodes 2101 as well. In this way, the
encoding mechanisms preserve the security of training data
and user privacy for each edge compute node 2101. At the
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master node 2112, the locally (en)coded training dataset
received from the edge compute nodes 2101 are combined
to obtain the overall (en)coded dataset (X, Y) (see e.g.,
operations 424-430 in FIG. 4). In particular, the master node
2112 may compute the complete (en)coded dataset (X, ¥)
using equation 13, and compute the overall coded label set
using equation 14.

N LI . (equation 13)
X=> X7=> Gwx9=cwx
i=1 i=1
where
W, 0
G=[G G,l,and W =| @ :
0 . Wy
RS (equation 14)
Y= Y =GWy

[0132] The distributed encoding across the entire dataset
may be achieved using equations 13 and 14. During each
training epoch, each edge compute node 2101 computes a
partial gradient from a subset of its locally available
uncoded dataset (see e.g., operation 421 in FIG. 4). The size
of the data subset is obtained from a load balancing algo-
rithm (see e.g., load balancing algorithm of load balancer
510 of FIG. 5). In particular, a given edge compute node
2101/ computes partial gradients from a number of uncoded
data points 1* that is/are available or accessible locally,
where 1,*<1,7"7“’ The partial gradients are then sent to the
master node 2112 (see e.g., operation 427 in FIG. 4).
[0133] Additionally, the master node 2112 also computes
partial gradients from 8 coded data points (see e.g., opera-
tion 424 in FIG. 4), which is available assuming computing
power at the master node 2112 is much larger than at the
edge compute nodes 2101. Therefore, in each training
epoch, the master node 2112 waits for partial gradients
corresponding to the first arriving (m-9) number of uncoded
data points received from one or more of the edge compute
nodes 2101.

[0134] The master node 2112 also takes into account the
complexity of encoding the locally accessible data points.
The encoding complexity is in the order of d, where it has
been observed during simulations that, at extreme hetero-
geneity, 8 may become as large as 30% of the data size. For
low complexity encoding using random linear codes, the
generator matrix coefficients may be taken from equi-prob-
able Bernoulli distribution of +1 and -1, which may help
avoid multiplications during the encoding process.

[0135] Referring now to FIG. 5, which depicts a load
partitioning process 500 according to the second embodi-
ment. Process 500 is used for computing an optimal coding
redundancy 9, performing load balancing or partitioning,
and calculating weight matrices (see e.g., operation 409 of
FIG. 4), which is eventually followed by decoding and
aggregation of obtained partial gradients computed from
uncoded portions of the training data with the partial gra-
dient(s) computed from (en)coded portions of the training
data (see e.g., operation 430 of FIG. 4). Process 500 begins
at operation 503 where individual edge compute nodes 2101
provide operational parameters (including data parameters)
to the master node 2112. In this example, the edge compute
nodes 2101 provide a link/channel quality indication for
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their respective links 103, 107 (e.g., given as (r;, p;), where
k is a number from 1 to n), a processing capabilities
indication (e.g., given as (a;, W), where k is a number from
1 to n), and a data parameter indication (e.g., given as 1,,
where k is a number from 1 to n). These parameters are then
feed into a load balancing (or data partitioning) engine 510
at operation 506. The load balancing engine 510 is operated
by the master node 2112 to execute the illustrated algorithm
including operations 509-527.

[0136] At operation 509, the load balancing engine 310
identifies, determines, or reads in various parameters includ-
ing a fixed time t, a unit time At (which may indicate a
predicted processing time for an edge compute node 2101
for a given number of data points or some other suitable time
value), a tolerance parameter €, and a coding redundancy 9.
For a fixed time t, the aggregate return received from all
edge compute nodes 2101 including those computed at the
master node 2112 until time t in any epoch is a random
variable defined by equation 15.

ntl ntl

ReD= Rl =) iy,

i=1 i=1

(equation 15)

[0137] In equation 15,1 ,, is the partial gradients locally
computed by the master node 2112 using the coded training
data (see e.g., operation 424 of FIG. 4), and the aggregate
return R,(t; 1), where i=1, . . . , n, denotes, for a load
allocation 1, the average number of uncoded data points that
have been processed at the i-th edge compute node 2101 and
corresponding partial gradient have been received by the
master node 2112 until time t. During each epoch, partial
gradient(s) computed from the (en)coded data is available at
the master node 2101, which means T,,, ,<min (T, ... T,).
[0138] At operation 512, the load balancing engine 510
determines a load allocation for each edge compute node
2101,. For each edge compute node 2101/, where i=1, . . .,
n, the load allocation 1,*(t) may be computed using equation
16, and the coding redundancy required for a given time t
may be computed using equation 17.

[;*(1)=argy,nvia max E(R{t1;)) (equation 16)

Lot *()=arg; | o max ER,,,(t1,,,)) (equation 17)

[0139] In equation 17, "% denotes the maximum coded
load the master node 2112 is willing to receive from edge
compute node(s) 2101. Equation 17 maximizes the expec-
tation of the aggregate return defined in equation 16.
[0140] At operation 515, the load balancing engine 510
determines a maximum aggregate return until time t
(MART). Based on equations 16 and 17, the maximum
expected aggregate return until time t (MART) may be
computed using equation 18.

ntl (equation 18)
ER(5 ') = Z E(Ri(5; (D)

i=1

[0141] At operation 518, the load balancing engine 510
determines whether the MART is greater than or equal to the
number of data points m and less than or equal to a
combination of the number of data points m and the toler-
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ance parameter €. In embodiments, t* (or At) is obtained as
the solution to the optimization problem of equation 19,
where € is the tolerance parameter.

min 7 (equation 19)

such that m < E(R(@t; I'(D) = m + €

[0142] Ifthe determination at operation 518 (e.g., equation
19) is true, the load balancing engine 510 proceeds to
operation 520 to set the value of the non-return probability
p; based on the MART and the load partitions 1*(t*) (dis-
cussed in more detail infra). Then the load balancing engine
510 proceeds to end the load balancing/partitioning algo-
rithm, and generates the coding redundancy, the load parti-
tion information, weighting information, etc., for each edge
compute node 2101. If the determination at operation 518
(e.g., equation 19) is false, the load balancing engine 510
proceeds to operation 521 to determine whether the MART
is less than the number of data points m. If the determination
at operation 521 is true, then the load balancing engine 510
increments the fixed time t by the unit time At at operation
527. If the determination at operation 521 is false, then the
load balancing engine 510 decrements the fixed time t by the
unit time At at operation 524. This process repeats until
operation 518 (e.g., equation 19) is determined to be true, at
which point, the load balancing engine 510 performs opera-
tion 520 and then ends the load balancing/partitioning
algorithm, and generates the coding redundancy, load par-
tition information, weighting information, etc., for each edge
compute node 2101. Then the load balancing engine 510
provides the coding redundancy, load partition information,
weighting information, etc., for each edge compute node
2101 to each edge compute node 2101 at operation 530. This
information is then provided to an encoder 533 is operated
by each edge compute node 2101 to execute the illustrated
algorithm including operations 536-542

[0143] In this example, the near optimal load partitions
I*(t*) and the minimal coding redundancy 8=l ,,*(t*) are
provided to the encoder 533 of each edge compute node
2101 with a probability p,. At operation 536, the encoder 533
generates a random generator matrix Gy, ;,,, and at operation
536, the encoder 533 generates a weight matrix W,. In
embodiments, the weight matrix W, applied at each edge
compute node 2101 is a 1,7'x] ™4/ diagonal matrix. The
k-th diagonal coefficients is/are given by w,,=/p,, where p,
is the probability that the edge compute node 2101 will not
return the partial gradient associated with the 1,*(t*) uncoded
data points processed at the i-th edge compute node 2101 for
k=1, . .., 1*(t*). For example, the probability p, may be
based on the link/channel quality and/or processing capa-
bilities of the edge compute node 2101. In particular,
p~Pr{T,=t*}.

[0144] For a given load partition 1,*(t*), the probability p,
may be directly computed by the edge compute node 2101
using the statistical property of computation time and com-
munication links. Further, there are (1,“/—1*(t*)) uncoded
data points that are not processed at the edge compute node
2101;. The diagonal coefficients corresponding to such data
points are given by w,=1, for k=1, . . ., (1,71, *(t*)). In
embodiments, the edge compute node 2101/ can decide any
subset of uncoded initial data to process locally and corre-
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spondingly apply the weights before encoding, which may
provide another layer of data security and privacy.

[0145] At operation 542, the encoder 533 generates (com-
putes) the (en)coded gradients (e.g., as (X, Y®)), which
are then provided to the master node 2112 at operation 545.
As alluded to previously, the encoder 533 of the edge
compute node 2101; may compute its gradient (X®, Y®) as
XO=G,W X®, and YP=G,W,Y®. In each epoch there may
be a mixture of partial gradients available at the master node
2112. One set of partial gradients are computed entirely by
the master node 2112 from & (en)coded training dataset (X,
¥) given by equations 13 and 14. In embodiments, the
master node 2112 computes the partial gradient from the
(en)coded dataset using equation 20.

XEpO-7) (equation 20)

[0146] The other set of partial gradients are computed by
the edge compute nodes 2101 on their local uncoded data at
operation 542, and transmitted to the master node 2112 at
operation 545. The master node 2112 only waits to receive
partial gradients corresponding to the first (m-0) datapoints.
In particular, the master node 2112 waits for the first N edge
compute nodes 2101 such that the allocated load satisfies
Y L*(t*) (m-3). The aggregated partial gradient from
uncoded dataset is given by equation 21, and the master
node 2112 then combines the two set of partial gradients
using equation 22.

N (equation 21)
Z X (x® g _ 0y
k=1
o N , (equation 22)
X (X ﬁ(r) _ y) + Z x & (X(k) ﬁ(r) _ y(k))

k=1

1
d

[0147] The normalized partial gradient corresponding to
the coded data for sufficiently large & can can be approxi-
mated (using weak law of large numbers) according to
equation 23.

N (equation 23)
5% (X g7 -3)=
1
X’W’(SG’G)W(XH’) R XWWEXLD -y =

jnitial

DT R xPp0 - 3

=1 k=l

[0148] The above relation shows that for sufficiently large
d, the aggregate gradient from the coded data points proba-
bilistically weighs (e.g., equation 12) that provides the full
gradient over the entire distributed dataset. Incorporating the
partial gradients computed over the uncoded training data by
the edge compute nodes 2101 along with the partial gradi-
ents computed over coded training data by the master node
2112 as presented in equation 22 can effectively be viewed
as using a systematic code to encode the entire set of data,
where the generator matrix is
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and performing full gradient computation on the entire
coded set. The probabilistic weighing of the parity portion of
the training data (e.g., 8) compensates for the probability of
systematic portion of the data being unavailable at the
master node 2112 by time t* in each epoch. Due to the
operational parameters (e.g., link delay and computing
delay), each partial gradient computed from the uncoded
dataset is available at time t* only with probability (1-w,,?).
Therefore, the weight matrix ensures, on average, that the
aggregated gradients converges to the full gradient of
uncoded data. Further, there is zero decoding complexity
when combining the partial gradients.

[0149] A simulation was performed for the second
embodiment, which included a simulation of a heteroge-
neous computing environment with 24 edge compute nodes
2101 and one master node 2112. The simulation used an LTE
network, where each edge compute node 2101 was assigned
3 resource blocks, and the uplink and downlink channels had
similar link/channel quality statistics. Furthermore, the link
capacities (normalized) were generated using {1, kFacl,
kFac1?, ..., kFac1?*} and a random permutation of the link
capacities was assigned to the edge compute nodes 2101.
Similarly, the processing capabilities/constraints (normal-
ized) for the edge compute nodes 2101 were generated using
{1, kFac2, kFac2? . .., kFac2®*}. The training dataset
included m=7200 data points, with an equal number of
points present at each edge compute node 2101, and the
dimension of the model was d=500. Moreover, the maxi-
mum coded load that the master node 2112 was willing to
process was ¢“?=1800. The training dataset was generated
using the standard method, y=Xf”““+n, where X and n are
sampled from a standard normal distribution.

[0150] The results of the simulation compared the perfor-
mance of the distributed ML scheme of the second embodi-
ment with an uncoded scheme, where (kFacl, kFac2)=(0.9,
0.9). The results of the simulation included a comparison of
a least squares (LS) estimate of the true (uncoded) model, an
uncoded error curve for the uncoded scheme, and a coded
error curve of the distributed ML scheme of the second
embodiment. Although the error in estimation of the true
model f is larger in comparison to the uncoded scheme, the
overall time for convergence is much less than the uncoded
scheme.

[0151] The results of the simulation also included com-
paring the ratio of the mean convergence times for the
distributed ML scheme of the second embodiment and the
uncoded scheme for different realizations of (kfacl, kfac2),
where the stopping criterion for convergence of equation 24
was used:

15 _ﬁ,llz oS (equation 24)
B

[0152] The simulation results show that the distributed
ML scheme of the second embodiment has a superior
performance in comparison to the uncoded scheme for all
heterogeneity levels.
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Example Framework, Device, and Infrastructure
Implementations
[0153] FIG. 6 illustrates an example multi-access edge

framework 600 in accordance with various embodiments.
The multi-access edge framework 600 is an example struc-
ture of a MEC environment. MEC enables implementation
of multi-access edge applications (ME apps) 636 as soft-
ware-only entities that run on top of a Virtualization Infra-
structure (VI) 638, which is located in or close to the
network edge. The MEC framework 600 shows the general
entities involved, and these entities can be grouped into
system level 602, host level 601, and network level 603
entities.

[0154] The multi-access edge system level 602 includes
multi-access edge system level management 402, UE 101
(which may be the same or similar to the other UEs or
terminals discussed herein), and 3"/ Party (3P) entities 610.
The network level 603 includes various external network
level entities, such as a 3GPP network 640, a local area
network 641 (e.g., a LAN, WLAN, PAN, etc.), and an
external network 642 (e.g., network 150). The multi-access
edge host level 601 includes multi-access edge host level
management 601x and MEC server 201. The multi-access
edge host level management 601x may include various
components that handle the management of the multi-access
edge specific functionality of a particular MEP 637, MEC
server 201, and the MEAs 636 to be run. The MEC server
201 includes the MEP 637, MEAs 636, and VI 638. These
entities are discussed in more detail with regards to FIG. 7.
[0155] FIG. 7 illustrates an example multi-access edge
system architecture 700 (or a mobile edge system architec-
ture) in accordance with various embodiments. The MEC
system 700 of FIG. 7 is a first embodiment of a system
architecture of the MEC system 200 discussed previously.
The MEC system 700 includes the multi-access edge host
level 601 and the multi-access edge system level 602. The
multi-access edge host level 601 includes MEC servers 201
and multi-access edge (ME) management (mgmt) 630,
which provide functionality to run multi-access edge appli-
cations (MEAs) 636 within an operator network or a subset
of an operator network.

[0156] The multi-access edge system 200 includes three
groups of reference points, including “Mp” reference points
regarding the multi-access edge platform functionality;
“Mm” reference points, which are management reference
points; and “Mx” reference points, which connect MEC
entities to external entities. The interfaces/reference points
in the MEC system 200 may include internet protocol (IP)
based connections, and may be used to provide Represen-
tational State Transfer (REST or RESTful) services, and the
messages conveyed using the reference points/interfaces
may be in XML, HTML, JSON, or some other desired
format, such as those discussed herein. A suitable Authen-
tication, Authorization, and Accounting (AAA) protocol,
such as the radius or diameter protocols, may also be used
for communicating over the reference points/interfaces in
other embodiments.

[0157] The MEC host 201 is an entity that contains an
MEP 637 and VI 638 which provides compute, storage, and
network resources for the purpose of running MEAs 636.
The VI 638 includes a data plane (DP) 738 that executes the
traffic rules (TR) 7375 received by the MEP 637, and routes
the traffic among applications (e.g., MEAs 636), ME ser-
vices (MESs) 737a, DNS server/proxy (see e.g., via DNS
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handling entity 737¢), 3GPP network 640, local networks
641, and external networks 642 (see e.g., FIG. 6). The MEC
DP 738a may be connected with the (R)AN nodes 111 and
CN 120 of FIG. 1 over interfaces 114/115, and/or may be
connected with the AP 106 of FIG. 1 via a wider network
150, such as the internet, an enterprise network, or the like.
The other entities depicted by FIG. 2 may be the same or
similar as those discussed with regard to FIGS. 6-7.

[0158] The MEP 637 within the MEC server 201 may be
a collection of essential functionality required to run MEAs
636 on a particular VI 638 and enable them to provide and
consume MESs 737a. The MEP 637 can also provide
various services and/or functions, such as offering an envi-
ronment where the MEAs 636 can discover, advertise,
consume and offer MESs 737a (discussed infra), including
MESs 737a available via other platforms when supported.
The MEP 637 may be able to allow authorized MEAs 636
to communicate with 3P 310 servers located in external
networks. The MEP 637 may receive traffic rules from the
multi-access edge platform manager (MEPM) 731, applica-
tions, or services, and instruct the data plane accordingly
(see e.g., Traffic Rules Control 7376). The MEP 637 may
send instructions to the DP 738 within the VI 638 via the
Mp2 reference point. The Mp2 reference point between the
MEP 637 and the DP 738 of the VI 638 may be used to
instruct the DP 738 on how to route traffic among applica-
tions, networks, services, etc. In some implementations, the
MEP 637 may translate tokens representing UEs XPO1 in the
traffic rules into specific internet protocol (IP) addresses.
The MEP 637 also receives DNS records from the MEPM
731 and configures a DNS proxy/server accordingly. The
MEP 637 hosts MESs 737a including the multi-access edge
services discussed infra, and provide access to persistent
storage and time of day information. Furthermore, the MEP
637 may communicate with other MEPs 637 of other MEC
servers 201 via the Mp3 reference point.

[0159] The VI 638 may represent the totality of all hard-
ware and software components which build up the environ-
ment in which MEAs 636 and/or MEP 637 are deployed,
managed and executed. The VI 638 may span across several
locations, and the network providing connectivity between
these locations is regarded to be part of the VI 638. The
physical hardware resources of the VI 638 includes com-
puting, storage and network resources that provide process-
ing, storage and connectivity to MEAs 636 and/or MEP 637
through a virtualization layer (e.g., a hypervisor, virtual
machine monitor (VMM), or the like). The virtualization
layer may abstract and/or logically partition the physical
hardware resources of the MEC server 201 as a hardware
abstraction layer. The virtualization layer may also enable
the software that implements the MEAs 636 and/or MEP
637 to use the underlying VI 638, and may provide virtu-
alized resources to the MEAs 636 and/or MEP 637, so that
the MEAs 636 and/or MEP 637 can be executed.

[0160] The MEAs 636 may be applications that can be
instantiated on a MEC server 201 within the MEC system
200 and can potentially provide or consume MESs 737a.
MEAs 636 may run as virtual machines (VM) on top of the
V1 638 provided by the MEC server 201, and can interact
with the MEP 637 to consume and provide the MESs 737a.
The MEAs 636 are instantiated on the VI 638 of the MEC
server 201 based on configuration or requests validated by
the ME management 730. In some embodiments, the MEAs
636 can also interact with the MEP 637 to perform certain



US 2019/0138934 Al

support procedures related to the lifecycle of the MEAs 636,
such as indicating availability, preparing relocation of user
state, etc. The MEAs 636 may have a certain number of rules
and requirements associated to them, such as required
resources, maximum latency, required or useful services,
etc. These requirements may be validated by the multi-
access edge system level management 330, and can be
assigned to default values if missing. MESs 737a may be
services provided and consumed either by the MEP 637 or
MEAs 636. When provided by an application, an MES 737a
can be registered in a list of services 7374 to the MEP 637
over the Mpl reference point. Additionally, the MEAs 636
can subscribe to one or more services 737a for which it is
authorized over the Mp1 reference point.

[0161] The MEC system 200 may support a feature called
UserApps. When the MEC system 200 supports the feature
UserApps, the multi-access edge management may support
the instantiation of MEAs 636 on multiple MEC servers 201
following a single instantiation request, and when required
by the operator in response to a request by the user. The
application instance may need to fulfil a number of potential
constraints predefined for the application. Once instantiated,
connectivity may be established between the UE 101 and the
application instance. Potential constraints may include
latency, location, compute resources, storage resources, net-
work capability, security conditions, and the like.

[0162] When the MEC system 200 supports the feature
UserApps, the system 700 may, in response to a request by
a user, support the establishment of connectivity between a
UE 101 and an instance of a specific MEA 636 fulfilling the
requirements of the MEA 636 regarding the UE 101. If no
instance of the MEA 636 fulfilling these requirements is
currently running, the multi-access edge system manage-
ment may create a new instance of the application on a
multi-access edge host 200 that fulfils the requirements of
the application. Once instantiated, connectivity shall be
established between the UE 101 and the new MEA 636
instance. Requirements of the application can include
latency, location, compute resources, storage resources, net-
work capability, security conditions, and the like. When the
MEC system 200 supports the feature UserApps, the system
400 may support the on-boarding of MEAs 636 during the
execution of an instantiation request, may allow the estab-
lishment of connectivity between a UE 101 and a specific
instance of an MEA 636, may support the capability to
terminate the MEA 636 instance when no UE 101 is con-
nected to it anymore, and may support the termination of the
MEA 636 running on multiple MEC servers 201 following
a single termination request.

[0163] As shown by FIG. 7, the Mpl reference point is
between the MEP 637 and the MEAs 636. The Mpl1 refer-
ence point may provide service registration 737d, service
discovery, and communication support for various services,
such as the MESs 7374. In addition, the Mp1 interface may
provide application availability, session state relocation sup-
port procedures, traffic rules and DNS rules activation,
access to persistent storage and time of day information,
and/or the like. The Mpl reference point may be used for
consuming and providing service specific functionality.
[0164] Examples of MESs 737a include Radio Network
Information Service (RNIS), location services, and band-
width management services. The RNIS, when available,
provides authorized MEAs 636 with radio network related
information, and expose appropriate up-to-date radio net-
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work information to the MEAs 636. The radio network
information (RNI) may include, inter alia, radio network
conditions, measurement and statistics information related
to the user plane, information related to UEs served by the
radio node(s) associated with the multi-access edge host
(e.g., UE 101 context and radio access bearers), changes on
information related to UEs served by the radio node(s)
associated with the multi-access edge host, and/or the like.
The RNI may be provided at the relevant granularity (e.g.,
per UE, per cell, per period of time).

[0165] The service consumers (e.g., MEAs 636 and MEP
637) may communicate with the RNIS over an RNI Appli-
cation Programming Interface (API) to obtain contextual
information from a corresponding radio access network,
such as RAN 110 in FIG. 1. RNI may be provided to the
service consumers via an access node (e.g., (R)AN nodes
111 or AP 106). The RNI API may support both query and
subscription (e.g., a pub/sub) based mechanisms that are
used over a Representational State Transfer (RESTful) API
or over a message broker of the MEP 637 (not shown by
FIG. 6 or 7). A MEA 636 may query information on a
message broker via a transport information query procedure,
wherein the transport information may be pre-provisioned to
the MEA 636 via a suitable configuration mechanism. The
various messages communicated via the RNI API may be in
XML, JSON, Protobuf, or some other suitable format.
[0166] The RNI may be used by MEAs 636 and MEP 637
to optimize the existing services and to provide new types of
services that are based on up to date information on radio
conditions. As an example, a MEA 636 may use RNI to
optimize current services such as video throughput guid-
ance. In throughput guidance, a radio analytics MEA 636
may use MEC services to provide a backend video server
(e.g., server(s) 130) with a near real-time indication on the
throughput estimated to be available at the radio downlink
interface in a next time instant. The throughput guidance
radio analytics application 336 computes throughput guid-
ance based on the required radio network information it
obtains from a multi-access edge service running on the
MEC server 201. RNI may be also used by the MEP 637 to
optimize the mobility procedures required to support service
continuity, such as when a certain MEA 636 requests a
single piece of information using a simple request-response
model (e.g., using RESTful mechanisms) while other MEAs
636 subscribe to multiple different notifications regarding
information changes (e.g., using a pub/sub mechanism and/
or message broker mechanisms).

[0167] In various embodiments, a MEC server 201 acting
as a master node for distributed ML (e.g., the MEC server
201 in the example of FIG. 1) may access RNI of individual
edge compute nodes 101, 201 via a MEA 636 and/or the
MEP 637 using the RNI API for the purposes of evaluating
the channel conditions and/or link quality for partitioning
training datasets and/or for assigning computational tasks to
the individual edge compute nodes 101, 201. In an example,
an application implemented by a MEC entity (e.g., the
MEC-O 721) may access RNI via a MEA 636 or the MEP
637 using the RNI API, which may be used to select a MEC
server 201 to act as the master node for the distributed ML.
[0168] The location services (LS), when available, may
provide authorized MEAs 636 with location-related infor-
mation, and expose such information to the MEAs 636. With
location related information, the MEP 637 or one or more
MEAs 636 perform active device location tracking, loca-
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tion-based service recommendations, and/or other like ser-
vices. The LS supports the location retrieval mechanism, i.e.
the location is reported only once for each location infor-
mation request. The LS supports a location subscribe mecha-
nism, for example, the location is able to be reported
multiple times for each location request, periodically or
based on specific events, such as location change. The
location information may include, inter alia, the location of
specific UEs 101 currently served by the radio node(s)
associated with the MEC server 201, information about the
location of all UEs 101 currently served by the radio node(s)
associated with the MEC server 201, information about the
location of a certain category of UEs 101 currently served by
the radio node(s) associated with the MEC server 201, a list
of UEs 101 in a particular location, information about the
location of all radio nodes currently associated with the
MEC server 201, and/or the like. The location information
may be in the form of a geolocation, a Global Navigation
Satellite Service (GNSS) coordinate, a Cell identity (ID),
and/or the like. The LS is accessible through the API defined
in the Open Mobile Alliance (OMA) specification “RESTful
Network API for Zonal Presence” OMA-TS-REST-NetAPI-
ZonalPresence-V1-0-20160308-C. The Zonal Presence ser-
vice utilizes the concept of “zone”, where a zone lends itself
to be used to group all radio nodes that are associated to a
MEC host or MEC server 201, or a subset thereof, according
to a desired deployment. In this regard, the OMA Zonal
Presence API provides means for MEAs 636 to retrieve
information about a zone, the access points associated to the
zones and the users that are connected to the access points.
In addition, the OMA Zonal Presence API, allows authorized
application to subscribe to a notification mechanism, report-
ing about user activities within a zone. In various embodi-
ments, a MEC server 201 acting as a master node for
distributed ML (e.g., the MEC server 201 in the example of
FIG. 1) may access location information or zonal presence
information of individual edge compute nodes 101 using the
OMA Zonal Presence API to identify the relative location or
positions of the edge compute nodes 101. The location or
zonal presence information may be used as a basis for
selecting individual edge compute nodes 101 for offloading
ML tasks, partitioning training data, specifying encoding
criteria, or for determining other aspects of the embodiments
discussed herein.

[0169] The bandwidth management services (BWMS)
provides for the allocation of bandwidth to certain traffic
routed to and from MEAs 636, and specify static/dynamic
up/down bandwidth resources, including bandwidth size and
bandwidth priority. MEAs 636 may use the BWMS to
update/receive bandwidth information to/from the MEP 637.
In some embodiments, different MEAs 636 running in
parallel on the same MEC server 201 may be allocated
specific static, dynamic up/down bandwidth resources,
including bandwidth size and bandwidth priority. The
BWMS includes a bandwidth management (BWM) API to
allowed registered applications to statically and/or dynami-
cally register for specific bandwidth allocations per session/
application. The BWM API includes HTTP protocol bind-
ings for BWM functionality using RESTful services or some
other suitable API mechanism.

[0170] Referring back to FIG. 7, multi-access edge man-
agement comprises multi-access edge system level manage-
ment and the multi-access edge host level management 330.
The multi-access edge host level management 330 com-
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prises the MEPM 731 and the VI manager (VIM) 702, and
handles the management of the multi-access edge specific
functionality of a particular MEC server 201 and the appli-
cations running on it. In some implementations, some or all
of the multi-access edge management components may be
implemented by one or more servers located in one or more
data centers, and may use virtualization infrastructure that is
connected with Network Functions Virtualization (NFV)
infrastructure used to virtualize core network elements, or
using the same hardware as the NFV infrastructure. An
example NFV infrastructure is shown by FIG. 8.

[0171] The MEPM 731 is responsible for managing the
life cycle of applications including informing the multi-
access edge orchestrator (MEC-O) 721 of relevant applica-
tion related events. The MEPM 731 may also provide MEP
element management functions (MEPE mgmt 7314) to the
MEP 637, manage MEA rules and requirements (MERR
mgmt 7315) including service authorizations, traffic rules,
DNS configuration and resolving conflicts, and manage
MEA 636 lifecycles (MEALC mgmt 731). The multi-access
edge platform manager 731 may also receive virtualized
resources fault reports and performance measurements from
the VIM 702 for further processing. The Mm5 reference
point between the multi-access edge platform manager 731
and the MEP 637 is used to perform platform configuration,
configuration of the MEPE mgmt 731q, the MERR mgmt
7315, the MEALC mgmt 731, management of application
relocation, etc.

[0172] The VIM 702 may be an entity that allocates,
manages and releases virtualized (compute, storage and
networking) resources of the VI 638, and prepares the VI
638 to run a software image. To do so, the VIM 702 may
communicate with the VI 638 over the Mm?7 reference point
between the VIM 702 and the VI 638. Preparing the VI 638
may include configuring the VI 638, and receiving/storing
the software image. When supported, the VIM 702 may
provide rapid provisioning of applications, such as described
in “Openstack++ for Cloudlet Deployments”, available at
http://reports-archive.adm.cs.cmu.edw/anon/2015/CMU-
CS-15-123.pdf. The VIM 702 may also collect and report
performance and fault information about the virtualized
resources, and perform application relocation when sup-
ported. For application relocation from/to external cloud
environments, the VIM 702 may interact with an external
cloud manager to perform the application relocation, for
example using the mechanism described in “Adaptive VM
Handoft Across Cloudlets”, and/or possibly through a proxy.
Furthermore, the VIM 702 may communicate with the
multi-access edge platform manager 731 via the Mm6
reference point, which may be used to manage virtualized
resources, for example, to realize the application lifecycle
management. Moreover, the VIM 702 may communicate
with the MEC-O 721 via the Mm4 reference point, which
may be used to manage virtualized resources of the MEC
server 201, and to manage application images. Managing the
virtualized resources may include tracking available
resource capacity, etc.

[0173] The multi-access edge system level management
includes the MEC-O 721 as a core component, which has an
overview of the complete MEC system 200. The MEC-O
721 may maintain an overall view of the MEC system 200
based on deployed multi-access edge hosts 200, available
resources, available MESs 737a, and topology. The Mm3
reference point between the MEC-O 721 and the multi-
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access edge platform manager 330 may be used for the
management of the application lifecycle, application rules
and requirements and keeping track of available MESs
737a. The MEC-O 721 may communicate with the user
application lifecycle management proxy (UALMP) 725 via
the Mm9 reference point in order to manage MEAS 636
requested by UE application 705.

[0174] The MEC-O 721 may also be responsible for
on-boarding of application packages, including checking the
integrity and authenticity of the packages, validating appli-
cation rules and requirements and if necessary adjusting
them to comply with operator policies, keeping a record of
on-boarded packages, and preparing the VIM(s) 702 to
handle the applications. The MEC-O 721 may select appro-
priate MEC host(s) 200 for application instantiation based
on constraints, such as latency, available resources, and
available services. The MEC-O 721 may also trigger appli-
cation instantiation and termination, as well as trigger appli-
cation relocation as needed and when supported.

[0175] The Operations Support System (OSS) 722 refers
to the OSS of an operator that receives requests via the
Customer Facing Service (CFS) portal 706 (and over the
Mx1 reference point) and from UE applications 705 for
instantiation or termination of MEAs 636, and decides on
the granting of these requests. The CFS portal 706 (and the
Mx1 interface) may be used by third-parties to request the
MEC system 200 to run applications 706 in the MEC system
200. Granted requests may be forwarded to the MEC-O 721
for further processing. When supported, the OSS 722 also
receives requests from UE applications 705 for relocating
applications between external clouds and the MEC system
200. The Mm?2 reference point between the OSS 722 and the
multi-access edge platform manager 330 is used for the
multi-access edge platform 330 configuration, fault and
performance management. The Mml reference point
between the MEC-O 721 and the OSS 722 is used for
triggering the instantiation and the termination of multi-
access edge applications 336 in the MEC system 200.

[0176] The user application lifecycle management proxy
(“user app LCM proxy”) 725 may authorize requests from
UE applications 705 in the UE 101 and interacts with the
OSS 722 and the MEC-O 721 for further processing of these
requests. The user app LCM proxy 725 may interact with the
OSS 722 via the MmS8 reference point, and is used to handle
UE applications 705 requests for running applications in the
MEC system 200. A user application 705 may be an ME app
336 that is instantiated in the MEC system 200 in response
to a request of a user via an application running in the UE
101 (e.g., UE application 705). The user app LCM proxy
725 allows UE applications 705 to request on-boarding,
instantiation, termination of user applications and when
supported, relocation of user applications in and out of the
MEC system 200. It also allows informing the UE applica-
tions 705 about the state of the user applications 705. The
user app LCM proxy 725 is only accessible from within the
mobile network, and may only be available when supported
by the MEC system 200. A UE application 705 may use the
Mx2 reference point between the user app LCM proxy 725
and the UE application 705 to request the MEC system 200
to run an application in the MEC system 200, or to move an
application in or out of the MEC system 200. The Mx2
reference point may only be accessible within the mobile
network and may only be available when supported by the
multi-access edge system.

May 9, 2019

[0177] In order to run an MEA 636 in the MEC system
700, the MEC-O 721 receives requests triggered by the OSS
722, a third-party 310, or a UE application 705. In response
to receipt of such requests, the MEC-O 721 selects a MEC
server 201 to host the MEA 636 for computational offload-
ing. These requests may include information about the
application to be run, and possibly other information, such
as the location where the application needs to be active,
other application rules and requirements, as well as the
location of the application image if it is not yet on-boarded
in the MEC system 700.

[0178] In various embodiments, the MEC-O 721 selects
one or more MEC servers 201 for computational intensive
tasks of an ML model B, such as the code redundancy, load
partitioning, and gradient computations discussed previ-
ously. The selected one or more MEC servers 201 may
offload computational tasks of the ML, model { (e.g., which
may be considered UE application 705) based on various
operational parameters, such as network capabilities and
conditions, computational capabilities and conditions, appli-
cation requirements, and/or other like operational param-
eters, such as those discussed herein. The application
requirements may be rules and requirements associated
to/with one or more MEAs 636, such as deployment model
of the application (e.g., whether it is one instance per user,
one instance per host, one instance on each host, etc.);
required virtualized resources (e.g., compute, storage, net-
work resources, including specific hardware support);
latency requirements (e.g., maximum latency, how strict the
latency constraints are, latency fairness between users);
requirements on location; multi-access edge services that are
required and/or useful for the MEAs 636 to be able to run;
multi-access edge services that the MEAs 636 can take
advantage of, if available; connectivity or mobility support/
requirements (e.g., application state relocation, application
instance relocation); required multi-access edge features,
such as VM relocation support or UE identity; required
network connectivity (e.g., connectivity to applications
within the multi-access edge system, connectivity to local
networks, or to the Internet); information on the operator’s
multi-access edge system deployment or mobile network
deployment (e.g., topology, cost); requirements on access to
user traffic; requirements on persistent storage; traffic rules;
DNS rules, etc.

[0179] The MEC-O 721 considers the requirements and
information listed above and information on the resources
currently available in the MEC system 200 to select one or
several MEC servers 201 within the MEC system 200 to host
MEAs 636 and/or for computational offloading. After one or
more MEC servers 201 are selected, the MEC-O 721
requests the selected MEC host(s) 200 to instantiate the
application(s) or application tasks, such as tasks of the MLL
model . The actual algorithm used to select the MEC
servers 201 depends on the implementation, configuration,
and/or operator deployment. In various embodiments, the
selection algorithm may be based on the task offloading
embodiments discussed herein, for example, by taking into
account network, computational, and energy consumption
requirements for performing tasks of the ML model p (e.g.,
application tasks) as well as network functionalities, pro-
cessing, and offloading coding/encodings, or differentiating
traffic between various RATs. Under certain circumstances
(e.g., UE mobility events resulting in increased latency, load
balancing decisions, etc.), and if supported, the MEC-O 721
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may decide to select one or more new MEC servers 201 to
act as a master node 2112, and initiates the transfer of an
application instance or application-related state information
from the one or more source MEC servers 201 to the one or
more target MEC servers 201.

[0180] FIG. 8 illustrates an example multi-access edge
system architecture 800 (or a multi-access edge system
architecture) in accordance with various embodiments.
MEC system 800 of FIG. 8 is a second embodiment of a
system architecture of the MEC system 200 discussed
previously. Like numbered elements in FIG. 8 are the same
as discussed previously with respect to FIGS. 6-7. The MEC
system 800 includes architectures and infrastructures that
are used to virtualize one or more network functions (NFs)
onto physical resources comprising a combination of indus-
try-standard server hardware, storage hardware, or switches,
or alternatively comprising proprietary hardware. Typically,
mobile network operators virtualize their NFs using Net-
work Functions Virtualization (NFV), and use virtualization
infrastructure (VI) to consolidate various network elements,
which are referred to as Virtualized Network Functions
(VNFs). In other words, NFV can be used to execute virtual
or reconfigurable implementations of one or more compo-
nents/functions of a CN 120. As mentioned previously, the
MEC system 200 (or individual MEC servers 201) may
include VI to consolidate and virtualize various MEC com-
ponents and MEC applications on top of the VI. In this
regard, the system 800 is an architecture where MEC
elements are deployed in an NFV environment, which may
provide maximum utilization of the underlying VI. In par-
ticular, the system 800 is a MEC architecture that is
deployed in NFV environments, wherein the MEP 637 is
deployed as a VNF, the MEAs 636 appear as VNFs towards
the NFV MANO components (MEAs 636 with specific NFV
functionality are referred to as an “MEA-VNFs 836” or the
like), and the VI 638 is deployed as an NFVI 804 and its
virtualized resources are managed by a VIM 802.

[0181] In addition to elements discussed previously with
respect to FIG. 7, the system 800 is illustrated as including
a virtualized infrastructure manager (VIM) 802, a network
function virtualization infrastructure (NFVI) 804, a VNF
manager (VNFM) 806, virtualized network functions
(VNFs) including, inter alia, MEPVNF 837 and MEA-VNFs
836, a MEC Edge Platform Manager-NFV (MEPM-V) 810,
and an NFV Orchestrator (NFVO) 812. In embodiments, the
MEP 637 is realized as a VNF (e.g., MEP-VNF 837 in FIG.
8) and is managed according to typical NFV procedures. In
these embodiments, the MEPM 731 is transformed into the
Multi-access Edge Platform Manager-NFV (MEPM-V) 810,
where the MEPM-V 810 acts as an Element Manager (EM)
of the MEP-VNF 837. The MEPM-V 810 delegates Life
Cycle Management (LCM) parts/tasks to one or more
VNFM(s) 806, including VNFM-MEP LCM 806A and
VNFM-MEA LCM 806B. In particular, the VNFM 806 is
used to perform LCM of the MEP-VNF including LCM of
the MEP 637 performed by the VNFM-MEP LCM 806A and
LCM of the MEAs 636 performed by the VNFM-MEA
LCM 806B.

[0182] Additionally, the MEC-O 721 is transformed into a
Multi-access Edge Application Orchestrator” (MEAO) 821
that uses the NFVO 812 for resource orchestration, and for
orchestration of the set of MEA-VNFs as one or more NFV
Network Services (NSs). The MEA-VNFs 836 are managed
like individual VNFs, where certain orchestration and Life
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Cycle Management (LCM) tasks are delegated to the NFVO
812 and VNFM 8064, functional blocks. In some embodi-
ments, the MEP-VNF 837, the MEPM-V 810, and VNFM-
MEA LCM 806B may be deployed as a single package or
ensemble. In other embodiments, the VNFM-MEP LCM
806A and VNFM-MEA LCM 806B are part of a generic
VNFM 806, and the MEP-VNF 837 and the MEPM-V 810
are provided by a single vendor.

[0183] The VIM 802 manages the resources of the NFVI
804. The NFVI 804 includes physical or virtual resources
and applications (including hypervisors) used to execute the
system 800. The VIM 802 manages the life cycle of virtual
resources with the NFVI 804 (e.g., creation, maintenance,
and tear down of virtual machines (VMs) associated with
one or more physical resources); tracks VM instances; tracks
performance, fault, and security of VM instances and asso-
ciated physical resources; and exposes VM instances and
associated physical resources to other management systems.
The NFVO 812 coordinates, authorizes, releases, and
engages resources of the NFVI 804 in order to provide
requested services (e.g., to execute a core network function,
component, or slice).

[0184] The VNFM 806 manages VNFs used to execute
core network 120 components/functions. The VNFM 806
manages the life cycle of the VNFs and tracks performance,
fault, and security of the virtual aspects of VNFs. The
MEPM-V 810 tracks the performance, fault and security of
the functional aspects of VNFs. The tracking data from the
VNFM 806 and the MEPM-V 810 may comprise, for
example, performance measurement (PM) data used by the
VIM 802 or the NFVI 804. Both the VNFM 806 and the
MEPM-V 810 can scale up/down the quantity of VNFs of
the system 800.

[0185] The Mm3* reference point between MEAO 821
and the MEPM-V 810 is based on the Mm3 reference point
discussed previously. The Mm3* reference point in this
embodiment may be altered to account for the split between
MEPM-V 810 and VNFM-MEA LCMs 806B. In addition to
the reference points discussed previously with respect to
FIG. 7, system 800 includes the reference points Mv1, Mv2
and Mv3 between elements of the MEC architecture and
NFV architectures to support the management of MEA-
VNFs 836 and respective MEC services 837a. The Mvl
reference point connects the MEAO 821 and the NFVO 812
and is the same or similar to the Os-Ma-nfvo reference point
in NFV architectures. The Mv2 reference point connects the
VNFM-MEA LCM 806B with the MEPM-V 810 to allow
LCM related notifications to be exchanged between these
entities. The Mv2 reference point is the same or similar to
the Ve-Vnfm-em reference point in NFV architectures. The
Mv3 reference point connects the VNFM-MEA LCM 806B
with MEA-VNF 836 instance(s) to allow the exchange of
messages related to, for example, MEA LCM or initial
deployment-specific configurations. The Mv3 reference
point is the same or similar to the Ve-Vnfm-vnf reference
point in NFV architectures.

[0186] Furthermore, the following reference points are
used as they are defined for NFV architectures: The Nf-Vn
reference point that connects each MEA-VNF 836 with the
NFVI 804; the Nf-Vi reference point that connects the NFVI
804 and the VIM 802; the Os-Ma-nfvo reference point that
connects the OSS 722 and the NFVO 812, which is primar-
ily used to manage NSs (e.g., a number of VNFs connected
and orchestrated to deliver a service); the Or-Vnfm refer-
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ence point that connects the NFVO 812 and the VNFM
806a,b, which is primarily used for the NFVO 812 to invoke
VNF LCM operations; the Vi-Vnfm reference point that
connects the VIM 802 and the VNFM 8064a,b, which is
primarily used by the VNFM 8064, to invoke resource
management operations to manage cloud resources that are
needed by the VNF 837 and/or data plane (DP)-VNF 838
(where Vi-Vnfin reference point corresponds to the Mmo6
reference point discussed previously); the Or-Vi reference
point that connects the NFVO 812 and the VIM 802, which
is primarily used by the NFVO 812 to manage cloud
resources capacity; the Ve-Vnfm-em reference point that
connects the VNFM 8064, 5 that manages the lifecycle of the
MEP 637 with the MEPM-V 810; the Ve-Vnfm-vnf refer-
ence point that connects the VNFM 8064, 5 that manages the
lifecycle of the MEP 637 with the MEP-VNF 837; the
Nf-Vn reference point that connects the MEP-VNF 837 and
the NFVI 804; the Nf-Vi reference point that connects the
NFVI 804 and the VIM 802; the Os-Ma-nfvo reference point
that connects the OSS 722 and the NFVO 812, which is
primarily used to manage NSs, for example, a number of
VNFs connected and orchestrated to deliver a service; the
Or-Vnfm reference point that connects the NFVO 812 and
the VNFM 8064,b that manages the lifecycle of the ME
platform, which is primarily used for the NFVO 812 to
invoke VNF LCM operations; the Vi-Vnfm reference point
that connects the VIM 802 and the VNFM 8064a,b that
manages the lifecycle of the MEP 637, which is primarily
used by the VNFM 806a,5 to invoke resource management
operations to manage the cloud resources that are needed by
the VNF; and the Or-Vi reference point that connects the
NFVO 812 and the VIM 802. It is primarily used by the
NFVO 812 to manage cloud resources capacity.

[0187] When MEC is deployed in a NFV environment, the
data plane (DP) 838 may be implemented as a Physical
Network Function (PNF) (e.g., as DP-PNF 838), a VNF
(e.g., as DP-VNF 838), or combination thereof. When
implemented as a DP-PNF 838, the DP is connected to the
NS that contains the MEA-VNFs 836, and the Mp2 refer-
ence point is kept as a MEC-internal reference point also in
the NFV-based deployment of MEC. In another embodi-
ment, for performance enhancements, the Service Function
Chaining (SFC) functionality provided by the underlying
NFVI 804 may be reused for traffic routing. In such a
deployment, the DP 838 and the Mp2 reference point are
omitted from the system 800. The SFC functionality in the
NFVI 804 is configured by the NFVO 812 in the VIM 802
based on the NFP of the NFV NS, using the Or-Vi reference
point. In these embodiments, the MEAO 821 translates the
traffic rules into an NFP and sends it to the NFVO 812. The
MEP 837 may not control the traffic redirection directly via
the Mp2 reference point, but instead may pass requests to
activate/deactivate/update traffic rules to the MEPM-V 810,
which will then be forwarded to the MEAO 821. When
receiving such a request, the MEAO 821 may request the
NFVO 812 to update the NFP accordingly. Furthermore,
although not shown by FIG. 8, the system 800 may also
include a network manager (NM). The NM may provide a
package of end-user functions with the responsibility for the
management of a network, which may include network
elements with VNFs, non-virtualized network functions, or
both (e.g., management of the VNFs may occur via the
MEPM-V 810).
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[0188] FIG. 9 illustrates an example of infrastructure
equipment 900 in accordance with various embodiments.
The infrastructure equipment 900 (or “system 900’) may be
implemented as a base station, radio head, access network
node (e.g., the (R)AN nodes 111 and/or AP 106 shown and
described previously), MEC servers 201, server(s) 130,
and/or any other element/device discussed herein. In other
examples, the system 900 could be implemented in or by a
UE.

[0189] The system 900 includes application circuitry 905,
baseband circuitry 910, one or more radio front end modules
(RFEMs) 915, memory circuitry 920, power management
integrated circuitry (PMIC) 925, power tee circuitry 930,
network controller circuitry 935, network interface connec-
tor 940, positioning circuitry 945, and user interface 950. In
some embodiments, the device 900 may include additional
elements such as, for example, memory/storage, display,
camera, sensor, or input/output (I/O) interface. In other
embodiments, the components described below may be
included in more than one device. For example, said cir-
cuitries may be separately included in more than one device
for CRAN, vBBU, or other like implementations.

[0190] Application circuitry 905 includes circuitry such
as, but not limited to one or more processors (Or processor
cores), cache memory, and one or more of low drop-out
voltage regulators (LDOs), interrupt controllers, serial inter-
faces such as SPI, I°C or universal programmable serial
interface module, real time clock (RTC), timer-counters
including interval and watchdog timers, general purpose
input/output (I/O or 10), memory card controllers such as
Secure Digital (SD) MultiMediaCard (MMC) or similar,
Universal Serial Bus (USB) interfaces, Mobile Industry
Processor Interface (MIPI) interfaces and Joint Test Access
Group (JTAG) test access ports. The processors (or cores) of
the application circuitry 905 may be coupled with or may
include memory/storage elements and may be configured to
execute instructions stored in the memory/storage to enable
various applications or operating systems to run on the
system 900. In some implementations, the memory/storage
elements may be on-chip memory circuitry, which may
include any suitable volatile and/or non-volatile memory,
such as DRAM, SRAM, EPROM, EEPROM, Flash
memory, solid-state memory, and/or any other type of
memory device technology, such as those discussed herein.

[0191] The processor(s) of application circuitry 905 may
include, for example, one or more processor cores (CPUs),
one or more application processors, one or more graphics
processing units (GPUs), one or more reduced instruction
set computing (RISC) processors, one or more Acorn RISC
Machine (ARM) processors, one or more complex instruc-
tion set computing (CISC) processors, one or more digital
signal processors (DSP), one or more FPGAs, one or more
PLDs, one or more ASICs, one or more microprocessors or
controllers, or any suitable combination thereof. In some
embodiments, the application circuitry 905 may comprise,
or may be, a special-purpose processor/controller to operate
according to the various embodiments herein. As examples,
the processor(s) of application circuitry 905 may include one
or more Intel Pentium®, Core®, or Xeon® processor(s);
Advanced Micro Devices (AMD) Ryzen® processor(s),
Accelerated Processing Units (APUs), or Epyc® processors;
ARM-based processor(s) licensed from ARM Holdings, Ltd.
such as the ARM Cortex-A family of processors and the
ThunderX2® provided by Cavium™, Inc.; a MIPS-based
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design from MIPS Technologies, Inc. such as MIPS Warrior
P-class processors; and/or the like. In some embodiments,
the system 900 may not utilize application circuitry 905, and
instead may include a special-purpose processor/controller
to process [P data received from an EPC or 5GC, for
example.

[0192] In some implementations, the application circuitry
905 may include one or more hardware accelerators, which
may be microprocessors, programmable processing devices,
or the like. The one or more hardware accelerators may
include, for example, computer vision (CV) and/or deep
learning (DL) accelerators. As examples, the programmable
processing devices may be one or more a field-program-
mable devices (FPDs) such as field-programmable gate
arrays (FPGAs) and the like; programmable logic devices
(PLDs) such as complex PLDs (CPLDs), high-capacity
PLDs (HCPLDs), and the like; ASICs such as structured
ASICs and the like; programmable SoCs (PSoCs); and the
like. In such implementations, the circuitry of application
circuitry 905 may comprise logic blocks or logic fabric, and
other interconnected resources that may be programmed to
perform various functions, such as the procedures, methods,
functions, etc. of the various embodiments discussed herein.
In such embodiments, the circuitry of application circuitry
905 may include memory cells (e.g., erasable programmable
read-only memory (EPROM)), electrically erasable program-
mable read-only memory (EEPROM), flash memory, static
memory (e.g., static random access memory (SRAM), anti-
fuses, etc.)) used to store logic blocks, logic fabric, data, etc.
in look-up-tables (LUTs) and the like.

[0193] Insome implementations, such as implementations
where subsystems of the edge compute nodes 2101 and/or
master node 2112 of FIGS. 2-5 (e.g., load balancing engine
310, load balancing engine 510, encoder 533, or other like
subsystems/components) are individual software agents or
Al agents, each agent is implemented in a respective hard-
ware accelerator that are configured with appropriate bit
stream(s) or logic blocks to perform their respective func-
tions. In these implementations, processor(s) and/or hard-
ware accelerators of the application circuitry 905 may be
specifically tailored for operating the agents and/or for
machine learning functionality, such as a cluster of Al GPUs,
tensor processing units (TPUs) developed by Google® Inc.,
a Real AI Processors (RAPs™) provided by AlphalCs®,
Nervana™ Neural Network Processors (NNPs) provided by
Intel® Corp., Intel® Movidius™ Myriad™ X Vision Pro-
cessing Unit (VPU), NVIDIA® PX™ based GPUs, the
NMS500 chip provided by General Vision®, Hardware 3
provided by Tesla®, Inc., an Epiphany™ based processor
provided by Adapteva®, or the like. In some embodiments,
the hardware accelerator may be implemented as an Al
accelerating co-processor, such as the Hexagon 685 DSP
provided by Qualcomm®, the PowerVR 2NX Neural Net
Accelerator (NNA) provided by Imagination Technologies
Limited®, the Neural Engine core within the Apple® A1l or
A12 Bionic SoC, the Neural Processing Unit within the
HiSilicon Kirin 970 provided by Huawei®, and/or the like.
[0194] The baseband circuitry 910 may be implemented,
for example, as a solder-down substrate including one or
more integrated circuits, a single packaged integrated circuit
soldered to a main circuit board or a multi-chip module
containing two or more integrated circuits. The baseband
circuitry 910 includes one or more processing devices (e.g.,
baseband processors) to carry out various protocol and radio
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control functions. Baseband circuitry 910 may interface with
application circuitry of system 900 for generation and pro-
cessing of baseband signals and for controlling operations of
the RFEMs 915. The baseband circuitry 910 may handle
various radio control functions that enable communication
with one or more radio networks via the RFEMs 915. The
baseband circuitry 910 may include circuitry such as, but not
limited to, one or more single-core or multi-core processors
(e.g., one or more baseband processors) or control logic to
process baseband signals received from a receive signal path
of the RFEMs 915, and to generate baseband signals to be
provided to the RFEMs 915 via a transmit signal path. In
various embodiments, the baseband circuitry 910 may
implement a real-time OS (RTOS) to manage resources of
the baseband circuitry 910, schedule tasks, etc. Examples of
the RTOS may include Operating System Embedded
(OSE)™ provided by Enea®, Nucleus RTOS™ provided by
Mentor Graphics®, Versatile Real-Time Executive (VRTX)
provided by Mentor Graphics®, ThreadX™ provided by
Express Logic®, FreeRTOS, REX OS provided by Qual-
comm®, OKIL.4 provided by Open Kernel (OK) Labs®, or
any other suitable RTOS, such as those discussed herein.

[0195] Although not shown by FIG. 9, in one embodi-
ment, the baseband circuitry 910 includes individual pro-
cessing device(s) to operate one or more wireless commu-
nication protocols (e.g., a “multi-protocol baseband
processor” or “protocol processing circuitry”) and indi-
vidual processing device(s) to implement physical layer
(PHY) functions. In this embodiment, the protocol process-
ing circuitry operates or implements various protocol layers/
entities of one or more wireless communication protocols. In
a first example, the protocol processing circuitry may oper-
ate Long Term Evolution (LTE) protocol entities and/or
Fifth Generation (5G)/New Radio (NR) protocol entities
when the RFEMs 915 are cellular radiofrequency commu-
nication system, such as millimeter wave (mmWave) com-
munication circuitry or some other suitable cellular com-
munication circuitry. In the first example, the protocol
processing circuitry would operate medium access control
(MACQ), radio link control (RLC), packet data convergence
protocol (PDCP), service data adaptation protocol (SDAP),
radio resource control (RRC), and non-access stratum
(NAS) functions. In a second example, the protocol pro-
cessing circuitry may operate one or more IEEE-based
protocols when the RFEMs 915 are WiFi communication
system. In the second example, the protocol processing
circuitry would operate WiFi MAC and logical link control
(LLC) functions. The protocol processing circuitry may
include one or more memory structures (not shown) to store
program code and data for operating the protocol functions,
as well as one or more processing cores (not shown) to
execute the program code and perform various operations
using the data. The protocol processing circuitry provides
control functions for the baseband circuitry 910 and/or
RFEMSs 915. The baseband circuitry 910 may also support
radio communications for more than one wireless protocol.

[0196] Continuing with the aforementioned embodiment,
the baseband circuitry 910 includes individual processing
device(s) to implement PHY including hybrid automatic
repeat request (HARQ) functions, scrambling and/or
descrambling, (en)coding and/or decoding, layer mapping
and/or de-mapping, modulation symbol mapping, received
symbol and/or bit metric determination, multi-antenna port
pre-coding and/or decoding which may include one or more
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of space-time, space-frequency or spatial coding, reference
signal generation and/or detection, preamble sequence gen-
eration and/or decoding, synchronization sequence genera-
tion and/or detection, control channel signal blind decoding,
radio frequency shifting, and other related functions. etc.
The modulation/demodulation functionality may include
Fast-Fourier Transform (FFT), precoding, or constellation
mapping/demapping functionality. The (en)coding/decoding
functionality may include convolution, tail-biting convolu-
tion, turbo, Viterbi, or Low Density Parity Check (LDPC)
coding. Embodiments of modulation/demodulation and
encoder/decoder functionality are not limited to these
examples and may include other suitable functionality in
other embodiments.

[0197] User interface circuitry 950 may include one or
more user interfaces designed to enable user interaction with
the system 900 or peripheral component interfaces designed
to enable peripheral component interaction with the system
900. User interfaces may include, but are not limited to, one
or more physical or virtual buttons (e.g., a reset button), one
or more indicators (e.g., light emitting diodes (LEDs)), a
physical keyboard or keypad, a mouse, a touchpad, a touch-
screen, speakers or other audio emitting devices, micro-
phones, a printer, a scanner, a headset, a display screen or
display device, etc. Peripheral component interfaces may
include, but are not limited to, a nonvolatile memory port, a
universal serial bus (USB) port, an audio jack, a power
supply interface, etc.

[0198] The radio front end modules (RFEMs) 915 may
comprise a millimeter wave (mmWave) RFEM and one or
more sub-mmWave radio frequency integrated circuits
(RFICs). In some implementations, the one or more sub-
mmWave RFICs may be physically separated from the
mmWave RFEM. The RFICs may include connections to
one or more antennas or antenna arrays, and the RFEM may
be connected to multiple antennas. In alternative implemen-
tations, both mmWave and sub-mmWave radio functions
may be implemented in the same physical RFEM 915, which
incorporates both mmWave antennas and sub-mmWave. The
antenna array comprises one or more antenna elements, each
of which is configured convert electrical signals into radio
waves to travel through the air and to convert received radio
waves into electrical signals. For example, digital baseband
signals provided by the baseband circuitry 910 is converted
into analog RF signals (e.g., modulated waveform) that will
be amplified and transmitted via the antenna elements of the
antenna array including one or more antenna elements (not
shown). The antenna elements may be omnidirectional,
direction, or a combination thereof. The antenna elements
may be formed in a multitude of arranges as are known
and/or discussed herein. The antenna array may comprise
microstrip antennas or printed antennas that are fabricated
on the surface of one or more printed circuit boards. The
antenna array may be formed in as a patch of metal foil (e.g.,
a patch antenna) in a variety of shapes, and may be coupled
with the RF circuitry using metal transmission lines or the
like.

[0199] The memory circuitry 920 may include one or
more of volatile memory including dynamic random access
memory (DRAM) and/or synchronous dynamic random
access memory (SDRAM), and nonvolatile memory (NVM)
including high-speed electrically erasable memory (com-
monly referred to as Flash memory), phase change random
access memory (PRAM), magnetoresistive random access
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memory (MRAM), etc., and may incorporate the three-
dimensional (3D) cross-point (XPOINT) memories from
Intel® and Micron®. Memory circuitry 920 may be imple-
mented as one or more of solder down packaged integrated
circuits, socketed memory modules and plug-in memory
cards. The memory circuitry 920 is configured to store
computational logic (or “modules™) in the form of software,
firmware, or hardware commands to implement the tech-
niques described herein. The computational logic or mod-
ules may be developed using a suitable programming lan-
guage or development tools, such as any programming
language or development tool discussed herein. The com-
putational logic may be employed to store working copies
and/or permanent copies of programming instructions for
the operation of various components of appliance infrastruc-
ture equipment 900, an operating system of infrastructure
equipment 900, one or more applications, and/or for carry-
ing out the embodiments discussed herein (such as one or
more operations of depicted by FIGS. 2-5 and/or the like).
The computational logic may be stored or loaded into
memory circuitry 920 as instructions for execution by the
processors of the application circuitry 905 to provide or
perform the functions described herein. The various ele-
ments may be implemented by assembler instructions sup-
ported by processors of the application circuitry 905 or
high-level languages that may be compiled into such instruc-
tions. The permanent copy of the programming instructions
may be placed into persistent storage devices of memory
circuitry 920 in the factory during manufacture, or in the
field through, for example, a distribution medium (not
shown), through a communication interface (e.g., from a
distribution server), and/or over-the-air (OTA).

[0200] The PMIC 925 may include voltage regulators,
surge protectors, power alarm detection circuitry, and one or
more backup power sources such as a battery or capacitor.
The power alarm detection circuitry may detect one or more
of brown out (under-voltage) and surge (over-voltage) con-
ditions. The power tee circuitry 930 may provide for elec-
trical power drawn from a network cable to provide both
power supply and data connectivity to the infrastructure
equipment 900 using a single cable.

[0201] The network controller circuitry 935 provides con-
nectivity to a network using a standard network interface
protocol such as Ethernet, Ethernet over GRE Tunnels,
Ethernet over Multiprotocol Label Switching (MPLS), or
some other suitable protocol, such as those discussed herein.
Network connectivity may be provided to/from the infra-
structure equipment 900 via network interface connector
940 using a physical connection, which may be electrical
(commonly referred to as a “copper interconnect™), optical,
or wireless. The network controller circuitry 935 may
include one or more dedicated processors and/or FPGAs to
communicate using one or more of the aforementioned
protocols. In some implementations, the network controller
circuitry 935 may include multiple controllers to provide
connectivity to other networks using the same or different
protocols. In various embodiments, the network controller
circuitry 935 enables communication with associated equip-
ment and/or with a backend system (e.g., server(s) 130 of
FIG. 1), which may take place via a suitable gateway device.
[0202] The positioning circuitry 945 includes circuitry to
receive and decode signals transmitted/broadcasted by a
positioning network of a global navigation satellite system
(GNSS). Examples of navigation satellite constellations (or
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GNSS) include United States’ Global Positioning System
(GPS), Russia’s Global Navigation System (GLONASS),
the European Union’s Galileo system, China’s BeiDou
Navigation Satellite System, a regional navigation system or
GNSS augmentation system (e.g., Navigation with Indian
Constellation (NAVIC), Japan’s Quasi-Zenith Satellite Sys-
tem (QZSS), France’s Doppler Orbitography and Radio-
positioning Integrated by Satellite (DORIS), etc.), or the
like. The positioning circuitry 945 comprises various hard-
ware elements (e.g., including hardware devices such as
switches, filters, amplifiers, antenna elements, and the like to
facilitate OTA communications) to communicate with com-
ponents of a positioning network, such as navigation satel-
lite constellation nodes. In some embodiments, the position-
ing circuitry 945 may include a Micro-Technology for
Positioning, Navigation, and Timing (Micro-PNT) IC that
uses a master timing clock to perform position tracking/
estimation without GNSS assistance. The positioning cir-
cuitry 945 may also be part of, or interact with, the baseband
circuitry 910 and/or RFEMs 915 to communicate with the
nodes and components of the positioning network. The
positioning circuitry 945 may also provide position data
and/or time data to the application circuitry 905, which may
use the data to synchronize operations with various other
infrastructure equipment, or the like.

[0203] The components shown by FIG. 9 may communi-
cate with one another using interface circuitry, which may
include any number of bus and/or interconnect (IX) tech-
nologies such as industry standard architecture (ISA),
extended ISA (EISA), inter-integrated circuit (I°C), an serial
peripheral interface (SPI), point-to-point interfaces, power
management bus (PMBus), peripheral component intercon-
nect (PCI), PCI express (PCle), Intel® Ultra Path Interface
(UPI), Intel® Accelerator Link (IAL), Common Application
Programming Interface (CAPI), Intel® QuickPath intercon-
nect (QPI), Ultra Path Interconnect (UPI), Intel® Omni-Path
Architecture (OPA) IX, RapidlO™ system [Xs, Cache
Coherent Interconnect for Accelerators (CCIA), Gen-Z Con-
sortium IXs, Open Coherent Accelerator Processor Interface
(OpenCAPI) IX, a HyperTransport interconnect, and/or any
number of other IX technologies. The IX technology may be
a proprietary bus, for example, used in an SoC based system.

[0204] FIG. 10 illustrates an example of an platform 1000
(also referred to as “system 1000,” “device 1000,” “appli-
ance 1000,” or the like) in accordance with various embodi-
ments. In embodiments, the platform 1000 may be suitable
for use as UEs 101, edge compute nodes 2101, data collector
nodes 2102, IoT devices 1204-1504 of FIGS. 12-15, and/or
any other element/device discussed herein with regard to
FIGS. 1-15. Platform 1000 may also be implemented in or
as a server computer system or some other element, device,
or system discussed herein. The platform 1000 may include
any combinations of the components shown in the example.
The components of platform 1000 may be implemented as
integrated circuits (ICs), portions thereof, discrete electronic
devices, or other modules, logic, hardware, software, firm-
ware, or a combination thereof adapted in the computer
platform 1000, or as components otherwise incorporated
within a chassis of a larger system. The example of FIG. 10
is intended to show a high level view of components of the
computer platform 1000. However, some of the components
shown may be omitted, additional components may be
present, and different arrangement of the components shown
may occur in other implementations.
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[0205] The platform 1000 includes processor circuitry
1002. The processor circuitry 1002 includes circuitry such
as, but not limited to one or more processor cores and one
or more of cache memory, low drop-out voltage regulators
(LDOs), interrupt controllers, serial interfaces such as serial
peripheral interface (SPI), inter-integrated circuit (I*C) or
universal programmable serial interface circuit, real time
clock (RTC), timer-counters including interval and watch-
dog timers, general purpose input-output (I/O), memory card
controllers such as secure digital/multi-media card (SD/
MMC) or similar, universal serial bus (USB) interfaces,
mobile industry processor interface (MIPI) interfaces and
Joint Test Access Group (JTAG) test access ports. In some
implementations, the processor circuitry 1002 may include
one or more hardware accelerators, which may be micro-
processors, programmable processing devices (e.g., FPGA,
ASIC, etc.), or the like. The one or more hardware accel-
erators may include, for example, computer vision (CV)
and/or deep learning (DL) accelerators. In some implemen-
tations, the processor circuitry 1002 may include on-chip
memory circuitry, which may include any suitable volatile
and/or non-volatile memory, such as DRAM, SRAM,
EPROM, EEPROM, Flash memory, solid-state memory,
and/or any other type of memory device technology, such as
those discussed herein.

[0206] The processor(s) of processor circuitry 1002 may
include, for example, one or more processor cores (CPUs),
one or more application processors, one or more graphics
processing units (GPUs), one or more reduced instruction
set computing (RISC) processors, one or more Acorn RISC
Machine (ARM) processors, one or more complex instruc-
tion set computing (CISC) processors, one or more digital
signal processors (DSP), one or more FPGAs, one or more
PLDs, one or more ASICs, one or more baseband proces-
sors, one or more radio-frequency integrated circuits
(RFIC), one or more microprocessors or controllers, or any
suitable combination thereof. The processors (or cores) of
the processor circuitry 1002 may be coupled with or may
include memory/storage and may be configured to execute
instructions stored in the memory/storage to enable various
applications or operating systems to run on the platform
1000. In these embodiments, the processors (or cores) of the
processor circuitry 1002 is configured to operate application
software to provide a specific service to a user of the
platform 1000. In some embodiments, the processor cir-
cuitry 1002 may be a special-purpose processor/controller to
operate according to the various embodiments herein.

[0207] As examples, the processor circuitry 1002 may
include an Intel® Architecture Core™ based processor, such
as a Quark™, an Atom™, an i3, an i5, an i7, or an
MCU-class processor, Pentium® processor(s), Xeon® pro-
cessor(s), or another such processor available from Intel®
Corporation, Santa Clara, Calif. However, any number other
processors may be used, such as one or more of Advanced
Micro Devices (AMD) Zen® Core Architecture, such as
Ryzen® or EPYC® processor(s), Accelerated Processing
Units (APUs), MxGPUs, Epyc® processor(s), or the like;
AS5-A12 and/or S1-S4 processor(s) from Apple® Inc., Snap-
dragon™ or Centrig™ processor(s) from Qualcomm®
Technologies, Inc., Texas Instruments, Inc.® Open Multi-
media Applications Platform (OMAP)™ processor(s); a
MIPS-based design from MIPS Technologies, Inc. such as
MIPS Warrior M-class, Warrior I-class, and Warrior P-class
processors; an ARM-based design licensed from ARM
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Holdings, Ltd., such as the ARM Cortex-A, Cortex-R, and
Cortex-M family of processors; the ThunderX2® provided
by Cavium™, Inc.; or the like. In some implementations, the
processor circuitry 1002 may be a part of a system on a chip
(SoC), System-in-Package (SiP), a multi-chip package
(MCP), and/or the like, in which the processor circuitry
1002 and other components are formed into a single inte-
grated circuit, or a single package, such as the Edison™ or
Galileo™ SoC boards from Intel® Corporation. Other
examples of the processor circuitry 1002 are mentioned
elsewhere in the present disclosure.

[0208] Additionally or alternatively, processor circuitry
1002 may include circuitry such as, but not limited to, one
or more FPDs such as FPGAs and the like; PLDs such as
CPLDs, HCPLDs, and the like; ASICs such as structured
ASICs and the like; PSoCs; and the like. In such embodi-
ments, the circuitry of processor circuitry 1002 may com-
prise logic blocks or logic fabric including and other inter-
connected resources that may be programmed to perform
various functions, such as the procedures, methods, func-
tions, etc. of the various embodiments discussed herein. In
such embodiments, the circuitry of processor circuitry 1002
may include memory cells (e.g., EPROM, EEPROM, flash
memory, static memory (e.g., SRAM, anti-fuses, etc.) used
to store logic blocks, logic fabric, data, etc. in LUTs and the
like.

[0209] The processor circuitry 1002 may communicate
with system memory circuitry 1004 over an interconnect
1006 (e.g., a bus). Any number of memory devices may be
used to provide for a given amount of system memory. As
examples, the memory circuitry 1004 may be random access
memory (RAM) in accordance with a Joint Electron Devices
Engineering Council (JEDEC) design such as the DDR or
mobile DDR standards (e.g., LPDDR, LPDDR2, LPDDR3,
or LPDDR4), dynamic RAM (DRAM), and/or synchronous
DRAM (SDRAM)). The memory circuitry 1004 may also
include nonvolatile memory (NVM) such as high-speed
electrically erasable memory (commonly referred to as
“flash memory”), phase change RAM (PRAM), resistive
memory such as magnetoresistive random access memory
(MRAM), etc., and may incorporate three-dimensional (3D)
cross-point (XPOINT) memories from Intel® and Micron®.
The memory circuitry 1004 may also comprise persistent
storage devices, which may be temporal and/or persistent
storage of any type, including, but not limited to, non-
volatile memory, optical, magnetic, and/or solid state mass
storage, and so forth.

[0210] The individual memory devices of memory cir-
cuitry 1004 may be implemented as one or more of solder
down packaged integrated circuits, socketed memory mod-
ules, and plug-in memory cards. The memory circuitry 1004
may be implemented as any number of different package
types such as single die package (SDP), dual die package
(DDP) or quad die package (Q17P). These devices, in some
examples, may be directly soldered onto a motherboard to
provide a lower profile solution, while in other examples the
devices are configured as one or more memory modules that
in turn couple to the motherboard by a given connector. Any
number of other memory implementations may be used,
such as other types of memory modules, e.g., dual inline
memory modules (DIMMs) of different varieties including
but not limited to microDIMMs or MiniDIMMs. Memory
circuitry 1004. In embodiments, the memory circuitry 1004
may be disposed in or on a same die or package as the
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processor circuitry 1002 (e.g., a same SoC, a same SiP, or
soldered on a same MCP as the processor circuitry 1002).
[0211] To provide for persistent storage of information
such as data, applications, operating systems (OS), and so
forth, a storage circuitry 1008 may also couple to the
processor circuitry 1002 via the interconnect 1006. In an
example, the storage circuitry 1008 may be implemented via
a solid-state disk drive (SSDD). Other devices that may be
used for the storage circuitry 1008 include flash memory
cards, such as SD cards, microSD cards, xD picture cards,
and the like, and USB flash drives. In low power imple-
mentations, the storage circuitry 1008 may be on-die
memory or registers associated with the processor circuitry
1002. However, in some examples, the storage circuitry
1008 may be implemented using a micro hard disk drive
(HDD). Further, any number of new technologies may be
used for the storage circuitry 1008 in addition to, or instead
of, the technologies described, such resistance change
memories, phase change memories, holographic memories,
or chemical memories, among others.

[0212] The storage circuitry 1008 store computational
logic 1083 (or “modules 1083”) in the form of software,
firmware, or hardware commands to implement the tech-
niques described herein. The computational logic 1083 may
be employed to store working copies and/or permanent
copies of computer programs, or data to create the computer
programs, for the operation of various components of plat-
form 1000 (e.g., drivers, etc.), an operating system of
platform 1000, one or more applications, and/or for carrying
out the embodiments discussed herein. The computational
logic 1083 may be stored or loaded into memory circuitry
1004 as instructions 1082, or data to create the instructions
1082, for execution by the processor circuitry 1002 to
provide the functions described herein. The various ele-
ments may be implemented by assembler instructions sup-
ported by processor circuitry 1002 or high-level languages
that may be compiled into such instructions (e.g., instruc-
tions 1070, or data to create the instructions 1070). The
permanent copy of the programming instructions may be
placed into persistent storage devices of storage circuitry
1008 in the factory or in the field through, for example, a
distribution medium (not shown), through a communication
interface (e.g., from a distribution server (not shown)), or
over-the-air (OTA).

[0213] In an example, the instructions 1082 provided via
the memory circuitry 1004 and/or the storage circuitry 1008
of FIG. 10 are embodied as one or more non-transitory
computer readable storage media (see e.g., NTCRSM 1102
of FIG. 11) including program code, a computer program
product or data to create the computer program, with the
computer program or data, to direct the processor circuitry
1002 of platform 1000 to perform electronic operations in
the platform 1000, and/or to perform a specific sequence or
flow of actions, for example, as described with respect to the
flowchart(s) and block diagram(s) of operations and func-
tionality depicted previously (see e.g., FIGS. 2-5). The
processor circuitry 1002 accesses the one or more non-
transitory computer readable storage media over the inter-
connect 1006.

[0214] Although the instructions 1082 are shown as code
blocks included in the memory circuitry 1004 and the
computational logic 1083 is shown as code blocks in the
storage circuitry 1008, it should be understood that any of
the code blocks may be replaced with hardwired circuits, for
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example, built into an FPGA, ASIC, or some other suitable
circuitry. For example, where processor circuitry 1002
includes (e.g., FPGA based) hardware accelerators as well as
processor cores, the hardware accelerators (e.g., the FPGA
cells) may be pre-configured (e.g., with appropriate bit
streams) with the aforementioned computational logic to
perform some or all of the functions discussed previously (in
lieu of employment of programming instructions to be
executed by the processor core(s)).

[0215] The memory circuitry 1004 and/or storage circuitry
1008 may store program code of an operating system (OS),
which may be a general purpose OS or an OS specifically
written for and tailored to the computing platform 1000. For
example, the OS may be Unix or a Unix-like OS such as
Linux e.g., provided by Red Hat Enterprise, Windows 10™
provided by Microsoft Corp.®, macOS provided by Apple
Inc.®, or the like. In another example, the OS may be a
mobile OS, such as Android® provided by Google iOS®
provided by Apple Inc.®, Windows 10 Mobile® provided
by Microsoft Corp.®, KaiOS provided by KaiOS Technolo-
gies Inc., or the like. In another example, the OS may be a
real-time OS (RTOS), such as Apache Mynewt provided by
the Apache Software Foundation®, Windows 10 For [oT®
provided by Microsoft Corp.®, Micro-Controller Operating
Systems  (“MicroC/OS” or “uC/OS”) provided by
Micrium®, Inc., FreeRTOS, VxWorks® provided by Wind
River Systems, Inc.®, PikeOS provided by Sysgo AG®,
Android Things® provided by Google QNX® RTOS pro-
vided by BlackBerry Ltd., or any other suitable RTOS, such
as those discussed herein.

[0216] The OS may include one or more drivers that
operate to control particular devices that are embedded in
the platform 1000, attached to the platform 1000, or other-
wise communicatively coupled with the platform 1000. The
drivers may include individual drivers allowing other com-
ponents of the platform 1000 to interact or control various
input/output (I/O) devices that may be present within, or
connected to, the platform 1000. For example, the drivers
may include a display driver to control and allow access to
a display device, a touchscreen driver to control and allow
access to a touchscreen interface of the platform 1000,
sensor drivers to obtain sensor readings of sensor circuitry
1021 and control and allow access to sensor circuitry 1021,
actuator drivers to obtain actuator positions of the actuators
1022 and/or control and allow access to the actuators 1022,
a camera driver to control and allow access to an embedded
image capture device, audio drivers to control and allow
access to one or more audio devices. The OSs may also
include one or more libraries, drivers, APIs, firmware,
middleware, software glue, etc., which provide program
code and/or software components for one or more applica-
tions to obtain and use the data from a secure execution
environment (SEE), trusted execution environment (TEE),
and/or management engine of the platform 1000 (not
shown).

[0217] The components may communicate over the inter-
connect 1006. The interconnect 1006 may include any
number of technologies, including industry standard archi-
tecture (ISA), extended ISA (EISA), peripheral component
interconnect (PCI), peripheral component interconnect
extended (PCIx), PCI express (PCle), or any number of
other technologies. The interconnect 1006 may be a propri-
etary bus, for example, used in a SoC based system. Other
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bus systems may be included, such as an I°C interface, an
SPI interface, point-to-point interfaces, and a power bus,
among others.

[0218] The interconnect 1006 couples the processor cir-
cuitry 1002 to the communication circuitry 1009 for com-
munications with other devices. The communication cir-
cuitry 1009 is a hardware element, or collection of hardware
elements, used to communicate over one or more networks
(e.g., cloud 1001) and/or with other devices (e.g., mesh
devices/fog 1064). The communication circuitry 1009
includes baseband circuitry 1010 (or “modem 1010”) and
radiofrequency (RF) circuitry 1011 and 1012.

[0219] The baseband circuitry 1010 includes one or more
processing devices (e.g., baseband processors) to carry out
various protocol and radio control functions. Baseband
circuitry 1010 may interface with application circuitry of
platform 1000 (e.g., a combination of processor circuitry
1002, memory circuitry 1004, and/or storage circuitry 1008)
for generation and processing of baseband signals and for
controlling operations of the RF circuitry 1011 or 1012. The
baseband circuitry 1010 may handle various radio control
functions that enable communication with one or more radio
networks via the RF circuitry 1011 or 1012. The baseband
circuitry 1010 may include circuitry such as, but not limited
to, one or more single-core or multi-core processors (e.g.,
one or more baseband processors) or control logic to process
baseband signals received from a receive signal path of the
RF circuitry 1011 and/or 1012, and to generate baseband
signals to be provided to the RF circuitry 1011 or 1012 via
a transmit signal path. In various embodiments, the base-
band circuitry 1010 may implement a real-time OS (RTOS)
to manage resources of the baseband circuitry 1010, sched-
ule tasks, etc. Examples of the RTOS may include Operating
System Embedded (OSE)™ provided by Enea®, Nucleus
RTOS™ provided by Mentor Graphics®, Versatile Real-
Time Executive (VRTX) provided by Mentor Graphics®,
ThreadX™ provided by Express Logic®, FreeRTOS, REX
OS provided by Qualcomm®, OKL4 provided by Open
Kernel (OK) Labs®, or any other suitable RTOS, such as
those discussed herein.

[0220] Although not shown by FIG. 10, in one embodi-
ment, the baseband circuitry 1010 includes individual pro-
cessing device(s) to operate one or more wireless commu-
nication protocols (e.g., a “multi-protocol baseband
processor” or “protocol processing circuitry”) and indi-
vidual processing device(s) to implement physical layer
(PHY) functions. In this embodiment, the protocol process-
ing circuitry operates or implements various protocol layers/
entities of one or more wireless communication protocols. In
a first example, the protocol processing circuitry may oper-
ate Long Term Evolution (LTE) protocol entities and/or
Fifth Generation (5G)/New Radio (NR) protocol entities
when the communication circuitry 1009 is a cellular radiof-
requency communication system, such as millimeter wave
(mmWave) communication circuitry or some other suitable
cellular communication circuitry. In the first example, the
protocol processing circuitry 1005 would operate medium
access control (MAC), radio link control (RLC), packet data
convergence protocol (PDCP), service data adaptation pro-
tocol (SDAP), radio resource control (RRC), and non-access
stratum (NAS) functions. In a second example, the protocol
processing circuitry may operate one or more IEEE-based
protocols when the communication circuitry 1009 is WiFi
communication system. In the second example, the protocol
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processing circuitry would operate WiFi MAC and logical
link control (LL.C) functions. The protocol processing cir-
cuitry may include one or more memory structures (not
shown) to store program code and data for operating the
protocol functions, as well as one or more processing cores
(not shown) to execute the program code and perform
various operations using the data. The protocol processing
circuitry provides control functions for the baseband cir-
cuitry 1010 and/or RF circuitry 1011 and 1012. The base-
band circuitry 1010 may also support radio communications
for more than one wireless protocol.

[0221] Continuing with the aforementioned embodiment,
the baseband circuitry 1010 includes individual processing
device(s) to implement PHY including hybrid automatic
repeat request (HARD) functions, scrambling and/or
descrambling, (en)coding and/or decoding, layer mapping
and/or de-mapping, modulation symbol mapping, received
symbol and/or bit metric determination, multi-antenna port
pre-coding and/or decoding which may include one or more
of space-time, space-frequency or spatial coding, reference
signal generation and/or detection, preamble sequence gen-
eration and/or decoding, synchronization sequence genera-
tion and/or detection, control channel signal blind decoding,
radio frequency shifting, and other related functions. etc.
The modulation/demodulation functionality may include
Fast-Fourier Transform (FFT), precoding, or constellation
mapping/demapping functionality. The (en)coding/decoding
functionality may include convolution, tail-biting convolu-
tion, turbo, Viterbi, or Low Density Parity Check (LDPC)
coding. Embodiments of modulation/demodulation and
encoder/decoder functionality are not limited to these
examples and may include other suitable functionality in
other embodiments.

[0222] The communication circuitry 1009 also includes
RF circuitry 1011 and 1012 to enable communication with
wireless networks using modulated electromagnetic radia-
tion through a non-solid medium. Each of the RF circuitry
1011 and 1012 include a receive signal path, which may
include circuitry to convert analog RF signals (e.g., an
existing or received modulated waveform) into digital base-
band signals to be provided to the baseband circuitry 1010.
Each of the RF circuitry 1011 and 1012 also include a
transmit signal path, which may include circuitry configured
to convert digital baseband signals provided by the baseband
circuitry 1010 to be converted into analog RF signals (e.g.,
modulated waveform) that will be amplified and transmitted
via an antenna array including one or more antenna elements
(not shown). The antenna array may be a plurality of
microstrip antennas or printed antennas that are fabricated
on the surface of one or more printed circuit boards. The
antenna array may be formed in as a patch of metal foil (e.g.,
a patch antenna) in a variety of shapes, and may be coupled
with the RF circuitry 1011 or 1012 using metal transmission
lines or the like.

[0223] The RF circuitry 1011 (also referred to as a “mesh
transceiver”) is used for communications with other mesh or
fog devices 1064. The mesh transceiver 1011 may use any
number of frequencies and protocols, such as 2.4 Gigahertz
(GHz) transmissions under the IEEE 802.15.4 standard,
using the Bluetooth® low energy (BLE) standard, as defined
by the Bluetooth® Special Interest Group, or the ZigBee®
standard, among others. Any number of RF circuitry 1011,
configured for a particular wireless communication protocol,
may be used for the connections to the mesh devices 1064.
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For example, a WLAN unit may be used to implement
Wi-Fi™ communications in accordance with the IEEE 802.
11 standard. In addition, wireless wide area communica-
tions, for example, according to a cellular or other wireless
wide area protocol, may occur via a WWAN unit.

[0224] The mesh transceiver 1011 may communicate
using multiple standards or radios for communications at
different ranges. For example, the platform 1000 may com-
municate with close/proximate devices, e.g., within about 10
meters, using a local transceiver based on BLE, or another
low power radio, to save power. More distant mesh devices
1064, e.g., within about 50 meters, may be reached over
ZigBee or other intermediate power radios. Both commu-
nications techniques may take place over a single radio at
different power levels, or may take place over separate
transceivers, for example, a local transceiver using BLE and
a separate mesh transceiver using ZigBee.

[0225] The RF circuitry 1012 (also referred to as a “wire-
less network transceiver,” a “cloud transceiver,” or the like)
may be included to communicate with devices or services in
the cloud 1001 via local or wide area network protocols. The
wireless network transceiver 1012 includes one or more
radios to communicate with devices in the cloud 1001. The
cloud 1001 may be the same or similar to cloud 302
discussed previously. The wireless network transceiver 1012
may be a LPWA transceiver that follows the IEEE 802.15.4,
or IEEE 802.15.4g standards, among others, such as those
discussed herein. The platform 1000 may communicate over
a wide area using LoRaWAN™ (Long Range Wide Area
Network) developed by Semtech and the LoRa Alliance. The
techniques described herein are not limited to these tech-
nologies, but may be used with any number of other cloud
transceivers that implement long range, low bandwidth
communications, such as Sigfox, and other technologies.
Further, other communications techniques, such as time-
slotted channel hopping, described in the IEEE 1002.15.4e
specification may be used.

[0226] Any number of other radio communications and
protocols may be used in addition to the systems mentioned
for the mesh transceiver 1011 and wireless network trans-
ceiver 1012, as described herein. For example, the radio
transceivers 1011 and 1012 may include an LTE or other
cellular transceiver that uses spread spectrum (SPA/SAS)
communications for implementing high-speed communica-
tions. Further, any number of other protocols may be used,
such as Wi-Fi® networks for medium speed communica-
tions and provision of network communications.

[0227] The transceivers 1011 and 1012 may include radios
that are compatible with, and/or may operate according to
any one or more of the following radio communication
technologies and/or standards including but not limited to: a
Global System for Mobile Communications (GSM) radio
communication technology, a General Packet Radio Service
(GPRS) radio communication technology, an Enhanced
Data Rates for GSM Evolution (EDGE) radio communica-
tion technology, and/or a Third Generation Partnership Proj-
ect (3GPP) radio communication technology, for example
Universal Mobile Telecommunications System (UMTS),
Freedom of Multimedia Access (FOMA), 3GPP Long Term
Evolution (LTE), 3GPP Long Term Evolution Advanced
(LTE Advanced), Code division multiple access 2000
(CDM2000), Cellular Digital Packet Data (CDPD), Mobi-
tex, Third Generation (3G), Circuit Switched Data (CSD),
High-Speed Circuit-Switched Data (HSCSD), Universal
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Mobile Telecommunications System (Third Generation)
(UMTS (3G)), Wideband Code Division Multiple Access
(Universal ~ Mobile  Telecommunications System)
(W-CDMA (UMTS)), High Speed Packet Access (HSPA),
High-Speed Downlink Packet Access (HSDPA), High-
Speed Uplink Packet Access (HSUPA), High Speed Packet
Access Plus (HSPA+), Universal Mobile Telecommunica-
tions System-Time-Division Duplex (UMTS-TDD), Time
Division-Code Division Multiple Access (TD-CDMA),
Time Division-Synchronous Code Division Multiple Access
(TD-CDMA), 3rd Generation Partnership Project Release 8
(Pre-4th Generation) (3GPP Rel. 8 (Pre-4G)), 3GPP Rel. 9
(3rd Generation Partnership Project Release 9), 3GPP Rel.
10 (3rd Generation Partnership Project Release 10), 3GPP
Rel. 11 (3rd Generation Partnership Project Release 11),
3GPP Rel. 12 (3rd Generation Partnership Project Release
12), 3GPP Rel. 13 (3rd Generation Partnership Project
Release 13), 3GPP Rel. 14 (3rd Generation Partnership
Project Release 14), 3GPP Rel. 15 (3rd Generation Partner-
ship Project Release 15), 3GPP Rel. 16 (3rd Generation
Partnership Project Release 16), 3GPP Rel. 17 (3rd Genera-
tion Partnership Project Release 17) and subsequent
Releases (such as Rel. 18, Rel. 19, etc.), 3GPP 5G, 3GPP
LTE Extra, LTE-Advanced Pro, LTE Licensed-Assisted
Access (LAA), MuLTEfire, UMTS Terrestrial Radio Access
(UTRA), Evolved UMTS Terrestrial Radio Access
(E-UTRA), Long Term Evolution Advanced (4th Genera-
tion) (LTE Advanced (4G)), cdmaOne (2G), Code division
multiple access 2000 (Third generation) (CDM2000 (3G)),
Evolution-Data Optimized or Evolution-Data Only (EV-
DO), Advanced Mobile Phone System (1st Generation)
(AMPS (1G)), Total Access Communication System/Ex-
tended Total Access Communication System (TACS/
ETACS), Digital AMPS (2nd Generation) (D-AMPS (2G)),
Push-to-talk (PTT), Mobile Telephone System (MTS),
Improved Mobile Telephone System (IMTS), Advanced
Mobile Telephone System (AMTS), OLT (Norwegian for
Offentlig Landmobil Telefoni, Public Land Mobile Tele-
phony), MTD (Swedish abbreviation for Mobiltelefonisys-
tem D, or Mobile telephony system D), Public Automated
Land Mobile (Autotel/PALM), ARP (Finnish for Autoradio-
puhelin, “car radio phone”), NMT (Nordic Mobile Tele-
phony), High capacity version of NTT (Nippon Telegraph
and Telephone) (Hicap), Cellular Digital Packet Data
(CDPD), Mobitex, DataTAC, Integrated Digital Enhanced
Network (iDEN), Personal Digital Cellular (PDC), Circuit
Switched Data (CSD), Personal Handy-phone System
(PHS), Wideband Integrated Digital Enhanced Network
(WiDEN), iBurst, Unlicensed Mobile Access (UMA), also
referred to as also referred to as 3GPP Generic Access
Network, or GAN standard), Bluetooth(r), Bluetooth Low
Energy (BLE), IEEE 802.15.4 based protocols (e.g., IPv6
over Low power Wireless Personal Area Networks (6L.oW-
PAN), WirelessHART, MiWi, Thread, 802.11a, etc.) WiFi-
direct, ANT/ANT+, ZigBee, Z-Wave, 3GPP device-to-de-
vice (D2D) or Proximity Services (ProSe), Universal Plug
and Play (UPnP), Low-Power Wide-Area-Network (LP-
WAN), Long Range Wide Area Network (LoRA) or
LoRaWANT™ developed by Semtech and the LoRa Alliance,
Sigfox, Wireless Gigabit Alliance (WiGig) standard,
mmWave standards in general (wireless systems operating at
10-300 GHz and above such as WiGig, IEEE 802.11ad,
IEEE 802.11 ay, etc.), technologies operating above 300
GHz and THz bands, (3GPP/LTE based or IEEE 802.11p
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and other) V2X communication technologies, 3GPP cellular
V2X, DSRC (Dedicated Short Range Communications)
communication systems such as Intelligent-Transport-Sys-
tems and others, the European ITS-G5 system (i.e. the
European flavor of IEEE 802.11p based DSRC, including
ITS-G5A (i.e., Operation of ITS-G5 in European ITS fre-
quency bands dedicated to ITS for safety re-lated applica-
tions in the frequency range 5,875 GHz to 5,905 GHz),
ITS-G5B (i.e., Operation in European ITS frequency bands
dedicated to ITS non-safety applications in the frequency
range 5,855 GHz to 5,875 GHz), ITS-G5C (i.e., Operation
of ITS applications in the frequency range 5,470 GHz to
5,725 GHz)), etc. In addition to the standards listed above,
any number of satellite uplink technologies may be used for
the transceivers 1011, 1012 including, for example, radios
compliant with standards issued by the ITU (International
Telecommunication Union), or the ETSI (European Tele-
communications Standards Institute), among others. The
examples provided herein are thus understood as being
applicable to various other communication technologies,
both existing and not yet formulated.

[0228] Network interface circuitry/controller (NIC) 1016
may be included to provide wired communication to the
cloud 1001 or to other devices, such as the mesh devices
1064 using a standard network interface protocol. The
standard network interface protocol may include Ethernet,
Ethernet over GRE Tunnels, Ethernet over Multiprotocol
Label Switching (MPLS), Ethernet over USB, or may be
based on other types of network protocols, such as Control-
ler Area Network (CAN), Local Interconnect Network
(LIN), DeviceNet, ControlNet, Data Highway+, PROFI-
BUS, or PROFINET, among many others. Network connec-
tivity may be provided to/from the platform 1000 via NIC
1016 using a physical connection, which may be electrical
(e.g., a “copper interconnect”) or optical. The physical
connection also includes suitable input connectors (e.g.,
ports, receptacles, sockets, etc.) and output connectors (e.g.,
plugs, pins, etc.). The NIC 1016 may include one or more
dedicated processors and/or FPGAs to communicate using
one or more of the aforementioned network interface pro-
tocols. In some implementations, the NIC 1016 may include
multiple controllers to provide connectivity to other net-
works using the same or different protocols. For example,
the platform 1000 may include a first NIC 1016 providing
communications to the cloud over Ethernet and a second
NIC 1016 providing communications to other devices over
another type of network.

[0229] The interconnect 1006 may couple the processor
circuitry 1002 to an external interface 1018 (also referred to
as “1/O interface circuitry” or the like) that is used to connect
external devices or subsystems. The external devices
include, inter alia, sensor circuitry 1021, actuators 1022, and
positioning circuitry 1045. The sensor circuitry 1021 may
include devices, modules, or subsystems whose purpose is to
detect events or changes in its environment and send the
information (sensor data) about the detected events to some
other a device, module, subsystem, etc. Examples of such
sensors 621 include, inter alia, inertia measurement units
(IMU) comprising accelerometers, gyroscopes, and/or mag-
netometers; microelectromechanical systems (MEMS) or
nanoelectromechanical systems (NEMS) comprising 3-axis
accelerometers, 3-axis gyroscopes, and/or magnetometers;
level sensors; tlow sensors; temperature sensors (e.g., therm-
istors); pressure sensors; barometric pressure sensors; gra-
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vimeters; altimeters; image capture devices (e.g., cameras);
light detection and ranging (LiDAR) sensors; proximity
sensors (e.g., infrared radiation detector and the like), depth
sensors, ambient light sensors, ultrasonic transceivers;
microphones; etc.

[0230] The external interface 1018 connects the platform
1000 to actuators 1022, allow platform 1000 to change its
state, position, and/or orientation, or move or control a
mechanism or system. The actuators 1022 comprise electri-
cal and/or mechanical devices for moving or controlling a
mechanism or system, and converts energy (e.g., electric
current or moving air and/or liquid) into some kind of
motion. The actuators 1022 may include one or more
electronic (or electrochemical) devices, such as piezoelectric
biomorphs, solid state actuators, solid state relays (SSRs),
shape-memory alloy-based actuators, electroactive polymer-
based actuators, relay driver integrated circuits (ICs), and/or
the like. The actuators 1022 may include one or more
electromechanical devices such as pneumatic actuators,
hydraulic actuators, electromechanical switches including
electromechanical relays (EMRs), motors (e.g., DC motors,
stepper motors, servomechanisms, etc.), wheels, thrusters,
propellers, claws, clamps, hooks, an audible sound genera-
tor, and/or other like electromechanical components. The
platform 1000 may be configured to operate one or more
actuators 1022 based on one or more captured events and/or
instructions or control signals received from a service pro-
vider and/or various client systems.

[0231] The positioning circuitry 1045 includes circuitry to
receive and decode signals transmitted/broadcasted by a
positioning network of a global navigation satellite system
(GNSS). Examples of navigation satellite constellations (or
GNSS) include United States’ Global Positioning System
(GPS), Russia’s Global Navigation System (GLONASS),
the European Union’s Galileo system, China’s BeiDou
Navigation Satellite System, a regional navigation system or
GNSS augmentation system (e.g., Navigation with Indian
Constellation (NAVIC), Japan’s Quasi-Zenith Satellite Sys-
tem (QZSS), France’s Doppler Orbitography and Radio-
positioning Integrated by Satellite (DORIS), etc.), or the
like. The positioning circuitry 1045 comprises various hard-
ware elements (e.g., including hardware devices such as
switches, filters, amplifiers, antenna elements, and the like to
facilitate OTA communications) to communicate with com-
ponents of a positioning network, such as navigation satel-
lite constellation nodes. In some embodiments, the position-
ing circuitry 1045 may include a Micro-Technology for
Positioning, Navigation, and Timing (Micro-PNT) IC that
uses a master timing clock to perform position tracking/
estimation without GNSS assistance. The positioning cir-
cuitry 1045 may also be part of, or interact with, the
communication circuitry 1009 to communicate with the
nodes and components of the positioning network. The
positioning circuitry 1045 may also provide position data
and/or time data to the application circuitry, which may use
the data to synchronize operations with various infrastruc-
ture (e.g., radio base stations), for turn-by-turn navigation,
or the like.

[0232] In some examples, various input/output (1/O)
devices may be present within, or connected to, the platform
1000, which are referred to as input device circuitry 1086
and output device circuitry 1084 in FIG. 10. The input
device circuitry 1086 and output device circuitry 1084
include one or more user interfaces designed to enable user
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interaction with the platform 1000 and/or peripheral com-
ponent interfaces designed to enable peripheral component
interaction with the platform 1000. Input device circuitry
1086 may include any physical or virtual means for accept-
ing an input including, inter alia, one or more physical or
virtual buttons (e.g., a reset button), a physical keyboard,
keypad, mouse, touchpad, touchscreen, microphones, scan-
ner, headset, and/or the like.

[0233] The output device circuitry 1084 may be included
to show information or otherwise convey information, such
as sensor readings, actuator position(s), or other like infor-
mation. Data and/or graphics may be displayed on one or
more user interface components of the output device cir-
cuitry 1084. Output device circuitry 1084 may include any
number and/or combinations of audio or visual display,
including, inter alia, one or more simple visual outputs/
indicators (e.g., binary status indicators (e.g., light emitting
diodes (LEDs)) and multi-character visual outputs, or more
complex outputs such as display devices or touchscreens
(e.g., Liquid Chrystal Displays (LCD), LED displays, quan-
tum dot displays, projectors, etc.), with the output of char-
acters, graphics, multimedia objects, and the like being
generated or produced from the operation of the platform
1000. The output device circuitry 1084 may also include
speakers or other audio emitting devices, printer(s), and/or
the like. In some embodiments, the sensor circuitry 1021
may be used as the input device circuitry 1086 (e.g., an
image capture device, motion capture device, or the like)
and one or more actuators 1022 may be used as the output
device circuitry 1084 (e.g., an actuator to provide haptic
feedback or the like). In another example, near-field com-
munication (NFC) circuitry comprising an NFC controller
coupled with an antenna element and a processing device
may be included to read electronic tags and/or connect with
another NFC-enabled device. Peripheral component inter-
faces may include, but are not limited to, a non-volatile
memory port, a universal serial bus (USB) port, an audio
jack, a power supply interface, etc.

[0234] A battery 1024 may be coupled to the platform
1000 to power the platform 1000, which may be used in
embodiments where the platform 1000 is not in a fixed
location. The battery 1024 may be a lithium ion battery, a
lead-acid automotive battery, or a metal-air battery, such as
a zinc-air battery, an aluminum-air battery, a lithium-air
battery, a lithium polymer battery, and/or the like. In
embodiments where the platform 1000 is mounted in a fixed
location, the platform 1000 may have a power supply
coupled to an electrical grid. In these embodiments, the
platform 1000 may include power tee circuitry to provide for
electrical power drawn from a network cable to provide both
power supply and data connectivity to the platform 1000
using a single cable.

[0235] Power management integrated circuitry (PMIC)
1026 may be included in the platform 1000 to track the state
of charge (SoCh) of the battery 1024, and to control charging
of the platform 1000. The PMIC 1026 may be used to
monitor other parameters of the battery 1024 to provide
failure predictions, such as the state of health (SoH) and the
state of function (SoF) of the battery 1024. The PMIC 1026
may include voltage regulators, surge protectors, power
alarm detection circuitry. The power alarm detection cir-
cuitry may detect one or more of brown out (under-voltage)
and surge (over-voltage) conditions. The PMIC 1026 may
communicate the information on the battery 1024 to the
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processor circuitry 1002 over the interconnect 1006. The
PMIC 1026 may also include an analog-to-digital (ADC)
convertor that allows the processor circuitry 1002 to directly
monitor the voltage of the battery 1024 or the current flow
from the battery 1024. The battery parameters may be used
to determine actions that the platform 1000 may perform,
such as transmission frequency, mesh network operation,
sensing frequency, and the like. As an example, the PMIC
1026 may be a battery monitoring integrated circuit, such as
an LTC4020 or an LTC2990 from Linear Technologies, an
ADT7488A from ON Semiconductor of Phoenix Ariz., or an
IC from the UCD90xxx family from Texas Instruments of
Dallas, Tex.

[0236] A power block 1028, or other power supply
coupled to a grid, may be coupled with the PMIC 1026 to
charge the battery 1024. In some examples, the power block
1028 may be replaced with a wireless power receiver to
obtain the power wirelessly, for example, through a loop
antenna in the platform 1000. A wireless battery charging
circuit, such as an LTC4020 chip from Linear Technologies
of Milpitas, Calif., among others, may be included in the
PMIC 1026. The specific charging circuits chosen depend on
the size of the battery 1024, and thus, the current required.
The charging may be performed using the Airfuel standard
promulgated by the Airfuel Alliance, the Qi wireless charg-
ing standard promulgated by the Wireless Power Consor-
tium, or the Rezence charging standard, promulgated by the
Alliance for Wireless Power, among others.

[0237] Furthermore, the present disclosure may take the
form of a computer program product or data to create the
computer program, with the computer program or data
embodied in any tangible or non-transitory medium of
expression having the computer-usable program code (or
data to create the computer program) embodied in the
medium. FIG. 11 illustrates an example non-transitory com-
puter-readable storage media (NTCRSM) that may be suit-
able for use to store instructions (or data that creates the
instructions) that cause an apparatus (such as any of the
devices/components/systems described with regard to FIGS.
1-10), in response to execution of the instructions by the
apparatus, to practice selected aspects of the present disclo-
sure. As shown, NTCRSM 1102 may include a number of
programming instructions 1104 (or data to create the pro-
gramming instructions). Programming instructions 1104
may be configured to enable a device (e.g., any of the
devices/components/systems described with regard to FIGS.
1-10), in response to execution of the programming instruc-
tions, to perform various programming operations associ-
ated with operating system functions, one or more applica-
tions, and/or aspects of the present disclosure (including
various programming operations associated with FIGS. 2-5).

[0238] In alternate embodiments, programming instruc-
tions 1104 (or data to create the instructions) may be
disposed on multiple NTCRSM 1102. In alternate embodi-
ments, programming instructions 1104 (or data to create the
instructions) may be disposed on computer-readable transi-
tory storage media, such as, signals. The instructions embod-
ied by a machine-readable medium may further be trans-
mitted or received over a communications network using a
transmission medium via a network interface device utiliz-
ing any one of a number of transfer protocols (e.g., HTTP).
Any combination of one or more computer usable or com-
puter readable medium(s) may be utilized. The computer-
usable or computer-readable medium may be, for example
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but not limited to, one or more electronic, magnetic, optical,
electromagnetic, infrared, or semiconductor systems, appa-
ratuses, devices, or propagation media. For instance, the
NTCRSM 1102 may be embodied by devices described for
the storage circuitry 1008 and/or memory circuitry 1004
described with regard to FIG. 10. More specific examples (a
non-exhaustive list) of a computer-readable medium would
include the following: an electrical connection having one or
more wires, a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM, Flash memory, etc.), an optical fiber, a portable
compact disc read-only memory (CD-ROM), an optical
storage device and/or optical disks, a transmission media
such as those supporting the Internet or an intranet, a
magnetic storage device, or any number of other hardware
devices. Note that the computer-usable or computer-read-
able medium could even be paper or another suitable
medium upon which the program (or data to create the
program) is printed, as the program (or data to create the
program) can be electronically captured, via, for instance,
optical scanning of the paper or other medium, then com-
piled, interpreted, or otherwise processed in a suitable
manner, if necessary, and then stored in a computer memory
(with or without having been staged in or more intermediate
storage media). In the context of this document, a computer-
usable or computer-readable medium may be any medium
that can contain, store, communicate, propagate, or transport
the program (or data to create the program) for use by or in
connection with the instruction execution system, apparatus,
or device. The computer-usable medium may include a
propagated data signal with the computer-usable program
code (or data to create the program code) embodied there-
with, either in baseband or as part of a carrier wave. The
computer usable program code (or data to create the pro-
gram) may be transmitted using any appropriate medium,
including but not limited to wireless, wireline, optical fiber
cable, RF, etc.

[0239] In various embodiments, the program code (or data
to create the program code) described herein may be stored
in one or more of a compressed format, an encrypted format,
a fragmented format, a packaged format, etc. Program code
(or data to create the program code) as described herein may
require one or more of installation, modification, adaptation,
updating, combining, supplementing, configuring, decryp-
tion, decompression, unpacking, distribution, reassignment,
etc. in order to make them directly readable and/or execut-
able by a computing device and/or other machine. For
example, the program code (or data to create the program
code) may be stored in multiple parts, which are individually
compressed, encrypted, and stored on separate computing
devices, wherein the parts when decrypted, decompressed,
and combined form a set of executable instructions that
implement the program code (the data to create the program
code (such as that described herein. In another example, the
Program code (or data to create the program code) may be
stored in a state in which they may be read by a computer,
but require addition of a library (e.g., a dynamic link
library), a software development kit (SDK), an application
programming interface (API), etc. in order to execute the
instructions on a particular computing device or other
device. In another example, the program code (or data to
create the program code) may need to be configured (e.g.,
settings stored, data input, network addresses recorded, etc.)
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before the program code (or data to create the program code)
can be executed/used in whole or in part. In this example, the
program code (or data to create the program code) may be
unpacked, configured for proper execution, and stored in a
first location with the configuration instructions located in a
second location distinct from the first location. The configu-
ration instructions can be initiated by an action, trigger, or
instruction that is not co-located in storage or execution
location with the instructions enabling the disclosed tech-
niques. Accordingly, the disclosed program code (or data to
create the program code) are intended to encompass such
machine readable instructions and/or program(s) (or data to
create such machine readable instruction and/or programs)
regardless of the particular format or state of the machine
readable instructions and/or program(s) when stored or
otherwise at rest or in transit.

[0240] Computer program code for carrying out opera-
tions of the present disclosure (e.g., computational logic
1083, instructions 1082, 1070 discussed previously with
regard to FIG. 10) may be written in any combination of one
or more programming languages, including an object ori-
ented programming language such as Python, Ruby, Scala,
Smalltalk, Java™, C++, C#, or the like; a procedural pro-
gramming languages, such as the “C” programming lan-
guage, the Go (or “Golang”) programming language, or the
like; a scripting language such as JavaScript, Server-Side
JavaScript (SSJS), JQuery, PHP, Pearl, Python, Ruby on
Rails, Accelerated Mobile Pages Script (AMPscript), Mus-
tache Template Language, Handlebars Template Language,
Guide Template Language (GTL), PHP, Java and/or Java
Server Pages (JSP), Node.js, ASP.NET, and/or the like; a
markup language such as Hypertext Markup Language
(HTML), Extensible Markup Language (XML), Java Script
Object Notion (JSON), Apex®, Cascading Stylesheets
(CSS), JavaServer Pages (JSP), MessagePack™, Apache®
Thrift, Abstract Syntax Notation One (ASN.1), Google®
Protocol Buffers (protobuf), or the like; some other suitable
programming languages including proprietary programming
languages and/or development tools, or any other languages
tools. The computer program code for carrying out opera-
tions of the present disclosure may also be written in any
combination of the programming languages discussed
herein. The program code may execute entirely on the
system 1000, partly on the system 1000, as a stand-alone
software package, partly on the system 1000 and partly on
a remote computer or entirely on the remote computer or
server (e.g., system 900). In the latter scenario, the remote
computer may be connected to the system 1000 through any
type of network, including a local area network (LAN) or a
wide area network (WAN), or the connection may be made
to an external computer (for example, through the Internet
using an Internet Service Provider).

Example Fog Systems and Implementations

[0241] The internet of things (IoT) is a concept in which
a large number of computing devices are interconnected to
each other and to the Internet to provide functionality and
data acquisition at very low levels. As used herein, an loT
device may include a semiautonomous device performing a
function, such as sensing or control, among others, in
communication with other IoT devices and a wider network,
such as the Internet. Often, IoT devices are limited in
memory, size, or functionality, allowing larger numbers to
be deployed for a similar cost to smaller numbers of larger
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devices. However, an IoT device may be a smart phone,
laptop, tablet, or PC, or other larger device. Further, an loT
device may be a virtual device, such as an application on a
smart phone or other computing device. IoT devices may
include IoT gateways, used to couple IoT devices to other
IoT devices and to cloud applications, for data storage,
process control, and the like.

[0242] Networks of IoT devices may include commercial
and home automation devices, such as water distribution
systems, electric power distribution systems, pipeline con-
trol systems, plant control systems, light switches, thermo-
stats, locks, cameras, alarms, motion sensors, and the like.
The IoT devices may be accessible through remote comput-
ers, servers, and other systems, for example, to control
systems or access data.

[0243] The future growth of the Internet may include very
large numbers of IoT devices. Accordingly, as described
herein, a number of innovations for the future Internet
address the need for all these layers to grow unhindered, to
discover and make accessible connected resources, and to
support the ability to hide and compartmentalize connected
resources. Any number of network protocols and commu-
nications standards may be used, wherein each protocol and
standard is designed to address specific objectives. Further,
the protocols are part of the fabric supporting human acces-
sible services that operate regardless of location, time or
space. The innovations include service delivery and associ-
ated infrastructure, such as hardware and software. The
services may be provided in accordance with the Quality of
Service (QoS) terms specified in service level and service
delivery agreements. The use of IoT devices and networks
present a number of new challenges in a heterogeneous
network of connectivity comprising a combination of wired
and wireless technologies as depicted in FIGS. 9-12.
[0244] FIG. 12 illustrates an arrangement 1200 showing
interconnections that may be present between the Internet
and IoT networks, in accordance with various embodiments.
The interconnections may couple smaller networks 1202,
down to the individual IoT device 1204, to the fiber back-
bone 1206 of the Internet 1200. To simplify the drawing, not
every device 1204, or other object, is labeled.

[0245] In FIG. 12, top-level providers, which may be
termed tier 1 providers 1208, are coupled by the fiber
backbone of the Internet to other providers, such as second-
ary or tier 2 providers 1210. In one example, a tier 2 provider
1210 may couple to a tower 1212 of an LTE cellular
network, for example, by further fiber links, by microwave
communications 1214, or by other communications tech-
nologies. The tower 1212 may couple to a mesh network
including IoT devices 1204 through an LTE communication
link 1216, for example, through a central node 1218. The
communications between the individual IoT devices 1204
may also be based on LTE or NR communication links 1216.
In another example, a high-speed uplink 1221 may couple a
tier 2 provider 1210 to a gateway (GW) 1220. A number of
IoT devices 1204 may communicate with the GW 1220, and
with each other through the GW 1220, for example, over
BLE links 1222.

[0246] The fiber backbone 1206 may couple lower levels
of service providers to the Internet, such as tier 3 providers
1224. A tier 3 provider 1224 may be considered a general
Internet service provider (ISP), for example, purchasing
access to the fiber backbone 1210 from a tier 2 provider
1210 and providing access to a corporate GW 1226 and
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other customers. From the corporate GW 1226, a wireless
local area network (WLAN) can be used to communicate
with IoT devices 1204 through Wi-Fi® links 1228. A Wi-Fi
link 1228 may also be used to couple to a low power wide
area (LPWA) GW 1230, which can communicate with loT
devices 1204 over LPWA links 1232, for example, compat-
ible with the LoRaWan specification promulgated by the
LoRa alliance.

[0247] The tier 3 provider 1224 may also provide access
to a mesh network 1234 through a coordinator device 1236
that communicates with the tier 3 provider 1224 using any
number of communications links, such as an LTE cellular
link, an LPWA link, or a link 1238 based on the IEEE
802.15.4 standard, such as Zigbee®. Other coordinator
devices 1236 may provide a chain of links that forms cluster
tree of linked devices.

[0248] IoT devices 1204 may be any object, device, sen-
sor, or “thing” that is embedded with hardware and/or
software components that enable the object, device, sensor,
or “thing” capable of capturing and/or recording data asso-
ciated with an event, and capable of communicating such
data with one or more other devices over a network with
little or no user intervention. For instance, in various
embodiments, loT devices 1204 may be abiotic devices such
as autonomous sensors, gauges, meters, image capture
devices, microphones, machine-type communications
(MTC) devices, machine-to-machine (M2M) devices, light
emitting devices, audio emitting devices, audio and/or video
playback devices, electro-mechanical devices (e.g., switch,
actuator, etc.), and the like. In some embodiments, loT
devices 1204 may be biotic devices such as monitoring
implants, biosensors, biochips, and the like. In other
embodiments, an loT device 1204 may be a computer device
that is embedded in a computer system and coupled with
communications circuitry of the computer system. In such
embodiments, the loT device 1204 refer to a system on chip
(SoC), a universal integrated circuitry card (UICC), an
embedded UICC (eUICC), and the like, and the computer
system may be a mobile station (e.g., a smartphone) or user
equipment, laptop PC, wearable device (e.g., a smart watch,
fitness tracker, etc.), “smart” appliance (e.g., a television,
refrigerator, a security system, etc.), and the like.

[0249] Each of the IoT devices 1204 may include one or
more memory devices and one or more processors to capture
and store/record data. Each of the IoT devices 1204 may
include appropriate communications circuitry (e.g., trans-
ceiver(s), modem, antenna elements, etc.) to communicate
(e.g., transmit and receive) captured and stored/recorded
data. Further, each IoT device 1204 may include other
transceivers for communications using additional protocols
and frequencies. The wireless communications protocols
may be any suitable set of standardized rules or instructions
implemented by the IoT devices 1204 to communicate with
other devices, including instructions for packetizing/depack-
etizing data, instructions for modulating/demodulating sig-
nals, instructions for implementation of protocols stacks,
and the like. For example, loT devices 1204 may include
communications circuitry that is configurable to communi-
cate in accordance with one or more person-to-person (P2P)
or personal area network (PAN) protocols (e.g., IEEE 802.
15.4 based protocols including ZigBee, IPv6 over Low
power Wireless Personal Area Networks (6LoWPAN),
WirelessHART, MiWi, Thread, etc.; WiFi-direct; Bluetooth/
BLE protocols; ANT protocols; Z-Wave; LTE D2D or
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ProSe; UPnP; and the like); configurable to communicate
using one or more LAN and/or WLAN protocols (e.g.,
Wi-Fi-based protocols or IEEE 802.11 protocols, such as
IEEE 802.16 protocols); one or more cellular communica-
tions protocols (e.g., LTE/LTE-A, UMTS, GSM, EDGE,
Wi-MAX, etc.); and the like. In embodiments, one or more
of the IoT devices 1204, tower 1212, GW 1220, 1226, and
1230, coordinator device 1236, and so forth, may also be
incorporated with the embodiments described herein, in
particular, with references to FIGS. 1-5. In particular, the
IoT devices 1204, tower 1212, GW 1220, 1226, and 1230,
coordinator device 1236, and so forth, may correspond with
the computing devices/systems discussed previously with
regard to FIGS. 1 and 6-11.

[0250] The technologies and networks may enable the
exponential growth of devices and networks. As the tech-
nologies grow, the network may be developed for self-
management, functional evolution, and collaboration, with-
out needing direct human intervention. Thus, the
technologies will enable networks to function without cen-
tralized controlled systems. The technologies described
herein may automate the network management and opera-
tion functions beyond current capabilities.

[0251] FIG. 13 illustrates an example domain topology
1300 that may be used for a number of IoT networks coupled
through backbone links 1302 to GWs 1354, in accordance
with various embodiments. To simplify the drawing, not
every device 1304, or communications link 1316, 1322,
1328, or 1332 is labeled. The backbone links 1302 may
include any number of wired or wireless technologies, and
may be part of a local area network (LAN), a wide area
network (WAN), or the Internet. Similar to FIG. 12, in
embodiments, one or more of IoT devices 1304 (which may
be the same or similar as loT devices 1204 of FIG. 12), GWs
1354, and so forth, may be incorporated with embodiments
described herein. In particular, the various devices shown by
FIG. 13 may correspond with the systems, devices, etc.
discussed previously with regard to FIGS. 1-11.

[0252] The network topology 1300 may include any num-
ber of types of IoT networks, such as a mesh network 1356
using BLE links 1322. Other IoT networks that may be
present include a WLAN network 1358 using WiFi links
1328, a cellular network 1360 using cellular links 1316, and
an LPWA network 1362 using LPWA links 1332. FEach of
these IoT networks may provide opportunities for new
developments, as described herein. For example, communi-
cations between IoT devices 1304, such as over the back-
bone links 1302, may be protected by a decentralized system
for authentication, authorization, and accounting (AAA). In
a decentralized AAA system, distributed payment, credit,
audit, authorization, and authentication systems may be
implemented across interconnected heterogeneous infra-
structure. This allows systems and networks to move
towards autonomous operations.

[0253] In these types of autonomous operations, machines
may contract for human resources and negotiate partnerships
with other machine networks. This may allow the achieve-
ment of mutual objectives and balanced service delivery
against outlined, planned service level agreements as well as
achieve solutions that provide metering, measurements and
traceability and trackability. The creation of new supply
chain structures and methods may enable a multitude of
services to be created, mined for value, and collapsed
without any human involvement.
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[0254] The IoT networks may be further enhanced by the
integration of sensing technologies, such as sound, light,
electronic traffic, facial and pattern recognition, smell, vibra-
tion, into the autonomous organizations. The integration of
sensory systems may allow systematic and autonomous
communication and coordination of service delivery against
contractual service objectives, orchestration and quality of
service (QoS) based swarming and fusion of resources.
[0255] The mesh network 1306 may be enhanced by
systems that perform inline data-to-information transforms.
For example, self-forming chains of processing resources
comprising a multi-link network may distribute the trans-
formation of raw data to information in an efficient manner,
and the ability to differentiate between assets and resources
and the associated management of each. Furthermore, the
proper components of infrastructure and resource based trust
and service indices may be inserted to improve the data
integrity, quality, assurance and deliver a metric of data
confidence.

[0256] The WLAN network 1358 uses systems that per-
form standards conversion to provide multi-standard con-
nectivity, enabling IoT devices 1304 using different proto-
cols to communicate. Further systems may provide seamless
interconnectivity across a multi-standard infrastructure com-
prising visible Internet resources and hidden Internet
resources. Communications in the cellular network 1360
may be enhanced by systems that offload data, extend
communications to more remote devices, or both. The
LPWA network 1362 may include systems that perform
non-Internet protocol (IP) to IP interconnections, address-
ing, and routing.

[0257] FIG. 14 illustrates an arrangement 1400 of example
cloud computing network, or cloud 1401, in communication
with a number of Internet of Things (IoT) devices, in
accordance with various embodiments. The cloud 1401 may
represent the Internet, one or more cellular networks, a local
area network (LAN) or a wide area network (WAN) includ-
ing proprietary and/or enterprise networks for a company or
organization, or combinations thereof. Cloud 1401 may
correspond to cloud 1001 of FIG. 10. Components used for
such communications system can depend at least in part
upon the type of network and/or environment selected.
Protocols and components for communicating via such
networks are well known and will not be discussed herein in
detail. However, it should be appreciated that cloud 1401
may be associated with network operator who owns or
controls equipment and other elements necessary to provide
network-related services, such as one or more base stations
or access points, and one or more servers for routing digital
data or telephone calls (for example, a core network or
backbone network).

[0258] The IoT devices in FIG. 14 may be the same or
similar to the IoT devices 1204 of FIG. 12 and the IoT UEs
101x of FIG. 1, and/or the edge compute nodes 2101 and
data collector nodes 2102 of FIGS. 2-5. In addition, the
various devices shown by FIG. 14 may correspond with the
systems, devices, etc. discussed previously with regard to
FIGS. 1-11. The IoT devices may include any number of
different types of devices, grouped in various combinations,
such as IoT group 1406 that may include IoT devices that
provide one or more services for a particular user, customer,
organizations, etc. A service provider may deploy the loT
devices in the IoT group 1406 to a particular area (e.g., a
geolocation, building, etc.) in order to provide the one or
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more services. In one example, the IoT group 306 may be a
traffic control group where the IoT devices in the loT group
1406 may include stoplights, traffic flow monitors, cameras,
weather sensors, and the like, to provide traffic control and
traffic analytics services for a particular municipality or
other like entity. Similar to FIGS. 12-10, in embodiments,
one or more of IoT devices 1414-1424, GW 1410, and so
forth, may be incorporated with the various embodiments
described herein, in particular, with references to FIGS. 1-6.
For example, in some embodiments, the IoT group 1406, or
any of the IoT groups discussed herein, may include the
components, devices, systems discussed with regard to
FIGS. 1-6.

[0259] The IoT group 1406, or other subgroups, may be in
communication with the cloud 1401 through wireless links
1408, such as LPWA links, and the like. Further, a wired or
wireless sub-network 1412 may allow the IoT devices to
communicate with each other, such as through a local area
network, a wireless local area network, and the like. The IoT
devices may use another device, such as a GW 1410 to
communicate with the cloud 1401. Other groups of loT
devices may include remote weather stations 1414, local
information terminals 1416, alarm systems 1418, automated
teller machines 1420, alarm panels 1422, or moving
vehicles, such as emergency vehicles 1424 or other vehicles
1426, among many others. Each of these [oT devices may be
in communication with other IoT devices, with servers 1404,
or both. In some embodiments, the servers 1404 correspond
with the remote server(s) 130 discussed previously, and any
of the aforementioned vehicles may correspond with UEs
101 discussed previously.

[0260] As canbe seen from FIG. 14, a large number of loT
devices may be communicating through the cloud 1401.
This may allow different loT devices to request or provide
information to other devices autonomously. For example,
the IoT group 1406 may request a current weather forecast
from a group of remote weather stations 1414, which may
provide the forecast without human intervention. Further, an
emergency vehicle 1424 may be alerted by an automated
teller machine 1420 that a burglary is in progress. As the
emergency vehicle 1424 proceeds towards the automated
teller machine 1420, it may access the traffic control group
1406 to request clearance to the location, for example, by
lights turning red to block cross traffic at an intersection in
sufficient time for the emergency vehicle 1424 to have
unimpeded access to the intersection.

[0261] In another example, the IoT group 1406 may be an
industrial control group (also referred to as a “connected
factory”, an “industry 4.0” group, and the like) where the
IoT devices in the IoT group 1406 may include machines or
appliances with embedded IoT devices, radiofrequency
identification (RFID) readers, cameras, client computer
devices within a manufacturing plant, and the like, to
provide production control, self-optimized or decentralized
task management services, analytics services, etc. for a
particular manufacturer or factory operator. In this example,
the IoT group 1406 may communicate with the servers 1404
via GW 1410, server(s) 1430, and cloud 1401 to provide
captured data, which may be used to provide performance
monitoring and analytics to the manufacturer or factory
operator. Additionally, where the GW 1410 or one or more
of the server(s) 1430 is a MEC server 201, the IoT group
1406 may communicate with the GW 1410 and/or one or
more of the server(s) 1430 for distributed ML according to
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the various embodiments discussed herein. Furthermore, the
IoT devices in the IoT group 1406 may communicate among
each other, and/or with other IoT devices of other IoT
groups, to make decisions on their own and to perform their
tasks as autonomously as possible.

[0262] Clusters of IoT devices, such as the IoT groups
depicted by FIG. 14, may be equipped to communicate with
other IoT devices as well as with the cloud 1401. This may
allow the IoT devices to form an ad-hoc network between
the devices, allowing them to function as a single device,
which may be termed a fog device. This is discussed further
with respect to FIG. 12.

[0263] FIG. 15 illustrates an arrangement 1500 of a cloud
computing network, or cloud 1501, in communication with
a mesh network of loT devices, which may be termed a fog
device 1520 or fog 1520, operating at the edge of the cloud
1501, in accordance with various embodiments. Cloud 1501
may be the same or similar to cloud 1001 of FIG. 10 and
cloud 1401 of FIG. 14. In this example, the fog 1520 is a
group of IoT devices at an intersection (e.g., and may
include one or more IoT groups 1406 of FIG. 14). The fog
1520 may be established in accordance with specifications
released by the OpenFog Consortium (OFC), the Open
Connectivity Foundation™ (OCF), among others. In some
embodiments, the fog 1520 may be a tangle as defined by the
IOTA foundation. Additionally, each of the IoT devices in
the fog 1520 may correspond with the loT UEs 101x, edge
compute nodes 2101, data collector nodes 2102, etc. dis-
cussed previously with regard to FIGS. 1-5.

[0264] In embodiments, fog computing systems, such as
fog 1520, may be mechanisms for bringing cloud computing
functionality closer to data generators and consumers
wherein various network devices run cloud application logic
on their native architecture. Fog computing is a system-level
horizontal architecture that distributes resources and ser-
vices of computing, storage, control, and networking any-
where along the continuum from Cloud 1501 to Things (e.g.,
IoT devices 1504).

[0265] Fog computing systems may be used to perform
low-latency computation/aggregation on the data while rout-
ing it to an edge cloud computing service (e.g., MEC server
201 in FIG. 2) and/or a central cloud computing service
(e.g., server(s) 130 in FIG. 2) for performing heavy com-
putations or computationally burdensome tasks. On the
other hand, edge cloud computing consolidates human-
operated, voluntary resources, as a cloud. These voluntary
resource may include, inter-alia, UEs 101, desktop PCs,
tablets, smartphones, nano data centers, and the like. In
various implementations, resources in the edge cloud may
be in one to two-hop proximity to the IoT devices 1504 (e.g.,
UEs 101x in FIG. 1), which may result in reducing overhead
related to processing data and may reduce network delay.
[0266] In some embodiments, the fog 1520 may be a
consolidation of IoT devices 1504 and/or networking
devices, such as routers and switches, with high computing
capabilities and the ability to run cloud application logic on
their native architecture. Fog resources may be manufac-
tured, managed, and deployed by cloud vendors, and may be
interconnected with high speed, reliable links. Moreover,
fog resources reside farther from the edge of the network
when compared to edge systems but closer than a central
cloud infrastructure. Fog devices are used to effectively
handle computationally intensive tasks offloaded by edge
resources.
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[0267] In embodiments, the fog 1520 may operate at the
edge of the cloud 1501. The fog 1520 operating at the edge
of the cloud 1501 may overlap or be subsumed into an edge
network of the cloud 1501. The edge network of the cloud
1501 may overlap with the fog 1520, or become a part of the
fog 1520. Furthermore, the fog 1520 may be an edge-fog
network that includes an edge layer and a fog layer. The edge
layer of the edge-fog network includes a collection of
loosely coupled, voluntary and human-operated resources
(e.g., the aforementioned edge compute nodes or edge
devices). The Fog layer resides on top of the edge layer and
is a consolidation of networking devices such as the UEs 101
of FIG. 1.

[0268] Data may be captured, stored/recorded, and com-
municated among the IoT devices 1504 (or, for example,
among the UEs 101 that have direct links 105 with one
another as shown by FIG. 1). Analysis of the traffic flow and
control schemes may be implemented by aggregators 1526
that are in communication with the IoT devices 1504 (or
UEs 101) and each other through a mesh network. The
aggregators 1526 may be a type of IoT device 1504 and/or
network appliance. In the example of FIG. 1, the aggregators
may be (R)AN nodes 111, 106, or one or more designated
UEs 101. Data may be uploaded to the cloud 1501 (e.g.,
server(s) 130 in FIG. 2) via the aggregator, and commands
can be received from the cloud 1501 through GWs 1524 that
are in communication with the IoT devices 1504 and the
aggregators 1526 through the mesh network. Unlike the
traditional cloud computing model, in some implementa-
tions, the cloud 1501 may have little or no computational
capabilities and only serves as a repository for archiving
data recorded and processed by the fog 1520. In these
implementations, the cloud 1501 centralized data storage
system and provides reliability and access to data by the
computing resources in the fog 1520 and/or edge devices.
Being at the core of the architecture, the Data Store of the
cloud 1501 is accessible by both Edge and Fog layers of the
aforementioned edge-fog network.

[0269] Similar to FIGS. 12-14, in embodiments, one or
more of IoT devices 1504, aggregators 1526, and so forth,
may be incorporated with the various embodiments
described herein, in particular, with references to FIGS.
1-11. For example, and with reference to FIG. 1, the links
105, 103 that are enabled by use of the communication
technology may allow the UEs 101 to form a cloud network
or fog 1520 for collaborating. Examples of UE 101 collabo-
ration include performing computations for partial gradients
as discussed herein. Clusters of the UEs 101 are equipped to
communicate with one another, as well as with stationary
infrastructure equipment 111, 900 to form ad-hoc networks
allowing the UEs 101 to function as a fog 1520.

[0270] Any number of communications links may be used
in the fog 1520. Shorter-range links 1522, for example,
compatible with IEEE 802.15.4 may provide local commu-
nications between IoT devices that are proximate to one
another or other devices. Longer-range links 1522, for
example, compatible with LPWA standards, may provide
communications between the IoT devices and the GWs
1524. To simplify the diagram, not every communications
link 1522 is labeled with a reference number.

[0271] The fog 1520 may be considered to be a massively
interconnected network wherein a number of IoT devices are
in communications with each other, for example, by the
communication links 1522. The network may be established
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using the open interconnect consortium (OIC) standard
specification 1.0 released by the Open Connectivity Foun-
dation™ (OCF) on Dec. 23, 2015. This standard allows
devices to discover each other and establish communications
for interconnects. Other interconnection protocols may also
be used, including, for example, the AllJoyn protocol from
the AllSeen alliance, the optimized link state routing
(OLSR) Protocol, or the better approach to mobile ad-hoc
networking (B.A.T.M.A.N), among many others.

[0272] Communications from any IoT device may be
passed along the most convenient path between any of the
IoT devices to reach the GWs 1524. In these networks, the
number of interconnections may provide substantial redun-
dancy, allowing communications to be maintained, even
with the loss of a number of IoT devices.

[0273] Not all of the IoT devices may be permanent
members of the fog 1520. In the example of FIG. 15, three
transient [oT devices have joined the fog 1520, a first mobile
device 1512, a second mobile device 1514, and a third
mobile device 1516. The fog 1520 may be presented to
clients in the cloud 1501, such as the server 1534, as a single
device located at the edge of the cloud 1501. In this example,
the control communications to specific resources in the fog
1520 may occur without identifying any specific loT device
1504 within the fog 1520. Accordingly, if any loT device
1504 fails, other IoT devices 1504 may be able to discover
and control a resource. For example, the loT devices 1504
may be wired so as to allow any one of the IoT devices 1504
to control measurements, inputs, outputs, etc., for the other
IoT devices 1504. The aggregators 1526 may also provide
redundancy in the control of the IoT devices 1504 and other
functions of the fog 1520.

[0274] In some examples, the IoT devices may be config-
ured using an imperative programming style, e.g., with each
IoT device having a specific function and communication
partners. However, the loT devices forming the fog 1520
may be configured in a declarative programming style,
allowing the IoT devices to reconfigure their operations and
communications, such as to determine needed resources in
response to conditions, queries, and device failures. This
may be performed as transient IoT devices, such as the
mobile devices 1512, 1514, 1516, join the fog 1520. As
transient or mobile IoT devices enter or leave the fog 1520,
the fog 1520 may reconfigure itself to include those devices.
This may be performed by forming a temporary group of the
mobile devices 1512 and 1514 and the third mobile device
1516 to control or otherwise communicate with the IoT
devices 1504. If one or both of the devices 1512, 1514 are
autonomous, the temporary group may provide instructions
to the devices 1512, 1514. As the transient devices 1512,
1514, and 1516, leave the vicinity of the fog 1520, it may
reconfigure itself to eliminate those loT devices 1504 from
the network. The fog 1520 may also divide itself into
functional units, such as the IoT devices 1504 and other IoT
devices proximate to a particular area or geographic feature,
or other IoT devices that perform a particular function. This
type of combination may enable the formation of larger [oT
constructs using resources from the fog 1520.

[0275] As illustrated by the fog 1520, the organic evolu-
tion of IoT networks is central to maximizing the utility,
availability and resiliency of IoT implementations. Further,
the example indicates the usefulness of strategies for
improving trust and therefore security. The local identifica-
tion of devices may be important in implementations, as the
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decentralization of identity ensures a central authority can-
not be exploited to allow impersonation of objects that may
exist within the IoT networks. Further, local identification
lowers communication overhead and latency.

EXAMPLES

[0276] Some non-limiting examples are as follows. The
following examples pertain to further embodiments, and
specifics in the examples may be used anywhere in one or
more embodiments discussed previously. Any of the follow-
ing examples may be combined with any other example or
any embodiment discussed herein.

[0277] Example 1 includes an apparatus for providing
distributed machine learning (ML) services in a heteroge-
neous computing environment, the apparatus comprising:
processor circuitry arranged to partition an encoded training
dataset into a set of training data partitions, and assign each
training data partition of the set of training data partitions to
corresponding compute nodes of a plurality of heteroge-
neous compute nodes of the heterogeneous computing envi-
ronment available to perform computations for a distributed
ML training process, wherein a number of data points
included in each training data partition is based on opera-
tional parameters of the corresponding heterogeneous com-
pute nodes; and communication circuitry communicatively
coupled with the processor circuitry, the communication
circuitry arranged to transmit each training data partition to
the corresponding heterogeneous compute nodes, and
receive computed partial gradients from a subset of the
corresponding heterogeneous compute nodes, and wherein
the processor circuitry is arranged to determine updated ML
training parameters based on an aggregation of the received
computed partial gradients, and wherein the communication
circuitry is arranged to transmit the updated ML training
parameters to the corresponding heterogeneous compute
nodes.

[0278] Example 2 includes the apparatus of example 1
and/or some other example(s) herein, further comprising:
encoding circuitry coupled with the processor circuitry, the
encoding circuitry is arranged to encode a raw dataset into
the encoded training dataset with a number of extra data
points based on a coding redundancy value.

[0279] Example 2.5 includes the apparatus of example 2
and/or some other example(s) herein, wherein the number of
extra data points is a same number of data points as a number
of data points in the raw dataset, or the number of extra data
points is greater than the number of data points in the raw
dataset

[0280] Example 3 includes the apparatus of example 2
and/or some other example(s) herein, wherein the processor
circuitry is arranged to determine the coding redundancy
value based on the operational parameters and a load allo-
cation criterion.

[0281] Example 4 includes the apparatus of example 3
and/or some other example(s) herein, wherein the load
allocation criterion is based on a minimax criterion, the
minimax criterion being a value that maximizes a number of
partial gradients to be received from each heterogeneous
compute node while minimizing an epoch time.

[0282] Example 4.5 includes the apparatus of example 3
and/or some other example(s) herein, wherein the load
allocation criterion is based on a desired computation time
for computation of the partial gradients, wherein the com-
putation time at each of the corresponding heterogeneous
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compute nodes is based on one or more deterministic
components of respective operational parameters of the
corresponding heterogeneous compute nodes and one or
more stochastic components of the respective operational
parameters.

[0283] Example 5 includes the apparatus of examples 2-4
and/or some other example(s) herein, wherein the encoding
circuitry is arranged to encode the raw dataset using a
random linear encoder, wherein the encoding circuitry is
arranged to operate the random linear encoder to select each
element of a random generator matrix independently from a
normal distribution or from a Bernoulli distribution, and
wherein the random generator matrix has ¢ number of rows
and m number of columns such that any m subset of ¢ rows
is a near-orthogonal mxm matrix, where c>mz=1.

[0284] Example 5.5 includes the apparatus of examples
2-5 and/or some other example(s) herein, wherein the cod-
ing redundancy value is equal to a number of training data
partitions in the set of training data partitions.

[0285] Example 6 includes the apparatus of examples
1-5.5 and/or some other example(s) herein, wherein the
operational parameters of the corresponding heterogeneous
compute nodes include network conditions experienced by
the corresponding heterogeneous compute nodes and com-
pute node capabilities of the corresponding heterogeneous
compute nodes, and wherein the communication circuitry is
arranged to receive, from the corresponding heterogeneous
compute nodes, an indication of the operational parameters
of the corresponding heterogeneous compute nodes.

[0286] Example 7 includes the apparatus of example 6
and/or some other example(s) herein, wherein the compute
node capabilities include one or more of a processor speed
of the corresponding heterogenecous compute nodes,
memory utilization of the corresponding heterogeneous
compute nodes, memory or storage size of the correspond-
ing heterogeneous compute nodes, link adaptation capabili-
ties of the corresponding heterogeneous compute nodes,
available battery power of the corresponding heterogeneous
compute nodes, a battery power budget of the corresponding
heterogeneous compute nodes, an average computation time
per workload, and an achievable data rate per channel usage
of the corresponding compute heterogeneous nodes.
[0287] Example 8 includes the apparatus of examples 1-7
and/or some other example(s) herein, wherein the apparatus
is a System-On-Chip (SoC) or a Multi-Chip Package (MCP)
in a Multi-access Edge Computing (MEC) server.

[0288] Example 9 includes an apparatus for providing
distributed machine learning (ML) services in a heteroge-
neous computing environment, the apparatus comprising:
processor circuitry arranged to determine, for each compute
node of a plurality of heterogeneous compute nodes of the
heterogeneous computing environment available to perform
computations for a distributed ML training process, a coding
redundancy indicating a number of encoded data points,
which are generated from uncoded data available at each
compute node, to be included in an encoded training data
partition based on operational parameters of each heteroge-
neous compute node; and communication circuitry commu-
nicatively coupled with the processor circuitry, the commu-
nication circuitry arranged to transmit an indication of the
number of data points and the coding redundancy to each
heterogeneous compute node, and receive encoded training
data partitions from a set of the plurality of heterogeneous
compute nodes, and receive first partial gradients based on
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the uncoded data from the set of the plurality of compute
nodes, and wherein the processor circuitry is arranged to
determine second partial gradients based on the encoded
training data partitions, and determine updated ML training
parameters based on an aggregation of the first partial
gradients with the second partial gradients, and the commu-
nication circuitry is arranged to transmit the updated ML
training parameters and the aggregated partial gradients to
corresponding heterogeneous compute nodes.

[0289] Example 10 includes the apparatus of example 9
and/or some other example(s) herein, wherein the processor
circuitry is arranged to determine the coding redundancy
based on the operational parameters and a load allocation
criterion.

[0290] Example 11 includes the apparatus of example 10
and/or some other example(s) herein, wherein the load
allocation criterion is based on a minimax criterion, the
minimax criterion being a value that maximizes a number of
partial gradients to be received from each compute node
while minimizing a desired epoch time, wherein the desired
epoch time is based on a computation time for computation
of'the partial gradients at each heterogeneous compute node.
[0291] Example 11.5 includes the apparatus of example 11
and/or some other example(s) herein, wherein, the compu-
tation time being based on one or more deterministic com-
ponents of the operational parameters of each heterogeneous
compute node and one or more stochastic components of the
operational parameters of each heterogeneous compute
node.

[0292] Example 12 includes the apparatus of examples
10-11 and/or some other example(s) herein, wherein the
processor circuitry is arranged to determine the coding
redundancy based on a desired number of encoded data
points to be accepted for determination of the second partial
gradients.

[0293] Example 13 includes the apparatus of examples
9-12 and/or some other example(s) herein, wherein the
communication circuitry is arranged to transmit a probabil-
ity value with the indication of the number of data points and
the coding redundancy to each compute node, wherein the
probability value indicates a probability that the first partial
gradient will be received within a predetermined epoch time,
and the probability value is to weight the uncoded data
available at each compute node prior to the uncoded data
being encoded.

[0294] Example 14 includes the apparatus of examples
10-13 and/or some other example(s) herein, wherein the
number of data points to be included in the encoded training
data partition as indicated by the coding redundancy is a
fraction of a total number of uncoded data points distributed
across all computing nodes of the plurality of heterogeneous
compute nodes.

[0295] Example 15 includes the apparatus of examples
9-14 and/or some other example(s) herein, wherein the
operational parameters of the corresponding compute nodes
include network conditions experienced by the correspond-
ing compute nodes and compute node capabilities of the
corresponding compute nodes, and the communication cir-
cuitry is arranged to receive, from the corresponding com-
pute nodes, an indication of the operational parameters of
the corresponding compute nodes.

[0296] Example 16 includes the apparatus of example 15
and/or some other example(s) herein, wherein the compute
node capabilities include one or more of a processor speed,
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memory utilization, memory or storage size, link adaptation
capabilities, available battery power, a battery power budget,
an average computation time per workload, and an achiev-
able data rate per channel usage.

[0297] Example 16 includes the apparatus of examples
9-16.5 and/or some other example(s) herein, wherein the
apparatus is a System-On-Chip (SoC) or a Multi-Chip
Package (MCP) in a Multi-access Edge Computing (MEC)
server.

[0298] Example 17 includes at least one computer-read-
able storage medium (CRSM) comprising data, the data to
create, manufacture, or produce instructions, wherein execu-
tion of the instructions is to cause an edge compute node of
a heterogeneous computing environment to: identify a train-
ing dataset partition on which to perform computations of a
distributed machine learning (ML) training process, wherein
a number of data points included in the training data
partition is based on operational parameters of the edge
compute node, and the training data partition is among a
plurality of training data partitions; perform the computa-
tions on the data points in the training dataset partition to
obtain a partial gradient; send the computed partial gradient
to a master node in the heterogeneous computing environ-
ment.

[0299] Example 18 includes the CRSM of example 17
and/or some other example(s) herein, wherein execution of
the instructions is to cause the edge compute node to: obtain,
from the master node, updated ML training parameters
based on an aggregation of a plurality of computed partial
gradients, wherein each computed partial gradient of the
plurality of computed partial gradients are based on a
corresponding one of the plurality of training data partitions;
and perform the computations on the data points in the
training dataset partition to obtain a partial gradient.

[0300] Example 19 includes the CRSM of examples 17-18
and/or some other example(s) herein, wherein execution of
the instructions is to cause the edge compute node to: obtain,
from the master node, the training data partition and an
indication of the computations of the distributed ML training
process to be performed on the data points in the training
data partition.

[0301] Example 20 includes the CRSM of examples 17-18
and/or some other example(s) herein, wherein the training
data partition is locally accessible by the edge compute
node, and execution of the instructions is to cause the edge
compute node to: encode the data points of the training data
partition and at least one extra data point based on a coding
redundancy value to obtain an encoded dataset, wherein the
coding redundancy value is based at least on the operational
parameters of the edge compute node.

[0302] Example 21 includes the CRSM of example 20
and/or some other example(s) herein, wherein the coding
redundancy value is also based on a load allocation criterion,
wherein the load allocation criterion is based on a desired
computation time for computation of the partial gradient.

[0303] Example 22 includes the CRSM of examples 20-21
and/or some other example(s) herein, wherein execution of
the instructions is to cause the edge compute node to:
compute the partial gradient based on a random generator
matrix and a weight matrix, wherein the weight matrix is
based on a probability that the edge compute node will be
unable to provide the partial gradient to the master node
within a desired period of time.
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[0304] Example 23 includes the CRSM of examples 17-22
and/or some other example(s) herein, wherein execution of
the instructions is to cause the edge compute node to:
identify the operational parameters of the edge compute
node, the operational parameters of the edge compute node
at least including network conditions experienced by the
edge compute node and computational capacity of the edge
compute node; and send an indication of the identified
operational parameters to the master node.

[0305] Example 24 includes the CRSM of example 23
and/or some other example(s) herein, wherein the opera-
tional parameters of the edge compute node also include one
or more compute node capabilities of the edge compute
node, wherein the compute node capabilities include one or
more of a processor speed, memory utilization, memory or
storage size, link adaptation capabilities, available battery
power, a battery power budget, an average computation time
per workload, and an achievable data rate per channel usage.

[0306] Example 25 includes the CRSM of examples 17-24
and/or some other example(s) herein, wherein the edge
compute node is one of a desktop computer, a smartphone,
a tablet computer, an Internet of Things (IoT) device, a
remote sensor, a multi-access edge computing (MEC)
server, and a Radio Access Network (RAN) node.

[0307] Example 26 includes a method for providing dis-
tributed machine learning (ML) services in a heterogeneous
computing environment, the method comprising: partition-
ing, by a master node, an encoded training dataset into a set
of training data partitions; assigning, by the master node,
each training data partition of the set of training data
partitions to corresponding compute nodes of a plurality of
heterogeneous compute nodes of the heterogeneous com-
puting environment available to perform computations for a
distributed ML training process, wherein a number of data
points included in each training data partition is based on
operational parameters of the corresponding heterogeneous
compute nodes; transmitting, by the master node, each
training data partition to the corresponding heterogeneous
compute nodes; receiving, by the master node, computed
partial gradients from a subset of the corresponding hetero-
geneous compute nodes; determining, by the master node,
updated ML training parameters based on an aggregation of
the received computed partial gradients; and transmitting, by
the master node, the updated ML training parameters to the
corresponding heterogeneous compute nodes.

[0308] Example 27 includes the method of example 26
and/or some other example(s) herein, further comprising:
encoding, by the master node, a raw dataset into the encoded
training dataset with a number of extra data points based on
a coding redundancy value, wherein the number of extra
data points is a same number of data points as a number of
data points in the raw dataset, or the number of extra data
points is greater than the number of data points in the raw
dataset.

[0309] Example 28 includes the method of example 27
and/or some other example(s) herein, further comprising:
determining, by the master node, the coding redundancy
value based on the operational parameters and a load allo-
cation criterion.

[0310] Example 29 includes the method of example 28
and/or some other example(s) herein, wherein the load
allocation criterion is based on a minimax criterion, the
minimax criterion being a value that maximizes a number of
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partial gradients to be received from each heterogeneous
compute node while minimizing an epoch time.

[0311] Example 29.5 includes the method of example 28
and/or some other example(s) herein, wherein the load
allocation criterion is based on a desired computation time
for computation of the partial gradients, wherein the com-
putation time at each of the corresponding heterogeneous
compute nodes is based on one or more deterministic
components of respective operational parameters of the
corresponding heterogeneous compute nodes and one or
more stochastic components of the respective operational
parameters.

[0312] Example 30 includes the method of examples
27-29.5 and/or some other example(s) herein, further com-
prising: encoding, by the master node, the raw dataset using
a random linear encoder, including operating, by the master
node, the random linear encoder to select each element of a
random generator matrix independently from a normal dis-
tribution or from a Bernoulli distribution, and wherein the
random generator matrix has ¢ number of rows and m
number of columns such that any m subset of ¢ rows is a
near-orthogonal mxm matrix, where c>mz=1.

[0313] Example 31 includes the method of examples
26-30 and/or some other example(s) herein, wherein the
operational parameters of the corresponding heterogeneous
compute nodes include network conditions experienced by
the corresponding heterogeneous compute nodes and com-
pute node capabilities of the corresponding heterogeneous
compute nodes, and the method comprises receiving, by the
master node from the corresponding heterogeneous compute
nodes, an indication of the operational parameters of the
corresponding heterogeneous compute nodes.

[0314] Example 32 includes the method of example 31
and/or some other example(s) herein, wherein the compute
node capabilities include one or more of a processor speed
of the corresponding heterogenecous compute nodes,
memory utilization of the corresponding heterogeneous
compute nodes, memory or storage size of the correspond-
ing heterogeneous compute nodes, link adaptation capabili-
ties of the corresponding heterogeneous compute nodes,
available battery power of the corresponding heterogeneous
compute nodes, a battery power budget of the corresponding
heterogeneous compute nodes, an average computation time
per workload, and an achievable data rate per channel usage
of the corresponding compute heterogeneous nodes.
[0315] Example 33 includes the method of examples
26-32 and/or some other example(s) herein, wherein the
plurality of heterogeneous compute nodes comprise one or
more desktop computers, one or more smartphones, one or
more tablet computers, one or more Internet of Things (IoT)
devices, one or more remote sensors, one or more multi-
access edge computing (MEC) servers, and/or one or more
Radio Access Network (RAN) nodes; and the master node
comprises one or more MEC servers or a cluster of cloud
computing resources provided by a cloud computing ser-
vice.

[0316] Example 34 includes a method for providing dis-
tributed machine learning (ML) services in a heterogeneous
computing environment, the method comprising: determin-
ing, by a master node for each compute node of a plurality
of heterogeneous compute nodes of the heterogeneous com-
puting environment available to perform computations for a
distributed ML training process, a coding redundancy indi-
cating a number of encoded data points, which are generated
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from uncoded data available at each compute node, to be
included in an encoded training data partition based on
operational parameters of each heterogeneous compute
node; transmitting, by the master node, an indication of the
number of data points and the coding redundancy to each
heterogeneous compute node; receiving, by the master node,
encoded training data partitions from a set of the plurality of
heterogeneous compute nodes; determining, by the master
node, second partial gradients based on the encoded training
data partitions; receiving, by the master node, first partial
gradients based on the uncoded data partitions from the set
of the plurality of compute nodes; determining, by the
master node, updated ML training parameters based on an
aggregation of the first partial gradients with the second
partial gradients; and transmitting, by the master node, the
updated ML training parameters and the aggregated partial
gradients to corresponding heterogeneous compute nodes.
[0317] Example 35 includes the method of example 34
and/or some other example(s) herein, wherein the method
comprises determining, by the master node, the coding
redundancy based on the operational parameters and a load
allocation criterion.

[0318] Example 36 includes the method of example 35
and/or some other example(s) herein, wherein the load
allocation criterion is based on a minimax criterion, the
minimax criterion being a value that maximizes a number of
partial gradients to be received from each compute node
while minimizing a desired epoch time, wherein the desired
epoch time is based on a computation time for computation
of'the partial gradients at each heterogeneous compute node,
the computation time being based on one or more determin-
istic components of the operational parameters of each
heterogeneous compute node and one or more stochastic
components of the operational parameters of each hetero-
geneous compute node.

[0319] Example 37 includes the method of example 35
and/or some other example(s) herein, wherein the method
comprises determining, by the master node, the coding
redundancy based on a desired number of encoded data
points to be accepted for determination of the second partial
gradients.

[0320] Example 38 includes the method of example 34
and/or some other example(s) herein, wherein the method
comprises transmitting, by the master node, a probability
value with the indication of the number of data points and
the coding redundancy to each compute node, wherein the
probability value indicates a probability that the first partial
gradient will be received within a predetermined epoch time,
and the probability value is to weight the uncoded data
available at each compute node prior to the uncoded data
being encoded.

[0321] Example 39 includes the method of example 35
and/or some other example(s) herein, wherein the number of
data points to be included in the encoded training data
partition indicated by the coding redundancy is a fraction of
a total number of uncoded data points distributed across all
computing nodes of the plurality of heterogeneous compute
nodes.

[0322] Example 40 includes the method of example 34
and/or some other example(s) herein, wherein the opera-
tional parameters of the corresponding compute nodes
include network conditions experienced by the correspond-
ing compute nodes and compute node capabilities of the
corresponding compute nodes, and wherein the method
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comprises receiving, by the master node from the corre-
sponding compute nodes, an indication of the operational
parameters of the corresponding compute nodes.

[0323] Example 40.5 includes the method of example 40
and/or some other example(s) herein, wherein the compute
node capabilities include one or more of a processor speed,
memory utilization, memory or storage size, link adaptation
capabilities, available battery power, a battery power budget,
an average computation time per workload, and an achiev-
able data rate per channel usage.

[0324] Example 41 includes the method of examples
34-40.5 and/or some other example(s) herein, wherein the
plurality of heterogeneous compute nodes comprise one or
more desktop computers, one or more smartphones, one or
more tablet computers, one or more Internet of Things (IoT)
devices, one or more remote sensors, one or more multi-
access edge computing (MEC) servers, and/or one or more
Radio Access Network (RAN) nodes; and the master node
comprises one or more MEC servers or a cluster of cloud
computing resources provided by a cloud computing ser-
vice.

[0325] Example 42 includes a method for providing dis-
tributed machine learning (ML) computations in a hetero-
geneous computing environment, the method comprising:
identifying, by an edge compute node, a training dataset
partition on which to perform computations of a distributed
machine learning (ML) training process, wherein a number
of data points included in the training data partition is based
on operational parameters of the edge compute node, and the
training data partition is among a plurality of training data
partitions; performing, by the edge compute node, the com-
putations on the data points in the training dataset partition
to obtain a partial gradient; and transmitting, by the edge
compute node, the computed partial gradient to a master
node in the heterogeneous computing environment.

[0326] Example 43 includes the method of example 42
and/or some other example(s) herein, wherein the method
comprises: obtaining, by the edge compute node from the
master node, updated ML training parameters based on an
aggregation of a plurality of computed partial gradients,
wherein each computed partial gradient of the plurality of
computed partial gradients are based on a corresponding one
of the plurality of training data partitions; and performing,
by the edge compute node from the master node, the
computations on the data points in the training dataset
partition to obtain a partial gradient.

[0327] Example 44 includes the method of example 42
and/or some other example(s) herein, wherein the method
comprises: obtaining, by the edge compute node from the
master node from the master node, the training data partition
and an indication of the computations of the distributed ML
training process to be performed on the data points in the
training data partition.

[0328] Example 45 includes the method of example 42
and/or some other example(s) herein, wherein the training
data partition is locally accessible by the edge compute
node, and the method comprises: encoding, by the edge
compute node from the master node, the data points of the
training data partition and at least one extra data point based
on a coding redundancy value to obtain an encoded dataset,
wherein the coding redundancy value is based at least on the
operational parameters of the edge compute node.

[0329] Example 46 includes the method of example 45
and/or some other example(s) herein, wherein the coding
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redundancy value is also based on a load allocation criterion,
and the load allocation criterion is based on a desired
computation time for computation of the partial gradient.
[0330] Example 47 includes the method of example 45
and/or some other example(s) herein, wherein the method
comprises: computing, by the edge compute node from the
master node, the partial gradient based on a random gen-
erator matrix and a weight matrix, wherein the weight matrix
is based on a probability that the edge compute node will be
unable to provide the partial gradient to the master node
within a desired period of time.

[0331] Example 48 includes the method of example 42
and/or some other example(s) herein, wherein the method
comprises: identifying, by the edge compute node from the
master node, the operational parameters of the edge compute
node, the operational parameters of the edge compute node
at least including network conditions experienced by the
edge compute node and computational capacity of the edge
compute node; and transmitting, by the edge compute node
from the master node, an indication of the identified opera-
tional parameters to the master node.

[0332] Example 49 includes the method of example 48
and/or some other example(s) herein, wherein the opera-
tional parameters of the edge compute node also include one
or more compute node capabilities of the edge compute
node, wherein the compute node capabilities include one or
more of a processor speed, memory utilization, memory or
storage size, link adaptation capabilities, available battery
power, a battery power budget, an average computation time
per workload, and an achievable data rate per channel usage.
[0333] Example 50 includes the method of examples
42-49 and/or some other example(s) herein, wherein the
edge compute node is one of a desktop computer, a smart-
phone, a tablet computer, an Internet of Things (IoT) device,
a remote sensor, a multi-access edge computing (MEC)
server, and a Radio Access Network (RAN) node, and the
master node comprises one or more MEC servers or a cluster
of cloud computing resources provided by a cloud comput-
ing service.

[0334] Example 51 may include an apparatus comprising
means to perform one or more elements of a method
described in or related to any of examples 1-50, or any other
method or process described in the present disclosure.
[0335] Example 52 may include one or more non-transi-
tory computer-readable media comprising instructions to
cause an electronic device, upon execution of the instruc-
tions by one or more processors of the electronic device, to
perform one or more elements of a method described in or
related to any of examples 1-50, or any other method or
process described in the present disclosure.

[0336] Example 53 may include an apparatus comprising
logic, modules, or circuitry to perform one or more elements
of'a method described in or related to any of examples 1-50,
or any other method or process described in the present
disclosure.

[0337] Example 54 includes a method, technique, or pro-
cess as described in or related to any of examples 1-50, or
portions or parts thereof, or otherwise described in the
present disclosure.

[0338] Example 55 includes an apparatus comprising: one
or more processors and one or more computer-readable
media comprising instructions that, when executed by the
one or more processors, cause the one or more processors to
perform the method, techniques, or process as described in
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or related to any of examples 1-50, or portions thereof, or
otherwise described in the present disclosure. The one or
more computer-readable media may be one transitory or
non-transitory computer-readable media.

[0339] Example 56 includes at least one transitory or
non-transitory computer-readable storage medium compris-
ing data, wherein the data is to create, manufacture, or
otherwise produce instructions, wherein execution of the
instructions is to cause a computing device or computing
system to perform the method, techniques, or process as
described in or related to any of examples 1-50, or portions
thereof, or otherwise described in the present disclosure.
[0340] Example 57 includes a signal as described in or
related to any of examples 1-50, or portions or parts thereof,
or otherwise described in the present disclosure.

[0341] Example 58 includes a signal in a wireless network
as shown and described in the present disclosure, or other-
wise described in the present disclosure.

[0342] Example 59 includes a method of communicating
in a wireless network as shown and described in the present
disclosure.

[0343] Example 60 includes a system for providing wire-
less communication as shown and described in the present
disclosure.

[0344] Example 61 includes a device for providing wire-
less communication as shown and described in the present
disclosure.

[0345] Example 62 includes a packet, frame, segment,
protocol data unit (PDU), or message as described in or
related to any of examples 1-50, or portions or parts thereof,
or otherwise described in the present disclosure.

[0346] The present disclosure has been described with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems), and/or computer program
products according to embodiments of the present disclo-
sure. In the drawings, some structural or method features
may be shown in specific arrangements and/or orderings.
However, it should be appreciated that such specific arrange-
ments and/or orderings may not be required. Rather, in some
embodiments, such features may be arranged in a different
manner and/or order than shown in the illustrative figures.
Additionally, the inclusion of a structural or method feature
in a particular figure is not meant to imply that such feature
is required in all embodiments and, in some embodiments,
may not be included or may be combined with other
features.

[0347] It will be understood that each block of the flow-
chart illustrations and/or block diagrams, and combinations
of blocks in the flowchart illustrations and/or block dia-
grams, may be implemented in hardware, firmware, soft-
ware, or any combination thereof. The disclosed embodi-
ments may be implemented as a computer process, a
computing system, or as an article of manufacture such as a
computer program product of computer readable media. The
computer program product may include one or more tran-
sitory or non-transitory machine-readable (e.g., computer-
readable) media comprising encoded computer program
instructions for executing the computer process, which is
readable and/or executable by one or more processors of a
computer system. The machine-readable storage medium
may be embodied as any storage device, mechanism, or
other physical structure for storing or transmitting informa-
tion in a form readable by a machine (e.g., a volatile or
non-volatile memory, a media disc, or other media device).
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These computer program instructions may be provided to a
processor of a general purpose computer, special purpose
computer, or other programmable data processing apparatus
to produce a machine, such that the instructions, which
execute via the processor of the computer or other program-
mable data processing apparatus, create means for imple-
menting the functions/acts specified in the flowchart and/or
block diagram block or blocks. These computer program
instructions may also be stored in a computer-readable
medium that can direct a computer or other programmable
data processing apparatus to function in a particular manner,
such that the instructions stored in the computer-readable
medium produce an article of manufacture including instruc-
tion means which implement the function/act specified in the
flowchart and/or block diagram block or blocks. The com-
puter program instructions may also be loaded onto a
computer or other programmable data processing apparatus
to cause a series of operational steps to be performed on the
computer or other programmable apparatus to produce a
computer implemented process such that the instructions
which execute on the computer or other programmable
apparatus provide processes for implementing the functions/
acts specified in the flowchart and/or block diagram block or
blocks.

[0348] The flowchart and block diagrams in the figures
illustrate the architecture, functionality, and operation of
possible implementations of systems, methods and computer
program products according to various embodiments of the
present disclosure. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or
portion of code, which comprises one or more executable
instructions for implementing the specified logical function
(s). It should also be noted that, in some alternative imple-
mentations, the functions noted in the block may occur out
of the order noted in the figures. For example, two blocks
shown in succession may, in fact, be executed substantially
concurrently, or the blocks may sometimes be executed in
the reverse order, depending upon the functionality
involved. It will also be noted that each block of the block
diagrams and/or flowchart illustration, and combinations of
blocks in the block diagrams and/or flowchart illustration,
can be implemented by special purpose hardware-based
systems that perform the specified functions or acts, or
combinations of special purpose hardware and computer
instructions.

[0349] The terminology used herein is for the purpose of
describing particular embodiments only and is not intended
to be limiting of the disclosure. As used herein, the singular
forms “a,” “an” and “the” are intended to include plural
forms as well, unless the context clearly indicates otherwise.
It will be further understood that the terms “comprises”
and/or “comprising,” when used in this specification, spe-
cific the presence of stated features, integers, steps, opera-
tions, elements, and/or components, but do not preclude the
presence or addition of one or more other features, integers,
steps, operation, elements, components, and/or groups
thereof.

[0350] For the purposes of the present disclosure, the
phrase “A and/or B” means (A), (B), or (A and B). For the
purposes of the present disclosure, the phrase “A, B, and/or
C” means (A), (B), (C), (A and B), (A and C), (B and C), or
(A, B and C). The description may use the phrases “in an
embodiment,” or “In some embodiments,” which may each
refer to one or more of the same or different embodiments.
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[TINT3d

Furthermore, the terms “comprising,” “including,” “hav-
ing,” and the like, as used with respect to embodiments of
the present disclosure, are synonymous.

[0351] The terms “coupled,” “communicatively coupled,”
along with derivatives thereof are used herein. The term
“coupled” may mean two or more elements are in direct
physical or electrical contact with one another, may mean
that two or more elements indirectly contact each other but
still cooperate or interact with each other, and/or may mean
that one or more other elements are coupled or connected
between the elements that are said to be coupled with each
other. The term “directly coupled” may mean that two or
more elements are in direct contact with one another. The
term “communicatively coupled” may mean that two or
more elements may be in contact with one another by a
means of communication including through a wire or other
interconnect connection, through a wireless communication
channel or ink, and/or the like.

[0352] As used herein, the term “circuitry” refers to a
circuit or system of multiple circuits configured to perform
a particular function in an electronic device. The circuit or
system of circuits may be part of, or include one or more
hardware components, such as a logic circuit, a processor
(shared, dedicated, or group) and/or memory (shared, dedi-
cated, or group), an Application Specific Integrated Circuit
(ASIC), a field-programmable device (FPD) (e.g., a field-
programmable gate array (FPGA), a programmable logic
device (PLD), a complex PLD (CPLD), a high-capacity
PLD (HCPLD), a structured ASIC, or a programmable
System on Chip (SoC)), digital signal processors (DSPs),
etc., that are configured to provide the described function-
ality. In addition, the term “circuitry” may also refer to a
combination of one or more hardware elements with the
program code used to carry out the functionality of that
program code. Some types of circuitry may execute one or
more software or firmware programs to provide at least
some of the described functionality. Such a combination of
hardware elements and program code may be referred to as
a particular type of circuitry.

[0353] As used herein, the term “processor circuitry”
refers to, is part of, or includes circuitry capable of sequen-
tially and automatically carrying out a sequence of arithme-
tic or logical operations, or recording, storing, and/or trans-
ferring digital data. and/or any other device capable of
executing or otherwise operating computer-executable
instructions, such as program code, software modules, and/
or functional processes. As used herein, the term “module”
is one or more independent electronic circuits packaged onto
a circuit board, SoC, System-in-Package (SiP), etc., config-
ured to provide a basic function within a computer system.
The term “module” may refer to, be part of, or include an
FPD, ASIC, a processor (shared, dedicated, or group) and/or
memory (shared, dedicated, or group) that execute one or
more software or firmware programs, a combinational logic
circuit, and/or other suitable components that provide the
described functionality.

[0354] As used herein, the terms “instantiate,” “instantia-
tion,” and the like may refer to the creation of an instance,
and an “instance” may refer to a concrete occurrence of an
object, which may occur, for example, during execution of
program code. As used herein, a “database object”, “data
object”, or the like may refer to any representation of
information in a database that is in the form of an object,
attribute-value pair (AVP), key-value pair (KVP), tuple, etc.,
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and may include variables, data structures, functions, meth-
ods, classes, database records, database fields, database
entities, associations between data and database entities
(also referred to as a “relation”), and the like.

[0355] As used herein, the term “resource” refers to a
physical or virtual device, a physical or virtual component
within a computing environment, and/or a physical or virtual
component within a particular device, such as computer
devices, mechanical devices, memory space, processor/CPU
time, processor/CPU usage, processor and accelerator loads,
hardware time or usage, clectrical power, input/output
operations, ports or network sockets, channel/link alloca-
tion, throughput, memory usage, storage, network, database
and applications, workload units, and/or the like. The term
“network resource” may refer to a resource hosted by a
remote entity (e.g., a cloud computing service) and acces-
sible over a network. The term “on-device resource” may
refer to a resource hosted inside a device and enabling access
to the device, and thus, to the related physical entity. System
resources may be considered as a set of coherent functions,
network data objects or services, accessible through a server
where such system resources reside on a single host or
multiple hosts and are clearly identifiable. Additionally, a
“virtualized resource” may refer to compute, storage, and/or
network resources provided by virtualization infrastructure
to an application, such as a multi-access edge applications
[0356] As used herein, the term “device” may refer to a
physical entity embedded inside, or attached to, another
physical entity in its vicinity, with capabilities to convey
digital information from or to that physical entity. As used
herein, the term “element” may refer to a unit that is
indivisible at a given level of abstraction and has a clearly
defined boundary, wherein an element may be any type of
entity. As used herein, the term “controller” may refer to an
element or entity that has the capability to affect a physical
entity, such as by changing its state or causing the physical
entity to move. As used herein, the term “entity” may refer
to (1) a distinct component of an architecture or device, or
(2) information transferred as a payload.

[0357] As used herein, the term “channel” may refer to
any transmission medium, either tangible or intangible,
which is used to communicate data or a data stream. The
term “channel” may be synonymous with and/or equivalent
to “communications channel,” “data communications chan-
nel,” “transmission channel,” “data transmission channel,”
“access channel,” “data access channel,” “link,” “data link,”
“carrier,” “radiofrequency carrier,” and/or any other like
term denoting a pathway or medium through which data is
communicated. Additionally, the term “link” may refer to a
connection between two devices for the purpose of trans-
mitting and receiving information.

[0358] As used herein, the term “computer system” refers
to any type interconnected electronic devices, computer
devices, or components thereof. Additionally, the term
“computer system” and/or “system” may refer to various
components of a computer that are communicatively
coupled with one another, or otherwise organized to accom-
plish one or more functions. Furthermore, the term “com-
puter system” and/or “system” may refer to multiple com-
puter devices and/or multiple computing systems that are
communicatively coupled with one another and configured
to share computing and/or networking resources. As used
herein, the term “architecture” may refer to a fundamental
organization of a system embodied in its components, their
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relationships to one another, and to an environment, as well
as to the principles guiding its design and evolution. As used
herein, the term “appliance,” “computer appliance,” or the
like, refers to a discrete hardware device with integrated
program code (e.g., software or firmware) that is specifically
or specially designed to provide a specific computing
resource. A “virtual appliance” is a virtual machine image to
be implemented by a hypervisor-equipped device that vir-
tualizes or emulates a computer appliance or otherwise is
dedicated to provide a specific computing resource.

[0359] As used herein, the term “interface circuitry” may
refer to, is part of, or includes circuitry providing for the
exchange of information between two or more components
or devices. The term “interface circuitry” may refer to one
or more hardware interfaces, for example, buses, input/
output (I/O) interfaces, peripheral component interfaces,
network interface cards, and/or the like.

[0360] The corresponding structures, material, acts, and
equivalents of all means or steps plus function elements in
the claims below are intended to include any structure,
material or act for performing the function in combination
with other claimed elements are specifically claimed. The
description of the present disclosure has been presented for
purposes of illustration and description, but is not intended
to be exhaustive or limited to the disclosure in the form
disclosed. Many modifications and variations will be appar-
ent to those of ordinary skill without departing from the
scope and spirit of the disclosure. The embodiments were
chosen and described in order to best explain the principles
of the disclosure and the practical application, and to enable
others of ordinary skill in the art to understand the disclosure
for embodiments with various modifications as are suited to
the particular use contemplated.

[0361] The foregoing description provides illustration and
description of various example embodiments, but is not
intended to be exhaustive or to limit the scope of embodi-
ments to the precise forms disclosed. Modifications and
variations are possible in light of the above teachings or may
be acquired from practice of various embodiments. Where
specific details are set forth in order to describe example
embodiments of the disclosure, it should be apparent to one
skilled in the art that the disclosure can be practiced without,
or with variation of, these specific details. It should be
understood, however, that there is no intent to limit the
concepts of the present disclosure to the particular forms
disclosed, but on the contrary, the intention is to cover all
modifications, equivalents, and alternatives consistent with
the present disclosure and the appended claims.

1. An apparatus for providing distributed machine learn-
ing (ML) services in a heterogeneous computing environ-
ment, the apparatus comprising:

processor circuitry arranged to partition an encoded train-

ing dataset into a set of training data partitions, and
assign each training data partition of the set of training
data partitions to corresponding compute nodes of a
plurality of heterogeneous compute nodes of the het-
erogeneous computing environment available to per-
form computations for a distributed ML training pro-
cess, wherein a number of data points included in each
training data partition is based on operational param-
eters of the corresponding heterogeneous compute
nodes; and

communication circuitry communicatively coupled with

the processor circuitry, the communication circuitry
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arranged to transmit each training data partition to the
corresponding heterogeneous compute nodes, and
receive computed partial gradients from a subset of the
corresponding heterogeneous compute nodes, and

wherein the processor circuitry is arranged to determine
updated ML training parameters based on an aggrega-
tion of the received computed partial gradients, and
wherein the communication circuitry is arranged to
transmit the updated ML training parameters to the
corresponding heterogeneous compute nodes.

2. The apparatus of claim 1, further comprising:

encoding circuitry coupled with the processor circuitry,
the encoding circuitry is arranged to encode a raw
dataset into the encoded training dataset with a number
of extra data points based on a coding redundancy
value, wherein the number of extra data points is a
same number of data points as a number of data points
in the raw dataset, or the number of extra data points is
greater than the number of data points in the raw
dataset.

3. The apparatus of claim 2, wherein the processor cir-
cuitry is arranged to determine the coding redundancy value
based on the operational parameters and a load allocation
criterion.

4. The apparatus of claim 3, wherein the load allocation
criterion is based on a minimax criterion, the minimax
criterion being a value that maximizes a number of partial
gradients to be received from each heterogeneous compute
node while minimizing an epoch time.

5. The apparatus of claim 2, wherein the encoding cir-
cuitry is arranged to encode the raw dataset using a random
linear encoder, wherein the encoding circuitry is arranged to
operate the random linear encoder to select each element of
a random generator matrix independently from a normal
distribution or from a Bernoulli distribution, and wherein the
random generator matrix has ¢ number of rows and m
number of columns such that any m subset of ¢ rows is a
near-orthogonal mxm matrix, where c>mz=1.

6. The apparatus of claim 1, wherein the operational
parameters of the corresponding heterogeneous compute
nodes include network conditions experienced by the cor-
responding heterogeneous compute nodes and compute
node capabilities of the corresponding heterogeneous com-
pute nodes, and wherein the communication circuitry is
arranged to receive, from the corresponding heterogeneous
compute nodes, an indication of the operational parameters
of the corresponding heterogeneous compute nodes.

7. The apparatus of claim 6, wherein the compute node
capabilities include one or more of a processor speed of the
corresponding heterogeneous compute nodes, memory uti-
lization of the corresponding heterogeneous compute nodes,
memory or storage size of the corresponding heterogeneous
compute nodes, link adaptation capabilities of the corre-
sponding heterogeneous compute nodes, available battery
power of the corresponding heterogeneous compute nodes,
a battery power budget of the corresponding heterogeneous
compute nodes, an average computation time per workload,
and an achievable data rate per channel usage of the corre-
sponding compute heterogeneous nodes.

8. The apparatus of claim 1, wherein the apparatus is a
System-On-Chip (SoC) or a Multi-Chip Package (MCP) in
a Multi-access Edge Computing (MEC) server.
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9. An apparatus for providing distributed machine learn-
ing (ML) services in a heterogeneous computing environ-
ment, the apparatus comprising:

processor circuitry arranged to determine, for each com-
pute node of a plurality of heterogeneous compute
nodes of the heterogeneous computing environment
available to perform computations for a distributed ML
training process, a coding redundancy indicating a
number of encoded data points, which are generated
from uncoded data available at each compute node, to
be included in an encoded training data partition based
on operational parameters of each heterogeneous com-
pute node;

communication circuitry communicatively coupled with
the processor circuitry, the communication circuitry
arranged to transmit an indication of the number of data
points and the coding redundancy to each heteroge-
neous compute node, and receive encoded training data
partitions from a set of the plurality of heterogeneous
compute nodes, and receive first partial gradients based
on the uncoded data from the set of the plurality of
compute nodes, and

wherein the processor circuitry is arranged to determine
second partial gradients based on the encoded training
data partitions, and determine updated ML training
parameters based on an aggregation of the first partial
gradients with the second partial gradients, and the
communication circuitry is arranged to transmit the
updated ML training parameters and the aggregated
partial gradients to corresponding heterogeneous com-
pute nodes.

10. The apparatus of claim 9, wherein the processor
circuitry is arranged to determine the coding redundancy
based on the operational parameters and a load allocation
criterion.

11. The apparatus of claim 10, wherein the load allocation
criterion is based on a minimax criterion, the minimax
criterion being a value that maximizes a number of partial
gradients to be received from each compute node while
minimizing a desired epoch time, wherein the desired epoch
time is based on a computation time for computation of the
partial gradients at each heterogeneous compute node, the
computation time being based on one or more deterministic
components of the operational parameters of each hetero-
geneous compute node and one or more stochastic compo-
nents of the operational parameters of each heterogeneous
compute node.

12. The apparatus of claim 10, wherein the processor
circuitry is arranged to determine the coding redundancy
based on a desired number of encoded data points to be
accepted for determination of the second partial gradients.

13. The apparatus of claim 9, wherein the communication
circuitry is arranged to transmit a probability value with the
indication of the number of data points and the coding
redundancy to each compute node, wherein the probability
value indicates a probability that the first partial gradient
will be received within a predetermined epoch time, and the
probability value is to weight the uncoded data available at
each compute node prior to the uncoded data being encoded.

14. The apparatus of claim 10, wherein the number of data
points to be included in the encoded training data partition
indicated by the coding redundancy is a fraction of a total
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number of uncoded data points distributed across all com-
puting nodes of the plurality of heterogeneous compute
nodes.

15. The apparatus of claim 9, wherein the operational
parameters of the corresponding compute nodes include
network conditions experienced by the corresponding com-
pute nodes and compute node capabilities of the correspond-
ing compute nodes, and the communication circuitry is
arranged to receive, from the corresponding compute nodes,
an indication of the operational parameters of the corre-
sponding compute nodes, and wherein the compute node
capabilities include one or more of a processor speed,
memory utilization, memory or storage size, link adaptation
capabilities, available battery power, a battery power budget,
an average computation time per workload, and an achiev-
able data rate per channel usage.

16. The apparatus of claim 14, wherein the apparatus is a
System-On-Chip (SoC) or a Multi-Chip Package (MCP) in
a Multi-access Edge Computing (MEC) server.

17. At least one non-transitory computer-readable storage
medium (NTCRSM) comprising data, the data to create,
manufacture, or produce instructions, wherein execution of
the instructions is to cause an edge compute node of a
heterogeneous computing environment to:

identify a training dataset partition on which to perform

computations of a distributed machine learning (ML)
training process, wherein a number of data points
included in the training data partition is based on
operational parameters of the edge compute node, and
the training data partition is among a plurality of
training data partitions;

perform the computations on the data points in the train-

ing dataset partition to obtain a partial gradient; and
send the computed partial gradient to a master node in the
heterogeneous computing environment.

18. The NTCRSM of claim 17, wherein execution of the
instructions is to cause the edge compute node to:

obtain, from the master node, updated ML training param-

eters based on an aggregation of a plurality of com-
puted partial gradients, wherein each computed partial
gradient of the plurality of computed partial gradients
are based on a corresponding one of the plurality of
training data partitions; and

perform the computations on the data points in the train-

ing dataset partition to obtain a partial gradient.

19. The NTCRSM of claim 17, wherein execution of the
instructions is to cause the edge compute node to:

obtain, from the master node, the training data partition

and an indication of the computations of the distributed
ML training process to be performed on the data points
in the training data partition.

20. The NTCRSM of claim 17, wherein the training data
partition is locally accessible by the edge compute node, and
execution of the instructions is to cause the edge compute
node to:

encode the data points of the training data partition and at

least one extra data point based on a coding redundancy
value to obtain an encoded dataset, wherein the coding
redundancy value is based at least on the operational
parameters of the edge compute node.

21. The NTCRSM of claim 20, wherein the coding
redundancy value is also based on a load allocation criterion,
wherein the load allocation criterion is based on a desired
computation time for computation of the partial gradient.
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22. The NTCRSM of claim 20, wherein execution of the
instructions is to cause the edge compute node to:

compute the partial gradient based on a random generator

matrix and a weight matrix, wherein the weight matrix
is based on a probability that the edge compute node
will be unable to provide the partial gradient to the
master node within a desired period of time.

23. The NTCRSM of claim 17, wherein execution of the
instructions is to cause the edge compute node to:

identify the operational parameters of the edge compute

node, the operational parameters of the edge compute
node at least including network conditions experienced
by the edge compute node and computational capacity
of the edge compute node; and

send an indication of the identified operational parameters

to the master node.

24. The NTCRSM of claim 23, wherein the operational
parameters of the edge compute node also include one or
more compute node capabilities of the edge compute node,
wherein the compute node capabilities include one or more
of'a processor speed, memory utilization, memory or storage
size, link adaptation capabilities, available battery power, a
battery power budget, an average computation time per
workload, and an achievable data rate per channel usage.
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