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(57) ABSTRACT

A system includes sensors for monitoring pressure, flow,
pump speed, temperature, and/or other signals at the output
of'a main hydraulic pump, and a processing system executes
one or more methods for identification of hydraulic system
events, from the signals, corresponding to state changes and
performance of the system and/or its subcomponents. Event
identification is performed with classification and/or other
machine learning algorithms, with generation of novel train-
ing data sets. The sensor(s) can also be used to determine
power consumption information about the system and/or its
subcomponents. The system processes event-associated out-
puts for execution of actions for improving system perfor-
mance, along with other downstream applications.
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SYSTEM AND METHOD FOR EVALUATING
HYDRAULIC SYSTEM EVENTS AND
EXECUTING RESPONSES

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application is a continuation of U.S. applica-
tion Ser. No. 16/939,026 filed on 26 Jul. 2020, which claims
the benefit of U.S. Provisional Application No. 62/879,290
filed on 26 Jul. 2019, which are each incorporated in its
entirety herein by this reference.

TECHNICAL FIELD

[0002] This invention relates generally to fields related to
hydraulic system evaluation, and more specifically to new
and useful systems and methods for evaluating hydraulic
system events at subcomponent and global levels, with
generation of analyses to improve system maintenance and
operation.

BACKGROUND

[0003] The commercial utilization of and ongoing costs of
using hydraulic equipment in industry and other sectors is
greatly impacted by proper maintenance practices that
include regular service and replacement of system compo-
nents. Furthermore, the technical domain knowledge
required to properly troubleshoot and diagnose these com-
plex systems is not readily available to the majority of
equipment owners and operators that rely on these systems
to produce their core products and services. The high
opportunity cost of equipment downtime and the lack of
resources to properly diagnose hydraulic systems, produces
reactive maintenance practices where equipment operates
inefficiently for long periods of time before finally failing.
Without the proper tools and domain expertise, technicians
are typically under pressure to replace components in order
to get the equipment back in service, once there is a failure
event, but do not resolve the root cause of failure. This leads
to accelerated system wear that results in an endless costly
battle to keep systems in production. As such, existing
solutions are non-ideal.

[0004] Unexpected downtime and poor system efficiency
thus have associated costs that can be prevented or reduced
with better monitoring, forecasting and troubleshooting sys-
tems. Current solutions for full system monitoring that can
diagnose subcomponent issues in hydraulic equipment use
many distributed sensors and custom algorithms. Imple-
menting these options requires application-specific domain
expertise, and the resources to design, deploy and maintain
equipment is typically a non-optimal solution for hydraulic
equipment owners and operators.

[0005] Thus, there is a need in fields implementing
hydraulic equipment to create new, scalable, and useful
systems and methods for evaluating hydraulic system events
at subcomponent and global levels, with generation of
analyses to improve system operation and maintenance
effectively lowering total cost of ownership and maximize
production output.

BRIEF DESCRIPTION OF THE FIGURES

[0006] FIG. 1A depicts an embodiment of a system for
hydraulic apparatus monitoring.
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[0007] FIG. 1B depicts an embodiment of a system for
hydraulic apparatus monitoring, with interfaces with various
entities.

[0008] FIGS. 2A-2D depict views of an example of a
system for hydraulic apparatus monitoring.

[0009] FIG. 3 depicts flow of various use cases associated
with an embodiment of a system for hydraulic apparatus
monitoring.

[0010] FIG. 4 depicts an embodiment of a method for
hydraulic apparatus monitoring.

[0011] FIG. 5 depicts example signal streams associated
with a first scenario of use of a hydraulic apparatus.
[0012] FIG. 6 depicts example signal streams associated
with a second scenario of use of a hydraulic apparatus.
[0013] FIG. 7 depicts example signal streams associated
with a third scenario of use of a hydraulic apparatus.
[0014] FIG. 8 depicts example model architecture associ-
ated with an embodiment of a method for hydraulic appa-
ratus monitoring.

[0015] FIG. 9 depicts an example of a returned analysis
associated with an embodiment of a method for hydraulic
apparatus monitoring.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

[0016] The following description of the preferred embodi-
ments of the invention is not intended to limit the invention
to these preferred embodiments, but rather to enable any
person skilled in the art to make and use this invention.

1. Benefits

[0017] The inventions associated with the system and
method can confer several benefits over conventional sys-
tems and methods, and such inventions are further imple-
mented into many practical applications across various
disciplines.

[0018] For instance, the inventions described provide a
sensor system and platform for signal analysis, which pro-
vide improved tools for monitoring, forecasting, and
troubleshooting events (e.g., failure modes, lifespans, etc.)
of hydraulic equipment (e.g., heavy mobile equipment, such
as excavators, oil rig drilling apparatuses, cement trucks,
garbage trucks, etc. and/or fixed equipment, such as injec-
tion molding machines, overhead cranes, etc.) at global and
subcomponent levels. Such inventions prevent unexpected
and unplanned maintenance events associated with one or
more components (e.g., hose failures, impacts, etc.) which
have significant associated costs, thereby improving hydrau-
lic equipment availability, improving equipment perfor-
mance and/or allowing hydraulic equipment to have
extended lifespans of use. Such inventions also can return
outputs for anticipating future adverse events, such that
preventative maintenance measures can be taken.

[0019] Additionally, the inventions described implement
algorithms and/or models for analyzing individual subcom-
ponents of hydraulic equipment with a single set of sensors
coupled to the hydraulic equipment at a single position,
thereby enabling users to obtain operating life, health,
remaining life, and/or other statuses of individual subcom-
ponents in a manner that is significantly more efficient and
lower in cost. Such a sensor cluster can be used to determine
energy parameters of the hydraulic equipment (e.g., energy
input, energy produced, etc.). The algorithms and/or models
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can also characterize global hydraulic equipment statuses
and/or events from the single set of sensors.

[0020] Additionally, the inventions described implement
rapid processing of signal streams, with disaggregation of
noisy and/or overlapping signals (e.g., signals with
extremely high signal-to-noise ratio) to extract insights
related to hydraulic equipment statuses and events, in a
manner that cannot be practically performed in the human
mind.

[0021] Additionally, the invention(s) improves the func-
tioning of computing systems related to fields implementing
hydraulic equipment, by enabling more efficient processing
of signal streams to generate analyses related to hydraulic
equipment statuses and events.

[0022] Additionally, the inventions apply outputs of the
analyses to effect one or more treatments for specific sub-
component or global hydraulic equipment conditions,
thereby providing practical applications of the algorithms
involved.

[0023] Additionally, the inventions involve collection of
signals from a hydraulic equipment position, apply one or
more transformations to the signals to generated modified
digital objects, create improved training data sets for
machine learning/classification algorithms, and iteratively
train the machine learning/classification algorithms, such
that hydraulic equipment events and statuses can be returned
upon processing subsequent signals.

[0024] Additionally, the invention(s) described create
classifiers for hydraulic equipment events (at global and
subcomponent levels), using simplified signal streams.
Extensions of the invention(s) can also be used to create
models that simulate hydraulic equipment behavior and
performance under various use scenarios, in relation to
anticipated events (e.g., failure modes) corresponding to use
scenarios.

[0025] Additionally, the invention(s) described collect sig-
nals from a sensor subsystem coupled to hydraulic equip-
ment, process the collected signals with trained algorithms
to return subcomponent and global hydraulic equipment
events, automatically generate notification upon identifica-
tion of an event or condition satisfying certain parameters,
and transmit the message to relevant entities associated with
the hydraulic equipment, such that the entities can respond
to the event or condition properly.

[0026] Additionally or alternatively, the invention(s) can
confer any other suitable benefit.

2. System

[0027] As shown in FIG. 1A, an embodiment of a system
100 for evaluating hydraulic apparatus events includes: a
sensor subsystem 110 (e.g., sensor cluster) including one or
more of: a pressure sensor 112, a temperature sensor 114, a
flow sensor 116, and a pump demand sensor 118; an inter-
face 120 between the sensor subsystem 110 and a hydraulic
pump 5 of a hydraulic apparatus 10; a monitor 130 coupled
to the sensor subsystem 110 and configured to receive
outputs of the sensor subsystem 110; and a processing
subsystem 140 operatively coupled to the monitor 130 and
including non-transitory media storing instructions that,
when executed by the processing subsystem 140, perform
operations for identifying, from outputs of the monitor
130/sensor subsystem 110, a set of unique signatures cor-
responding to states and events of the hydraulic apparatus
10. The set of unique signatures are then used by the
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processing subsystem 140 to execute actions configured to
respond to the states/events appropriately, thereby improv-
ing performance of the hydraulic apparatus (e.g., in terms of
output, in terms of efficiency, in terms of correcting unde-
sired statuses, in terms of responding to failure modes, etc.).
[0028] As shown in FIG. 1B, the processing subsystem
140 can include architecture for processing data, generating
outputs, storing data, and/or providing interfaces to various
entities/users, as described in further detail below.

[0029] The system 100 functions to provide improved
tools for monitoring, forecasting, and troubleshooting events
(e.g., failure modes, lifespans, etc.) of hydraulic apparatus
components at global and subcomponent levels. In particu-
lar, in applications where the system 100 is coupled to
mobile vehicles (e.g., in the trucking industry) and/or in
other industrial applications, the system 100 can enable
assessments of hydraulic apparatus health and other antici-
pated events at subcomponent and global levels, in an
improved manner. Subcomponents monitored by the system
100 can be upstream of the hydraulic pump, at the pump,
downstream of the hydraulic pump, and/or associated with
the hydraulic pump, and in examples, can include any one or
more of: valve components, pump oil, piston components,
motor components, or other suitable hydraulic apparatus
subcomponents. The system 100 can also generate usage
information from signals processed, at global and subcom-
ponent levels of abstraction.

[0030] Such inventions associated with the system 100
thus prevent unexpected and unplanned maintenance events
which have significant associated costs, thereby improving
hydraulic system performance and/or allow hydraulic sys-
tems to have extended lifespans of use. Additionally, the
system 100 functions to analyze individual subcomponents
of hydraulic equipment with a single set of sensors coupled
to the hydraulic equipment at a single position, thereby
enabling operators to obtain operating life, health, remaining
life, and/or other statuses of individual subcomponents in a
manner that is significantly more efficient and lower in cost.
In particular, the set of sensors can be used to assess system
statuses and events upstream and/or downstream of the
position of coupling between the sensors and the hydraulic
apparatus (e.g., output of main hydraulic pump 5), in a
manner that has not previously been achieved. Furthermore,
the system 100 functions to rapidly process signal streams,
with disaggregation of multiple signal types to extract
insights related to hydraulic apparatus statuses and events.
[0031] In specific examples, the system 100 provides
innovation in advanced sensor system design and machine
learning approaches, in fields using hydraulic systems, to
provide a plug-and-play, real-time monitoring and predictive
maintenance solution in a cost-effective manner. In particu-
lar, the system 100 monitors a small number of system
parameters and transmits data for processing (e.g., at least in
part in cloud computing systems, in coordination between
cloud and non-cloud based computing systems) to determine
health statuses of the associated hydraulic systems, at the
component level, in real time. Hydraulic system statuses and
actionable alerts are the provided by the system 100 to the
user (e.g., using a customer portal), to enable them to
streamline their equipment maintenance procedures and
prevent downtime.

[0032] In embodiments, the system 100 can be configured
to perform steps of embodiments, variations, and examples
of a method 300 described in Section 3 below. However, the
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system 100 can additionally or alternatively be configured to
perform other suitable methods.

[0033] Further details of components of the system 100
are described in the following sections.

2.1 System—Sensor Cluster

[0034] As shown in FIGS. 1A and 2A-2B, the system 100
includes a sensor subsystem 110 including one or more of:
a pressure sensor 112,112'; a temperature sensor 114,114', a
flow sensor 116,116', and a pump demand sensor 118. The
sensors of the sensor subsystem 110 collectively function to
generate signals for monitoring a set (e.g., minimized set,
discrete set, etc.) of signal types and/or number of a param-
eters, from which performance of the hydraulic apparatus
and/or demand on the hydraulic apparatus can be extracted.
The data can then be processed according to methods
described in more detail below, in order to efficiently assess
statuses of and/or anticipate events of the hydraulic appa-
ratus and its subcomponents. As described above and further
below, the set of sensors 110 can include: a pressure sensor
112, a temperature sensor 114, a flow sensor 116, and a pump
demand sensor 118.

[0035] The pressure sensor 112 functions to detect the
pressure of the hydraulic fluid of the hydraulic apparatus
(e.g., at the hydraulic pump 5 outlet, as described in relation
to the interface 120 below). In embodiments, the pressure
sensor 112 converts sensed pressures into electrical signals
(e.g., analog electrical signals) for reception and/or pre-
processing by the monitor 130. In variations, the pressure
sensor 112 can include components (e.g., diaphragms, other
components) in contact or communication with hydraulic
fluid of the hydraulic apparatus (e.g., through channel 122 of
interface 120 described below), thereby enabling direct
sensing of pressure of the hydraulic fluid (e.g., at the main
hydraulic pump 5 output). Alternatively, in other variations,
the pressure sensor 112 may not include components that are
directly in contact with hydraulic fluid, and instead operate
in another manner (e.g., by measuring deformation of a
component contacting the hydraulic fluid). In a specific
example, the pressure sensor 112 can include a strain gauge
coupled to an output line or other conduit associated with
hydraulic fluid of the hydraulic apparatus, and measure
deformation (e.g., circumferential deformation, longitudinal
deformation, etc.) of the conduit as an indirect measure of
internal pressure.

[0036] In variations, the pressure sensor 112 can output a
signal with a desired current and/or rate. In a specific
example, as shown in FIGS. 2A-2B, the pressure sensor 112"
outputs a 4-20 mA current signal, which is converted to a
voltage by the monitor 130 and/or processing subsystem 140
described in more detail below. In the specific example, the
pressure sensor 112 updates pressure readings at a rate of up
to 1000 Hz (or alternatively, of up to 1,000,000 Hz), and
downstream conditioning using an analog-to-digital con-
verter (ADC) involves sampling at a rate greater than the
rate of updated readings in order to allow for digital filtering
and signal processing. Variations of the specific example of
the pressure sensor 112 can, however, generate other suitable
signal outputs at other suitable rates.

[0037] The temperature sensor 114 functions to measure
the temperature of the hydraulic fluid of the hydraulic
apparatus (e.g., at the hydraulic pump 5 outlet, as described
in relation to the interface 120 below). Similar to the
pressure sensor 112, the temperature sensor 114 can include
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components (e.g., probes, other components) in contact or
thermal communication with hydraulic fluid of the hydraulic
apparatus (e.g., through channel 122 of interface 120
described below), thereby enabling direct sensing of tem-
perature of the hydraulic fluid (e.g., at the main hydraulic
pump 5 output). Alternatively, in other variations, the tem-
perature sensor 114 may not include components that are
directly in contact with hydraulic fluid, and instead operate
in another manner (e.g., by measuring temperature of a
component contacting the hydraulic fluid, by measuring
temperature of a component where the temperature of the
component is a function of the temperature of the hydraulic
fluid). In a specific example, as shown in FIGS. 2A-2B, the
temperature sensor 114' can include a T-type thermocouple,
wherein the thermocouple output is received by the monitor
130 and/or processing subsystem 140 described in more
detail below.

[0038] The flow sensor 116 functions to measure flow
characteristics of the hydraulic apparatus (e.g., at the main
output of the hydraulic pump 5 of the hydraulic apparatus)
by generating electrical signals (e.g., voltage signals with
waveform characteristics) that are proportional to flow rate
and other characteristics. The flow sensor 116 can include
components that are inline with flow through the hydraulic
apparatus (e.g., inline with the main hydraulic pump 5
output). Additionally or alternatively, the flow sensor 116
can include components that determine flow characteristics
from differential pressures (e.g., by measuring pressure
differentials across a known junction geometry). Still alter-
natively, the flow sensor 116 can include non-contact sens-
ing components for measuring flow characteristics (e.g., as
in ultrasonic flow sensors).

[0039] In a specific example, as shown in FIGS. 2A-2B,
the flow sensor 116' includes a turbine flow meter with a
magnetic pickup to sense motion of the turbine blade within
the flow meter body. In the specific example, the output of
the flow sensor 116 is a peak-to-peak wave with a frequency
that is proportional to the flow rate. The maximum fre-
quency of the wave is about 1000 Hz in specific applications
of use, and downstream conditioning using an analog-to-
digital converter (ADC) involves sampling at a rate (e.g., 10
KHz) greater than the frequency, with conversion of the
analog wave into a digital square wave with equal frequency.

[0040] The pump demand sensor 118 functions to measure
varying pump demand for the hydraulic apparatus. The
pump demand sensor 118 can measure pump demand in
relation to operational demand of the hydraulic apparatus, in
terms of revolutions per minute (RPM) or another suitable
measure. In particular, in contrast to some industrial appli-
cations where RPM of the hydraulic pump 5 of the hydraulic
apparatus is constant at the synchronous electric motor
speeds, mobile applications of use (e.g., in relation to
trucking and other mobile applications), where the hydraulic
pump 5 of the hydraulic apparatus is coupled directly to the
engine or transmission, can require variable engine speeds,
which causes hydraulic pump 5 flow to vary.

[0041] Ina specific example, the pump demand sensor 118
is coupled to a vehicle interface (e.g., J1939 vehicle inter-
face) as a link to the vehicle interface for monitoring engine
RPM. The approach of the specific example uses a CAN 2.0
physical interface which outputs a CAN voltage and/or
packet indicative of pump RPM, and downstream signal
conditioning by the monitor 130 and/or processing subsys-
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tem 140 described in more detail below transforms the CAN
voltage to 3.3 transistor-transistor logic (ttl) voltage.
[0042] In variations, sensors of the sensor subsystem 110
can be isolated from each other or otherwise configured to
prevent undesired signal interference or crosstalk, thereby
improving quality of training data, test data, and data
processed during normal operation of the system 100. Out-
puts can further be isolated from each other in relation to
architecture of electronics of the monitor 130 and/or pro-
cessing subsystem 140 described below.

[0043] While a unit of each sensor type is described above,
in variations of the system 100, the sensor subsystem 110
can include multiple units of each sensor type and/or other
types of sensors. Furthermore, the sensor(s) of various types
can be positioned to interrogate fluid flow at identical
positions of the hydraulic apparatus (e.g., for sensor redun-
dancy), or alternatively, can be configured to interrogate
fluid flow at different positions of the hydraulic apparatus in
order to generate measurements for comparative analyses, or
analyses requiring differential measurements.

[0044] In variations, the sensor subsystem 110 can include
sensor types not described above. For instance, the sensor
subsystem 110 can include one or more of: sensors for filter
heads of the hydraulic apparatus, in order to detect when a
filter replacement is needed (e.g., where the filter head
sensors monitor a pressure differential switch at the filter
head); magnetic sensors (e.g., Hall Effect sensors) used to
measure hydraulic motor RPM or other linear/angular posi-
tion sensors for detection of hydraulic actuator motion; other
linear position sensors (e.g., linear encoders); other angular
motion sensors (e.g., angular encoders); weight sensors
(e.g., to interrogate vehicle load and distributions or other
loads/distributions associated with non-vehicle applica-
tions); ultrasonic/vibration sensors coupled to one or more
motors and/or cylinders associated with the hydraulic appa-
ratus; and other sensor types.

[0045] The sensor subsystem 110 can additionally or alter-
natively omit one or more sensor types listed above. For
instance, in relation to the processing subsystem 140
described in more detail below and/or implementation of
training datasets in Section 3 below, the sensor subsystem 10
can omit sensor types as required, in relation to assessing
hydraulic apparatus subcomponent statuses and/or events
with the fewest number of signal types required.

2.2 System—Sensor Interface to Hydraulic Pump

[0046] As shown in FIGS. 1A and 2A, and 2C-2D, the
system 100 includes an interface 120 between the sensor
subsystem 110 and a hydraulic pump 5 of a hydraulic
apparatus 10, where the interface 120 functions to provide a
mechanism for robust physical coupling of the sensor sub-
system 110 to the hydraulic pump 5. Additionally, the
interface 120 is configured to facilitate rapid and efficient
installation, such that the system 100 can be coupled uni-
versally to hydraulic system main pumps in a brand and
equipment agnostic manner.

[0047] In variations, the interface 120 can couple the
sensor subsystem 110 to the hydraulic pump 5 of the
hydraulic apparatus 10, where the hydraulic pump 5 can be
a hydraulic gear pump, a hydraulic piston pump, a hydraulic
vane pump, or another suitable type of pump. In variations,
the interface 120 couples the sensor subsystem 110 to the
main output of the hydraulic pump 5, as shown in FIG. 1A;
however, in other variations, the interface 120 can couple the
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sensor subsystem 110 to another suitable portion (e.g., inlet,
valve position, etc.) of the hydraulic pump 5, in order to
detect signals for downstream processing.

[0048] In the variations shown in FIGS. 1A and 2A-2D,
the interface 120 comprises a housing 121,121', which
functions to provide at least a portion of a coupling mecha-
nism between the sensor subsystem 110 (e.g., deformable
member of a pressure sensor 112, thermocouple of a tem-
perature sensor 114, turbine of a flow sensor 116, etc.) and
the hydraulic pump 5 (e.g., at the main output). In the
variation shown in FIGS. 2A-2D, the housing 121' includes
a manifold or other channel 122' that provides coupling of
the sensor subsystem 120 inline with and downstream of the
main output of the hydraulic pump 5, in order to detect
signals from flow through the hydraulic pump 5. As such, in
this configuration, flow into the inlet of the channel 122 and
through the outlet of the channel 122' of the housing 121" and
interface 120 can produce rotation of a turbine of the flow
sensor 116' for generation of flow-related signals, tempera-
ture sensing components of the temperature sensor 114' can
interface (directly or indirectly) with fluid flowing through
the housing 121' and interface 120 to generate temperature-
related signals, and pressure sensing components of the
pressure sensor 112' can interface (directly or indirectly)
with fluid flowing through the housing 121' and interface
120 to generate pressure-related signals. In variations, one or
more of the temperature sensor 114' and the pressure sensor
112' can directly or indirectly contact a surface of the
channe] 122'.

[0049] In order to provide a robust mechanism of coupling
with the hydraulic pump 5, the housing 121 of the interface
120 can be composed of a material having suitable mechani-
cal properties. In variations, materials of the housing 121
and/or other aspects of the interface 120 can be configured
to provide suitable mechanical properties in relation to
stresses attributed to flow through the interface (e.g., radial
stresses, shear stresses, longitudinal stresses, tensile stresses,
compressive stresses, stresses associated with pressure ves-
sels; stresses associated with impacts to the system 110
and/or the hydraulic apparatus during use; stresses due to
thermal expansion; stresses due to thermal contraction; and
other associated stresses depending upon applications of
use.

[0050] Additionally or alternatively, the housing 121 of
the interface 120 can be composed of a material having
suitable thermal properties. In variations, materials of the
housing 121 and/or other aspects of the interface 120 can be
configured to provide suitable thermal properties in relation
to one or more of: thermal conductivity (e.g., in relation to
allowing proper operation of the temperature sensor 114, in
relation to insulative behavior), thermal expansion (e.g., in
relation to having a desired level of thermal expansion); and
other thermal properties depending upon application of use.

[0051] Additionally or alternatively, the housing 121 of
the interface 120 can be composed of a material having
suitable physical or surface properties. In variations, mate-
rials of the housing 121 and/or other aspects of the interface
120 can be configured to provide suitable physical or surface
properties in relation to one or more of: electrochemical
properties (e.g., due to corrosive environments), electromag-
netic properties (e.g., in relation to ultraviolet light expo-
sure), and other surface or physical properties due to envi-
ronment of use of the system 100.



US 2021/0173376 Al

[0052] The housing 121 can also function to provide a seal
about sensitive electronic and other components associated
with the sensor subsystem 110 (e.g., such as the monitor 130
described in more detail below). In variations, the seal can
be a hermetic seal, a seal that allows passage of gasses but
prevents passage of liquids, or another suitable type of seal.
In these variations, the housing 121 can function as a seal,
or can additionally or alternatively include sealing compo-
nents (e.g., gaskets, o-rings, sealing compounds, etc.) at
openings of the housing 121, or between various sub-
portions of the housing 121.

[0053] In specific examples, the housing 121 can be com-
posed of a metallic material (e.g., aluminum), a metal-
derived material, a ceramic material, a natural material, a
synthetic material, or another suitable material. In other
specific examples, the housing 121 can be composed of a
polymeric material having suitable properties.

[0054] As described above, the interface 120 can also
couple the sensor subsystem 110 to other portions of the
hydraulic apparatus (e.g., in relation to mobile applications,
in relation to industrial applications). In particular, the
interface 120 can allow the pump demand sensor 118 to
couple to a vehicle interface for monitoring engine RPM or
other operational demand characteristics. In variations, the
interface 120 can allow the sensor subsystem 110 to couple
to a vehicle interface/CAN bus, with an associated protocol
(e.g., J1939 protocol). However, other variations of the
interface 120 can allow the sensor subsystem 110 to couple
to another type of vehicle interface or other type of hydraulic
apparatus interface, with another suitable protocol.

[0055] As noted above, the interface 120 can additionally
or alternatively provide “contactless” coupling between the
sensor subsystem 110 and portions of the hydraulic appa-
ratus 10 (e.g., at the pump 5, away from the pump 5). In
variations, the interface 120 can thus include architecture for
enabling non-contact sensing between sensors of the sensor
subsystem 110 and the hydraulic apparatus (e.g., at the main
pump output), with architecture for wireless signal trans-
mission between various system components. A variation of
non-contact sensing can employ a clamp or other coupler
that couples the non-contact sensors to the pump (e.g., near
the main output, near another pump component, near
another component of the hydraulic apparatus).

2.3 System—Monitor

[0056] As shown in FIG. 1A, the system 100 includes a
monitor 130 coupled to the sensor subsystem 110 (e.g.,
through interface 120, proximal to interface 120, within the
housing 121 associated with interface 120, etc.) and config-
ured to receive outputs of the sensor subsystem 110 and to
transmit data derived from outputs of the sensor subsystem
110 to components of the processing subsystem 140
described in more detail below. In more detail, the monitor
130 can include a controller (e.g., an embedded control
module) that samples data generated from the sensor sub-
system 110, logs the data, and transmits the data (e.g., over
a wireless connection, over a wired connection) to the
processing subsystem 140 described below.

[0057] In variations, the monitor 130 can be configured to
receive analog signals from the sensor subsystem 110.
Additionally or alternatively, the monitor 130 can be con-
figured to receive digital signals (e.g., signals that are
digitized from analog signals, etc.) from the sensor subsys-
tem 110. As such, signals from the sensor subsystem 110 can
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be transmitted to the monitor 120 as analog signals, or
alternatively as digital signals (e.g., digitized from analog
signals, etc.), and the monitor 120 can accordingly process
and transmit data derived from the signals to the processing
subsystem 140.

[0058] In a variations, the monitor 130 can include com-
puter architecture and circuitry for one or more of: connec-
tors between various sensor and monitor 130 components
(e.g., in relation to sensor inputs to the monitor 130), data
storage, power source (e.g., battery, other power source),
power management, and data transmission (e.g., via wireless
communications, via wired communications, etc.). The
monitor 130 can additionally or alternatively include archi-
tecture and circuitry for preconditioning of signals and/or
data derived from the sensor subsystem 110 and/or other
suitable functions. A specific example of the monitor 130 is
described in Section 2.3.1 below.

2.3.1 Monitor—Specific Example

[0059] In a specific example, the monitor 130 includes an
embedded controller comprising a computer comprising
circuitry for interfacing with the sensor subsystem 110, with
peripherals for debugging and wireless communication. In
the specific example, the computer is an embedded single
board computer of the monitor 130 that implements a Xilinx
Zynq 7000 SoC and runs a Linux RT kernel. The Xilinx
Zynq 7000’s ARM processor (e.g., with processing logic)
and FPGA (e.g., with programmable logic) can all be
programmed and deployed using a suitable development
environment.

[0060] In relation to sensor inputs from the sensor sub-
system 110 and other inputs to the monitor 130, the monitor
130 of the specific example is configured to receive inputs
associated with pressure, temperature, flow, pump demand,
digital inputs, and auxiliary inputs. In relation to pressure,
the monitor 130 receives an input 4-20 mA current signal
and converts the current to a voltage using a high accuracy
on-board shunt resistor. The voltage is sampled using an
analog-to-digital converter (ADC), and the ADC sampling
rate per channel is at least 10x the maximum update rate of
the pressure sensor to allow for digital filtering. The ADC
interface to the monitor 130 is via SPI or 12C protocol. In
relation to temperature, the monitor 130 receives an input
voltage derived from a thermocouple integrated circuit that
communicates with the monitor 130 via SPI or 12C protocol.
In relation to flow, the monitor 130 receives an input 30
mV-3V peak-to-peak sine wave with a frequency that is
proportional to the flow rate, from the flow meter. The
maximum frequency of the sine wave in the specific
example is ~1000 Hz. The monitor samples the output from
the magnetic pickup of the flow meter using an ADC with a
sampling speed of at least 10 KHZ. The monitor 130 then
converts the analog sine wave into a digital square wave
with equal frequency. In relation to pump demand, the
monitor 130 measures engine RPM (e.g., for mobile fluid
power applications) using a J1939 vehicle interface (e.g.,
with the CAN2.0 physical interface). The monitor 130 of the
specific example has two built in CAN 2.0 controllers but
requires a transceiver to translate the CAN voltage to 3.3 ttl
voltage. The monitor of the specific example includes a
CAN transceiver and routes the J1939 CAN interface to the
computer (e.g., using suitable connectors).

[0061] In the specific example, the monitor 130 also
includes two high speed industrial digital inputs. The indus-
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trial digital inputs can be used to monitor a pressure differ-
ential switch on a filter head to indicate when filter replace-
ment is required. The industrial digital input can also be used
to monitor a frequency input from a Hall Effect sensor used
to measure hydraulic motor RPM. The monitor includes
jumpers to configure the digital input as sourcing or sinking.
In the specific example, the monitor 130 also includes 3
auxiliary 4-20 mA inputs. The monitor converts the current
to a voltage using a high accuracy on-board shunt resistor.
These inputs are intended to be used for monitoring 4-20 mA
linear and angular position sensors connected to the hydrau-
lic actuators in order to automate machine algorithm train-
ing, as described in more detail in relation to the processing
subsystem and associated methods below.

[0062] As shownin FIGS. 2A-2D, in the specific example,
the monitor 130 includes a single high density connector
with dedicated inputs/outputs (1/O) for system peripherals
and power supply couplings. The monitor 130 also includes
a programming interface (e.g., USB interface) to program
the computer and/or enable development functionality. The
computer of the monitor 130 also includes a USB-to-
Ethernet converter so the interface appears as an Ethernet
network adapter with constant IP address on a separate host
computer. The monitor 130 also includes a data storage
module (e.g., uSD card connector for increased data stor-
age). The controller of the monitor 130 uses the data storage
module to log time series sensor data. The monitor 130 also
includes an onboard battery (e.g., RTC (VBATT)) to power
the real time clock of the computer. The battery is also used
for the global navigation satellite system (GNSS) module to
improve signal lock time for tracking and navigation pur-
poses in mobile applications of the system.

[0063] In the specific example, the monitor 130 also
includes a power management module that receives an input
voltage (e.g., 9-36V DC input voltage) and conditions the
input voltage to provide necessary voltages for other archi-
tecture of the monitor 130. In relation to mobile applications
of use, the monitor includes circuitry to condition the input
voltage to deal with over voltage scenarios, under voltage
scenarios, reverse polarity protection, and transients that are
common in mobile (e.g., automotive, terrestrial, other
mobile) applications. In more detail, in mobile applications,
the controller is powered from the vehicle battery bank (e.g.,
at 12 VDC/24 VDC). To avoid draining the vehicle battery
while the engine is powered off, the power management
module includes a power latching relay to remove power.
The relay is triggered and latched by the vehicle ignition
signal. Once the ignition switch is activated (e.g., vehicle is
started) the power management module and associated con-
troller will remain on until the latching relay is reset. The
ignition signal is also monitored by the power management
module and associated controller to determine when the
vehicle of the mobile application has been turned off. When
the ignition signal is no longer active and the data from the
monitor 130 has been uploaded to the host server the power
management module and associated controller shuts down
and removes power by resetting the latching relay. In
specific scenarios when the monitor 130 needs to remain
powered on, the power management module implements a
smart battery management system (SBMS) in the connection
junction module. The SBMS charges while the vehicle is on
and powers the control module when the vehicle is off. The
SBMS communicates with the controller of the monitor 130
via CAN bus protocol to provide battery status. In order to
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maximize battery life, the controller of the monitor 130 goes
into low power mode and periodically wakes up to monitor
GPS location and transmit location and status to the host
server.

[0064] In relation to data communication, the specific
example of the monitor 130 achieves wireless communica-
tion using dedicated WiFi and cellular modems that interface
to the computer (e.g., by UART connections). In the specific
example, the radio antennas of the wireless communication
components are external to the monitor and couple to the
monitor 130 (e.g., by a 50 Ohm SMA connector). The
monitor 130 also includes a dedicated GNSS module for
monitoring position data by global satellite. The GNSS
module interfaces to the computer (e.g., by via UART
connections). In the specific example, the active GPS
antenna is external to the monitor and couples to the monitor
130 (e.g., by a 50 Ohm SMA connector). In the specific
example, the monitor is configured to not co-locate radios
(e.g., Wifl radios, GPS radios, GPRS radios) within 20 cm
of each other to avoid co-located radio classification.

2.3.2 Monitor—Use Cases

[0065] FIG. 3 depicts use cases associated with the moni-
tor 130, with interfaces between a wireless communication
(e.g., WiF1i) host application, a server host application (e.g.,
associated with processing subsystem 140 described below),
and the hydraulic apparatus 10 described above. In FIG. 3,
the monitor 130 interfaces with the hydraulic apparatus 10
and logs sensor data from the sensor subsystem 110, with
logging of hydraulic apparatus usage data for associated
health status calculations. Filtering can be performed by
monitor unit identifier, fleet identifier (e.g., associated with
mobile applications of use), time stamp ranges, data iden-
tifiers, and data parameter value ranges. Health statuses can
be associated with one or more of: pump efficiency, oil filter
life, oil filter status, oil life remaining, relief valve setting,
system temperatures, actuator efficiency, and other health
statuses associated with various subcomponents of the
hydraulic apparatus. In relation to health statuses, the moni-
tor 130 and/or processing subsystem 140 described below
can return notifications associated with maintenance event
flags, pertaining to one or more of: filter replacement, oil
replacement, component replacement, failure mode, and
system status. System statuses can be associated with one or
more of: high pressure (e.g., at 4-20 mA) operations, low
pressure (e.g., at 4-20 mA) operations, pump flow, tempera-
ture, auxiliary position sensors, power management, pump
demand, pump RPM, GPS operation, and other system
statuses. Usage data can be associated with one or more of:
cycle count, cycle time (e.g., average), route segment time
(e.g., average), pump demand (e.g., average RPM), dry
valve usage, GPS location, and other usage data.

[0066] The monitor also transmits pre-conditioned data,
hydraulic apparatus usage data, and other system statuses
over wireless communications for further processing. The
monitor 130 also receives firmware updates and/or configu-
rational aspects by way of the WiFi host application, and
transmits data and power management information (e.g.,
related to low power operations) to the server host applica-
tion. An example continuous monitoring mode, data trans-
mission mode, low power mode, real-time system monitor-
ing by server host application mode, real-time system
monitoring by WiFi host application mode, configuration
mode, and firmware update mode are described below:
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[0067] In more detail, in continuous monitoring modes of
operation, the monitor 130 interacts with the hydraulic
apparatus 10 and the server host application, and with
operation of the hydraulic apparatus 10, the monitor 130
monitors hydraulic apparatus 10 usage (e.g., at subcompo-
nent and global levels), health statuses (e.g., at subcompo-
nent and global levels), and other system statuses. The
monitor 130 also logs receives and logs data from the sensor
subsystem 110 related to one or more of pressure, tempera-
ture, flow, pump demand, filter status, and auxiliary inputs
(e.g., for hydraulic actuator position). The monitor 130 also
transmits data to the server host application by wireless
communications, as described above (and buffers data with
repeated transmission attempts if transmission is unsuccess-
ful).

[0068] In more detail, in data transmission modes of
operation, the monitor 130 interacts with the hydraulic
apparatus 10 and the server host application. The monitor
130 verifies that time is within a suitable data transmission
time window, and uploads data (e.g., time series sensor data)
to the server by wireless communications, as described
above. With confirmation of successful data transmission,
the monitor 130 deletes locally stored data. The monitor 130
can transition to a low power mode of operation (described
in the immediately following paragraph), and/or buffers data
with repeated transmission attempts if transmission is unsuc-
cessful).

[0069] In more detail, in low power modes of operation,
the monitor 130 interacts with the hydraulic apparatus 10,
the server host application, and an operator of the hydraulic
apparatus 10. With successful data transmission to the server
or a maximum number of unsuccessful data transmission
attempts exceeded, the monitor 130 enters a low power
mode of operation, periodically transmits status information
to the server, and monitors battery status of the monitor 130.
In the event that the monitor 130 enters a critical battery
status, the monitor 130 powers off peripherals, resets a
latching relay, and removes power from the controller of the
monitor 130.

[0070] In more detail, in real-time system monitoring by
server host application modes of operation, the monitor 130
interacts with the hydraulic apparatus 10 and the server host
application. The server host application connects with the
controller of the monitor 130, which streams data to the
server host application. With processing, analyses (e.g., in
relation to health statuses and other returned outputs) are
presented to an operator of the hydraulic apparatus 10. In
variations, the server host application can request to discon-
nect from the monitor 130, which closes the connection. In
alternate flows, with connection initiation failure or connec-
tion disconnect failure, the server host application can
attempt to connect or disconnect a threshold number of
times.

[0071] In more detail, in real-time system monitoring by
WiFi host application modes of operation, the monitor 130
interacts with the hydraulic apparatus 10 and the server host
application. The WiFi host application connects with the
controller of the monitor 130, which streams data to the
server host application. With processing, analyses (e.g., in
relation to health statuses and other returned outputs) are
presented to an operator of the hydraulic apparatus 10. In
variations, the server host application can request to discon-
nect from the monitor 130, which closes the connection. In
alternate flows, with connection initiation failure or connec-
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tion disconnect failure, the server host application can
attempt to connect or disconnect a threshold number of
times.

[0072] In configuration modes of operation, the monitor
130 interacts with the server host application and the
hydraulic apparatus 10, for configuration adjustments.
[0073] In firmware update modes of operation, the moni-
tor 130 interacts with the server host application and the
hydraulic apparatus 10, to receive firmware updates.

2.4 System—Processing Components

[0074] As shown in FIG. 1A, the system includes a
processing subsystem 140 operatively coupled to the moni-
tor 130 and/or sensor subsystem 110 and including non-
transitory computer-readable media storing instructions that,
when executed by the processing subsystem 140, perform
operations for identifying, from outputs of the monitor 130,
a set of unique signatures corresponding to states and events
of'the hydraulic apparatus 10. The processing subsystem 140
thus functions to generate analysis (e.g., related to hydraulic
apparatus and subcomponent statuses and events) derived
from signals of the sensor subsystem 110, and to facilitate
execution of response actions to improve or maintain
hydraulic apparatus performance. In relation to generation
of analyses, the processing subsystem 140 can also function
to generate and process training and test datasets for devel-
opment and refinement of machine learning (ML) models,
where the ML models return outputs associated with hydrau-
lic apparatus and subcomponent statuses and events from
received sensor data.

[0075] The processing subsystem 140 can include one or
more processing subsystems implemented in one or more of:
a remote server, a personal computer, a cloud-based com-
puting system (e.g., Zeek™ platform, Amazon™ Web Ser-
vices (AWS) platform, etc.), a computing module of a
mobile electronic device (e.g., mobile communication
device, wearable computing device, etc.), and any other
suitable computing device. The processing subsystem 140
can communicate with other system components (e.g.,
monitor 130) and/or third party systems over a network 150,
in relation to data transfer or other operations (e.g., some of
which are described above). Furthermore, architecture of the
processing subsystem 140 can overlap with that of the
monitor 130, and/or be physically distinct from that of the
monitor. For instance, in one variation, some components of
the processing subsystem 140 can be on-board the monitor
130, and/or some components of the processing subsystem
140 can be distinct and implemented in the cloud and/or
computing systems remote from the monitor 130.

[0076] In more detail, the network 150 functions to enable
data transmission between system components and/or third
party platforms. The network 150 can include a combination
of one or more of local area networks and wide area
networks, and/or can include wired and/or wireless connec-
tions to the network 150. The network 150 can implement
communication linking technologies including one or more
of: 802.11 architecture (e.g., Wi-Fi, etc.), 3G architecture,
4G architecture, 5G architecture, Ethernet, worldwide
interoperability for microwave access (WiMAX), long term
evolution (LTE) architecture, code division multiple access
(CDMA) systems, digital subscriber line (DSL) architecture,
and any other suitable technologies for data transmission.
[0077] In variations, the network 150 can be configured
for implementation of networking protocols and/or formats
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including one or more of: hypertext transport protocol
(HTTP), multiprotocol label switching (MPLS), transmis-
sion control protocol/Internet protocol (TCP/IP), file transfer
protocol (FTP), simple mail transfer protocol (SMTP),
hypertext markup language (HTML), extensive markup
language (XML), and any other suitable protocol/format.
The network 150 can also be configured for and/or provide,
through communication links, encryption protocols for
improving security of data transmitted over the network 150.
[0078] As noted above, the processing subsystem 140 is
configured to perform operations for identifying, from out-
puts of the monitor 130, a set of unique signatures corre-
sponding to states and events of the hydraulic apparatus 10.
In variations, the operations can involve processes associ-
ated with one or more of: receiving a set of data streams,
derived from outputs of the sensor subsystem 110, from the
monitor 130; performing a set of transformation operations
upon the set of data streams, wherein the set of transforma-
tion operations includes a disaggregation operation; identi-
fying a set of unique signatures corresponding to states and
events of the hydraulic apparatus 10 and subcomponents of
the hydraulic apparatus 10, from the set of transformation
operations; returning an analysis including a recommended
action for improving or maintaining proper performance of
the hydraulic apparatus, based upon the set of unique
signatures; and optionally, executing the recommended
action.

[0079] One or more operations executed in coordination
with the processing subsystem 140 can implement ML
models (e.g., classifiers) refined with training data generated
by the system 100 and/or other systems, as described in
relation to the method 300 below. Details of the operations
are further described in relation to embodiments, variations,
and examples of the method 300 of Section 3 below.

3. Method

[0080] As shown in FIG. 4, an embodiment of a method
300 for evaluating hydraulic apparatus events includes:
receiving a set of data streams, derived from outputs of a
sensor subsystem S310; performing a set of transformation
operations upon the set of data streams S320, wherein the set
of transformation operations includes a disaggregation
operation; identifying a set of unique signatures correspond-
ing to states and events of the hydraulic apparatus and
subcomponents of the hydraulic apparatus, from the set of
transformation operations S330; returning an analysis
including a recommended action for improving or maintain-
ing proper performance of the hydraulic apparatus, based
upon the set of unique signatures S340; and optionally,
executing the recommended action S350.

[0081] The method 300 functions to provide improved
tools for monitoring, forecasting, and troubleshooting events
(e.g., failure modes, lifespans, etc.) of hydraulic apparatus
components at global and subcomponent levels. In particu-
lar, in applications involving monitoring of hydraulic appa-
ratuses used for mobile applications (e.g., in relation to
vehicle-mounted hydraulic systems, in association with
excavators, in association with oil rig drilling apparatuses, in
association with cement trucks, in association with garbage
trucks, etc.) and/or in other industrial applications (e.g.,
injection molding machines, overhead cranes, etc.), the
system 100 can enable assessments of hydraulic apparatus
health and other anticipated events at subcomponent and
global levels, in an improved manner. Subcomponents
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monitored according to the method 300 can be upstream of
the hydraulic pump, downstream of the hydraulic pump,
and/or associated with the hydraulic pump, and in examples,
can include any one or more of: valve components, pump
oil, piston components, motor components, or other suitable
hydraulic apparatus subcomponents. The method 300 can
also generate usage information from signals processed, at
global and subcomponent levels of abstraction.

[0082] Such inventions associated with the method 300
thus prevent unexpected and unplanned maintenance events
which have significant associated costs, thereby improving
hydraulic system performance and/or allow hydraulic sys-
tems to have extended lifespans of use. Additionally, the
method 300 can provide steps for analyzing individual
subcomponents of hydraulic equipment with a single set of
sensors coupled to the hydraulic equipment at a single
position, thereby providing operators with information per-
taining to operating life, health, remaining life, and/or other
statuses of individual subcomponents in a manner that is
significantly more efficient and lower in cost. In particular,
signals generated by the set of sensors can be used to assess
statuses and events upstream and/or downstream of the
position of coupling between the sensors and the hydraulic
apparatus in a manner that has not previously been achieved.
Furthermore, the method 300 rapidly process signal streams,
with disaggregation of multiple signal types to extract
insights related to hydraulic apparatus statuses and events.
[0083] In specific examples, the method 300 provides
innovation in advanced sensor system design and machine
learning approaches, in fields using hydraulic systems, to
provide a plug-and-play, real time monitoring and predictive
maintenance solution in a cost-effective manner. In particu-
lar, the method 300 can monitor a reduced number of system
parameters and transmit data for processing (e.g., at least in
part in cloud computing systems) to determine health sta-
tuses of the associated hydraulic systems, at the component
level, in real time. Hydraulic system statuses and actionable
alerts are the provided by the method 300 to the user (e.g.,
using a customer portal), to enable them to streamline their
equipment maintenance procedures and prevent downtime.
[0084] In embodiments, the method 300 can be imple-
mented, at least in part, by system 100 elements described in
Section 2 above. However, the method 300 can additionally
or alternatively be implemented by other suitable systems/
system components.

[0085] Further details of components of the method 300
are described in the following sections.

3.1 Method—Signal Acquisition

[0086] As shown in FIG. 4, Block S310 recites: receiving
a set of data streams, derived from outputs of a sensor
subsystem. Block S310 functions to monitor a discrete (e.g.,
minimized) set of signal types and/or number of a param-
eters, from which performance of the hydraulic apparatus
and/or demand on the hydraulic apparatus can be extracted.
The data derived from the signals can then be processed
according to methods described in more detail below, in
order to efficiently assess statuses of and/or anticipate events
of the hydraulic apparatus and its subcomponents.

[0087] As described in relation to the system above, Block
S310 can include establishing an interface between the set of
sensors and the hydraulic apparatus (e.g., as described
above). As such, the set of data streams can correspond to
sensors of the set of sensors described above, wherein, in
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embodiments, the set of sensors can include: a pressure
sensor, a temperature sensor, a flow sensor, and a pump
demand sensor. The set of data streams can, however,
correspond to other signal types and/or signals of the same
type, but from sensors not described above.

[0088] In relation to receiving the set of data streams, one
or more of an embodiment of the monitor and the processing
subsystem described above can receive the set of data
streams over a wireless or wired connection, using any
suitable transmission protocol.

[0089] FIG. 5 depicts example signal streams correspond-
ing to hydraulic fluid flow rate (e.g., in gallons per minute),
pump demand (e.g., in terms of pump revolutions per
minute, RPM), hydraulic fluid pressure (e.g., in pounds per
square inch, PSI), vacuum pressure (e.g., in pounds per
square inch, PSI), and hydraulic fluid temperature (e.g., in
degrees Celsius) for a first window of time corresponding to
usage of the hydraulic apparatus in a first scenario (e.g., of
a mobile application).

[0090] FIG. 6 depicts example signal streams correspond-
ing to hydraulic fluid flow rate (e.g., in gallons per minute),
pump demand (e.g., in terms of pump revolutions per
minute, RPM), hydraulic fluid pressure (e.g., in pounds per
square inch, PSI), vacuum pressure (e.g., in pounds per
square inch, PSI), and hydraulic fluid temperature (e.g., in
degrees Celsius) for a first window of time corresponding to
usage of the hydraulic apparatus in a second scenario (e.g.,
of a mobile application).

[0091] FIG. 7 depicts example signal streams correspond-
ing to hydraulic fluid flow rate (e.g., in gallons per minute),
pump demand (e.g., in terms of pump revolutions per
minute, RPM), hydraulic fluid pressure (e.g., in pounds per
square inch, PSI), vacuum pressure (e.g., in pounds per
square inch, PSI), and hydraulic fluid temperature (e.g., in
degrees Celsius) for a first window of time corresponding to
usage of the hydraulic apparatus in a third scenario (e.g., of
a mobile application).

[0092] Variations of signal streams can, however, include
data outputs having units other than those depicted in the
FIGURES, and/or can include derivative parameters or
parameters correlating with those described and depicted.
3.2 Method—Extracting Signatures Associated with Sta-
tuses and/or Events

[0093] Block S320 recites: performing a set of transfor-
mation operations upon the set of data streams. The set of
transformation operations function to receive, as inputs, the
data streams of Block S310 in order enable extraction of
signatures corresponding to events (e.g., historical events,
anticipated events, usage, etc.) and/or statuses (e.g., health
statuses) of the hydraulic apparatus (e.g., at global and
subcomponent levels) in Block S330. As such, processing
the inputs in S320 allows for returning of classified event
outputs in Block S330, with generation of analyses in Block
S340 below. The set of transformation operations can addi-
tionally or alternatively function to condition, clean, or
otherwise generate derivative data types or objects to facili-
tate performance of subsequent method steps.

[0094] In relation to performing the set of transformation
operations, an embodiment of the processing subsystem
described above can receive the set of data streams of Block
S310 over a wireless or wired connection, using any suitable
transmission protocol. Receiving the set of data streams and
performing the set of transformation operations can be
performed real-time (e.g., with information transfer without
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significant delay from the time of initial signal generation,
thereby enabling rapid responses). Additionally or alterna-
tively, receiving the set of data streams and performing the
set of transformation operations can be performed non-real
time (e.g., with post-processing delay).

[0095] As noted above, the set of transformation opera-
tions can include a disaggregation operation that implements
artificial intelligence (Al) neural networks (NN) models, to
ultimately identify signal/data subsets and unique signatures
corresponding to events/statuses of individual subcompo-
nents of the hydraulic apparatus. In embodiments, the pro-
cessing subsystem described above can run a single NN or
a series of NN trained to identify and classify hydraulic
apparatus events (e.g., historical events, anticipated events,
etc.), subcomponent and global statuses, and any variations.
As such, the set of transformation operations can take, as
inputs, data derived from the signal streams and process
them with trained AI/NN models for returning unique sig-
natures in Block S330.

[0096] Classification of events and statuses can further be
based upon various modalities (e.g., use cases) of subcom-
ponents of the hydraulic apparatus. For instance, subcom-
ponents may have different modalities such as a cylinder
under high load or a motor under varying load. These
modalities can be classified as unique and are trained and
identified separately by the AI/NN, for later recombination
based upon the data and device organizational framework
for event and usage aggregation and analysis.

[0097] More detail regarding data, features, and training of
models is described in 3.2.1 below.

[0098] The set of transformation operations can addition-
ally or alternatively include operations associated with sig-
nal conditioning, noise removal, artifact mitigation, calibra-
tion, or other signal processing operations. Such operations
can ensure signal stream quality prior to further processing
in various method steps. In some variations, preprocessing
the signal streams can include performing one or more steps
to verify completeness of data (e.g., no lapse in the signal
streams).

[0099] In relation to other transformation operations (e.g.,
after performance of a preprocessing operation), Block S320
can include one or more of: denoising, filtering, smoothing,
clipping, transformation of discrete data points to continu-
ous functions, and performing any other suitable data con-
ditioning process. For instance, some variations of Block
S320 can additionally include performing a windowing
operation and/or performing a signal cleaning operation. In
more detail, windowing can include any one or more of
moving windows, exponentially weighted moving windows
(EWMW), moving Gaussian methods, and any other suit-
able window filtering method.

[0100] In more detail, signal cleaning can include removal
of signal anomalies by one or more filtering techniques. In
specific examples, filtering can include one or more of:
Kalman filtering techniques, bootstrap filtering techniques,
particle filtering techniques, Markov Chain Monte Carlo
filtering techniques; metropolis-Hasting methods; approxi-
mations (e.g., Laplace approximations); and/or other signal
processing approaches. Signal cleaning can thus improve
data quality for further processing, inr relation to one or
more of: noise, sensor equilibration, sensor drift, environ-
mental effects (e.g., moisture, physical disturbance, etc.),
and any other suitable type of signal artifact.
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[0101] Transformation of discrete data points into a con-
tinuous function, can include performing an interpolation
operation including one or more of: a spline (e.g., a b-spline
interpolation), a Bessel function interpolation, a path inte-
gral operation (e.g., a Feynman-Kac path integral operation),
and any other suitable interpolation operation. The interpo-
lation operation can thus support a wavelet approximation
operation, which requires a continuous function. The wave-
let approximation operation can functions to provide further
smoothing and detrending of data from the sensor subsystem
without distorting the underlying signal or introducing a
time lag component. In variations, the wavelet basis func-
tions can include any one or more of: Daubechies wavelets,
Dual-Tree Complex wavelets, Haar wavelets, Newland
wavelets, and any other suitable wavelet basis function(s).
Furthermore, in variations, the wavelet analysis can imple-
ment a continuous wavelet transform that can construct a
time-frequency representation of a signal.

[0102] Block S320 can additionally or alternatively
include any other suitable signal processing operation.
[0103] Block S330 recites: identifying a set of unique
signatures corresponding to states and events of the hydrau-
lic apparatus and subcomponents of the hydraulic apparatus,
from the set of transformation operations, which functions to
process input data streams and/or derivative data, in order to
properly classify signatures associated with events and sta-
tuses of the hydraulic apparatus. Block S330 can thus
execute steps for unique signature identification associated
with hydraulic apparatus subcomponents, through event
detection and classification methods. Once disaggregated,
the individual subcomponents of the hydraulic apparatus are
then evaluated based upon a refined model that processes
input data to determine analyses related to subcomponent
events and statuses. For instance, in a specific example,
Block S320 can identify a unique signature corresponding to
one or more of: a leak in a cylinder or other component of
the hydraulic apparatus, a blockage in a flow path of the
hydraulic apparatus, a filter that is near its useful life, piston
events, valve events, hydraulic fluid statuses (e.g., useful
life, pressure events, temperature events, etc.) based on the
disaggregated signature associated with sensor measurement
trends and/or historical measurements (e.g., stored by the
system).

[0104] Unique signatures can be identified in relation to
normal operation of subcomponents, failed operation (e.g.,
leaking) of subcomponents, or borderline operation (e.g.,
near failure) of subcomponents. Unique signatures can addi-
tionally or alternatively be identified in relation to baseline
behavior of a subcomponent (e.g., for normalization, for
comparative measures). Additionally or alternatively, unique
signatures can be identified based upon calibrated measure-
ments generated from subjecting the hydraulic apparatus to
calibration loads, and detecting signals from the sensor
subsystem. Additionally or alternatively, unique signatures
can be identified for identified subcomponents (e.g., of an
aggregated list) or unidentified subcomponents (e.g.,
ambiguous components) not included in an aggregated list.
Downstream processing steps can thus train models for
characterization of the unidentified subcomponents in order
to increase utility of the method 300.

[0105] In relation to identifying a set of unique device
signatures for the hydraulic apparatus and/or subcompo-
nents, based upon outputs of the disaggregation process, the
processing subsystem can determine if the hydraulic event is
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a known event and then begin classifying the resulting
signature and device performance against trends. Addition-
ally or alternatively, the processing subsystem can flag
unknown events for analysis, and perform model refinement
operations based upon new training data, as described in
more detail below.

3.2.1 Method—Signal Processing and Machine Learning
Approaches

[0106] In relation to identification of unique signatures
corresponding to events and/or statuses of the hydraulic
apparatus, the processing subsystem described above can
implement architecture for classification and regression,
with training of models by processing suitable training
datasets. In particular, the unique characteristics of each
event and status of the hydraulic apparatus are not practi-
cally detectable in the mind, and are instead learned by the
machine learning architecture in relation to Blocks S320-
S340 of the method 300.

[0107] To refine the model(s), the method 300 can include
generating one or more training sets of data, from the sensor
subsystem and/or other sensors, in order to train the AI/NN
model(s) in or more stages of training, to identify unique
signatures from various inputs. In variations, generating
training sets of data can include generating sensor data (e.g.,
from the main pump output), from scenarios for each
subcomponent type of the hydraulic apparatus and/or other
hydraulic apparatuses, tagged with associated system
events, statuses (e.g., health statuses), and performance.
Training sets of data can include collected sensor data,
modified sensor data (e.g., according to transformation
operations), unmodified sensor data, data objects produced
from disaggregation, and/or other suitable data. As such, the
method can include: collecting a set of training data streams
from the sensor cluster, the set of training data streams
corresponding to temperature data, pressure data, flow data,
and pump demand data in association with subcomponent
events and statuses of the hydraulic apparatus; applying one
or more of a set of transformation operations to the set of
training data streams; creating a training dataset derived
from the set of training data streams and the set of trans-
formation operations; and training a neural network com-
prising architecture for returning at least one of the set of
unique signatures and the analysis, in one or more stages,
based upon the using the training dataset. Additional details
are provided below.

[0108] For instance, in relation to generation of training
datasets, the method can include generating mappings
between disaggregated data (e.g., data processed to extract
features only associated with a particular subcomponent,
such as a cylinder, valve, piston, pump, filter, case, hydraulic
fluid, or other subcomponent) and raw input data that has not
been processed with a disaggregation operation. As such,
training data can be developed based upon the disaggregated
data and/or non-disaggregated data (in multiple stages). In
relation to multiple stages of training, the method 300 can
refine models based upon incorrect classification of disag-
gregated and/or non-disaggregated data.

[0109] Data and/or features derived from the data can be
used for training models for unique signature extraction.
Furthermore, combinatorial features (e.g., combinations fea-
tures derived from one or more of pressure, vacuum, tem-
perature, flow, pump demand, etc.) can be used for training.
In more detail, features may be transformed either individu-
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ally or in combination before being processed by the model
(s). As an example of an individual feature transformation,
a features derived from a Fourier transform of a cyclic
pressure measurement might be used instead of or in addi-
tion to the pressure measurement itself. As an example, a
combinatorial feature can be derived from synchronous
temperature and pressure features (e.g., where occurrence
together is a feature).

[0110] Additionally or alternatively, dynamic aspects
(e.g., changes over time in features, changes in frequency
between instances of respective features, other temporal
aspects, other frequency-related aspects, etc.) of signatures/
features derived from the signals can be used to extract
information pertaining to hydraulic equipment states (e.g., in
relation to system wear, in relation to subcomponent wear,
etc.) in order to predict or otherwise anticipate failure
events. As such, models can be implemented to prevent
failure by guiding or executing actions to prevent root
causes of failure and/or break chains of events that could
lead to a cascade of subcomponent failures.

[0111] As such, data and/or features that are labeled by
hydraulic apparatus subcomponent type and one or more of
event type (e.g., in relation to hydraulic apparatus events/
issues/failure modes) and/or other status (e.g., health status,
lifetime of use, etc.) can be used for training models to return
outputs pertaining to unique signatures of the hydraulic
apparatus and its subcomponents. In some embodiments,
labeling can be performed automatically, semi-automati-
cally, or manually. Automated or semi-automatic labeling
may be validated or adjusted by manual feedback (e.g.,
during model refinement). Architecture of the models can
include involvement of one or more of: neural networks,
self-organizing maps, support vector machines, decision
trees, random forests, and Gaussian mixture models.

[0112] In more detail, data features from which hydraulic
apparatus information can be extracted can include one or
more of: changes in the values of electrical signals associ-
ated with the sensor types (e.g., which map to changes in one
or more of pressure, flow, vacuum, temperature, pump
demand, etc.), where changes can be compared to threshold
levels or time rates of change (e.g., in relation to transient
events, in relation to non-transient events, etc.); power
monitoring signals (e.g., generated according to the set of
transformation operations) corresponding to a measurement
of one or more of the temperature, pump flow, demanded
flow and pressure delivered to the hydraulic apparatus; peak
values of electrical signals associated with the sensor types
(e.g., which map to peaks in one or more of pressure, flow,
vacuum, temperature, pump demand, etc.), where peaks can
be compared to threshold levels or correlations with other
signals or events within a time window (e.g., in relation to
expected correlations between sensor parameters, in relation
to unexpected correlations between sensor parameters, etc.);
signal profiles (e.g., in relation to values in the time or
frequency domain); cyclic features (e.g., in relation to oscil-
lation); noise-associated features (e.g., expected noise pro-
files as features for classification); short term events (e.g.,
events characterized by a threshold window size); long term
events (e.g., events characterized by a threshold window
size); events in the time domain; events in the frequency
domain; features related to repeated signatures; normalized
features (e.g., features compared to steady state or reference
state data); comparative features (e.g., average, median,
maximum, minimum, or logarithmic values) within a time
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period; aspects related to feature onset; aspects related to
feature termination; change in real or imaginary components
of a spectrum (e.g., in relation to multiple harmonics);
Fourier or other transform-derived features; features derived
from a phase shift; features associated with variability of a
signal within a time window; harmonic values; total mag-
nitude of harmonic values; harmonic values relative to total
magnitude of harmonics; and other features. These features
may be computed from any of the sensor signals described
above (e.g., current, voltage, and other electrical signals).

[0113] Furthermore, aggregated events can be evaluated
(e.g., in the time domain) in relation to feature extraction and
processing. For instance, in some, operations can span a
longer time window (e.g., during a dumpster pickup cycle),
and include many individual and successive events that can
be evaluated.

[0114] An example of a model for feature generation
and/or classification is a transition/state classification model
that describes changes in state of the hydraulic apparatus or
a subcomponent of the hydraulic apparatus. To capture
changes to elements of a device, the transition model may be
created for elements of the hydraulic apparatus that can
change state (e.g., in a hierarchical manner). The processing
subsystem can implement transition models for classes of
hydraulic apparatuses and/or subcomponents (e.g., hydrau-
lic fluid, pump inlet, pump outlet, piston, valves, case,
downstream elements from the main output, upstream ele-
ments from the main output, etc.). In particular, the transi-
tion model can be configured to return a state change output
associated with one or more subcomponents of the set of
subcomponents. Transition models may further be imple-
mented for classes of system components or subcomponents
(e.g., by manufacturer, by pump type, by hydraulic fluid
type, by filter type, etc.). Transition models can further be
implemented for a specific device (e.g., specific pump
model, specific excavator, specific cement truck, specific
garbage truck, specific injection molding machine, etc.).

[0115] In addition to transition models, the processing
subsystem can implement and include architecture for other,
non-transition models not associated with state changes. For
instance, a noise model can be used by the processing
subsystem to recognize portions of sensor signals that cor-
respond to noise behavior, in order to facilitate feature
extraction.

[0116] Another example of a model is a subcomponent
operational model that describes sequential changes to the
operation of an apparatus. In some variations, a graph
(weighted or unweighted) may be used for the subcompo-
nent operational model, where the graph can incorporate
nodes corresponding to subcomponent states, with allow-
ance or non-allowance of loops that return to a respective
node or a different node. In an example, for lifting of a drum
of a cement truck can increase demand upon a pump of the
hydraulic apparatus, where initiation of the lifting operation
can define a node of a graph. One or more of pressure,
temperature, flow, and pump demand may increase through-
out the lifting operation, which is represented in signal
features associated with events and non-identical demand
profiles on different components of the hydraulic apparatus.
Then, with return of the drum of the cement truck to a
baseline state, one or more of pressure, temperature, flow,
and pump demand may decrease, thereby allowing cyclic
return to the node of the graph. In other examples, states of
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subcomponents may not allow returns after transitions from
the state, which can be represented in the graph model.
[0117] In another variation, the processing subsystem can
additionally or alternatively implement architecture for
models that represent likelihoods that the hydraulic appara-
tus and/or its subcomponents can enter a particular state
given known information (e.g., demand, environmental con-
ditions, anticipated mission for mobile hydraulic apparatus;
anticipate operation mode for industrial hydraulic apparatus,
etc.). Such likelihood models can be trained as described.
[0118] In relation to model architecture, inputs to models
described above can produce outputs that are subsequently
used as inputs to an overarching model (e.g., search graph)
that returns a final classification output based upon process-
ing features in stages (e.g., running features through nodes
of the search graph). However, the model(s) can implement
other suitable architecture having other suitable flow for
processing features.

[0119] In an example, the methods and systems for dis-
aggregation can implement a recurrent neural network
(RNN) architecture with connections between nodes to form
a directed graph along a temporal sequence, thereby char-
acterizing temporal dynamic behavior. The RNN can be
bi-directional or of any suitable number of directions, with
one or more encoders, separators, and decoders. The RNN
architecture can process variable length sequences of inputs,
thereby processing the signal streams and/or derived fea-
tures above. The RNN can implement long short-term
memory (LSTM) architecture with feedback connections for
processing data sequences. The LSTM unit(s) of the RNN
model can include cells, input gates, output gates, and/or
forget gates to regulate information flow into and out of the
cell. As such, the LSTM RNN architecture can classify,
process, and make predictions based on input features
derived from the signals described above. Connections into
and out of the LSTM gate(s) can be recurrent or non-
recurrent, and weights of connections can be refined during
training to determine how the gates operate in providing
better outputs. Training can implement supervised training
approaches (e.g., using an optimization algorithm, using a
connectionist temporal classification approach, using neu-
roevolution, using policy gradient approaches, etc.).

[0120] In one variation, the disaggregation model can
include multiple sub-models, where each sub-model corre-
sponds to a number of input components associated with the
events being processed. The disaggregation model can be
configured to implement the appropriate sub-model based
upon prior knowledge of the number of subcomponents of
the hydraulic apparatus being analyzed, or alternatively, can
be configured to automatically detect the number of sub-
components of the hydraulic apparatus being analyzed with
an estimation algorithm applied to the signal streams. Such
an approach can provide an alternative to use of masks for
disaggregation, where the masks may not be well-defined
and/or contribute to information loss during application of
the disaggregation model. In this variation, the disaggrega-
tion model can be optimized based upon signal-to-noise
ratio (SNR)-associated parameters (e.g., a scale-invariant
SNR), using one or more loss functions and permutation-
invariant training. In one variation of model architecture, a
loss function with suitable loss terms can be inserted adja-
cent to each separation block of the disaggregation model in
order to improve optimization of the disaggregation model.
The model can additionally or alternatively include a per-
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ceptual loss function to encourage consistent mapping of
subcomponents and/or subcomponent-associated events.
Other approaches (e.g., RNN approaches derived from one
or more of ADANet, DPCL++, CBLDNN_GAT, TasNet,
DPRNN, ConvTasNet, etc.) and training methods can be
implemented, as described below.

[0121] Returned classification outputs of models can
include returned confidence-associated parameters in such
classifications. In particular, confidence-associated param-
eters can have a score (e.g., percentile, other score) that
indicates confidence in the returned output.

[0122] Models can be developed and trained for real-time
analyses and/or historical analyses. In relation to real-time
analyses, the models can be refined for rapid classification
(e.g., with node reduction, with reduced thresholds, with
lower confidence, etc.). In relation to historical analyses, the
models can be refined for detailed classification (e.g., with-
out node reduction, with higher thresholds for classification
predictions, with higher confidence, etc.).

[0123] In relation to returned outputs of the model(s)
corresponding to unique signatures of subcomponents of the
hydraulic apparatus, outputs and signatures can be associ-
ated with one or more of: the hydraulic fluid (e.g., lifetime
of use, contamination, leakage, etc.); fluid conduits (e.g.,
heat aging, abrasion, hardening, cracking, blockage, etc.);
pump (e.g., piston states, valve states, case drain states,
cylinder states, states of leakage, states of wear, cavitation
events, etc.); actuators; filter (e.g., filter lifetime of use, filter
clogging, etc.); motors (e.g., electrical aspects, mechanical
aspects); valves (e.g., valve operation, valve-line connec-
tions, etc.); and other signatures associated with states of
subcomponents.

[0124] In an example, as shown in FIG. 8, model refine-
ment for known/identified and/or unknown ambiguous com-
ponents can be performed as follows: the processing sub-
system can compute, from signal streams, a measure of
power consumption and evaluate aggregate and individual
pressure, flow and time parameters for a sequence of time
intervals for each identified subcomponent of a set of
identified subcomponents using the list of identified devices
and one or more models (e.g., event classifiers, event
detectors, etc.); the processing subsystem can also compute
an amount of power consumption and/or change in power
consumption for the sequence of time intervals for each
category of the plurality of categories using a list of ambigu-
ous subcomponents built during model refinement; and train
the model to output power consumption parameters for
individual subcomponents, based upon input features/data.
[0125] Furthermore, previously unidentified signal fea-
tures/signatures (e.g., new signals/signatures, interesting
signals/signatures, etc.) can be returned by computing com-
ponents during model refinement. In variations, such previ-
ously unidentified signal features/signatures can be pro-
cessed and validated (e.g., with human validation, with other
validation approaches), and once validated, the computing
components can tag such signal features/signatures, such
that additional instances of the signal features/signatures can
be processed from other hydraulic equipment units for
further model refinement and training.

[0126] While embodiments, variations, and examples of
models (e.g., in relation to inputs, outputs, and training) are
described above, models associated with the method 300 can
additionally or alternatively include other blocks for statis-
tical analysis of data and/or machine learning architecture.
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[0127] Statistical analyses and/or machine learning algo-
rithm(s) can be characterized by a learning style including
any one or more of: supervised learning (e.g., using back
propagation neural networks), unsupervised learning (e.g.,
K-means clustering), semi-supervised learning, reinforce-
ment learning (e.g., using a Q-learning algorithm, using
temporal difference learning, etc.), and any other suitable
learning style.

[0128] Furthermore, any algorithm(s) can implement any
one or more of: a regression algorithm, an instance-based
method (e.g., k-nearest neighbor, learning vector quantiza-
tion, self-organizing map, etc.), a regularization method, a
decision tree learning method (e.g., classification and regres-
sion tree, chi-squared approach, random forest approach,
multivariate adaptive approach, gradient boosting machine
approach, etc.), a Bayesian method (e.g., naive Bayes,
Bayesian belief network, etc.), a kernel method (e.g., a
support vector machine, a linear discriminate analysis, etc.),
a clustering method (e.g., k-means clustering), an associated
rule learning algorithm (e.g., an Apriori algorithm), an
artificial neural network model (e.g., a back-propagation
method, a Hopfield network method, a learning vector
quantization method, etc.), a deep learning algorithm (e.g.,
a Boltzmann machine, a convolution network method, a
stacked auto-encoder method, etc.), a dimensionality reduc-
tion method (e.g., principal component analysis, partial least
squares regression, etc.), an ensemble method (e.g., boost-
ing, boot strapped aggregation, gradient boosting machine
approach, etc.), and any suitable form of algorithm.

3.3 Method—Actionable Insights and Downstream
Applications
[0129] Block S340 recites: returning an analysis including

a recommended action for improving or maintaining proper
performance of the hydraulic apparatus, based upon the set
of unique signatures. Block S340 functions to process any
returned signatures from prior steps, to generate analyses
pertaining to health of the hydraulic apparatus, efficacy of
operations, efficiency of operations, and/or other actionable
insights.

[0130] In embodiments, outputs of Block S340 can be
used to guide recommended actions for improving operation
of the hydraulic apparatus or maintaining proper operation
of the hydraulic apparatus (e.g., with optional execution of
recommended actions in Block S350).

[0131] In variations, recommended actions can include or
be associated with one or more of: maintaining normal
operation of subcomponents; responding to failed operation
(e.g., leaking) of subcomponents; proactively correcting
borderline operation (e.g., near failure) of subcomponents;
responding to or otherwise correcting other undesired sta-
tuses of one or more of subcomponents of the hydraulic
apparatus being monitored; providing information regarding
subcomponent power consumption; performing inventory
operations related to anticipated statuses of subcomponents
(e.g., in relation to maintaining or adjusting inventory
related to replacement subcomponents of a hydraulic appa-
ratus); performing decision-making guidance (e.g., in rela-
tion to cost-benefit analyses of replacing vs. repairing sub-
components or apparatuses); facilitating proactive
management of deployed equipment (e.g., individual appa-
ratuses, equipment of a fleet, etc.); and performing other
suitable actions.
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[0132] In an example, the analysis can indicate slow but
high pressure and high flow actuation of a subcomponent,
from unique signatures of Block S330, which indicates a
leakage event (e.g., for a cylinder of the hydraulic appara-
tus). In an example related to fleet management, Block S340
can generate a recommended action to remotely deactivate
a heavy mobile vehicle having a hydraulic apparatus (e.g., a
Bobcat, an excavator, a crane, etc.) based upon an analysis
that the hydraulic apparatus is near catastrophic failure (e.g.,
experiencing high levels of pump cavitation, as detected
using the unique signatures of Block S330). In another
example, Block S340 can trigger a notification to perform a
maintenance check upon detecting a high number of events
associated with a specific cylinder of a mobile vehicle
hydraulic apparatus (e.g., based on unique signatures of
Block S330). In another example, analysis of a fleet of
mobile vehicles having hydraulic apparatuses can be used to
generate recommendations for readjustment of inventory
(e.g., by stopping orders of replacement components that
still have long useful lives, by increasing orders of replace-
ment components that are near the end of their useful lives,
etc.). In another example, the recommended action can
pertain to wear in a cylinder or the pump, in relation to
performance and associated hydraulic fluid lines (e.g., based
upon an analysis that the subcomponent(s) require more
power to actuate than expected, based upon training data). In
generating the analysis for this example, models associated
with Block S330 can process mean time between failure
(MTBF) for various subcomponents in order to predict the
likelihood of failure within a given time period. In another
example, as shown in FIG. 9, Block S340 can return an
analysis visualizing leakage scenarios (e.g., no leak present,
leak present) for a cylinder, in relation to extracted signa-
tures associated with disaggregated information for the
cylinder.

[0133] In generating recommended actions, Block S340
can include returning notifications or other information
derived from the analyses in a visual format, in an audio
format, in a haptic format, and/or in any other suitable
observable format. As such, variations of Block S340 can
include generating digital objects (e.g., in visual data for-
mats, in audio data formats, in haptic data formats) or
instructions for generating digital objects, in communication
with client devices (e.g., devices that are associated with
operators of the hydraulic apparatuses), where the client
devices include visual output components (e.g., a display),
audio output components (e.g., speaker), haptic output com-
ponents (e.g., vibrators), and/or any other suitable compo-
nents. Client devices can also include input components
(e.g., keypads, touch displays, microphones, joysticks, mice,
etc.) such that the operators or other entities associated with
the hydraulic apparatus can communicate inputs (e.g., com-
mands) related to the generated analyses.

[0134] In returning the analysis, Block S340 can include
providing information in an automated manner based on
thresholds that can be manually set at first and then later
adjusted by the AI/NN based on confidence optimization or
other factors. Block S340 can, however, include generation
of analyses for other suitable recommended actions, pro-
vided in another suitable manner.

[0135] Block S350 recites: executing the recommended
action, which functions to automatically execute recom-
mended actions in order to reduce operator workload in
relation to hydraulic apparatus management.
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[0136] Executed actions can include or be associated with
one or more of: responding to or otherwise correcting
undesired statuses of one or more of subcomponents of the
hydraulic apparatus being monitored; performing inventory
operations related to anticipated statuses of subcomponents
(e.g., in relation to maintaining or adjusting inventory
related to replacement subcomponents of a hydraulic appa-
ratus); performing decision-making guidance (e.g., in rela-
tion to cost-benefit analyses of replacing vs. repairing sub-
components or apparatuses); facilitating proactive
management of deployed equipment (e.g., individual appa-
ratuses, equipment of a fleet, etc.); and performing other
suitable actions.

[0137] In an example, the analysis can indicate slow but
high pressure and high flow actuation of a subcomponent,
and Block S350 can execute instructions for correcting the
leak (e.g., with proper sealing), and/or replacement of the
leaking subcomponent, which indicates a leakage event
(e.g., for a cylinder of the hydraulic apparatus). In an
example related to fleet management, Block S350 can
execute instructions for remotely deactivating a heavy
mobile vehicle having a hydraulic apparatus (e.g., a Bobcat,
an excavator, a crane, etc.) based upon an analysis that the
hydraulic apparatus is near catastrophic failure (e.g., expe-
riencing high levels of pump cavitation, based upon the
analysis generated by way of Block S340). In another
example, Block S350 can initiate automatic performance of
a maintenance check upon detecting a high number of events
associated with a specific cylinder of a mobile vehicle
hydraulic apparatus (e.g., based upon the analysis generated
by way of Block S340), with automated execution of a
purchase of a replacement cylinder. In another example,
Block S350 can automatically readjust inventory (e.g., by
stopping orders of replacement components that still have
long useful lives, by increasing orders of replacement com-
ponents that are near the end of their useful lives, etc.) based
upon an analysis generated by way of Block S340.

[0138] In executing recommended actions, Block S350
can include functionality for generating, transmitting, and/or
executing instructions in a computer-readable format and
stored in non-transitory media. In variations, such instruc-
tions can be generated, transmitted, and/or stored on com-
ponents of the processing subsystem, client devices, inven-
tory management platforms, vehicle computer architecture
(e.g., firmware), industrial apparatus computer architecture
(e.g., firmware), and/or other suitable components.

[0139] The system embodiment(s) can, however, be con-
figured to implement other workflows including variations
of those described, and/or other workflows.

4. Conclusions

[0140] The FIGURES illustrate the architecture, function-
ality and operation of possible implementations of systems,
methods and computer program products according to pre-
ferred embodiments, example configurations, and variations
thereof. In this regard, each block in the flowchart or block
diagrams may represent a module, segment, or portion of
code, which comprises one or more executable instructions
for implementing the specified logical function(s). It should
also be noted that, in some alternative implementations, the
functions noted in the block can occur out of the order noted
in the FIGURES. For example, two blocks shown in suc-
cession may, in fact, be executed substantially concurrently,
or the blocks may sometimes be executed in the reverse
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order, depending upon the functionality involved. It will also
be noted that each block of the block diagrams and/or
flowchart illustration, and combinations of blocks in the
block diagrams and/or flowchart illustration, can be imple-
mented by special purpose hardware-based systems that
perform the specified functions or acts, or combinations of
special purpose hardware and computer instructions.
[0141] As a person skilled in the art will recognize from
the previous detailed description and from the figures and
claims, modifications and changes can be made to the
preferred embodiments of the invention without departing
from the scope of this invention defined in the following
claims.

What is claimed is:

1. A system for monitoring a hydraulic apparatus, the
system comprising:

a sensor cluster;

a sensor interface comprising a channel operatively
coupled to the sensor cluster, wherein a sensing com-
ponent of the sensor cluster is positioned within a flow
path through the channel of the sensor interface, and
wherein the channel is positioned inline with a main
output of a pump of the hydraulic apparatus during
operation;

a monitor coupled to the sensor cluster through the sensor
interface, the monitor comprising a controller for sam-
pling data derived from the sensor cluster and trans-
mitting data from the monitor; and

a processing subsystem comprising a non-transitory com-
puter-readable medium comprising instructions stored
thereon, that when executed by the processing subsys-
tem perform one or more steps of:

receiving a set of data streams, derived from outputs of
the sensor cluster;

performing a set of transformation operations upon the set
of data streams;

identifying a set of unique signatures corresponding to
states of a set of subcomponents of the hydraulic
apparatus upstream, at, and downstream of the main
output of the pump, from the set of transformation
operations; and

returning an analysis comprising a recommended action
for improving or maintaining proper performance of
the hydraulic apparatus, based upon the set of unique
signatures.

2. The system of claim 1, wherein the sensor cluster
comprises a flow sensor, wherein the sensing component
comprises a blade of the flow sensor positioned within the
flow path through the channel of the sensor interface.

3. The system of claim 1, wherein the sensor cluster
comprises a temperature sensor in thermal communication
with flow through the channel of the sensor interface.

4. The system of claim 1, wherein the sensor cluster
comprises a pressure sensor in communication with flow
through the channel of the sensor interface.

5. The system of claim 1, wherein the sensor cluster
comprises a pump demand sensor comprising a link to a
vehicle interface of a vehicle comprising the hydraulic
apparatus, the pump demand sensor configured to monitor
engine speed of the vehicle.

6. The system of claim 1, wherein the sensor interface
provides ultrasonic coupling between the sensor cluster and
fluid at the main output of the pump.
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7. The system of claim 1, wherein the monitor further
comprises a first input receiving a pressure differential
measurement from a filter head of the hydraulic apparatus.

8. The system of claim 1, wherein the monitor further
comprises a global positioning subsystem configured to
track position of a vehicle comprising the hydraulic appa-
ratus.

9. The system of claim 1, wherein the set of subcompo-
nents comprises: a hydraulic fluid component, a filter com-
ponent, an actuator component, a cylinder component, a
valve component, and a pump component.

10. A method for monitoring a hydraulic apparatus, the
method comprising:

establishing an interface between a sensor cluster and a

main output of a pump of the hydraulic apparatus, the
interface comprising a channel operatively coupled to
the sensor cluster;

sampling a set of data streams, derived from outputs of the

sensor cluster;

performing a set of transformation operations upon the set

of data streams;

identifying a set of unique signatures corresponding to

states and events of a set of subcomponents of the
hydraulic apparatus upstream, at, and downstream of
the main output of the pump, from the set of transfor-
mation operations; and

returning an analysis comprising a recommended action

for improving or maintaining proper performance of
the hydraulic apparatus, based upon the set of unique
signatures.

11. The method of claim 10, wherein the sensor cluster
comprises a pump demand sensor coupled to a vehicle
interface of a vehicle comprising the hydraulic apparatus,
the pump demand sensor configured to monitor a speed
parameter associated with speed of the vehicle.

12. The method of claim 11, wherein the sensor cluster
further comprises a pressure sensor, a temperature sensor,
and a flow sensor.

13. The method of claim 12, wherein establishing the
interface comprises positioning one or more sensors of the
sensor cluster inline with a flow path from the main output
of the pump.

14. The method of claim 10, wherein performing the set
of transformation operations comprises extracting data sub-
sets and unique signatures, from the set of data streams,
corresponding to individual subcomponents of the set of
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subcomponents, with implementation of a recurrent neural
network (RNN) with one or more encoders.

15. The method of claim 10, wherein performing the set
of transformation operations comprises identifying the set of
unique signatures based upon encoding multivariate data
streams with derived from outputs of the sensor cluster,
utilizing unsupervised model architecture.

16. The method of claim 10, wherein identifying the set
of unique signatures comprises:

collecting a set of training data streams from the sensor

cluster, the set of training data streams corresponding to
temperature data, pressure data, flow data, and pump
demand data in association with subcomponents of the
hydraulic apparatus;

applying one or more of the set of transformation opera-

tions to the set of training data streams;

creating a training dataset derived from the set of training

data streams and the set of transformation operations;
and

training a neural network comprising architecture for

returning at least one of the set of unique signatures and
the analysis, in one or more stages, based upon the
using the training dataset.

17. The method of claim 16, wherein training the neural
network comprises implementation of masks for disaggre-
gation of outputs pertaining to subcomponents of the
hydraulic apparatus.

18. The method of claim 10, wherein returning the analy-
sis comprises returning information pertaining to a wear
event and a cause of the wear event of a subcomponent of
the hydraulic apparatus.

19. The method of claim 10, wherein returning the analy-
sis comprises returning information pertaining to a leakage
event and a cause of the leakage event of a subcomponent of
the hydraulic apparatus.

20. The method of claim 10, further comprising executing
the recommended action, wherein executing the recom-
mended action comprises at least one of: generating and
executing instructions for remotely adjusting a state of the
hydraulic apparatus, performing a maintenance check on the
hydraulic apparatus, facilitating proactive management of
equipment deployment, and performing an inventory man-
agement operation in relation to stock of replacement sub-
components of the hydraulic apparatus.
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