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(57) ABSTRACT

The present invention provides a method for classifying
biological tissues with high precision compared to a con-
ventional method. When measuring a spectrum which has a
two-dimensional distribution that is correlated with a slice of
a biological tissue, and acquiring a biological tissue image
from the two-dimensional measured spectrum, the method
includes dividing an image region into a plurality of small
blocks, and then reconstructing the biological tissue image
by using the measured spectrum and a classifier correspond-
ing to each of the regions.
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RECONSTRUCTION METHOD OF
BIOLOGICAL TISSUE IMAGE, APPARATUS
THEREFOR, AND IMAGE DISPLAY
APPARATUS USING THE BIOLOGICAL
TISSUE IMAGE

BACKGROUND OF THE INVENTION

Field of the Invention

[0001] The present invention relates to a reconstruction
method of a biological tissue image and an apparatus
therefor, and particularly relates to a method for reconstruct-
ing a biological tissue image from measured spectrum data
which is correlated with a substance distributed within a
biological tissue, and to an apparatus therefor. The present
invention also relates to an image display apparatus for
clearly displaying a lesion at a pathological diagnosis by
using thus acquired biological tissue image.

Description of the Related Art

[0002] Conventionally, a pathological diagnosis has been
conducted which is specifically a diagnosis for the presence
or absence of a lesion and a type of the lesion, based on the
observation for a biological tissue of an object by a micro-
scope or the like. In the pathological diagnosis, a constitu-
tive substance and a contained substance which are corre-
lated with a biological tissue of an object to be observed are
required to be visualized. So far, a technique for staining a
specific antigen protein by using an immunostaining method
has mainly been employed in the pathological diagnosis.
When breast cancer is taken as an example, ER (estrogen
receptor which is expressed in hormone-dependent tumor)
which serves as a determination criterion for hormone
therapy and HER2 (membrane protein to be found in fast-
growing cancer) which serves as a determination criterion
for Herceptin administration are visualized by the immu-
nostaining method. However, the immunostaining method
has such problems that the reproducibility is poor because an
antibody is unstable and antigen-antibody reaction effi-
ciency is difficult to be controlled. In addition, when needs
of'such a functional diagnosis will be grown in the future, for
instance, and when there arises a need of detecting several
tens or more types of constitutive substances or contained
substances, the currently-employed immunostaining method
has a problem of being incapable of meeting the need any
more.

[0003] In addition, in some cases, the visualization of the
substance which is distributed within a biological tissue,
such as the constitutive substance and the contained sub-
stance, is not sufficient at a tissue level, and the visualization
at a cellular level is required. For instance, in research on a
cancer stem cell, it was revealed that a tumor was formed in
only part of fractions of a tumor tissue after xenotransplan-
tation to immunocompromised mice, and accordingly, it is
being understood that the growth of a tumor tissue is
dependent on differentiation and self-reproduction abilities
of'the cancer stem cells. In such examination, it is necessary
not to observe the entire tissue, but to observe an expression
distribution of a constitutive substance or a contained sub-
stance in each of individual cells in a tissue.

[0004] Incidentally, the above described “cellular level”
means a level at which at least each of the individual cells
can be classified. A diameter of the cell exists in a range of
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approximately 10 pm to 20 pm (provided that large cell such
as nerve cell has diameter of about 50 pm). Accordingly, in
order to acquire a two-dimensional distribution image at a
cellular level, the spatial resolution needs to be 10 um or
less, can be 5 um or less, further can be 2 um or less, and still
further can be 1 pum or less. The spatial resolution can be
determined from a result of, for instance, a linear analysis of
a knife-edge specimen. In other words, the spatial resolution
is determined based on the general definition of “a distance
between two points at which signal intensities originating in
a concerned substance in the vicinity of the boundary of a
specimen are 20% and 80%, respectively.”

[0005] As described above, in the pathological diagnosis,
the constitutive substance and the contained substance
which are correlated with a lesion or a pathological tissue are
required to be exhaustively visualized at a cellular level. The
lesion or the pathological tissue means, for instance, a tumor
tissue and the like. Candidates for a method of such visu-
alization include secondary-ion mass spectrometry (SIMS)
including time-of-flight secondary-ion mass spectrometry
(TOF-SIMS). A mass spectrum is used as a measured
spectrum. Furthermore, the candidates include also Raman
spectroscopy. Usable measured spectra include spectra in an
ultraviolet region, a visible region and an infrared region.
These measurement methods can provide information at
each of plural points in a space at high spatial resolution.
Specifically, the measurement methods can provide spatial
distribution information on each peak value of the measured
spectrum which is correlated with a substance that is an
object to be measured, and accordingly, can determine a
spatial distribution of the substance in a biological tissue
which is correlated with the measured spectrum.

[0006] An SIMS method is a method of obtaining a mass
spectrum at each point on a specimen by irradiating the
specimen with a primary ion beam and detecting secondary
ions which have been separated from the specimen. In a
TOF-SIMS, for instance, it is possible to obtain the mass
spectrum at each point on the specimen by identifying the
secondary ion with the use of such a fact that a flight time
of the secondary ion depends on a mass m and an electric
charge z of the ion.

[0007] A Raman spectroscopy acquires a Raman spectrum
by irradiating a substance with a laser beam which is a
monochromatic light as a light source, and detecting the
generated Raman scattering light with a spectroscope or an
interferometer. A difference (Raman shift) between a fre-
quency of the Raman scattering light and a frequency of
incident light takes a value peculiar to the structure of the
substance, and accordingly the Raman spectroscopy can
acquire the Raman spectrum peculiar to an object to be
measured.

[0008] In order to acquire biological information from
data of the measured spectrum, a conventional method has
generated a classifier beforehand by machine learning, and
has applied the generated classifier to the data of the
measured spectrum of the specimen (see Japanese Patent
Application Laid-Open No. 2010-71953). On the other
hand, it has been attempted to overlap a measured spectrum
image (spectrum information) with an optical image (mor-
phological information) and display the overlapped image,
because a biological tissue image is indispensable in a
pathological diagnosis (see Japanese Patent Application
Laid-Open No. 2010-85219). Incidentally, the machine
learning described here means a technique of empirically



US 2020/0134822 Al

learning data which have been previously acquired, and
interpreting newly acquired data based on the learning
results. Further, the classifier refers to determination crite-
rion information to be generated by empirically learning a
relationship between previously acquired data and biologi-
cal information.

[0009] Conventionally, an example of diagnosing a dis-
ease by applying the classifier which has been generated by
the machine learning is described also in Patent Document
1. The object to be diagnosed is one measured spectrum data
(for one point on space or whole specimen), and it has not
been assumed to acquire the biological tissue image from a
spatial distribution of the measured spectrum. In addition,
there is an example of overlapping the measured spectrum
image (spectrum information) with the optical image (mor-
phological information), but there has been no example of
acquiring the biological tissue image by applying the
machine learning (classifier) to both the spectrum informa-
tion and the morphological information. Specifically, such a
method has not been disclosed as to reconstruct a biological
tissue image with high precision, which displays a diagnosis
result related to a presence or an absence of a cancer and the
like, from a result of having measured a spectrum having the
spatial distribution for the biological tissue of an object.
[0010] In addition, when the measured spectrum has the
spatial distribution, the characteristics of the data are dif-
ferent between positions at which the data is measured, for
instance, a datum measured in the middle part of the image
is different in the characteristics from that measured in the
peripheral portion of the image. Accordingly, the classifier
suitable for the position needs to be applied according to the
position at which the data is measured. However, conven-
tionally, such a method has not been disclosed as to have
assumed such a situation.

SUMMARY OF THE INVENTION

[0011] According to one aspect of the present invention,
there is provided a reconstruction method of a biological
tissue image using a signal processing apparatus based on a
measured spectrum correlated with a substance distributed
within a biological tissue, which includes: acquiring, within
an image region, the measured spectrum at each of plural
points within the biological tissue; dividing the image region
into a plurality of small blocks; selecting one or more of
peaks of the measured spectrum in each of the small blocks;
acquiring a classifier corresponding to each of the small
blocks; and acquiring the biological tissue image per each of
the small blocks based on the corresponding classifier.
[0012] According to another aspect of the present inven-
tion, there is provided a reconstruction method of a biologi-
cal tissue image using a signal processing apparatus based
on a measured spectrum correlated with a substance distrib-
uted within a biological tissue, which includes: acquiring the
measured spectrum of the biological tissue; acquiring mor-
phological information acquired from distribution informa-
tion of a peak component in the measured spectrum; acquir-
ing a classifier; and applying the classifier to both of the
measured spectrum of the biological tissue and of the
morphological information acquired from the distribution
information of the peak component in the measured spec-
trum, to acquire the biological tissue image.

[0013] The biological tissue image acquired by the method
of the present invention can be used for pathological diag-
nosis and the like.
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[0014] Further features of the present invention will
become apparent from the following description of exem-
plary embodiments with reference to the attached drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0015] FIG. 1 is a schematic view of an apparatus on
which the present invention is mounted.

[0016] FIG. 2 is a schematic view of a spectrum signal
having an intensity distribution in a two-dimensional plane.
[0017] FIGS. 3A, 3B and 3C are conceptual views of peak
components in a spectrum.

[0018] FIG. 4 is a flow chart of the present invention.
[0019] FIG. 5 is a flow chart of machine learning with the
use of a classification analysis of a block of the present
invention.

[0020] FIGS. 6A, 6B and 6C are schematic views of the
discriminant analysis of an image block.

[0021] FIGS. 7A, 7B and 7C are views schematically
illustrating a projection axis which maximizes a ratio of an
inter-group dispersion to an intra-group dispersion.

[0022] FIGS. 8A, 8B and 8C are views schematically
illustrating a state in which confounding occurs due to data
with different conditions.

[0023] FIGS. 9A, 9B and 9C are schematic views illus-
trating a process of determining a regression model by the
discriminant analysis of the block.

[0024] FIGS. 10A, 10B and 10C are views schematically
illustrating a series of processes of the present invention.
[0025] FIGS. 11A, 11B and 11C are views illustrating an
application process of a first exemplary embodiment of the
present invention.

[0026] FIGS. 12A and 12B are views illustrating that
classification conditions are different among the blocks of
the different images.

[0027] FIGS. 13A and 13B are views illustrating that
confounding occurs in data.

[0028] FIGS. 14A and 14B are views illustrating an appli-
cation result of the regression analysis in the first exemplary
embodiment of the present invention.

[0029] FIGS. 15A and 15B are views illustrating an appli-
cation effect of the first exemplary embodiment of the
present invention.

[0030] FIGS. 16A and 16B are schematic views illustrat-
ing the case where a Mahalanobis distance is relatively small
and the case where the Mahalanobis distance is relatively
large.

[0031] FIG. 17 is a schematic view of an apparatus shown
in a second exemplary embodiment of the present invention.
[0032] FIGS. 18A and 18B are views illustrating a spec-
trum image and spectra, which have been used in the second
exemplary embodiment of the present invention.

[0033] FIGS. 19A, 19B, 19C and 19D are views illustrat-
ing an effect of the selection of a feature value in the second
exemplary embodiment of the present invention.

[0034] FIG. 20 is an image illustrating a result of the
discriminant analysis which has been conducted in the
second exemplary embodiment of the present invention.
[0035] FIG. 21 is an image illustrating a result of the
present invention in the second exemplary embodiment of
the present invention.

[0036] FIG. 22 is a schematic diagram illustrating a con-
cept of a higher-order local autocorrelation (HLAC).
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[0037] FIGS.23Aand 23B are images illustrating an effect
of the application of multidimensional information in the
second exemplary embodiment of the present invention.

DESCRIPTION OF THE EMBODIMENTS

[0038] Preferred embodiments of the present invention
will now be described in detail in accordance with the
accompanying drawings.

[0039] Embodiments of the present invention will be
specifically described below with reference to the flow
charts and the drawings. Incidentally, the following specific
example is one example of exemplary embodiments accord-
ing to the present invention, but the present invention is not
limited to any such specific embodiment. The present inven-
tion includes measuring a specimen having a composition
distribution in a space, and can be applied to results provided
by any measuring method as long as the measuring method
can obtain the information of a measured spectrum corre-
lated with a substance distributed within a biological tissue
or a pathological tissue contained in a lesion so that the
information corresponds to positional information at each
point and positions of each point in the space.

[0040] A view illustrated in FIG. 4 is a flow chart of image
reconstruction according to the present invention. The
embodiment will be described below with reference to the
drawing according to the order in this flow chart.

[0041] In the step of S101 in FIG. 4, a peak to be used in
the image reconstruction is selected. Here, the peak means
a peak of signal intensity in the case of the measured
spectrum (for instance, mass spectrum) as illustrated in FIG.
3A. On the other hand, there is a spectroscopy which uses a
spectrum in an ultraviolet region, a visible region and an
infrared region, or a Raman spectroscopy which uses a
Raman spectroscopic spectrum, as the measured spectrum.
The spectrum measured when such a spectroscopy has been
used forms a measured signal illustrated in FIG. 3B. In this
case, the signal intensity illustrated in FIG. 3C, which has
been provided by the discretization of the measured signal,
forms peaks of the signal intensity. Next, in the step of S102,
the data is normalized and digitized. In the step of S103,
multi-dimensional data is generated from the normalized
and digitized data, which is formed of positions of each
point at which the spectrum has been measured in the space
and of a spectrum (peak component) measured at each of the
points in the space.

[0042] A view illustrated in FIG. 2 is a schematic view
illustrating the intensity distribution of the measured spec-
trum which has been measured in each of the points on the
space. For instance, when a two-dimensional plane is con-
sidered as a space in which signals are acquired, the infor-
mation becomes three-dimensional data. Each of the points
of the three-dimensional space from which these three-
dimensional data are generated is expressed by a coordinate
(X,Y, Z). The components X and Y are coordinates on the
two-dimensional space (XY plane) in which the measured
spectrum signal is contained, and correspond to FIG. 2A.
The component Z is a measured spectrum signal at each of
the points on the XY plane, and corresponds to FIG. 2B.
Accordingly, the components X and Y store the X-coordi-
nate and the Y-coordinate of the point at which the signal has
been measured, and the component Z stores a value of the
measured signal corresponding to the intensity of each peak
component.
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[0043] Inthe step of S104 in FIG. 4, the signal is classified
by the generated classifier, and an image is output. Machine
learning, for instance, can be used for the generation of this
classifier. In this machine learning, a determination criterion
is generated which connects the measured data and the
information on the biological tissue, from already acquired
data (which is referred to as training data).

[0044] A view illustrated in FIG. 5 is a flow chart for
generating the classifier. The content will be described
below with reference to the drawing according to the order
in this flow chart.

[0045] In the step of S201 in FIG. 5, a peak to be used in
the image reconstruction is selected. Next, in the step of
S202, the image data are divided into blocks. Here, the
division into blocks means that an image region is divided
into each of a plurality of small blocks. In the step of S203,
the classifier is generated in each block from the data of each
of divided blocks, for instance, by machine learning. As for
a technique of the machine learning, such methods can be
used as a Fisher’s linear discriminant method, a SVM
(Support Vector Machine), a decision tree, and a random
forest method which considers the ensemble average
thereof. In the step of S204, a classification model which can
be applied to all of the image regions is generated by a
regression analysis of classification conditions obtained in
each of the image blocks. Incidentally, this step may be
omitted, and it is acceptable, instead, to reconstruct the
biological tissue image per every image block by using the
classifier generated in each image block, and then integrate
these images by interpolation processing and the like to
generate the biological tissue image in the image region. The
case will be described below where the Fisher’s linear
discriminant method has been employed, as one example of
supervised machine learning. Incidentally, the discriminant
analysis means the Fisher’s linear discriminant method, and
the classification conditions mean discriminant conditions
which have been acquired by the application of the Fisher’s
linear discriminant method.

[0046] The image region of an object may be all of the
image regions to be acquired, and may also be an image
region which has been partially selected. When the image
region which has been partially selected is the object, it is
acceptable, for instance, to previously set the image region
which is not the object such as an outer peripheral portion,
in all of the acquired image regions, and set the image region
except for the previously set image region.

[0047] FIGS. 6A to 6C illustrate a process of separating
and classifying a plurality of groups from spectrum data by
the discriminant analysis. A white frame in FIG. 6 A shows
a region in which the spectrum data to be used as training
data is acquired. FIG. 6B is a schematic view of the
spectrum data to be used. Each spectrum of an object to be
learned is accompanied by a classification number (label) of
the biological tissue, such as 1 for a cancer tissue and 0 for
a normal tissue, for instance. FIG. 6C schematically illus-
trates such a state that a feature value which has been
acquired from the spectrum data is projected to a feature
space (classification space) and an optimal boundary line is
determined by the discriminant analysis. Here, the feature
space means a space to which the feature value is projected
in order to classify the attribute of the data, and the feature
value means a value suitable for classification, which is
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generated from original data. A normalized peak intensity
and the like can be considered as the feature value in this
case.

[0048] FIGS. 7A to 7C schematically illustrate a state of
inter-group dispersion and intra-group dispersion which are
projected components to a projection axis. FIG. 7B illus-
trates the inter-group dispersion corresponding to a distance
between gravity centers of each group, and the inter-group
dispersion is given by Expression (1).

{WT(J_Cl—?_Cz)}z
[0049] In addition, FIG. 7C illustrates the intra-group

dispersion equivalent to dispersion within each group, and
the intra-group dispersion is given by Expression (2).

[Expression 1]
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[0050] The vector w in the above Expression means a
coeflicient vector shown in the following Expression (3).
The vectors x, and X, in the above Expression mean a
sample average vector of each group shown by the following
Expression (4). The matrices S, and S, in the above Expres-
sion mean a sample-variance covariance matrix of each
group shown by the following Expression (5). The expres-
sions are expressions in the case where the feature space is
two dimensional, respectively. In addition, n, and n, are the
numbers of the data of each group.
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[0051] The Fisher’s linear discriminant method is a
method of determining an axis that maximizes a ratio of the
inter-group dispersion and the intra-group dispersion which
are the projected components to the axis, and such an axis
is given by Expression (6). In Expression (6), X represents a
coordinate in a feature space, and a position at which a
reference numeral of H(x) changes becomes a boundary that
distinguishes both of the groups.

[Expression 3]

[Expression 4]

[Expression 5]
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[0052] FIG. 7A schematically illustrates a classification
axis which is determined by the discriminant analysis.

[0053] FIGS. 8A to 8C schematically illustrate such a state
that confounding occurs when the discriminant analysis is
conducted with the use of data in a plurality of different
image blocks. The confounding means such a phenomenon
that the data are mixed when the data having different
properties are used. The white frame in FIG. 8A shows the
block in the image of which the data is used. FIG. 8B

[Expression 6]
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schematically illustrates spectrum data corresponding to the
blocks, and FIG. 8C schematically illustrates such a state
that the data are mixed due to confounding occurring when
those data are projected to the feature space.

[0054] FIGS. 9A to 9C schematically illustrate such a state
that the classification conditions (which are determined from
Expression (6)) for each image block are acquired by local
management of the data, the acquired classification condi-
tions are subjected to the regression analysis, and thereby
classification models capable of being applied to the image
regions are acquired. Here, the local management of the data
means that the data is divided in such a degree that con-
founding of the data does not occur. The white frame in FIG.
9A shows the block in the image of which the data is used.
FIG. 9B illustrates such a state that the discriminant analysis
is applied to each of the image blocks. FIG. 9C illustrates
such a state that the regression analysis of the classification
conditions is conducted. Thus, the image is divided into an
appropriate image block size in such a degree that confound-
ing does not occur. The classification model is constructed
which can be appropriately applied to the image region, by
the regression analysis of the classification conditions that
have been acquired from the discriminant analysis of each of
the blocks. Thereby, it is enabled to conduct an appropriate
classification while preventing the confounding of the data.
For information, the optimal image block size can be deter-
mined, for instance, by using such a statistical test as is given
by Expression (7), a misclassification rate of the training
data, and the like.

X —-X [Expression 7]
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[0055] Here, o, and o, in Expression (7) mean a sample
variance of each group. In addition, 7z, is a test value, and the
block size is determined so that the value becomes a constant
value or more (for instance, 1.96 or more).

[0056] FIGS. 10A to 10C schematically illustrate a series
of processes illustrated in the flow charts in FIG. 4 and FIG.
5. In FIG. 10A, the classification model is generated by the
machine learning and the regression analysis, and in FIG.
10B, data which have been newly measured are input. Then,
in FIG. 10C, a distribution image (which is obtained from
result of machine learning) of the biological tissue distribu-
tion, for instance, is acquired as a reconstruction image.

[0057] In addition, the data to be used in the machine
learning and the classification may not only be spectrum
data of each point in the space, but also both the spectrum
data of each point in the space and the distribution infor-
mation (morphological information) of each spectrum com-
ponent, for instance, may be used.

[0058] In this case, a peripheral area of a pixel which
receives attention, for instance, is cut out, and attention is
paid to a pattern which the region forms. For instance, when
the two-dimensional plane is considered as a space of which
the signal is acquired, the data to be used in the machine
learning and the classification shall be data having a three-
dimensional structure in a total of the distribution informa-
tion and the spectrum information in the plane (which is
referred to as multi-dimensional information).
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[0059] The procedure of the machine learning and the
classification in the case where the multi-dimensional infor-
mation has been used is essentially the same as that in the
case where the above described spectrum data has been
used. However, in this case, the data itself is not used for a
vector (which is referred to as feature vector hereafter) for
use in the classification, but also it is possible to acquire a
plurality of feature values suitable for describing the pattern,
define the feature values as a feature vector, and use the
feature vector for the machine learning and the classification
processing. As a representative example of the feature value,
there are a volume, a curvature, a space gradient, HLAC
(high-order local autocorrelation) and the like. Here, the
high-order autocorrelation function of N-order is defined by
Expression (8) for displacement directions (a;, a,, . . . , ay),
when the image of an object is represented by f(r).

xyayas, ..., ay)=lf)fr+ay) . . . fr+ay)dr

[0060] In addition, the high-order local autocorrelation
function is defined so that the displacement directions are
limited to a localized area of a reference point r (for instance,
3x3 pixels around reference point r). FIG. 22 illustrates a
reference pattern in the case of 0-order and 1-order. A pixel
with a charcoal gray becomes a center point for a reference
when the autocorrelation is calculated.

[0061] In addition, it is also possible to select the feature
value to be used in the machine learning beforehand. In this
case, for instance, it is acceptable to calculate a Mahalanobis
distance which is obtained by projecting each of the feature
values to the feature space and is defined by the ratio of the
inter-group dispersion and the intra-group dispersion of each
group, and to select the feature value for use in the classi-
fication. The result that the Mahalanobis distance is small
corresponds to the case as in FIG. 16A, and the result that
the Mahalanobis distance is large corresponds to the case as
in FIG. 16B, when illustrated by Comparative Examples. If
the Mahalanobis distance is large, the classification becomes
easier. Accordingly, it is also possible to preferentially select
such a feature value that the Mahalanobis distance between
each group that receives attention is large.

[0062] The present invention can be achieved by an appa-
ratus which carries out the above described specific embodi-
ment. FIG. 1 illustrates one example of the configuration of
the whole apparatus on which the present invention is
mounted. A specimen 1 on a substrate and a detector 2 for
a signal are shown. In addition, a signal processing appara-
tus 3 which conducts the above described processing for the
acquired signal, and an image display apparatus 4 which
displays the signal processing result on a screen are shown.

[0063] The -configuration will be more specifically
described while taking a TOF-SIMS as an example. In the
configuration, the detector 2 measures secondary ions
(which are shown by dotted line in FIG. 1) which are
generated in the specimen 1 that has been irradiated with
primary ions (not-shown), and transmits the signal which
has been converted into an electrical signal, to the signal
processing apparatus 3. For information, the type of the
primary ion is not limited, and a usable detector includes not
only a detector for one dimension but also a semiconductor
detector for two dimension. Furthermore, it is possible to use
alaser in place of the primary ion, and also to use a specimen
stage having a scanning function together. The measured
data has a three-dimensional data structure in which a mass
spectrum is stored in a coordinate point on the XY plane of
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the specimen 1. In addition, when the data has been inte-
grated, the measured data becomes four-dimensional data.
However, the integrated data becomes three dimensional,
and can be subjected to similar processing.

[0064] Inaddition, FIG. 17 also illustrates one example of
the configuration of the apparatus on which the present
invention is mounted. A light source 11 and an optical
system 12 are shown. In addition, the specimen 1 to be
measured, a stage 14 on which the specimen is arranged, and
the detector 2 for a signal are shown. In addition, the signal
processing apparatus 3 which subjects the acquired signal to
the above described processing, and the image display
apparatus 4 which displays the signal processing result on
the screen are shown.

[0065] In FIG. 17, a measurement system of a transmis-
sion type of arrangement is shown, but a reflection type of
arrangement is also possible. In addition, ultraviolet rays,
visible light, infrared rays and the like can be used as a light
source. The detector also includes a single detector, a
line-shaped detector and a two-dimensional detector, and the
type is not limited. Furthermore, such a method is also
acceptable as to combine an interferometer with the appa-
ratus and acquire a spectrum through Fourier transformation
or Laplace transformation. It is also possible to add the
scanning function to the specimen stage. The measured data
has a three-dimensional data structure in which the spectrum
is stored in the coordinate point on the XY plane of the
specimen 1. In addition, when the data has been integrated,
the measured data becomes four-dimensional data. How-
ever, the integrated data becomes three dimensional, and can
be subjected to similar processing.

[0066] In addition, FIG. 17 includes also nonlinear spec-
troscopy such as coherent anti-Stokes Raman scattering
(CARS, Coherent Anti-Stokes Raman Scattering) and stimu-
lated Raman scattering (SRS, Stimulated Raman Scatter-
ing).

[0067] Furthermore, the signal processing apparatus and
the image output apparatus (that handle signal after detector)
which are features of the present invention can be also
applied to the configuration, as long as the apparatus has
such a structure that the spectrum is stored in the coordinate
point on one particular cross section (which has constant
thickness) of the specimen.

[0068] Specifically, the apparatuses can be applied also to
a two-dimensional spectrum measuring system with the use
of X-rays, a terahertz wave, an electromagnetic wave or the
like.

Exemplary Embodiment 1

[0069] Exemplary Embodiment 1 of the present invention
will be described below. In the present exemplary embodi-
ment, a tissue slice (product made by Pantomics, Inc.) of an
expression level 2+ of a HER2 protein which had been
subjected to trypsin digestion processing was subjected to an
SIMS measurement on the following conditions, in which a
TOF-SIMS 5 type apparatus (trade name) made by ION-
TOF GmbH was used.

[0070] Primary ion: 25 kV Bi*, 0.6 pA (pulse current
value), macro-raster scan mode

[0071] Pulse frequency of primary ion: 5 kHz (200
us/shot)

[0072] Pulse width of primary ion: approximately 0.8 ns
[0073] Beam diameter of primary ion: approximately 0.8
pum
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[0074] Measurement range: 4 mmx4 mm

[0075] Pixel number in measurement of secondary ion:
256%x256

[0076] Integration period of time: 512 shots for one pixel,

one time scan (approximately 150 minutes)

[0077] Detection mode for secondary ion: positive ion
[0078] The XY coordinate information which shows the
positions for each measurement pixel and the mass spectrum
in one shot are recorded in the obtained SIMS data. For
instance, each of the measurement pixels contains the infor-
mation on the peak (m/z=720.35) which corresponds to a
mass number of a molecule in one of digestive fragments of
the HER?2 protein, to which one sodium atom adsorbs, and
on the peak components originating in each biological
tissue, as the spectrum data.

[0079] FIG. 11A illustrates an image obtained through the
observation of the tissue slice (product made by Pantomics,
Inc.) of the expression level 2+ of the HER2 protein, of
which the HER2 protein was subjected to immunostaining,
by an optical microscope. In FIG. 11A, the portion in which
there are more expressions in the HER2 protein is indicated
whiter. In addition, the specimen that was used in the SIMS
measurement and the specimen that was subjected to the
immunostaining are adjacent slices to each other, which
were cut out from the same diseased tissue (paraffin block),
and are not identical.

[0080] FIG. 11B illustrates a spectrum which was mea-
sured in an image block surrounded by the white frame in
FIG. 11A. FIG. 11C illustrates a result of the discriminant
analysis that was conducted for two peak components (val-
ues of corresponding m/z are 692.35 and 1101.5, respec-
tively), which were selected from the spectrum of FIG. 11B.
It is understood in FIG. 11C that the different groups can be
clearly separated from each other.

[0081] The white frames in FIG. 12A illustrate a plurality
of image blocks. FIG. 12B illustrates a result of the dis-
criminant analysis which was conducted for the spectrum
data of each of the image blocks. It is understood in FIG.
12B that the characteristics of the data change according to
the positions of the image blocks, and the classification
condition also changes according to the change of the
characteristics.

[0082] The white frame in FIG. 13A illustrates an image
block formed by a combination of the plurality of the image
blocks in FIG. 12A. FIG. 13B illustrates a result of the
plotting of the data in the white frame in FIG. 13A on the
feature space. It is understood that such a phenomenon that
data in different groups are mixed with each other, which is
so-called confounding, occurs in the white frame in FIG.
13B.

[0083] FIG. 14A illustrates a result of the division of the
image region into image blocks. FIG. 14B illustrates a result
of the regression analysis which was conducted for the
classification conditions based on the result of the discrimi-
nant analysis that was conducted for a plurality of the image
blocks. From the result of this regression analysis, a classi-
fication model is generated which can be applied to the
image region.

[0084] FIG. 15A illustrates a result of the reconstruction of
the image, by the application of the classification conditions
obtained from the discriminant analysis of a single image
block, to the image region. In addition, FIG. 15B illustrates
a result of the reconstruction of the image, by the application
of the discriminant analysis of the divided blocks according
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to the present invention, to the image region. As is under-
stood when the inside of the white frame is referred and
compared to FIG. 11 A of reference, a biological tissue image
with higher precision can be acquired according to the
present invention.

Exemplary Embodiment 2

[0085] Exemplary Embodiment 2 of the present invention
will be described below. In the following exemplary
embodiment, a mouse liver tissue was measured with the use
of a microscope which uses stimulated Raman scattering.
The power of a TiS laser used as a light source was 111 mW,
and the intensity of an Yb fiber laser was 127 mW before the
laser was incident on an object lens. The mouse liver tissue
of the specimen was subjected to formalin fixation treat-
ment, and was cut into a thin slice with a thickness of 100
micrometers. The tissue slice was subjected to measurement
in a state of being embedded in a glass together with a PBS
buffer. The measurement range is a 160 micrometers square,
and the data measured 10 times were integrated. The image
data was a 500 pixels square, and the measurement period of
time was 30 seconds.

[0086] The XY coordinate information which shows the
positions of each measurement pixel, and the spectrum
information in each coordinate are recorded in the obtained
spectral image data. For instance, each of the measurement
pixels contains the information on the peak components
originating in the components of the tissue constituting the
specimen, as the spectrum data. In addition, the measure-
ment of the spectrum data was conducted with a sampling
interval of 1 kayser (1 cm™).

[0087] FIG. 18A is an image formed by adding up of
signals in all measured spectral regions, which are based on
a measurement result of a liver tissue. FIG. 18B is a graph
obtained from picked-up spectra of portions corresponding
to the cell nucleus, the cell cytoplasm and the erythrocyte;
and in the graph, a horizontal axis corresponds to a wave
number (while the numerical value in the graph is an index
for distinguishing the wave number and the index will be
referred to hereafter), and a vertical axis corresponds to
signal intensity. It is understood that spectrum signals dif-
ferent among each tissue are obtained, as is illustrated in
FIG. 18B.

[0088] FIG. 19A is a graph obtained from the calculation
of a Mahalanobis distance between the cell nucleus (group
1) and the cell cytoplasm (group 2) for each wave number.
It is understood that the Mahalanobis distance is large when
the indices are values between 7 and 8. FIG. 19B is a graph
obtained by determining the spectrum intensities corre-
sponding to the indices 7 and 8 as the feature values, and
plotting one part of the training data onto the two-dimen-
sional feature space. It is understood that the group 1 and the
group 2 can be clearly distinguished. FIG. 19C is a graph
obtained from the calculation of a Mahalanobis distance
between the cell cytoplasm (group 2) and the erythrocyte
(group 3) for each wave number. It is understood that the
Mahalanobis distance is large when the indices are values
between 15 and 17. FIG. 19D is a graph obtained similarly
by determining the spectrum intensities corresponding to the
indices 15 and 16 as the feature values, and plotting one part
of the training data onto the two-dimensional feature space.
It is understood that the group 2 and the group 3 can be
clearly distinguished. On the other hand, it is understood that
the group 1 and the group 2 result in resisting being
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distinguished. In such a case, it is acceptable to use all of the
feature values which are suitable for classification among
each of the groups, and then project the resultant feature
values to the feature space. In this case, it is acceptable, for
instance, to determine the spectrum intensities correspond-
ing to the indices 7, 8 and so on, and 15, 16 and so on as the
feature values, project the resultant feature values to the
multidimensional feature space, and classify each group.
[0089] FIG. 20 is a result of the discriminant analysis
which has been conducted for the plotting of spectrum
intensities corresponding to the index 8 and the index 15 on
a two-dimensional space, with the use of training data that
correspond to the cell nucleus (group 1), the cell cytoplasm
(group 2) and the erythrocyte (group 3), respectively. It is
understood that each group can be clearly separated from
each other.

[0090] FIG. 21 is an image obtained by classifying the cell
nucleus, the cell cytoplasm and the erythrocyte based on the
result of the previously described discriminant analysis, and
reconstructing the resultant image. It is understood that each
tissue is appropriately classified and is color-coded. Thus,
the present invention can classify a structure in a biological
tissue without dyeing.

[0091] FIG. 23A illustrates a result of classification pro-
cessing that has been conducted with the use of only
spectrum intensity as a feature value; and FIG. 23B illus-
trates a result of classification processing that has been
conducted with the use of the spectrum intensity and HLAC
in 0-order and 1-order, which is calculated from the distri-
bution of the spectrum intensity, as a feature value. It is
understood that an outline of a structure in each tissue is
more clearly drawn in FIG. 23B compared to that in FIG.
23A. Thus, the outline of the structure in a biological tissue
can be more clearly drawn by the utilization of such mul-
tidimensional information.

[0092] The present invention can be used as a tool which
more effectively supports a pathological diagnosis.

[0093] The method according to the present invention can
reconstruct a biological tissue image, by measuring a spatial
distribution of a measured spectrum, using both measured
spectrum information thereof and morphological informa-
tion which is obtained from the distribution information of
peak components and applying machine learning to the
information. Furthermore, even in the case where charac-
teristics of data change and classification conditions change
due to a difference among measured positions of the mea-
sured spectrum and the like, at this time, the method can
reconstruct a biological tissue image by employing appro-
priate classification conditions. Thereby, the biological tis-
sue can be classified with higher precision compared to a
conventional method, and accordingly the method is useful
when being applied to the pathological diagnosis or the like.
[0094] While the present invention has been described
with reference to exemplary embodiments, it is to be under-
stood that the invention is not limited to the disclosed
exemplary embodiments. The scope of the following claims
is to be accorded the broadest interpretation so as to encom-
pass all such modifications and equivalent structures and
functions.

[0095] This application claims the benefit of Japanese
Patent Applications No. 2013-000883, filed Jan. 8, 2013,
No. 2013-163399, filed Aug. 6, 2013 and No. 2013-251050,
filed Dec. 4, 2013 which are hereby incorporated by refer-
ence herein in their entirety.
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What is claimed is:

1. A reconstruction method of a biological tissue image
using a signal processing apparatus based on a measured
spectrum correlated with a substance distributed within a
biological tissue comprising:

acquiring, within an image region, the measured spectrum

at each of plural points within the biological tissue;
dividing the image region into a plurality of small blocks;
selecting one or more of peaks of the measured spectrum
in each of the small blocks;

acquiring a classifier corresponding to each of the small

blocks; and

acquiring the biological tissue image per each of the small

blocks based on the selected one or more of peaks and
the corresponding classifier.

2. The reconstruction method of the biological tissue
image according to claim 1, wherein the classifier to be
applied to an image region is generated from classification
conditions acquired per each of a plurality of small blocks,
by a regression analysis of the classification conditions, and
then the biological tissue image in the image region is
generated by applying the classifier to the measured spec-
trum.

3. The reconstruction method of the biological tissue
image according to claim 1, wherein the biological tissue
images acquired per each of a plurality of small blocks are
integrated to generate the biological tissue image in the
image region.

4. The reconstruction method of the biological tissue
image according to claim 1, wherein the classifier is gener-
ated by applying a training data to the measured spectrum.

5. The reconstruction method of the biological tissue
image according to claim 1, wherein, at the selecting one or
more of peaks of the measured spectrum, the peak for use in
the classification is determined based on Mahalanobis dis-
tance defined by a ratio of an inter-group dispersion to an
intra-group dispersion.

6. The reconstruction method of the biological tissue
image according to claim 1, wherein, the measured spectrum
is any of a spectrum in an ultraviolet region, a visible region
and an infrared region, a Raman spectroscopic spectrum,
and a mass spectrum.

7. The reconstruction method of the biological tissue
image according to claim 1, wherein, the biological tissue is
a pathological tissue.

8. A biological tissue image acquiring apparatus, wherein
a biological tissue image is reconstructed by the method
according to claim 1.

9. An image display apparatus, wherein, at a pathological
diagnosis, a lesion is displayed by the biological tissue
image acquiring apparatus according to claim 7.

10. A reconstruction method of a biological tissue image
using a signal processing apparatus based on a measured
spectrum correlated with a substance distributed within a
biological tissue comprising:

acquiring the measured spectrum within the biological

tissue;

acquiring morphological information from distribution

information of a peak component in the measured
spectrum,;

acquiring a classifier; and

applying the classifier to both of the measured spectrum

of the biological tissue and of the morphological infor-
mation acquired from the distribution information of
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the peak component in the measured spectrum, to
acquire the biological tissue image.

11. The reconstruction method of the biological tissue
image according to claim 10, wherein when the classifier is
generated and the biological tissue image is reconstructed,
both of the measured spectrum and a higher-order local
autocorrelation which is acquired from distribution infor-
mation thereof are used.
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