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(57) ABSTRACT

System, methods, and other embodiments described herein
relate to adjusting a prediction model for control at handling
limits associated with a projected trajectory during auto-
mated driving. In one embodiment, a method includes
adjusting parameters of a prediction model using friction
estimates and sideslip costs associated with a projected
trajectory of a vehicle, the friction estimates being derived
from Kalman filtering. The method also includes scaling,
using the prediction model, handling limits of the vehicle for
the projected trajectory according to a friction circle. The
method also includes generating, by the prediction model,
vehicle dynamics using a load transfer and a brake distri-
bution, the vehicle dynamics being associated with esti-
mated road conditions and the handling limits. The method
also includes outputting, by the prediction model using the
vehicle dynamics, a driving command to the vehicle for the
projected trajectory.
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SYSTEMS AND METHODS FOR
PREDICTIVE CONTROL AT HANDLING
LIMITS WITH AN AUTOMATED VEHICLE

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application claims the benefit of U.S. Provi-
sional Application No. 63/393,007, filed on Jul. 28, 2022,
and U.S. Provisional Application No. 63/392,942, filed on
Jul. 28, 2022, which are herein incorporated by reference in
its entirety.

TECHNICAL FIELD

[0002] The subject matter described herein relates, in
general, to predictive control for a vehicle, and, more
particularly, to adjusting a prediction model for control at
handling limits associated with a projected trajectory during
automated driving.

BACKGROUND

[0003] A vehicle has systems that control throttling, brak-
ing, and wheel angles. These systems determine maneuvers
on the road using manual inputs or outputs from an auto-
mated driving system (ADS). For example, the ADS gen-
erates projected trajectories for the vehicle to execute and
follow. Execution may impact safety and stability from
physical forces (e.g., tire force) on the vehicle by a maneu-
ver. A prediction model may generate driving commands for
a projected trajectory using physical constraints. However,
executed outputs from the prediction model can violate
physical constraints and handling limits in certain environ-
ments, causing the vehicle to spinout and collide with
objects on the road.

[0004] Moreover, systems can calculate and reduce costs
(e.g., comfort, reliability, stability, etc.) for projected trajec-
tories to prevent collisions. For example, the prediction
model encodes vehicle dynamics, physical constraints, road
topology, and costs for a projected trajectory to increase
safety by reducing approximation errors. However, the
encoding by the prediction model increases complexity and
computational costs, particularly for non-linear control dur-
ing extreme conditions. Furthermore, the vehicle performing
online encoding can cause delays that increase collision
probabilities, especially in scenarios involving sudden dan-
ger because of short reaction times or stopping distances.
Therefore, a vehicle navigating a road with an ADS and
factoring costs for projected trajectories can encounter dif-
ficulties, especially when encountering atypical driving sce-
narios.

SUMMARY

[0005] Inone embodiment, example systems and methods
relate to adjusting a prediction model for controlling a
vehicle at handling limits. In various implementations, sys-
tems using a prediction model to generate commands for a
projected trajectory encounter decreased safety and stability
during certain scenarios (e.g., a sharp curve). As one
example, a prediction model generates a braking command
that causes tire saturation by using a static distribution of
available forces and load constraints. Therefore, in one
embodiment, a prediction system adjusts a prediction model
by implementing Kalman filtering that estimates friction
involving a projected trajectory from an automated driving
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system (ADS). Here, the prediction model may implement a
non-linear model predictive controller (NMPC) using
dynamic load transfer and brake distributions and generate
vehicle dynamics with the ADS at handling limits. The
prediction model optimizes tire-force utilization (e.g., satu-
ration) through the load transfer and brake distribution
according to estimated road conditions. For example, the
load transfer biases braking the front tires as load transfers
forward during deceleration, thereby staying within the
handling limits while using available road friction that
improves traction.

[0006] Moreover, in various implementations, the predic-
tion model improves performance at the handling limits by
optimizing computations in a processing layer separate from
chassis control. For example, the prediction model estimates
wheel speed and dynamic allocation of brake torques from
load transfer associated with cornering using an upper-level
NMPC. In this way, the prediction model exploits additional
dynamics and traction potential available by reducing tire-
force deviation. As such, this improves comfort and reduces
tire saturation or uncontrolled steering during automated
driving. Furthermore, in one approach, the prediction model
uses longitudinal load dynamics and a lateral-weight transfer
in a steady-state, thereby rapidly accounting for evolving
force potential at different tires. In this way, the prediction
model optimizes the allocation of brake torque at different
wheels. For instance, an Unscented Kalman filter (UKF)
estimates friction and a cost for an allowable friction circle
that accounts for estimated uncertainty. Here, the prediction
model can adjust parameters using the estimated coefficient
of friction for uncertainties online. Accordingly, the predic-
tion model adjusts for control at handling limits associated
with the projected trajectory that utilizes available traction
potential and tire friction, thereby improving safety and
comfort through increased control.

[0007] In one embodiment, a prediction system that
adjusts a prediction model for control at handling limits
associated with a projected trajectory during automated
driving is disclosed. The prediction system includes a pro-
cessor and a memory storing instructions that, when
executed by the processor, cause the processor to adjust
parameters of a prediction model using friction estimates
and sideslip costs associated with a projected trajectory of a
vehicle, the friction estimates being derived from Kalman
filtering. The instructions also include instructions to scale,
using the prediction model, handling limits of the vehicle for
the projected trajectory according to a friction circle. The
instructions also include instructions to generate, by the
prediction model, vehicle dynamics using a load transfer and
a brake distribution, the vehicle dynamics being associated
with estimated road conditions and the handling limits. The
instructions also include instructions to output, by the pre-
diction model using the vehicle dynamics, a driving com-
mand to the vehicle for the projected trajectory.

[0008] In one embodiment, a non-transitory computer-
readable medium that adjusts a prediction model for control
at handling limits associated with a projected trajectory
during automated driving and including instructions that
when executed by a processor cause the processor to per-
form one or more functions is disclosed. The instructions
include instructions to adjust parameters of a prediction
model using friction estimates and sideslip costs associated
with a projected trajectory of a vehicle, the friction estimates
being derived from Kalman filtering. The instructions also
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include instructions to scale, using the prediction model,
handling limits of the vehicle for the projected trajectory
according to a friction circle. The instructions also include
instructions to generate, by the prediction model, vehicle
dynamics using a load transfer and a brake distribution, the
vehicle dynamics being associated with estimated road
conditions and the handling limits. The instructions also
include instructions to output, by the prediction model using
the vehicle dynamics, a driving command to the vehicle for
the projected trajectory.

[0009] In one embodiment, a method for adjusting a
prediction model for control at handling limits associated
with a projected trajectory during automated driving is
disclosed. In one embodiment, the method includes adjust-
ing parameters of a prediction model using friction estimates
and sideslip costs associated with a projected trajectory of a
vehicle, the friction estimates being derived from Kalman
filtering. The method also includes scaling, using the pre-
diction model, handling limits of the vehicle for the pro-
jected trajectory according to a friction circle. The method
also includes generating, by the prediction model, vehicle
dynamics using a load transfer and a brake distribution, the
vehicle dynamics being associated with estimated road
conditions and the handling limits. The method also includes
outputting, by the prediction model using the vehicle
dynamics, a driving command to the vehicle for the pro-
jected trajectory.

BRIEF DESCRIPTION OF THE DRAWINGS

[0010] The accompanying drawings, which are incorpo-
rated in and constitute a part of the specification, illustrate
various systems, methods, and other embodiments of the
disclosure. It will be appreciated that the illustrated element
boundaries (e.g., boxes, groups of boxes, or other shapes) in
the figures represent one embodiment of the boundaries. In
some embodiments, one element may be designed as mul-
tiple elements or multiple elements may be designed as one
element. In some embodiments, an element shown as an
internal component of another element may be implemented
as an external component and vice versa. Furthermore,
elements may not be drawn to scale.

[0011] FIG. 1 illustrates one embodiment of a vehicle
within which systems and methods disclosed herein may be
implemented.

[0012] FIG. 2 illustrates one embodiment of a prediction
system that is associated with adjusting a prediction model
for controlling a vehicle at handling limits.

[0013] FIG. 3 illustrates one embodiment of the prediction
system using a friction circle and scaling to adapt control at
handling limits using the prediction model.

[0014] FIG. 4 illustrates one embodiment of a method that
is associated with adjusting the prediction model for con-
trolling the vehicle at the handling limits using Kalman
filtering and scaling.

DETAILED DESCRIPTION

[0015] Systems, methods, and other embodiments associ-
ated with adjusting a prediction model for controlling a
vehicle at handling limits are disclosed herein. In various
implementations, driving commands generated from a pre-
diction model for a projected trajectory encounter decreased
safety and traction loss during certain scenarios. For
example, systems using a model predictive controller (MPC)

Feb. 1, 2024

generate riskier commands in certain circumstances, such as
when an automated driving system (ADS) invokes a lane
change at a curve. Here, the system may automatically
generate a braking command from the MPC that causes tire
saturation leading to a collision with objects (e.g., other
vehicles, an animal, etc.) from control loss. Therefore, in one
embodiment, a prediction system adjusts a prediction model
by implementing Kalman filtering for friction estimates
associated with a projected trajectory generated by the ADS.
In particular, the adjustments may increase force utilization
at handling limits. For example, the handling limits define
force saturation and available friction for individual tires of
a vehicle. In one approach, the Kalman filtering iteratively
uses covariance in process and measurement noise, mea-
surements of various states (e.g., a yaw rate, a velocity, etc.),
and prediction errors to estimate friction accurately. The
prediction system may also calculate and reduce various
dynamic costs for increasing stability and comfort when
following the projected trajectory.

[0016] In various implementations, the prediction system
scales handling limits using the prediction model (e.g., a
non-linear MPC (NMPC)) for the projected trajectory. Here,
the prediction system can adapt a friction circle for the
projected trajectory, such as at a track edge, near an obstacle,
and so on, to avoid a collision. For example, the friction
circle scales through expansion that increases force avail-
ability at individual tires within the handling limits, thereby
preventing collisions. Furthermore, the prediction system
generates vehicle dynamics using a load transfer and brake
distribution model according to estimated road conditions
and the handling limits. The prediction system may compute
first-order dynamics for longitudinal load transfer such that
available frictional forces at the handling limits are utilized
for braking. For instance, the load transfer biases braking the
front tires as load transfers forward during deceleration, such
as at the handling limits. Thus, the prediction model adjusts
control at the handling limits while utilizing available trac-
tion potential, tire friction, and tire forces that improve
safety while reducing traction loss.

[0017] Referring to FIG. 1, an example of a vehicle 100 is
illustrated. As used herein, a “vehicle” is any form of
motorized transport. In one or more implementations, the
vehicle 100 is an automobile. While arrangements will be
described herein with respect to automobiles, it will be
understood that embodiments are not limited to automobiles.
In some implementations, a prediction system 170 uses
road-side units (RSU), consumer electronics (CE), mobile
devices, robots, drones, and so on that benefit from the
functionality discussed herein associated with adjusting a
prediction model for controlling a vehicle at handling limits.

[0018] The vehicle 100 also includes various elements. It
will be understood that in various embodiments, the vehicle
100 may have less than the elements shown in FIG. 1. The
vehicle 100 can have any combination of the various ele-
ments shown in FIG. 1. Furthermore, the vehicle 100 can
have additional elements to those shown in FIG. 1. In some
arrangements, the vehicle 100 may be implemented without
one or more of the elements shown in FIG. 1. While the
various elements are shown as being located within the
vehicle 100 in FIG. 1, it will be understood that one or more
of these elements can be located external to the vehicle 100.
Furthermore, the elements shown may be physically sepa-
rated by large distances.
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[0019] Some of the possible elements of the vehicle 100
are shown in FIG. 1 and will be described along with
subsequent figures. However, a description of many of the
elements in FIG. 1 will be provided after the discussion of
FIGS. 2-4 for purposes of brevity of this description. Addi-
tionally, it will be appreciated that for simplicity and clarity
of illustration, where appropriate, reference numerals have
been repeated among the different figures to indicate corre-
sponding or analogous elements. In addition, the discussion
outlines numerous specific details to provide a thorough
understanding of the embodiments described herein. Those
of skill in the art, however, will understand that the embodi-
ments described herein may be practiced using various
combinations of these elements. In either case, the vehicle
100 includes a prediction system 170 that is implemented to
perform methods and other functions as disclosed herein
relating to improving the adjustment of a prediction model
for controlling a vehicle at handling limits.

[0020] With reference to FIG. 2, one embodiment of the
prediction system 170 of FIG. 1 is further illustrated. The
prediction system 170 is shown as including a processor(s)
110 from the vehicle 100 of FIG. 1. Accordingly, the
processor(s) 110 may be a part of the prediction system 170,
the prediction system 170 may include a separate processor
from the processor(s) 110 of the vehicle 100, or the predic-
tion system 170 may access the processor(s) 110 through a
data bus or another communication path. In one embodi-
ment, the prediction system 170 includes a memory 210 that
stores a command module 220. The memory 210 is a
random-access memory (RAM), a read-only memory
(ROM), a hard-disk drive, a flash memory, or other suitable
memory for storing the command module 220. The com-
mand module 220 is, for example, computer-readable
instructions that when executed by the processor(s) 110
cause the processor(s) 110 to perform the various functions
disclosed herein.

[0021] Furthermore, the command module 220 generally
includes instructions that function to control the processor(s)
110 to receive data inputs from one or more sensors of the
vehicle 100. The inputs are, in one embodiment, observa-
tions of one or more objects in an environment proximate to
the vehicle 100 and/or other aspects about the surroundings.
As provided for herein, the command module 220, in one
embodiment, acquires the sensor data 250 that includes at
least camera images. In further arrangements, the command
module 220 acquires the sensor data 250 from further
sensors such as the radar sensors 123, LIDAR sensors 124,
and other sensors as may be suitable for identifying vehicles
and locations of the vehicles.

[0022] Accordingly, the command module 220, in one
embodiment, controls the respective sensors to provide the
data inputs in the form of the sensor data 250. Additionally,
while the command module 220 is discussed as controlling
the various sensors to provide the sensor data 250, in one or
more embodiments, the command module 220 can employ
other techniques to acquire the sensor data 250, such as data
fusing, that are either active or passive. Thus, the sensor data
250, in one embodiment, represents a combination of per-
ceptions acquired from multiple sensors.

[0023] Moreover, in one embodiment, the prediction sys-
tem 170 includes a data store 230. In one embodiment, the
data store 230 is a database. The database is, in one
embodiment, an electronic data structure stored in the
memory 210 or another data store and that is configured with
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routines that can be executed by the processor(s) 110 for
analyzing stored data, providing stored data, organizing
stored data, and so on. Thus, in one embodiment, the data
store 230 stores data used by the command module 220 in
executing various functions. In one embodiment, the data
store 230 includes the sensor data 250 along with, for
example, metadata that characterize various aspects of the
sensor data 250. For example, the metadata can include
location coordinates (e.g., longitude and latitude), relative
map coordinates or tile identifiers, time/date stamps from
when the separate sensor data 250 was generated, and so on.
In one embodiment, the data store 230 further includes the
handling limits 240. For example, the handling limits 240
define force saturation and available friction for individual
tires of the vehicle 100. As such, a spinout, traction loss, and
so on may occur if the vehicle 100 exceeds the handling
limits 240.

[0024] The command module 220, in one embodiment, is
further configured to perform additional tasks beyond con-
trolling the respective sensors to acquire and provide the
sensor data 250. For example, the command module 220
includes instructions that cause the processor 110 to imple-
ment an ADS that plans and controls at the handling limits
240 of the vehicle 100. In this way, the prediction system
170 extracts increased potential and available friction for
braking, irrespective of road conditions. Also, operating at
the handling limits 240 allows the vehicle 100 to avoid
obstacles by increasing or maximizing traction during decel-
eration and decreasing stopping distances without saturating
tires, thereby avoiding unsafe spinout or plowing.

[0025] As explained below, the prediction system 170 may
optimize and extract control potential by executing the
prediction model 260 in a processing layer separate from
chassis control. Here, in one embodiment, the data store 230
includes the prediction model 260 that has computer-read-
able instructions. The computer-readable instructions when
executed by the processor(s) 110 cause the processor(s) 110
to perform the various functions disclosed herein. As such,
the prediction system 170 executes the prediction model 260
at a layer separate or above from the chassis control. In this
way, the processing layer for the prediction model 260
improves the accuracy of load transfer calculations by
factoring grade measurements (e.g., road topology), sudden
environmental changes, gear-change modeling, and so on
through separation from chassis controls. Furthermore, the
prediction system 170 using a separate (e.g., higher-level)
processing layer can prioritize different attributes (e.g.,
minimum time, smoothness, comfort, etc.) while incorpo-
rating the non-linear dynamics for the vehicle 100 and
model fidelity. The prioritization can improve determining
the limits of the vehicle 100 given by friction and force
limits at individual tires while avoiding saturating tires,
oversteering, understeering, and so on.

[0026] Now turning to FIG. 3, one embodiment of the
prediction system 170 using a friction circle 310 and scaling
to adapt control at the handling limits 240 using the predic-
tion model 260 is illustrated. As explained below, the
prediction system 170 can adapt the friction circle 310 for a
projected maneuver by the vehicle 100 involving a track
edge, obstacle, curve, and so on. The adaptation may include
scaling through expanding the friction circle 310 for using
available force, thereby preventing a collision. Here, the
maximum force available is the tire friction multiplied by
the normal load on the vehicle 100. Also, once a dangerous



US 2024/0034302 Al

scenario is averted, the prediction system 170 may reduce
the friction circle 310 which increases comfort by reducing
sudden movements or jerks.

[0027] In various implementations, the prediction model
260 implements a NMPC using reference trajectories from
a bicycle model for the vehicle 100 and a curvilinear
coordinate system. Although certain examples implement an
NMPC, the prediction system 170 may implement any MPC
for adjusting a prediction model and controlling a vehicle at
the handling limits 240. Here, the bicycle model may
involve:

r Yaw rate Equation (1)
v Velocity
B Sideslip
3 Steering angle
W, Rear wheelspeed
X = e = Lateral error
Ag Course etror
T Engine torque
Thrake, f Front brake torque
Thraker Rear brake torque
dF, Longitudinal weight transfer

[0028] Here, steering angle, rear-wheel speed. engine
torque, weight transfer, front brake torque, and rear brake
torque are included as states for diversity. This example
yields a total of eleven vehicle states. To encode constraints
for an actuator slew-rate, four inputs may be used by the
prediction model 260:

5 Steering rate Equation (2)
_ T _ Engine rate
¥= Thrate,r | | Front brake rate |

Thrakerr Rear brake rate

[0029] Moreover, the state derivatives describing the
model for the vehicle 100 can be expressed as:

aFyrcos(6) + aFyrsin(6) — bFy, + Tpp Equation (3)
L
(=Fy,sin(6 — B) + Fyreos(6 = B) +

(Fyy + Fg Sin(B) + (Fyy + Fer)cos(B))

m
(Fyreos(d — B) + Fyrsin(d — B) +
(Fyy + Fo)oos(B) = (Fy = Fgsin()
mV
é
i= (T = Fartw) ,
Ly,
VAg
Vcos(Ag)
et 1= ke

T

Thrake,f

Toraker

k(dF heg F, )
z Ll+b xnet

where a and b are the distance from the center of gravity to
the front and rear axles, respectively, h,., is the center of
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gravity height. Furthermore, r,, is the tire radius, m the
vehicle mass, and I, and [, the yaw moments of inertia for
the vehicle 100 and lumped rear axle, respectively. The
longitudinal and lateral forces are given as F ., and F . , for
the front and rear tires, respectively. Also, T, is the moment
created from the lateral brake balance, and F,, and F_ the
gravitational forces in the longitudinal and lateral directions.
The longitudinal weight transfer equation is further
described below. Here, K, is the reference curvature and
d=p;
is the rotation rate of the velocity vector associated with the
vehicle 100.
[0030] In one approach, the prediction system 170 uses a
tire model and road topology for optimizing control asso-
ciated with the projected trajectory generated by an ADS at
the handling limits 240. Here, the forces F,, and F,,, are
estimated by a coupled slip, Fiala brush tire model. For an
unsaturated tire, this can be expressed as:

Equation (4)

s 2 s —tan(@) Equation (5)
Fy Go' G T
[ ] =|Cro - + >
Fy 3uf,  27(uF,) X
a

In Equation (5), C;is the cornering stiffness, K the slip ratio,
o the slip angle, p the coefficient of friction, and F_ the
normal load. Furthermore, the combined slip 6 is given as:

G=\/tan((x)2+l<2. Equation (6)

If saturated, resulting from the maximum slip, the forces can
be expressed as:

[ iy] _ (,qu)[ —tan(e)/o ], Equation (7)

Kjo

where saturation occurs if:

loI>arctan(3pF /Cp). Equation (8)

[0031] Regarding the road topology, conditions from
topology can affect the normal load on the front and rear axle
as follows:

b Equation (9)
b= mm(gcos(@)cos(lﬁ) +4,).

F,= %m(gcos(@)cos(z//) T 4,), Equation (10)
a

where 0 and  are the road grade and bank, respectively. The
speed effect of vertical curvature can be expressed as:

df X 2 Equation (11)
Ay = (— gcos(lﬁ) - Ksm(lﬁ)cos(@))(s) .

Here, K may represent the road curvature. In addition to the
load transfer, topology also contributes forces in the longi-
tudinal and lateral direction of the vehicle 100 for operating
at the handling limits 240. This can be expressed respec-
tively as:
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F,,=mg cos(®)sin(y), Equation (12)

F,.=mg sin(0). Equation (13)

[0032] As explained below, in one embodiment, the pre-
diction system 170 generates vehicle dynamics using a load
transfer and a brake distribution for the prediction model
260 according to estimated road conditions and the handling
limits 240. Regarding the load transfer, the tire force may
depend on the load at individual tires of the vehicle 100. The
maximum force available can be the frictional force using a
scaled friction circle. The prediction system 170 uses first-
order dynamics for the longitudinal load transfer to identify
available frictional forces. In one approach, the load transfer
may be expressed as:

Equation (14)

. heg
dF, = —k[dFZ -
a

where k is a constant, dF_ the load transferred from the front
to rear axle. Here, F_,,_, can be expressed as:

xnet

F o= F ot F p cOS(B)—F  sin(S)+F,,. Equation (15)

Hence, the load on the front and rear axles are given
respectively as:

F =F ~dF, Equation (16)

F_=F +dF, Equation (17)

Correspondingly, the prediction system 170 can calibrate a
transfer model for weight using pitch stiffness during con-
stant acceleration and braking involving the vehicle 100.
Transient pitch behavior, measured during step changes in
acceleration and braking, is then processed by the prediction
system 170 to estimate the parameter k from Eq. (14). In one
approach, the parameter k=3.01 is selected such that simu-
lations for the vehicle 100 use pitch that is realistic.
[0033] In various implementations, the prediction system
170 calculates a lateral brake balance below or separate from
the processing layer of the NMPC using a static load transfer
involving lateral motion. For the right and left side, this can
be expressed respectively by:

T brae=(8/ 2O e/t i aen )82~ oo/ icen) s Equation (18)

Torate,=Cbraie frlbraiced 14 brake)s Equation (19)

Tprate, = Corate £/ (1 braie)s Equation (20)

where g is the gravitational constant, t,,,,,, the vehicle track
width, and a, the lateral acceleration. This motion can create
an additional moment of:

o= Corate A Cbrake, )OS it 2~ Cirae i

Tpraake,rr) Erwictetd 2)s Equation (21)

where T, -and T, , are the front and rear brake torques,
respectively.

[0034] As previously noted, the prediction system 170 can
optimize gears and gear changes for an ADS to operate at the
handling limits 240. In one approach, the gears and the gear
changes are modeled outside the NMPC. For example, the
NMPC requests a drive force from an engine controller
associated with a driving command. The prediction system
170 may ensure that the vehicle drivetrain is in a state that
delivers the drive force optimally by adapting gears. As
such, target gears for individual points on the projected or
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reference trajectory are identified by a drivetrain controller.
The vehicle tracks the target gear using a lower-level gear
shifting controller running separately from the NMPC.
[0035] With the vehicle dynamics and gear changes mod-
eled, the prediction system 170 may develop an NMPC
through two optimal control problems (OCPs). The first one
generates a reference trajectory which optimizes for a track
length, and a fixed horizon MPC to be used online. The MPC
may be given in general form as:

minJ Equation (22)
st xpe1 = fx, w)
glx,u)=0
h(x,u) <0 s
Xomin £ X £ Xopax
Unpin < U < Upgy

Xo = X;

with J being the cost, x the state vector, and u the input
vector. X,,;, and Xx,,.,. may be the minimum and maximum
values for the state vector, respectively. Also, u,,,,, and u,,.
may be defined similarly for certain inputs. Lastly, the initial
state, X,, can be constrained as equal to the current state
measurement, X; for modeling.

[0036] Regarding details of estimating the cost, the pre-
diction system 170 can calculate cost online as:

J= I T AT T o T b 0T, )-ds, Equation (23)

where N is the horizon length, J, the terminal cost, and ds;
the step length of path distance. The running cost can have
several terms penalizing the state, deviation from the refer-
ence trajectory, and control effort, weighted by the poten-
tially different step lengths at individual steps. Furthermore,
a state-bound cost can impose a penalty on the vehicle 100
for a track-bound violation and exceeding the maximum
vehicle sideslip. The components of this cost can be active
if the maximum or minimum values are exceeded. When
exceeded, this cost may be given as:

7, e,-:Wtb(ei_emin,-,max,-)2+W|3(Bi_|3min,max)2, Equation (24)

where w,, weighs track bound violations, and wg is a weight
on exceeding the sideslip range.

[0037] Moreover, a tracking cost penalizes the lateral error
from the reference trajectory, as well as time. This can be
given as:

Jti=We€i2+Wt(dS/S'i), Equation (25)

where w, is a weight on the lateral error and w, a weight on
time. Also, the prediction system 170 can impose a small
regularization cost on the front tire sideslip to avoid zero
gradients at tire saturation. This can be given as:

] a,-:Waaf,-za Equation (26)
with the weight w,, weighing the sideslip.
[0038] Inone approach, a state regularization cost imposes
a small cost penalizing deviation from the reference velocity
and brake torques. This can be given as:

2 2 Equation (27
Ty =wp(Vi = Vier) +Wrbmke/ (Tbmke/j - Tbrakef’yef’i) , @

2
Wiy ake, (T brake,; ~ T brake”ef’i)
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where wy, is the velocity weight, and

Webrate ¢ and Wiy ke,

the front and rear brake torque weights, respectively. Also,
V,.r1s the reference velocity, while T, _and Torake,,; A€
the reference front and rear brake torques, respectively.
[0039] In one approach, the prediction system 170 may
also factor rear axle input costs for adjusting the prediction
model 260. Here, the rear axle input cost may penalize both
the rear brakes and engine from being applied substantially

simultaneously. This can be expressed as:

= T O Equation (28)

where w, is the weight.

[0040] In FIG. 3, costs may penalize forces exceeding the
friction circle 310 at the lumped front and rear tires, account-
ing for longitudinal load transfer. In this way, spinout,
sideslip, understeering, oversteering, and so on may be
prevented. When the force is exceeded, this can be given as:

F 4+ F? 2 Equation (29)
i Ty
Jr; = WF[[—X : yzl - Ulzisz/)z) +

(MrFog)
2
FL o+ 5
— 5 |~ WmF2)|
G For)

where w, is a weight, p,;,, an imposed limit on friction
utilization, and F, the load on individual tires accounting for
longitudinal load transfer and topology. Here, the prediction
system 170 may factor the longitudinal load transfer and
topology as they can impact the force potential at individual
tires of the vehicle 100.

[0041] Additional costs are computed by the prediction
system 170 to estimate vehicle dynamics. An input accel-
eration cost penalizes the engine torque and steering angle
acceleration to promote smoother inputs. This can be given
as:

Jﬁi:W53i2+W;%i2, Equation (30)

with wgs and w; being the weights. An input cost applies a
small regularization to the reference brake torque rate. This
can be given as:

. . 5 . . N .
JmWilTorake,Torake,r,ref) TWi Lorake f~Corake fyref) s Equation (31)

where w. is the weight. Furthermore, a terminal stability
cost regulates sideslip and error stability. The cost can be
shaped to encourage first-order dynamics for restoring path
error and sideslip at the terminal state. This can be given as:

J N=WBNdSi(B B )2+ (Eprthee ), Equation (32)

with wp being a weight on sideslip rate, and w, being a
weight on the lateral error rate. Here, kg and k, are constants.
Also, a terminal cost can be expressed as:

Jn=w, ne AW Ao A0 AW WV Veer, )2 Equation (33)

with the terminal weights being w, ,, for the lateral error,
W~ ON the course error, and Wy, on the terminal velocity
error.

[0042] In various implementations, the prediction system
170 generates vehicle dynamics using an initial state x,, that
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is constrained to be equal with the most recent measurement,
X This is can be expressed as:

meas*

Equation (34)

X0™Xmeas

The vehicle 100 may also have actuation constraints involv-
ing maximum and minimum bounds. Here, the bounds are
imposed on the inputs and states to maintain consistency
with the capabilities of the vehicle 100:

Omin é Omax Equation (35)
Omin o Omax
Wy min Wy Wrmax
Tomin T Timax
< <

Thrakemin Thrake,f T by ake,max
Thrake,min Thrake,r T brake,max
Thrakemin Thrake.f Thrake,max
Thrakemin Thraker Thrake,max

Furthermore, a slew constraint can bound the steering accel-
eration as:

8,08,

min=

Equation (36)

[0043] As previously explained, the load on individual
tires of the vehicle 100 will vary from load being transferred
longitudinally between the front and rear axles and laterally
during acceleration, cornering, and turns. For example, as
the load is shifted forward during braking, the front tires
have more capability to generate forces due to the increased
load, and concomitantly, the rear tires have less. As such, the
prediction system 170 can allocate a dynamic brake balance
through brake torques among tires independently and lever-
age more capabilities of the vehicle 100, thereby increasing
performance. In one approach, the NMPC allocates forces
by treating longitudinal brake torque on the front and rear
axle as separate states for improved computations. Also,
when a static weight distribution of the vehicle 100 is biased
to the front and load transfers forward during braking, the
prediction system 170 can constrain the front brake torque at
a larger magnitude than the rear brake torque. For instance,
this constraint can be expressed as:

Torake,r> Corakef Equation (37)

[0044] In one approach, the prediction system 170 uses
Kalman filtering to estimate friction accurately and effi-
ciently for non-linear modeling. For instance, the prediction
system 170 implements a UKF using the bicycle model
while accounting for longitudinal and lateral forces cou-
pling, load transfer, road topology, and so on. The UKF may
process the yaw rate, sideslip, velocity, front friction, and
rear friction as limited states to simplify computations. Here,
the UKF correction step can be based upon measurements of
the yaw rate, velocity, and sideslip. Furthermore, the UKF
runs at a particular frequency (e.g., 62.5 Hertz (Hz)) and the
MPC bicycle model is updated with the current friction
estimate accordingly.

[0045] Moreover, the prediction system 170 factors uncer-
tainty by updating the p,,,, with the estimate p,, =L, ,,,—O-
Here, ,,,,,, may represent a maximum friction utilization and
G an estimated standard deviation. The prediction system
170 may utilize the estimated uncertainty for both the front
and rear tires such that when G is elevated, the maximum
allowable friction is reduced. As the estimate becomes
certain and & decreases, the friction utilization approaches
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W,.om- In this way, the MPC is conservative during uncertain
periods in estimates and approaches increased friction avail-
ability as the UKF converges on improved estimates,
thereby improving overall performance.

[0046] Regarding tuning, the prediction system 170 auto-
matically tunes the UKF for the process noise covariance
matrix and initial friction variance. The prediction system
170 can optimize the following function:

. N i
ming = 32" G = meas)? Equation (38)

S.t. Omin = 0 < Onax

where y,,.,, is the normalized predictions of the state vector
consisting of yaw rate and velocity, and y,,.,, represents
measurements. Also, Q is the process noise covariance
matrix, and Q,,,;,, and Q,, .. represent the upper and lower
bounds, respectively. In one approach, the optimization
iterations by the prediction system 170 may involve two
steps. First, the UKF runs to obtain point-wise estimates of
friction for the given process noise. Second, the prediction
system 170 computes open-loop predictions, parameterized
by the UKF estimates, over a complete data set. For
example, the cost can involve six runs: two laps with a high
initial estimation, two with a low initial estimate, and two
with the nominal initial estimate. In this way, the cost
function determines the process noise covariance that mini-
mizes prediction error in an open loop compared to mea-
surements.

[0047] Moreover, the prediction model 260 using MPC
may adjust parameters using the UKF by leveraging adap-
tive friction estimates. In this way, the MPC can re-plan
control inputs that are locally significant, particularly far
from the reference trajectory. Operating away from the
reference trajectory also allows the prediction system 170 to
increasingly leverage the friction estimation from the UKF,
since friction values can vary significantly from reference
path conditions. Furthermore, the prediction system 170
increases performance using the Kalman filtering with
dynamic lateral and longitudinal brake proportioning. Here,
the commanded brake torque can be different for individual
wheels of the vehicle 100, thereby accounting for lateral and
longitudinal weight transfer. The prediction system 170 may
also scale the friction circle 310 to increase allowable forces
and braking range associated with an estimated path uncer-
tainty for the projected trajectory. In this way, the vehicle
100 can brake aggressively without activation of anti-lock
brake systems (ABS) and smoothly follow the projected
trajectory.

[0048] Regarding more details on weight transfer, the
prediction model 260 may model weight transfer to dynami-
cally change brake balancing while braking the vehicle 100.
In one approach, the target braking for the front and rear axle
is dependent on the normal force at individual axles. Here,
the longitudinal weight transfer during braking can have an
increased impact on a target force for braking and brake
balance. At the beginning of a flat braking zone, the weight
distribution of the vehicle 100 can approximately equal the
static weight distribution. Due to the dynamic load transfer,
as the vehicle 100 brakes, more load can be transferred to the
front axle that reduces the capability of generating force at
the rear axle. In this example, the target brake balance shifts
to bias the front axle and operating ranges and force utili-

Feb. 1, 2024

zation expands. For example, dynamic brake balance allows
the NMPC to utilize the available rear braking force at the
start of braking and also utilize the increased available
braking force at the front axle as the load is transferred
forward.

[0049] Regarding more details on the UKF and adjusting
a MPC, the prediction system 170 increases the operating
range of the NMPC by accounting for additional yaw
moments while allocating brakes according to load transfer.
In particular, this may increase the utilization of available
friction force with saturation by modeling the friction vari-
ance along the projected trajectory at turns, corners, and so
on. Furthermore, the prediction system 170 may converge to
friction values through either lower or higher excitations by
using a closed loop with NMPC and Kalman filtering. For
example, the prediction system 170 identifies low excita-
tions where tire forces are unsaturated, thereby improving
vehicle control. Through this approach, the prediction sys-
tem 170 may also detect smaller changes in the tire-road
interaction and correct for modeling errors correlated with
the coefficient of friction.

[0050] Turning now to FIG. 4, one embodiment of a
method 400 that is associated with adjusting the prediction
model 260 for controlling the vehicle 100 at the handling
limits 240 using Kalman filtering and scaling is illustrated.
The method 400 will be discussed from the perspective of
the prediction system 170 of FIGS. 1 and 2. While the
method 400 is discussed in combination with the prediction
system 170, it should be appreciated that the method 400 is
not limited to being implemented within the prediction
system 170 but is instead one example of a system that may
implement the method 400.

[0051] At 410, the prediction system 170 adjusts the
parameters of a prediction model (e.g., NMPC) using Kal-
man filtering and friction estimates associated with a pro-
jected trajectory generated by an ADS. In one approach, the
Kalman filtering iteratively uses covariance in states and
friction, process noise (e.g., point-wise friction estimates),
measurement noise, state measurements, open-loop predic-
tion errors, and so on to estimate friction accurately. States
may include a yaw rate, a velocity, a sideslip, estimated
parameters for front-friction and rear-friction that the filter-
ing processes until value convergence. Furthermore, as
previously explained, the prediction system 170 may calcu-
late and reduce various dynamic costs within the prediction
model for increasing stability and comfort.

[0052] In one approach, the prediction system 170 factors
estimate uncertainty by updating p,,,, with the estimate
Wyim=M,om—C associated with the Kalman filtering. Here,
W,,,n, May represent a maximum friction utilization and & an
estimated standard deviation associated with an imposed
limit for friction utilization involving the vehicle 100. The
prediction system 170 may utilize the estimated uncertainty
for both the front and rear tires such that when G is elevated,
the maximum allowable friction is reduced. As the estimate
becomes more certain and ¢ decreases, the friction utiliza-
tion approaches .. In this way, the MPC is conservative
during elevated uncertainty in the estimate and approaches
increased friction utilization as the UKF converges on
improved estimates.

[0053] At 420, the prediction system 170 scales the han-
dling limits 240 using the prediction model for the projected
trajectory. The handling limits 240 may define force satu-
ration and available friction for individual tires of the
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vehicle 100. As such, a spinout, traction loss, and so on may
occur if the vehicle 100 exceeds the handling limits 240.
Furthermore, as previously explained, the prediction system
170 can adapt a friction circle for the projected trajectory,
such as at the track edge, near an obstacle, and so on for
increased force utilization. Here, the friction circle scales
through expansion to increase the available force at indi-
vidual tires within the handling limits 240, thereby main-
taining control through a maneuver. The maximum force
available may be the tire friction multiplied by the normal
load at individual tires or an axle of the vehicle 100. Once
a dangerous scenario is averted, the prediction system 170
may reduce the friction circle, thereby increasing comfort by
reducing sudden movements or jerks.

[0054] Moreover, the prediction system 170 forms the
friction circle using estimates from the Kalman filtering. In
one approach, the friction circle incorporates errors and
uncertainty from the friction estimates individually for front
and rear tires of the vehicle 100 and factors load transfer.
Furthermore, the prediction system 170 may adjust the
coeflicients of the prediction model online using the friction
estimates for improving subsequent computations.

[0055] At 430, the prediction system 170 generates
vehicle dynamics using the load transfer and brake distri-
bution for the prediction model according to estimated road
conditions and the handling limits 240. Here, the prediction
system 170 may compute first-order dynamics for longitu-
dinal load transfer such that available frictional forces at the
handling limits 240 are utilized for braking. Correspond-
ingly, the prediction system 170 can calibrate a weight
transfer model using pitch stiffness during constant accel-
eration and braking involving the vehicle 100. As previously
explained, the prediction model can use states (e.g., yaw
vector) for axles of the vehicle 100 with the brake distribu-
tion separately. The load transfer may also bias braking the
front tires while applying available braking on the rear tires
at the handling limits 240 as load transfers forward during
deceleration. Furthermore, the prediction system 170 may
continue these calculations along points of the projected
trajectory by further adjustments of the prediction model at
410. In this way, the prediction model adapts control at the
handling limits 240 while utilizing available traction poten-
tial and tire friction that improves safety and comfort.

[0056] At 440, the prediction system 170 and the com-
mand module 220 use the prediction model to output a
driving command for the projected trajectory. Here, the
vehicle 100 can utilize the ADS and the prediction model to
avoid an object by decelerating in a reduced distance at the
handling limits 240 through the projected trajectory. As
previously explained, the prediction system 170 may
execute the prediction model at a layer separate from the
chassis controls. In this way, the processing layer associated
with the prediction model improves the accuracy of load
transfer calculations by factoring grade measurements (e.g.,
road topology), gear-change modeling, and so on separate
from chassis controls. As previously explained, the predic-
tion system 170 using a separate (e.g., higher-level) pro-
cessing layer can prioritize different attributes (e.g., mini-
mum time, smoothness, comfort, etc.) while incorporating
the non-linear dynamics for the vehicle 100 and model
fidelity. As such, the prioritization improves determining
vehicle limits given by friction and force limits at individual
tires while avoiding saturating tires, oversteering, under-
steering, and so on.
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[0057] Furthermore, the prediction system 170 extracts the
potential and available friction for braking under various
road conditions using the filtering and scaling of the friction
circle. Such control and maneuvering avoids saturating tires
on an individual basis. Accordingly, the prediction system
170 adjusts the prediction model for controlling a vehicle at
handling limits that increase stability, traction, and stopping
distances.

[0058] FIG. 1 will now be discussed in full detail as an
example environment within which the system and methods
disclosed herein may operate. In some instances, the vehicle
100 is configured to switch selectively between different
modes of operation/control according to the direction of one
or more modules/systems of the wvehicle 100. In one
approach, the modes include: 0, no automation; 1, driver
assistance; 2, partial automation; 3, conditional automation;
4, high automation; and 5, full automation. In one or more
arrangements, the vehicle 100 can be configured to operate
in a subset of possible modes.

[0059] In one or more embodiments, the vehicle 100 is an
automated or autonomous vehicle. As used herein, “autono-
mous vehicle” refers to a vehicle that is capable of operating
in an autonomous mode (e.g., category 5, full automation).
“Automated mode” or “autonomous mode” refers to navi-
gating and/or maneuvering the vehicle 100 along a travel
route using one or more computing systems to control the
vehicle 100 with minimal or no input from a human driver.
In one or more embodiments, the vehicle 100 is highly
automated or completely automated. In one embodiment, the
vehicle 100 is configured with one or more semi-autono-
mous operational modes in which one or more computing
systems perform a portion of the navigation and/or maneu-
vering of the vehicle along a travel route, and a vehicle
operator (i.e., driver) provides inputs to the vehicle to
perform a portion of the navigation and/or maneuvering of
the vehicle 100 along a travel route.

[0060] The vehicle 100 can include one or more proces-
sors 110. In one or more arrangements, the processor(s) 110
can be a main processor of the vehicle 100. For instance, the
processor(s) 110 can be an electronic control unit (ECU), an
application-specific integrated circuit (ASIC), a micropro-
cessor, etc. The vehicle 100 can include one or more data
stores 115 for storing one or more types of data. The data
store(s) 115 can include volatile and/or non-volatile
memory. Examples of suitable data stores 115 include RAM,
flash memory, ROM, Programmable Read-Only Memory
(PROM), Erasable Programmable Read-Only Memory
(EPROM), Electrically Erasable Programmable Read-Only
Memory (EEPROM), registers, magnetic disks, optical
disks, and hard drives. The data store(s) 115 can be a
component of the processor(s) 110, or the data store(s) 115
can be operatively connected to the processor(s) 110 for use
thereby. The term “operatively connected,” as used through-
out this description, can include direct or indirect connec-
tions, including connections without direct physical contact.
[0061] In one or more arrangements, the one or more data
stores 115 can include map data 116. The map data 116 can
include maps of one or more geographic areas. In some
instances, the map data 116 can include information or data
on roads, traffic control devices, road markings, structures,
features, and/or landmarks in the one or more geographic
areas. The map data 116 can be in any suitable form. In some
instances, the map data 116 can include aerial views of an
area. In some instances, the map data 116 can include ground
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views of an area, including 360-degree ground views. The
map data 116 can include measurements, dimensions, dis-
tances, and/or information for one or more items included in
the map data 116 and/or relative to other items included in
the map data 116. The map data 116 can include a digital
map with information about road geometry.

[0062] Inone or more arrangements, the map data 116 can
include one or more terrain maps 117. The terrain map(s)
117 can include information about the terrain, roads, sur-
faces, and/or other features of one or more geographic areas.
The terrain map(s) 117 can include elevation data in the one
or more geographic areas. The terrain map(s) 117 can define
one or more ground surfaces, which can include paved
roads, unpaved roads, land, and other things that define a
ground surface.

[0063] Inone or more arrangements, the map data 116 can
include one or more static obstacle maps 118. The static
obstacle map(s) 118 can include information about one or
more static obstacles located within one or more geographic
areas. A “static obstacle” is a physical object whose position
does not change or substantially change over a period of
time and/or whose size does not change or substantially
change over a period of time. Examples of static obstacles
can include trees, buildings, curbs, fences, railings, medians,
utility poles, statues, monuments, signs, benches, furniture,
mailboxes, large rocks, or hills. The static obstacles can be
objects that extend above or below ground level (e.g.,
potholes). The one or more static obstacles included in the
static obstacle map(s) 118 can have location data, size data,
dimension data, material data, and/or other data associated
with it. The static obstacle map(s) 118 can include measure-
ments, dimensions, distances, and/or information for one or
more static obstacles. The static obstacle map(s) 118 can be
high quality and/or highly detailed. The static obstacle
map(s) 118 can be updated to reflect changes within a
mapped area.

[0064] One or more data stores 115 can include sensor
data 119. In this context, “sensor data” means any informa-
tion about the sensors that the vehicle 100 is equipped with,
including the capabilities and other information about such
sensors. As will be explained below, the vehicle 100 can
include the sensor system 120. The sensor data 119 can
relate to one or more sensors of the sensor system 120. As
an example, in one or more arrangements, the sensor data
119 can include information about one or more LIDAR
sensors 124 of the sensor system 120.

[0065] Insome instances, at least a portion of the map data
116 and/or the sensor data 119 can be located in one or more
data stores 115 located onboard the vehicle 100. Alterna-
tively, or in addition, at least a portion of the map data 116
and/or the sensor data 119 can be located in one or more data
stores 115 that are located remotely from the vehicle 100.

[0066] As noted above, the vehicle 100 can include the
sensor system 120. The sensor system 120 can include one
or more sensors. “Sensor” means a device that can detect,
and/or sense something. In at least one embodiment, the one
or more sensors detect, and/or sense in real-time. As used
herein, the term “real-time” means a level of processing
responsiveness that a user or system senses as sufficiently
immediate for a particular process or determination to be
made, or that enables the processor to keep up with some
external process.

[0067] In arrangements in which the sensor system 120
includes a plurality of sensors, the sensors may function
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independently or two or more of the sensors may function in
combination. The sensor system 120 and/or the one or more
sensors can be operatively connected to the processor(s)
110, the data store(s) 115, and/or another element of the
vehicle 100. The sensor system 120 can produce observa-
tions about a portion of the environment of the vehicle 100
(e.g., nearby vehicles).

[0068] The sensor system 120 can include any suitable
type of sensor. Various examples of different types of
sensors will be described herein. However, it will be under-
stood that the embodiments are not limited to the particular
sensors described. The sensor system 120 can include one or
more vehicle sensors 121. The vehicle sensor(s) 121 can
detect information about the vehicle 100 itself. In one or
more arrangements, the vehicle sensor(s) 121 can be con-
figured to detect position and orientation changes of the
vehicle 100, such as, for example, based on inertial accel-
eration. In one or more arrangements, the vehicle sensor(s)
121 can include one or more accelerometers, one or more
gyroscopes, an inertial measurement unit (IMU), a dead-
reckoning system, a global navigation satellite system
(GNSS), a global positioning system (GPS), a navigation
system 147, and/or other suitable sensors. The wvehicle
sensor(s) 121 can be configured to detect one or more
characteristics of the vehicle 100 and/or a manner in which
the vehicle 100 is operating. In one or more arrangements,
the vehicle sensor(s) 121 can include a speedometer to
determine a current speed of the vehicle 100.

[0069] Alternatively, or in addition, the sensor system 120
can include one or more environment sensors 122 config-
ured to acquire data about an environment surrounding the
vehicle 100 in which the vehicle 100 is operating. “Sur-
rounding environment data” includes data about the external
environment in which the vehicle is located or one or more
portions thereof. For example, the one or more environment
sensors 122 can be configured to sense obstacles in at least
a portion of the external environment of the vehicle 100
and/or data about such obstacles. Such obstacles may be
stationary objects and/or dynamic objects. The one or more
environment sensors 122 can be configured to detect other
things in the external environment of the vehicle 100, such
as, for example, lane markers, signs, traffic lights, traffic
signs, lane lines, crosswalks, curbs proximate the vehicle
100, off-road objects, etc.

[0070] Various examples of sensors of the sensor system
120 will be described herein. The example sensors may be
part of the one or more environment sensors 122 and/or the
one or more vehicle sensors 121. However, it will be
understood that the embodiments are not limited to the
particular sensors described.

[0071] As an example, in one or more arrangements, the
sensor system 120 can include one or more of: radar sensors
123, LIDAR sensors 124, sonar sensors 125, weather sen-
sors, haptic sensors, locational sensors, and/or one or more
cameras 126. In one or more arrangements, the one or more
cameras 126 can be high dynamic range (HDR) cameras,
stereo, or infrared (IR) cameras.

[0072] The vehicle 100 can include an input system 130.
An “input system” includes components or arrangement or
groups thereof that enable various entities to enter data into
a machine. The input system 130 can receive an input from
a vehicle occupant. The vehicle 100 can include an output
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system 135. An “output system” includes one or more
components that facilitate presenting data to a vehicle occu-
pant.

[0073] The vehicle 100 can include one or more vehicle
systems 140. Various examples of the one or more vehicle
systems 140 are shown in FIG. 1. However, the vehicle 100
can include more, fewer, or different vehicle systems. It
should be appreciated that although particular vehicle sys-
tems are separately defined, any of the systems or portions
thereof may be otherwise combined or segregated via hard-
ware and/or software within the vehicle 100. The vehicle
100 can include a propulsion system 141, a braking system
142, a steering system 143, a throttle system 144, a trans-
mission system 145, a signaling system 146, and/or a
navigation system 147. Any of these systems can include
one or more devices, components, and/or a combination
thereof, now known or later developed.

[0074] The navigation system 147 can include one or more
devices, applications, and/or combinations thereof, now
known or later developed, configured to determine the
geographic location of the vehicle 100 and/or to determine
a travel route for the vehicle 100. The navigation system 147
can include one or more mapping applications to determine
a travel route for the vehicle 100. The navigation system 147
can include a global positioning system, a local positioning
system, or a geolocation system.

[0075] The processor(s) 110, the prediction system 170,
and/or the automated driving module(s) 160 can be opera-
tively connected to communicate with the various vehicle
systems 140 and/or individual components thereof. For
example, returning to FIG. 1, the processor(s) 110 and/or the
automated driving module(s) 160 can be in communication
to send and/or receive information from the various vehicle
systems 140 to control the movement of the vehicle 100. The
processor(s) 110, the prediction system 170, and/or the
automated driving module(s) 160 may control some or all of
the vehicle systems 140 and, thus, may be partially or fully
autonomous as defined by the society of automotive engi-
neers (SAE) levels 0 to 5.

[0076] The processor(s) 110, the prediction system 170,
and/or the automated driving module(s) 160 can be opera-
tively connected to communicate with the various vehicle
systems 140 and/or individual components thereof. For
example, returning to FIG. 1, the processor(s) 110, the
prediction system 170, and/or the automated driving module
(s) 160 can be in communication to send and/or receive
information from the various vehicle systems 140 to control
the movement of the vehicle 100. The processor(s) 110, the
prediction system 170, and/or the automated driving module
(s) 160 may control some or all of the vehicle systems 140.

[0077] The processor(s) 110, the prediction system 170,
and/or the automated driving module(s) 160 may be oper-
able to control the navigation and maneuvering of the
vehicle 100 by controlling one or more of the vehicle
systems 140 and/or components thereof. For instance, when
operating in an autonomous mode, the processor(s) 110, the
prediction system 170, and/or the automated driving module
(s) 160 can control the direction and/or speed of the vehicle
100. The processor(s) 110, the prediction system 170, and/or
the automated driving module(s) 160 can cause the vehicle
100 to accelerate, decelerate, and/or change direction. As
used herein, “cause” or “causing” means to make, force,
compel, direct, command, instruct, and/or enable an event or
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action to occur or at least be in a state where such event or
action may occur, either in a direct or indirect manner.
[0078] The vehicle 100 can include one or more actuators
150. The actuators 150 can be an element or a combination
of elements operable to alter one or more of the vehicle
systems 140 or components thereof responsive to receiving
signals or other inputs from the processor(s) 110 and/or the
automated driving module(s) 160. For instance, the one or
more actuators 150 can include motors, pneumatic actuators,
hydraulic pistons, relays, solenoids, and/or piezoelectric
actuators, just to name a few possibilities.

[0079] The vehicle 100 can include one or more modules,
at least some of which are described herein. The modules
can be implemented as computer-readable program code
that, when executed by a processor(s) 110, implement one or
more of the various processes described herein. One or more
of the modules can be a component of the processor(s) 110,
or one or more of the modules can be executed on and/or
distributed among other processing systems to which the
processor(s) 110 is operatively connected. The modules can
include instructions (e.g., program logic) executable by one
or more processors 110. Alternatively, or in addition, one or
more data stores 115 may contain such instructions.

[0080] In one or more arrangements, one or more of the
modules described herein can include artificial intelligence
elements, e.g., neural network, fuzzy logic, or other machine
learning algorithms. Furthermore, in one or more arrange-
ments, one or more of the modules can be distributed among
a plurality of the modules described herein. In one or more
arrangements, two or more of the modules described herein
can be combined into a single module.

[0081] The vehicle 100 can include one or more auto-
mated driving modules 160. The automated driving module
(s) 160 can be configured to receive data from the sensor
system 120 and/or any other type of system capable of
capturing information relating to the vehicle 100 and/or the
external environment of the vehicle 100. In one or more
arrangements, the automated driving module(s) 160 can use
such data to generate one or more driving scene models. The
automated driving module(s) 160 can determine position
and velocity of the vehicle 100. The automated driving
module(s) 160 can determine the location of obstacles,
obstacles, or other environmental features including traffic
signs, trees, shrubs, neighboring vehicles, pedestrians, etc.
[0082] The automated driving module(s) 160 can be con-
figured to receive, and/or determine location information for
obstacles within the external environment of the vehicle 100
for use by the processor(s) 110, and/or one or more of the
modules described herein to estimate position and orienta-
tion of the vehicle 100, vehicle position in global coordi-
nates based on signals from a plurality of satellites, or any
other data and/or signals that could be used to determine the
current state of the vehicle 100 or determine the position of
the vehicle 100 with respect to its environment for use in
either creating a map or determining the position of the
vehicle 100 in respect to map data.

[0083] The automated driving module(s) 160 either inde-
pendently or in combination with the prediction system 170
can be configured to determine travel path(s), current
autonomous driving maneuvers for the vehicle 100, future
autonomous driving maneuvers and/or modifications to cur-
rent autonomous driving maneuvers based on data acquired
by the sensor system 120, driving scene models, and/or data
from any other suitable source such as determinations from
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the sensor data 250. “Driving maneuver” means one or more
actions that affect the movement of a vehicle. Examples of
driving maneuvers include: accelerating, decelerating, brak-
ing, turning, moving in a lateral direction of the vehicle 100,
changing travel lanes, merging into a travel lane, and/or
reversing, just to name a few possibilities. The automated
driving module(s) 160 can be configured to implement
determined driving maneuvers. The automated driving mod-
ule(s) 160 can cause, directly or indirectly, such autonomous
driving maneuvers to be implemented. As used herein,
“cause” or “causing” means to make, command, instruct,
and/or enable an event or action to occur or at least be in a
state where such event or action may occur, either in a direct
or indirect manner. The automated driving module(s) 160
can be configured to execute various vehicle functions
and/or to transmit data to, receive data from, interact with,
and/or control the vehicle 100 or one or more systems
thereof (e.g., one or more of vehicle systems 140).

[0084] Detailed embodiments are disclosed herein. How-
ever, it is to be understood that the disclosed embodiments
are intended as examples. Therefore, specific structural and
functional details disclosed herein are not to be interpreted
as limiting, but merely as a basis for the claims and as a
representative basis for teaching one skilled in the art to
variously employ the aspects herein in virtually any appro-
priately detailed structure. Furthermore, the terms and
phrases used herein are not intended to be limiting but rather
to provide an understandable description of possible imple-
mentations. Various embodiments are shown in FIGS. 1-4,
but the embodiments are not limited to the illustrated
structure or application.

[0085] The flowcharts and block diagrams in the figures
illustrate the architecture, functionality, and operation of
possible implementations of systems, methods, and com-
puter program products according to various embodiments.
In this regard, a block in the flowcharts or block diagrams
may represent a module, segment, or portion of code, which
comprises one or more executable instructions for imple-
menting the specified logical function(s). It should also be
noted that, in some alternative implementations, the func-
tions noted in the block may occur out of the order noted in
the figures. For example, two blocks shown in succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved.

[0086] The systems, components, and/or processes
described above can be realized in hardware or a combina-
tion of hardware and software and can be realized in a
centralized fashion in one processing system or in a distrib-
uted fashion where different elements are spread across
several interconnected processing systems. Any kind of
processing system or another apparatus adapted for carrying
out the methods described herein is suited. A typical com-
bination of hardware and software can be a processing
system with computer-usable program code that, when
being loaded and executed, controls the processing system
such that it carries out the methods described herein.
[0087] The systems, components, and/or processes also
can be embedded in a computer-readable storage, such as a
computer program product or other data programs storage
device, readable by a machine, tangibly embodying a pro-
gram of instructions executable by the machine to perform
methods and processes described herein. These elements
also can be embedded in an application product which
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comprises the features enabling the implementation of the
methods described herein and, which when loaded in a
processing system, is able to carry out these methods.
[0088] Furthermore, arrangements described herein may
take the form of a computer program product embodied in
one or more computer-readable media having computer-
readable program code embodied, e.g., stored, thereon. Any
combination of one or more computer-readable media may
be utilized. The computer-readable medium may be a com-
puter-readable signal medium or a computer-readable stor-
age medium. The phrase “computer-readable storage
medium” means a non-transitory storage medium. A com-
puter-readable storage medium may be, for example, but not
limited to, an electronic, magnetic, optical, electromagnetic,
infrared, or semiconductor system, apparatus, or device, or
any suitable combination of the foregoing. More specific
examples (a non-exhaustive list) of the computer-readable
storage medium would include the following: a portable
computer diskette, a hard disk drive (HDD), a solid-state
drive (SSD), a ROM, an EPROM or Flash memory, a
portable compact disc read-only memory (CD-ROM), a
digital versatile disc (DVD), an optical storage device, a
magnetic storage device, or any suitable combination of the
foregoing. In the context of this document, a computer-
readable storage medium may be any tangible medium that
can contain, or store a program for use by or in connection
with an instruction execution system, apparatus, or device.
[0089] Generally, modules as used herein include routines,
programs, objects, components, data structures, and so on
that perform particular tasks or implement particular data
types. In further aspects, a memory generally stores the
noted modules. The memory associated with a module may
be a buffer or cache embedded within a processor, a RAM,
a ROM, a flash memory, or another suitable electronic
storage medium. In still further aspects, a module as envi-
sioned by the present disclosure is implemented as an ASIC,
a hardware component of a system on a chip (SoC), as a
programmable logic array (PLA), or as another suitable
hardware component that is embedded with a defined con-
figuration set (e.g., instructions) for performing the dis-
closed functions.

[0090] Program code embodied on a computer-readable
medium may be transmitted using any appropriate medium,
including but not limited to wireless, wireline, optical fiber,
cable, radio frequency (RF), etc., or any suitable combina-
tion of the foregoing. Computer program code for carrying
out operations for aspects of the present arrangements may
be written in any combination of one or more programming
languages, including an object-oriented programming lan-
guage such as Java™, Smalltalk™, C++ or the like and
conventional procedural programming languages, such as
the “C” programming language or similar programming
languages. The program code may execute entirely on the
user’s computer, partly on the user’s computer, as a stand-
alone software package, partly on the user’s computer and
partly on a remote computer, or entirely on the remote
computer or server. In the latter scenario, the remote com-
puter may be connected to the user’s computer through any
type of network, including a local area network (LAN) or a
wide area network (WAN), or the connection may be made
to an external computer (for example, through the Internet
using an Internet Service Provider).

[0091] The terms “a” and “an,” as used herein, are defined
as one or more than one. The term “plurality,” as used
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herein, is defined as two or more than two. The term
“another,” as used herein, is defined as at least a second or
more. The terms “including” and/or “having,” as used
herein, are defined as comprising (i.e., open language). The
phrase “at least one of . . . and . . . ” as used herein refers
to and encompasses any and all combinations of one or more
of the associated listed items. As an example, the phrase “at
least one of A, B, and C” includes A, B, C, or any
combination thereof (e.g., AB, AC, BC, or ABC).

[0092] Aspects herein can be embodied in other forms
without departing from the spirit or essential attributes
thereof. Accordingly, reference should be made to the fol-
lowing claims, rather than to the foregoing specification, as
indicating the scope hereof.

What is claimed is:
1. A prediction system comprising:
a processor; and
a memory storing instructions that, when executed by the
processor, cause the processor to:
adjust parameters of a prediction model using friction
estimates and sideslip costs associated with a pro-
jected trajectory of a vehicle, the friction estimates
being derived from Kalman filtering;
scale, using the prediction model, handling limits of the
vehicle for the projected trajectory according to a
friction circle;

generate, by the prediction model, vehicle dynamics
using a load transfer and a brake distribution, the
vehicle dynamics being associated with estimated
road conditions and the handling limits; and

output, by the prediction model using the vehicle
dynamics, a driving command to the vehicle for the
projected trajectory.

2. The prediction system of claim 1, wherein the predic-
tion model executes in a processing layer separate from
controllers of a chassis and the prediction model implements
a non-linear model predictive control (NMPC) that gener-
ates commands at the handling limits.

3. The prediction system of claim 1 further including
instructions to:

estimate, by the Kalman filtering, the friction estimates
for forming the friction circle that adapts to potential
forces within the handling limits, wherein the friction
circle incorporates errors and uncertainty from the
friction estimates for front tires and rear tires of the
vehicle and the load transfer; and

adapt coefficients of the parameters associated with the

friction estimates.

4. The prediction system of claim 3, wherein the predic-
tion model uses states for a front axle and a rear axle of the
vehicle with the brake distribution separately and the load
transfer biases braking to the front tires while applying
available braking on the rear tires at the handling limits.

5. The prediction system of claim 3 further including
instructions to:

tune the Kalman filtering iteratively using covariance in

process noise, measurement noise, states, point-wise
friction estimates for the process noise, and prediction
errors, wherein the Kalman filtering implements an
unscented Kalman filter (UKF) and the states include a
yaw rate, a velocity, a sideslip, a front-friction value,
and a rear-friction value.
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6. The prediction system of claim 1, wherein the vehicle
dynamics are first-order dynamics and the load transfer is a
longitudinal load transfer caused by tire force available at
different tires of the vehicle.

7. The prediction system of claim 1 further including
instructions to:

request by the prediction model a drive force from an

engine controller of the vehicle associated with the
driving command;

identify a target gear using a drivetrain of the vehicle for

the drive force; and

track by the vehicle the target gear using a lower-level

gear controller operating separately from the prediction
model.

8. The prediction system of claim 1, wherein the handling
limits are associated with force saturation for coupled tires
of the vehicle that the prediction model processes.

9. The prediction system of claim 1 further including
instructions to:

compute the projected trajectory by an automated driving

system (ADS) according to the handling limits and
prior commands generated by the prediction model,
wherein the vehicle utilizes the ADS and the prediction
model to avoid an object by moving in a reduced
distance at the handling limits using the projected
trajectory.

10. A non-transitory computer-readable medium compris-
ing:

instructions that when executed by a processor cause the

processor to:

adjust parameters of a prediction model using friction
estimates and sideslip costs associated with a pro-
jected trajectory of a vehicle, the friction estimates
being derived from Kalman filtering;

scale, using the prediction model, handling limits of the
vehicle for the projected trajectory according to a
friction circle;

generate, by the prediction model, vehicle dynamics
using a load transfer and a brake distribution, the
vehicle dynamics being associated with estimated
road conditions and the handling limits; and

output, by the prediction model using the vehicle
dynamics, a driving command to the vehicle for the
projected trajectory.

11. A method comprising:

adjusting parameters of a prediction model using friction

estimates and sideslip costs associated with a projected
trajectory of a vehicle, the friction estimates being
derived from Kalman filtering;

scaling, using the prediction model, handling limits of the

vehicle for the projected trajectory according to a
friction circle;

generating, by the prediction model, vehicle dynamics

using a load transfer and a brake distribution, the
vehicle dynamics being associated with estimated road
conditions and the handling limits; and

outputting, by the prediction model using the vehicle

dynamics, a driving command to the vehicle for the
projected trajectory.

12. The method of claim 11, wherein the prediction model
executes in a processing layer separate from controllers of a
chassis and the prediction model implements a non-linear
model predictive control (NMPC) that generates commands
at the handling limits.
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13. The method of claim 11 further comprising:

estimating, by the Kalman filtering, the friction estimates

for forming the friction circle that adapts to potential
forces within the handling limits, wherein the friction
circle incorporates errors and uncertainty from the
friction estimates for front tires and rear tires of the
vehicle and the load transfer; and

adapting coefficients of the parameters associated with the

friction estimates.

14. The method of claim 13, wherein the prediction model
uses states for a front axle and a rear axle of the vehicle with
the brake distribution separately and the load transfer biases
braking to the front tires while applying available braking on
the rear tires at the handling limits.

15. The method of claim 13 further comprising:

tuning the Kalman filtering iteratively using covariance in

process noise, measurement noise, states, point-wise
friction estimates for the process noise, and prediction
errors, wherein the Kalman filtering implements an
unscented Kalman filter (UKF) and the states include a
yaw rate, a velocity, a sideslip, a front-friction value,
and a rear-friction value.

16. The method of claim 11, wherein the vehicle dynamics
are first-order dynamics and the load transfer is a longitu-
dinal load transfer caused by tire force available at different
tires of the vehicle.
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17. The method of claim 11 further comprising:

requesting by the prediction model a drive force from an

engine controller of the vehicle associated with the
driving command;

identifying a target gear using a drivetrain of the vehicle

for the drive force; and

tracking by the vehicle the target gear using a lower-level

gear controller operating separately from the prediction
model.

18. The method of claim 11, wherein the handling limits
are associated with force saturation for coupled tires of the
vehicle that the prediction model processes.

19. The method of claim 11 further comprising:

computing the projected trajectory by an automated driv-

ing system (ADS) according to the handling limits and
prior commands generated by the prediction model,
wherein the vehicle utilizes the ADS and the prediction
model to avoid an object by moving in a reduced
distance at the handling limits using the projected
trajectory.

20. The method of claim 11, wherein the sideslip costs are
associated with restoring path error and sideslip at a terminal
state for the vehicle dynamics at a first-order using the
projected trajectory.



