a2 United States Patent

US011829697B2

ao) Patent No.: US 11,829,697 B2

Pandey et al. 45) Date of Patent: Nov. 28,2023
(54) REGION-BASED LAYOUT ROUTING 2006/0092162 Al* 52006 Deering GO6T 1/20
345/506
(71) Applicant: INTERNATIONAL BUSINESS 2009/0037851 Al 2/2009 Gray et al.
MACHINES CORPORATION 2009/0217228 Al* 8/2009 Melzner GO6F 30/394
’ 716/122
Armonk, NY (US) 2010/0205572 Al* 82010 Dai ..cccooevvvenvenennee. GOGF 30/23
. 716/120
(72) Inventors: Diwesh Pandey, Bangalore (IN); 2015/0248514 Al 9/2015 Salodkar et al.
Gustavo Enrique Tellez, Hyde Park, (Continued)
NY (US)
FOREIGN PATENT DOCUMENTS
(73) Assignee: INTERNATIONAL BUSINESS
MACHINES CORPORATION, CN 101093519 A 12/2007
Armonk, NY (US) CN 105320798 A 2/2016
(Continued)
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 OTHER PUBLICATIONS
U.S.C. 154(b) by 257 days.
International Search Report issued in corresponding PCT Applica-
(21) Appl. No.: 17/395,951 tion Serial No. PCT/CN2022/107769 dated Sep. 28, 2022, pp. 1-5.
Continued
(22) Filed: Aug. 6, 2021 (Continued)
(65) Prior Publication Data Primary Examiner — Mohammed Alam
US 2023/0038321 Al Feb. 9. 2023 (74) Attorney, Agent, or Firm — Tutunjian & Bitetto,
T P.C.; Erik Johnson
(51) Imt.CL
GO6F 30/394 (2020.01) (57) ABSTRACT
GO6F 30/392 (2020.01)
GOG6F 119/18 (2020.01) Methods and systems of routing a design layout include
(52) US.CL setting an inner region and an outer region for modification
CPC ... GOGF 30/394 (2020.01); GOGF 30/392 of structures in an original design layout, in accordance with
(2020.01); GO6F 2119/18 (2020.01) a minimum spacing that is based on a fabrication process.
(58) Field of Classification Search Routing of trim positions and conductive wire extents is
USPC 716/119 performed within the inner region, based on positions of
See apphcatlonﬁleforcompletesearchhlstory shapes within the outer region, including node folding of a
' new constraint graph to minimize perturbations from a
(56) References Cited previous constraint graph, to generate an updated design

U.S. PATENT DOCUMENTS

10,192,018 B1 1/2019 Gerousis et al.
10,831,972 B2 11/2020 Pandey et al.

layout that can be manufactured using the fabrication pro-
cess.

18 Claims, 8 Drawing Sheets

Identify change to existing constraint graph

402

Y

Compare new node to previous node

404

!

Perform node folding
406

!

Identify solution based on the isomorphic graph
408

US 11,829,697 B2

Page 2
(56) References Cited
U.S. PATENT DOCUMENTS
2020/0104449 Al 4/2020 Pandey et al.
2023/0008569 Al* 1/2023 Pandey GOG6F 30/392
2023/0038321 Al* 2/2023 Pandey GOG6F 30/392

FOREIGN PATENT DOCUMENTS

CN 105893645 B 8/2016
CN 110998828 A 4/2020
CN 111950225 A 11/2020

OTHER PUBLICATIONS

Mell et al., “The NIST Definition of Cloud Computing”, National
Institute of Standards and Technology, Special Publication 800-145.
Sep. 2011, pp. 1-7.

Tang, Hao, et al. “A Survey on Steiner Tree Construction and Global
Routing for VLSI Design”, IEEE Access. Apr. 22, 2020, 2020, pp.
68593-68622.

Fang, Shao-Yun, et al. “Cut Mask Optimization with Wire Planning
in Self-Aligned Multiple Patterning Full-Chip Routing”, IEEE
Journals and Magazine, IEEE Xplore. Sep. 7, 2016, pp. 581-593.

* cited by examiner

U.S. Patent Nov. 28, 2023 Sheet 1 of 8 US 11,829,697 B2

FIG. 1

U.S. Patent Nov. 28, 2023 Sheet 2 of 8 US 11,829,697 B2

Segment layout into input regions
202

Y

Select next input region
203

Y

Set inner and outer regions
204

Y

Perform routing within regions
206

!

Minimize perturbations
208

More regions?
210

Fabricate device
212

FIG. 2

U.S. Patent Nov. 28, 2023 Sheet 3 of 8 US 11,829,697 B2

Set initial inner and outer regions
302

Y

Expand coordinates of inner region to adjacent tracks
304

Y

Select extent intersecting inner region
306

Y

Expand inner region to include the selected extent
308

Y

Delete the selected extent
310

More
intersecting extents?
312

Expand outer region
314

Set inner and outer regions
204

FIG. 3

U.S. Patent Nov. 28, 2023 Sheet 4 of 8 US 11,829,697 B2

Identify change to existing constraint graph
402

!

Compare new node to previous node
404

Y

Perform node folding
406

!

Identify solution based on the isomorphic graph
408

FIG. 4

U.S. Patent Nov. 28, 2023 Sheet 5 of 8 US 11,829,697 B2

502
2 504
)
(
R1
R4
T \ /f N
RRH ws 505 RS
I I
R1
R4 | ps
R3
R2
8 508
506

FIG. 5

U.S. Patent Nov. 28, 2023 Sheet 6 of 8 US 11,829,697 B2

Hardware User
Memory :
processor 604 interface
602 T 606
Routing Design
tool <«—>»| layout
610 608

Design layout and routing system
600

l

Chip
fabricator
650

FIG. 6

US 11,829,697 B2

Sheet 7 of 8

Nov. 28, 2023

U.S. Patent

FIG. 7

US 11,829,697 B2

Sheet 8 of 8

Nov. 28, 2023

U.S. Patent

09
7

““““““ 3

8§3 0S DUB SIeMPIE
mo No ,« ﬁo v H |

_\ m
“

wﬁmmoooi /

2&82

dunnoz
g » >oﬁ

7 ¢ HﬂO%\N‘H .

US 11,829,697 B2

1
REGION-BASED LAYOUT ROUTING

BACKGROUND

The present invention generally relates to design layout
routing, and, more particularly, to region-based techniques
for routing in extreme ultraviolet and self-aligned double
patterning fabrication technology.

When designing an integrated chip, various layout con-
siderations are taken into account to ensure that the design
is manufacturable. Layout routing may be performed auto-
matically, but routing large chip designs can be computa-
tionally expensive.

SUMMARY

A method of routing a design layout includes setting an
inner region and an outer region for modification of struc-
tures in an original design layout, in accordance with a
minimum spacing that is based on a fabrication process.
Routing of trim positions and conductive wire extents is
performed within the inner region, based on positions of
shapes within the outer region, including node folding of a
new constraint graph to minimize perturbations from a
previous constraint graph, to generate an updated design
layout that can be manufactured using the fabrication pro-
cess.

A system for routing a design layout includes hardware
processor and a memory, that stores an original design
layout and a computer program product. When executed by
the hardware processor, the computer program product
causes the hardware processor to set an inner region and an
outer region for modification of structures in the original
design layout, in accordance with a minimum spacing that is
based on a fabrication process, and to perform routing of
trim positions and conductive wire extents within the inner
region, using a hardware processor, based on positions of
shapes within the outer region, including node folding of a
new constraint graph to minimize perturbations from a
previous constraint graph, to generate an updated design
layout that can be manufactured using the fabrication pro-
cess.

These and other features and advantages will become
apparent from the following detailed description of illustra-
tive embodiments thereof, which is to be read in connection
with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

The following description will provide details of preferred
embodiments with reference to the following figures
wherein:

FIG. 1 is a view of a chip design layout that includes
actual structures as well as metal extents and trims that have
been inserted as part of an optimization, in accordance with
an embodiment of the present invention;

FIG. 2 is a block/flow diagram of a method for performing
routing within a chip design layout, including setting regions
based on a fabrication technology, in accordance with an
embodiment of the present invention;

FIG. 3 is a block/flow diagram of a method for setting
regions to promote efficiency in performing routing for a
chip design layout, in accordance with an embodiment of the
present invention;

FIG. 4 is a block/flow diagram of a method of promoting
efficiency during chip design layout optimization using node
folding, in accordance with an embodiment of the present
invention;

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 5 is a diagram of grouping regions of a chip design
layout for parallel processing, in accordance with an
embodiment of the present invention;

FIG. 6 is a block diagram of a design and layout routing
system that can efficiently perform routing within a chip
design layout, including regions that are set based on a
fabrication technology, in accordance with an embodiment
of the present invention;

FIG. 7 is a block diagram showing an illustrative cloud
computing environment having one or more cloud comput-
ing nodes with which local computing devices used by cloud
consumers communicate in accordance with one embodi-
ment; and

FIG. 8 is a block diagram showing a set of functional
abstraction layers provided by a cloud computing environ-
ment in accordance with one embodiment.

DETAILED DESCRIPTION

Certain fabrication technologies, such as extreme ultra-
violet (EUV) and self-aligned double patenting (SADP)
fabrication processes, produce better yields when particular
layout design rules are followed. For example, EUV fabri-
cation has rules regarding the distances between the ends of
neighboring conductive lines, such that it may be beneficial
to add additional length to a conductive line. SADP, mean-
while, has rules regarding the positioning of trim structures,
and it may be beneficial to move such structures and to
extend conductive lines to touch them. An automatic layout
tool can perform this process automatically, based on an
original layout, to generate an output layout that will pro-
duce a higher yield of functional devices than the original
layout would.

However, as the size of the layout increases, so too does
the number of structures that may be considered. While
finding an optimal layout may consider the positions of
every structure against every other structure, such a process
may be computationally burdensome. To reduce the com-
putational effort needed to perform routing in such cases, the
number of structures in consideration may be limited
according to particular regions of the layout. Perturbations
in a routed design layout may also be minimized, to reduce
the need to recompute layouts.

Referring now to FIG. 1, an exemplary design layout is
shown. The layout includes a set of conductive lines 102, for
example representing locations where a conductive material
will be placed. These lines 102 may be separated by trims
104, for example representing locations where an electri-
cally insulating material may be placed. During routing, the
length of the conductive lines 102 may be extended by
extents 106, representing additional conductive material that
is automatically added to the layout by the routing tool.
Routing may be an iterative process, and so a previously
routed layout may be considered again to see if improve-
ments may be made.

During routing, consideration may be limited to the
structures within a region 108. Routing may be an iterative
process, with routing being performed in sequential regions
until the entire design has been routed. Routing may fur-
thermore be repeated in regions that have already been
routed, to take into account changes that have been made in
neighboring regions. This process may be repeated until any
appropriate convergence criteria are reached.

The selection of this region, and the structures to be
considered within it, is based on an original input region. As
will be described in greater detail below, the layout features

US 11,829,697 B2

3

nearby the input region may be taken into account to
determine where the ultimate region 108 will be set.

Referring now to FIG. 2, a method of layout routing is
shown. Block 202 segments the layout into input regions.
Any appropriate segmentation scheme may be used, for
example selecting an appropriate tile size and simply divid-
ing the layout into tiles according to the tile size. For
example, input data could include a net, with a region being
created as a bounding box of the net. A region may also be
created while rerouting some portion of the net, which may
include relatively few metal shapes. A region for the portion
may then be determined as a box enclosing those metal
shapes. Block 203 selects an input region.

As will be described in greater detail below, block 204
uses the selected input region to identify inner and outer
regions, based on the design features near and within the
input region. The outer region determines which features
will be considered, and the inner region determines an area
where changes may be made to the design layout. Block 206
performs routing within the inner and outer regions, for
example limiting consideration to those elements within the
outer region, and limiting changes to within the inner region.
For example, this routing may include EUV- and SADP-type
routing, by positioning trims 104 and extents 106, but it
should be understood that any appropriate routing may be
performed. As will be described in greater detail below, the
routing process may be parallelized across multiple proces-
sors or processor cores, such that block 206 may be per-
formed for multiple different regions at once.

Block 208 optionally minimizes perturbations caused by
the routing. As will be described in greater detail below, a
design layout may already have trims and extents largely
optimized, for example in the case of engineering change
order (ECO) routing. Block 208 seeks to retain the opti-
mized wires while still producing determining line end
solutions.

Block 210 then determines whether there are more input
regions to consider. If so, processing returns to block 203
and a next input region is selected. If not, then the optimized
design layout is output, and block 212 can use the optimized
design layout to fabricate the device. Additional optimiza-
tion steps may be performed as well, before the device is
fabricated, such as in ECO routing. Fabrication may include
any appropriate manufacturing process or processes, such as
EUV photolithography and/or SADP fabrication.

Referring now to FIG. 3, additional detail on the selection
of inner and outer regions from block 204 is shown. Block
302 initializes the inner and outer regions to match the input
region selected in block 203. The layout is described herein
as having conductive lines 102 that run horizontally, with ‘x’
representing the horizontal axis and ‘y’ representing the
vertical axis, but it should be understood that any appropri-
ate frame of reference may be used instead. The coordinates
of the input region (and, thus, the initial coordinates of the
inner region and outer region) may be expressed as X;,, X,
Y10s Y indicating the upper and lower x and y of the region.
Each structure, such as the extents 106, may similarly have
X5 Xpis Vios and y,,; values.

Block 304 expands the coordinates of the inner region and
the outer region by the minimum track spacing, moving the
y,, and y,, boundaries to reach the next closest conductive
lines 102. If the inner region intersects with any metal shape,
the inner region may be expanded in the horizontal coordi-
nates X, and X,, so that it completely covers the existing
metal with some margin min_trim_spacing.

Block 306 selects an extent 106 that intersects with the
inner region, which may include extents 106 that partially or

10

15

20

25

30

35

40

45

50

55

60

65

4

completely fall within the inner region. Block 308 then
expands the inner region to include the selected extent.
Block 308 may, for example, set a minimum trim spacing to
be the larger of the minimum same-track spacing for the
track that includes the selected extent and the minimum trim
spacing across different tracks. The value of x,, for the inner
region may then be set to the lesser of the current value of
X,, for the inner region and an Xx,, value of the selected
extent, minus the minimum trim spacing. The value of x,, for
the inner region may similarly be set to the greater of the
current value of x,,, for the inner region and an x,,, value of
the selected extent, plus the minimum trim spacing. This
expands the inner region to include the entirety of any such
extent, with some additional space to account for the mini-
mum trim spacing.

Block 310 then deletes the selected extent. This removes
preexisting routing structures within the inner region, so that
the new routing can be performed. Block 312 determines
whether there are more events within the inner region. If so,
block 306 selects a next extent 106. If not, block 314
expands the outer region according to the latest values of the
inner region, plus the minimum trim spacing on the x axis,
min_trim_spacing, and a minimum different track spacing
on the y axis, min_difftrack_spacing. Notably, the minimum
trim spacing may depend on rules for each particular fab-
rication technology, such that the minimum trim spacing will
be set in accordance with the needs of the fabrication
process. In EUV fabrication technologies, min_trim_spac-
ing may be the minimum line-end distance. In SADP
fabrication technologies, the min_trim_spacing may be the
minimum trim distance. The value of min_trim_spacing
may depend on the width of metal wires and the layer in
question, with exemplary values being between about 20 nm
and about 500 nm.

The outer region starts with the dimensions of the inner
region and is expanded in the horizontal directions (x;, and
X,;) based on track spacing rules, multiplied by a pruning
factor pf. The expansion in the vertical directions may be
based on adjacent track spacing rules. The expansion of the
outer region may be expressed according to the following
equations:

outer_region.x;,=min(inner_region.x; ,inner_
region.x;,—pf'min_trim_spacing)

outer_region.x,,~max(inner_region.x,inner_
region.x,+pfmin_trim_spacing)

outer_region.y;,,=min(inner_region.y;, ,inner_
region.x;,—pfmin_difftrack spacing)

outer_region.y,~max(inner_region.y,,inner_
region.y,—pf'min_difftrack_spacing)

During the routing of block 206, all shapes (e.g., wires
102 and trims 104) within the outer region are identified, and
corresponding sweepline events may be executed.
Sweepline detects metal shapes in a region and determines
a corresponding graph, with the metal shapes being repre-
sented as events. Different metal shapes, such wires and
vias, are represented by distinct sweepline events. The
events are executed to construct nodes in the graph. Metal
end positions may be represented as nodes in the graph, and
the relationships between metal structures are represented by
edges in the graph.

Block 206 may then determine a constraint graph using
these shapes, and nodes of the graph within the inner and
outer regions may be converted into fixed nodes. Block 206
creates new trims 104 within the inner region in accordance

US 11,829,697 B2

5

with the routing, and creates new extents 106 that reach from
an existing conductive line 102 to contact respective trims
104. During this routing process for a particular input
region, block 206 does not create trim shapes 104 outside the
inner region, nor moves trims 104 outside of the inner
region.

Referring now to FIG. 4, a method of minimizing pertur-
bations to existing routing is shown. This optimization may
be performed in regions, for example as set above, or across
the entire design layout. For example, if a design has already
been routing, but some ECO has been provided, new routing
may need to be performed. The design layout may already
have optimized trims 104 and extents 106. These optimized
shapes may be retained for the ECO, while still producing
deterministic line end solutions. This is possible when an
isomorphic graph can be created for two different design
views, where the views include a pre-routed design with line
end solutions and an ECO-routed design. The graphs created
for these two designs will be isomorphic to one another
when LBspos(current)<sUB and where [LB, UB]
(prerouted)= [LB, UB](ECO), where LB represents a lower
bound of a node before line-end optimization, UB represents
an upper bound of the node before line-end optimization,
and where [LB, UB] indicates a line segment between these
two boundaries, before (prerouted) and after (ECO) routing.
If these rules are met, then the optimization space will be
identical.

The graphs before-routing and post-routing graphs can be
made isomorphic using node folding and unfolding. When-
ever a change in the shape is detected, a cloned node may be
created which folds to the original node. After graph folding,
the existing extents are saved to memory. After routing, the
nodes are unfolded, and the solution may be read from
memory.

Thus, block 402 identifies a change to an existing con-
straint graph, for example due to ECO routing that changes
a particular extent 106. The post-routing constraint graph
may change the location of one node (e.g., the end point of
the extent 106) relative to the location of an equivalent node
in the original graph, as determined by block 404.

Block 406 performs node folding. Node folding may be
performed by using extent metal structures. Because the
metal end positions can be moved in the empty space of a
gap while performing optimization, when they take their
final position, extent metals may be formed to connect from
actual metal shapes. This extent metal can be interpreted as
a folded metal shape, which can collapse for the purpose of
layout optimization. During incremental changes, or itera-
tive optimization, the node can still move within the same
gap, so the lower bound and upper bound positions remain
the same. These positions will be determined by the actual
metal shapes, not by the ends of the extent metal shapes that
are found in the first optimization.

Using the node-folded constraint graph, a corresponding
isomorphic graph can be used. For example, a solution that
was previously computed for the original graph can be
re-used for the new constraint graph in block 408. For
example, during iterative optimization, the graph can be
used from one optimization to the next, or for changes due
to ECO optimization or rip-up rerouting of wires.

Referring now to FIG. 5, additional detail is shown on
how the performance of ECO routing may be improved. In
a system with parallel processing capabilities, such as with
multiple processors or processor cores, different regions of
a design layout may be optimized in parallel. Using a reach
distance parameter, regions that are nearby to one another
may be grouped and processed together in a respective

20

30

35

40

45

50

60

6

thread, with the reach distance parameter being tuned to
provide a number of groups that corresponds to a number of
available threads. Thus, for example, for higher numbers of
available threads, the reach distance parameter made be
relatively small, resulting in a larger number of groups. On
the other hand, a relatively small number of available
threads may have a correspondingly large reach distance
parameter, resulting in a lower number of groups.

For example, in a design layout 502, there may be several
distinct regions 504 that are to be routed. These regions 504
are characterized by their distances 505 from one another.
The regions 504 may be split into a first group 506 and a
second group 508, with the members of each respective
group being closer to one another than to members of the
other group. In a system with a greater number of threads,
the threshold reach distance parameter may be decreased,
which could result in each region being processed sepa-
rately, by a separate thread.

The present invention may be a system, a method, and/or
a computer program product at any possible technical detail
level of integration. The computer program product may
include a computer readable storage medium (or media)
having computer readable program instructions thereon for
causing a processor to carry out aspects of the present
invention.

The computer readable storage medium can be a tangible
device that can retain and store instructions for use by an
instruction execution device. The computer readable storage
medium may be, for example, but is not limited to, an
electronic storage device, a magnetic storage device, an
optical storage device, an electromagnetic storage device, a
semiconductor storage device, or any suitable combination
of the foregoing. A non-exhaustive list of more specific
examples of the computer readable storage medium includes
the following: a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), a static random access memory
(SRAM), a portable compact disc read-only memory (CD-
ROM), a digital versatile disk (DVD), a memory stick, a
floppy disk, a mechanically encoded device such as punch-
cards or raised structures in a groove having instructions
recorded thereon, and any suitable combination of the fore-
going. A computer readable storage medium, as used herein,
is not to be construed as being transitory signals per se, such
as radio waves or other freely propagating electromagnetic
waves, electromagnetic waves propagating through a wave-
guide or other transmission media (e.g., light pulses passing
through a fiber-optic cable), or electrical signals transmitted
through a wire.

Computer readable program instructions described herein
can be downloaded to respective computing/processing
devices from a computer readable storage medium or to an
external computer or external storage device via a network,
for example, the Internet, a local area network, a wide area
network and/or a wireless network. The network may com-
prise copper transmission cables, optical transmission fibers,
wireless transmission, routers, firewalls, switches, gateway
computers and/or edge servers. A network adapter card or
network interface in each computing/processing device
receives computer readable program instructions from the
network and forwards the computer readable program
instructions for storage in a computer readable storage
medium within the respective computing/processing device.

Computer readable program instructions for carrying out
operations of the present invention may be assembler
instructions, instruction-set-architecture (ISA) instructions,

US 11,829,697 B2

7

machine instructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, con-
figuration data for integrated circuitry, or either source code
or object code written in any combination of one or more
programming languages, including an object oriented pro-
gramming language such as Smalltalk, C++, or the like, and
procedural programming languages, such as the “C” pro-
gramming language or similar programming languages. The
computer readable program instructions may execute
entirely on the user’s computer, partly on the user’s com-
puter, as a stand-alone software package, partly on the user’s
computer and partly on a remote computer or entirely on the
remote computer or server. In the latter scenario, the remote
computer may be connected to the user’s computer through
any type of network, including a local area network (LAN)
or a wide area network (WAN), or the connection may be
made to an external computer (for example, through the
Internet using an Internet Service Provider). In some
embodiments, electronic circuitry including, for example,
programmable logic circuitry, field-programmable gate
arrays (FPGA), or programmable logic arrays (PLA) may
execute the computer readable program instructions by
utilizing state information of the computer readable program
instructions to personalize the electronic circuitry, in order to
perform aspects of the present invention.

Aspects of the present invention are described herein with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems), and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations
and/or block diagrams, and combinations of blocks in the
flowchart illustrations and/or block diagrams, can be imple-
mented by computer readable program instructions.

These computer readable program instructions may be
provided to a processor of a computer, or other program-
mable data processing apparatus to produce a machine, such
that the instructions, which execute via the processor of the
computer or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the flowchart and/or block diagram block or blocks. These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer, a programmable data processing apparatus, and/
or other devices to function in a particular manner, such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including
instructions which implement aspects of the function/act
specified in the flowchart and/or block diagram block or
blocks.

The computer readable program instructions may also be
loaded onto a computer, other programmable data process-
ing apparatus, or other device to cause a series of operational
steps to be performed on the computer, other programmable
apparatus or other device to produce a computer imple-
mented process, such that the instructions which execute on
the computer, other programmable apparatus, or other
device implement the functions/acts specified in the flow-
chart and/or block diagram block or blocks.

As employed herein, the term “hardware processor sub-
system” or “hardware processor” can refer to a processor,
memory, software or combinations thereof that cooperate to
perform one or more specific tasks. In useful embodiments,
the hardware processor subsystem can include one or more
data processing elements (e.g., logic circuits, processing
circuits, instruction execution devices, etc.). The one or
more data processing elements can be included in a central
processing unit, a graphics processing unit, and/or a separate

25

40

45

8

processor- or computing element-based controller (e.g.,
logic gates, etc.). The hardware processor subsystem can
include one or more on-board memories (e.g., caches, dedi-
cated memory arrays, read only memory, etc.). In some
embodiments, the hardware processor subsystem can
include one or more memories that can be on or off board or
that can be dedicated for use by the hardware processor
subsystem (e.g., ROM, RAM, basic input/output system
(BIOS), etc.).

In some embodiments, the hardware processor subsystem
can include and execute one or more software elements. The
one or more software elements can include an operating
system and/or one or more applications and/or specific code
to achieve a specified result.

In other embodiments, the hardware processor subsystem
can include dedicated, specialized circuitry that performs
one or more electronic processing functions to achieve a
specified result. Such circuitry can include one or more
application-specific integrated circuits (ASICs), FPGAs,
and/or PLAs.

These and other variations of a hardware processor sub-
system are also contemplated in accordance with embodi-
ments of the present invention.

Referring now to FIG. 6, a design layout and routing
system 600 is shown. The system 600 includes one or more
hardware processors 602 and a memory 604. The system
600 may further include one or more functional components,
which may be implemented as software that is stored in the
memory 604 and that is executed by the hardware
processor(s) 602.

A user interface 606 provides an interface creating and
modifying a design layout 608, which may be stored in the
memory 604. A routing tool 610 automatically modifies the
design layout 608 in accordance with one or more design
rules, for example influenced by the limitations of the
physical manufacturing processes that will be used. After
initial routing is performed on the design layout, for example
including the placement of trims 104 and extents 106, the
user may make further changes, such as in an ECO.

During routing, rather than considering the influence of
every structure on every other structure on the layout, the
routing tool may identify regions of the design layout, and
may perform routing within those regions. In this matter,
routing may be performed and revised in an efficient manner.
The speed of routing may further be increased by dividing
the regions of the design layout 608 into groups in accor-
dance with a number of available threads of the hardware
processor(s) 602.

The final design layout 608, after routing has verified that
the layout 608 complies with design rules, may be sent to a
chip fabricator 650. The chip fabricator 650 generally
includes a large number of separate fabrication devices and
processes that are performed to create an integrated chip or
semiconductor device in accordance with the design layout.

Reference in the specification to “one embodiment” or
“an embodiment” of the present invention, as well as other
variations thereof, means that a particular feature, structure,
characteristic, and so forth described in connection with the
embodiment is included in at least one embodiment of the
present invention. Thus, the appearances of the phrase “in
one embodiment” or “in an embodiment”, as well any other
variations, appearing in various places throughout the speci-
fication are not necessarily all referring to the same embodi-
ment.

It is to be appreciated that the use of any of the following
“/”, “and/or”, and “at least one of”, for example, in the cases
of “A/B”, “A and/or B” and ““at least one of A and B”, is

US 11,829,697 B2

9

intended to encompass the selection of the first listed option
(A) only, or the selection of the second listed option (B)
only, or the selection of both options (A and B). As a further
example, in the cases of “A, B, and/or C” and “at least one
of A, B, and C”, such phrasing is intended to encompass the
selection of the first listed option (A) only, or the selection
of the second listed option (B) only, or the selection of the
third listed option (C) only, or the selection of the first and
the second listed options (A and B) only, or the selection of
the first and third listed options (A and C) only, or the
selection of the second and third listed options (B and C)
only, or the selection of all three options (A and B and C).
This may be extended, as readily apparent by one of
ordinary skill in this and related arts, for as many items
listed.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods, and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or
portion of instructions, which comprises one or more
executable instructions for implementing the specified logi-
cal function(s). In some alternative implementations, the
functions noted in the blocks may occur out of the order
noted in the Figures. For example, two blocks shown in
succession may, in fact, be accomplished as one step,
executed concurrently, substantially concurrently, in a par-
tially or wholly temporally overlapping manner, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block dia-
grams and/or flowchart illustration, can be implemented by
special purpose hardware-based systems that perform the
specified functions or acts or carry out combinations of
special purpose hardware and computer instructions.

It is to be understood that although this disclosure
includes a detailed description on cloud computing, imple-
mentation of the teachings recited herein are not limited to
a cloud computing environment. Rather, embodiments of the
present invention are capable of being implemented in
conjunction with any other type of computing environment
now known or later developed.

Cloud computing is a model of service delivery for
enabling convenient, on-demand network access to a shared
pool of configurable computing resources (e.g., networks,
network bandwidth, servers, processing, memory, storage,
applications, virtual machines, and services) that can be
rapidly provisioned and released with minimal management
effort or interaction with a provider of the service. This cloud
model may include at least five characteristics, at least three
service models, and at least four deployment models.

Characteristics are as follows:

On-demand self-service: a cloud consumer can unilater-
ally provision computing capabilities, such as server time
and network storage, as needed automatically without
requiring human interaction with the service’s provider.

Broad network access: capabilities are available over a
network and accessed through standard mechanisms that
promote use by heterogeneous thin or thick client platforms
(e.g., mobile phones, laptops, and PDAs).

Resource pooling: the provider’s computing resources are
pooled to serve multiple consumers using a multi-tenant
model, with different physical and virtual resources dynami-
cally assigned and reassigned according to demand. There is
a sense of location independence in that the consumer

10

15

20

25

30

35

40

45

50

55

60

65

10

generally has no control or knowledge over the exact
location of the provided resources but may be able to specify
location at a higher level of abstraction (e.g., country, state,
or datacenter).

Rapid elasticity: capabilities can be rapidly and elastically
provisioned, in some cases automatically, to quickly scale
out and rapidly released to quickly scale in. To the consumer,
the capabilities available for provisioning often appear to be
unlimited and can be purchased in any quantity at any time.

Measured service: cloud systems automatically control
and optimize resource use by leveraging a metering capa-
bility at some level of abstraction appropriate to the type of
service (e.g., storage, processing, bandwidth, and active user
accounts). Resource usage can be monitored, controlled, and
reported, providing transparency for both the provider and
consumer of the utilized service.

Service Models are as follows:

Software as a Service (SaaS): the capability provided to
the consumer is to use the provider’s applications running on
a cloud infrastructure. The applications are accessible from
various client devices through a thin client interface such as
a web browser (e.g., web-based e-mail). The consumer does
not manage or control the underlying cloud infrastructure
including network, servers, operating systems, storage, or
even individual application capabilities, with the possible
exception of limited user-specific application configuration
settings.

Platform as a Service (PaaS): the capability provided to
the consumer is to deploy onto the cloud infrastructure
consumer-created or acquired applications created using
programming languages and tools supported by the provider.
The consumer does not manage or control the underlying
cloud infrastructure including networks, servers, operating
systems, or storage, but has control over the deployed
applications and possibly application hosting environment
configurations.

Infrastructure as a Service (IaaS): the capability provided
to the consumer is to provision processing, storage, net-
works, and other fundamental computing resources where
the consumer is able to deploy and run arbitrary software,
which can include operating systems and applications. The
consumer does not manage or control the underlying cloud
infrastructure but has control over operating systems, stor-
age, deployed applications, and possibly limited control of
select networking components (e.g., host firewalls).

Deployment Models are as follows:

Private cloud: the cloud infrastructure is operated solely
for an organization. It may be managed by the organization
or a third party and may exist on-premises or off-premises.

Community cloud: the cloud infrastructure is shared by
several organizations and supports a specific community that
has shared concerns (e.g., mission, security requirements,
policy, and compliance considerations). It may be managed
by the organizations or a third party and may exist on-
premises or off-premises.

Public cloud: the cloud infrastructure is made available to
the general public or a large industry group and is owned by
an organization selling cloud services.

Hybrid cloud: the cloud infrastructure is a composition of
two or more clouds (private, community, or public) that
remain unique entities but are bound together by standard-
ized or proprietary technology that enables data and appli-
cation portability (e.g., cloud bursting for load-balancing
between clouds).

A cloud computing environment is service oriented with
a focus on statelessness, low coupling, modularity, and

US 11,829,697 B2

11

semantic interoperability. At the heart of cloud computing is
an infrastructure that includes a network of interconnected
nodes.

Referring now to FIG. 1, illustrative cloud computing
environment 750 is depicted. As shown, cloud computing
environment 750 includes one or more cloud computing
nodes 710 with which local computing devices used by
cloud consumers, such as, for example, personal digital
assistant (PDA) or cellular telephone 754 A, desktop com-
puter 754B, laptop computer 754C, and/or automobile com-
puter system 754N may communicate. Nodes 710 may
communicate with one another. They may be grouped (not
shown) physically or virtually, in one or more networks,
such as Private, Community, Public, or Hybrid clouds as
described hereinabove, or a combination thereof. This
allows cloud computing environment 750 to offer infrastruc-
ture, platforms and/or software as services for which a cloud
consumer does not need to maintain resources on a local
computing device. It is understood that the types of com-
puting devices 754A-N shown in FIG. 7 are intended to be
illustrative only and that computing nodes 710 and cloud
computing environment 750 can communicate with any type
of computerized device over any type of network and/or
network addressable connection (e.g., using a web browser).

Referring now to FIG. 8, a set of functional abstraction
layers provided by cloud computing environment 750 (FIG.
7) is shown. It should be understood in advance that the
components, layers, and functions shown in FIG. 8 are
intended to be illustrative only and embodiments of the
invention are not limited thereto. As depicted, the following
layers and corresponding functions are provided:

Hardware and software layer 60 includes hardware and
software components. Examples of hardware components
include: mainframes 61; RISC (Reduced Instruction Set
Computer) architecture based servers 62; servers 63; blade
servers 64; storage devices 65; and networks and networking
components 66. In some embodiments, software compo-
nents include network application server software 67 and
database software 68.

Virtualization layer 70 provides an abstraction layer from
which the following examples of virtual entities may be
provided: virtual servers 71; virtual storage 72; virtual
networks 73, including virtual private networks; virtual
applications and operating systems 74; and virtual clients
75.

In one example, management layer 80 may provide the
functions described below. Resource provisioning 81 pro-
vides dynamic procurement of computing resources and
other resources that are utilized to perform tasks within the
cloud computing environment. Metering and Pricing 82
provide cost tracking as resources are utilized within the
cloud computing environment, and billing or invoicing for
consumption of these resources. In one example, these
resources may include application software licenses. Secu-
rity provides identity verification for cloud consumers and
tasks, as well as protection for data and other resources. User
portal 83 provides access to the cloud computing environ-
ment for consumers and system administrators. Service level
management 84 provides cloud computing resource alloca-
tion and management such that required service levels are
met. Service Level Agreement (SLA) planning and fulfill-
ment 85 provide pre-arrangement for, and procurement of,
cloud computing resources for which a future requirement is
anticipated in accordance with an SLA.

Workloads layer 90 provides examples of functionality
for which the cloud computing environment may be utilized.
Examples of workloads and functions which may be pro-

10

15

20

25

30

35

40

45

50

55

60

65

12

vided from this layer include: mapping and navigation 91;
software development and lifecycle management 92; virtual
classroom education delivery 93; data analytics processing
94; transaction processing 95; and layout routing 96.

Having described preferred embodiments of region-based
layout routing (which are intended to be illustrative and not
limiting), it is noted that modifications and variations can be
made by persons skilled in the art in light of the above
teachings. It is therefore to be understood that changes may
be made in the particular embodiments disclosed which are
within the scope of the invention as outlined by the
appended claims. Having thus described aspects of the
invention, with the details and particularity required by the
patent laws, what is claimed and desired protected by Letters
Patent is set forth in the appended claims.

The invention claimed is:

1. A method for routing a design layout, comprising:

setting, an inner region and an outer region for modifi-

cation of structures in an original design layout, in
accordance with a minimum spacing that is based on a
fabrication process; and

performing routing of trim positions and conductive wire

extents within the inner region, using a hardware pro-
cessor, based on positions of shapes within the outer
region, including node folding of a new constraint
graph to minimize perturbations from a previous con-
straint graph, to generate an updated design layout that
can be manufactured using the fabrication process,
wherein node folding includes identifying a node posi-
tion of the original design layout, based on a line end
position of a modified extent, and setting a node
position of a corresponding line end in the new con-
straint graph to equal the node position of the original
design layout.

2. The method of claim 1, wherein setting the inner region
and the outer region includes segmenting the original design
layout into input regions, with initial values of the inner
region and the outer region being se equal to a selected one
of the input regions.

3. The method of claim 2, wherein setting the inner region
and the outer region includes expanding coordinates of the
inner region to align with adjacent tracks, based on positions
of conductive lines around the selected input region.

4. The method of claim 3, wherein setting the inner region
and the outer region includes further expanding coordinates
of the inner region to include extents that intersect with the
inner region.

5. The method of claim 4, further comprising deleting
extents within the inner region after expanding the coordi-
nates of the inner region, before performing routing.

6. The method of claim 4, wherein setting the inner region
and the outer region includes expanding coordinates of the
outer region to lie beyond the expanded coordinates of the
inner region by a distance that is determined according to the
minimum spacing.

7. The method of claim 2, wherein performing, routing
includes grouping the segmented regions into a number of
groups that corresponds to a number of threads available on
the hardware processor, with the grouping being set accord-
ing to distances of the segmented regions from one another
and a predetermined reach distance parameter.

8. The method of claim 1, wherein routing has been
previously performed on the original design layout, and
wherein performing routing is done responsive to an engi-
neering change order.

9. The method of claim 1, further comprising fabricating
an integrated chip using the updated design layout.

US 11,829,697 B2

13

10. A computer program product for routing a design
layout, the computer program product comprising a com-
puter readable storage medium having program instructions
embodied therewith, the program instructions executable by
a hardware processor to cause the hardware processor to:

set an inner region and an outer region for modification of

structures in an original design layout, in accordance
with a minimum spacing that is based on a fabrication
process; and

perform routing of trim positions and conductive wire

extents within the inner region, using a hardware pro-
cessor, based on positions of shapes within the outer
region, including node folding of a new constraint
graph to minimize perturbations from a previous con-
straint graph, to generate an updated design layout that
can be manufactured using the fabrication process,
wherein node folding includes identifying a node posi-
tion of the original design layout, based on a line end
position of a modified extent, and setting a node
position of a corresponding line end in the new con-
straint graph to equal the node position of the original
design layout.

11. A system for routing a design layout, comprising:

a hardware processor; and

a memory, that stores an original design layout and a

computer program product, which, when executed by

the hardware processor, causes the hardware processor

to:

set an inner region and an outer region for modification
of structures in the original design layout, in accor-
dance with a minimum spacing that is based on a
fabrication process; and

performing routing of trim positions and conductive
wire extents within the inner region, using a hard-
ware processor, based on positions of shapes within
the outer region, including node folding of a new
constraint graph to minimize perturbations from a
previous constraint graph, to generate an updated
design layout that can be manufactured using the
fabrication process, wherein the node folding
includes identification of a node position of the

20

25

30

40

14

original design layout, based on a line end position
of a modified extent, and setting of a node position
of a corresponding line end in the new constraint
graph to equal the node position of the original
design layout.

12. The system of claim 11, wherein the computer pro-
gram product further causes the hardware processor to
segment the original design layout into input regions, with
initial values of the inner region and the outer region being
set equal to a selected one of the input regions.

13. The system of claim 12, wherein the computer pro-
gram product further causes the hardware processor to
expand coordinates of the inner region to align with adjacent
tracks, based on positions of conductive lines around the
selected input region.

14. The system of claim 13, wherein the computer pro-
gram product further causes the hardware processor to
further expand coordinates of the inner region to include
extents that intersect with the inner region.

15. The system of claim 14, wherein the computer pro-
gram product further causes the hardware processor to delete
extents within the inner region after expanding the coordi-
nates of the inner region, before performing routing.

16. The system of claim 14, wherein the computer pro-
gram product further causes the hardware processor to
expand coordinates of the outer region to lie beyond the
expanded coordinates of the inner region by a distance that
is determined according to the minimum spacing.

17. The system of claim 12, wherein the computer pro-
gram product further causes the hardware processor to group
the segmented regions into a number of groups that corre-
sponds to a number of threads available on the hardware
processor, with the grouping being set according to distances
of the segmented regions from one another and a predeter-
mined reach distance parameter.

18. The system of claim 11, wherein routing has been
previously performed on the original design layout, and
wherein performing routing is done responsive to an engi-
neering change order.

#* #* #* #* #*

