(19)

US 20230325257A1

a2y Patent Application Publication o) Pub. No.: US 2023/0325257 A1l

United States

Varadan et al.

43) Pub. Date: Oct. 12, 2023

(54) WORKLOAD MEASURES BASED ON (52) US. CL
ACCESS LOCALITY CPC ... GO6F 9/5083 (2013.01); GOGF 9/5044
(2013.01); GO6F 9/5016 (2013.01); GO6F
(71) Applicant: HEWLETT PACKARD 3/0604 (2013.01); GOGF 3/0635 (2013.01);
ENTERPRISE DEVELOPMENT LP, GOG6F 3/067 (2013.01)
Houston, TX (US)
. 57 ABSTRACT
(72) Inventors: Srikant Varadan, San Jose, CA (US);
Alex Veprinsky, San Jose, CA (US); In some examples, a system samples a subset of input/output
Anirudha Kumar, San Jose, CA (US) (I/O) accesses of a storage, the 1/O accesses being part of a
workload. The system determines, based on the sampled
(21) Appl. No.: 17/658,728 subset of the I/O accesses, a first reuse distance distribution
. for a first time interval, determines a similarity measure
(22) Filed: Apr. 11, 2022 representing a similarity of the first reuse distance distribu-
Publication Classificati tion and a second reuse distance distribution for a second
ublication Classification time interval different from the first time interval, and based
(51) Int. CL on a change in the similarity measure, triggers a workload
GO6F 9/50 (2006.01) placement process to determine a placement of the workload
GO6F 3/06 (2006.01) on a compute node of a plurality of compute nodes.
102
104 Storage System
Control Svstem ~106-1 ~106-2 ~106-N
y Compute Node Compute Node Compute Node
120 1121 1122 112N
Reuse Distance Resource Resource Resource
Hisi@géam‘ Building {Cache Memory) | | |(Cache Memory)] |, . .| [(Cache Memory)
nging
1) | Workload 11| Workload | | Workload |
%@a’zis’aiag Mgaswe | Workload | | Workicad |
omputing Engine
puting =ng | Workload |
124
Performance 3 j
Model Building 108
Engine Network
1%
- 110
Placement
Engine Storage Infrastructure ”
-
128 | Memory Storage |
» ‘ 118~ Controller
Sizing Engine
1 1
oSG Sorage it
nping Device
Engine

US 2023/0325257 Al

Oct. 12,2023 Sheet 1 of 5

Patent Application Publication

suibuz
Budwes o

081~

subuy Buizig

AR

auibuz
UBWsE|d

974~

aubug

Buipiing [epopy
SAUBULIOLBH

A

aubuz Bundwon
BUINSEY SNISIEIS

A

suibuz
Buipiing wesboisiy
BOUBISI(] 2SNaY

0zL-
WiaIsAg jouUon

LE
._ _ mum%m. M
pLy L abeiolg
JBl0U0g 81
1 ebeioig Aowsy
I ainonnsesy sbelolg
o
m
DEOPLIOA,
PEOPUOM PECIMIOA
PECPLIOAA PEOPLIOM PEOPLIOAM
{Aiowepy syoen) |7 {AiowiBpy 8yoeD) (Aowspy susen)
80.N058Y 801058y B0IN0SEY
N-ZLL - A AN
apon ainduwon apon enduwios 8poN anduwion
N-901 - 2-90L~ 1901~
wioyshe obeiolg
201~

yoL -

US 2023/0325257 Al

Oct. 12,2023 Sheet 2 of 5

Patent Application Publication

g4¢ "Oid Ye 'Old
|BASBIU} B) IBAJBILY BLEL
s v ¢ 7z | g § ¥ €
! | i | »ﬁ | ; | i]
: 0 0
e %
o P0E 208
L-p0E i | asr ase
ANN!\ o \ o
90¢ M -} - 1
v v
¢ Old
JOUB)SI(] 98NTY
000052 000002 00001 000001 00006 0
% T — E— —
Asuanbaid
v
007" weibolsiy sourysy(asney

Patent Application Publication

Oct. 12,2023 Sheet 3 of 5 US 2023/0325257 Al

e~ 400
Placement ™

| engine
pmc:ess

~402
Define sliding window

B
:

i N
~ current sliding

~408
Advance sliding window =

< WiﬁdGW k consecutive

" values satisfya
™~ Criterion

406

Perform W@fk%gaé placement
Process

A

Required
Cache
Size

S

40

] i
80 100
Relative IOPS (%)
FIG. 5

Patent Application Publication Oct. 12,2023 Sheet 4 of 5 US 2023/0325257 A1

600

Storage Medium
~602

/O Access Sampling Instructions

004

First Reuse Distance Distribution
Determination Instructions

606
Similarly Measure Determination Instructions

608
Workload Placement Trigger Instructions

FIG. 6

~ 100

System
102

FProcessor

104

Storage Medium
~ 706

/O Access Sampling Instructions

108

Access Locality Measure Determination
Instructions

~710
Performance Model Derivation Instructions

112
Workload Placement/Sizing Instructions

Patent Application Publication Oct. 12,2023 Sheet 5 of 5 US 2023/0325257 A1

~802

Sample a subset of [/O accesses of a storage, the /O accesses being|
part of a workload

4 s 8@4

Determine, based on the sampled subsest of the /O accesses, a first
reuse distance distribution for a first time interval, the first reuse
distance distribution representing an access locality of the workload

y 806

Derive, based on the first reuse distance distribution, a performance
model that predicts performance as a function of a resource capacity

¥ /’“’8@8

Determine a divergence measure representing a similarity of the first
reuse distance distribution and a second reuse distance distribution
for a second time interval different from the first time interval

¥ /”81@

Trigger, based on a change in the divergence measure, a8 workload
placement process to determine a placement of the workload on a
compute node of a plurality of compute nodes that are able to access
the storage

¥ {”812

Select, as part of the workload placement process, the compute node
from among the plurality of compute nodes using the
performance model

FIG. 8

US 2023/0325257 Al

WORKLOAD MEASURES BASED ON
ACCESS LOCALITY

BACKGROUND

[0001] Computing systems can execute workloads to per-
form various tasks. An example of a computing system is a
storage system, which includes storage devices and compute
nodes that manage the storage of data across the storage
devices.

[0002] In other examples, other types of computing sys-
tems can be employed, such as computing systems to
provide cloud services, web services, database services,
analytical services, and so forth.

BRIEF DESCRIPTION OF THE DRAWINGS

[0003] Some implementations of the present disclosure
are described with respect to the following figures.

[0004] FIG. 1 is a block diagram of an arrangement that
includes a storage system and a control system according to
some examples.

[0005] FIG. 2 is a graph of a reuse distance histogram,
according to some examples.

[0006] FIGS. 3A and 3B are graphs illustrating values of
a divergence measure as a function of time intervals, accord-
ing to some examples.

[0007] FIG. 4 is a flow diagram of a placement engine
process, according to some examples.

[0008] FIG. 5 is a graph that illustrates a relationship
between a performance measure and a resource parameter,
according to some examples.

[0009] FIG. 6 is a block diagram of a storage medium
storing machine-readable instructions according to some
examples.

[0010] FIG. 7 is a block diagram of a system according to
some examples.

[0011] FIG. 8 is a flow diagram of a process according to
some examples.

[0012] Throughout the drawings, identical reference num-
bers designate similar, but not necessarily identical, ele-
ments. The figures are not necessarily to scale, and the size
of some parts may be exaggerated to more clearly illustrate
the example shown. Moreover, the drawings provide
examples and/or implementations consistent with the
description; however, the description is not limited to the
examples and/or implementations provided in the drawings.

DETAILED DESCRIPTION

[TPNE LY 23

[0013] In the present disclosure, use of the term “a,” “an,
or “the” is intended to include the plural forms as well,
unless the context clearly indicates otherwise. Also, the term
“includes,” “including,” “comprises,” “comprising,”
“have,” or “having” when used in this disclosure specifies
the presence of the stated elements, but do not preclude the
presence or addition of other elements.

[0014] In some examples, workloads can be performed on
compute nodes of a storage system that has a disaggregated
storage arrangement. A storage system with a disaggregated
storage arrangement has a storage infrastructure that is
separated from compute nodes that manage the storage of
data in the storage infrastructure. Examples of workloads
that can be performed by the compute nodes can include data
compression, data deduplication, data encryption, data pro-
tection, and so forth.

Oct. 12, 2023

[0015] The storage infrastructure can include a collection
of storage devices (where a “collection” of storage devices
can refer to a single storage device or multiple storage
devices). For example, the storage infrastructure can include
just a bunch of flash (JBOF) storage, which includes flash-
based storage devices also referred to as solid-state drives.
In other examples, the storage infrastructure can include an
arrangement of disk-based storage devices, or other types of
storage devices.

[0016] The storage infrastructure is connected over a
network to the compute nodes of the storage system. By
employing multiple compute nodes in association with the
storage infrastructure, workloads can be distributed across
the compute nodes for enhanced workload throughput.
[0017] Although reference is made to a storage system in
which workloads associated with the storage of data are
performed, in other examples, techniques or mechanisms
according to some implementations of the present disclosure
can be applied with other types of computing systems, such
as computing systems to provide cloud services, web ser-
vices, database services, analytical services, and so forth.
[0018] Demands on a computing system can be continu-
ally evolving. An administrator can initially set a configu-
ration (e.g., quantity of compute nodes, types or quantity of
processors in each compute node, cache memory size, etc.)
of the computing system for expected workloads when the
computing system is deployed. However, as an enterprise
(e.g., a business concern, a government agency, an educa-
tional organization, etc.) evolves, the initial configuration of
the computing system may no longer be satisfactory for
changing workloads.

[0019] Goals of a storage system with a disaggregated
storage arrangement can include maximizing resource uti-
lization of the storage system, and minimizing the impact of
resource overuse that may affect latency that is visible to
requesters of workloads to be performed. To balance the
foregoing goals (which may be inconsistent with one
another), the storage system can perform the following
actions: (1) characterize the internal load of the storage
arrangement, and (2) make autonomous placement decisions
when placing workloads on compute nodes of the storage
system to optimize the use of available resources to satisty
the load.

[0020] Example measures for characterizing the internal
load of the storage system can include consumption param-
eters based on consumption of processing resources, storage
resources, and network resources. While such parameters
can exhibit a strong correlation with load, the parameters
depend on the architecture of the storage system itself, and
thus do not intrinsically define a workload executed by the
workload system. As an example, the same workload that
consumes a larger percentage of processing or storage
resources in a first storage system may consume a smaller
percentage the processing or storage resources of a second
storage system with greater capacities than the first storage
system. Consumption parameters thus characterize how the
workload consumes resources of a given storage system, and
does not characterize the workload itself.

[0021] Further, example measures used for placement
decisions of workloads may rely on performance parameters
such as a rate of input/output (I/O) operations (e.g., /O
operations per second or IOPS) and latency (which repre-
sents a delay in performing an 1/O operation in the storage
arrangement). Such performance parameters are lagging

US 2023/0325257 Al

indicators that allow the storage system to react after a high
load event has already occurred, which may result in
reduced performance or outage of the storage system due to
resource overuse.

[0022] In accordance with some implementations of the
present disclosure, a measure that is based on access locality
(hereinafter referred to as an “access locality measure™) can
be used to represent an intrinsic property of a workload to be
executed in a computing system, such as a storage system or
another type of computing system. “Access locality” of [/O
operations of a workload in a storage system can represent
a distance relating to accesses of data units by the /O
operations. A “data unit” can refer to a data block, a data
page, a data segment, or any other identifiable collection of
data.

[0023] As an example, access locality may be represented
by a reuse distance of a given data unit, where the reuse
distance refers to a quantity of other intervening data units
accessed between accesses of the given data unit. For
example, in the data unit access sequence {A, B, C, D, A},
between accesses of the data unit A, the I/O operations of a
workload accessed three other data units B, C, and D. Thus,
in this example, the reuse distance for data unit A is 3. Reuse
distance is an example of an access locality measure.

[0024] In other examples, a temporal distance (e.g., an
amount of time) can be measured between accesses of a
given data unit A, which can be used as another type of an
access locality measure.

[0025] More generally, a distance relating to accesses of
data units by the I/O operations can refer to how far apart in
terms of accesses or time the same data unit is accessed or
how far apart in terms of accesses or time different data units
are accessed by the I/O operations.

[0026] In some examples, an access locality measure can
be used to guide decisions on (1) optimal sizing of a
computing system and (2) placement of workloads across
the compute nodes of the computing system. “Sizing” a
computing system can refer to setting a capacity of a
resource in a compute node in the computing system, such
as setting a size of a storage resource (e.g., a cache memory),
setting a speed of a processor, setting a communication
speed of a network resource, and so forth.

[0027] A “placement” of a workload refers to selecting a
compute node(s), from among multiple candidate compute
nodes, on which a workload is to be deployed and executed.

[0028] In some examples of the present disclosure, statis-
tical techniques can be employed to detect changes in the
access locality of a workload in real time. The statistical
techniques can compute a statistical measure based on the
access locality measure, and a variation in the statistical
measure can be used to detect a change in the workload.
Detecting a change in the access locality of the workload in
“real time” can refer to detecting the change while the
workload is actively executing in a computing system. The
detected change in the access locality of the workload can be
used to change a placement of the workload. In this way, the
computing system can rapidly adapt to changing workloads
so that performance impacts that are visible to requesters are
reduced.

[0029] The use of the access locality and statistical tech-
niques according to some examples of the present disclosure
allow a computing system to anticipate or quickly detect
changes in performance of workloads so that the workloads

Oct. 12, 2023

can be migrated between different compute nodes to opti-
mize performance by reducing resource overuse.

[0030] In further examples of the present disclosure, a
model that predicts performance as a function of available
resources can be built based on the access locality measure.
Such a model can be used in making sizing decisions for a
computing system (e.g., setting the size of a cache memory
in a compute node, etc.).

[0031] In the ensuing discussion, reference is made to a
cache memory as being the resource in a computing system
that affects performance. More generally, a resource can
include another type of a storage resource, or a processing
resource, or a network resource, or another type of resource.

[0032] In accordance with some examples of the present
disclosure, techniques or mechanisms sample a subset of [/O
accesses of a storage, where the I/O accesses are part of a
workload; determine, based on the sampled subset of the I/O
accesses, a first reuse distance distribution for a first time
interval; determine a similarity measure representing a simi-
larity of the first reuse distance distribution and a second
reuse distance distribution for a second time interval differ-
ent from the first time interval; and based on a change in the
similarity measure, trigger a workload placement process to
determine a placement of the workload on a compute node
of a plurality of compute nodes that are able to access the
storage.

[0033] FIG. 1 is a block diagram of an example arrange-
ment that includes a storage system 102 and a control system
104 coupled to the storage system 102. The storage system
102 has a disaggregated storage arrangement that includes
compute nodes 106-1, 106-2, . . . , 106-N (N=2) that are
separated from a storage infrastructure 110.

[0034] The compute nodes 106-1 to 106-N are coupled
over a network 108 to the storage infrastructure 110.
Examples of the network 108 can include any or some
combination of the following: a local area network (LAN),
a wide area network (WAN), a storage area network (SAN),
a public network such as the Internet, and so forth.

[0035] Each compute node 106-1 to 106-N can execute a
collection of workloads (a single workload or multiple
workloads). In addition, each compute node 106-1 to 106-N
includes a respective resource 112-1, 112-2, . . ., 112-N.
Although just one resource is depicted in each compute
node, it is noted that a compute node can include multiple
resources, such as any or some combination of storage
resources, processing resources, network resources, soft-
ware resources, and so forth.

[0036] In the ensuing discussion, it is assumed that each
resource 112-1, 112-2, . . ., 112-N includes a cache memory
of the respective compute node.

[0037] A cache memory can be used to store data that has
been retrieved from the storage infrastructure 110, and more
specifically, from storage devices 114 of the storage infra-
structure 110. The storage devices 114 have lower access
speeds than the cache memory. Thus, if an 1/O operation,
such as a read operation, can be satisfied from a cache
memory 112-1, 112-2, or 112-N, then the [/O operation can
complete more quickly than if the I/O operation has to
access data from a storage device 114.

[0038] In some examples, a cache memory can be imple-
mented using a relatively fast memory device (or memory
devices). As examples, the memory device(s) for the cache

US 2023/0325257 Al

memory can include a dynamic random access memory
(DRAM) device, a static random access memory (SRAM)
device, and so forth.

[0039] The storage devices 114 can be implemented using
flash-based storage devices. In such examples, the storage
infrastructure 110 can be referred to as a JBOF storage. In
other examples, the storage devices 114 can be implemented
using disk-based storage devices or other types of storage
devices.

[0040] The storage infrastructure 110 further includes a
storage controller 116 that manages the access of data in the
storage devices 114. The storage controller 116 is also
connected to a memory 118 in the storage infrastructure 110,
where the memory 118 can be implemented using a collec-
tion of memory devices (a single memory device or multiple
memory devices).

[0041] The memory 118 can be a posted write memory in
which write operations are posted by the storage controller
116 prior to completing the write operations to the storage
devices 114. Posting a write operation to the memory 118
can refer to storing write data and write command informa-
tion to the memory 118. Once a write operation has been
posted to the memory 118, the storage controller 116 can
return a write completion indication to the compute node
106-1, 106-2, or 106-N that issued the write operation to the
storage infrastructure 110. This allows the write operation to
complete more quickly than if the storage controller 116
were to wait for write data to be stored in a storage device
114 before a completion indication can be returned to the
requester.

[0042] The control system 104 is used to derive various
measures and models for use in making sizing and/or
workload placement decisions according to some examples
of the present disclosure. In FIG. 1, the control system 104
is separate from the storage system 102. In other examples,
the control system 104 can be part of the storage system 102,
and in some cases, can be implemented using any or some
combination of the compute nodes 106-1 to 106-N.

[0043] More generally, the control system 104 can be
implemented using a computer or multiple computers.
[0044] The control system 104 includes various modules,
including a reuse distance histogram building engine 120, a
statistics measure computing engine 122, a performance
model building engine 124, a placement engine 126, a sizing
engine 128, and an 1/O sampling engine 130.

[0045] As used here, an “engine” can refer to a hardware
processing circuit, which can include any or some combi-
nation of a microprocessor, a core of a multi-core micro-
processor, a microcontroller, a programmable integrated
circuit, a programmable gate array, or another hardware
processing circuit. Alternatively, an “engine” can refer to a
combination of a hardware processing circuit and machine-
readable instructions (software and/or firmware) executable
on the hardware processing circuit.

[0046] Reuse Distance Histogram

[0047] The reuse distance histogram building engine 120
is used to build a reuse distance histogram. As explained
above, a reuse distance is defined as a quantity of interven-
ing unique accesses of data units before a given data unit is
accessed again.

[0048] FIG. 2 is a graph of an example reuse distance
histogram 200. The horizontal axis represents reuse dis-
tance, and the vertical axis represents frequency of occur-
rence of each respective reuse distance (represented by dots

Oct. 12, 2023

in FIG. 2). Each dot in FIG. 2 represents the frequency of
occurrence (e.g., quantity) of the respective reuse distance in
1/O operations of a collection of workloads (a single work-
load or multiple workloads) for which the reuse distance
histogram 200 is derived. The reuse distance histogram 200
is an example of a reuse distance distribution that represents,
for each reuse distance, how many occurrences of the reuse
distance was detected in the collection of workloads.
[0049] To reduce processing load, instead of deriving the
reuse distance histogram 200 based on all I/O operations of
a collection of workloads, the reuse distance histogram 200
can be based on sampled I/O operations of the collection of
workloads. The sampled I/O operations include a subset of
the I/O operations in the collection of workloads, where a
“subset” refers to a portion that is less than an entirety. For
example, the sampled 1/O operations can include Y % of all
of the I/O operations in the collection of workloads, where
Y can be 10, 5, 1, 0.5, 0.1, and so forth.

[0050] In some examples, the sampling of I/O operations
of the collection of workloads is performed by the 1/O
sampling engine 130. The sampling performed by the 1/O
sampling engine 130 can include random sampling in which
1/O operations are sampled in a random manner. As an
example, for each storage location L, the decision of
whether or not to sample an /O operation accessing L is
based on whether hash(L) satisfies a specified condition,
e.g., hash(lL) mod P<T, where the effective sampling rate is
R=T/P. Further details regarding such sampling are provided
in Carl A. Waldspurger et al., “Efficient MRC Construction
with SHARDS,” 13” USENIX Conference on File and
Storage Technologies (FAST ’15), pp. 95-110, February
2015.

[0051] Inother examples, the /O sampling engine 130 can
use another sampling algorithm.

[0052] The sampled I/O operations are provided by the [/O
sampling engine 130 to the reuse distance histogram build-
ing engine 120, which can build a reuse distance histogram
(e.g., 200) based on the sampled 1/O operations.

[0053] In some examples, the reuse distance histogram
building engine 120 can build a reuse distance histogram for
each time interval of multiple time intervals, such that there
are multiple reuse distance histograms for the respective
multiple time intervals (e.g., a first reuse distance histogram
for a first time interval, a second reuse distance histogram
for a second time interval, etc.).

[0054] Statistics Measures

[0055] The statistics measure computing engine 122 of the
control system 104 is able to derive statistic measures based
on reuse distance histograms for respective time intervals.
Generally, the statistics measure computing engine 122 can
compute a statistics measure that represents a similarity
between reuse distance histograms for different time inter-
vals. Such a statistics measure can be referred to as a
“similarity measure.”

[0056] In some examples, the statistics measure comput-
ing engine 122 can normalize each reuse distance histogram
into a respective probability distribution. The normalizing
can be performed as follows. Each frequency value in the
reuse distance histogram is divided by the total quantity of
samples represented by the reuse distance histogram to
obtain a respective probability. As an example, assume that
the /O sampling engine 130 collected 100 samples, of
which 5 samples were observed to have a reuse distance
equal to 20. If X is the random variable representing the

US 2023/0325257 Al

reuse distance, then P(X=20) is equal to 0.05, where P() is
a probability function to compute a probability. The above is
repeated for each different reuse distance to compute the
probabilities of the probability distribution for the respective
reuse distance histogram.

[0057] The reuse distance histograms for the different time
intervals are normalized to respective probability distribu-
tions. A similarity measure that represents a similarity
between reuse distance histogram A and reuse histogram B
can be computed based on probability distribution A derived
from reuse distance histogram A, and probability distribu-
tion B derived from reuse distance histogram B.

[0058] In some examples, the similarity measure com-
puted by the statistics measure computing engine 122 is a
Jensen-Shannon Divergence (JSD) measure. For each inter-
val T, a JSD measure is computed based on probability
distributions P, Q for time intervals T—1 and T. The JSD for
probability distribution P (for time interval T—1) and prob-
ability distribution Q (for time interval T) is a bounded value
between [0, 1] that indicates the similarity between P and Q.
If JSD is close to 0, then P and Q are similar. On the other
hand, if JSD is close to 1, then P and Q are dissimilar.
[0059] When the access locality of the workload remains
relatively constant, the JSD values computed for different
time intervals based on corresponding probability distribu-
tions of reuse distance histograms can be relatively uniform
in value, as represented by a curve 302 in FIG. 3A that plots
the relationship between JSD values as a function of time
intervals.

[0060] However, if a change in the access locality of the
workload occurs, then there may be a spike in the JSD
values, as represented by a curve 304 in FIG. 3B. FIG. 3B
shows that a spike 304-1 in JSD values occurs starting at
time interval 3 and ending at time interval 5. The spike 304-1
in JSD values indicates a change in an I/O access pattern of
the workload, or more specifically, a change in the access
locality of the workload.

[0061] Placement Decision

[0062] In some examples, the placement engine 126 can
detect the spike 304-1 in JSD values, or more generally, a
change in the JSD values that satisfies a specified condition.
In response to detecting the change in the JSD values that
satisfies the specified condition, the placement engine 126
can initiate a workload placement process in which the
placement engine 126 makes a determination whether the
workload should be moved from a current compute node to
another compute node. This placement determination can be
based on various factors as discussed further below.
[0063] FIG. 4 shows a placement engine process 400 that
can be performed by the placement engine 126. In some
examples, the placement engine 126 can define (at 402) a
sliding window W (as shown in FIG. 3B). In the example of
FIG. 3B, the sliding window W has a width of two time
intervals, although in other examples, the sliding window W
can have a different width. The placement engine 126 can
incrementally advance (in the direction 306) over the time
intervals. The sliding window W can be advanced by the
[0064] In some examples, similarity values (e.g., JSD
values) in the sliding window W can be advanced by the
placement engine 126 by m (m=>1) time intervals as addi-
tional I/O samples are received over time.

[0065] The placement engine 126 can monitor the JSD
values in the current sliding window W. The placement
engine 126 determines (at 404) whether k (k>1) consecutive

Oct. 12, 2023

JSD values satisfy a criterion. In some examples, placement
engine 126 determines whether k consecutive JSD values in
the current sliding window W exceed s (s21) standard
deviations of an exponentially smoothed average of JSD
values computed so far.

[0066] If the placement engine 126 determines that k
consecutive JSD values satisfy the criterion, then the place-
ment engine 126 performs (at 406) a workload placement
process to determine whether to move the workload to
another compute node.

[0067] If the placement engine 126 determines that k
consecutive JSD values do not satisfy the criterion, then the
placement engine 126 proceeds to task 408, in which the
placement engine 126 advances the sliding window W by m
time intervals, such as in response to a passage of an amount
of time that is greater than or equal to the m time intervals.
[0068] After the placement engine 126 performs (at 406)
the workload placement process, the placement engine 126
proceeds to task 408 to advance the sliding window W.
[0069] Approximate JSD Computation

[0070] Computation of JSD values involves floating-point
arithmetic and log calculation over the probability distribu-
tions for the reuse distance histograms. The floating-point
arithmetic and log calculation can be intensive in terms of
usage of processing resources. If the JSD values cannot be
computed in a timely manner by the control system 104,
then workload change detection and placement decisions
cannot be made in a timely fashion to support real time
(online) processes by the placement engine 126.

[0071] In further examples, the statistics measure comput-
ing engine 122 can compute JSD values without use of
probability distributions derived by normalizing reuse dis-
tance histograms.

[0072] To reduce the overhead associated with computing
JSD values, the statistics measure computing engine 122 can
made implement the following techniques: (1) the reuse
distance histogram building engine 120 derives each reuse
distance histogram for each respective time interval T based
on the exact same quantity of sampled I/O operations, and
(2) compute log values using a memoization technique.
[0073] Technique (1) allows the statistics measure com-
puting engine 122 to skip the normalization task to convert
a reuse distance histogram into a probability distribution. As
a result, since probabilities do not have to be computed by
dividing frequency values of the reuse distance histogram by
the total quantity of samples, the statistics measure comput-
ing engine 122 can apply integer arithmetic to compute JSD
values.

[0074] In some examples, a JSD value based on a first
reuse distance histogram (P) and a second reuse distance
histogram (Q) can be computed as follows:

ISD(P||Q)="2D(P|M)+'2D(Q||M)
where M=Y2(P+Q).

[0075] In some examples, D(P||M) and D(Q|M) are Kull-
back-Leibler divergences computed as follows:

4
D(A|IB) = ZA(x) log (%)

[0076] The computation of the log values to derive JSD
values can be computed by using the relationship that log

US 2023/0325257 Al

A
(B (x)

can be derived with the following computation: log(A(x))-
log(B(x)). Thus, instead of calculating a log of

Aw)
B(x)’

which is a real number, the log can be computed as a
difference of the log of integer numbers A(x) and B(x).
Further, log(A(x)) and log(B(x) can each be computed using
the memoization technique based on the recurrence: log,(y)
=1+log,(y/2). The value y is reduced to a small number by
repeating the recurrence, until the value is reduced to less
than a specified threshold.

[0077] Then, log,(y) where y is less than the specified
threshold can be derived by performing a simple lookup of
an in-memory lookup table that stores log values for the first
L integers, where L can be 10,000 or some other value. The
in-memory lookup table is stored in a memory of the control
system 104, and can be quickly accessed by the statistics
measure computing engine 122.

[0078] As an example, to calculate log(1000000), using
the above recurrence, the statistics measure computing
engine 122 reduces 1log(1000000)=7+log(7812). The statis-
tics measure computing engine 122 can look up the value of
log(7812) from the in-memory lookup table, and add the
value to 7 to derive log(1000000). Thus, log values can be
computed by applying integer arithmetic to derive integers,
and using the integers to look up values in the in-memory
lookup table.

[0079] Performance Model

[0080] The performance model building engine 124 can
build a performance model based on access locality mea-
sures, such as those included in reuse distance histograms.
[0081] From the reuse distance histogram for a given
workload, the performance model building engine 124 can
compute a Miss Ratio Curve (MRC) that plots an expected
cache miss ratio as a function of a cache size. The cache miss
ratio is a percentage value that represents a ratio of the
quantity of cache misses over all I/O accesses. The compu-
tation of the MRC assumes an example in which the
resources 112-1 to 112-N in the compute nodes 106-1 to
106-N are cache memories. The relation between the reuse
distance and MRC is based on the observation that for a
cache size equal to X, accesses with reuse distance greater
than X would result in cache misses for the workload.
[0082] The performance model building engine 124 can
build an MRC-based performance model that relates a
performance measure with respect to a required cache size.
In some examples, the performance measure is a relative
IOPS measure, which is expressed as:

10PS,
10PS,z’

where IOPS, represents the [OPS assuming a cache miss rate
of r, and IOPS,,,, represents the [OPS assuming a cache
miss rate of 0 (i.e., no cache misses).

Oct. 12, 2023

[0083] An MRC-based performance model where the per-
formance measure is the relative IOPS measure is referred to
as an MRC-based IOPS model.

[0084] It is assumed that a storage (e.g., including the
storage devices 114 of FIG. 1) has a storage access latency
of L,, which represents the latency associated with accessing
data from the storage. A memory access latency is repre-
sented as L, which is the latency associated with accessing
data from a cache memory in a compute node 106-1, 106-2,
or 106-N.

[0085] A cache miss penalty M is equal to the ratio L /L.
The cache miss penalty M indicates the increase in latency
due to a miss in the cache memory that results in an access
of data from the storage. Note that the term “data” can refer
to metadata or actual data (e.g., user data, program data,
etc.). In some examples, the cache memory can store meta-
data that is used to locate actual data.

[0086] Letr denote the cache miss rate for a workload. An
average internal latency for a single I/O operation is equal to
L_*(14r*M)), where M is a specified value. The average
internal latency is the latency for accessing metadata, either
from the cache memory or from the storage.

[0087] An average external latency depends on the use of
caching in a storage architecture. The average external
latency is the latency for an I/O operation to access actual
data that involves first accessing metadata that is then used
to determine a storage location of the actual data. In an
example, the storage architecture may employ two levels of
metadata that are to be accessed to determine a location of
actual data. Both levels of metadata can be cached in
memory and looked up for external data reads. For such a
storage architecture, the average external latency (e.g., for
an external data read) is expressed as L_*(2+M*(1+2%r), not
including a near-constant network latency. Let IOPS, denote
the read performance for the workload at cache miss rate r.
The maximum performance IOPS,, . at (r=0) would have
average latency of (L_.*(2+M)). The ratio

IOPS,
10PS e

denotes the degradation in read performance equal to (2+M)/
(C+M*(14+2*1)). Assuming a fixed value of M=5, and plug-
ging in values for r from the workload’s MRC, the perfor-
mance model building engine 124 can obtain an IOPS
degradation curve 502 as shown in FIG. 5. The IOPS
degradation curve 502 is an example of the MRC-based
IOPS model discussed above.

[0088] In the graph of FIG. 5, the horizontal axis repre-
sents relative IOPS, which is the degradation in performance
(expressed as a percentage value) that an entity (e.g., an
enterprise, a user, a program, a machine, etc.) is willing to
accept. The vertical axis represents a required cache size,
which is the minimum size of the cache memory to achieve
the corresponding relative IOPS as represented by a curve
502.

[0089] The curve 502 relates different required cache sizes
to different relative IOPS values. For example, if the entity
is willing to accept a relative IOPS of 60% (a degradation of
40% from the maximum performance where the cache miss
rate r is 0), which corresponds to a point 502-1 on the curve
502, then the corresponding required cache size is S1, which

US 2023/0325257 Al

means that the cache memory has to be configured to have
at least the size S1 to achieve a relative IOPS of at least 60%.
[0090] In some examples, the placement engine 126 can
use the MRC-based IOPS model (e.g., the curve 502) to
make a workload placement decision. When a workload
placement process is triggered, as depicted in FIG. 4, the
placement engine 126 can retrieve information of the cache
sizes of the cache memories in the compute nodes 106-1 to
106-N. The information of the cache sizes may be stored in
a configuration database, for example.

[0091] The workload placement process can compare the
cache sizes of the cache memories in the compute nodes
106-1 to 106-N, and can determine a target relative IOPS for
the workload. The target relative IOPS for the workload may
be set by an administrator or another entity. Then, given the
target relative IOPS, the workload placement process can
identify the compute nodes with cache sizes sufficient to
meet the target relative IOPS, based on the MRC-based
IOPS model.

[0092] The workload placement process can then select
one of the compute nodes with sufficient cache sizes to place
the workload. If the selected compute node is different from
a compute node in which the workload is currently execut-
ing, then the workload placement process can migrate the
workload to the selected compute node. Note that the
selection of a compute node to place the workload can also
depend on further factors, such as how busy each compute
node is (e.g., based on consumption of processing, storage,
or network resources). The workload placement process
may favor the selection of a compute node with sufficient
cache size that is less busy.

[0093] Sizing Process

[0094] In some examples, a performance model (such as
the MRC-based IOPS model discussed above, represented
by the example curve 502 shown in FIG. 5) can be used by
the sizing engine 128 to perform sizing of the resource 112-1
to 112-N (e.g., a cache memory) in each compute node
106-1 to 106-N.

[0095] “Sizing” a resource can refer to setting a capacity
of the resource in a compute node, such as setting a size of
a cache memory, setting an operating speed of a processing
resource, setting a communication speed of a network
resource, and so forth.

[0096] In some examples, a cache memory in a compute
node may used for different purposes, including purposes
other than to store metadata associated with data in the
storage infrastructure 110. A portion of the cache memory
may be allocated to store metadata associated with data in
the storage infrastructure 110. The size of this allocated
portion may be dynamically adjusted by the sizing engine
128 as part of sizing process.

[0097] The sizing engine 128 can consider the MRC-based
IOPS model (e.g., the curve 502) to determine what an
appropriate size of the allocated portion of the cache
memory should be given a target relative IOPS that is
acceptable.

Example Implementations

[0098] FIG. 6 is a block diagram of a non-transitory
machine-readable or computer-readable storage medium
600 storing machine-readable instructions that upon execu-
tion cause a system to perform various tasks. The system can
include a computer or multiple computers.

Oct. 12, 2023

[0099] The machine-readable instructions include I/O
access sampling instructions 602 (which may be part of the
1/0 sampling engine 130, for example) to sample a subset of
1/O accesses of a storage (e.g., the storage infrastructure
110). The 1/O accesses are part of a workload.

[0100] The machine-readable instructions include first
reuse distance distribution determination instructions 604 to
determine, based on the sampled subset of the I/O accesses,
a first reuse distance distribution for a first time interval, the
first reuse distance distribution representing an access local-
ity of the workload.

[0101] The machine-readable instructions include similar-
ity measure determination instructions 606 to determine a
similarity measure representing a similarity of the first reuse
distance distribution and a second reuse distance distribution
for a second time interval different from the first time
interval.

[0102] In some examples, the first distribution and the
second distribution are each based on an identical quantity
of sampled I/O accesses of the storage.

[0103] In some examples, the similarity measure determi-
nation instructions 606 determine the similarity measure
based on applying an integer arithmetic to compute integers,
and perform lookups of an in-memory table that maps the
integers to floating point values.

[0104] In some examples, the similarity measure includes
a divergence measure, such as a Jensen-Shannon Divergence
(JSD) measure.

[0105] The machine-readable instructions include work-
load placement trigger instructions 608 to, based on a
change in the similarity measure, trigger a workload place-
ment process to determine a placement of the workload on
a compute node of a plurality of compute nodes that are able
to access the storage.

[0106] In some examples, the workload placement trigger
instructions 608 determine whether the change in the simi-
larity measure satisfies a criterion, and trigger the workload
placement process in response to determining that the
change in the similarity measure satisfies the criterion.

[0107] In some examples, the similarity measure is a first
similarity measure, and the workload placement trigger
instructions 608 determine that the change in the first
similarity measure satisfies the criterion responsive to the
first similarity measure and a second similarity measure
satisfying an aggregate criterion, e.g., k consecutive simi-
larity values in a sliding window (e.g., W in FIG. 5)
exceeding s standard deviations of an aggregate (e.g., aver-
age) of similarity measure values.

[0108] In some examples, the machine-readable instruc-
tions can further derive a resource utility relationship based
on the first reuse distance distribution, the resource utility
relationship relating resource capacities of a resource to a
performance measure. The resource utility relationship can
form a performance model, for example (e.g., the curve 502
in FIG. 5).

[0109] In some examples, the placement of the workload
on the compute node of a plurality of compute nodes
provided by the workload placement process is based on the
resource utility relationship and respective resource capaci-
ties of the plurality of compute nodes.

[0110] In some examples, the resource is selected from
among a cache memory, a processor, and a network.

US 2023/0325257 Al

[0111] FIG. 7 is a block diagram of a system 700 accord-
ing to some examples. The system 700 can be implemented
using a computer or multiple computers.

[0112] The system 700 includes a processor 702 (or mul-
tiple processors). A processor, or more specifically a hard-
ware processor, can include a microprocessor, a core of a
multi-core microprocessor, a microcontroller, a program-
mable integrated circuit, a programmable gate array, or
another hardware processing circuit.

[0113] The system 700 includes a storage medium 704
storing machine-readable instructions executable on the
processor 702 to perform various tasks. Machine-readable
instructions executable on a processor can refer to the
instructions executable on a single processor or the instruc-
tions executable on multiple processors.

[0114] The machine-readable instructions in the storage
medium 704 can include 1/O access sampling instructions
706 to sample a subset of I/O accesses of a storage, the [/O
accesses being part of a workload.

[0115] The machine-readable instructions in the storage
medium 704 can include access locality measure determi-
nation instructions 708 to determine an access locality
measure based on the sampled subset of the I/O accesses, the
access locality measure representing a property of the work-
load, and the access locality measure representing a distance
relating to accesses of data units by the 1/O accesses.
[0116] The machine-readable instructions in the storage
medium 704 can include performance model derivation
instructions 710 to derive a performance model that predicts
performance as a function of a resource capacity.

[0117] In some examples, the performance model relates a
degradation in performance as a function of the resource
capacity.

[0118] The machine-readable instructions in the storage
medium 704 can include workload placement/sizing instruc-
tions 712 to, based on the performance model, perform one
or more of placing the workload on a compute node of a
plurality of compute nodes, or setting the resource capacity
of a resource in the compute node.

[0119] FIG. 8 is a flow diagram of a process 800 according
to some examples, which can be performed by the control
system 104 of FIG. 1, for example.

[0120] The process 800 includes sampling (at 802) a
subset of I/O accesses of a storage, the 1/O accesses being
part of a workload.

[0121] The process 800 includes determining (at 804),
based on the sampled subset of the /O accesses, a first reuse
distance distribution for a first time interval, the first reuse
distance distribution representing an access locality of the
workload. For example, the first reuse distance distribution
can include a first reuse distance histogram, or a probability
distribution based on the first reuse distance histogram.
[0122] The process 800 includes deriving (at 806), based
on the first reuse distance distribution, a performance model
that predicts performance as a function of a resource capac-
ity. The performance model can be an MRC-based IOPS
model, for example.

[0123] The process 800 includes determining (at 808) a
divergence measure representing a similarity of the first
reuse distance distribution and a second reuse distance
distribution for a second time interval different from the first
time interval. The divergence measure can be a JSD mea-
sure, for example.

Oct. 12, 2023

[0124] The process 800 includes triggering (at 810), based
on a change in the divergence measure, a workload place-
ment process to determine a placement of the workload on
a compute node of a plurality of compute nodes that are able
to access the storage.

[0125] The process 800 includes selecting (at 812), as part
of the workload placement process, the compute node from
among the plurality of compute nodes using the performance
model.

[0126] A storage medium (e.g., 600 in FIG. 6 or 704 in
FIG. 7) can include any or some combination of the fol-
lowing: a semiconductor memory device such as a dynamic
or static random access memory (a DRAM or SRAM), an
erasable and programmable read-only memory (EPROM),
an electrically erasable and programmable read-only
memory (EEPROM) and flash memory; a magnetic disk
such as a fixed, floppy and removable disk; another magnetic
medium including tape; an optical medium such as a com-
pact disk (CD) or a digital video disk (DVD); or another type
of storage device. Note that the instructions discussed above
can be provided on one computer-readable or machine-
readable storage medium, or alternatively, can be provided
on multiple computer-readable or machine-readable storage
media distributed in a large system having possibly plural
nodes. Such computer-readable or machine-readable storage
medium or media is (are) considered to be part of an article
(or article of manufacture). An article or article of manu-
facture can refer to any manufactured single component or
multiple components. The storage medium or media can be
located either in the machine running the machine-readable
instructions, or located at a remote site from which machine-
readable instructions can be downloaded over a network for
execution.

[0127] In the foregoing description, numerous details are
set forth to provide an understanding of the subject disclosed
herein. However, implementations may be practiced without
some of these details. Other implementations may include
modifications and variations from the details discussed
above. It is intended that the appended claims cover such
modifications and variations.

What is claimed is:

1. A non-transitory machine-readable storage medium
comprising instructions that upon execution cause a system
to:

sample a subset of input/output (I/O) accesses of a stor-

age, the I/O accesses being part of a workload;
determine, based on the sampled subset of the /O
accesses, a first reuse distance distribution for a first
time interval, the first reuse distance distribution rep-
resenting an access locality of the workload;

determine a similarity measure representing a similarity
of the first reuse distance distribution and a second
reuse distance distribution for a second time interval
different from the first time interval; and

based on a change in the similarity measure, trigger a

workload placement process to determine a placement
of the workload on a compute node of a plurality of
compute nodes that are able to access the storage.

2. The non-transitory machine-readable storage medium
of claim 1, wherein the instructions upon execution cause
the system to:

determine whether the change in the similarity measure

satisfies a criterion; and

US 2023/0325257 Al

trigger the workload placement process in response to
determining that the change in the similarity measure
satisfies the criterion.

3. The non-transitory machine-readable storage medium
of claim 2, wherein the similarity measure is a first similarity
measure, and the instructions upon execution cause the
system to:

determine that the change in the first similarity measure

satisfies the criterion responsive to the first similarity
measure and a second similarity measure satisfying an
aggregate criterion.

4. The non-transitory machine-readable storage medium
of claim 3, wherein the first and second similarity measures
are part of a collection of similarity measures.

5. The non-transitory machine-readable storage medium
of claim 4, wherein the instructions upon execution cause
the system to:

determine that the change in the first similarity measure

satisfies the criterion responsive to a quantity of con-
secutive similarity measures in the collection of simi-
larity measures deviating by a specified amount from
an aggregate of the similarity measures in the collection
of similarity measures.

6. The non-transitory machine-readable storage medium
of claim 5, wherein the aggregate of the similarity measures
in the collection of similarity measures is an average of the
similarity measures in the collection of similarity measures.

7. The non-transitory machine-readable storage medium
of claim 5, wherein the specified amount is a specified
number of standard deviations of the aggregate.

8. The non-transitory machine-readable storage medium
of claim 1, wherein the first reuse distance distribution and
the second reuse distance distribution are each based on an
identical quantity of sampled I/O accesses of the storage.

9. The non-transitory machine-readable storage medium
of claim 8, wherein the instructions upon execution cause
the system to:

determine the similarity measure based on:

applying an integer arithmetic to compute integers, and
performing lookups of an in-memory table that maps
the integers to floating point values.

10. The non-transitory machine-readable storage medium
of claim 9, wherein the similarity measure comprises a
divergence measure.

11. The non-transitory machine-readable storage medium
of claim 10, wherein the divergence measure comprises a
Jensen-Shannon Divergence (JSD) measure.

12. The non-transitory machine-readable storage medium
of claim 1, wherein the instructions upon execution cause
the system to:

derive a resource utility relationship based on the first

reuse distance distribution, the resource utility relation-
ship relating resource capacities of a resource to a
performance measure.

13. The non-transitory machine-readable storage medium
of claim 12, wherein the placement of the workload on the
compute node of the plurality of compute nodes provided by
the workload placement process is based on the resource
utility relationship and respective resource capacities of the
plurality of compute nodes.

14. The non-transitory machine-readable storage medium
of claim 13, wherein the resource is selected from among a
cache memory, a processor, and a network.

Oct. 12, 2023

15. A system comprising:

a processor; and

a non-transitory storage medium storing instructions

executable on the processor to:

sample a subset of input/output (I/O) accesses of a
storage, the I/O accesses being part of a workload;

determine an access locality measure based on the
sampled subset of the /O accesses, the access local-
ity measure representing a property of the workload,
and the access locality measure representing a dis-
tance relating to accesses of data units by the I/O
accesses;

derive a performance model that predicts performance
as a function of a resource capacity; and

based on the performance model, perform one or more
of placing the workload on a compute node of a
plurality of compute nodes, or setting the resource
capacity of a resource in the compute node.

16. The system of claim 15, wherein the performance
model relates a degradation in performance as a function of
the resource capacity.

17. The system of claim 15, wherein the instructions are
executable on the processor to:

determine a first reuse distance distribution based on the

access locality measure,

wherein the performance model is derived from the first

reuse distance distribution.

18. The system of claim 17, wherein the first reuse
distance distribution is for a first time interval, and wherein
the instructions are executable on the processor to:

determine a similarity measure representing a similarity

of the first reuse distance distribution and a second
distance distribution for a second time interval different
from the first time interval; and

based on a change in the similarity measure, trigger a

workload placement process to determine a placement
of the workload on the compute node of the plurality of
compute nodes.

19. A method performed by a system comprising a hard-
ware processor, comprising:

sample a subset of input/output (I/O) accesses of a stor-

age, the I/O accesses being part of a workload;

determine, based on the sampled subset of the /O

accesses, a first reuse distance distribution for a first
time interval, the first reuse distance distribution rep-
resenting an access locality of the workload;

derive, based on the first reuse distance distribution, a

performance model that predicts performance as a
function of a resource capacity;

determine a divergence measure representing a similarity

of the first reuse distance distribution and a second
reuse distance distribution for a second time interval
different from the first time interval;
based on a change in the divergence measure, trigger a
workload placement process to determine a placement
of the workload on a compute node of a plurality of
compute nodes that are able to access the storage; and

as part of the workload placement process, select the
compute node from among the plurality of compute
nodes using the performance model.

20. The method of claim 19, wherein the divergence
measure is determined based on:

US 2023/0325257 Al Oct. 12, 2023

applying an integer arithmetic to compute integers, and

performing lookups of an in-memory table that maps the
integers to floating point values that represent log
values.

