
Processed by Luminess, 75001 PARIS (FR)

(19)
EP

4
15

5
90

6
A

1
EP004155906A1

(11) EP 4 155 906 A1
(12) EUROPEAN PATENT APPLICATION

(43) Date of publication:
29.03.2023 Bulletin 2023/13

(21) Application number: 22184660.3

(22) Date of filing: 13.07.2022

(51) International Patent Classification (IPC):
G06F 8/36 (2018.01) G06F 9/54 (2006.01)

G06F 9/4401 (2018.01) G06F 9/445 (2006.01)

G06F 8/41 (2018.01)

(52) Cooperative Patent Classification (CPC):
G06F 9/541; G06F 8/36; G06F 8/447;
G06F 9/4411; G06F 9/44505

(84) Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB
GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO
PL PT RO RS SE SI SK SM TR
Designated Extension States:
BA ME
Designated Validation States:
KH MA MD TN

(30) Priority: 25.09.2021 US 202117485351

(71) Applicant: Intel Corporation
Santa Clara, CA 95054 (US)

(72) Inventors:
• ABDUL RASHID, Kamarul Zaman

07 11900 Bayan Lepas (MY)
• TAN, Tat Kin

07 11900 Bayan Lepas (MY)

(74) Representative: Viering, Jentschura & Partner
mbB
Patent- und Rechtsanwälte
Am Brauhaus 8
01099 Dresden (DE)

(54) METHODS AND APPARATUS TO EXPOSE A MICROSERVICE TO A SOFTWARE LAYER

(57) Methods, apparatus, systems and articles of
manufacture disclosed herein expose a microservice to
a software layer. A disclosed method includes composing
an API execution recipe, initializing a software service to
be called, and checking, by executing an instruction with
the at least one processor. The connection is between a
software layer and a microservice, is defined by the API
execution recipe, and is to expose the microservice to
the software layer.

EP 4 155 906 A1

2

5

10

15

20

25

30

35

40

45

50

55

Description

FIELD OF THE DISCLOSURE

[0001] This disclosure relates generally to microserv-
ices and, more particularly, to methods and apparatus to
expose a microservice to a software layer.

BACKGROUND

[0002] In recent years, silicon developers are offering
chipsets that have built in microservices. Such micros-
ervices, depending on design, provide a chipset with ad-
ditional capabilities/features, thereby eliminating the
need to purchase additional hardware or additional soft-
ware for such capabilities.

BRIEF DESCRIPTION OF THE DRAWINGS

[0003]

FIG. 1 is a block diagram a TPM stack/architecture.
FIG. 2 is a diagram of layers of a microservices pro-
visioning building block.
FIG. 3 is a block diagram of a TPM stack/architecture
having a dynamic software engine to expose a mi-
croservice to a software layer of the hardware
stack/architecture in accordance with the teachings
disclosed herein.
FIG. 4 is a block diagram of the dynamic software
engine of FIG. 3 which includes a dynamic initializer.
FIG. 5 is a flowchart representative of example ma-
chine readable instructions that may be executed by
the dynamic software engine of FIG. 3.
FIG. 6 is pseudocode that can be used to implement
the dynamic initializer of FIG. 4.
FIG. 7 is a block diagram of an example processing
platform including processor circuitry structured to
execute the example machine readable instructions
of FIG. 5 to implement the dynamic software engine
of FIG. 3.
FIG. 8 is a block diagram of an example implemen-
tation of the processor circuitry of FIG. 7.
FIG. 9 is a block diagram of another example imple-
mentation of the processor circuitry of FIG. 7.

[0004] In general, the same reference numbers will be
used throughout the drawing(s) and accompanying writ-
ten description to refer to the same or like parts. As used
herein, connection references (e.g., attached, coupled,
connected, and joined) may include intermediate mem-
bers between the elements referenced by the connection
reference and/or relative movement between those ele-
ments unless otherwise indicated. As such, connection
references do not necessarily infer that two elements are
directly connected and/or in fixed relation to each other.
As used herein, stating that any part is in "contact" with
another part is defined to mean that there is no interme-

diate part between the two parts.
[0005] Unless specifically stated otherwise, descrip-
tors such as "first," "second," "third," etc., are used herein
without imputing or otherwise indicating any meaning of
priority, physical order, arrangement in a list, and/or or-
dering in any way, but are merely used as labels and/or
arbitrary names to distinguish elements for ease of un-
derstanding the disclosed examples. In some examples,
the descriptor "first" may be used to refer to an element
in the detailed description, while the same element may
be referred to in a claim with a different descriptor such
as "second" or "third." In such instances, it should be
understood that such descriptors are used merely for
identifying those elements distinctly that might, for exam-
ple, otherwise share a same name. As used herein "sub-
stantially real time" refers to occurrence in a near instan-
taneous manner recognizing there may be real world de-
lays for computing time, transmission, etc. Thus, unless
otherwise specified, "substantially real time" refers to real
time +/- 1 second. As used herein, the phrase "in com-
munication," including variations thereof, encompasses
direct communication and/or indirect communication
through one or more intermediary components, and does
not require direct physical (e.g., wired) communication
and/or constant communication, but rather additionally
includes selective communication at periodic intervals,
scheduled intervals, aperiodic intervals, and/or one-time
events. As used herein, "processor circuitry" is defined
to include (i) one or more special purpose electrical cir-
cuits structured to perform specific operation(s) and in-
cluding one or more semiconductor-based logic devices
(e.g., electrical hardware implemented by one or more
transistors), and/or (ii) one or more general purpose sem-
iconductor-based electrical circuits programmed with in-
structions to perform specific operations and including
one or more semiconductor-based logic devices (e.g.,
electrical hardware implemented by one or more transis-
tors). Examples of processor circuitry include pro-
grammed microprocessors, Field Programmable Gate
Arrays (FPGAs) that may instantiate instructions, Central
Processor Units (CPUs), Graphics Processor Units
(GPUs), Digital Signal Processors (DSPs), XPUs, or mi-
crocontrollers and integrated circuits such as Application
Specific Integrated Circuits (ASICs). For example, an
XPU may be implemented by a heterogeneous comput-
ing system including multiple types of processor circuitry
(e.g., one or more FPGAs, one or more CPUs, one or
more GPUs, one or more DSPs, etc., and/or a combina-
tion thereof) and application programming interface(s)
(API(s)) that may assign computing task(s) to whichever
one(s) of the multiple types of the processing circuitry
is/are best suited to execute the computing task(s).

DETAILED DESCRIPTION

[0006] Any or all of a hardware module, a hardware
end point, soft intellectual property (IP), and/or hard IP
features can be included in modern silicon designs. Fur-

1 2

EP 4 155 906 A1

3

5

10

15

20

25

30

35

40

45

50

55

ther, the hardware module, hardware endpoint, and/or
soft IP features perform an application specific fea-
ture/service (e.g., a hardware accelerator). In some cas-
es, chipset providers license silicon blocks (e.g., hard IP,
Soft IP, etc.) that incorporate the application specific fea-
ture/service.
[0007] When a software developer is writing an appli-
cation and determining that the application is to have
access to the specific hardware feature/service, the soft-
ware developer derives/determines a path between the
hardware layer (at which the specific hardware fea-
ture/service resides) and a software upper layer (such
as, for example, an operating system layer). Once de-
rived, the path is used to establish a connection between
the specific hardware feature/service and the software
application.
[0008] Unfortunately, a great deal of effort and detailed
knowledge is required on the part of the software devel-
oper to derive such a path. The required effort coupled
with limited time resources often cause software devel-
opers to forego using the specific hardware feature and,
as a result, many such features are underutilized.
[0009] FIG. 1 is a block diagram of an example TPM
stack/architecture 100. The block diagram of FIG. 1, and
the description thereof, is intended to provide a better
understanding of typical components and devices that
lie between a software application of the TPM stack/ar-
chitecture 100 and hardware of the first TPM stack/ar-
chitecture 100. The example first TPM stack/architecture
100 of FIG. 1 includes an example first application 102A,
an example second application 102B, an example func-
tional application interface doc (FAPIDOC) 104, an ex-
ample functional application interface FAPI 106, an ex-
ample system application interface (SAPI) 108, four ex-
ample trusted command transmission interfaces (also re-
ferred to as TCTIs) 110A, 110B, 110C, 110D, eight com-
munication pathways 112A, 112B, 112C, 112D, 112E,
112F, 112G, 112H, four trusted platform module (TPM)
access brokers represented as a first TAB 114A, a sec-
ond TAB 114B, a third TAB 114C, and a fourth TAB 114D,
four resource managers (RM), denoted a first RM 116A,
a second RM 116B, a third RM 116C, and a fourth RM
116D, four TPM drivers 118A-D (including a local TPM
driver 118A, a simulator TPM driver 118B, a virtual TPM
driver 118C, and a remote TPM driver 118D) and four
TPMs (including a local TPM 120A, a TPM simulator
120B, a virtual TPM 120D and a remote TPM 120D). In
some examples, the remote TMP 120D is included in a
remote system 122 that further includes the TAB 114D,
the remote resource manager 116D, and the remote TPM
driver 118D.
[0010] Thus, as illustrated in the example TPM
stack/architecture 100 of FIG. 1, the TPM stack/architec-
ture 100 may include multiple TPMs (e.g., the local TPM
120A, the TPM simulator 120B, the virtual TPM 120D,
the remote TPM 120D, etc.). In this example, the TPMs
represent the hardware feature/service to be exposed to
a software interface accessible via the first application

102A and/or the second application 102B. Further, mul-
tiple components of the TPM stack/architecture 100 (e.g.,
the example FAPI doc 104, the example FAPI 106, the
example SAPI 108, one of the example TCTIs 110A -
110D, one of the example communication pathways
112A-112D, one of the example TPM access brokers
(TAB 114A - 114D), one of the example resource man-
agers 116A - 116D, and one of the example drivers 118A-
118D) are between the software application (e.g., the
first application 102A, the second application 102B, etc.)
executing on the TPM stack/architecture 100 and the
TPMs (e.g., the local TPM 120A, the TPM simulator
120B, the virtual TPM 120D, the remote TPM 120D, etc.).
[0011] Today, software developers creating software
programs typically use integrated design environments
(IDEs) (e.g., software development tools) in modeling
compute/processing systems to write and test the soft-
ware programs. Integrated design environments (offered
by various manufacturers) typically provide comprehen-
sive facilities for software development including, for ex-
ample, a source code editor, build automation tools, a
debugger, a compiler, an interpreter, etc. As described
above, when creating a software program (e.g., the first
application 102A or the example second application
102B), a software developer may determine that the soft-
ware program/application 102A, 102B is/are to be pro-
vided access to (e.g., to be exposed to) a feature or spe-
cific function performed by any of the TPMs (e.g., the
local TPM 120A, the TPM simulator 120B, the virtual TPM
120D, the remote TPM 120D, etc.) of the TPM stack/ar-
chitecture 100 of FIG. 1. As further described above, to
provide such access/exposure, the software developer
manually derives a pathway between the applications
(e.g., the first and/or second applications 102A, 102B)
and a desired one of the TPMs.
[0012] In some examples, deriving the path between
the software application (e.g., the first and/or second ap-
plications 102A, 201B) and the hardware feature/function
of the desired one of the TPMs 120A - 120D includes
using firmware to reveal the hardware interface of the
hardware feature/function, to update the firmware with a
software driver (e.g., via encapsulation of the firmware)
so that the hardware feature/function can be recognized
by a software layer (e.g., a SAPI or a FAPI). (Encapsu-
lation of the firmware refers to the act of wrapping a fea-
ture in or more software layers so that the corresponding
hardware feature/function can communication with a
software layer.) These acts enable communication be-
tween the various layers of hardware and software. Such
acts (to name but a few) can include identifying all soft-
ware libraries needed to create the pathway, identifying
all software and hardware drivers needed to create the
pathway, resolving all software dependencies between
the various software layers, etc. Once the hardware is
coupled to the FAPI via the pathway derived by the soft-
ware developer, the pathway is coded as software exe-
cutable codes. The software executable codes are pro-
vided to an integrated design environment for compila-

3 4

EP 4 155 906 A1

4

5

10

15

20

25

30

35

40

45

50

55

tion. The resulting machine executable binary code can
then be included in the software application (e.g., the first
and/or second applications 102A, 102B) being devel-
oped and thereby provide the software application with
access to the hardware function/feature (e.g., also re-
ferred to herein as a microservice) when installed on any
compute system having a same hardware platform as
the modeling system.
[0013] FIG. 2 depicts example hardware and software
layers 200 of an example microservices provisioning
building block 200. The system layers extend from an
end user application to a hardware implemented TPM.
In the microservices provisioning building block 200 of
FIG. 2, a lowest layer, denoted layer 0, includes an ex-
ample TPM 202, example firmware 204, and an example
driver 206. As shown, the TPM 202 and firmware 204
are implemented in example hardware (silicon) 208,
whereas the driver 206 is included as part of an operating
system environment 210. Further, first and second inter-
mediate layers, denoted layer 1, and layer 2, are also
included as part of the operating system environment
210. The operating system environment 210 includes an
example functional API doc (FAPIDOC) 212, an example
functional API (FAPI) 214, and an example system API
216. An example end-user application 218 resides at a
topmost layer, denoted layer 3. An example security
boundary 220 provided by an example security tool 222
lies between the layer 3 and layers 0, 1, and 2 to secure
and control access rules that authorize specific us-
ers/processes to the FAPI/SAPI layers 0 - 2. In addition,
a microservice provider/publisher 224 supplies informa-
tion that is used by, for example, software developers,
to make an example microservice residing at layer 0 (e.g.,
the example TPM 202) available to the end-user appli-
cation of layer 3 (operated by a service consumer 226).
[0014] Referring still to FIG. 2, providing the example
end-user application 218 with access to the example
hardware feature (e.g., the TPM 202), a pathway needs
to be designed/derived to enable connection between
the example TPM 202 and the example end-user appli-
cation 218. The pathway is designed to expose a fea-
ture/functionality of the example TPM 202 to the software
program (e.g., the end-user application 218). However,
as further described above with reference to FIG. 1, man-
ually deriving such a pathway is a complicated and com-
plex task requiring significant effort, knowledge, and time,
thereby causing hardware features (e.g., the TPM 202)
to be under-utilized.
[0015] In contrast, the methods and apparatus dis-
closed herein dynamically (at run time or at near run time)
expose a hardware function/feature (also referred to as
a hardware microservice) to any or all of a variety of soft-
ware development tools (which can be represented as
the example end-user application 218 (of FIG. 2). Exam-
ple methods and apparatus disclosed herein also provide
an apparatus by which to dynamically prepare an appli-
cation programming interface (API) execution recipe in
a software environment. The API execution recipe, when

executed, provides a pathway by which a hardware in-
terface is exposed (e.g., by which a hardware feature is
exposed to a software layer). In some examples, in re-
sponse to a request to make a hardware microservice
available to a software development tool, a backend soft-
ware engine, referred to herein as a dynamic software
engine (DSE) (e.g., the dynamic software engine 302
illustrated in and described with respect to FIG. 3
below), , extracts an API execution recipe from a registry
of API execution recipes. The API execution recipe is
used later to build a pathway between a software appli-
cation and the feature/functionality of a hardware block
(or a soft IP block, a hybrid IP block, etc.) such that the
feature/functionality (e.g., microservice) of the hardware
block is accessible to the software application via the
FAPI. The API execution recipe is software code that,
when instantiated and imported as a reference into an
integrated development environment, exposes the mi-
croservice to the software development tool (e.g., an IDE)
via a unified single interface API. In some examples, the
same interface exposure pathway can be used by any
of a variety of different software development tools (IDEs)
that may be developed by a variety of different entities.
Thus, the methods and apparatus disclosed herein are
able to dynamically expose a hardware microservice to
any or all software development tools and thereby pro-
vide a developer-friendly, universal solution to making a
hardware microservice available to a software develop-
ment tool.
[0016] In addition, the methods and apparatus dis-
closed herein resolve the aforementioned challenges of
manually deriving a pathway between a software layer
and a hardware microservice by introducing an intelligent
engine (e.g., the dynamic software engine 302 of FIG. 3
below) that can dynamically evolve or orchestrate an API
execution recipe and adjust the depth of software layers
needed to expose a hardware feature/function interface
to software application. The methods and apparatus dis-
closed herein provide for the discovery of functional ap-
plication interfaces (FAPIs) and corresponding system
application interface (SAPIs) from a registry having
FAPIs and corresponding SAPIs supplied by one or more
registries of a federation of registries.
[0017] FIG. 3 is a block diagram of an example third
hardware stack/ architecture 300 including a dynamic
software engine 302 in accordance with the teachings
disclosed herein. In some examples, the third hardware
stack/ architecture 300 includes example integrated de-
velopment environment (IDE) tools (denoted the 1st IDE
304A, the 2nd IDE 304B, the 3rd IDE 304C, the 4th IDE
304D, etc.). Four IDEs are shown in FIG. 3, though any
number of IDE tools may be included in the third hardware
stack/architecture 300. In some examples, the four IDEs
(e.g., 1st IDE 304A, 2nd IDE 304B, 3rd IDE 304C, 4th
IDE 304D) are commercially available IDE tools. In some
examples, any of the IDEs may be implemented using a
JAVA IDE, a NET IDS, an ECLIPSE IDE or any other
IDE. The third hardware stack/ architecture 300 of FIG.

5 6

EP 4 155 906 A1

5

5

10

15

20

25

30

35

40

45

50

55

3 also includes the dynamic software engine (DSE) 302,
also denoted DSE 302, an example set of functional ap-
plication interfaces (FAPIs) denoted the 1st FAPI 308A,
the 2nd FAPI 308B, the 3rd FAPI 308C, the 4th FAPI
308D, etc., and an example hardware block 310 (al-
though referred to as a hardware block, the hardware
block 310 can instead be implemented as a hard IP, a
soft IP, a configurable or programmable IP, etc.). In some
examples, the hardware block 310 is implemented using
a Trusted Platform Module, a Software Guard Extension
(SGX), a functional safety software test library (FuSA
STL), etc. In some examples, the FAPIs (e.g., the 1st
FAPI 308A, the 2nd FAPI 308B, the 3rd FAPI 308C, the
4th FAPI 308D, etc.) are implemented in the operating
system environment (e.g., layer 1 and layer 2 of FIG. 2).
In some examples, the dynamic software engine DSE
302 exposes the IDEs 304A - 304D to the hardware in-
terfaces FAPIs 308A, 308B, 308C, 308D. In some exam-
ples, the dynamic software engine 302 is able to connect
ones of the IDEs 304A - 304D to ones of the hardware
interfaces FAPIs 308A-308D based on the desired mi-
croservice/feature and the hardware that implements the
microservice/feature.
[0018] FIG. 4 is a block diagram of the example dy-
namic software engine DSE 302 and the example FAPIs
(e.g., the 1st FAPI 308A, the 2nd FAPI 308B, the 3rd
FAPI 308C, the 4th FAPI 308D, etc.) . In some examples,
the dynamic software engine DSE 302 includes an ex-
ample dynamic serializer 412, also denoted DS 412, an
example dynamic initializer 414, also denoted DI 414, an
example FAPI interface registry 416, and an example
dynamic connection checker/verifier 418. In some exam-
ples, the FAPI interface registry 416 is provided by or
associated with one or more registry federations. In some
examples, the registry 416 stores/contains information
about FAPI interfaces and corresponding underlying ex-
ecution recipes associated with different microservices
and associated with different types of hardware. In some
examples, information for a FAPI includes a microservice
execution recipe (also referred to herein as an API exe-
cution recipe) corresponding to a microservice (also re-
ferred to as feature/functionality of a hardware block, soft
IP, etc.). In some examples, a different FAPI is included
for each microservice associated with a different manu-
facturer hardware. In some examples, FAPI information
is included for each manufacturer of the hardware-em-
bedded microservice. In some examples, third party en-
tities can supply FAPI information to be included in the
registry.
[0019] In some examples, as new manufacturer hard-
ware devices providing different hardware features are
offered on the market, corresponding different FAPIs are
developed to enable the microservices. The manufactur-
er of the hardware generates information identifying the
hardware, the microservice provided by the hardware,
and the corresponding FAPI by which the hardware mi-
croservice can be exposed to a software application (e.g.,
an IDE residing at a software layer of the TPM hardware

stack/architecture (e.g., see FIG. 2 and FIG. 3)). The in-
formation is supplied to the federation of registries which
causes the registry 416 (FIG. 3) to be updated. In some
examples, the generated information is delivered in a
synchronized fashion in real-time or near real-time to all
registries associated with the federation. Thus, the dy-
namic software engine DSE 302 uses the information
stored in the registry 416 to expose a hardware interface
of a microservice to an IDE as described further below.
As such, a software developer wishing to access a mi-
croservice offered on a particular hardware, need only
look to an IDE (see FIG. 3) to access the microservice.
[0020] In some examples, a request entered via any
of the IDEs (e.g., the 1st IDE 304A, the 2nd IDE 304B,
the 3rd IDE 304C, and/or the 4th IDE 304D) indicates
that a hardware feature/microservice (e.g., a random
number generator or any other hardware feature/micro-
service) is to be made available to the IDE at which the
request was made. The hardware that implements the
feature/microservice (e.g., the hardware installed in a
modeling compute system having the hardware stack/ar-
chitecture 300) can be any of a Trusted Platform Module
(TPM) hardware architecture, a Software Guard Exten-
sion (SGX), a functional safety software test library (Fu-
SA STL), etc.
[0021] The request generated by a corresponding one
of the example IDEs 204A-304D is supplied to the ex-
ample dynamic serializer DS 412. In some examples, the
dynamic serializer DS 412 collects (or receives) informa-
tion concerning the request including, for example, the
hardware feature/microservice being requested, the
identity of the IDE that generated the request, etc. The
dynamic serializer DS 412 supplies the identity of the
hardware feature/microservice to be accessed and, in
some examples, the identity of the hardware that hosts
the feature/microservice to the example dynamic initial-
izer 414. In some examples, the dynamic serializer 412
DS identifies FAPI(s) and SAPIs to be used (or otherwise
associated with the microservice to which access is being
requested) and serializes the FAPI(s) and corresponding
SAPIs before providing them to the example dynamic
initializer DI 414.
[0022] In some examples, responsive to the request
for access to the hardware feature/microservice, the ex-
ample dynamic initializer DI 414 searches its internal in-
strumentation (e.g., the registry). In some examples, the
dynamic initializer DI 414 accesses an internal list that
enumerates a list of references and software dependen-
cies that may arise when an attempt is made to call the
serialized FAPI(s) and corresponding SAPIs identified
by the dynamic serializer DS 412. In some examples, the
registry 416 represents the internal list and, thus, the dy-
namic initializer DI 416 queries the registry to understand
which software dependencies are needed. In response,
a query result in a form of an API execution recipe is
returned. The API execution recipe recognizes all the
software drivers and software libraries and software serv-
ices needed to expose the hardware feature/microserv-

7 8

EP 4 155 906 A1

6

5

10

15

20

25

30

35

40

45

50

55

ice to the software layer. In some examples, an array of
FAPIs and SAPIs are returned in response to the query
and the feature/microservice execution recipe is based
on the array of FAPIs and the array of SAPIs.
[0023] As described above, the example dynamic ini-
tializer DI 414 receives the request information from the
dynamic serializer DS 412 and uses the request infor-
mation to fire/trigger a query of the FAPI interface registry
416. The query seeks to locate (in the FAPI interface
registry 416) microservices and corresponding, inherent
execution recipes that can be used to expose (make ac-
cessible) the requested feature/microservice to the FAPI
software layer for access by the IDEs. The feature/mi-
croservice execution recipes being sought are directed
to accessing/exposing the feature/microservice availa-
ble on the particular hardware platform of the modeling
computer to the IDEs, that is, the feature/microservice
execution recipes are associated with the particular hard-
ware platform of the modeling computer (assuming at
the time of the request, the modeling computer only has
access to hardware feature of one manufacturer).
[0024] In some examples, the resulting microservice
recipe can include an execution duration, a latency value,
a depth (e.g., number) of software layers to be traversed
to gain the desired access, a list of any software depend-
encies between the layers, information identifying any
dependent software libraries to be resolved, the sizes of
software drivers to be used to enable access to the de-
sired microservice, as well as any other information in-
cluded in the registry that is needed to make the hardware
feature/microservice available to the user application. In
some examples, the dynamic initializer 414 uses the fea-
ture/microservice execution recipe to identify software
services needed to expose the hardware feature and
then initializes the software services and provides hand-
shake protocols to enable communication between the
microservices and/or other software services needed to
expose the hardware feature.
[0025] In some examples, the dynamic initializer DI
414 determines that, for the hardware platform on/in
which the microservice resides, multiple layers of SAPIs
are required. For example, the dynamic initializer DI 414
can determine that, when accessing the random number
generator microservice on the TPM hardware, three such
layers of SAPIs are required, including
"Tss2_Sys_Startup," "Tss2_Sys_GetCapability," and
"Tss2_Sys_GetRandom." In some such examples, the
dynamic initializer DI 414 will query the registry 416 for
information concerning all three SAPIs. In some such
examples, the catalog of FAPIs and corresponding
SAPIs in the registry are accessed during the query. In
some examples, the results of the query include software
services and corresponding execution recipes.
[0026] In some examples, results of the query are then
used by dynamic initializer DI 414 to identify the software
services execution recipes and to initialize the corre-
sponding services. The dynamic initializer DI 414 also
operates to order and optimize the software services to

form the API execution recipe. In this manner, the dy-
namic initializer DI 414 composes the API execution rec-
ipe. The resulting API execution recipe is capable of rec-
ognizing all the software drivers and libraries needed to
expose the hardware feature/microservice. The resulting
API execution recipe additionally resolves all of the com-
plex software (e.g., FAPI and/or SAPI) and driver de-
pendencies that arise in exposing the hardware fea-
ture/microservice.
[0027] The API execution recipe composed/generated
by the example dynamic initializer DI 414 is supplied to
the example dynamic connection checker DCC 418
which uses the API execution recipe to identify the FAPIs,
the SAPIs, the software libraries, and the software drivers
to be used to make the microservice/feature accessible.
The dynamic connection checker DCC 418 then uses
the API execution recipe, the identified software libraries,
the identified FAPIs and SAPIs, and the identified soft-
ware drivers to check whether the equipment needed to
expose the hardware feature/micro service are valid (are
operating properly and available). If so, the dynamic con-
nection checker DCC 318 notifies the dynamic initializer
414 that the recipe is valid. If not, then the dynamic soft-
ware engine may return an error result to the request to
access the microservice generated by the IDE.
[0028] In addition to supplying the hardware fea-
ture/microservice execution recipe to the example dy-
namic connection checker 418 and assuming the API
execution recipe is deemed valid, the example dynamic
initializer DI 414 supplies the feature/microservice exe-
cution recipe and any accompanying information to the
example dynamic serializer DS 412. The dynamic seri-
alizer 412 uses the API (microservice/feature) execution
recipe to generate software codes that are recognizable
by the one of the IDEs 304A-304D of FIG. 3 to which the
API execution recipe is to be delivered. In some exam-
ples, the dynamic serializer DS 412 generates multiple
sets of software codes, each set recognizable by corre-
sponding ones of the IDEs 304A - 304D. The executable
software codes supplied by the dynamic serializer DS
412 to corresponding ones of the IDEs 304A-304D are
compiled by the receiving IDE to thereby generate exe-
cutable binary code. The executable binary code, when
installed in a system(s) that operates on a same hardware
platform as the modeling computer system, exposes the
feature/microservice to the software layer via the FAPIs
(e.g., the FAPIs 308A-308D).
[0029] In some examples, operation of the example
dynamic software engine 302 (described above) is trig-
gered when an instantiation operation is invoked using
one or more of the IDEs. In some examples, the desired
hardware feature/microservice interface to be exposed
to the IDEs appears on a display associated with a com-
pute system having the hardware stack/architecture 300
(or having a different architecture) as a visual object. In
some such examples, the act of instantiating can include
a gesture that moves the visual object between two work-
spaces in, for example, the IDEs. The gesture can include

9 10

EP 4 155 906 A1

7

5

10

15

20

25

30

35

40

45

50

55

a drag-and-drop, flip, swipe, swing, slide, grab, etc. As
described above, when the instantiating gesture is per-
formed, the dynamic software engine DSE 302 operates,
as described above, to translate and transform the ges-
ture into a codebase that can be compiled into executable
binary by the IDEs.
[0030] Referring still to FIG. 4, in some examples, as
the hardware module that provides the microservice var-
ies by manufacturer, the hardware interface varies. As a
result, the FAPIs used to expose the hardware interfaces
vary. In some examples, the first FAPI (FAPI (SGX)
308A) is to expose a hardware microservice of an SGX
hardware architecture, a second FAPI (FAPI (TPM)
308B) is to expose a microservice of a TPM hardware
architecture, and a third FAPI (FAPI (FuSA STL) 308C)
is to expose a microservice of a functional safety software
library (FuSA STL). As illustrated, the first FAPI 308A
includes a connection of three software layers to the mi-
croservice, the second FAPI includes a connection of
four software layers to the microservice, and the third
FAPI includes a connection of five software layers to the
microservice. In some examples, the microservice being
exposed by the first, second and third FAPIs interfaces
performs a same functionality. Thus, the difference in
software layers used to expose the microservice inter-
faces are different due to the different hardware interfac-
es of the microservice on the different hardware plat-
forms/architectures. Also, as shown for visualization pur-
poses, the dynamic connection checker DCC 418 of the
dynamic software engine DSE 302 acts as a set of keys
that correspond to the microservice interfaces (e.g., FAPI
308A - 308C). The symbols representing layers depicted
above corresponding ones of the FAPIs are shown in an
upside down manner and extend downward from the dy-
namic software engine DSE 302.
[0031] While an example manner of implementing the
dynamic software engine DSE 302 of FIG. 2 is illustrated
in FIG. 3, one or more of the elements, processes, and/or
devices illustrated in FIG. 4 may be combined, divided,
re-arranged, omitted, eliminated, and/or implemented in
any other way. Further, the example dynamic serializer
DS 412, the example dynamic initializer 414, an example
FAPI registry 416, the example dynamic connection
checker DCC 418 and/or, more generally, the example
dynamic software engine DSE 302 of FIG. 4, may be
implemented by hardware alone or by hardware in com-
bination with software and/or firmware. Thus, for exam-
ple, any of the example dynamic serializer DS 412, the
example dynamic initializer 414, an example FAPI reg-
istry 416, the example dynamic connection checker DCC
418 and/or, more generally, the example dynamic soft-
ware engine DSE 302 of FIG. 4, could be implemented
by processor circuitry, analog circuit(s), digital circuit(s),
logic circuit(s), programmable processor(s), programma-
ble microcontroller(s), graphics processing unit(s)
(GPU(s)), digital signal processor(s) (DSP(s)), applica-
tion specific integrated circuit(s) (ASIC(s)), programma-
ble logic device(s) (PLD(s)), and/or field programmable

logic device(s) (FPLD(s)) such as Field Programmable
Gate Arrays (FPGAs). Further still, the example dynamic
software engine DSE 302 of FIG. 3 may include one or
more elements, processes, and/or devices in addition to,
or instead of, those illustrated in FIG. 4, and/or may in-
clude more than one of any or all of the illustrated ele-
ments, processes and devices.
[0032] A flowchart representative of example hard-
ware logic circuitry, machine readable instructions, hard-
ware implemented state machines, and/or any combina-
tion thereof for implementing the dynamic software en-
gine 302 of FIG. 3 (and FIG. 4) is shown in FIG. 7. The
machine readable instructions may be one or more ex-
ecutable programs or portion(s) of an executable pro-
gram for execution by processor circuitry, such as the
processor circuitry 712 shown in the example processor
platform 700 discussed below in connection with FIG. 7
and/or the example processor circuitry discussed below
in connection with FIGS. 8 and/or 9. The program may
be embodied in software stored on one or more non-
transitory computer readable storage media such as a
CD, a floppy disk, a hard disk drive (HDD), a DVD, a Blu-
ray disk, a volatile memory (e.g., Random Access Mem-
ory (RAM) of any type, etc.), or a non-volatile memory
(e.g., FLASH memory, an HDD, etc.) associated with
processor circuitry located in one or more hardware de-
vices, but the entire program and/or parts thereof could
alternatively be executed by one or more hardware de-
vices other than the processor circuitry and/or embodied
in firmware or dedicated hardware. The machine reada-
ble instructions may be distributed across multiple hard-
ware devices and/or executed by two or more hardware
devices (e.g., a server and a client hardware device). For
example, the client hardware device may be implement-
ed by an endpoint client hardware device (e.g., a hard-
ware device associated with a user) or an intermediate
client hardware device (e.g., a radio access network
(RAN) gateway that may facilitate communication be-
tween a server and an endpoint client hardware device).
Similarly, the non-transitory computer readable storage
media may include one or more mediums located in one
or more hardware devices. Further, although the exam-
ple program is described with reference to the flowchart
illustrated in FIG. 5, many other methods of implementing
the example apparatus 50 may alternatively be used. For
example, the order of execution of the blocks may be
changed, and/or some of the blocks described may be
changed, eliminated, or combined. Additionally or alter-
natively, any or all of the blocks may be implemented by
one or more hardware circuits (e.g., processor circuitry,
discrete and/or integrated analog and/or digital circuitry,
an FPGA, an ASIC, a comparator, an operational-ampli-
fier (op-amp), a logic circuit, etc.) structured to perform
the corresponding operation without executing software
or firmware. The processor circuitry may be distributed
in different network locations and/or local to one or more
hardware devices (e.g., a single-core processor (e.g., a
single core central processor unit (CPU)), a multi-core

11 12

EP 4 155 906 A1

8

5

10

15

20

25

30

35

40

45

50

55

processor (e.g., a multi-core CPU), etc.) in a single ma-
chine, multiple processors distributed across multiple
servers of a server rack, multiple processors distributed
across one or more server racks, a CPU and/or a FPGA
located in the same package (e.g., the same integrated
circuit (IC) package or in two or more separate housings,
etc).
[0033] The machine readable instructions described
herein may be stored in one or more of a compressed
format, an encrypted format, a fragmented format, a com-
piled format, an executable format, a packaged format,
etc. Machine readable instructions as described herein
may be stored as data or a data structure (e.g., as por-
tions of instructions, code, representations of code, etc.)
that may be utilized to create, manufacture, and/or pro-
duce machine executable instructions. For example, the
machine readable instructions may be fragmented and
stored on one or more storage devices and/or computing
devices (e.g., servers) located at the same or different
locations of a network or collection of networks (e.g., in
the cloud, in edge devices, etc.). The machine readable
instructions may require one or more of installation, mod-
ification, adaptation, updating, combining, supplement-
ing, configuring, decryption, decompression, unpacking,
distribution, reassignment, compilation, etc., in order to
make them directly readable, interpretable, and/or exe-
cutable by a computing device and/or other machine. For
example, the machine readable instructions may be
stored in multiple parts, which are individually com-
pressed, encrypted, and/or stored on separate comput-
ing devices, wherein the parts when decrypted, decom-
pressed, and/or combined form a set of machine execut-
able instructions that implement one or more operations
that may together form a program such as that described
herein.
[0034] In another example, the machine readable in-
structions may be stored in a state in which they may be
read by processor circuitry, but require addition of a li-
brary (e.g., a dynamic link library (DLL)), a software de-
velopment kit (SDK), an application programming inter-
face (API), etc., in order to execute the machine readable
instructions on a particular computing device or other de-
vice. In another example, the machine readable instruc-
tions may need to be configured (e.g., settings stored,
data input, network addresses recorded, etc.) before the
machine readable instructions and/or the corresponding
program(s) can be executed in whole or in part. Thus,
machine readable media, as used herein, may include
machine readable instructions and/or program(s) regard-
less of the particular format or state of the machine read-
able instructions and/or program(s) when stored or oth-
erwise at rest or in transit.
[0035] The machine readable instructions described
herein can be represented by any past, present, or future
instruction language, scripting language, programming
language, etc. For example, the machine readable in-
structions may be represented using any of the following
languages: C, C++, Java, C#, Perl, Python, JavaScript,

HyperText Markup Language (HTML), Structured Query
Language (SQL), Swift, etc.
[0036] As mentioned above, the example operations
of FIG. 5 may be implemented using executable instruc-
tions (e.g., computer and/or machine readable instruc-
tions) stored on one or more non-transitory computer
and/or machine readable media such as optical storage
devices, magnetic storage devices, an HDD, a flash
memory, a read-only memory (ROM), a CD, a DVD, a
cache, a RAM of any type, a register, and/or any other
storage device or storage disk in which information is
stored for any duration (e.g., for extended time periods,
permanently, for brief instances, for temporarily buffer-
ing, and/or for caching of the information). As used here-
in, the terms non-transitory computer readable medium
and non-transitory computer readable storage medium
is expressly defined to include any type of computer read-
able storage device and/or storage disk and to exclude
propagating signals and to exclude transmission media.
[0037] "Including" and "comprising" (and all forms and
tenses thereof) are used herein to be open ended terms.
Thus, whenever a claim employs any form of "include"
or "comprise" (e.g., comprises, includes, comprising, in-
cluding, having, etc.) as a preamble or within a claim
recitation of any kind, it is to be understood that additional
elements, terms, etc., may be present without falling out-
side the scope of the corresponding claim or recitation.
As used herein, when the phrase "at least" is used as
the transition term in, for example, a preamble of a claim,
it is open-ended in the same manner as the term "com-
prising" and "including" are open ended. The term
"and/or" when used, for example, in a form such as A, B,
and/or C refers to any combination or subset of A, B, C
such as (1) A alone, (2) B alone, (3) C alone, (4) A with
B, (5) A with C, (6) B with C, or (7) A with B and with C.
As used herein in the context of describing structures,
components, items, objects and/or things, the phrase "at
least one of A and B" is intended to refer to implementa-
tions including any of (1) at least one A, (2) at least one
B, or (3) at least one A and at least one B. Similarly, as
used herein in the context of describing structures, com-
ponents, items, objects and/or things, the phrase "at least
one of A or B" is intended to refer to implementations
including any of (1) at least one A, (2) at least one B, or
(3) at least one A and at least one B. As used herein in
the context of describing the performance or execution
of processes, instructions, actions, activities and/or
steps, the phrase "at least one of A and B" is intended
to refer to implementations including any of (1) at least
one A, (2) at least one B, or (3) at least one A and at least
one B. Similarly, as used herein in the context of describ-
ing the performance or execution of processes, instruc-
tions, actions, activities and/or steps, the phrase "at least
one of A or B" is intended to refer to implementations
including any of (1) at least one A, (2) at least one B, or
(3) at least one A and at least one B.
[0038] As used herein, singular references (e.g., "a",
"an", "first", "second", etc.) do not exclude a plurality. The

13 14

EP 4 155 906 A1

9

5

10

15

20

25

30

35

40

45

50

55

term "a" or "an" object, as used herein, refers to one or
more of that object. The terms "a" (or "an"), "one or more",
and "at least one" are used interchangeably herein. Fur-
thermore, although individually listed, a plurality of
means, elements or method actions may be implemented
by, e.g., the same entity or object. Additionally, although
individual features may be included in different examples
or claims, these may possibly be combined, and the in-
clusion in different examples or claims does not imply
that a combination of features is not feasible and/or ad-
vantageous.
[0039] FIG. 5 is a flowchart representative of example
machine readable instructions and/or example opera-
tions 500 that may be executed and/or instantiated by
processor circuitry to dynamically expose a microservice
to a software layer of a hardware stack/architecture. The
machine readable instructions and/or operations 500 of
FIG. 5 begin at block 502, at which a request to expose
a microservice interface is received. As described above,
in some examples, the dynamic serializer receives the
request from an IDE of the hardware stack/architecture.
In some examples, the request takes the form an instan-
tiation operation in which a software developer invokes
the exposure of the microservice interface. In some ex-
amples, the instantiation can be formed by moving a vis-
ual object on a display from a first area or region of the
display to a second region.
[0040] At a block 504, the dynamic initializer 414 (of
FIG. 4) composes the API/microservice execution recipe.
In some examples, the dynamic initializer 414 composes
the API/microservice execution recipe by querying the
registry (also referred to as the FAPI registry and/or as
the software library dependency registry) for identities of
a set services and inherent, corresponding execution rec-
ipes needed to expose the micro service/feature. In some
examples, the recipe is composed based on an array of
FAPIs and an array of SAPIs obtained from the registry.
In response to the results of the query, the dynamic ini-
tializer 414 use the execution recipe to identify a set of
services needed in order to expose the microservice a
block 506. At a block 508, the dynamic initializer 414
initializes the services identified in the execution recipe
in an order specified in the recipe.
[0041] At a block 510, the dynamic connection checker
DCC 418 uses the selected feature/microservice (API)
execution recipe to determine whether a pathway de-
scribed by the recipe is valid. At a block 512, assuming
the pathway is valid, the dynamic serializer 412 uses the
API execution recipe generate executable code that is
recognizable by the IDE(s) IDEs 304A -304D (FIG. 3)
that requested access to the microservice . The IDE(s)
compile the software executable code (developed from
the API execution recipe) thereby resulting in executable
binary code at the block 514. After the block 514, the
machine readable instructions and/or example opera-
tions 500 of FIG. 5 end. In some examples, the binary
codes can later be installed in and executed by process-
ing systems to thereby expose the microservice interface

be exposed to the software layer of the processing sys-
tem. In some examples, the machine readable instruc-
tions and/or example operations 500 of FIG. 5 can be
repeatedly re-executed from start to finish to expose as
many microservice hardware interfaces as desired. In
some examples, when the dynamic connection checker
DCC 418 cannot validate the pathway, the dynamic ini-
tializer DI 414 is notified and an error message is returned
to the IDEs.
[0042] FIG. 6 is pseudocode that can be used to im-
plement the dynamic initializer 414 of FIG. 4. The pseu-
docode includes five operations, a FAPI return operation,
a SAPI return operation, a compose sw recipe (e.g., fea-
ture/microservice execution recipe) operation and a re-
turn recipe operation. The pseudocode operations cause
the actions described with respect to FIG. 4 and 5 to be
performed.
[0043] FIG. 7 is a block diagram of an example proc-
essor platform 700 structured to execute and/or instan-
tiate the machine readable instructions and/or operations
of FIG. 5 to implement the dynamic software engine of
FIG. 3 and FIG. 4. The processor platform 700 can be,
for example, a server, a personal computer, a worksta-
tion, a self-learning machine (e.g., a neural network), an
Internet appliance, a DVD player, or any other type of
computing device.
[0044] The processor platform 700 of the illustrated ex-
ample includes processor circuitry 712. The processor
circuitry 712 of the illustrated example is hardware. For
example, the processor circuitry 712 can be implemented
by one or more integrated circuits, logic circuits, FPGAs
microprocessors, CPUs, GPUs, DSPs, and/or microcon-
trollers from any desired family or manufacturer. The
processor circuitry 712 may be implemented by one or
more semiconductor based (e.g., silicon based) devices.
In this example, the processor circuitry 712 implements
the example dynamic serializer 412, the dynamic initial-
izer 414, and the example dynamic converter 418.
[0045] The processor circuitry 712 of the illustrated ex-
ample includes a local memory 713 (e.g., a cache, reg-
isters, etc.). The processor circuitry 712 of the illustrated
example is in communication with a main memory includ-
ing a volatile memory 714 and a non-volatile memory 716
by a bus 718. The volatile memory 714 may be imple-
mented by Synchronous Dynamic Random Access
Memory (SDRAM), Dynamic Random Access Memory
(DRAM), RAMBUS® Dynamic Random Access Memory
(RDRAM®), and/or any other type of RAM device. The
non-volatile memory 716 may be implemented by flash
memory and/or any other desired type of memory device.
Access to the main memory 714, 716 of the illustrated
example is controlled by a memory controller 717.
[0046] The processor platform 700 of the illustrated ex-
ample also includes interface circuitry 720. The interface
circuitry 720 may be implemented by hardware in accord-
ance with any type of interface standard, such as an Eth-
ernet interface, a universal serial bus (USB) interface, a
Bluetooth@ interface, a near field communication (NFC)

15 16

EP 4 155 906 A1

10

5

10

15

20

25

30

35

40

45

50

55

interface, a PCI interface, and/or a PCIe interface.
[0047] In the illustrated example, one or more input
devices 722 are connected to the interface circuitry 720.
The input device(s) 722 permit(s) a user to enter data
and/or commands into the processor circuitry 712. The
input device(s) 722 can be implemented by, for example,
an audio sensor, a microphone, a camera (still or video),
a keyboard, a button, a mouse, a touchscreen, a track-
pad, a trackball, an isopoint device, and/or a voice rec-
ognition system.
[0048] One or more output devices 724 are also con-
nected to the interface circuitry 720 of the illustrated ex-
ample. The output devices 724 can be implemented, for
example, by display devices (e.g., a light emitting diode
(LED), an organic light emitting diode (OLED), a liquid
crystal display (LCD), a cathode ray tube (CRT) display,
an in-place switching (IPS) display, a touchscreen, etc.),
a tactile output device, a printer, and/or speaker. The
interface circuitry 720 of the illustrated example, thus,
typically includes a graphics driver card, a graphics driver
chip, and/or graphics processor circuitry such as a GPU.
[0049] The interface circuitry 720 of the illustrated ex-
ample also includes a communication device such as a
transmitter, a receiver, a transceiver, a modem, a resi-
dential gateway, a wireless access point, and/or a net-
work interface to facilitate exchange of data with external
machines (e.g., computing devices of any kind) by a net-
work 726. The communication can be by, for example,
an Ethernet connection, a digital subscriber line (DSL)
connection, a telephone line connection, a coaxial cable
system, a satellite system, a line-of-site wireless system,
a cellular telephone system, an optical connection, etc.
[0050] The processor platform 700 of the illustrated ex-
ample also includes one or more mass storage devices
728 to store software and/or data. Examples of such
mass storage devices 728 include magnetic storage de-
vices, optical storage devices, floppy disk drives, HDDs,
redundant array of independent disks (RAID) systems,
solid state storage devices such as flash memory devic-
es, and DVD drives.
[0051] The machine executable instructions 732,
which may be implemented by the machine readable in-
structions of FIGS. 500 may be stored in the mass stor-
age device 728, in the volatile memory 714, in the non-
volatile memory 716, and/or on a removable non-transi-
tory computer readable storage medium such as a CD
or DVD.
[0052] FIG. 8 is a block diagram of an example imple-
mentation of the processor circuitry 712 of FIG. 7. In this
example, the processor circuitry 712 of FIG. 7 is imple-
mented by a microprocessor 800. For example, the mi-
croprocessor 800 may implement multi-core hardware
circuitry such as a CPU, a DSP, a GPU, an XPU, etc.
Although it may include any number of example cores
802 (e.g., 1 core), the microprocessor 800 of this example
is a multi-core semiconductor device including N cores.
The cores 802 of the microprocessor 800 may operate
independently or may cooperate to execute machine

readable instructions. For example, machine code cor-
responding to a firmware program, an embedded soft-
ware program, or a software program may be executed
by one of the cores 802 or may be executed by multiple
ones of the cores 802 at the same or different times. In
some examples, the machine code corresponding to the
firmware program, the embedded software program, or
the software program is split into threads and executed
in parallel by two or more of the cores 802. The software
program may correspond to a portion or all of the machine
readable instructions and/or operations represented by
the flowchart of FIG. 5.
[0053] The cores 802 may communicate by an exam-
ple bus 804. In some examples, the bus 804 may imple-
ment a communication bus to effectuate communication
associated with one(s) of the cores 802. For example,
the bus 804 may implement at least one of an Inter-Inte-
grated Circuit (I2C) bus, a Serial Peripheral Interface
(SPI) bus, a PCI bus, or a PCIe bus. Additionally, or al-
ternatively, the bus 804 may implement any other type
of computing or electrical bus. The cores 802 may obtain
data, instructions, and/or signals from one or more ex-
ternal devices by example interface circuitry 806. The
cores 802 may output data, instructions, and/or signals
to the one or more external devices by the interface cir-
cuitry 806. Although the cores 802 of this example include
example local memory 820 (e.g., Level 1 (L1) cache that
may be split into an L1 data cache and an L1 instruction
cache), the microprocessor 800 also includes example
shared memory 810 that may be shared by the cores
(e.g., Level 2 (L2_ cache)) for high-speed access to data
and/or instructions. Data and/or instructions may be
transferred (e.g., shared) by writing to and/or reading
from the shared memory 810. The local memory 820 of
each of the cores 802 and the shared memory 810 may
be part of a hierarchy of storage devices including mul-
tiple levels of cache memory and the main memory (e.g.,
the main memory 714, 716 of FIG. 7). Typically, higher
levels of memory in the hierarchy exhibit lower access
time and have smaller storage capacity than lower levels
of memory. Changes in the various levels of the cache
hierarchy are managed (e.g., coordinated) by a cache
coherency policy.
[0054] Each core 802 may be referred to as a CPU,
DSP, GPU, etc., or any other type of hardware circuitry.
Each core 802 includes control unit circuitry 814, arith-
metic and logic (AL) circuitry (sometimes referred to as
an ALU) 816, a plurality of registers 818, the L1 cache
820, and an example bus 822. Other structures may be
present. For example, each core 802 may include vector
unit circuitry, single instruction multiple data (SIMD) unit
circuitry, load/store unit (LSU) circuitry, branch/jump unit
circuitry, floatingpoint unit (FPU) circuitry, etc. The control
unit circuitry 814 includes semiconductor-based circuits
structured to control (e.g., coordinate) data movement
within the corresponding core 802. The AL circuitry 816
includes semiconductor-based circuits structured to per-
form one or more mathematic and/or logic operations on

17 18

EP 4 155 906 A1

11

5

10

15

20

25

30

35

40

45

50

55

the data within the corresponding core 802. The AL cir-
cuitry 816 of some examples performs integer based op-
erations. In other examples, the AL circuitry 816 also per-
forms floating point operations. In yet other examples,
the AL circuitry 816 may include first AL circuitry that
performs integer based operations and second AL cir-
cuitry that performs floating point operations. In some
examples, the AL circuitry 816 may be referred to as an
Arithmetic Logic Unit (ALU). The registers 818 are sem-
iconductor-based structures to store data and/or instruc-
tions such as results of one or more of the operations
performed by the AL circuitry 816 of the corresponding
core 802. For example, the registers 818 may include
vector register(s), SIMD register(s), general purpose reg-
ister(s), flag register(s), segment register(s), machine
specific register(s), instruction pointer register(s), control
register(s), debug register(s), memory management reg-
ister(s), machine check register(s), etc. The registers 818
may be arranged in a bank as shown in FIG. 8. Alterna-
tively, the registers 818 may be organized in any other
arrangement, format, or structure including distributed
throughout the core 802 to shorten access time. The bus
820 may implement at least one of an I2C bus, a SPI
bus, a PCI bus, or a PCIe bus
[0055] Each core 802 and/or, more generally, the mi-
croprocessor 800 may include additional and/or alternate
structures to those shown and described above. For ex-
ample, one or more clock circuits, one or more power
supplies, one or more power gates, one or more cache
home agents (CHAs), one or more converged/common
mesh stops (CMSs), one or more shifters (e.g., barrel
shifter(s)) and/or other circuitry may be present. The mi-
croprocessor 800 is a semiconductor device fabricated
to include many transistors interconnected to implement
the structures described above in one or more integrated
circuits (ICs) contained in one or more packages. The
processor circuitry may include and/or cooperate with
one or more accelerators. In some examples, accelera-
tors are implemented by logic circuitry to perform certain
tasks more quickly and/or efficiently than can be done
by a general purpose processor. Examples of accelera-
tors include ASICs and FPGAs such as those discussed
herein. A GPU or other programmable device can also
be an accelerator. Accelerators may be on-board the
processor circuitry, in the same chip package as the proc-
essor circuitry and/or in one or more separate packages
from the processor circuitry.
[0056] FIG. 9 is a block diagram of another example
implementation of the processor circuitry 712 of FIG. 7.
In this example, the processor circuitry 712 is implement-
ed by FPGA circuitry 900. The FPGA circuitry 900 can
be used, for example, to perform operations that could
otherwise be performed by the example microprocessor
700 of FIG. 7 executing corresponding machine readable
instructions. However, once configured, the FPGA cir-
cuitry 900 instantiates the machine readable instructions
in hardware and, thus, can often execute the operations
faster than they could be performed by a general purpose

microprocessor executing the corresponding software.
[0057] More specifically, in contrast to the microproc-
essor 700 of FIG. 7 described above (which is a general
purpose device that may be programmed to execute
some or all of the machine readable instructions repre-
sented by the flowchart of FIG. 5 but whose interconnec-
tions and logic circuitry are fixed once fabricated), the
FPGA circuitry 900 of the example of FIG. 9 includes
interconnections and logic circuitry that may be config-
ured and/or interconnected in different ways after fabri-
cation to instantiate, for example, some or all of the ma-
chine readable instructions represented by the flowchart
of FIG. 5. In particular, the FPGA 900 may be thought of
as an array of logic gates, interconnections, and switch-
es. The switches can be programmed to change how the
logic gates are interconnected by the interconnections,
effectively forming one or more dedicated logic circuits
(unless and until the FPGA circuitry 900 is repro-
grammed). The configured logic circuits enable the logic
gates to cooperate in different ways to perform different
operations on data received by input circuitry. Those op-
erations may correspond to some, or all of the software
represented by the flowchart of FIG. 5 As such, the FPGA
circuitry 900 may be structured to effectively instantiate
some or all of the machine readable instructions of the
flowchart of FIG. 9 as dedicated logic circuits to perform
the operations corresponding to those software instruc-
tions in a dedicated manner analogous to an ASIC.
Therefore, the FPGA circuitry 900 may perform the op-
erations corresponding to the some or all of the machine
readable instructions of FIG. 9 faster than the general
purpose microprocessor can execute the same.
[0058] In the example of FIG. 9, the FPGA circuitry 900
is structured to be programmed (and/or reprogrammed
one or more times) by an end user by a hardware de-
scription language (HDL) such as Verilog. The FPGA cir-
cuitry 900 of FIG. 9, includes example input/output (I/O)
circuitry 902 to obtain and/or output data to/from example
configuration circuitry 904 and/or external hardware
(e.g., external hardware circuitry) 906. For example, the
configuration circuitry 904 may implement interface cir-
cuitry that may obtain machine readable instructions to
configure the FPGA circuitry 900, or portion(s) thereof.
In some such examples, the configuration circuitry 904
may obtain the machine readable instructions from a us-
er, a machine (e.g., hardware circuitry (e.g., programmed
or dedicated circuitry) that may implement an Artificial
Intelligence/Machine Learning (AI/ML) model to gener-
ate the instructions), etc. In some examples, the external
hardware 906 may implement the microprocessor 800
of FIG. 8. The FPGA circuitry 900 also includes an array
of example logic gate circuitry 908, a plurality of example
configurable interconnections 910, and example storage
circuitry 912. The logic gate circuitry 908 and intercon-
nections 910 are configurable to instantiate one or more
operations that may correspond to at least some of the
machine readable instructions of FIG. 5 and/or other de-
sired operations. The logic gate circuitry 908 shown in

19 20

EP 4 155 906 A1

12

5

10

15

20

25

30

35

40

45

50

55

FIG. 9 is fabricated in groups or blocks. Each block in-
cludes semiconductor-based electrical structures that
may be configured into logic circuits. In some examples,
the electrical structures include logic gates (e.g., And
gates, Or gates, Nor gates, etc.) that provide basic build-
ing blocks for logic circuits. Electrically controllable
switches (e.g., transistors) are present within each of the
logic gate circuitry 908 to enable configuration of the elec-
trical structures and/or the logic gates to form circuits to
perform desired operations. The logic gate circuitry 908
may include other electrical structures such as look-up
tables (LUTs), registers (e.g., flip-flops or latches), mul-
tiplexers, etc.
[0059] The interconnections 910 of the illustrated ex-
ample are conductive pathways, traces, vias, or the like
that may include electrically controllable switches (e.g.,
transistors) whose state can be changed by program-
ming (e.g., using an HDL instruction language) to activate
or deactivate one or more connections between one or
more of the logic gate circuitry 908 to program desired
logic circuits.
[0060] The storage circuitry 912 of the illustrated ex-
ample is structured to store result(s) of the one or more
of the operations performed by corresponding logic
gates. The storage circuitry 912 may be implemented by
registers or the like. In the illustrated example, the storage
circuitry 912 is distributed amongst the logic gate circuitry
908 to facilitate access and increase execution speed.
[0061] The example FPGA circuitry 900 of FIG. 9 also
includes example Dedicated Operations Circuitry 914. In
this example, the Dedicated Operations Circuitry 914 in-
cludes special purpose circuitry 916 that may be invoked
to implement commonly used functions to avoid the need
to program those functions in the field. Examples of such
special purpose circuitry 916 include memory (e.g.,
DRAM) controller circuitry, PCIe controller circuitry, clock
circuitry, transceiver circuitry, memory, and multiplier-ac-
cumulator circuitry. Other types of special purpose cir-
cuitry may be present. In some examples, the FPGA cir-
cuitry 900 may also include example general purpose
programmable circuitry 918 such as an example CPU
920 and/or an example DSP 922. Other general purpose
programmable circuitry 918 may additionally or alterna-
tively be present such as a GPU, an XPU, etc., that can
be programmed to perform other operations.
[0062] Although FIGS. 8 and 9 illustrate two example
implementations of the processor circuitry 712 of FIG. 7,
many other approaches are contemplated. For example,
as mentioned above, modern FPGA circuitry may include
an on-board CPU, such as one or more of the example
CPU 920 of FIG. 9. Therefore, the processor circuitry 712
of FIG. 7 may additionally be implemented by combining
the example microprocessor 800 of FIG. 8 and the ex-
ample FPGA circuitry 900 of FIG. 9. In some such hybrid
examples, a first portion of the machine readable instruc-
tions represented by the flowchart of FIG. 5 may be ex-
ecuted by one or more of the cores 802 of FIG. 8 and a
second portion of the machine readable instructions rep-

resented by the flowchart of FIG. 5 may be executed by
the FPGA circuitry 900 of FIG. 9.
[0063] In some examples, the processor circuitry 712
of FIG. 7 may be in one or more packages. For example,
the processor circuitry 800 of FIG. 8 and/or the FPGA
circuitry 800 of FIG. 8 may be in one or more packages.
In some examples, an XPU may be implemented by the
processor circuitry 712 of FIG. 7, which may be in one
or more packages. For example, the XPU may include a
CPU in one package, a DSP in another package, a GPU
in yet another package, and an FPGA in still yet another
package.
[0064] From the foregoing, it will be appreciated that
example systems, methods, apparatus, and articles of
manufacture have been disclosed that expose a hard-
ware interface for a microservice to a software layer of a
hardware stack/architecture of a compute/processor sys-
tem. The disclosed systems, methods, apparatus, and
articles of manufacture greatly improve ease of using
hardware microservices by dynamically providing access
to such hardware microservices. The disclosed systems,
methods, apparatus, and articles of manufacture dynam-
ically generate a software code based API execution rec-
ipe that, when compiled to binary code provides a soft-
ware layer (e.g., the Functional API layer) of a hardware
stack/architecture of a compute/processing system ac-
cess to a hardware microservice. Generating access to
hardware microservices using the dynamic engine dis-
closed herein eliminates the need to manually derive a
pathway between a software layer and the hardware mi-
croservice. Deriving such a pathway, when performed
manually, is labor intensive, time consuming and ex-
tremely difficult. Thus, using the dynamic software engine
disclosed promotes the usage of hardware microservices
that can often perform specific tasks more quickly and
more efficiently than using software code to perform the
same tasks.
[0065] Example methods, apparatus, systems, and ar-
ticles of manufacture to expose a hardware feature/mi-
croservice to a software layer are disclosed herein. Fur-
ther examples and combinations thereof include the fol-
lowing:
[0066] Example 1 includes a method comprising com-
posing an API execution recipe, initializing a software
service to be called, and checking, by executing an in-
struction with the at least one processor, a connection
between a software layer and a microservice, the con-
nection defined by the API execution recipe, and the con-
nection to expose the microservice to the software layer.
[0067] Example 2 includes the method of example 1,
further including querying a functional application pro-
gramming interface (FAPI) registry to obtain a collection
of software services and corresponding execution reci-
pes, the composing of the API execution recipe to occur
in response to the querying, the API execution recipe
based on a collection of software services and corre-
sponding execution recipes, and the software service to
be called among the collection of software services, and

21 22

EP 4 155 906 A1

13

5

10

15

20

25

30

35

40

45

50

55

identifying, based on the API execution recipe, the soft-
ware service to be called.
[0068] Example 3 includes the method of example 2,
wherein the information collected from the registry in-
cludes an array of FAPI objects and an array of corre-
sponding system API (SAPI) objects.
[0069] Example 4 includes the method of example 2,
wherein the information collected from the registry in-
cludes a value representing a number of software layers
to be used to establish the connection, and further in-
cluding software dependencies between the software
layers, and software libraries to be used in establishing
the connection.
[0070] Example 5 includes the method of example 2,
wherein the registry is a software library dependency reg-
istry.
[0071] Example 6 includes the method of example 2,
wherein the registry includes a catalog of FAPIs and cor-
responding system APIs (SAPIs) for use in composing
the API execution recipe at runtime.
[0072] Example 7 includes the method of example 1,
wherein the connection is represented by a functional
application programming interface between the software
layer and the microservice.
[0073] Example 8 includes the method of example 1,
wherein the microservice is implemented with hardware
and performs a computational task.
[0074] Example 9 includes the method of example 1,
wherein the composing of the API execution recipe oc-
curs at runtime.
[0075] Example 10 includes the method of example 1,
wherein the connection defined by the API execution rec-
ipe is to be used by any of a plurality of software devel-
opment tools residing at the software layer.
[0076] Example 11 includes the method of example 1,
wherein the API execution recipe is dependent on a hard-
ware platform associated with the microservice to be ex-
posed to the software layer.
[0077] Example 12 includes an apparatus comprising
a processor, and instructions to cause at least one proc-
essor to compose an application programming interface
(API) execution recipe based on functional API (FAPI)
information, system API (SAPI) information, a FAPI li-
brary, and a SAPI library, the FAPI information, the SAPI
information, a FAPI library and a SAPI library obtained
from a feature registry, initialize software services iden-
tified in the API execution recipe, validate a pathway be-
tween a microservice feature and the software layer, the
pathway defined by the API execution recipe, and supply
the API execution recipe in software executable code to
an integrated design environment at a software layer,
when the pathway is valid, the integrated design envi-
ronment to compile the software executable code to gen-
erate executable binary code, and the executable binary
code, when executed, to expose a microservice to the
software layer.
[0078] Example 13 includes the apparatus of example
12, wherein the FAPI information includes an array of

Functional API objects and the SAPI information includes
an array of corresponding SAPI objects.
[0079] Example 14 includes the apparatus of example
12, wherein to compose the API execution recipe the at
least one processor is to determine a number of software
layers to be included in the API execution recipe, identify
software dependencies between the software layers, and
initialize the FAPI and SAPI libraries.
[0080] Example 15 includes the apparatus of example
12, wherein the executable binary code, when executed,
generates a microservice interface, the microservice in-
terface to expose the microservice to the software layer.
[0081] Example 16 includes the apparatus of example
12, wherein a microservice is to perform a computational
task.
[0082] Example 17 includes the apparatus of example
12, wherein the registry is a software library dependency
registry.
[0083] Example 18 includes the apparatus of example
12, wherein the processor is to compose the API execu-
tion recipe at runtime.
[0084] Example 19 includes the apparatus of example
12, wherein the registry includes a catalog of FAPIs and
corresponding SAPIs.
[0085] Example 20 includes At least one non transitory
computer readable medium comprising computer read-
able instructions, that when executed, cause at least one
processor to at least compose an application program-
ming interface (API) execution recipe based on the re-
sults of a query of a FAPI and SAPI registry, the query
to identify a microservice to be exposed to a software
layer of a compute system, and initialize software serv-
ices and libraries identified in the API execution recipe,
validate components included in a pathway from a soft-
ware layer to a microservice, the pathway defined by the
API execution recipe, convert the API to executable soft-
ware code, the executable software code to be compiled
to create executable binary code that, when executed,
exposes the microservice to the software layer.
[0086] Example 21 includes the non-transitory compu-
ter readable medium of example 20, wherein the com-
puter readable instructions cause the at least one proc-
essor to provide the executable software code to an in-
tegrated design environment for compilation.
[0087] Example 22 includes the non-transitory compu-
ter readable medium of example 20, wherein the FAPI
information and the SAPI information include an array of
FAPI objects and an array of corresponding SAPI ob-
jects, respectively.
[0088] Example 23 includes the non-transitory compu-
ter readable medium of example 20, wherein to compose
the API recipe, the instructions cause the processor to
determine a number of software layers to be included in
the API execution recipe, identify software dependencies
between the software layers, and initialize the FAPI and
SAPI libraries.
[0089] Example 24 includes the non-transitory compu-
ter readable medium of example 20, wherein the micro-

23 24

EP 4 155 906 A1

14

5

10

15

20

25

30

35

40

45

50

55

service performs a computational task.
[0090] Example 25 includes the non-transitory compu-
ter readable medium of example 20, wherein the instruc-
tions cause the processor to compose the API execution
recipe at runtime.
[0091] Although certain example systems, methods,
apparatus, and articles of manufacture have been dis-
closed herein, the scope of coverage of this patent is not
limited thereto. On the contrary, this patent covers all
systems, methods, apparatus, and articles of manufac-
ture fairly falling within the scope of the claims of this
patent.
[0092] The following claims are hereby incorporated
into this Detailed Description by this reference, with each
claim standing on its own as a separate embodiment of
the present disclosure.

Claims

1. A method comprising:

composing, by executing an instruction with at
least one processor, an application program-
ming interface (API) execution recipe;
initializing a software service to be called; and
checking, by executing an instruction with the at
least one processor, a connection between a
software layer and a microservice, the connec-
tion defined by the API execution recipe, and
the connection to expose the microservice to the
software layer.

2. The method of claim 1, further including:

querying a functional application programming
interface (FAPI) registry to obtain a collection of
software services and corresponding execution
recipes, the composing of the API execution rec-
ipe to occur in response to the querying, and the
software service to be called being among the
collection of software services; and
identifying, based on the API execution recipe,
the software service to be called.

3. The method of claim 2, including querying the FAPI
registry to obtain an array of FAPI objects and an
array of corresponding system API (SAPI) objects.

4. The method of any one of claims 2 or 3, wherein the
software layer is an initial software layer, the method
including querying the FAPI registry to obtain:

a value representing a number of software lay-
ers to be used to establish the connection, the
software layers to include the initial software lay-
er;
software dependencies between the software

layers; and
software libraries to be used in establishing the
connection.

5. The method of any one of claims 2, 3, or 4, wherein
the FAPI registry includes a catalog of FAPIs and
corresponding system APIs (SAPIs) for use in com-
posing the API execution recipe at runtime.

6. An apparatus comprising:

a processor; and
instructions to cause at least one processor to:

compose an application programming inter-
face (API) execution recipe based on func-
tional API (FAPI) information, system API
(SAPI) information, a FAPI library, and a
SAPI library, the FAPI information, the SAPI
information, a FAPI library and a SAPI li-
brary obtained from a feature registry;
initialize software services identified in the
API execution recipe;
validate a pathway between a microservice
feature and a software layer, the pathway
defined by the API execution recipe; and
supply the API execution recipe in software
executable code to an integrated design en-
vironment, the integrated design environ-
ment to compile the software executable
code to generate executable binary code,
and the executable binary code to expose
a microservice to the software layer, the mi-
croservice associated with the microservice
feature.

7. The apparatus of claim 6, wherein the software layer
is an initial software layer, and to compose the API
execution recipe, the at least one processor is to:

determine a number of software layers to be in-
cluded in the API execution recipe, the software
layers to include the initial software layer;
identify software dependencies between the
software layers; and
initialize the FAPI library and the SAPI library.

8. The apparatus of any one of claims 6 or 7, wherein
the executable binary code, when executed, gener-
ates a microservice interface, the microservice inter-
face to expose the microservice to the initial software
layer.

9. The apparatus of any one of claims 6, 7, or 8, wherein
the microservice is to perform a computational task.

10. The apparatus of any one of claims 6, 7, 8, or 9,
wherein the API execution recipe is composed at

25 26

EP 4 155 906 A1

15

5

10

15

20

25

30

35

40

45

50

55

runtime.

11. At least one computer readable medium comprising
computer readable instructions, that when executed,
cause at least one processor to at least:

compose an application programming interface
(API) execution recipe based on a query of a
functional API (FAPI) registry and a system API
(SAPI) registry, the query to identify a micros-
ervice to be exposed to a software layer of a
compute system; and
initialize software services and libraries identi-
fied in the API execution recipe;
validate components included in a pathway from
the software layer to a microservice, the path-
way defined by the API execution recipe;
convert the API to executable software code,
the executable software code to be compiled to
create executable binary code, the executable
binary code to expose the microservice to the
software layer.

12. The computer readable medium of claim 11, wherein
the computer readable instructions, when executed,
cause the at least one processor to provide the ex-
ecutable software code to an integrated design en-
vironment for compilation.

13. The computer readable medium of any one of claims
11 or 12, wherein the query of the FAPI registry and
the SAPI registry results in an array of FAPI objects
and an array of corresponding SAPI objects, respec-
tively.

14. The computer readable medium of any one of claims
11, 12, or 13, wherein the software layer is an initial
software layer, and to compose the API execution
recipe, the computer readable instructions cause the
at least one processor to:

determine a number of software layers to be in-
cluded in the API execution recipe, the software
layers to include the initial software layer; and
identify software dependencies between the
software layers.

15. The computer readable medium of any one of claims
11, 12, 13, or 14, wherein the API execution recipe
is composed at runtime.

27 28

EP 4 155 906 A1

16

EP 4 155 906 A1

17

EP 4 155 906 A1

18

EP 4 155 906 A1

19

EP 4 155 906 A1

20

EP 4 155 906 A1

21

EP 4 155 906 A1

22

EP 4 155 906 A1

23

EP 4 155 906 A1

24

EP 4 155 906 A1

25

5

10

15

20

25

30

35

40

45

50

55

EP 4 155 906 A1

26

5

10

15

20

25

30

35

40

45

50

55

	bibliography
	abstract
	description
	claims
	drawings
	search report

