US 20240086409A1

a2y Patent Application Publication o) Pub. No.: US 2024/0086409 A1

a9y United States

Clemens et al.

43) Pub. Date: Mar. 14, 2024

(54) TECHNIQUES FOR PRE-ASSIGNMENT
VALIDATION OF DATA MANAGED BY A
DATA PROCESSING SYSTEM

(52) US.CL
CPC .. GOGF 16/24573 (2019.01); GOGF 16/24534

(2019.01); GOGF 16/287 (2019.01)

(71) Applicant: Ab Initio Technology LL.C, Lexington,
MA (US) 57 ABSTRACT
(72) Inventors: David Clemens, Cambridge, MA (US);
Roy Procops, Winchester, MA (US)
(21) Appl. No.: 18/356,153
Some embodiments provide techniques of enforcing valid
(22) Filed: Jul. 20, 2023 data assignments in a data processing system in which data
can be dynamically updated by user devices and/or com-
Related U.S. Application Data puterized processes. The techniques identify, using a vali-
(60) Provisional application No. 63/404,758, filed on Sep. dation rule associated with a data entity, one or more valid
8, 2022. values for assignment to an attribute of an instance of the
data entity. The techniques identify the valid value(s) by
Publication Classification generating a query for the one or more valid values using
(51) Int. CL one or more condition(s) on the attribute in the validation
GOG6F 16/2457 (2006.01) rule, and executing the generated query to obtain the one or
GO6F 16/2453 (2006.01) more valid values for the first attribute. The attribute may
GO6F 1628 (2006.01) then be assigned one or more of the identified valid value(s).
; 100
102),
Data Processing System
Valication Rules)
It i D ft j";z{t‘ N - ”1"1"8 — \ ,»‘02(’ o o XQQD
Valication Rulels) veR L alidation Rulels) 1V Validation Rulels} - "V | Valldaton RUsls) | g g
4o
Dala Entities
1048
~ < -~ — ”
144 = 1040 W | eee
i‘ g T
g . P
: R "
i - : : : : %
106~ ala Enfy ! i S0y i
7 : : . ;
Instances / ; : ! i [
H ; ; . 2 3 i %
i i ; - ‘ . / 5
; / ! o oTEET M. '
BEy e e P
R ,
[N CE T T
% %
% @
% %

Patent Application Publication

Mar. 14, 2024 Sheet 1

of 42

US 2024/0086409 A1

5
T \\\\

P
&2
e

ystem

sing

facs

AN

M)

$
\ 3 R
o
[
S Fes
T -
o @ P "
i} - -
B - ~
T e 3
= TN b4
- &5
=
N
.
3
e i
ol
RS Peest
o i
et
e I
ol R NEN
N AN A - i
N ~. L.L.!§
<SR
. N
N N
Y N F—
\‘
N, S—
oy i
r:_:}s \ §
~ NSH
3 28
.
N
IS, g
L2
&5
=
~3F e § €
& = Pt
<o < =
2
554 -
= e
ey e
L0 -
e
~
N
&: \‘\\.‘
~.
e \ \\.’\ %
L N .
[} AN &=
Y AN
1
Y \
\ N\
Y g
e
<5}
= .
2 8 = @
il = = T . $
g (7] e <TE] s
s o a3 . - s 8
o =5 = B em &
=2 == = EEOgs T
= - A3 £ &S
B v =
== £ o £
§ T ““‘“‘m [Ta)
[o 5=
‘ o
<> &5
== =

FlG. 1A

Patent Application Publication Mar. 14, 2024 Sheet 2 of 42 US 2024/0086409 A1

<
fa o
=
- & b5 2
2 & 2 -
o ot f ey
3 <8
=, . 5
oo s [xod
g g = : w8
pet-uaeary - - B
i o~ &= 2= T -
= T2] TN e &
L5 A Lid w2
5 i a5 2
fad S
[3 ¢ (Z:’
I
H
<
L a3
£ £
o S i i g I8
L3 ; 7 TS AR
e Aruli e B ar B o . K Fa o Q>
€ ed oS oh g
| i ¢ £
i T staee S ot SR i S St
- 7
=1 VAN
> '\‘}5. = @
&] =S E- -
= [IR
Ead ﬁ’j 4 I e
Facd o ¢ 7 S W
5 o & =
: S g 7 | ER
FE e oK e o o ot] B
o 2 & P o el I
82 R s L fat
S5 % &3
oo ¥ ¥ 3 H Rl g{'.“S
JE £5% >
] €5y i £y ——
= &= i :
£ &=
Facn &5 s
Bas o L
< 5y
- f i g
el
= 3
Y P
AT
¥53
£ § a2
&
O nnd A 3 e 3y e 4 Hhe » an o
oD
=x =
el g
<> ey
= =
e
cher
o
BEE
oF
B
[X
R i N T
b L P ERel
3 IS
3.8 en = Vk
gyt = b B
SE i o B pLER
3§ ET s oo F 8B
g i G o | TEe PO

Patent Application Publication = Mar. 14, 2024 Sheet 3 of 42 US 2024/0086409 A1

1024 00
/

|
\\ Uata Processing System
AN Valdation Rilels)
Ul - Colurmn Order > BusinessTerm Minimum Order AND 1094
L — Direl i -
ataset DivisionName = BusingssTem DivisionName
&

L]
&

P
-

e
ezl

(457

i
afﬂ HPFECQH /_/ 3 .\
H 1 R b d
4 u> ffe - AN 7~
al&z g Purchase - 4080 105
ComnOrer 5

Businesslerm >

(7ol

[y
]

R)

110 Value to Be Assigned

g

"~ Yhich Valuefs) would
be Valld?

Crapeical User inferface i

Yiesw of Prioe Instancs 1084 A07A

“ 5 ;;;3 ’C I . S
Name Frice Listof Values

Dataset > Flichase

-+ Credit Soore instance 108D
Columnlrder 0 / " Ralance instance 105F

BusingssTem > E Purnase Price Instance 06F

/

L X X

FIG.1C

V¢ Ol

US 2024/0086409 A1

= o S Wl] o3

o 017 =
N ® e o T N
S
- WEBI AR N, 07
2 sulBssy W SaegsU) A 2
7 0} S50
p Dl .
8 SIGERY Pl UsieisuBe AN 3 S
< S— a0
s
R sk e Sl B 1
= Sitdy 007 % Sellie] R e 7
= UOJEIOISURI| B K

s . Li— : ~ 4017

oAy v
o, u L T N
SJa8/) ST 10¢ e N -

uIBISAS Duissannid v

/

00¢

Patent Application Publication

US 2024/0086409 A1

Mar. 14, 2024 Sheet 5 of 42

Patent Application Publication

g¢ Old

spe

\
=l

Y10

~ ?‘

m Wo07 " BNEh ANl @

4

4@@.\;\\%_5 3@% V&
?:ﬁi g ggery . TOUC

(el
<>
T3

~ 1

:
EQXNM:T

| _\,c,\sa
LN i

foim

-
<
L

!

¥
W~ 3y e .
fzlamy uogepyen — VOUC

wiaieAg Bussancld vy

&>
Yo

/
00¢

US 2024/0086409 A1

o¢ Ol

Mar. 14, 2024 Sheet 6 of 42

Patent Application Publication

oy ER NG @
@ Y0 o
® éawgﬁééﬁﬁﬁ
® 7 sauels; g ES\%@N
2R, | anqy - O i M
sy | e L ;
YA SRy PR VallcT %ﬂ%a\zgm a
Y007 0UBISU| AT B8 10 MsiA I
i
a2t

Patent Application Publication

Mar. 14,2024 Sheet 7 of 42 US 2024/0086409 Al
Validaion Rule(g -~ 2A
0
¥ _
. , ‘ - 2104
Rule Selection Component
% Selectsd Rule(s)
14
{ ‘ 2108
Rule Transformation Component
Transtormed Rule(s)
¥
, 2100
Query Generation Component S
Generated Queries
, 210D
Query Execution Component e
Query Results
¥
T n \ h
Valid Attribute Values 112

FIG. 2D

US 2024/0086409 A1

Mar. 14, 2024 Sheet 8 of 42

Patent Application Publication

d¢ 9l

Ve Ol

Dalioads 1 aLUBN Usus leplen Ao

015 866 uonepie

Daifioads §1 dhoisy I
ONY, ¥, W sufeg SUUEN BURQ
(INY Eotisity Loy, O _g? 81 UoiBay JeUMO

Y]
I

Q)

QL6 ~ (SJeInaURY Uo (SiuonpUo)

JUBLIB01G)UT S0BLBl

-~ Yuslusoiou3 podu

J01E

308~ fureg

“aIngimE el
8l m%@ e

hmc.g_@ V&~ aynaumy pereioossy

e] ™z epg pooossy

U ghm._, Nmm e s

WBLIBOIONT S0BLi8iLY Jas)

ooy 0

Clieaioul 00— o~ JUSUIBRI00US %&L_

Uoeaipu Aliskeg

8I 10 UoiGseE Jene)

ajn LorepiEA 10 mgmz

Patent Application Publication Mar. 14, 2024 Sheet 9 of 42 US 2024/0086409 A1

FIG. 3C

i

[
Fa
)
IS
=)
2 & -
o] W S S B S . R S
"\..'n m
\ 22
R
=%
X
&= =
e &5
=3 -
s o 22
[eh 3.8 -
=22
= ® o e
s -
4 2 &5 = == =>4
p | =2 53 = P
] e 1 e o Bk
e = =) B
) o o
22 =
Loin
Loos £ Z
P < 5 = s
2 . " Sn bt
A L2 peiew4 ﬁ-‘i: 2=
8 3 e, o
a3 he 2] fot) S
<X g‘;i = & = '-i-g-“ =]
3 £
] =3 £ =2 e & =
[82 B gy i e b
3 s L T &= 2 =
[b oy == 22 e 2
= s o W< > e g =
&3 o B = g == =
= = oG Bl = £ =
or == R S — [i
o - B R o) L
o =oon X ez e b
£ i 5 B G = &= i
= OB o= D e i =
R & g L
Pespmmm £ e] 32 o <X e e
o 23 | o o -WEEE e o ~Ghoe?
e P I (Ao o B ot | o
a5 S o es 92 2B S &S
g e BOE = ws e Fr
U2 = oF a3 [y S S £= =
Fo 5 A S ST RS Al =5 &
<5 o i £
5 &7 = E)

US 2024/0086409 A1

Mar. 14, 2024 Sheet 10 of 42

Patent Application Publication

v Old

X X

US 2024/0086409 A1

Mar. 14, 2024 Sheet 11 of 42

Patent Application Publication

gy ‘Ol
uorelodion adh _.i//
@ 00y
BOLBILY LJION by~ |,
//IN,Q%
yueg edap BN~
- 00
000r AU ejeq Lognizsu) o souejsu
yuegeboyy
(
o

< Yulegebap iy
3%y
o Dkt

'R 9 8005 JpalDy 700 L~ UoRR(

Patent Application Publication = Mar. 14, 2024 Sheet 12 of 42 US 2024/0086409 A1

404
/
Validation Rules
Rule A - Owner Name begins with 8"
10 Owner Region is equal to Institufion Region
Rule = - Institution. Region s Defined
&
&
&
400A
Biz Term Data Enfity
denifer — 400A Integer
Definion-—" 40042 String
o Oy HOAS Business Owner Data Enfity
= Instuton 4004 Institution Data Enfity
&
&
&

FIG. 4C

Patent Application Publication = Mar. 14, 2024 Sheet 13 of 42 US 2024/0086409 A1

04
204 /

Validation Rule(s)

404A~
404B ~

Owner Regiongs equal toinsfitufion Region

L/
\ /
| /
;

Region = "North America”

/
4068
408 ¥
’
2% [Query
SELECT Instances of Business Owner
WHERE

Name[0] = "B" AND
Region = "North America”

NS
=
L)

Query Results

Bailey Harmpton

Bill Smith

Bob Owen 8

Patent Application Publication = Mar. 14, 2024 Sheet 14 of 42 US 2024/0086409 A1

Data Bement Dafa
Entity
510~
Name
Utaset Data Entty
ColumnOreder
BusinessTem
l Data Entity
Business Tem Dala L
Bty B4~ Uslacel DgiaEnlly
Hame -~ 012
Name
Deserption .
) . DivisionNane
WMinimumCrcer
TechGrowp Ty
Dala Enfity
DivisicniName
i Tech Group Uata
o] Eaity
Nare
DvisionName

FIG. 5A

g5 9ld

US 2024/0086409 A1

B8] adh|
Jsilaingny, g
BN, Bl

715 Pmcm BB 19SRIE(] 10 aCUBISU: BSRUAIN 206
4

Mar. 14, 2024 Sheet 15 of 42

Ricnan oA] g ssauEng
E DBUDISSY 63 G 9NBA YOG~ -
g ; DI
w OB sEen
A _ se
n .
= S, Bitlel
g
E
< 005" (016 AT ERD 1OUISE B9 J0 B0UESH 80H
=
=
=
="

Patent Application Publication Mar. 14, 2024 Sheet 16 of 42 US 2024/0086409 A1

. Valldation Rulsdst

5‘\;4“\% e

E; "i : ! T s 5

WA~ Rule - ColumnOrder > Busiess ae_rm.a\fsmen“;un‘zﬂrderAND
BusinessTerm TechGroup Name = "Enterprise’ AND
Dataset DivisionName = Business Tem DivisionNare

@
@
B

510~ Data Bement Data Enfity
Nama
Hatnsed
CoturanOrder

w BUSInass fems

FIG. 5C

Patent Application Publication Mar. 14, 2024 Sheet 17 of 42

US 2024/0086409 A1
04
” f'j
L Vakdaton Rl
504"*'“\&%&% - "alun*nO*der > Business Term MinimumOedert AND
/ B«Si’eﬁb ermT::cwrmg:P\lame = ‘Tlerprise’ | AND
atasel Diviseriare | = [usess Term Divsiorilarme
/ 7 ' Y T
7 RN N
opf
7 N
20~ Transformed Rule
5>§%irjjmum@rder éech(j;cup.r\lame:“Eraterprsse” Prcrurir}@en = Divisioname
ﬂf f f
5008 08 L 5000
2100
0 ety
SELECT Instances of Business Term
n-HEPE
& > MinimumOrcer AND
Te hGroup. Name = "Inb wrpﬂ g AlD
“Procurament’ = DivisionName
FROM Datastore
210D
Sz , sery Res
N BiginessTam A ety Resus
Businessterm B -
Businesstarm C 4

FIG. 5D

Patent Application Publication

Mar. 14, 2024 Sheet 18 of 42

610~

Dala briy T

At T 1D
Altriste x

Alrutey

US 2024/0086409 A1

Attrbuie 8

Atfrbide D

fen)

Uata by [

~

Abis [10

Atirbute 2

1

Data Eniiy 8

Atrbute B D

Adtribute C

Altribute |
Adribute

Data Enfiy C

Altrbuie € 10
Alfrbute p
g

Aitrinue

Atribute D

FIG. 6A

Patent Application Publication Mar. 14, 2024 Sheet 19 of 42 US 2024/0086409 A1

s fa
S8
PR I AR
o
R
73 3
a3 43
= =
=2 =2
e =
= +=
=3 =

<o
<D
<
Sl
2
RYALLL) -';‘-;:,:‘_
b [N ol s
iy 8T oo <o <2 B
o2 134 L] ot e
= S o <D fame
o5 £ [<~
)
o2 0
oo O
R
o 2 [k 73
033 33 3
>4 i o
) o =
o S o 2
j S
=<3 =3

Patent Application Publication = Mar. 14, 2024 Sheet 20 of 42 US 2024/0086409 A1

Yaidation Rula(s)

7"

604~
A~ Ru- x> 8] DB p= Eripris! WD D22 B

EB

B0 Uslabnfiy 7

Altrbute T 1D
Altrbute x
Atrbute y

e Aftrioite B
Aftabute D

FIG. 6C

Patent Application Publication Mar. 14, 2024 Sheet 21 of 42

US 2024/0086409 A1
2104
Validation Rule(s)

5@4"\\\%

Rue B04A ~ITx >@ ANDIBCp (=) Enleprise” | AND (D2 1Bk

[T L\

a4 Aod

i

[\

;/ 4 / LAY
20 / / \\;ransformed Rie / \ \
\n
10> Go=Enterprse

<>

A0=%

7 B
Quary

SELECT Instances of B
WHERE

00> AND
Cp="Enlerprise’ AND
M=k

FROM Datastors

é
AL

Query Resulls
B4

B23

848

FIG. 6D

US 2024/0086409 A1

Mar. 14, 2024 Sheet 22 of 42

Patent Application Publication

L Ol

0 81
AL 30747 LonIugRq 8y @\
m\ e ; SEUERY
B WU uonnaex3 Ay Bleq Auz eieq
17 5
70 0% uonesause) Aisng Mmm
(Sl N 74 N
qi0e+ : 80 UoRRULIOISURI] By
jends 158nbay
Y 7
e Bing w0l UoR28RS SNy €]
VLA ﬂ.v | v
Q0 SINPOY Uonenien Juswubissy

Patent Application Publication = Mar. 14, 2024 Sheet 23 of 42 US 2024/0086409 A1

CAN Ently
80081 o
- - T Aftibute
[B2 e
Data Enty T
BOOR I~ bt e :
B00A2~L Atrbute g @
BO00AS~L_ pgpte 2000 Jata Enlly
8004~ Atirpute 8000~ Data Ently
: 0N pag Enity
B00C-1 T Afrbute
BO0G2 e ptte
o
L

FIG. 8

Patent Application Publication = Mar. 14, 2024 Sheet 24 of 42 US 2024/0086409 A1

900

Receive Reuest to Assign a Value of an Attrbute
in a Data Enfity Instance

\dentify Valid Value(s) for Atirbute Using
Validafion Rulels)

¥

ast One Query for Vald Valug(s) - 0dA
on Attrbute of the Validation Rule(s)

Generate At Least
Using Condition(s) o

ki
Execute Generated Af Least One Query to Obtain 904B
Valia Value(s) for Attribute

¥

90
Output Valid Value(s} for Attrbute 400

Assign Value of Attnbute In Data Entlty Instancs Based on Input ..~ 808

Indlcating Selection of Value from the Valid Value(s) ;

FIG. 9

Patent Application Publication

Mar. 14, 2024 Sheet 25 of 42

US 2024/0086409 A1

Receive, through GUL, Input Indicating Request o Assign Value of

Aftrbute in Data Enfty Instance

1002

L

Transmt, to Data Processing System, Request io
Assign Value of Atibute in Data Enfity Instance

L

Recelve, from Data Processing Sysiem, Vald
Valle(s) for the Attrbute

L

Present Valid Value(s) for the Altrinute to User in GUI

L

Receiviﬂg through GUL, nput Indcating a Selectad
Value of the Valid Valus(s) to Assign to Attibute

l

Transmiting, to Data Processing System, Indication
of Selected Value for Assignment to Attibute

1012

FIG. 10

L Ol

US 2024/0086409 A1

joug HROYSSEIDINReg

P
2
o

uoissaldxy

uoIssaiday

N
sop 13

pajgeUT &1 ORY &

Mar. 14, 2024 Sheet 26 of 42

anoIny

Elee]

uosseidxsg

Byag e

Suturepn I3
soua i

AjBABE &

30013
ad&y Az 4

i3 lassyZigilioied

unisseddxy

HOMOR
p -

103094
snsjucnepien {73

£ angupyrepuedg [}

jo8fudy

Jaumassuisngx

S..;{m

we(geyeq {3
uoieoisse| {7}
wis zg {3
 Ayoseseizig T3
Ayoreselzig 3
wasyzg {73
siqejunosoy 73

sdiysuo

i AL
- .wc _\ b Agug | SSEID ABUZ e
wodey T}
22 01iog m ouweN uoissoidxg {7}
X iy UOREDHEA mm@gﬁhm
ﬁ iy A 1EYS MOPYIOM &

Aisrag m singLny Ay

sdf} Onug M

ssej) Apug

adfy siny M

8|y UoHRplEA _

T | osmos o8 {3

Lol

IXa) SUIRLOD

P

Ao sebuenyo paiy

VARG E SITNSHT HOWVES

SN NCHLVGTVA

sajny uonepies B

uaEInBiueg 1N &

ssoulsng [

suciEsiuied gf

SIORY MOPHOM SR

JusUDISSY AuIORP S1E)S fod

seulioziy s s

sapncupy feuonpoy 3

SUTNESHISSE|D
s8dA] Aled S|QRIUNGODY G2

siepop 1oelao ¥

NOLLYESNDENCD BB

o

yoresy m

abuljse)

*I8Uj0

aneny HIoAA 28

£ 2R

S1998Y ssoUISNg

$1085Y (B0

Yool &3

orzocyse() 3

OLLM OV m @ Auuwpe® &

¥
i

IWIHOd<VIV3avid

(0}

Patent Application Publication

US 2024/0086409 A1

Mar. 14, 2024 Sheet 27 of 42

Patent Application Publication

V¢l 9l

sy 51 By

10) &

poyads Joy

i} 81 BUIROIC) B3 J DHEA 1 DI00RY

& Yong uo

o Pgng Lo

NGILVOiHI03dS

JUsWesIclT In

JUSWSTIONT Loy

SNOILdC INIANFIHOANT

ajeicdwe]| aliestep Aridsig

W - m 2 pofeusp-inEg: m

uoisseldxg

195 UOISURIXT

Lo

Nﬁ i\\\._ had m S IBUMQ ssausng _

uie B3

adA} einy .”

ouiag] _

SNCILDO AVTId8IT

uoidioseg]

Alansg

RHETRY
Aguz

suBN

NOLYWMEOANI TYEINAD

&

F-

SUDISSIWLIO] gf

suoisian G

o

&]

Mwuiwmx L IR

oue]
TN NOLVATVA

owsg< B

#00°] OIng

US 2024/0086409 A1

Mar. 14, 2024 Sheet 28 of 42

Patent Application Publication

dcl 9l

8O0 UIRLIOG

SRS BT
- ol |

o113y 1 BUIMGHO; SU) LISUM JBDHEA ALD

dnedbgng & LOPLOT +

n.\\..m m a2 _ ¥ siepcly el B M £ anpp _ m ~ ojjenba st m mzaw 3¢ JBUMQ SSOUISNG Mm ~ SROUY

02¢

21 St BUMOHOE BU) J pifer 31 pooay

A UIgng UG

AOugng uo

NOLVIAD34S &
S TIOT)

JUsSUIB0IoT Jodul

oye|duia] afiessaiy Aridsi(

SNOILdO AVdSIa &

wzcﬂmo LNINEOHCHNT &

g

ucpdussag

A Joud Auenag
] poiaeiz 5 suolssliad g
mss m ® Jeumg sseuisng m S suoislap,
_ _ SISUS uus| ¥ Aanuz o B

bl 74 ummmcms_.._:@m 16 UDISUSI g plEE

yoissaidig adh] siny m oweg m EHE bad

<_m@ﬁ, m;.mm PR 1R oﬁ“_ 6] @Evﬂ%
T NOLYATYA. e
oweg s ¥

%oo oD

o¢l 9l

US 2024/0086409 A1

spopuEwoy | i SAEP OF 1527881 4
&
ppY
.ﬂ ‘andy s OHO) B Ustim s1epifen AIG
An0IS GNY +
dnoibGng + UORIPUCT) +
o
z iz 3 T | G PR
=)
a AP0IBGNS + LORPUOD +
[\ - “ moi://
~ Dpsinads u e § 3¢ swiereled # SIngUY i
3 " Lo e 1 ! L o] |
d_m DNMV\\.m m e _ > siopoid eeq B m A ShieA _ m s 0y fenbe st m moesw 2 IeumQ) ssauisng mm N cilstethit m a/f/ii.i .
< b -9
o
m o0y 51 BUIMOIO) S Ji DHRA 1 DIOOS)
- NOLVDIHIZAdS &
v
.l. BRI i
= piewRsiopd |
M & JUONg UG JUBLIBOICIUT Jodu
= SNOILAO INTWIOHUOANT &
2
m o3 sjeiciue; abessaly Azidsig suoissillied g
o
—
w SNOLLAO AYT4RIT SUoISIEn ff
[~ ojuj O
= w o
.m EYe UORaLIOS3g =
3]
L call=] anes M By oda 0B | QU2 X
M._ W m m ..m =10 FIN NOLLYAITVA m
[=" owsg« B
«
= N 007 ¥oIn
s 00z) L HOOT] HOING
~N
S
="

US 2024/0086409 A1

Mar. 14, 2024 Sheet 30 of 42

Patent Application Publication

ach 9l

spopupwoG §

SR EVETLH
o=

H m ~ pogpeds § M _ Spm ¥ suemeeg _m & BINCHNY M

8 m ess _ ¥ S ee) R

A sen _m 0 fenbe s m msw 3 IBUMG sSsung wm o angEy w

SOUBADY MOIPHOR, UD

HINS UO

9ABG U

<t BLIm0i0) 84 3 DHEA S§ DIOSRY
NGILVOIIOSdS &
JLBWSAIOLT N

JUsILBCICHIT Hoduj

SNOILJO INFNZOHECHNT &

sye|dius) obegsap Agidsicl

_ o M 3¢ peleuepinid m

ucissaldig

198G UoIsUSI]

sdh; simy

& Joug

7
3

m»& m W IBUMY) SSBUISN

wie] B
m cuiagg w

SNOLLLO AVdSIO &

volduess()
Auensg
peigeud s
SIngiy
Anug
SWiEN

NCLVAHOINTTYEINGS &

sucissiuiied g

suosian

o

g

@,,mwmm_ PR 0 R omwu_ LD

Quiad m

TR NOUVATYA =

OB e %

$Oo] NG

US 2024/0086409 A1

Mar. 14, 2024 Sheet 31 of 42

Patent Application Publication

¢l Ol

8p0y) Uiewog M m m TREDHE “mmgmm m

m THO

0NV

§ m » peypads s M _ s m,x suiopeIe wm A SNGY M

§ m o%0 _mx SIRIOLS BB B M & enges, _ m A Oyjenba st m mée m K IBUMQ SSONISHG Mm & BNGHNY M

a0y S BUBGHOS SU) 1 DIfEA 1 pI0DSY

PICODY JOBMEE] Fummmmmmssnmnnns O YOI 0TS 45

g ug

ﬁ qmw _\ - | fetilaliN} JusisoIolI IN

e A GRS Uo BSOS Jodisg

SNOLLAO INFNIOHECANT &

ﬂvﬂ apjdws; abessoy Aldsicy

SNOLLDO AYTdSIa &

uogdiloseq

o~ soug Aiseneg

] pajgeud sy

mﬁs m W eUMQ sealisng m SN

_ = M ® wmmm:wgﬁ:@ m 185 UDIsUsIXy wiol Ahuz
uoissedyg adii siny m cweg m SUBN

NOLYWHO AN TVHEINID &

SUisd g

suosien &

ol &

»

”.\whu_mm‘,_mwmm_ LER 0<y o@_ 0]

FH NOUYAToA

ouiag] &

ouwe(2 &

%00 HoIND

US 2024/0086409 A1

Mar. 14, 2024 Sheet 32 of 42

Patent Application Publication

4¢l Ol

|poY LiBWeQ m m m

SREDTR meEm m
Lot Fay

X0

m

-~ gy m

NV

e T)

mmxs. ¥ siepid Beg B8 _m A enign M _ 01 fenbe st m ms.x “.X SBURY mm@:wwnmmmm

SIngElY m

@} o) BUPROIC) 543 1 DHBA 1 DI00RY

A WUGNG LU0

(IR

Wng Lo

NCHVOIHI0ZdS &

JUBLBOIONT I}
JusWRoY Jodwy

SNOILAC INTWIDHOANT &

oye|duia] afiessaiy Aeidsi(g

M i M 3 pebeuepinbs m Jag LoISUBIXY
LoissaIdy] adAi ainy

Bujuseas

40403

Vo0l

_ ke mu ¥ 1PUMQ

e 4 200 208 20 200 30 80 2 oo ne ki

SNOLLIC AVIHSIA &

usipdusseq
Ausres
SR
Eilelbii

Atz

eyl

NCILYINHOANI TVMENIS &

SLOSSIRY g

suQIsien &

ol 3

*

BLABC]
TN NOLYGITWA
o< B

HOO0] YN

¢l Ol

US 2024/0086409 A1

€ il SRS SUIBN < B19(] PAEINCSIED MO
{ uewp joyealdi s1 ucpiuysd 10 YEUS] 1B10RIEYD (INY
psyivads s swaiEeeq ONY

SoiiI Ble BF 03 jenbe sf eumQ sseulsng)

ey s BUIMCRO) 9 1 P 1000y

NOUYOIHIDADS &

JWANS U JUBWASICIIT i}
JUANS U JUOWSHIOIUT Hodw)

SNOILdO INSW3THUCHNT &

O - sieidws] efessay Ag

SNOLLLQ AVIdSIQ &

Mar. 14, 2024 Sheet 33 of 42

- uondiassd
s Auaneg

S94 psiceud st

m o _ 3¢ pobeusp-in W 168G Uojsuag wie) A3y

uosssldng adi] sn m owsg m SuEN oy

NOLVAMCANI TVHINTD & § =

L=y
T NOUVTIVA
oweg € g

mﬁw_ “E%_mpgwﬁﬂ:“_, gw@: E 0Q 0| oo

X F HOTT NG

Patent Application Publication

US 2024/0086409 A1

Mar. 14, 2024 Sheet 34 of 42

Patent Application Publication

vl 9l

palwads §1sWRN (INY

N

Wy O} jends s1 suep

=

sory Ayedisjunog usoy Gy

) S BUIMOR0; SL UsUM 21epleA ARG
Ui SHRIS AUIBN < QUM Ssouisng

‘on) sy SUMON0S Sl f [HeA ST DICTY

NOLYOIADES &

Walsaiopug |y

picaay waley JBWSALOIT Hoduy

SNOHLAOC INTFAFOHQANT &

W LA LIRS 191U SWBL IBLMO SSeuisny aeidwe) abiesse)y Aeidely

funsey uoissaidxa g

59:0X3

105 BOISUSIXT

adA] o)

SNCLLO AVTdSIa &

uondLiossQ

suoissiueg g

Aiug SUCISIBA {5y
JBUME BSBUIRNY BN 18a] mmowﬁ sueN oy €3

NOLLYWHOANI TYMINTD & | 2

JSUM) SSBUISHE SNl 188 30D
T NOILYGITVA

HOOT NN

gyl Ol

US 2024/0086409 A1

3 B

P xS0, 4 28] SAEULION

Mar. 14, 2024 Sheet 35 of 42

;i;«;
;

m

SYIG0IT SARORIC 10 1 vL ‘5 g sued il ¥euue U Esou o

2]

ST

_ Kicc.m (9} Sm_nsw SUCROESIEN D OCM. L S‘_m:\: DU suoydesUR: d\.
SUIMCLCG JC DUIPUS| S9ICOWLLIDS 0 $DLLNCOS UORIESUES 93BG

oo PRI
378178007
ioes Buo) ‘sucyoesues

JUBLLINAISUI BARBALES J0-|

{ Yot Ausdiine:) wa

JOUME SELST

Y JONYNHACD

Wiiey pals

E-3

! opn &

an inn s s ens ams a0 s wms

»

S il

sy Ayediaiunon wios mEm:d mmu

Ea\ RERI N
figj < Alessop ssel

&

HOOT HARD

Patent Application Publication

US 2024/0086409 A1

Mar. 14, 2024 Sheet 36 of 42

Patent Application Publication

oFl Ol

[EH

|

OURT

swueiq udppe

sbing “[idiope

s8ing v 4

BAJRRSIIL
polLEsIn @AY Si0.

aes

BION JOINS

zaeh [epippe

ucdunssg |

HOREWIGH [eIalan)

SUZN

A HOYS

b osmon s F

X3} SUACD

NN

2 el

UGRIS LOoBlas 8l

UM SSOUISHE ASO0UD

dpi ol

US 2024/0086409 A1

<=

e
rs An0ID i9s; Q
spedX3 Jsiey joskar suadxs] sojep osfang B ©%
SHMOIBHIoM ADOL LBS B[Oy
~ | ssroxddy uogenBiuor soppom ayj oy BulBualag siesn 22 1Ay FHUCD MOPRICAR 5oy doroddy ioneinBliuen meiptom B S
=<
0y LT ie; Q
S
1<) sapietons Jou Ajuaine s
SROULALOLSY
I~
e piemsl
suassiiLad ALPOLE Uz @
b A
L saroiddy uopeindito s uolssiuiled auj o Buluaeq siasn 3{Cy JSACICY LORE. o S10M tenCIddy LoBEIN
h oM i Lo
N
M TAASL PUB Baddns 18 S 12104 Benejai
= AU 16 SEEIE SSESSE LED BJ0 KEZNLOJSNT) L) LM 51850 0y SSTIUICIENG 0pf teziuojsng B 10898
(o] PIBMSS BP0 EIS04 PIERGS 9000 oy B 10eRg
-
ey ssaufioid vy sefue
saifoid uy ey
Al le sas urd ajoH ALaeia sBusys iy 24 UM s15S7) P10 AiSI BBUSLLI IY o 10998
.
M siomaney Bjeg pappmyen B 10008
5
% uondsagg m LORUIIOHY fRIGHSD &) SWIALST
£
~ o AQuoUT & MOUS Tl oo @
S)
pLy)
= sojoy sdnoip ETCET Fid
- €0 'suIsn'E
1} 93N JC 106[8S, YN0 U} pLE 10800 Ue 10085 0]
x JAUAG SSaUIEng aSOOYD

e

Patent Application Publication

3yl Ol

)

% fedainog & mm

} DIBREIS

US 2024/0086409 A1

i -Li g opiodiog mnm

50 16 B4

HIRILOC Bl Y8

dnoigy e

Mar. 14, 2024 Sheet 38 of 42

e

:
i

8] Weled

SiM PSS Adedisiuno: 40} SNBA BUNSOdXT U 0F PUOHSRL0T
BAJOBHC JO
B0 0 BUIDUS| SSRIPOUALOD 0 SSRLNGES UOISESURY SSEL

DTHGR/007 2AB0SAC JO / Pue § Gy g sued [l XeuuR Ul Uop DIE; Spousu su; 0 Buipiooce pejincio
A M. S4N303:
¥auue 0} 198igns suoncesuel Suipus) uibieus pue suUoRTESURI TUBWSHIRS Buo) ‘suogoesuEa &

Vieh

9 peuluo sus "OIBY/3002

'SPBLLNGEU RANBAUBT 40

lilakd

e e e e s £ o 1 o
! o B

F e v e e e e e B

AN

NI YIVC

0

oo} atng

0yl

Patent Application Publication

4vl Ol

US 2024/0086409 A1

)
RO

i

i poe

Sunyteg pisusany)
51 Adeddigpinos eze oy ,Eas_,,s

Mar. 14, 2024 Sheet 39 of 42

"03/59/9002 SAjosL] O
USTY 104D %mg.@::o) 4

LBpes Buol ‘suonoesURg
aw. | BAIEALD(404

2% ey iwog b

%

L HOOT Haing

Patent Application Publication

OvlL Ol

US 2024/0086409 A1

i

rnsnny gnnsnn gansnng gansy
f §

)
§ 3 Aedioynag % m_
_

SUOR UG BUOLDDY
{79 Ui LIEJS 15N LS JEUMD S8oUsng fag

|] T WeIshS Rosher

JBUM() SBUISNG

[

4

ALIIESNOAS3Y ONY JOYNAINCD

SUOBSIUBE %

Mar. 14, 2024 Sheet 40 of 42

“DUISYIBO0E SAJOSICH IO J PUR GG Y i
paisy Aledispnog 10} uo s SUOIBISA [}
BABOBAC] JO i Xouue o) 19oldns suok spss Hu M @
BumoLod Je Buipus) 9| ¢
afiesur] 2=
m e e s e e
} oy &

3 a2 o e B

»

JUBIEREL VAN A
o) $38LISTE e8pdiaNg < A1BSSCig) ss6

o)

ysiy Apedisunes wod Buisiy « Aios:

[irs]

HOO] HOIND

Patent Application Publication
®
e

Hyl 9l

US 2024/0086409 A1

Mar. 14, 2024 Sheet 41 of 42

FEL

9 &

SOUSYILTVUYHD ONY SS3N

D

0% Ky o A8 PRISBIIGY

BY WIS § 810607 13
$otud Aundispung) s % 8000 £
LA

03 12130

Wi (4

.%

SUOISSILLRG ¢

.e_gm i% m%
om\mmoo\qzurbv:vojuma_xm:cmscao,a_u_.asws_ AE o‘cocm vﬁu_:
ey Hpat Aledieunos Jo) sniga o gsooq X3 9L} 03 PUOCSSLICS [iIn &ng u:“ ‘OE/RPA00Z
| xauue o} Joejang suohoesusl; Buipus| uifilew Due sUcRuesUE] u. .mEuaum Buo| ‘suoBoesUEn

SUIBN of &3

EH

OLLYAHCAN T NG = %

I

Pt

pERi o FSw | 1o oe omi om Py %m&ﬁmgu Eewmgm_&

AN m|_u :,r<:._<ci, 8

D

-~
=
—
=

Patent Application Publication

~ 4

Hoo' HoIND

US 2024/0086409 A1

Mar. 14, 2024 Sheet 42 of 42

Patent Application Publication

SO0 |90 Sb ol G5 o)
oL 3101 Ve y y)
30 Yy Y0NS | IRLSAS
g\ Q0RA PO0Nd NOLYONGY | ONILY3d0
W_Em W00) = umnﬂmﬂmmmmﬂ
31013 S -
7< e o
O o)
HHOMLIN Y3y 30 e i
m@ - S fIY0HFIO0N
b et v ORI TORNON | | OHEI 0N ||~ g5~
. 4 AU A
RONEINVRN V00T~ L (SR LIS L
i L Tp w4
SARTALSAS L
e @
RV <o s
EGTE TR el
el BUA_J I TRLSASONIRO
i ¢ A 0 SNISSA0 - /
0651 ¢ NISS300¥d .y i
teg) 1
8511
£~

US 2024/0086409 Al

TECHNIQUES FOR PRE-ASSIGNMENT
VALIDATION OF DATA MANAGED BY A
DATA PROCESSING SYSTEM

RELATED APPLICATIONS

[0001] This present application claims the benefit of pri-
ority under 35 U.S.C. 119(e) to U.S. Provisional Patent
Application No. 63/404,758 filed on Sep. 8, 2022, and titled
“TECHNIQUES FOR PRE-ASSIGNMENT VALIDATION
OF DATA MANAGED BY A DATA PROCESSING SYS-
TEM?”, which is hereby incorporated by reference herein in
its entirety.

FIELD

[0002] Aspects of the present disclosure relate to tech-
niques for enforcing valid data assignments in a data pro-
cessing system in which data can be updated (e.g., by users
and/or processes). The techniques mitigate the risk of invalid
value assignments to variables in the data processing sys-
tem.

BACKGROUND

[0003] Modern data processing systems manage vast
amounts of data (e.g., millions, billions, or trillions of data
records). An institution (e.g., a multinational bank, a global
technology company, an e-commerce company, etc.) may
have vast amounts (e.g., hundreds or thousands of terabytes)
of data that is used for its operations. For example, the data
may include transaction records, documents, tables, files,
and/or other types of data.

[0004] A data processing system may execute software
applications to support various functions. Software applica-
tions may be used to provide functions that support opera-
tions of an institution. For example, a bank may develop
software applications that support various aspects of its
business such as programs that generate credit reports, bank
account history, transaction reports, and/or other data. Soft-
ware applications may also be used to extract insights from
data.

SUMMARY

[0005] Some embodiments provide a method of enforcing
valid data assignments in a data processing system config-
ured to process data that is updated by user devices and/or
computerized processes, the data processing system storing
the data using data entities and instances thereof. The
method comprises: using at least one computer hardware
processor to perform: receiving, by the data processing
system, a request to assign a value to a first attribute in a first
data entity instance of a first data entity, wherein: the first
data entity comprises a plurality of attributes including the
first attribute and a second attribute; and the first data entity
is associated with at least one validation rule, the at least one
validation rule including a first validation rule associated
with the first attribute, the first validation rule specifying a
first condition on the first attribute that depends on the
second attribute; identifying, using the first validation rule,
one or more valid values for the first attribute, the identify-
ing comprising: generating a query for the one or more valid
values using the first condition on the first attribute; and
executing the generated query to obtain the one or more
valid values for the first attribute; and assigning a value to
the first attribute in the first data entity instance in accor-

Mar. 14, 2024

dance with input indicating a selection of at least one of the
one or more valid values for the first attribute, the assigning
comprising assigning the selected at least one valid value to
the first attribute.

[0006] Insome embodiments, generating the query for the
one or more valid values for the first attribute using the first
condition on the first attribute that depends on the second
attribute comprises: identifying a current value assigned to
the second attribute in the first data entity instance; and
generating the query using the current value of the second
attribute in the first data entity instance. In some embodi-
ments, the current value assigned to the second attribute in
the first data entity instance is an instance of a second data
entity, and generating the query based on the current value
assigned to the second attribute in the first data entity
instance comprises: accessing at least one attribute value
from the instance of the second data entity; and generating
the query based on the at least one attribute value from the
instance of the second data entity.

[0007] In some embodiments, the at least one validation
rule comprises a plurality of validation rules associated with
respective attributes of the first data entity, and the method
further comprises: identifying the first validation rule from
among the plurality of validation rules in based on an
association of the first validation rule with the first attribute.
In some embodiments, the first validation rule comprises a
second condition on the first attribute, and generating the
query for the one or more valid values comprises: generating
a first portion of the query based on the first condition on the
first attribute; and generating a second portion of the query
based on the second condition on the first attribute.

[0008] Insome embodiments, generating the query for the
one or more valid values using the first condition comprises:
transforming the first condition on the first attribute into a
query criterion; and integrating the query criterion into the
query. In some embodiments, assigning the value to the first
attribute in the first data entity instance comprises assigning
an instance of a second data entity to the first attribute in the
first data entity instance. In some embodiments, generating
the query for the one or more valid values using the first
condition on the first attribute comprises generating a query
on instances of the second data entity. In some embodiments,
executing the generated query to obtain the one or more
valid values for the first attribute comprises executing the
generated query on a subset of data consisting of instances
of the second data entity.

[0009] In some embodiments, the first attribute indicates
an owner, an access security level, a data source, or a data
format associated with the first data entity instance. In some
embodiments, the first data entity instance stores informa-
tion about a software application or a dataset as attribute
values in the first data entity instance. In some embodiments,
the first attribute indicates a data source or a data format to
be used by the software application when attempting to
invoke a function of the software application. In some
embodiments, the one or more valid values are suitable for
invoking the function of the software application. In some
embodiments, the first attribute indicates an access security
level associated with the dataset to be used when attempting
to provide access to the dataset. In some embodiments, the
one or more valid values are one or more access security
levels providing access to the dataset.

[0010] In some embodiments, the method further com-
prises: transmitting, to a client device, an indication of the

US 2024/0086409 Al

one or more valid values for the first attribute for display in
a graphical user interface (GUI); receiving, from the client
device, the input indicating the selection of the at least one
of the one or more valid values for the first attribute through
the GUI. In some embodiments, identifying the one or more
valid values for the first attribute comprises identifying one
or more instances of a second data entity as the one or more
valid values for the first attribute.

[0011] In some embodiments, the first validation rule
comprises a second condition on the first attribute; and
identifying, using the first validation rule, the one or more
valid values further comprises generating the query by:
generating a first query criterion using the first condition on
the first attribute; and generating a second query criterion
using the second condition on the first attribute. In some
embodiments, the method further comprises: identifying,
using the first validation rule, one or more invalid values for
the first attribute; and preventing transmission of the one or
more invalid values.

[0012] In some embodiments, the first data entity instance
does not have a value assigned to the second attribute, and
identifying the one or more valid values for the first attribute
comprises: identifying an unassigned value entered for the
second attribute; and generating the query for the one or
more valid values using the unassigned value for the second
attribute.

[0013] Some embodiments provides a system for enforc-
ing valid data assignments in a data processing system
configured to process data that is updated by user devices
and/or computerized processes, the data processing system
storing the data using data entities and instances thereof. The
system comprises: at least one computer hardware proces-
sor; and at least one non-transitory computer-readable stor-
age medium storing an assignment validation module, the
assignment validation module comprising a rule selection
component, a query generation component, and a query
execution component; wherein the at least one computer
hardware processor is programmed to execute the assign-
ment validation module to perform: receiving, by the assign-
ment validation module, a request to assign a value to a first
attribute in a first data entity instance of a first data entity,
wherein: the first data entity comprises a plurality of attri-
butes including the first attribute and a second attribute; and
the first data entity is associated with at least one validation
rule that attribute values in instances of the first data entity
must comply with to be valid, the at least one validation rule
including a first validation rule associated with the first
attribute, the first validation rule specifying a first condition
on the first attribute that depends on the second attribute;
identifying, using the rule selection component and the first
validation rule, one or more valid values for the first
attribute, the identifying comprising: generating, using the
query generation component, a query for the one or more
valid values using the first condition on the first attribute;
and executing, using the query execution component, the
generated query to obtain the one or more valid values for
the first attribute; and assigning a value to the first attribute
in the first data entity instance in accordance with input
indicating a selection of at least one of the one or more valid
values for the first attribute, the assigning comprising
assigning the selected at least one valid value to the first
attribute.

[0014] Some embodiments provides at least one non-
transitory computer-readable storage medium storing

Mar. 14, 2024

instructions that, when executed by at least one computer
hardware processor, cause the at least one computer hard-
ware processor to perform a method of enforcing valid data
assignments in a data processing configured to process data
that is updated by user devices and/or computerized pro-
cesses, the data processing system storing the data using data
entities and instances thereof. The method comprises:
receiving, by the data processing system, a request to assign
a value to a first attribute in a first data entity instance of a
first data entity, wherein: the first data entity comprises a
plurality of attributes including the first attribute and a
second attribute; and the first data entity is associated with
at least one validation rule that attribute values in instances
of the first data entity must comply with to be valid, the at
least one validation rule including a first validation rule
associated with the first attribute, the first validation rule
specifying a first condition on the first attribute that depends
on the second attribute; identifying, using the first validation
rule, one or more valid values for the first attribute, the
identifying comprising: generating a query for the one or
more valid values using the first condition on the first
attribute; and executing the generated query to obtain the
one or more valid values for the first attribute; and assigning
a value to the first attribute in the first data entity instance in
accordance with input indicating a selection of at least one
of the one or more valid values for the first attribute, the
assigning comprising assigning the selected at least one
valid value to the first attribute.

[0015] Some embodiments provide a method of enforcing
valid data assignments in a data processing system config-
ured to process data that is updated by user devices and/or
computerized processes, the data processing system storing
the data using data entities and instances thereof. The
method comprises using at least one computer hardware
processor to perform: receiving, through a graphical user
interface (GUI) by the data processing system, input indi-
cating a request to assign a value to a first attribute in a first
data entity instance of a first data entity, wherein: the first
data entity comprises a plurality of attributes including the
first attribute and a second attribute; and the first data entity
is associated with at least one validation rule that attribute
values in instances of the first data entity must comply with
to be valid, the at least one validation rule including a first
validation rule associated with the first attribute, the first
validation rule specifying a first condition on the first
attribute that depends on the second attribute; and transmit-
ting, to the data processing system, the request, wherein the
request causes the data processing system to identify, using
the first validation rule, one or more valid values for the first
attribute; receiving, from the data processing system, the one
or more valid values for the first attribute; displaying, in the
GUI, an indication of the one or more valid values for the
first attribute; receiving, through the GUI, input indicating a
selected value of the one or more valid values to assign to
the first attribute; and transmitting, to the data processing
system, an indication of the selected value for assignment to
the first attribute.

[0016] In some embodiments, the request causes the data
processing system to identify the one or more valid values
for the first attribute by: generating a query for the one or
more valid values using the first condition on the first
attribute; and executing the generated query to obtain the
one or more valid values for the first attribute. In some
embodiments, executing the generated query to obtain the

US 2024/0086409 Al

one or more valid values for the first attribute comprises
executing the generated query on a subset of data consisting
of instances of the second data entity.

[0017] In some embodiments, the first attribute indicates
an owner, an access security level, a data source, or a data
format associated with the first data entity instance. In some
embodiments, the first data entity instance stores informa-
tion about a software application or a dataset as attribute
values in the first data entity instance. In some embodiments,
the first attribute indicates a data source or a data format to
be used by the software application when attempting to
invoke a function of the software application. In some
embodiments, the one or more valid values are suitable for
invoking the function of the software application. In some
embodiments, the first attribute indicates an access security
level associated with the dataset to be used when attempting
to provide access to the dataset. In some embodiments, the
one or more valid values are one or more access security
levels providing access to the dataset.

[0018] In some embodiments, receiving the one or more
valid values for the first attribute comprises receiving one or
more results of executing a query for the one or more valid
values generated using the first condition on the first attri-
bute. In some embodiments, the second attribute in the first
data entity instance is assigned an instance of a second data
entity, and receiving the one or more valid values for the first
attribute comprises receiving one or more values determined
based on the instance of the second data entity. In some
embodiments, receiving the one or more valid values for the
first attribute comprises receiving one or more instances of
a second data entity, wherein at least one of the one or more
instances of the second data entity can be assigned to the first
attribute.

[0019] Some embodiments provide a system of enforcing
valid data assignments in a data processing system config-
ured to process data that is updated by user devices and/or
computerized processes, the data processing system storing
the data using data entities and instances thereof. The system
comprises: at least one computer hardware processor; and at
least one non-transitory computer-readable storage medium
storing instructions that, when executed by the at least one
computer hardware processor, cause the at least one com-
puter hardware processor to perform: receiving, through a
graphical user interface (GUI) by the data processing sys-
tem, input indicating a request to assign a value to a first
attribute in a first data entity instance of a first data entity,
wherein: the first data entity comprises a plurality of attri-
butes including the first attribute and a second attribute; and
the first data entity is associated with at least one validation
rule that attribute values in instances of the first data entity
must comply with to be valid, the at least one validation rule
including a first validation rule associated with the first
attribute, the first validation rule specifying a first condition
on the first attribute that depends on the second attribute; and
transmitting, to the data processing system, the request,
wherein the request causes the data processing system to
identify, using the first validation rule, one or more valid
values for the first attribute; receiving, from the data pro-
cessing system, the one or more valid values for the first
attribute; displaying, in the GUI, an indication of the one or
more valid values for the first attribute; receiving, through
the GUI, input indicating a selected value of the one or more
valid values to assign to the first attribute; and transmitting,

Mar. 14, 2024

to the data processing system, an indication of the selected
value for assignment to the first attribute.

[0020] In some embodiments, the request causes the data
processing system to identify the one or more valid values
for the first attribute by: generating a query for the one or
more valid values using the first condition on the first
attribute; and executing the generated query to obtain the
one or more valid values for the first attribute.

[0021] In some embodiments, receiving the one or more
valid values for the first attribute comprises receiving one or
more results of executing a query for the one or more valid
values generated using the first condition on the first attri-
bute. In some embodiments, the second attribute in the first
data entity instance is assigned an instance of a second data
entity, and receiving the one or more valid values for the first
attribute comprises receiving one or more values determined
based on the instance of the second data entity. In some
embodiments, receiving the one or more valid values for the
first attribute comprises receiving one or more instances of
a second data entity, wherein at least one of the one or more
instances of the second data entity can be assigned to the first
attribute.

[0022] Some embodiments provide least one non-transi-
tory computer-readable storage medium storing instructions
that, when executed by at least one computer hardware
processor, cause the at least one computer hardware proces-
sor to perform a method of enforcing valid data assignments
in a data processing system configured to process data
updated by user devices and/or computerized processes, the
data processing system storing the data using data entities
and instances thereof. The method comprises: receiving,
through a graphical user interface (GUI) by the data pro-
cessing system, input indicating a request to assign a value
to a first attribute in a first data entity instance of a first data
entity, wherein: the first data entity comprises a plurality of
attributes including the first attribute and a second attribute;
and the first data entity is associated with at least one
validation rule that instances of the first data entity must
comply with to be valid, the at least one validation rule
including a first validation rule associated with the first
attribute, the first validation rule specifying a first condition
on the first attribute that depends on the second attribute; and
transmitting, to the data processing system, the request,
wherein the request causes the data processing system to
identify, using the first validation rule, one or more valid
values for the first attribute; receiving, from the data pro-
cessing system, the one or more valid values for the first
attribute; displaying, in the GUI, an indication of the one or
more valid values for the first attribute; receiving, through
the GUI, input indicating a selected value of the one or more
valid values to assign to the first attribute; and transmitting,
to the data processing system, an indication of the selected
value for assignment to the first attribute.

[0023] The foregoing is a non-limiting summary.
BRIEF DESCRIPTION OF DRAWINGS
[0024] Various aspects and embodiments will be described

with reference to the following figures. It should be appre-
ciated that the figures are not necessarily drawn to scale.
Items appearing in multiple figures are indicated by the same
or a similar reference number in all the figures in which they
appear.

US 2024/0086409 Al

[0025] FIG. 1A is a block diagram of a data processing
system configured to manage data using data entities and
instances thereof, according to some embodiments of the
technology described herein.

[0026] FIG. 1B shows the relationship among validation
rules, data entities, and data entity instances of the data
processing system of FIG. 1A, according to some embodi-
ments of the technology described herein.

[0027] FIG. 1C shows a graphical user interface (GUI) for
assignment of an attribute value in a data entity instance in
the data processing system of FIG. 1A, according to some
embodiments of the technology described herein.

[0028] FIG. 2A is a block diagram of a data processing
system, according to some embodiments of the technology
described herein.

[0029] FIG. 2B shows a GUI for assignment of a value to
an attribute in a data entity instance in the data processing
system of FIG. 2A, according to some embodiments of the
technology described herein.

[0030] FIG. 2C shows the graphical user interface of FIG.
2B after selection of a valid value for the attribute, according
to some embodiments of the technology described herein.
[0031] FIG. 2D is a diagram illustrating interaction among
components of an assignment validation module of the data
processing system of FIG. 2A, according to some embodi-
ments of the technology described herein.

[0032] FIG. 3A s a diagram of a validation rule, according
to some embodiments of the technology described herein.
[0033] FIG. 3B is a diagram of an example of the valida-
tion rule shown in FIG. 3A, according to some embodiments
of the technology described herein.

[0034] FIG. 3C is an example GUI for defining one or
more validation rules, according to some embodiments of
the technology described herein.

[0035] FIG. 4A is a block diagram of an example data
entity, according to some embodiments of the technology
described herein.

[0036] FIG. 4B is a schematic diagram of an example
instance of the data entity of FIG. 4A, according to some
embodiments of the technology described herein.

[0037] FIG. 4C is a set of validation rules associated with
the data entity of FIG. 4A, according to some embodiments
of the technology described herein.

[0038] FIG. 4D is an example data flow in a process of
identifying valid value(s) for an attribute in the data entity
instance of FIG. 4B, according to some embodiments of the
technology described herein.

[0039] FIG. 5A is a schematic diagram of an example
relationship of a data entity with other data entities, accord-
ing to some embodiments of the technology described
herein.

[0040] FIG. 5B is a schematic diagram of an example
instance of the data entity of FIG. 5A, according to some
embodiments of the technology described herein.

[0041] FIG. 5C shows a set of validation rule(s) associated
with the data entity of FIG. 5A, according to some embodi-
ments of the technology described herein.

[0042] FIG. 5D is a data flow in a process of identifying
valid value(s) for an attribute in the data entity instance of
FIG. 5B, according to some embodiments of the technology
described herein.

Mar. 14, 2024

[0043] FIG. 6A is a schematic diagram of an example
relationship of a data entity with other data entities, accord-
ing to some embodiments of the technology described
herein.

[0044] FIG. 6B is a schematic diagram of an example
instance of the data entity of FIG. 6A, according to some
embodiments of the technology described herein.

[0045] FIG. 6C shows a set of validation rule(s) associated
with the data entity of FIG. 6A, according to some embodi-
ments of the technology described herein.

[0046] FIG. 6D is an example data flow in a process of
identifying valid value(s) for an attribute in the data entity
instance of FIG. 6B, according to some embodiments of the
technology described herein.

[0047] FIG. 7 is a block diagram showing components of
a data processing system, according to some embodiments
of the technology described herein.

[0048] FIG. 8 is a schematic diagram of a data entity that
may be defined by a data processing system, according to
some embodiments of the technology described herein.
[0049] FIG. 9 is a flowchart of an example process of
enforcing a valid data assignment, according to some
embodiments of the technology described herein.

[0050] FIG. 10 is a flowchart of an example process for a
client device to assign a value to an attribute in a data entity
instance, according to some embodiments of the technology
described herein.

[0051] FIG. 11 is an example GUI for creation of a new
validation rule, according to some embodiments of the
technology described herein.

[0052] FIG. 12A is an example GUI for defining a new
validation rule, according to some embodiments of the
technology described herein.

[0053] FIG. 12B illustrates specification of a condition on
an attribute in the GUI of FIG. 12A, according to some
embodiments of the technology described herein.

[0054] FIG. 12C illustrates specification of conditions on
other attributes in the GUI of FIG. 12A, according to some
embodiments of the technology described herein.

[0055] FIG. 12D illustrates specification of a validation
rule user interface enforcement action in the GUI of FIG.
12A, according to some embodiments of the technology
described herein.

[0056] FIG. 12E illustrates specification of a validation
rule import enforcement action in the GUI of FIG. 12A,
according to some embodiments of the technology described
herein.

[0057] FIG. 12F illustrates specification of severity of
violation of the validation rule in the GUI of FIG. 12A,
according to some embodiments of the technology described
herein.

[0058] FIG. 13 is an example GUI displaying information
about a validation rule created in FIGS. 12A-12F, according
to some embodiments of the technology described herein.
[0059] FIG. 14A is an example GUI displaying informa-
tion about a validation rule, according to some embodiments
of the technology described herein.

[0060] FIG. 14B is an example GUI displaying informa-
tion about a data entity instance, according to some embodi-
ments of the technology described herein.

[0061] FIG. 14C is an example GUI displaying valid
values identified for an attribute in the data entity instance of
FIG. 14B, according to some embodiments of the technol-
ogy described herein.

US 2024/0086409 Al

[0062] FIG. 14D is the GUI of FIG. 14C displaying valid
and invalid values for the attribute in the data entity instance
of FIG. 14B, according to some embodiments of the tech-
nology described herein.

[0063] FIG. 14E is the GUI of FIG. 14B after a valid value
is selected for assignment to the business owner attribute,
according to some embodiments of the technology described
herein.

[0064] FIG. 14F is the GUI of FIG. 14B displaying the
data entity instance after the valid value is assigned to the
business owner attribute, according to some embodiments of
the technology described herein.

[0065] FIG. 14G is the GUI of FIG. 14B after an invalid
value is selected for assignment to the business owner
attribute, according to some embodiments of the technology
described herein.

[0066] FIG. 14H is the GUI of FIG. 14B after the invalid
value is submitted for assignment to the business owner
attribute, according to some embodiments of the technology
described herein.

[0067] FIG. 15 is a block diagram of an illustrative com-
puting system that may be used in implementing some
embodiments of the technology described herein.

DETAILED DESCRIPTION

[0068] The inventors have developed techniques of
enforcing valid data assignments in a data processing system
in which data can be dynamically updated by users and/or
computer-implemented processes (e.g., processes imple-
mented by one or more software application(s)).

[0069] A data processing system may manage data for an
organization such as a multinational corporation (e.g., a
logistics company, a financial institution, a utility company,
an automotive company, an e-commerce company, etc.) or
other organization. The organization may have vast amounts
of data (e.g., hundreds or thousands of terabytes of data)
managed by the data processing system. The data may be
updated in the data processing system by users and/or
processes. The updates to data may occur as a result of a user
and/or a computerized process (e.g., via one or more appli-
cation programming interface (API) calls) changing one or
more data values. Updating data may involve creating new
values, modifying existing values, and/or deleting values. As
one example, updating data may involve changing values of
variables and/or attributes.

[0070] The updates to the data may be extensive and
frequent in that numerous data values may be updated and
the updates may occur often. As an illustrative example, the
data processing system may manage data for a multinational
bank. The data may be updated many times every day as part
of its operations (e.g., account management, lending, bor-
rowing, investments, and/other operations) requiring fre-
quent data updates. As another example, the data processing
system may manage data for an e-commerce company. The
data may be updated frequently as part of the e-commerce
company’s operations (e.g., online transactions, order ful-
fillment, and/or other operations).

[0071] For some types of data managed by a data process-
ing system, it is important to restrict the values that the data
can take on. For example, some variables in the data may be
allowed to take on a value only in a particular set of values
(e.g., one of a finite set of options, a value only in a permitted
range of continuous values, etc.). Restricting values that
certain variables take on is important in various applications,

Mar. 14, 2024

for example, when such values have an impact on opera-
tional aspects of the data processing system. To illustrate,
variables may include a security permission for accessing
data, an identification of a source from which to access data,
an indication of hierarchy among data structures, or an
indication of a user permitted to operate on data. The values
of such variables impact how the data processing system
operates. For example, these variables affect who is allowed
to view certain information in the data processing system,
how the data is stored in the memory of the data processing
system, and who is permitted to modify data in the data
processing system.

[0072] One problem that arises in this context is that,
given the large number of updates that are made by users
and/or processes, the data processing system is susceptible
to assignments of invalid (e.g., not permitted, improperly
formatted, and/or otherwise improper) data values. For
example, as a result of improperly assigning a variable value
a user may assign an invalid owner of an asset (e.g., a
software application, a data set, or other asset) resulting in
improper access to the asset being granted to someone. The
improper assignment may lead to unauthorized access to
data. As another example, as a result of improperly assigning
a variable value, a user may assign an invalid security level
to an asset resulting in a possible security failure in the data
processing system. The improper assignment may result in
incorrect (e.g., not sufficiently restrictive, overly restrictive
or otherwise wrong) security protocols being applied to the
asset.

[0073] Furthermore, an organization may have data gov-
ernance policies or other technical requirements with which
data managed by a data processing system must comply.
Invalid values in the data processing system may result in
failure to comply with the data governance policies. For
example, a data governance policy may specify that a
particular software application is only permitted to use data
from a particular set of data sources. A user or process may
assign an invalid value in the data processing system grant-
ing the software application access to data from a data
source that is not one of the permitted set of data sources,
which would violate the data governance policy. Invoking
the software application and/or one of its functions may lead
to further errors as a result of the improper data access. As
another example, a data governance policy may require that
values of a particular variable adhere to a specific format.
Assigning values to the variable that do not adhere to the
specific format would result in a failure to comply with this
data governance policy. Moreover, a software application
and/or its function that uses the variable value may experi-
ence errors as a result of an assigned variable value that does
not adhere to the specific format.

[0074] The conventional approach to addressing the
above-described problems is to allow data value updates and
to subsequently check the updated data values to identify
any improper values that have been assigned. Any improper
values that have been identified can be rejected, corrected,
and/or flagged for correction. For example, there may be
logic that specifies what is and is not allowed as a value of
a particular variable. After a value is assigned to the variable
(e.g., by a user and/or a computerized process, for example,
via an API call), the logic may be used to determine whether
the assigned value is valid. However, this approach is
inefficient because a user or process may need to repeatedly
submit multiple data assignments, each validated by the data

US 2024/0086409 Al

processing system, before finally landing upon a value that
is determined to be valid in accordance with the logic. In
some cases, there may be tens, hundreds, or thousands of
invalid values included in a set of possible values that a user
or process would need to select from. Moreover, for each
data assignment, the data processing system transmits all
possible values to a client device (e.g., for presentation in a
GUI) and/or a computerized process from which a selection
is made. Given that many of the values may be invalid, the
data processing system transmits more information than
needed resulting in increased data latency in its communi-
cations. Thus, this conventional approach is not a practical
way to address the above-described problems, especially in
a data processing system in which data assignments are
made frequently.

[0075] One type of data processing system in which the
above-described problem arises is in a data processing
system that manages data using data entities and instances
thereof. The data processing system may use the data entities
to organize data in an object-oriented paradigm. Similar to
how object-oriented programming involves classes and
instances thereof, a data processing system may be config-
ured with definitions of data entities and manage data using
instances of the data entities. A data entity may indicate one
or more attributes for which value(s) may be assigned in an
instance of the data entity. The data processing system may
store data in one or multiple instances of a data entity. In
some embodiments, a data entity instance may store infor-
mation about data (“metadata”). The information about the
data may be stored as attribute values in data entity
instances. A data entity instance may be stored by the data
processing system in any suitable format and/or using any
suitable data structure(s), as aspects of the technology
described herein are not limited in this respect.

[0076] As an illustrative example, a data processing sys-
tem may define a “business term” data entity that includes
the attributes: “Name,” “Definition,” “Region,” and “Stew-
ard”. One instance of the business term data entity may be
used to store data about a set of credit scores of an organi-
zation’s customers who reside in North America. The
instance may store the value of “Credit Score” for the
“Name” attribute, a textual description of a credit score as a
value of the “Definition” attribute, “North America” as a
value of the “Region” attribute, and a name of a person in
charge of managing the credit scores as a value of the
“Steward” attribute.

[0077] The data processing system that manages data
using data entities and instances thereof may use validation
rules associated with data entities to regulate the assignment
of data values to data entity attributes. A validation rule may
specify one or more conditions on a particular attribute of a
given data entity. A value assigned to the particular attribute
in an instance of the given data entity may be valid when it
meets the condition(s) specified by the validation rule. A
condition on an attribute of a data entity may further depend
on one or more other attributes of other data entities. Thus,
validity of a value assigned to the attribute of an instance of
the data entity may depend on value(s) of other attribute(s)
in other data entity instance(s).

[0078] FIG. 1A is a block diagram of an example data
processing system 100 for managing data, according to
some embodiments of the technology described herein. The
data processing system 100 manages data, at least in part, by
using data entities and instances thereof. The data processing

Mar. 14, 2024

system 100 includes validation rules 102, data entities 104,
and data entity instances 106. The data entities 104 may each
define a set of one or more attributes for which instances of
the data entity store values. In the example of FIG. 1A, the
data entity instances 106 include: (1) instance 106A of data
entity 104A; (2) instances 106B, 106C of data entity 104B;
(3) instances 106D, 106E, 106F of data entity 104C; and (4)
instances 106G, 106H of data entity 104D. Each of the data
entity instances 106A, 106B, 106C, 106D, 106E, 106F,
106G, 106H may store values of one or attributes specified
by the respective data entity from which the data entity
instance is instantiated from.

[0079] An attribute of a data entity may reference another
data entity. As indicated by the arrows among the data
entities 104 in FIG. 1A, data entity 104A includes an
attribute that references data entity 104B and an attribute
that references data entity 104C. Further, data entity 104C
includes an attribute that references data entity 104D. When
an attribute of a first data entity refers to a second data entity,
an instance of the second data entity may be assigned as an
attribute value in an instance of the first data entity. When an
instance of the second data entity is assigned as an attribute
value in an instance of the first data entity, the instance of the
first data entity may store a reference to the instance of the
second data entity as the attribute value. For example, the
instance of the first data entity may store as the attribute
value, a pointer, identifier, URL, memory address, file
location, and/or any other suitable type of reference to the
instance of the second data entity.

[0080] The wvalidation rules 102 define the validity of
instances of data entities. The validation rules 102 comprise
sets of validation rule(s) 102A, 102B, 102C, 102D. Each of
the set of validation rule(s) 102A, 102B, 102C, 102D is
associated with a respective data entity. In the example of
FIG. 1A, validation rule(s) 102A are associated with data
entity 104A, validation rule(s) 102B are associated with data
entity 104B, validation rule(s) 102C are associated with data
entity 104C, and validation rule(s) 102D are associated with
data entity 104D. Instances of a given data entity may be
required to comply with validation rule(s) associated with
the data entity in order to be valid. Each of validation rule(s)
102A, 102B, 102C, and 102D may have one or multiple
validation rules. For example, data entity 104A may include
multiple attributes and each attribute may be associated with
a respective one of multiple validation rules part of valida-
tion rule(s) 102A. Thus, it should be appreciated that each
data entity may be associated with multiple validation rules.
[0081] To illustrate how a set of validation rule(s) defines
the validity of instances of a data entity, FIG. 1B shows the
relationship among the set of validation rules(s) 102A, data
entities 104A, 104B, 104C, and data entity instances 106A,
106B, according to some embodiments of the technology
described herein. In this example, a “Price” instance 106 A
of the “Data Element” data entity 104A refers to a “Pur-
chase” instance 106B of the “Dataset” data entity 104B. The
“Price” instance 106A stores information about purchase
price data stored in a purchase dataset (a dataset containing
information about purchases made by customers). Among
the information stored in the “Price” instance 106A is a
value of a “BusinessTerm” attribute 104A-4 that is a refer-
ence to a particular instance of the Business Term data entity
104C describing a purchase price.

[0082] As shown in FIG. 1B, the Data Element data entity
104 A includes the following attributes: Name 104A-1, Data-

US 2024/0086409 Al

set 104A-2, ColumnOrder 104A-3, and BusinessTerm
104A-4. The Dataset attribute 104A-2 refers to the Dataset
data entity 104B and the BusinessTerm attribute 104A-4
refers to the Business Term data entity 104C. The Dataset
data entity 104B includes the following attributes: Name
104B-1, Division Name 104B-2, and Type 104B-3. The
Business Term data entity 104C includes the following
attributes: Name 104C-1, Description 104C-2, Minimu-
mOrder 104C-3, and DivisionName 104C-4. The validation
rule(s) 102A associated with the Data Element data entity
104A include a rule 102A-1 that requires the following
conditions to be met for an instance of the Data Element data
entity 104 A to be valid: (1) the value of the ColumnOrder
attribute 104A-3 must be greater than a value of the Mini-
mumOrder attribute 104C-3 in a referenced instance of the
Business Term data entity 104C; and (2) the value of the
DivisionName attribute 104B-2 of the referenced instance of
the Dataset data entity 104B must match the value of the
DivisionName attribute 104C-4 in a referenced instance of
the Business Term data entity 104C.

[0083] A data entity instance may store values assigned to
its attributes (e.g., as attribute value pairs). In the example of
FIG. 1B, the Price instance 106A of the Data Element data
entity 104A stores: (1) a value of “Price” assigned to its
Name attribute 104A-1; (2) a reference to an instance 1068
of the Dataset data entity 104B called “Purchase” assigned
to its Dataset attribute 104A-2; and (3) a value of “5”
assigned to its ColumnOrder attribute 104A-3. In the
example of FIG. 1B, the Price instance 106 A needs a value
110 to be assigned to its Business Term attribute 104A-4. The
attribute value may be assigned via user input and/or a
computerized process (e.g., a function call).

[0084] FIG. 1C shows an example graphical user interface
107 for assignment of the value 110 in the Price instance
106A of the Data Element data entity 104A, according to
some embodiments of the technology described herein. The
graphical user interface 107 shows a view 107A of the Price
instance 106A displaying attribute value pairs of the Price
instance 106A. The graphical user interface 107 provides a
list 107A-1 of values that can be assigned to the Business-
Term attribute 104A-4 of data entity instance 106A. In the
example of FIG. 1C, the values include references to the
following instances of the BusinessTerm data entity 104C:
Credit Score instance 106D, Balance instance 106E, and
Purchase Price instance 106F. However, the list 107A-1 of
values includes both valid values (i.e., that would meet rule
102A-1) and invalid values (i.e., that would not meet rule
102A-1) of the BusinessTerm attribute 104A-4. The user
108 does not know which of the values from the list 107A-1
would meet the rule 102A-1 in the validation rule(s) 102A
associated with the Data Element data entity 104A because
the user does not know the attribute values of all the listed
instances or of attribute values of the Purchase instance
1068 referenced by the Price instance 106 A. Knowledge of
these attribute values is needed to determine whether each of
the values in the list 107A-1 would be valid. Further, there
may be hundreds or thousands of values in the list 107A-1
from which the user 108 would need to identify a valid
selection. Thus, it is impractical for the user 108 to go
through each of the instances in the list 107A-1 to determine
which of the instances would be valid.

[0085] Additionally, for a given instance, a user may need
to access a hierarchy of multiple instances that affect validity
of the given instance based on the rule 102A-1. Going

Mar. 14, 2024

through each of the instances would further require the
user’s device to execute multiple computations to access
attribute values of each instance, access attribute values of
instances that affect validity of each instance, and display the
attribute values. Even if the user 108 were to access each
instance in the list 107A-1, determining the validity of the
instances would be difficult, if not impossible, for the user
108 given the complexity of validation rule(s) that govern
the validity of the instances.

[0086] To address the impracticality of the above-de-
scribed conventional approach for enforcing valid data
assignments, the inventors have developed a new technique
that restricts data assignment to only valid values by: (1)
identifying the set of valid values that may be assigned to an
attribute; and (2) providing that set of valid values to users
and/or software so that the users and/or software may use
this list to identify the values to which to set the attribute.
Thus, when a data assignment is requested (e.g., by a user or
process), the techniques developed by the inventors and
described herein determine the conditions that must be met
by a variable value in order to be valid (e.g., as defined by
appropriate validation rules) and identify values that would
be valid for assignment based on the conditions. In some
embodiments, the techniques identify values that would be
valid for assignment to an attribute of a data entity instance.
The new techniques therefore make enforcement of valid
data assignments more efficient. This mitigates (e.g., reduces
or eliminates) the risk of invalid values being assigned to
variables in the data processing system.

[0087] The inventors have recognized that it is not
straightforward to identify valid values that may be assigned
to an attribute because, often, complex requirements must be
met by a variable value for that value to be considered as
valid. For example, requirements (e.g., as implemented by
validation rules or any other suitable type of logic used to
define validity) may depend on other variables stored by the
data processing system. As one example, a variable value
may need to be within a range defined by one or more other
variables stored in the data processing system to be valid. As
another example, a variable value may need to match
another variable value in order to be valid. As yet another
example, a variable value may be a reference to one or more
other objects and the conditions may depend on data values
in those objects.

[0088] As described herein, in the context of a data
processing system that manages data using data entities and
instances thereof, a variable may be a data entity instance
attribute whose value is to be assigned. One or more
validation rules associated with the attribute define the set of
valid values—any of which could be assigned to the attri-
bute. However, the rules do not simply provide a list of valid
values. Rather, may do so via a set of conditions that may
involve other information, for example, values of one or
more other variables being managed by the system. As such,
the validation rule(s) may depend on one or more attribute
values of one or more other data entity instances. Thus, the
validation rules are not only complex (because they are
dependent on values of multiple other variables), but also
depend on values that themselves could be changing. As a
result, in order to accurately identify one or more valid
values for a particular data entity instance attribute, current
values of numerous other variables may need to be consid-
ered (e.g., values of attributes referenced by the validation
rule(s) associated with the particular data entity instance

US 2024/0086409 Al

attribute). As such values can also change, so too can the set
of valid values for the particular data entity instance attri-
bute.

[0089] The techniques developed by the inventors to iden-
tify valid values for assigning to an attribute account for
dependencies on other variables by accessing the current
values of the other variables and using them to determine
which values would be valid for assignment to the variable.
For example, the techniques may access attribute values
from other data entity instances that dictate the validity of an
attribute in a given data entity instance and use the attribute
values to determine valid values that can be assigned to the
attribute.

[0090] Accordingly, in some embodiments, valid values
are identified by: (1) programmatically generating a query
using validation rule(s) that govern validity of a variable
(e.g., an attribute); and (2) executing the query to obtain
valid values that can be assigned to the variable. For
example, the techniques may involve using a rule that
governs the validity of an attribute value to programmati-
cally generate a query, and executing the query (e.g., against
data managed by the data processing system) to obtain
values that would be valid for assignment as the attribute
value.

[0091] Accordingly, in some embodiments, the techniques
developed by the inventors and described herein identify
valid value(s) for an attribute in an instance of a data entity
using validation rule(s) associated with the data entity. The
techniques may use the validation rule(s) to identify the
valid value(s) for the attribute by: (1) generating a query for
the valid value(s) using condition(s) part of the validation
rule(s); and (2) executing the generated query to obtain the
valid value(s). The techniques may limit assignment of the
attribute’s value to the identified wvalid value(s). For
example, the techniques may only present the valid value(s)
to a user (e.g., in a graphical user interface (GUI)), or to a
software application for selection of a value to assign to the
attribute. In another example, the techniques may reject a
value submitted for assignment to the attribute that is not one
of the valid value(s). The techniques may assign a value of
the attribute in the instance of the data entity based on input
(e.g., from a user or process) indicating a selection of one or
more of the identified valid value(s). The techniques thus
mitigate invalid attribute value assignments in the data
processing system.

[0092] Some embodiments provide for a system that
enforces valid data assignments in a data processing system
configured to process data that is updated by users (e.g.,
through a GUI) and/or processes (e.g., software applica-
tions). The data processing system stores the data using data
entities and instances thereof. The data processing system
receives a request to assign a value to an attribute (e.g.,
Owner attribute 400A-3 in FIG. 4B) in a first data entity
instance (e.g., North America Credit Scores instance 420 in
FIG. 4B) of a first data entity (e.g., Biz Term data entity
400A in FIG. 4A). The first data entity (e.g., Biz Term data
entity 400A) comprises a plurality of attributes (e.g., attri-
butes 400A-1, 400A-2, 400A-3, 400A-4 in FIG. 4A) includ-
ing the first attribute (e.g., the Owner attribute 400A-3) and
a second attribute (e.g., the Institution attribute 400A-4 in
FIG. 4A). The first data entity is associated with one or more
validation rules (e.g., validation rules 404 in FIG. 4C) that
attribute values in instances of the first data entity must
comply with to be valid. The validation rule(s) include a first

Mar. 14, 2024

validation rule (e.g., rule 404A in FIG. 4C) associated with
the first attribute (e.g., the Owner attribute 400A-3) that
comprises a first condition on the first attribute that depends
on the second attribute (e.g., the Institution attribute 400A-
4). The system may be configured to identify, using the first
validation rule (e.g., rule 404 A), one or more valid values for
the first attribute by: (1) generating a query (e.g., query 408
in FIG. 4D) for the one or more valid values using the first
condition on the first attribute; and (2) executing the gen-
erated query (e.g., against a database storing data entity
instances) to obtain the valid value(s) (e.g., query results 410
in FIG. 4D) for the first attribute. The system may be
configured to assign a value to the first attribute in the first
data entity instance in accordance with input (e.g., received
through a GUI) indicating a selection of at least one of the
valid value(s) for the first attribute. The system may be
configured to assign the selected at least one valid value to
the first attribute.

[0093] In some embodiments, the system may be config-
ured to generate the query (e.g., query 408 in FIG. 4D) for
the valid value(s) for the first attribute (e.g., Owner attribute
400A-3 in FIG. 4B) using the first condition on the first
attribute by: (1) identifying a current value of the second
attribute (e.g., Institution attribute 400A-4) in the first data
entity instance (e.g., North America Credit Scores instance
420); and (2) generating the query (e.g., query 408 in FIG.
4D) using the current value of the second attribute in the first
data entity instance.

[0094] In some embodiments, the current value of the
second attribute in the first data entity instance is assigned an
instance (e.g., MegaBank instance 422 in FIG. 4B) of a
second data entity (e.g., Institution data entity 400C in FIG.
4A). The system may be configured to generate the query
based on the current value of the second attribute in the first
data entity instance by: (1) accessing a first attribute value
(value of the Region attribute 400C-2) from the instance of
the second data entity (e.g., MegaBank instance 422); and
(2) generating the query (e.g., query 408 in FIG. 4D) based
on the first attribute value from the instance of the second
data entity.

[0095] In some embodiments, the at least one validation
rule comprises a plurality of validation rules (e.g., rules
404A, 404B in FIG. 4C) associated with respective attri-
butes (e.g. Owner attribute 400A-3 and Institution attribute
400A-4) of the first data entity (e.g. Biz Term data entity
400A). The system may be configured to identify the first
validation rule from among the plurality of validation rules
based on an association of the first validation rule (e.g., Rule
404 A) with the first attribute (e.g. Owner attribute 400A-3).
[0096] In some embodiments, the first validation rule
comprises a second condition on the first attribute. The
system may be configured to generate the query (e.g., query
408 in FIG. 4D) for the one or more valid values by: (1)
generating a first portion (e.g., a first set of SQL statements)
of'the query based on the first condition on the first attribute;
and (2) generating a second portion (e.g. a second set of SQL
statements) of the query based on the second condition on
the first attribute. In some embodiments, the system may be
configured to generate the query for the valid value(s) using
the first condition by: (1) transforming the first condition on
the first attribute into a query criterion; and (2) integrating
the query criterion into the query.

[0097] In some embodiments, the system may be config-
ured to assign an instance of a second data entity (e.g.,

US 2024/0086409 Al

Business Owner data entity 400B in FIG. 4A) as the value
to the first attribute (e.g., Owner attribute 400A-3) in the first
data entity instance. In some embodiments, the system may
be configured to generate the query (e.g., query 408 in FIG.
4D) for the valid value(s) by generating a query on instances
of the second data entity. In some embodiments, the system
may be configured to execute the generated query on a
subset of data consisting of instances of the second data
entity.

[0098] In some embodiments, the first attribute indicates
an owner, an access security level, a data source, or a data
format associated with the first data entity instance.

[0099] In some embodiments, the first data entity instance
stores information about a software application or a dataset
as attribute values in the first data entity instance. For
example, the first attribute may indicate a data source or a
data format to be used by the software application when
attempting to invoke a function of the software application.
The valid value(s) are suitable for invoking the function of
the software application. As another example, the first
attribute indicates an access security level associated with
the dataset to be used when attempting to provide access to
the dataset. The valid value(s) may be one or more access
security levels providing access to the dataset.

[0100] In some embodiments, the system may be config-
ured to transmit, to a client device, an indication of the valid
value(s) for the first attribute for display in a graphical user
interface (GUI). The system may be configured to receive,
from the client device, the input indicating the selection of
the at least one of the one or more valid values for the first
attribute through the GUI. In some embodiments, the system
may be configured to identify the valid value(s) for the first
attribute by identifying one or more instances of a second
data entity as the one or more valid values for the first
attribute.

[0101] In some embodiments, the first validation rule
comprises a second condition on the first attribute. The
system may be configured to identify, using the first vali-
dation rule, the valid value(s) by generating a query by: (1)
generating a first query criterion using the first condition on
the first attribute; and (2) generating a second query criterion
using the second condition on the first attribute. In some
embodiments, the system may be configured to identify,
using the first validation rule, one or more invalid values for
the first attribute and prevent transmission of the invalid
value(s) (e.g., to a client device).

[0102] In some embodiments, when the first data entity
instance does not have a value assigned to the second
attribute, and system may be configured to identify the valid
value(s) for the first attribute by: (1) identifying an unas-
signed value entered for the second attribute; and (2) gen-
erating the query for the one or more valid values using the
unassigned value for the second attribute.

[0103] In some embodiments, a client device may be
configured to receive, through a GUI, input indicating a
request to assign a value to a first attribute in a first data
entity instance of a first data entity. The client device may be
configured to transmit, to the data processing system, the
request, wherein the request causes the data processing
system to identify, using the first validation rule, one or more
valid values for the first attribute. The client device may be
configured to receive, from the system, the valid value(s) for
the first attribute. The client device may be configured to
display, in the GUI, an indication of the one or more valid

Mar. 14, 2024

values for the first attribute. The client device may be
configured to receive, through the GUI, input indicating a
selected value of the valid value(s) to assign to the first
attribute. The client device may be configured to transmit, to
the data processing system, an indication of the selected
value for assignment to the first attribute.

[0104] The techniques described herein may be imple-
mented in any of numerous ways, as the techniques are not
limited to any particular manner of implementation.
Examples of details of implementation are provided herein
solely for illustrative purposes. Furthermore, the techniques
disclosed herein may be used individually or in any suitable
combination, as aspects of the technology described herein
are not limited to the use of any particular technique or
combination of techniques.

[0105] FIG. 2A is a block diagram of a data processing
system 200, according to some embodiments of the tech-
nology described herein. The data processing system 200
includes validation rules 202, data entities, 204, and data
entity instances 206. The data processing system 200
includes interfaces 207 that allow client devices of users 208
to interact with the data processing system 200. The data
processing system 200 further includes an assignment vali-
dation module 210 that provides valid attribute values for
assignment via the interfaces 207 (e.g., to present to the
users 208 in a GUI).

[0106] The data processing system 200 may be configured
to use data entities 204 to manage data. Each of the data
entities 204 may specify a set of one or more attributes for
which each instance of the data entity may be assigned a
value. For example, the data entities 204 may include an
institution data entity that specifies a set of attributes. In this
example, instances of the institution data entity may store
information about respective institutions (e.g., corporations,
companies, businesses, etc.) as values assigned to the set of
attributes. In another example, the data entities 204 may
include a business term data entity that specifies a set of
attributes. In this example, instances of the business term
data entity may store information about a type of business
data (e.g., customer credit scores, account balances, salaries,
etc.). The data processing system 200 may be configured to
instantiate any number of instances of a data entity.

[0107] The data processing system 200 may be configured
to store data using data entity instances 206. The data entity
instances 206 may each be instantiated from a respective
data entity that defines the data entity instance. Attributes of
data entity instances may each be assigned one or more
values (e.g., by a user and/or a process). The data processing
system 200 may be configured to receive a request (e.g.,
from a client device and/or a process) to assign a value to an
attribute. The data processing system 200 may be configured
to assign a value to the attribute (e.g., by performing process
1000 described herein with reference to FIG. 10).

[0108] The data processing system 200 may be configured
to assign values to attributes of data entity instances. In some
embodiments the data processing system 200 may be con-
figured to assign a value to an attribute based on user input
received through a GUI provided by the data processing
system 200 on a client device. For example, a user may
provide input indicating a selection of a value to assign to an
attribute in a data entity instance. In some embodiments, the
data processing system 200 may be configured to assign a
value to an attribute based on input from a process. For
example, the data processing system 200 may receive input

US 2024/0086409 Al

from a software application indicating a value to assign to an
attribute in a data entity instance. In some embodiments, the
data processing system 200 may be configured to assign a
value to an attribute as part of executing an internal process
of the data processing system 200. For example, the data
processing system 200 may automatically assign a default
value to an attribute of a data entity instance.

[0109] The data processing system 200 may be configured
to use the validation rules 202 to enforce valid data assign-
ments in the data entity instances 206. Each of the validation
rules 202 comprises a set of one or more conditions on an
attribute of a data entity associated with the validation rule.
In order for an instance of the data entity to be valid, a value
assigned to the attribute in the instance must meet the
condition(s) of the validation rule. The data processing
system 200 may include any number of validation rules 202.
The data processing system 200 may be configured to use
the validation rules 202 to ensure that valid values are
assigned to attributes of data entity instances.

[0110] The data processing system 200 may be configured
to associate a validation rule with a data entity. The data
processing system 200 may be configured to associate a
validation rule with a data entity by storing, in the validation
rule, a reference to an associated data entity. For example,
the data processing system 200 may store an identifier (e.g.,
a name, id number, or other identifier) of an associated data
entity in the validation rule. In another example, the data
processing system 200 may store, in the validation rule, a
pointer to an associated data entity. In some embodiments,
the data processing system 200 may be configured to store,
in the validation rule, an indication of an attribute of an
associated data entity that the validation rule is associated
with. A value of the attribute in a data entity instance may
be required to meet validation rule(s) associated with the
attribute in order for the value to be valid. In some embodi-
ments, the data processing system 200 may be configured to
associate a validation rule with a data entity by storing a
reference to the validation rule in the data entity. For
example, the data processing system 200 may store an
identifier (e.g., name, id number, or other identifier) of the
validation rule in the data entity. In another example, the
data processing system 200 may store a pointer to the
validation rule in the data entity.

[0111] The data processing system 200 may be configured
to store the validation rules 202, data entities 204, and data
entity instances 206 in one or more datastores. The datastore
(s) may be stored in a data persistence layer of the data
processing system 200 as described herein with reference to
FIG. 7. The datastore(s) may consist of storage hardware
(e.g., hard disk drives, solid state drives, disks, and/or other
types of storage hardware). The datastore(s) may be co-
located or distributed geographically (e.g., in a distributed
database system). In some embodiments, the datastore(s)
may be cloud based data storage. For example, the datastore
(s) may be stored in one or more data centers that can be
accessed through the Internet.

[0112] The interfaces 207 may allow users 208 to interact
with the data processing system 200. The interfaces 207 may
include one or more graphical user interfaces (GUIs) 207A.
[0113] In some embodiments, the GUI(s) 207A may
include a GUI for creation and editing of a validation rule.
The GUI may be configured to allow creation of a new
validation rule and specification of information about the
validation rule (e.g., a name, associated data entity, associ-

Mar. 14, 2024

ated attribute of the data entity, condition(s), and/or other
information). For example, the GUI may include one or
more fields in which information about the validation rule
can be entered.

[0114] In some embodiments, the GUI(s) 207A may
include a GUI that allows assignment of an attribute value
in a data entity instance. The GUI may be configured to
display information about a data entity instance such as the
name, current attribute values, a data entity defining the data
entity instance, and/or other information about the data
entity instance. The GUI may be configured to allow a user
to assign a value to an attribute of the data entity instance.
In some embodiments, the GUI may be configured to allow
a user to assign a value to an attribute by: (1) presenting one
or more valid values of the attribute; and (2) receiving a
selection of a value of the valid value(s) for assignment to
the attribute. In some embodiments, the GUI may be con-
figured to allow a user to view invalid values of an attribute
in response to selection of an option (e.g., a checkbox
indicating that invalid values should be displayed). In some
embodiments, the GUI may be configured to provide graphi-
cal indications about a value selected for assignment to an
attribute. For example, the GUI may display a graphical
element (e.g., an icon) indicating that the selected value is
invalid when it is determined that the selected value is
invalid. In another example, the GUI may display a graphi-
cal element indicating that a value was not assigned to an
attribute because the value is invalid. In another example,
the GUI may be configured to display a graphical element
indicating that a selected value for assignment is valid
and/or that the value was successfully assigned to the
attribute. In some embodiments, the GUI may be configured
to display an indication of one or more validation rules that
are applicable to the data entity instance. For example, the
GUI may provide a link to a validation rule that the user can
select to view information about the validation rule.

[0115] In some embodiments, the GUI(s) 207A may
include a GUI that allows a user to view information about
a data entity. The GUI may be configured to display infor-
mation about the data entity (e.g., name, description, attri-
butes, associated validation rule(s), and/or other informa-
tion). The GUI may be configured to allow a user to edit
information about the data entity. For example, the GUI may
allow a user to configure the attributes of the data entity. The
GUI may be configured to allow a user to navigate to one or
more validation rules associated with the data entity. For
example, the GUI may allow the user to follow a link to a
validation rule associated with the data entity.

[0116] In some embodiments, the interfaces 207 may
include one or more interfaces through which processes
(e.g., software applications) can interact with the data pro-
cessing system 200. For example, the interfaces may include
one or more application program interfaces (APIs) 207B
through which software applications can interact with the
data processing system 200. The API(s) 207B may allow
software applications to create and/or edit validation rules,
data entities, and/or data entity instances. The API(s) may
further allow software applications to assign attribute values
in data entity instances. In some embodiments, the interfaces
207 may allow processes external to the data processing
system 200 to interact with the data processing system 200.
In some embodiments, the interfaces 207 may allow internal
processes to perform actions within the data processing
system 200.

US 2024/0086409 Al

[0117] Each of the users 208 shown in FIG. 2A may
communicate with the data processing system 200 using a
client device. A client device may be any suitable computing
device. For example, the client device may be a laptop,
desktop, smartphone, tablet, or any other suitable computing
device. In some embodiments, a client device may commu-
nicate with the data processing system 200 through a com-
munication network. For example, the communication net-
work may be the Internet.

[0118] In some embodiments, the assignment validation
module 210 may be configured to identify one or more valid
values for an attribute, and present the valid value(s) to a
user or process to select from. The assignment validation
module 210 may then assign a value to the attribute based on
a received selection of a value from the valid value(s). In
some embodiments, the assignment validation module 210
may be configured to remove invalid values from a provided
selection of values and thus prevent selection of an invalid
value for assignment to an attribute. In some embodiments,
the assignment validation module 210 may be configured to
provide an indication of whether value(s) are valid or invalid
for an attribute. For example, a GUI may be configured to
display, in a listing of values for an attribute, an indication
of whether each value is valid or invalid.

[0119] FIG. 2B shows a GUI 207A for assignment of a
value to an attribute in a data entity instance 206 A in the data
processing system of FIG. 2A, according to some embodi-
ments of the technology described herein. The data entity
instance 206A is an instance of data entity 204A with
attributes 204A-1, 204A-2. The data entity instances 206 is
configured to store an attribute value 206A-1 of attribute
204A-1 and attribute value 206A-2 of attribute 204A-2. The
validity of the attribute values 206A-1, 206A-2 may be
governed by validation rule(s) 202A. The validation rule(s)
202A include rules 202A-1, 202A-2.

[0120] As shown in the example embodiment of FIG. 2B,
the GUI 207A includes a view 207A-1 of the data entity
instance 206A showing various attribute values of the data
entity instance 206 A and which allows assignment of values
to attributes. As illustrated in FIG. 2B, the assignment
validation module 210 identifies a list 207A-2 of valid
values which are presented to the user 208A in the GUI
207A.

[0121] In some embodiments, the user 208 A may provide
input through the GUI 207 A indicating a selection of one of
the valid values to assign to the attribute 204A-1 of data
entity instance 206A. The assignment validation module 210
thus eliminates the possibility that the user 208 A selects an
invalid value to assign to the attribute 204A-1.

[0122] Although in the example embodiment of FIG. 2B
the list 207A-2 of values presented to the user in the GUI
207A includes only valid values, in some embodiments, the
list 207A-2 may include both valid and invalid values, with
an indication of whether each of the values is valid or
invalid. Thus, a user may have knowledge of which values
are valid or invalid for the attribute 204A-1. This may
facilitate the user in selecting a valid value for assignment to
the attribute 204A-1 and mitigates the risk of assignment of
an invalid value.

[0123] FIG. 2C shows the GUI 207A of FIG. 2B after
selection of a valid value for the attribute 204 A-1, according
to some embodiments of the technology described herein.

Mar. 14, 2024

As shown in the example of FIG. 2C, the GUI 207A may
provide a graphical indication that the assigned value is
valid.

[0124] FIG. 2D is a diagram illustrating interaction among
the components 210A, 210B, 210C, 210D of the assignment
validation module 210 of FIG. 2A, according to some
embodiments of the technology described herein. The
assignment validation module 210 uses a set of validation
rule(s) 202A associated with a data entity to identify valid
attribute values 212 for an attribute of an instance of the data
entity. In some embodiments, the flow of data among the
components of the assignment validation module 210 shown
in FIG. 2D may occur when the data processing system 200
obtains a request to assign a value to an attribute of an
instance of a data entity. In the example of FIG. 2D, the flow
of data among the components may occur as part of iden-
tifying valid values 212 of the attribute 204A-1.

[0125] In some embodiments, the rule selection compo-
nent 210A may be configured to select one or more valida-
tion rules from the set of validation rule(s) 202A. The
validation rule(s) 202A may be associated with a data entity
204 A as described herein with reference to FIG. 2B. The rule
selection component 210A may be configured to select one
or more of the set of validation rule(s) 202A that are
associated with the attribute of the data entity that is being
assigned a value in the instance of the data entity. The rule
selection component 210 may be configured to select the
validation rule(s) associated with the attribute from the set of
validation rule(s) 202A by: (1) accessing the set of valida-
tion rule(s) 202A associated with the data entity; (2) iden-
tifying the rule(s) that are associated with the attribute for
which a value is to be assigned; and (3) selecting the
identified rule(s). In some embodiments, the set of validation
rule(s) 202A may each indicate an attribute that the valida-
tion rule is associated with. The rule selection component
210 may be configured to use the indicated attribute(s) by
the set of validation rule(s) 202A to identify validation
rule(s) that are associated with the attribute that is to be
assigned a value in an instance of the data entity.

[0126] In some embodiments, the rule transformation
component 210B may be configured to transform the
selected validation rule(s) for use in generating one or more
queries. In some embodiments, the rule transformation com-
ponent 210B may be configured to transform the selected
rule(s) by: (1) identifying, in the selected validation rule(s),
each condition on the attribute; and (2) transforming each
condition into a respective criterion. For example, the rule
transformation component 210B may transform each rule
into a logical expression that can be used as a criterion in a
query.

[0127] In some embodiments, a condition on the attribute
being assigned a value may depend on another attribute of
the data entity. In such embodiments, the rule transformation
component 210B may be configured to transform a rule by:
(1) determining a value of the other attribute in the instance
of the data entity; and (2) generating the transformed rule
using the determined value. The rule transformation com-
ponent 210B may be configured to determine a current
attribute value of the instance that a condition depends on,
and transform the condition into a criterion using the current
value. For example, the rule transformation component
210B may replace an attribute identifier in a condition
expression with a value of the attribute in the instance of the

US 2024/0086409 Al

data entity. An example of such a transformation is described
herein with reference to FIG. 4D, FIG. 5D, and FIG. 6D.
[0128] In some embodiments, an attribute may need to be
assigned an instance of another data entity as a value. In such
embodiments, the rule transformation component 210B may
be configured to transform condition(s) in the selected
rule(s) such that the transformed rule(s) can be used to
generate a query that will be executed only on instances of
the other data entity (e.g., to reduce the amount of data on
which the query needs to be executed). The rule transfor-
mation component 210B may be configured to modify a data
entity path specified in a rule by removing a specification of
a data entity of which instances will be queried. For
example, in a condition on instances of data entity “B” to be
valid for assignment to an attribute, a rule may use a data
entity path of “B.C.p” in specifying the condition. The rule
transformation component 210B may remove the specifica-
tion of the data entity “B” from the data entity path to obtain
the data entity path to “C.p” in the transformed rule because
a query generated from the transformed rule will be
executed only on instances of data entity “B”. As the query
will only be executed on instances of data entity “B”, the
query would not require specification of the data entity “B”
in a data entity path. An example such transformation is
described herein with reference to FIG. 4B, FIG. 5D, and
FIG. 6D.

[0129] In some embodiments, a rule may specify a con-
dition on instances of a data entity to be valid for assignment
to an attribute without indicating a particular attribute of the
data entity. For example, a rule may indicate a simple path
“B” in specifying a condition on instances of data entity “B”
to be valid for assignment to an attribute. In such embodi-
ments, the rule transformation component 210B may be
configured to replace the indicated data entity with a par-
ticular attribute of the data entity. In some embodiments, the
particular attribute may be a default attribute that is selected
when no attribute is specified in a condition. For example,
the rule transformation component 210B may replace the
simple path “B” with an ID attribute (e.g., “B_ID”) of the
data entity.

[0130] The query generation component 210C may be
configured to use the transformed rule(s) to generate a query.
As described herein with reference to the rule transformation
component 210B, the transformed rule(s) may comprise one
or more criteria that can be assembled into one or more
queries. In some embodiments, the query execution com-
ponent 210D may be configured to assemble all the trans-
formed rule(s) into a single query. For example, the query
execution component 210D may combine multiple criteria
by applying an AND operation to the criteria. In some
embodiments, the query execution component 210D may
generate multiple queries. For example, the query execution
component 210D may generate a query for each of multiple
transformed rules. Example queries generated by the query
generation component 210C are described herein with ref-
erence to FIG. 4B, FIG. 5D, and FIG. 6D.

[0131] The query execution component 210D may be
configured to execute one or more queries generated by the
query generation component 210C. For example, a query
may be an SQL query. The query execution component
210D may be configured to execute the SQL query on a
datastore (e.g., storing data entity instances 206) of the data
processing system 200 to obtain query results. In some
embodiments, the query execution component 210D may be

Mar. 14, 2024

configured to execute a query on the data entity instances
206 of the data processing system 200 or a subset thereof.
For example, the query may be configured (e.g., by the query
generation component 210C) to execute on instances of a
particular data entity (e.g., that can be assigned as a value to
the attribute being assigned). In another example, the query
may be configured to execute on all the data entity instances
206.

[0132] The assignment validation module 210 may be
configured to provide the query results as the valid attribute
values 212. In some embodiments, the assignment valida-
tion module 210 may be configured to present the valid
attribute values 212 to a user through a GUI. For example,
the assignment validation module 210 may present the valid
attribute values 212 in an attribute value assignment menu of
the GUI that allows a user to select one or more of the valid
attribute values 212 to assign to the attribute. In some
embodiments, the assignment validation module 210 may be
configured to transmit the valid attribute values 212 to a
process. For example, the assignment validation module 210
may transmit the valid attribute values 212 to a software
application (e.g., through an API) that can use the valid
attribute values to programmatically assign a valid value to
the attribute.

[0133] FIG. 3A is a diagram of a validation rule 300,
according to some embodiments of the technology described
herein. As shown in FIG. 3A, the validation rule 300
includes various information. The validation rule 300
includes a name 300A identifying the validation rule 300.
For example, the name 300A may be an alphanumeric
identifier identifying the rule. The validation rule 300
includes an indication 300B of a data entity that the vali-
dation rule 300 is associated with. For example, the indica-
tion 300B of the associated data entity may be a name of the
data entity, or other identifier of the data entity. The valida-
tion rule 300 also includes an indication 300C of an attribute
to which the rule 300 applies. For example, the indication
300C of the attribute may be a name of the attribute in the
data entity indicated by 300B. The validation rule 300
includes a description 300D of the validation rule 300. For
example, the description 300 may be a textual description.
The validation rule 300 includes a severity 300E specifying
a type of alert displayed to a user (e.g., in a GUI) when an
assigned attribute value violates rule 300. The validation
rule 300 includes an import enforcement 300F specifying a
type of action to be taken when an attribute value violates
the rule 300. For example, the import enforcement 300F
may block assignment of the attribute value. The validation
rule 300 includes a user interface enforcement 300G speci-
fying a user interface action in which to enforce the rule 300.
For example, the user interface enforcement 300G may
indicate that the rule 300 is to be enforced upon submission
of an attribute value for assignment.

[0134] As shown in FIG. 3A, the validation rule 300
includes condition(s) 300H on the attribute that the valida-
tion rule 300 is associated with. The condition(s) may be
specified by or more logical expressions. The validation rule
300 includes a validation trigger 3001 that specifies condi-
tion(s) that are required for the validation rule 300 to be used
for validation. The condition(s) may be specified by one or
more logical expressions.

[0135] FIG. 3B is a diagram of an example 310 of vali-
dation rule 300 shown in FIG. 3A, according to some
embodiments of the technology described herein. As shown

US 2024/0086409 Al

in FIG. 3B, the name 310A of the validation rule 310 is “Biz
Term Owner”. The associated data entity 310B is listed as
“Biz Term” and the associated attribute 310C is listed as
“Owner”. The validation rule 310 has a description 310D
“this rule validates the owner attribute”. The validation rule
310 indicates a severity 310E of “Error”, indicating that the
data processing system 200 will reject an assignment of a
value to the owner attribute in an instance of the Biz Term
data entity if it violates the validation rule 310.

[0136] The wvalidation rule 310 indicates an import
enforcement 310F of being “On Submit”. This may indicate
that the data processing system 200 validates a value when
data is imported into the data processing system 200. The
validation rule 310 further indicates a user interface enforce-
ment 310G of “On Submit” indicating that the data process-
ing system 200 validates a selected value for the attribute
when a user submits an updated data entity instance (e.g., for
assignment of selected value(s) to attribute(s) of the data
entity instance).

[0137] The validation rule 310 includes the following
conditions 310H on the Owner attribute: (1) Owner.Region
must be equal to “North America”; (2) Owner.Name begins
with “A”; and (3) the Owner.group is specified. An AND
operation is applied to the conditions indicating that all of
them must be met in order for a value of the Owner attribute
to be valid in an instance of the Biz Term data entity. In the
example of FIG. 3B, the value assigned to the Owner
attribute must be an instance of another data entity. The first
condition indicates that a Region attribute of the assigned
instance must be equal to “North America”. The second
condition indicates that the Name attribute of the assigned
instance must begin with the letter “A”. The third condition
indicates that the Group attribute of the assigned instance
must have a value specified in the instance.

[0138] The conditions 310H may be used by the data
processing system 200 to identify valid values for assign-
ment to the Owner attribute, and/or to validate a value
previously assigned to the Owner attribute. The validation
rule 310 includes a validation trigger 3101 indicating that
validation is only to be performed when a name of the
instance of the Biz Term data entity being validated has a
Name attribute value specified.

[0139] FIG. 3C shows an example rule definition GUI 320
for defining a validation rule 330, according to some
embodiments of the technology described herein. As shown
in FIG. 3 A, the rule definition GUI 320 includes a generation
information section 330A, a section 330B for specifying
condition(s) on an attribute, a section 330C for indicating
one or more conditions on which the rule 330 is to be
enforced, and a section 330D for specifying of one or more
conditions that are required to validate using the validation
rule 330.

[0140] As shown in FIG. 3C, the general information
section 330A includes elements for specifying a rule name,
an indication of a data entity to which the rule is associated,
a textual description of the rule, and an indication of an
action to take if the rule is violated by a selected attribute
value.

[0141] In some embodiments, the rule name may identify
the validation rule 330 among other validation rules. In some
embodiments, the validation rule 330 may include an iden-
tifier in addition to or instead of the rule name. For example,
the validation rule 330 may include an alphanumeric iden-
tifier.

Mar. 14, 2024

[0142] As shown in the example of FIG. 3C, in some
embodiments, an indication of a data entity to which the rule
is associated is stored in the validation rule 330. The
indication may be a name of the data entity to which the
validation rule 330 is associated. For example, the validation
rule 330 may store a string consisting of the name of the data
entity. In some embodiments, the validation rule 330 may
include a reference (e.g., a pointer, a URL, or other refer-
ence) to the data entity to which the rule is associated.
[0143] In some embodiments, the textual description of
the validation rule 330 may be a string with a description of
the validation rule 330. For example, the textual description
of the rule 330 may provide a general description of the
condition(s) on an attribute that are specified in the valida-
tion rule 330.

[0144] In some embodiments, actions that can be taken
when the validation rule 330 is violated by a selected
attribute value may include providing a visual indication to
a user or process that the selected attribute value is invalid,
preventing assignment of an invalid value, preventing a user
interface action (e.g., submission for assignment), and/or
other action. In some embodiments, the action to be taken if
a selected value for assignment is invalid may be indicated
by a severity level. For example, a first severity level (e.g.,
“warning”) may cause the data processing system 100 to
present an indication (e.g., through a GUI) that a selected
value is invalid, and a second severity level (e.g., “error”)
may prevent the data processing system 200 from assigning
an invalid value to an attribute.

[0145] In some embodiments, the information in section
330B indicating the action(s) on which the validation rule
330 will be enforced may include an indication of a user
interface action at which the validation rule 330 will be
enforced. For example, the user interface action may be
selection of a save option, selection of an option to submit
a value for assignment, advancing in a workflow, and/or
other user interface action. In some embodiments, the infor-
mation 330B indicating the action(s) on which the validation
rule 330 is enforced may indicate an import action. For
example, the import action may be a submission of a value
for assignment to an attribute. In another example, the
information 330B may indicate an action to reject assign-
ment of an attribute value that fails to meet the validation
rule 330, while allowing other assignments (e.g., that are
valid values).

[0146] In some embodiments, the specification 330C of
condition(s) on an attribute may comprise one or more
expressions of the condition(s). In some embodiments, each
of the expression(s) may be a logical expression indicating
a respective condition on the attribute. In some embodi-
ments, each of the expression(s) may be in a particular
software coding language (e.g., C++, PYTHON, or another
coding language). In some embodiments, each of the expres-
sion(s) may be specified through a GUI that allows defini-
tion of a logical expression specifying condition(s) on the
attribute. The data processing system 200 may be configured
to translate the input received through the GUI into instruc-
tions in a coding language. Example condition(s) on an
attribute and expression(s) thereof are described herein.
[0147] The specification 330D of condition(s) that are
required for validation using the validation rule 330 may
comprise one or more expressions of the condition(s). In
some embodiments, each of the expression(s) may be a
logical expression indicating a respective condition required

US 2024/0086409 Al

to validate a data entity instance using the validation rule
330. In some embodiments, each of the expression(s) may
be in a particular software coding language (e.g., C++,
PYTHON, or another coding language). In some embodi-
ments, each of the expression(s) may be specified through a
GUI that allows definition of a logical expression that can be
used to specitfy the condition(s). The data processing system
200 may be configured to translate the input received
through the GUI into instructions in a coding language.
Example condition(s) that trigger validation are described
herein.

[0148] The data processing system 200 may be configured
to store the validation rule 330 in any suitable way. For
example, data processing system 200 may store the valida-
tion rule 330 as information in an instance of a validation
rule data entity. In another example, the data processing
system 200 may store the validation rule 330 as a file (e.g.,
a text file, CSV file, XML file, or any other suitable type of
file).

[0149] FIG. 4A is a schematic diagram of the Biz Term
data entity 400A, according to some embodiments of the
technology described herein. As shown in FIG. 4A, the Biz
Term data entity 400A includes the following attributes:
Identifier attribute 400A-1, Definition attribute 400A-2,
Owner attribute 400A-3, and Institution attribute 400A-4.
The Identifier attribute 400A-1 may be assigned an integer
value in instances of the Biz Term data entity 400A. The
Definition attribute 400A-2 may be assigned a string value
in instances of the Biz Term data entity 400A.

[0150] The Owner attribute 400A-3 refers to a Business
Owner data entity 400B indicating that, in instances of the
Biz Term data entity 400A, the Owner attribute 400A-3 may
be assigned an instance of the Business Owner data entity
400B as a value. The business owner data entity 400B
includes the following attributes: Name 400B-1, Region
400B-1, and Group 400B-3. The Institution attribute 400A-4
refers to the Institution data entity 400C indicating that, in
instances of the Biz Term data entity 400A, the Institution
attribute 400A-4 may be assigned an instance of the Insti-
tution data entity 400C as a value. The Institution data entity
400C includes the following attributes: Name 400C-1,
Region 400C-2, and Type 400C-3.

[0151] FIG. 4B is a schematic diagram of an example
North America Credit Scores instance 420 of the Biz Term
data entity 400A of FIG. 4A, according to some embodi-
ments of the technology described herein. As shown in FIG.
4B, the North America Credit Scores instance 420 has a
value of “123” for the Identifier attribute 400A-1 and a
textual definition of a credit score as a value of the Definition
attribute 400A-2. The MegaBank instance 422 of the Insti-
tution data entity 400C is assigned as the value to the
Institution attribute 400A-4 of the North America Credit
Scores instance 420.

[0152] The MegaBank instance 422 has a value of “Mega
Bank” for the Name attribute 400C-1, a value of “North
America” for the Region attribute 400C-2, and a value of
“Corporation” for the Type attribute 400C-3.

[0153] A value is to be assigned to the Owner attribute
400A-3 of the North America Credit Scores instance 420 as
indicated by the bolded box in FIG. 4B. For example, a user
may submit a request through a GUI to assign a value to the
Owner attribute 400A-3. In another example, a software
application may transmit a request to the data processing
system 200 to assign a value to the Owner attribute 400A-3.

Mar. 14, 2024

[0154] FIG. 4C is a set of validation rules 404 associated
with the Biz Term data entity 400A, according to some
embodiments of the technology described herein. As shown
in FIG. 4C, the set of validation rules 404 includes a first rule
404 A and a second rule 404B. The rule 404 A comprises the
following conditions on the Owner attribute 400A-3: (1)
Owner.Name begins with “B”; and (2) Owner.Region is
equal to Institution.Region. The rule 404 A requires that: (1)
the Name attribute of an instance assigned to the Owner
attribute 400A-3 must begin with the letter “B”; and (2) the
Region attribute of an instance assigned to the Owner
attribute 400A-3 must be equal to the Region attribute of an
instance assigned to the Institution attribute 400A-4. The
rule 404B of the validation rules 504 has the following
condition: Institution.Region is Defined. The rule 404B
requires that a region attribute of an instance assigned to the
Institution attribute 400A-4 is “North America”.

[0155] As shown in FIG. 4C, each of the rules 404 A, 404B
is associated with a respective attribute. The rule 404A is
associated with the Owner attribute 400A-3 and the rule
404B is associated with the Institution attribute 400A-4. In
some embodiments, each of the rules 404A, 404B may be
associated with an attribute by storing a reference to the
attribute in the rule. For example, the rule 404A may store
a reference to the Owner attribute 400A-3 of the Biz Term
data entity 400A and the rule 404B may store a reference to
the Institution attribute 400A-4 of the Biz Term data entity
400A. Although in the example of FIG. 4C there is only one
rule associated with each of the Owner attribute and the
400A-3 and the Institution attribute 400A-4, in some
embodiments, multiple rules may be associated with a
particular attribute.

[0156] FIG. 4D is an example data flow in a process of
identifying valid value(s) for an attribute in the North
America Credit Scores instance 420 of the Biz Term data
entity, according to some embodiments of the technology
described herein. The data flow of FIG. 4D may be gener-
ated by the components 210A, 210B, 210C, 210D of the
assignment validation module 210 described herein with
reference to FIG. 2D.

[0157] Given that a value is to be assigned to the Owner
attribute 400A-3 of the North America Credit Scores
instance 420 with values as shown in FIG. 4C, the rule
selection component 210A has selected the rule 404A,
which is associated with the Owner attribute 400A-3 of the
Biz Term data entity 400A. For example, the rule selection
component 210A may: (1) determine that the rule 404A is
associated with the Owner attribute 400A-3 using informa-
tion from the rule 404A; and (2) select the rule 404A based
on determining that the rule 404A is associated with the
Owner attribute 400A-3.

[0158] Next, the rule transformation component 210B
transforms the selected rule 404A to generate transformed
rule 406. The transformed rule 406 includes two expressions
406A, 406B generated from the two conditions of the rule
404A. The rule transformation component 210B has trans-
formed the condition (Owner.Name begins with “B”) into
the expression (Name[0]="“B”), which requires that, in an
instance of the Owner data entity, the first character of the
Name attribute value must be “B”. The rule transformation
component 110B has transformed the condition (Owner.
Region is equal to Institution.Region) into the expression
(Region="North America”). The rule transformation com-
ponent 210B identified a current value of “North America”

US 2024/0086409 Al

for the Region attribute 400C-2 in the MegaBank instance
422 assigned to the Institution attribute 400A-4, and gener-
ated the expression to require that the Region attribute of an
instance assigned to the Owner attribute 400A-3 is “North
America”. The rule transformation component 210B may
access the MegaBank instance 422 to determine the current
value of the Region attribute 400C-2 in the MegaBank
instance 422.

[0159] As illustrated in the example embodiment of FIG.
4D, the transformed rule does not include the prefix
“Owner.” for attributes of the Business Owner data entity
400B. In the example embodiment of FIG. 4D, the rule
transformation component 210B may be configured to
remove a prefix identifying the data entity of which an
instance is to be assigned to the Owner attribute 400A-3. The
rule transformation component 210B may remove the prefix
identifying the data entity because a query generated from
the transformed rule may be executed solely on instances of
the data entity. Thus, it is unnecessary to specify the data
entity in the transformed rule. In the example of FIG. 4D, the
Owner attribute 400A-3 is to be assigned an instance of the
Business Owner data entity 400B as a value. A query
generated from the transformed rule 406 may be executed on
instances of the Business Owner data entity, and thus the
expression may use a name of an attribute from the Business
Owner data entity 400B without a prefix specifying the data
entity.

[0160] The transformed rule 406 is then used to generate
a query 408 by the query generation component 210C. As
illustrated in the example of FIG. 4D, the query generation
component 210C has generated an SQL query that selects
instances of the Business Owner data entity 400B that meet
the criteria indicated by the transformed rule expressions
406A, 406B. The query 408 includes a logical “AND”
operation between the two criteria to indicate that both
criteria must be met for an instance to be returned by the
query such that the results meet both conditions of the rule
404A.

[0161] The generated query 408 is then executed by the
query execution component 210D to generate the query
results 410. The query execution component 210D may be
configured to use at least one processor to execute the query
on a datastore. For example, the query execution component
210D may execute the query 408 on a datastore storing the
data entity instances 206 of the data processing system 200.
In the example of FIG. 4D, the query 408 indicates that the
results are to be selected from instances of the Business
Owner data entity 400B. The query execution component
210D may search for instances of the Business Owner entity
data entity 400B that meet the criteria indicated in the
“WHERE” portion of the query 408.

[0162] The query results 410 consist of all instances of the
Business Owner data entity 400B which have a Name
attribute 400B-1 value that begins with the letter “B”, and a
Region attribute 400B-2 value of “North America”. The
assignment validation module 210 may be configured to
determine the query results 410 as the valid values for the
Owner attribute 400A-3 of the North America Credit Scores
instance 420. For example, the assignment validation mod-
ule 210 may present the query results 410 to a user through
a graphical user interface (e.g., for selection of a value to
assign to the Owner attribute 400A-3 in the instance 420). In
another example, the assignment validation module 210 may

Mar. 14, 2024

transmit the query results 410 to a software application (e.g.,
for selection of a value to assign to the Owner attribute
400A-3 in the instance 420).

[0163] FIG. 5A is a schematic diagram of an example
relationship of the Data Element data entity 510 with other
data entities, according to some embodiments of the tech-
nology described herein. As shown in FIG. 5B, the Data
Element data entity 510 includes the following attributes:
Name, Dataset, ColumnOrder, and BusinessTerm. The Data-
set attribute references the Dataset data entity 514, indicat-
ing that an instance of the Data Element data entity 510 is
to have an instance of the Dataset data entity 514 assigned
as the value of its Dataset attribute. The BusinessTerm
attribute references the Business Term data entity 512 indi-
cating that an instance of the Data Element data entity 510
is to have an instance of the Business Term data entity 512
assigned as the value to its BusinessTerm attribute. The
Dataset data entity 514 includes the following attributes:
Name, DivisionName, and Type.

[0164] The Business Term data entity 512 includes the
following attributes: Name, Description, MinimumOrder,
TechGroup, and DivisionName. The TechGroup attribute
references the Tech Group data entity 516 indicating that an
instance of the Business Term data entity 512 is to be
assigned an instance of the Tech Group data entity 516 as the
value of its TechGroup attribute. The Tech Group data entity
516 includes the following attributes: Name, and Division-
Name.

[0165] FIG. 5B is a schematic diagram of an example
Price instance 500 of a Data Element data entity 510,
according to some embodiments of the technology described
herein. As shown in FIG. 5A, the Price instance 500 has the
following attribute values: (1) the Name attribute value is
“Price”; (2) the Dataset attribute value is the Purchase
instance 502 of the Dataset data entity 514; and (3) the
ColumnOrder attribute value is 7. These attribute values
may have previously been assigned to in the Price instance
500. A value S00A needs to be assigned to the BusinessTerm
attribute of the Price instance 500.

[0166] FIG. 5C shows a set of validation rule(s) 504
associated with the Data Element data entity 510, according
to some embodiments of the technology described herein.
As shown in FIG. 5C, the rule 504A is associated with the
BusinessTerm attribute of the Data Element data entity 510.
The rule 504 A includes the following three conditions on the
BusinessTerm attribute: (1) ColumnOrder>BusinessTerm.
MinimumOrder; 2) BusinessTerm.TechGroup.
Name="Enterprise”; and 3) Dataset.
DivisionName=BusinessTerm.DivisionName. The first
condition indicates that the value of the ColumnOrder
attribute in an instance of the Data Element data entity 510
must be greater than a value of the MinimumOrder attribute
of an instance of the Business Term data entity 512 assigned
as a value to the BusinessTerm attribute in the instance of the
Data Element data entity 510. The second condition indi-
cates that “Enterprise” is the value of the Name attribute of
an instance of the Tech Group data entity 516, assigned as
a value to the TechGroup attribute in an instance of the
Business Term data entity 512 that is assigned as the value
to the BusinessTerm attribute in the instance of the Data
Element data entity 510. The third condition indicates that
the value of the DivisionName attribute in an instance of the
Dataset data entity 514 assigned as the value to the Dataset
attribute in the instance of the Data Element data entity 510

US 2024/0086409 Al

must be equal to: the value of the DivisionName attribute in
an instance of the Business Term data entity 512 assigned as
the value to the BusinessTerm attribute in the instance of the
Data Element data entity 510. As all of the conditions in the
rule 504A are joined by a logical AND operation, all three
of the conditions must be met by an instance of the Business
Term data entity 512 in order to be valid for assignment to
the BusinessTerm attribute of an instance of the Data Ele-
ment data entity 510.

[0167] FIG. 5D is a data flow in a process of identifying
valid value(s) for assignment to the BusinessTerm attribute
in the Price instance 500 of the Data Element data entity 510,
according to some embodiments of the technology described
herein. The data flow may be generated by components of
the assignment validation module 210, described herein with
reference to FIG. 4A, as part of assigning a value to the
BusinessTerm attribute in the Price instance 500.

[0168] As illustrated in FIG. 5D, the rule 504A of the
validation rule(s) 504 is selected by the rule selection
component 210A. The rule selection component 210A may
be configured to select the rule 504 A by determining that the
rule 504A is associated with the BusinessTerm attribute of
the Data Element data entity 510 (e.g., based on information
stored in the rule 504 A). Example techniques of determining
rule(s) associated with an attribute are described herein.
[0169] The rule 504A is then transformed by the rule
transformation component 210B into the transformed rule
520 shown in FIG. SD. Each of the conditions of the rule
504A is transformed into a respective expression in the
transformed rule 520.

[0170] The first condition (ColumnOrder>BusinessTerm.
MinimumOrder) is transformed into the expression 520A.
The rule transformation component 210B may be configured
to determine a current value of the ColumnOrder attribute in
the Price instance 500, and replace “ColumnOrder” in the
condition with the current value of 7. The rule transforma-
tion component 210B may be configured to replace the
prefix “BusinessTerm” from the “BusinessTerm.Minimu-
mOrder” data entity path in the first condition because a
query generated using the expression 520A will be executed
on only instances of the Business Term data entity 512.
Thus, the expression 520A may directly refer to attributes of
the Business Term data entity 512 without specifying the
data entity.

[0171] The second condition (BusinessTerm.TechGroup.
Name="Enterprise”) is transformed into the expression
520B. The rule transformation component 210B may be
configured to remove the prefix “BusinessTerm” from the
data entity path in the condition to obtain the expression
520B.

[0172] The third condition (Dataset.
DivisionName=BusinessTerm.DivisionName) is trans-
formed into the expression 520C. The rule transformation
component 110B may be configured to determine that “Pro-
curement” is the current value of the DivisionName attribute
in the instance of the Dataset data entity 514 assigned as the
value to the Dataset attribute in the Price instance 500. Thus,
the rule transformation component 210B replaced “Dataset.
DivisionName” in the condition with the value of “Procure-
ment” in the expression 520C. The rule transformation
component 210B may be configured to remove the prefix
“BusinessTerm” from the “BusinessTerm.DivisionName”
data entity path in the condition to obtain the expression
520C.

Mar. 14, 2024

[0173] The transformed rule 520 is used to generate a
query 522 by the query generation component 210C. As
shown in the example of FIG. 5D, the query 522 is a
SELECT statement that identifies instances of the Business
Term data entity 512 that meet all of the criteria indicated by
the transformed rule 520 in a datastore (e.g., a datastore
storing the data entity instances of the data processing
system 200). The expressions 520A, 520B, 520C are
assembled in the query 522 by logical AND operators to
query for instance that meet all the conditions of the rule
504A.

[0174] The query 522 is executed by the query execution
component 210D to generate the query results 524. The
query results 524 may consist of instances of the Business
Term data entity 512 that meet the rule 504A. The instances
may be presented to a user (e.g., through a GUI) and/or a
process (e.g., through an API) for selection of one or more
values to assign to the BusinessTerm attribute of the Price
instance 500.

[0175] FIG. 6A is a schematic diagram of an example
relationship of data entity “T” 610 with other data entities,
according to some embodiments of the technology described
herein. As shown in FIG. 6A, data entity “T” 610 includes
attributes “T_ID”, “x”, “y”, “B”, and “D”. Attribute “B”
references the data entity “B” 614 indicating that an instance
of data entity “B” 614 may be assigned as the value to
attribute “B” in an instance of data entity “T” 610. Attribute
“D” references data entity “D” indicating that an instance of
data entity “D” 612 may assigned as the value to the attribute
“D” in an instance of data entity “T” 610.

[0176] Data entity B 614 referenced by attribute “B” of
data entity “T” 610 includes attributes “B_ID”, “j”, “k”, and
“C”. Attribute “C” references data entity “C” 616, indicating
that an instance of data entity “C” 616 may be assigned as
a value to attribute “C” in an instance of data entity “B” 614.
Data entity “C” 616 includes attributes “C_ID”, “p”, “q”,
and “D”. Attribute “D” references data entity “D” 612
indicating that an instance of data entity “D” 612 may be
assigned as a value to attribute “D” in an instance of data
entity “C” 616. Data entity “D” 612 includes attributes
“D_ID” and “z”.

[0177] FIG. 6B is a schematic diagram of an example
instance “T1” 600 of data entity “T” 610, according to some
embodiments of the technology described herein. As shown
in FIG. 6B, the instance “T1” 600 has a value of 54512
assigned to attribute “T_ID”, a value of 100 assigned to
attribute “x”, a value of 10000 assigned to attribute “y”, and
an instance “D1” 602 of data entity “D” 612 assigned to the
attribute “D”. The attribute “B” in the instance “T1” 600
does not currently have a value assigned to it.

[0178] FIG. 6C shows a set of validation rule(s) 604
associated with data entity “T” 610, according to some
embodiments of the technology described herein. As shown
in FIG. 6C, the rule 604 A is associated with attribute “B” of
data entity “T” 610. The rule 604A includes the following
three conditions on attribute “B”: (1) x>B.j; (2) B.C.
p="Enterprise”; and (3) D.z=B k. The first condition (x>B.j)
indicates that the value of attribute “x” in an instance of data
entity “I” 610 must be greater than a value of attribute “j”
in an instance of data entity “B” 614 assigned as the value
to attribute “B” in the instance of data entity “T” 610. The
second condition (B.C.p="Enterprise”) indicates that attri-
bute “p”, in an instance of data entity “C” 616 assigned to
attribute “C”, must be equal to “Enterprise”. The third

US 2024/0086409 Al

condition (D.z=B k) indicates that the value of attribute “z”,
in an instance of data entity “D” 612 assigned to attribute
“D”, must equal the value of attribute “k” in an instance of
data entity “B” 614 assigned to attribute “B”. As all of the
conditions in the rule 604A are joined by a logical AND
operation, all three of the conditions must be met in order for
an instance of data entity “B” 614 to be valid for assignment
to the attribute “B” in an instance of the data entity “T” 610.
[0179] FIG. 6D is an example data flow in a process of
identifying valid value(s) for assignment to the attribute “B”
in the instance “T1” 600 of data entity “T” 610, according
to some embodiments of the technology described herein.
The data flow may be generated by components of the
assignment validation module 210, described herein with
reference to FIG. 4A, as part of assigning a value to attribute
“B” of the instance T1 600 of data entity T 610.

[0180] As illustrated in FIG. 6D, the rule 604A of the
validation rule(s) 604 is selected by the rule selection
component 210A. The rule selection component 210A may
be configured to select the rule 604A by determining that the
rule 604A is associated with attribute “B” of data entity T
610 (e.g., based on information stored in the rule 604A).
Example techniques of determining rule(s) associated with
an attribute are described herein.

[0181] The rule 604A is then transformed by the rule
transformation component 210B into the transformed rule
620. Each of the conditions of the rule 604A is transformed
into a respective expression.

[0182] The first condition (T.x>B.j) is transformed into the
expression (100>j). The rule transformation component
210B may be configured to determine a current value of the
attribute “x” in the instance “T'1” 600, and replace the “T.x”
in the first condition with the current value of 100. The rule
transformation component 210B may be configured to
remove the prefix “B.” from the “B.j” in the first condition
because a query generated from the transformed rule 620
will be executed on only instances of B. Thus, the expression
may directly refer to attributes of data entity “B” 614
without specifying the data entity.

[0183] The second condition (B.C.p="Enterprise”) is
transformed into the expression (C.p="Enterprise”). The
condition requires that the instance assigned to attribute “C”
has a value of “Enterprise” for its attribute “p”. The rule
transformation component 210B may be configured to
remove the prefix “B.” from the data entity path “B.C.p” in
the condition.

[0184] The third condition (D.z=B.k) is transformed into
the expression (300=k). The rule transformation component
210B may be configured to determine that a current value of
attribute “z” in an instance of data entity D 612 that is
assigned to attribute D is 300. The rule transformation
component 210B has thus replaced D.z with the value 300.
The rule transformation component 210B may be configured
to remove the “B.” prefix from “B.k”.

[0185] The transformed rule 620 is used to generate a
query 622 by the query generation component 210C. As
shown in the example of FIG. 6D, the query 622 is a
SELECT statement that identifies instances of the data entity
B 614 that meet all of the criteria indicated by the trans-
formed rule 620 in a datastore (e.g., a datastore storing the
data entity instances 206 of the data processing system 200).
The expressions are assembled in the query 622 by logical
AND operators to query for instances that meet the condi-
tions of rule 604A.

Mar. 14, 2024

[0186] The query 622 is executed by the query execution
component 210D to generate the query results 624. The
query results 624 may consist of instances of data entity B
614 that meet rule 604A. The instances may be presented to
a user (e.g., through a GUI) and/or a process (e.g., through
an API) for selection of one or more values to assign to
attribute B of instance T1 600.

[0187] FIG. 7 is a block diagram showing components of
the data processing system 200, according to some embodi-
ments of the technology described herein. As shown in FIG.
7, the data processing system 200 includes interfaces 207,
the assignment validation module 210, and a data persis-
tence layer 220.

[0188] The interfaces 207 include GUI(s) 207A and API(s)
207B as described herein with reference to FIGS. 2A-2D.

[0189] In some embodiments, the GUI(s) 207A may
include a validation rule definition GUI through which a
validation rule can be defined in the data processing system
200. In some embodiments, the validation rule definition
GUI may allow a user to define a validation rule. The GUI
may allow the user to generate a validation rule that includes
information as described herein with reference to FIG. 3C.
For example, the validation rule definition GUI may allow
a user to select a graphical element indicating a command to
create a new validation rule. The user may then enter
information defining the new validation rule and associating
the new validation rule with a data entity and attribute
thereof. In some embodiments, the validation rule definition
GUI may allow a user to specify condition(s) of a rule. For
example, the GUI may allow a user to enter logical expres-
sion(s) indicating the condition(s).

[0190] In some embodiments, the GUI(s) 207A may
include an attribute value assignment GUI through which a
user can assign a value to an attribute. The attribute value
assignment GUI may be configured to present, in the GUI,
an indication of valid values that can be assigned to an
attribute. The attribute value assignment GUI may be con-
figured to receive, through the GUI, a selection of one or
more of the valid values to assign to the attribute. In some
embodiments, the attribute value assignment GUI may be
configured to allow a user to view invalid values in addition
to valid values. For example, the attribute value assignment
GUI may provide an option (e.g., a graphical switch, check-
box, or other GUI option) that allows a user to request
invalid values for an attribute as well as valid values.

[0191] In some embodiments, the attribute value assign-
ment GUI may be configured to indicate validity of a value
selected for assignment to an attribute. For example, the
attribute value assignment interface GUI may display a
graphical element (e.g., an exclamation point) proximate a
selected attribute value indicating that the selected value is
invalid. In another example, the attribute value assignment
GUI may display a graphical element proximate a selected
attribute value indicating that the selected value is valid.

[0192] In some embodiments, the attribute value assign-
ment GUI may be configured to trigger validation using one
or more validation rule(s) in response to detection of one or
more user actions in the GUI. For example, a user input
changing a stage of a workflow, a user input submitting an
attribute value assignment, and/or a user input to save a
selected value for an attribute may be detected in the GUI.
Validation of a data entity instance may be triggered in
response to detection of the user action(s).

US 2024/0086409 Al

[0193] In some embodiments, the API(s) 207B may
include a validation rule definition API through which a
validation rule can programmatically be generated in the
data processing system 200. For example, the validation rule
definition API may provide an API through which a software
application can transmit instructions that cause the data
processing system 200 to generate a new validation rule.
[0194] In some embodiments, the API(s) 207B may
include attribute value assignment API through which attri-
bute values can programmatically be assigned in the data
processing system 200. For example, the attribute value
assignment API may provide an API through which a
software application can transmit instructions that cause the
data processing system 200 to assign a value to an attribute.
[0195] As shown in FIG. 7, the interfaces 207 transmit
data request 702 to the assignment validation module 210,
and receive data 704 in response to the data request 702. The
interfaces 707 may be configured to provide the data through
various different interfaces (e.g., GUI, API, and/or other
interfaces). A data request 702 may include information for
use by the assignment validation module 210 (e.g., valida-
tion rule definition information) and/or a request to obtain
information from the assignment validation module 210. In
some embodiments, the data 704 may include information
about a validation rule, a data entity, and/or a data entity
instance. For example, the data 704 may include valid
value(s) for an attribute. In another example, the data 704
may include an indication of whether a value is valid for
assignment to an attribute.

[0196] The assignment validation module 210 includes a
rule selection component 210A, a rule transformation com-
ponent 210B, a query generation component 210C, a query
execution component 210D, and a rule definition component
210E. The rule section component 210A, rule transforma-
tion component 210B, query generation component 210C,
and query execution component 110D are described herein.
[0197] The rule definition component 210E may be con-
figured to generate validation rules in the data processing
system 200. In some embodiments, the rule definition com-
ponent 210E may be configured to generate a validation rule
using information obtained from the interfaces 207.
Example information that may be obtained by the rule
definition component 210E is described herein with refer-
ence to FIGS. 3A-3C. The rule definition component 210E
may be configured to store validation rules and information
about their associations with data entities and attributes
thereof (e.g., in the data persistence layer 220).

[0198] As shown in FIG. 7, the assignment validation
module 210 may be configured to submit data request 706 to
the data persistence layer 220. In some embodiments, a data
request 706 may comprise submission of information of a
new validation rule to store in the data persistence layer 220,
and/or an information for updating a validation rule. In some
embodiments, a data request 706 may be a query for one or
more data entity instances (e.g., identified valid values for an
attribute). In some embodiments, the data request 706 may
comprise a request for information about a validation rule,
a data entity, and/or a data entity instance (e.g., to provide in
one or more of the interfaces 207). In some embodiments,
the data request 706 may be a selection of a value to assign
to an attribute.

[0199] The assignment validation module 210 is config-
ured to receive data 708 from the data persistence layer. In
some embodiments, the data 708 may include query results.

Mar. 14, 2024

For example, the data 708 may include one or more valid
values (e.g., valid instances) that can be assigned to an
attribute. In some embodiments, the data 708 may include
information about a validation rule, a data entity, and/or a
data entity instance. In some embodiments, the data 708 may
include a confirmation (e.g., indicating whether an attribute
value assignment was successful).

[0200] As shown in FIG. 7, the data persistence layer 220
stores the validation rules 202, data entities 204, and data
entity instances 206 of the data processing system 200. The
data persistence layer 220 may comprise one or more
datastores to store the data. In some embodiments, a data-
store may include a relational database system so that data
may be stored in tables of the relational database system.
However, a datastore is not limited to being a relational
database system, as a datastore may be configured to store
data in any suitable way. For example, a datastore comprises
an object-oriented database, a distributed database, a
NoSQL database, an SQL database, and/or any other suit-
able database.

[0201] In some embodiments, the data persistence layer
220 may include one or more storage devices storing data in
one or more formats of any suitable type. For example, the
storage device(s) may store data using one or more database
tables, spreadsheet files, text files, and/or files in any other
suitable format. The storage device(s) may be of any suitable
type and may include one or more servers, one or more
database systems, one or more portable storage devices, one
or more non-volatile storage devices, one or more volatile
storage devices, and/or any other device(s) configured to
store data. In embodiments where a datastore includes
multiple storage devices, the storage devices may be co-
located in one physical location (e.g., a building) or distrib-
uted across multiple locations (e.g., multiple buildings, in
different cities, states, or countries). The storage devices
may be configured to communicate with one another using
a communication network (e.g., Internet).

[0202] FIG. 8 is a schematic diagram of a data entity 800A
that may be defined in the data processing system 200. As
shown in FIG. 8, the data entity 800A includes attributes
800A-1, 800A-2, 800A-3, 800A-4. Attribute 800A-1 may be
assigned an integer value in instances of the data entity
800A, and attribute 800A-2 may be assigned a string value
in instances of the data entity 800A. Attribute 800A-3 may
be assigned an instance of data entity 800B as a value in
instances of data entity 800A. As shown in FIG. 8, data
entity 800B has its own set of attributes including attributes
800B-1, 800B-2. Attribute 800A-4 may be assigned an
instance of data entity 800C as a value. As shown in FIG. 8,
data entity 800C has its own set of attributes including
attributes 800C-1, 800C-2.

[0203] The data processing system 200 may be configured
to assign a data entity instance as a value to an attribute in
various ways. In some embodiments, the data processing
system 200 may be configured to assign a data entity
instance as a value to an attribute by storing a reference to
the data entity instance as an attribute value. For example,
the data processing system 200 may store a URL, identifier,
pointer, or other reference to the data entity instance
assigned as a value.

[0204] The data processing system 200 may be configured
to refer to an attribute of one data entity to another data
entity in various ways. In some embodiments, the data
processing system 200 may be configured to store a refer-

US 2024/0086409 Al

ence (e.g., a pointer, link, URL, name, or other reference) to
the other data entity. For example, the data processing
system 200 may store a link to data entity 800B as the
attribute 800A-3 of data entity 800A. In some embodiments,
the data processing system 200 may be configured to store
a referenced data entity within a data entity that refers to the
referenced data entity. For example, the data processing
system 200 may be configured to store data entity 800B
within data entity 800A in association with attribute 800A-3.

[0205] FIG. 9 is a flowchart of an example process 900 of
enforcing a valid data assignment, according to some
embodiments of the technology described herein. In some
embodiments, process 900 may be performed by data pro-
cessing system 100. For example, the data processing sys-
tem 100 may perform process 900 using assignment vali-
dation module 210.

[0206] Process 900 begins at block 902, where the system
receives a request to assign a value to an attribute in a data
entity instance. In some embodiments, the system may be
configured to receive a request through a GUI displayed on
a client device of a user. For example, the system may
receive a request submitted through a GUI that allows a user
to assign values to attributes of the data entity instance. In
some embodiments, the system may be configured to receive
a request from a process (e.g., a software application). For
example, the system may receive a request through an API
request to assign a value to an attribute in the data entity
instance.

[0207] Next, process 900 proceeds to block 904, where the
system identifies one or more valid values for the attribute
using one or more validation values. The validation rule(s)
may be associated with a data entity that the data entity
instance is instantiated from. Examples of data entities and
instances thereof are described herein with reference to
FIGS. 4B-4C, FIGS. 5A-5B, and FIGS. 6A-6B. Example of
validation rule(s) are described herein with reference to
FIGS. 3A-3C, FIG. 4D, FIG. 5C, and FIG. 6C.

[0208] At sub-block 904 A of block 904, the system gen-
erates at least one query for valid value(s) of the attribute
using condition(s) on the attribute in the validation rule(s).
The system may be configured to generate a query for valid
value(s) of the attribute by: (1) transforming an application
validation rule to obtain a transformed rule; and (2) gener-
ating a query using the transformed rule. In some embodi-
ments, the transformed rule may include various compo-
nents associated with respective conditions in a rule. For
example, the transformed rule may include multiple logical
expressions of conditions in the rule. The system may be
configured to generate portions of the query using respective
components of the transformed rule. For example, the sys-
tem may generate statements of an SQL query using respec-
tive components of the transformed rules. Example tech-
niques for generating a query using validation rule(s) are
described herein with reference to FIG. 4E, FIG. 5D, and
FIG. 6D.

[0209] At sub-block 904B of block 904, the system
executes the generated at least one query to obtain the valid
value(s) for the attribute. The system may be configured to
execute the at least one query on a datastore storing data
entity instances. For example, the system may execute the at
least one query on a database (e.g., an SQL database) storing
the data entity instances. In some embodiments, the system
may be configured to transmit the query to another system

Mar. 14, 2024

for execution. For example, a processor of a database may
execute the query and transmit the results to the system
performing process 900.

[0210] In some embodiments, the system may be config-
ured to execute the query on a portion of the datastore. For
example, the system may execute the generated query on a
subset of data entity instances in the datastore. The subset of
data entity instances may be data entity instances that are
assignable to the attribute for which a value is to be assigned
(e.g., as indicated by the data entity that the data entity
instance is instantiated from). The system may be configured
to execute the query on the portion of the datastore by: (1)
identifying data entity instances that are assignable as values
to the attribute; and (2) executing the query on the identified
data entity instances to obtain valid value(s) for the attribute.
[0211] Next, process 900 proceeds to block 906, where the
system outputs the valid value(s) for the attribute. In some
embodiments, the system may be configured to present the
valid value(s) in a GUI through which a user may select one
or more of the valid value(s) to assign to the attribute. For
example, the system may present the valid value(s) as a list
in an assignment GUI from which a user can select a value
and submit it for assignment to the attribute. In some
embodiments, the system may be configured to transmit the
valid value(s) to a process that can select one or more of the
valid value(s) to assign to the attribute. For example, the
system may transmit the valid value(s) to a software appli-
cation (e.g., through an API) for programmatic selection of
one or more of the valid value(s) for assignment to the
attribute.

[0212] Next, process 900 proceeds to block 908, where the
system assigns a value to the attribute in the data entity
instance based on input indicating selection of the value
from the valid value(s). For example, the system may be
configured to receive the input through a GUI and/or an API.
The system may be configured to save the selected value as
the value assigned to the attribute of the data entity instance
(e.g., in data persistence layer 220). As indicated by the
dotted lines of block 908, the step of block 908 may not be
performed as part of process 900. For example, the system
may not perform the step at block 908 because a selection of
a value is not received. In some embodiments, the system
may be configured to perform the step at block 908 sepa-
rately from the steps of blocks 902-906. For example, the
system may assign the value at a later time with other
attribute value assignments.

[0213] FIG. 10 is a flowchart of an example process 1000
for a client device to assign a value to an attribute in a data
entity instance, according to some embodiments of the
technology described herein. Process 1000 may be per-
formed by any suitable computing device in communication
with a data processing system. For example, process 1000
may be performed by one of the devices of the users 208 in
communication with data processing system 200 as
described herein with reference to FIGS. 2A-2C.

[0214] Process 1000 begins at block 1002, where the
device receives, through a GUI, input indicating a request to
assign a value to an attribute in a data entity instance. In
some embodiments, the GUI may be a data entity instance
edit GUI through which attributes can be assigned values.
For example, the device may receive, through the GUI, a
selection of an option to assign a value to the attribute.
[0215] Next, process 1000 proceeds to block 1004, where
the device transmits, to the data processing system, the

US 2024/0086409 Al

request to assign the value to the attribute in the data entity
instance. For example, the device may transmit the request
through a communication network (e.g., the Internet). In
some embodiments, the request may comprise a network
communication indicating the attribute and the data entity
instance. For example, the request may specify an identifier
of the data entity instance and an attribute in the data entity
instance for which a value is to be as signed.

[0216] Next, process 1000 proceeds to block 1006, where
the device receives, from the data processing system, one or
more valid values for the attribute. For example, the request
transmitted by the device may have caused the data pro-
cessing system to perform process 900 described herein with
reference to FIG. 9 to obtain the valid value(s). In some
embodiments, the device may be configured to receive the
valid value(s) through a communication network (e.g., the
Internet). For example, the device may receive a network
communication indicating the valid value(s). In some cases,
the valid value(s) may be instance(s) of another data entity.
In some cases, the valid value(s) may be integers, strings,
floating point values, or another type of data. In some
embodiments, the network communication may include only
valid value(s). In some embodiments, the network commu-
nication may include all values assignable to the attribute
with information indicating which of the values are valid
and/or invalid.

[0217] Next, process 1000 proceeds to block 1008, where
the device presents the valid value(s) for the attribute in a
GUI. In some embodiments, the device may be configured
to present the valid value(s) in an assignment GUI that lists
the valid value(s). For example, the device may present the
valid value(s) in a scrollable list of valid value(s) in which
a user can select a value for assignment to the attribute. In
some embodiments, the GUI may allow the user to select an
option that also causes the GUI to display one or more
invalid values for the attribute in addition to the valid
value(s). For example, in response to selection of the option
in the GUI, the device may request invalid values of the
attribute for display. As another example, the device may
display invalid values that were obtained with the valid
values at block 1006.

[0218] Next, process 1000 proceeds to block 1010, where
the device receives, through the GUI, input indicating a
selected value of the valid value(s) to assign to the attribute.
For example, the device may receive the input in response
to a user selecting the value in the GUI and selecting a
submit option. As another example, the device may receive
the input in response to another user action (e.g., a tap, voice
command, or other user action).

[0219] Next, process 1000 proceeds to block 1012, where
the system transmits, to the data processing system, an
indication of the selected value for assignment to the attri-
bute. For example, the device may transmit an identifier of
the selected value for assignment to the attribute. The
transmission may cause the data processing system to assign
the selected value to the attribute as described at block 908
of process 900 described herein with reference to FIG. 9.
[0220] FIG. 11 is a GUI 1100 for creation of a new
validation rule, according to some embodiments of the
technology described herein. As shown in FIG. 11, the GUI
1100 allows a user to provide input specifying a name 1102
of the validation rule, a data entity 1104 associated with the
validation rule, and an attribute 1106 of the data entity that
the validation rule is associated with. The user may navigate

Mar. 14, 2024

to the GUI 1100 in any number of ways. For example, the
user may select a graphical element 1108 that initiates
creation of a new validation rule.

[0221] FIG. 12A is a GUI 1200 for defining a new
validation rule, according to some embodiments of the
technology described herein. As shown in FIG. 12A, the
GUI 1200 allows a user to provide input specifying infor-
mation about the validation rule (e.g., information described
with reference to FIGS. 3A-3C). The GUI 1200 allows a
user to provide input specifying a name 1202 of the vali-
dation rule, an attribute 1204 of a data entity that the
validation rule is associated with, a severity 1206, a textual
description 1208 of the validation rule, and a message 1210
to display for the validation rule. The GUI 1200 allows a
user to provide input specifying an import enforcement
action 1212 for the validation rule, and a user interface
enforcement action 1214 for the validation rule.

[0222] FIG. 12B illustrates specification of a condition for
an attribute in the GUT 1200 of FIG. 12A, according to some
embodiments of the technology described herein. As shown
in FIG. 12B, the GUI 1200 provides an interface through
which a user can specity one or more expressions defining
condition(s) of the validation rule. In the example of FIG.
12B, the expression 1220 indicates the condition that the
Business Owner attribute of the Term data entity is equal to
a value of “Data Profilers”.

[0223] FIG. 12C illustrates specification of additional
expressions 1222, 1224 in the GUI 1200 of FIG. 12A,
according to some embodiments of the technology described
herein. In addition to expression 1220, in the example of
FIG. 12C, the expressions 1222, 1224 have also been
specified for the validation rule. The expression 1222 indi-
cates that the DataElems attribute of the Term data entity has
a value specified. The expression 1224 indicates that the
Name attribute of the Calculated Data attribute begins with
the letter “B”. An AND operation 1226 is applied between
the expressions 1220, 1222, and an OR operation 1228 is
applied between a result of the AND operation and expres-
sion 1224.

[0224] FIG. 12D illustrates specification of a validation
rule user interface enforcement action 1214 in the GUI 1200
of FIG. 12A, according to some embodiments of the tech-
nology described herein. As shown in FIG. 12D, the GUI
1200 allows selection from a set of user interface actions
1214 A which include “None”, “On Save”, “On Submit”, and
“On Workflow Advance”. Each of these indicates a particu-
lar user interface action on which the validation rule will be
enforced. For example, the data processing system may
determine whether a data entity instance meets the valida-
tion rule in response to the specified user interface action. In
some embodiments, the data processing system may restrict
completion of the user interface action until a data entity
instance meets the validation rule. “None” may indicate that
enforcement is not to be performed on any user interface
action.

[0225] FIG. 12E illustrates specification of a validation
rule import enforcement action 1212 in the GUI 1200 of
FIG. 12A, according to some embodiments of the technol-
ogy described herein. As shown in FIG. 12E, the GUI 1200
allows selection from a set of import enforcement actions
1212A which include “None”, “On Submit”, and “Reject
Record”. The “Reject Record” may indicate that a data
entity instance is to be rejected if the data entity instance
does not meet the validation rule. The “On Submit” action

US 2024/0086409 Al

may cause the data processing system to determine whether
the validation rule is met when a data import is submitted.
“None” may indicate that the validation rule is not to be
enforced on an import action.

[0226] FIG. 12F illustrates specification of a severity 1206
of failing to meet the validation rule in the GUI 1200 of FIG.
12A, according to some embodiments of the technology
described herein. The GUI 1200 allows selecting from the
following severity levels 1206 A: “Error” and “Submit”. The
“Error” may cause the data processing system to prevent
assignment of an invalid value to an attribute and provide an
error. The “Warning” may cause the data processing system
to allow assignment of an invalid value but indicate a
warning in a GUI informing that a selected value is invalid.
[0227] FIG. 13 is a GUI 1300 displaying information
about a validation rule created using GUI 1100 of FIGS.
11A-11F, according to some embodiments of the technology
described herein. As shown in FIG. 13, the validation rule is
called “Demo” and associated with the attribute “Business
Owner” of the “Term” data entity. The validation rule is
enabled and has a severity of “Error”. The validation rule is
to be enforced when an import is submitted and/or when a
submit is selected in a user interface. The validation rule
specifies the condition that the data entity instance is valid
if: the Name attribute of the Calculated Data attribute being
with the character “B”; or Business Owner attribute is equal
to “Data Profilers”, the DataElems attribute is specified with
a value, and that the character length of a definition attribute
is greater than 3.

[0228] FIG. 14A is a GUI 1400 displaying information
about a validation rule, according to some embodiments of
the technology described herein. As shown in FIG. 14A, the
name of the validation rule is “CDE Test rule Business
Owner” and it is associated with the Critical Data Element
data entity. The validation rule is further associated with the
Business Owner attribute of the Critical Data Element data
entity. The validation rule has a severity of “Error”. The
validation rule is further configured with the display mes-
sage “Business owner name must start with A”. The vali-
dation rule is to be enforced on import by rejecting the
record if the validation rule is not met (i.e., if the Business
Owner attribute value is invalid). The validation rule is also
to be enforced when a submit action is performed in the user
interface. The validation rule has a condition that the Busi-
ness Owner attribute value must begin with the letter “A”.
The wvalidation rule further indicates that a data entity
instance is only to be validated using the validation rule
when the Name attribute of the data entity instance is
specified and equal to “Arising from Counterparty Risk”.
[0229] FIG. 14B is a GUI 1410 displaying information
about a data entity instance, according to some embodiments
of the technology described herein. As shown in FIG. 14B,
the data entity instance includes a Business Owner attribute
1412 which is not yet assigned a value. The GUI 1410 may
allow auser to assign a value to the attribute 1412. The name
of the data entity instance is “Arising from Counterparty
Risk”. Because the data entity instance is an instance of the
Critical Data Element data entity, the validation rule of FIG.
14A will apply to the data entity instance.

[0230] FIG. 14C is a GUI 1420 displaying valid values
identified for the attribute 1412 in the data entity instance of
FIG. 14B, according to some embodiments of the technol-
ogy described herein. The GUI 1420 displays a list 1422 of
valid values. The valid values may be obtained by the data

Mar. 14, 2024

processing system using an assignment validation module
(e.g., by performing process 1000 described herein with
reference to FIG. 10). As shown in FIG. 14C, all the listed
values for the Business Owner attribute begin with the letter
“A” as required by the validation rule of FIG. 14A.

[0231] FIG. 14D is the GUI 1420 of FIG. 14C displaying
valid and invalid values for the attribute in the data entity
instance of FIG. 14B, according to some embodiments of the
technology described herein. The GUI 1420 includes an
option 1432 that, when selected, causes the GUI 1420 to
display a list 1434 of valid and invalid values for the
Business Owner attribute 1412. As shown in FIG. 14D, the
list 1434 includes valid values (i.e., beginning with the letter
“A”) and invalid values (i.e., not beginning with the letter
“A”).

[0232] FIG. 14E is the GUI 1410 FIG. 14B after a valid
value 1442 is selected for assignment to the Business Owner
attribute 1412, according to some embodiments of the
technology described herein. As shown in FIG. 14E, a value
of “Abby A. Williams” is selected for assignment to the
Business Owner attribute 1412.

[0233] FIG. 14F is the GUI 1410 of FIG. 14B displaying
the data entity instance after the valid value 1442 is assigned
to the business owner attribute, according to some embodi-
ments of the technology described herein. As shown in FIG.
14F, the GUI 1410 does not display any indication of an
error or invalid value because the valid value was success-
fully assigned to the Business Owner attribute 1412.

[0234] FIG. 14G is the GUI 1410 of FIG. 14B after an
invalid value 1462 is selected for assignment to the Business
Owner attribute 1412, according to some embodiments of
the technology described herein. As shown in FIG. 14G, a
value of “Postal Code Steward” is selected for assignment to
the Business Owner attribute 1412. As this value does not
begin with the letter “A”, it fails to meet the validation rule
of FIG. 14A and is invalid. The GUI 1410 includes a
graphical element 1464 indicating that the selected value is
invalid. When the user moves a cursor over the graphical
element 1464, the GUI 1410 further displays a message
indicating the display message configured in the validation
rule of FIG. 14A: “Business owner name must start with A”.

[0235] FIG. 14H is the GUI of FIG. 14B after the invalid
value is submitted for assignment to the business owner
attribute, according to some embodiments of the technology
described herein. In the example of FIG. 14H, the data
processing system may reject the assignment of “Postal
Code Steward” to the Business Owner attribute 1412
because the validation rule of FIG. 14A is configured with
a severity of “Error”. Thus, the value “Postal Code Steward”
was not assigned to the Business Owner attribute 1412. In
some embodiments, the value may be saved without being
assigned as the value to the attribute.

Example Computer System

[0236] FIG. 15 illustrates an example of a suitable com-
puting system environment 1500 on which the technology
described herein may be implemented. The computing sys-
tem environment 1500 is only one example of a suitable
computing environment and is not intended to suggest any
limitation as to the scope of use or functionality of the
technology described herein. Neither should the computing
environment 1500 be interpreted as having any dependency

US 2024/0086409 Al

or requirement relating to any one or combination of com-
ponents illustrated in the exemplary operating environment
1500.

[0237] The technology described herein is operational
with numerous other general purpose or special purpose
computing system environments or configurations.
Examples of well-known computing systems, environments,
and/or configurations that may be suitable for use with the
technology described herein include, but are not limited to,
personal computers, server computers, hand-held or laptop
devices, multiprocessor systems, microprocessor-based sys-
tems, set top boxes, programmable consumer electronics,
network PCs, minicomputers, mainframe computers, dis-
tributed computing environments that include any of the
above systems or devices, and the like.

[0238] The computing environment may execute com-
puter-executable instructions, such as program modules.
Generally, program modules include routines, programs,
objects, components, data structures, etc. that perform par-
ticular tasks or implement particular abstract data types. The
technology described herein may also be practiced in dis-
tributed computing environments where tasks are performed
by remote processing devices that are linked through a
communications network. In a distributed computing envi-
ronment, program modules may be located in both local and
remote computer storage media including memory storage
devices.

[0239] With reference to FIG. 15, an exemplary system for
implementing the technology described herein includes a
general purpose computing device in the form of a computer
1500. Components of computer 1510 may include, but are
not limited to, a processing unit 1520, a system memory
1530, and a system bus 1521 that couples various system
components including the system memory to the processing
unit 1520. The system bus 1521 may be any of several types
of bus structures including a memory bus or memory
controller, a peripheral bus, and a local bus using any of a
variety of bus architectures. By way of example, and not
limitation, such architectures include Industry Standard
Architecture (ISA) bus, Micro Channel Architecture (MCA)
bus, Enhanced ISA (ELISA) bus, Video Electronics Stan-
dards Association (VESA) local bus, and Peripheral Com-
ponent Interconnect (PCI) bus also known as Mezzanine
bus.

[0240] Computer 1510 typically includes a variety of
computer readable media. Computer readable media can be
any available media that can be accessed by computer 1510
and includes both volatile and nonvolatile media, removable
and non-removable media. By way of example, and not
limitation, computer readable media may comprise com-
puter storage media and communication media. Computer
storage media includes volatile and nonvolatile, removable
and non-removable media implemented in any method or
technology for storage of information such as computer
readable instructions, data structures, program modules or
other data. Computer storage media includes, but is not
limited to, RAM, ROM, EEPROM, flash memory or other
memory technology, CD-ROM, digital versatile disks
(DVD) or other optical disk storage, magnetic cassettes,
magnetic tape, magnetic disk storage or other magnetic
storage devices, or any other medium which can be used to
store the desired information, and which can be accessed by
computer 1510. Communication media typically embodies
computer readable instructions, data structures, program

Mar. 14, 2024

modules or other data in a modulated data signal such as a
carrier wave or other transport mechanism and includes any
information delivery media. The term “modulated data sig-
nal” means a signal that has one or more of its characteristics
set or changed in such a manner as to encode information in
the signal. By way of example, and not limitation, commu-
nication media includes wired media such as a wired net-
work or direct-wired connection, and wireless media such as
acoustic, RF, infrared and other wireless media. Combina-
tions of any of the above should also be included within the
scope of computer readable media.

[0241] The system memory 1530 includes computer stor-
age media in the form of volatile and/or nonvolatile memory
such as read only memory (ROM) 1531 and random access
memory (RAM) 1532. A basic input/output system 1533
(BIOS), containing the basic routines that help to transfer
information between elements within computer 1510, such
as during start-up, is typically stored in ROM 1531. RAM
1532 typically contains data and/or program modules that
are immediately accessible to and/or presently being oper-
ated on by processing unit 1520. By way of example, and not
limitation, FIG. 15 illustrates operating system 1534, appli-
cation programs 1535, other program modules 1536, and
program data 1537.

[0242] The computer 1510 may also include other remov-
able/non-removable, volatile/nonvolatile computer storage
media. By way of example only, FIG. 15 illustrates a hard
disk drive 1541 that reads from or writes to non-removable,
nonvolatile magnetic media, a flash drive 1551 that reads
from or writes to a removable, nonvolatile memory 1552
such as flash memory, and an optical disk drive 1555 that
reads from or writes to a removable, nonvolatile optical disk
1556 such as a CD ROM or other optical media. Other
removable/non-removable, volatile/nonvolatile computer
storage media that can be used in the exemplary operating
environment include, but are not limited to, magnetic tape
cassettes, flash memory cards, digital versatile disks, digital
video tape, solid state RAM, solid state ROM, and the like.
The hard disk drive 1541 is typically connected to the
system bus 1521 through a non-removable memory interface
such as interface 1540, and magnetic disk drive 1551 and
optical disk drive 1555 are typically connected to the system
bus 1521 by a removable memory interface, such as inter-
face 1550.

[0243] The drives and their associated computer storage
media described above and illustrated in FIG. 15, provide
storage of computer readable instructions, data structures,
program modules and other data for the computer 1510. In
FIG. 15, for example, hard disk drive 1541 is illustrated as
storing operating system 1544, application programs 1545,
other program modules 1546, and program data 1547. Note
that these components can either be the same as or different
from operating system 1534, application programs 1535,
other program modules 1536, and program data 1537.
Operating system 1544, application programs 1545, other
program modules 1546, and program data 1547 are given
different numbers here to illustrate that, at a minimum, they
are different copies. An actor may enter commands and
information into the computer 1510 through input devices
such as a keyboard 1562 and pointing device 1561, com-
monly referred to as a mouse, trackball or touch pad. Other
input devices (not shown) may include a microphone, joy-
stick, game pad, satellite dish, scanner, or the like. These and
other input devices are often connected to the processing

US 2024/0086409 Al

unit 1520 through a user input interface 1560 that is coupled
to the system bus, but may be connected by other interface
and bus structures, such as a parallel port, game port or a
universal serial bus (USB). A monitor 1591 or other type of
display device is also connected to the system bus 1521 via
an interface, such as a video interface 1590. In addition to
the monitor, computers may also include other peripheral
output devices such as speakers 1597 and printer 1596,
which may be connected through an output peripheral
interface 1595.

[0244] The computer 1510 may operate in a networked
environment using logical connections to one or more
remote computers, such as a remote computer 1580. The
remote computer 1580 may be a personal computer, a server,
a router, a network PC, a peer device or other common
network node, and typically includes many or all of the
elements described above relative to the computer 1510,
although only a memory storage device 1581 has been
illustrated in FIG. 15. The logical connections depicted in
FIG. 15 include a local area network (LAN) 1581 and a wide
area network (WAN) 1583, but may also include other
networks. Such networking environments are commonplace
in offices, enterprise-wide computer networks, intranets and
the Internet.

[0245] When used in a LAN networking environment, the
computer 1510 is connected to the LAN 1581 through a
network interface or adapter 1580. When used in a WAN
networking environment, the computer 1510 typically
includes a modem 1582 or other means for establishing
communications over the WAN 1583, such as the Internet.
The modem 1582, which may be internal or external, may be
connected to the system bus 1521 via the actor input
interface 1560, or other appropriate mechanism. In a net-
worked environment, program modules depicted relative to
the computer 1510, or portions thereof, may be stored in the
remote memory storage device. By way of example, and not
limitation, FIG. 15 illustrates remote application programs
1585 as residing on memory device 1581. It will be appre-
ciated that the network connections shown are exemplary
and other means of establishing a communications link
between the computers may be used.

[0246] Having thus described several aspects of at least
one embodiment of the technology described herein, it is to
be appreciated that various alterations, modifications, and
improvements will readily occur to those skilled in the art.
[0247] Such alterations, modifications, and improvements
are intended to be part of this disclosure, and are intended to
be within the spirit and scope of disclosure. Further, though
advantages of the technology described herein are indicated,
it should be appreciated that not every embodiment of the
technology described herein will include every described
advantage. Some embodiments may not implement any
features described as advantageous herein and in some
instances one or more of the described features may be
implemented to achieve further embodiments. Accordingly,
the foregoing description and drawings are by way of
example only.

[0248] The above-described embodiments of the technol-
ogy described herein can be implemented in any of numer-
ous ways. For example, the embodiments may be imple-
mented using hardware, software or a combination thereof.
When implemented in software, the software code can be
executed on any suitable processor or collection of proces-
sors, whether provided in a single computer or distributed

Mar. 14, 2024

among multiple computers. Such processors may be imple-
mented as integrated circuits, with one or more processors in
an integrated circuit component, including commercially
available integrated circuit components known in the art by
names such as CPU chips, GPU chips, microprocessor,
microcontroller, or co-processor. Alternatively, a processor
may be implemented in custom circuitry, such as an ASIC,
or semicustom circuitry resulting from configuring a pro-
grammable logic device. As yet a further alternative, a
processor may be a portion of a larger circuit or semicon-
ductor device, whether commercially available, semi-cus-
tom or custom. As a specific example, some commercially
available microprocessors have multiple cores such that one
or a subset of those cores may constitute a processor.
However, a processor may be implemented using circuitry in
any suitable format.

[0249] Further, it should be appreciated that a computer
may be embodied in any of a number of forms, such as a
rack-mounted computer, a desktop computer, a laptop com-
puter, or a tablet computer. Additionally, a computer may be
embedded in a device not generally regarded as a computer
but with suitable processing capabilities, including a Per-
sonal Digital Assistant (PDA), a smart phone or any other
suitable portable or fixed electronic device.

[0250] Also, a computer may have one or more input and
output devices. These devices can be used, among other
things, to present a user interface. Examples of output
devices that can be used to provide a user interface include
printers or display screens for visual presentation of output
and speakers or other sound generating devices for audible
presentation of output. Examples of input devices that can be
used for a user interface include keyboards, and pointing
devices, such as mice, touch pads, and digitizing tablets. As
another example, a computer may receive input information
through speech recognition or in other audible format.
[0251] Such computers may be interconnected by one or
more networks in any suitable form, including as a local area
network or a wide area network, such as an enterprise
network or the Internet. Such networks may be based on any
suitable technology and may operate according to any
suitable protocol and may include wireless networks, wired
networks or fiber optic networks.

[0252] Also, the various methods or processes outlined
herein may be coded as software that is executable on one
or more processors that employ any one of a variety of
operating systems or platforms. Additionally, such software
may be written using any of a number of suitable program-
ming languages and/or programming or scripting tools, and
also may be compiled as executable machine language code
or intermediate code that is executed on a framework or
virtual machine.

[0253] In this respect, aspects of the technology described
herein may be embodied as a computer readable storage
medium (or multiple computer readable media) (e.g., a
computer memory, one or more floppy discs, compact discs
(CD), optical discs, digital video disks (DVD), magnetic
tapes, flash memories, circuit configurations in Field Pro-
grammable Gate Arrays or other semiconductor devices, or
other tangible computer storage medium) encoded with one
or more programs that, when executed on one or more
computers or other processors, perform methods that imple-
ment the various embodiments described above. As is appar-
ent from the foregoing examples, a computer readable
storage medium may retain information for a sufficient time

US 2024/0086409 Al

to provide computer-executable instructions in a non-tran-
sitory form. Such a computer readable storage medium or
media can be transportable, such that the program or pro-
grams stored thereon can be loaded onto one or more
different computers or other processors to implement vari-
ous aspects of the technology as described above. As used
herein, the term “computer-readable storage medium”
encompasses only a non-transitory computer-readable
medium that can be considered to be a manufacture (i.e.,
article of manufacture) or a machine. Alternatively or addi-
tionally, aspects of the technology described herein may be
embodied as a computer readable medium other than a
computer-readable storage medium, such as a propagating
signal.

[0254] The terms “program” or “software” are used herein
in a generic sense to refer to any type of computer code or
set of computer-executable instructions that can be
employed to program a computer or other processor to
implement various aspects of the technology as described
above. Additionally, it should be appreciated that according
to one aspect of this embodiment, one or more computer
programs that when executed perform methods of the tech-
nology described herein need not reside on a single com-
puter or processor, but may be distributed in a modular
fashion amongst a number of different computers or pro-
cessors to implement various aspects of the technology
described herein.

[0255] Computer-executable instructions may be in many
forms, such as program modules, executed by one or more
computers or other devices. Generally, program modules
include routines, programs, objects, components, data struc-
tures, etc. that perform particular tasks or implement par-
ticular abstract data types. Typically, the functionality of the
program modules may be combined or distributed as desired
in various embodiments.

[0256] Also, data structures may be stored in computer-
readable media in any suitable form. For simplicity of
illustration, data structures may be shown to have fields that
are related through location in the data structure. Such
relationships may likewise be achieved by assigning storage
for the fields with locations in a computer-readable medium
that conveys relationship between the fields. However, any
suitable mechanism may be used to establish a relationship
between information in fields of a data structure, including
through the use of pointers, tags or other mechanisms that
establish relationship between data elements.

[0257] Various aspects of the technology described herein
may be used alone, in combination, or in a variety of
arrangements not specifically described in the embodiments
described in the foregoing and is therefore not limited in its
application to the details and arrangement of components set
forth in the foregoing description or illustrated in the draw-
ings. For example, aspects described in one embodiment
may be combined in any manner with aspects described in
other embodiments.

[0258] Also, the technology described herein may be
embodied as a method, of which examples are provided
herein including with reference to FIGS. 3 and 7. The acts
performed as part of any of the methods may be ordered in
any suitable way. Accordingly, embodiments may be con-
structed in which acts are performed in an order different
than illustrated, which may include performing some acts
simultaneously, even though shown as sequential acts in
illustrative embodiments.

Mar. 14, 2024

[0259] Further, some actions are described as taken by an
“actor” or a “user”. It should be appreciated that an “actor”
or a “user” need not be a single individual, and that in some
embodiments, actions attributable to an “actor” or a “user”
may be performed by a team of individuals and/or an
individual in combination with computer-assisted tools or
other mechanisms.

[0260] Use of ordinal terms such as “first,” “second,”
“third,” etc., in the claims to modify a claim element does
not by itself connote any priority, precedence, or order of
one claim element over another or the temporal order in
which acts of a method are performed, but are used merely
as labels to distinguish one claim element having a certain
name from another element having a same name (but for use
of the ordinal term) to distinguish the claim elements.
[0261] Also, the phraseology and terminology used herein
is for the purpose of description and should not be regarded
as limiting. The use of “including,” “comprising,” or “hav-
ing,” “containing,” “involving,” and wvariations thereof
herein, is meant to encompass the items listed thereafter and
equivalents thereof as well as additional items.

What is claimed is:

1. A method of enforcing valid data assignments in a data
processing system configured to process data that is updated
by user devices and/or computerized processes, the data
processing system storing the data using data entities and
instances thereof, the method comprising:

using at least one computer hardware processor to per-

form:

receiving, by the data processing system, a request to

assign a value to a first attribute in a first data entity

instance of a first data entity, wherein:

the first data entity comprises a plurality of attributes
including the first attribute and a second attribute;
and

the first data entity is associated with at least one
validation rule, the at least one validation rule
including a first validation rule associated with the
first attribute, the first validation rule specifying a
first condition on the first attribute that depends on
the second attribute;

identifying, using the first validation rule, one or more

valid values for the first attribute, the identifying com-

prising:

generating a query for the one or more valid values
using the first condition on the first attribute; and

executing the generated query to obtain the one or more
valid values for the first attribute; and

assigning a value to the first attribute in the first data entity

instance in accordance with input indicating a selection
of at least one of the one or more valid values for the
first attribute, the assigning comprising assigning the
selected at least one valid value to the first attribute.

2. The method of claim 1, wherein generating the query
for the one or more valid values for the first attribute using
the first condition on the first attribute that depends on the
second attribute comprises:

identifying a current value assigned to the second attribute

in the first data entity instance; and

generating the query using the current value of the second

attribute in the first data entity instance.

3. The method of claim 2, wherein the current value
assigned to the second attribute in the first data entity
instance is an instance of a second data entity, and gener-

2 <

US 2024/0086409 Al

ating the query based on the current value assigned to the

second attribute in the first data entity instance comprises:

accessing at least one attribute value from the instance of
the second data entity; and

generating the query based on the at least one attribute

value from the instance of the second data entity.

4. The method of claim 1, wherein the at least one
validation rule comprises a plurality of validation rules
associated with respective attributes of the first data entity,
and the method further comprises:

identifying the first validation rule from among the plu-

rality of validation rules in based on an association of
the first validation rule with the first attribute.

5. The method of claim 1, wherein the first validation rule
comprises a second condition on the first attribute, and
generating the query for the one or more valid values
comprises:

generating a first portion of the query based on the first

condition on the first attribute; and

generating a second portion of the query based on the

second condition on the first attribute.

6. The method of claim 1, wherein generating the query
for the one or more valid values using the first condition
comprises:

transforming the first condition on the first attribute into

a query criterion; and

integrating the query criterion into the query.

7. The method of claim 1, wherein assigning the value to
the first attribute in the first data entity instance comprises
assigning an instance of a second data entity to the first
attribute in the first data entity instance.

8. The method of claim 7, wherein generating the query
for the one or more valid values using the first condition on
the first attribute comprises generating a query on instances
of the second data entity.

9. The method of claim 8, wherein executing the gener-
ated query to obtain the one or more valid values for the first
attribute comprises executing the generated query on a
subset of data consisting of instances of the second data
entity.

10. The method of claim 1, wherein the first attribute
indicates an owner, an access security level, a data source,
or a data format associated with the first data entity instance.

11. The method of claim 1, wherein the first data entity
instance stores information about a software application or
a dataset as attribute values in the first data entity instance.

12. The method of claim 11, wherein the first attribute
indicates a data source or a data format to be used by the
software application when attempting to invoke a function
of the software application.

13. The method of claim 12, wherein the one or more
valid values are suitable for invoking the function of the
software application.

14. The method of claim 11, wherein the first attribute
indicates an access security level associated with the dataset
to be used when attempting to provide access to the dataset.

15. The method of claim 14, wherein the one or more
valid values are one or more access security levels providing
access to the dataset.

16. The method of claim 1, further comprising:

transmitting, to a client device, an indication of the one or

more valid values for the first attribute for display in a
graphical user interface (GUI);

Mar. 14, 2024

receiving, from the client device, the input indicating the
selection of the at least one of the one or more valid
values for the first attribute through the GUI.
17. The method of claim 1, wherein:
identifying the one or more valid values for the first
attribute comprises identitying one or more instances of
a second data entity as the one or more valid values for
the first attribute.
18. The method of claim 1, wherein:
the first validation rule comprises a second condition on
the first attribute; and
identifying, using the first validation rule, the one or more
valid values further comprises generating the query by:
generating a first query criterion using the first condi-
tion on the first attribute; and
generating a second query criterion using the second
condition on the first attribute.
19. The method of claim 1, further comprising:
identifying, using the first validation rule, one or more
invalid values for the first attribute; and
preventing transmission of the one or more invalid values.
20. The method of claim 1, wherein the first data entity
instance does not have a value assigned to the second
attribute, and identifying the one or more valid values for the
first attribute comprises:
identifying an unassigned value entered for the second
attribute; and
generating the query for the one or more valid values
using the unassigned value for the second attribute.
21. A system for enforcing valid data assignments in a
data processing system configured to process data that is
updated by user devices and/or computerized processes, the
data processing system storing the data using data entities
and instances thereof, the system comprising:
at least one computer hardware processor; and
at least one non-transitory computer-readable storage
medium storing an assignment validation module, the
assignment validation module comprising a rule selec-
tion component, a query generation component, and a
query execution component;
wherein the at least one computer hardware processor is
programmed to execute the assignment validation mod-
ule to perform:
receiving, by the assignment validation module, a
request to assign a value to a first attribute in a first
data entity instance of a first data entity, wherein:
the first data entity comprises a plurality of attributes
including the first attribute and a second attribute;
and
the first data entity is associated with at least one
validation rule that attribute values in instances of
the first data entity must comply with to be valid,
the at least one validation rule including a first
validation rule associated with the first attribute,
the first validation rule specifying a first condition
on the first attribute that depends on the second
attribute;
identifying, using the rule selection component and the
first validation rule, one or more valid values for the
first attribute, the identifying comprising:
generating, using the query generation component, a
query for the one or more valid values using the
first condition on the first attribute; and

US 2024/0086409 Al

executing, using the query execution component, the
generated query to obtain the one or more valid
values for the first attribute; and

assigning a value to the first attribute in the first data
entity instance in accordance with input indicating a
selection of at least one of the one or more valid
values for the first attribute, the assigning comprising
assigning the selected at least one valid value to the

26

Mar. 14, 2024

the first data entity comprises a plurality of attributes
including the first attribute and a second attribute;
and

the first data entity is associated with at least one
validation rule that attribute values in instances of
the first data entity must comply with to be valid, the
at least one validation rule including a first validation
rule associated with the first attribute, the first vali-
dation rule specifying a first condition on the first

first attribute. attribute that depends on the second attribute;

identifying, using the first validation rule, one or more
valid values for the first attribute, the identifying com-
prising:
generating a query for the one or more valid values
using the first condition on the first attribute; and
executing the generated query to obtain the one or more
valid values for the first attribute; and
assigning a value to the first attribute in the first data entity
instance in accordance with input indicating a selection
of at least one of the one or more valid values for the
first attribute, the assigning comprising assigning the
selected at least one valid value to the first attribute.

22. At least one non-transitory computer-readable storage
medium storing instructions that, when executed by at least
one computer hardware processor, cause the at least one
computer hardware processor to perform a method of
enforcing valid data assignments in a data processing con-
figured to process data that is updated by user devices and/or
computerized processes, the data processing system storing
the data using data entities and instances thereof, the method
comprising:

receiving, by the data processing system, a request to
assign a value to a first attribute in a first data entity
instance of a first data entity, wherein: L

