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(57) ABSTRACT

A method of video processing is provided that includes
performing a conversion between a block of a video and a
bitstream of the video. The bitstream conforms to a format-
ting rule specifying that a size of a merge estimation region
(MER) is indicated in the bitstream and the size of the MER
is based on a dimension of a video unit. The MER comprises
a region used for deriving a motion candidate for the
conversion.

determining, for a video block in a first video
region of a video, whether a position at
which a temporal motion vector predictor is
determined for a conversion between the
video block and a bitstream representation
of the current video block using an affine
mode is within a second video region

T 402

performing the conversion based on the
determining

T 404
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CONSTRAINTS FOR VIDEO CODING AND
DECODING

CROSS REFERENCE TO RELATED
APPLICATIONS

[0001] This application is a continuation of U.S. patent
application Ser. No. 17/861,728, filed on Jul. 11, 2022,
which is a continuation of International Patent Application
No. PCT/CN2021/071008, filed on Jan. 11, 2021, which
claims the priority to and benefits of International Patent
Application No. PCT/CN2020/071620, filed on Jan. 12,
2020. The entire disclosure of the aforementioned applica-
tions is incorporated by reference as part of the disclosure of
this application.

TECHNICAL FIELD

[0002] This document is related to video and image coding
and decoding technologies.

BACKGROUND

[0003] Digital video accounts for the largest bandwidth
use on the internet and other digital communication net-
works. As the number of connected user devices capable of
receiving and displaying video increases, it is expected that
the bandwidth demand for digital video usage will continue
to grow.

SUMMARY

[0004] The disclosed techniques may be used by video or
image decoder or encoder embodiments for in which sub-
picture based coding or decoding is performed.

[0005] In one example aspect a method of video process-
ing is disclosed. The method includes performing a conver-
sion between a block of a video and a bitstream of the video.
The bitstream conforms to a formatting rule specifying that
a size of a merge estimation region (MER) is indicated in the
bitstream. The size of the MER is based on a dimension of
a video unit, and the MER comprises a region used for
deriving a motion candidate for the conversion.

[0006] In another example aspect a method of video
processing is disclosed. The method includes performing a
conversion between a block of a video and a bitstream of the
video in a palette coding mode in which a palette of
representative sample values is used for coding the block of
video in the bitstream. A maximum number of palette size or
palette predictor size used in the palette mode is restricted to
mxN, m and N being positive integers.

[0007] In another example aspect a method of video
processing is disclosed. The method includes determining,
for a conversion between a current block of a video and a
bitstream of the video, that a deblocking filtering process is
disabled for a boundary of the current block in case the
boundary coincides with a boundary of a sub-picture having
a sub-picture index X and a loop filtering operation is
disabled across boundaries of the subpicture, X being a
non-negative integer. The method also includes performing
the conversion based on the determining.

[0008] In another example aspect a method of video
processing is disclosed. The method includes determining,
for a video block in a first video region of a video, whether
a position at which a temporal motion vector predictor is
determined for a conversion between the video block and a
bitstream representation of the current video block using an

Mar. 28, 2024

affine mode is within a second video region; and performing
the conversion based on the determining.

[0009] In another example aspect, another method of
video processing is disclosed. The method includes deter-
mining, for a video block in a first video region of a video,
whether a position at which an integer sample in a reference
picture is fetched for a conversion between the video block
and a bitstream representation of the current video block is
within a second video region, wherein the reference picture
is not used in an interpolation process during the conversion;
and performing the conversion based on the determining.
[0010] In another example aspect, another method of
video processing is disclosed. The method includes deter-
mining, for a video block in a first video region of a video,
whether a position at which a reconstructed luma sample
value is fetched for a conversion between the video block
and a bitstream representation of the current video block is
within a second video region; and performing the conversion
based on the determining.

[0011] In another example aspect, another method of
video processing is disclosed. The method includes deter-
mining, for a video block in a first video region of a video,
whether a position at which a check regarding splitting,
depth derivation or split flag signaling for the video block is
performed during a conversion between the video block and
a bitstream representation of the current video block is
within a second video region; and performing the conversion
based on the determining.

[0012] In another example aspect, another method of
video processing is disclosed. The method includes perform-
ing a conversion between a video comprising one or more
video pictures comprising one or more video blocks, and a
coded representation of the video, wherein the coded rep-
resentation complies with a coding syntax requirement that
the conversion is not to use sub-picture coding/decoding and
a dynamic resolution conversion coding/decoding tool or a
reference picture resampling tool within a video unit.
[0013] In another example aspect, another method of
video processing is disclosed. The method includes perform-
ing a conversion between a video comprising one or more
video pictures comprising one or more video blocks, and a
coded representation of the video, wherein the coded rep-
resentation complies with a coding syntax requirement that
a first syntax element subpic_grid_idx][i|[j] is not larger than
a second syntax element max_subpics_minusl.

[0014] In another example aspect, another method of
video processing is disclosed. The method includes perform-
ing a conversion between a first video region of a video and
a coded representation of the video, wherein a set of
parameters defining coding characteristics of the first video
region is included at the first video region level in the coded
representation.

[0015] Inyet another example aspect, the above-described
method may be implemented by a video encoder apparatus
that comprises a processor.

[0016] Inyet another example aspect, the above-described
method may be implemented by a video decoder apparatus
that comprises a processor.

[0017] In yet another example aspect, these methods may
be embodied in the form of processor-executable instruc-
tions and stored on a computer-readable program medium.
[0018] These, and other, aspects are further described in
the present document.
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BRIEF DESCRIPTION OF THE DRAWINGS

[0019] FIG. 1 shows an example of region constraint in
temporal motion vector prediction (TMVP) and sub-block
TMVP.

[0020] FIG. 2 shows an example of a hierarchical motion
estimation scheme.

[0021] FIG. 3 is a block diagram of an example of a
hardware platform used for implementing techniques
described in the present document.

[0022] FIG. 4 is a flowchart for an example method of
video processing.

[0023] FIG. 5 shows an example of a picture with 18 by
12 luma coding tree units (CTUs) that is partitioned into 12
tiles and 3 raster-scan slices (informative).

[0024] FIG. 6 shows an example of a picture with 18 by
12 luma CTUs that is partitioned into 24 tiles and 9
rectangular slices (informative).

[0025] FIG. 7 shows an example of a picture that is
partitioned into 4 tiles, 11 bricks, and 4 rectangular slices
(informative).

[0026] FIG. 8 shows an example of a block coded in
palette mode.

[0027] FIG. 9 shows an example of using of predictor
palette to signal palette entries.

[0028] FIG. 10 shows an example of horizontal and ver-
tical traverse scans.

[0029] FIG. 11 shows an example of coding of palette
indices.

[0030] FIG. 12 shows an example of merge estimation
region (MER).

[0031] FIG. 13 is a block diagram showing an example

video processing system in which various techniques dis-
closed herein may be implemented.

[0032] FIG. 14 is a block diagram that illustrates an
example video coding system.

[0033] FIG. 15 is a block diagram that illustrates an
encoder in accordance with some embodiments of the pres-
ent disclosure.

[0034] FIG. 16 is a block diagram that illustrates a decoder
in accordance with some embodiments of the present dis-
closure.

[0035] FIG. 17 is a flowchart representation of a method
for video processing in accordance with the present tech-
nology.

[0036] FIG. 18 is a flowchart representation of another
method for video processing in accordance with the present
technology.

[0037] FIG. 19 is a flowchart representation of yet another
method for video processing in accordance with the present
technology.

DETAILED DESCRIPTION

[0038] The present document provides various techniques
that can be used by a decoder of image or video bitstreams
to improve the quality of decompressed or decoded digital
video or images. For brevity, the term “video” is used herein
to include both a sequence of pictures (traditionally called
video) and individual images. Furthermore, a video encoder
may also implement these techniques during the process of
encoding in order to reconstruct decoded frames used for
further encoding.

[0039] Section headings are used in the present document
for ease of understanding and do not limit the embodiments
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and techniques to the corresponding sections. As such,
embodiments from one section can be combined with
embodiments from other sections.

1. Initial Discussion

[0040] This document is related to video coding technolo-
gies. Specifically, it is related to palette coding employing
base colors based representation in video coding. It may be
applied to the existing video coding standard like High
Efficiency Video Coding (HEVC), or the standard Versatile
Video Coding (VVC) to be finalized. It may be also appli-
cable to future video coding standards or video codec.

2. Video Coding Introduction

[0041] Video coding standards have evolved primarily
through the development of the well-known International
Telecommunication Union-Telecommunication Standard-
ization Sector (ITU-T) and International Organization for
Standardization (ISO)/International Electrotechnical Com-
mission (IEC) standards. The ITU-T produced H.261 and
H.263, ISO/IEC produced Moving Picture Experts Group
(MPEG)-1 and MPEG-4 Visual, and the two organizations
jointly produced the H.262/MPEG-2 Video and H.264/
MPEG-4 Advanced Video Coding (AVC) and H.265/HEVC
standards [1,2]. Since H.262, the video coding standards are
based on the hybrid video coding structure wherein temporal
prediction plus transform coding are utilized. To explore the
future video coding technologies beyond HEVC, Joint
Video Exploration Team (JVET) was founded by Video
Coding Experts Group (VCEG) and MPEG jointly in 2015.
Since then, many new methods have been adopted by JVET
and put into the reference software named Joint Exploration
Model (JEM). In April 2018, the Joint Video Expert Team
(JVET) between VCEG (Q6/16) and ISO/IEC Joint Tech-
nical Committee (JTC)1 SC29/WG11 (MPEG) was created
to work on the VVC standard targeting at 50% bitrate
reduction compared to HEVC.

[0042] 2.1 The Region Constraint in TMVP and Sub-
Block TMVP in VVC

[0043] FIG. 1 illustrates example region constraint in
TMVP and sub-block TMVP. In TMVP and sub-block
TMVP, it is constrained that a temporal motion vector (MV)
can generally only be fetched from the collocated coding
tree unit (CTU) plus a column of 4x4 blocks as shown in
FIG. 1.

[0044]

[0045] In some embodiments, sub-picture-based coding
techniques based on flexible tiling approach can be imple-
mented. Summary of the sub-picture-based coding tech-
niques includes the following:

[0046]

[0047] (2) The indication of existence of sub-pictures is
indicated in the sequence parameter set (SPS), along
with other sequence-level information of sub-pictures.

[0048] (3) Whether a sub-picture is treated as a picture
in the decoding process (excluding in-loop filtering
operations) can be controlled by the bitstream.

[0049] (4) Whether in-loop filtering across sub-picture
boundaries is disabled can be controlled by the bit-
stream for each sub-picture. The deblocking filter
(DBF), sample adaptive offset (SAO), and adaptive

2.2 Example Sub-Picture

(1) Pictures can be divided into sub-pictures.
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loop filter (ALF) processes are updated for controlling
of in-loop filtering operations across sub-picture
boundaries.

[0050] (5) For simplicity, as a starting point, the sub-
picture width, height, horizontal offset, and vertical
offset are signalled in units of luma samples in SPS.
Sub-picture boundaries are constrained to be slice
boundaries.

[0051] (6) Treating a sub-picture as a picture in the
decoding process (excluding in-loop filtering opera-
tions) is specified by slightly updating the coding_tree_
unit( ) syntax, and updates to the following decoding
processes:

[0052] The derivation process for (advanced) tempo-
ral luma motion vector prediction
[0053] The luma sample bilinear interpolation pro-

cess
[0054] The luma sample 8-tap interpolation filtering
process

[0055] The chroma sample interpolation process

[0056] (7) Sub-picture identifiers (IDs) are explicitly
specified in the SPS and included in the tile group
headers to enable extraction of sub-picture sequences
without the need of changing video coding layer (VCL)
network abstraction layer (NAL) units.

[0057] (8) Output sub-picture sets (OSPS) are proposed
to specify normative extraction and conformance
points for sub-pictures and sets thereof.

[0058] 2.3 Example Sub-Pictures in Versatile Video Cod-
ing

Sequence Parameter Set RBSP Syntax
[0059]

Mar. 28, 2024

-continued
Descriptor

subpic_grid_col width_minusl u (v)
subpic_grid_row_height minusl u (v)
for( i = 0; i < NumSubPicGridRows; i++ )

for( j = 0; j < NumSubPicGridCols; j++ )

subpic_grid_idx[ i ][] ] u (v)

for( i = 0; i <= NumSubPics; i++ ) {

subpic_treated_as_pic_flag[ i ] u (1)

loop_filter_across_subpic_enabled_flag[ i ] u (1)

[0060] subpics_present_flag equal to 1 indicates that
sub-picture parameters are present in the SPS RBSP
syntax. subpics_present_flag equal to O indicates that
sub-picture parameters are not present in the SPS RBSP
syntax.

[0061] NOTE 2—When a bitstream is the result of a
sub-bitstream extraction process and contains only a
subset of the sub-pictures of the input bitstream to
the sub-bitstream extraction process, it might be
required to set the value of subpics_present_flag
equal to 1 in the RBSP of the SPSs.

[0062] max_subpics_minusl plus 1 specifies the maxi-
mum number of sub-pictures that may be present in the
CVS. max_subpics_minus] may be in the range of 0 to
254. The value of 255 is reserved for future use by
ITU-TISO/IEC.

[0063] subpic_grid _col_width_minusl plus 1 specifies
the width of each element of the sub-picture identifier
grid in units of 4 samples. The length of the syntax
element is Ceil(Log2(pic_width_max_in_luma_
samples/4)) bits.

The variable NumSubPicGridCols is derived as follows:

Descriptor
NumSubPicGridCols=(pic_width_max_in_luma_
seq_parameter_set_rbsp( ) { ) samples+subpic_grid_col_width_minus1*4+3)/
sps_decoding_parameter_set_id u (%) (subpic_grid_col_width_minus1*4+4) (7-5)
sps_video_parameter_set_id u (4)

. [0064] subpic_grid row_height_minusl plus 1 speci-
p}cfg1ldth,max,1.n,lluma,samplfs ue (v) fies the height of each element of the sub-picture
pic_height_max_in_luma_samples ue (v) identifier grid in units of 4 samples. The length of the
subpics_present_flag u (1) . . . . .
if( subpics_present_flag ) { syntax element is Ceil(Log2(pic_height max_in_

max_subpics_minusl u (8) luma_samples/4)) bits.
The variable NumSubPicGridRows is derived as follows:
NumSubPicGridRows = (
pic_height max_in_luma_samples + subpic_grid_row_height minusl * 4 + 3 )/
( subpic_grid_row_height_minusl * 4 + 4) (7-6)

subpic_grid_idx[ i ][]

] specifies the sub-picture index of the grid position (i, j). The lemgth

of the syntax element is Ceil( Log2( max_subpics_minusl + 1 ) ) bits.

The varuiables SubPicTop[ subpic_grid_idx[ i ][ j ] ], SubPicLeft[ subpic_grid_idx[i][j 1],
SubPicWidth[ subpic_grid_idx [ i ][] ] ], SumPicHeight[ subpic_grid_idx[i][j ] ], and
NumSubPics are derived as follows:

NumSubPics = 0

for( i = 0; i. < NumSubPicGridRows; i++ ) {
for( j = 0; j < NumSubPicGridCols; j++ ) {

if(i==0)

SubPicTop[ subpic_grid_idx[i][j]1]=0

else if( subpic_grid_idx[1][j ]!

subpic_grid_idx[i-1][j]){

SubPicTop[ subpic_grid_idx[i][j]]=1
SubPicHeight[ subpic_grid_idx[i-1][j ]] =
i - SubPicTop[ subpic_grid idx[i-1][j]]

if(j==0)

SubPicLeft subpic_grid_idx[i][j]]=0
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-continued
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else if (subpic_grid_idx[ i ][ j ] != subpic_grid idx[i][j-1]){
SubPicleft[ subpic_grid idx[i][j]] =]
SubPicWidth[ subpic_grid idx[i][j]]
Jj - SubPicLeft subpic_grid_idx[i][j-1]]

if (1 = = NumSubPicGridRows - 1)
SubPicHeight[ subpic_grid_idx[i][j]]
i - SubPicTop[ subpic_grid idx[i-1][j]]+1
if (j = = NumSubPicGridRows - 1)
SubPicWidth[ subpic_grid idx[i][j]]
j - SubPicLeft[ subpic_grid idx[i][j-1]]+1
if( subpic_grid_idx[ i ][ j ] > NumSubPics)
NumSubPics = subpic_grid_idx[ i ][] ]

[0065] subpic_treated_as_pic_flag[i] equal to 1 speci-
fies that the i-th sub-picture of each coded picture in the
CVS is treated as a picture in the decoding process
excluding in-loop filtering operations. subpic_treated_
as_pic_flag[i] equal to O specifies that the i-th sub-
picture of each coded picture in the Coded Vide
Sequence (CVS) is not treated as a picture in the
decoding process excluding in-loop filtering opera-
tions. When not present, the value of subpic_treated_
as_pic_flag[i] is inferred to be equal to 0.

[0066] loop_filter_across_subpic_enabled_flag[i] equal
to 1 specifies that in-loop filtering operations may be
performed across the boundaries of the i-th sub-picture
in each coded picture in the CVS. loop_filter_across_
subpic_enabled_flag[i] equal to O specifies that in-loop
filtering operations are not performed across the bound-
aries of the i-th sub-picture in each coded picture in the
CVS. When not present, the value of loop_filter_
across_subpic_enabled_pic_flag[i] is inferred to be
equal to 1.

It may be a requirement of bitstream conformance that the
following constraints apply:

[0067] For any two sub-pictures subpicA and subpicB,
when the index of subpicA is less than the index of
subpicB, any coded NAL unit of subPicA may succeed
any coded NAL unit of subPicB in decoding order.

[0068] The shapes of the sub-pictures may be such that
each sub-picture, when decoded, may have its entire
left boundary and entire top boundary consisting of
picture boundaries or consisting of boundaries of pre-
viously decoded sub-pictures.

The list CtbToSubPicldx[ctbAddrRs] for ctbAddrRs ranging
from 0 to PicSizeInCtbsY-1, inclusive, specifying the con-
version from a coding tree block (CTB) address in picture
raster scan to a sub-picture index, is derived as follows:

for( ctbAddrRs = 0; ctbAddrRs < PicSizeInCtbsY; ctbAddrRs++ ) {
posX = ctbAddrRs % PicWidthInCtbsY * CtbSizeY
posY = ctbAddrRs / PicWidthInCtbsY * CtbSizeY
CtbToSubPicldx[ ctbAddrRs ] = -1
for( i = 0; CtbToSubPicldx[ ctbAddrRs ] < 0 && i < NumSubPics;
i++) {
if( ( posX >= SubPicLeft i | * ( subpic_grid col width_minusl + 1)
*4) &&
( posX < ( SubPicLeft i | + SubPicWidth[i]) *
( subpic_grid_col width_minusl + 1) * 4 ) &&
( posY >= SubPicTop[ i] *
( subpic_grid_row_height minusl + 1) * 4 ) &&

-continued

( posY < ( SubPicTop[ i ] + SubPicHeight[ i ] ) *
( subpic_grid_row_height minusl + 1) * 4))
CtbToSubPicldx[ ctbAddrRs ] =i

[0069] num_bricks_in_slice_minusl, when present,
specifies the number of bricks in the slice minus 1. The
value of num_bricks_in_slice_minusl may be in the
range of 0 to NumBricksInPic-1, inclusive. When
rect_slice_flag is equal to O and single brick_per_
slice_flag is equal to 1, the value of num_bricks_in_
slice_minusl] is inferred to be equal to 0. When single_
brick_per_slice_flag is equal to 1, the value of num_
bricks_in_slice_minus1 is inferred to be equal to 0.

The variable NumBricksInCurrSlice, which specifies the
number of bricks in the current slice, and SliceBricklIdx][i],
which specifies the brick index of the i-th brick in the current
slice, are derived as follows:

if( rect_slice_flag ) {
sliceldx = 0
while( slice_address != slice_id[ sliceldx ] )
sliceldx++
NumBricksInCurrSlice = NumBricksInSlice[ sliceldx ]
brickldx = TopLeftBrickIdx[ sliceldx ]
for( bldx = 0; brickIdx <= BottomRightBrickIdx[ sliceldx ];
brickIdx++ ) (7-92)
if{ BricksToSliceMap| brickIdx ] = = sliceldx )
SliceBrickIdx[ bldx++ ] = brickldx
}else {
NumBricksInCurrSlice = num_bricks_in_slice_minusl + 1
SliceBrickIdx[ 0 ] = slice_address
for( i =1; i < NumBricksInCurrSlice; i++ )
SliceBrickIdx[ i ] = SliceBrickIdx[i- 1]+ 1

The variables SubPicldx, SubPicLeftBoundaryPos, SubPic-
TopBoundaryPos, SubPicRightBoundaryPos, and Sub-
PicBotBoundaryPos are derived as follows:
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SubPicldx = CtbToSubPicldx[ CtbAddrBsToRs[ FirstCtbAddrBs[ SliceBrickIdx[ 0111 ]

if( subpic_treated_as_pic_flag[ SubPicldx ] ) {

SubPicLeftBoundaryPos = SubPicLeft[ SubPicldx ] * ( subpic_grid col width_minusl + 1) * 4
SubPicRightBoundaryPos = ( SubPicLeft[ SubPicldx ] + SubPicWidth[ SubPicldx ] ) *

( subpic_grid_col_width_minusl + 1) * 4

SubPicTopBoundaryPos = SubPicTop[ SubPicldx ] * ( subpic_grid_row_height minusl + 1 )* 4
SubPicBotBoundaryPos = ( SubPicTop[ SubPicldx ] + SubPicHeight[ SubPicldx ] ) *

( subpic_grid_row_height_minusl + 1) * 4

Derivation Process for Temporal Luma Motion Vector
Prediction

[0070] Inputs to this process are:

[0071] a luma location (xCb, yCb) of the top-left
sample of the current luma coding block relative to the
top-left luma sample of the current picture,

[0072] a variable cbWidth specifying the width of the
current coding block in luma samples,

[0073] a variable cbHeight specifying the height of the
current coding block in luma samples,

[0074] areference index refldx[LX, with X being O or 1.

Outputs of this process are:

[0075] the motion vector prediction mvL.XCol in Vis
fractional-sample accuracy,

[0076] the availability flag availableFlagl. XCol.

The variable currCb specifies the current luma coding block
at luma location (xCb, yCb).

The wvariables mvL.XCol and availableFlagl. XCol are
derived as follows:

[0077] If slice_temporal_mvp_enabled_flag is equal to
0 or (cbWidth*cbHeight) is less than or equal to 32,
both components of mvL.XCol are set equal to 0 and
availableFlagl. XCol is set equal to 0.

[0078] Otherwise (slice_temporal_mvp_enabled_flag is
equal to 1), the following ordered steps apply:

[0079] 1. The bottom right collocated motion vector and
the bottom and right boundary sample locations are
derived as follows:

xColBr=,Cb+cbWidth (8-421)
yColBr= Cb+cbHeight (8-422)
rightBoundaryPos=subpic_treated_as_pic_flag[SubPi-
cldx] ? SubPicRightBoundaryPos:pic_width_in_
luma_samples-1 (8-423)
botBoundaryPos=subpic_treated_as_pic_flag[SubPi-
cldx] ? SubPicBotBoundaryPos:pic_height in
luma_samples-1 (8-424)
[0080] If yCb>>CtblLog2SizeY is equal to

yColBr>>CtbLog2SizeY, yColBr is less than or

equal to botBoundaryPos and xColBr is less than or

equal to rightBoundaryPos, the following applies:

[0081] The variable colCb specifies the luma cod-
ing block covering the modified location given by
((xColBr>>3)<<3, (yColBr>>3)<<3) inside the
collocated picture specified by ColPic.

[0082] The luma location (xColCb, yColCb) is set
equal to the top-left sample of the collocated luma
coding block specified by colCb relative to the
top-left luma sample of the collocated picture
specified by ColPic.

[0083] The derivation process for collocated
motion vectors as specified in clause 8.5.2.12 is
invoked with currCb, colCb, (xColCb, yColCb),
refldxLX and sbFlag set equal to 0 as inputs, and
the output is assigned to mvL.XCol and avail-
ableFlagl . XCol.

Otherwise, both components of mvL.XCol are set equal to 0
and availableFlagl. XCol is set equal to 0.

Luma Sample Bilinear Interpolation Process

[0084] Inputs to this process are:
[0085] a luma location in full-sample units (xInt,,
yIntL)s
[0086] a luma location in fractional-sample units

(xFrac;, yFrac;),
[0087]

Output of this process is a predicted luma sample value
predSamplel. X,

The variables shift1, shift2, shift3, shift4, offset1, offset2 and
offset3 are derived as follows:

the luma reference sample array refPicL.X;.

shift1=BitDepth ;6 (8-453)
offsetl=1<<(shift1-1) (8-454)
shift2=4 (8-455)
offset2=1<<(shift2-1) (8-456)
shift3=10-BitDepth (8-457)
shift4=BitDepth;~10 (8-458)
offsetd=1<<(shift4-1) (8-459)

The variable picW is set equal to pic_width_in_luma_
samples and the variable picH is set equal to pic_height_
in_luma_samples.

The luma interpolation filter coefficients tb,[p] for each Vis
fractional sample position p equal to xFrac; or yFrac; are
specified in Table 8-10.

The luma locations in full-sample units (xInt,, ylnt,) are
derived as follows for i=0 . . . 1:

[0088] If subpic_treated_as_pic_flag[SubPicldx] is
equal to 1, the following applies:

xInt,=Clip3(SubPicLeftBoundaryPos,SubPicRight-

BoundaryPos,xInt; +f) (8-460)
yInt,=Clip3 (SubPicTopBoundaryPos,SubPicBot-
BoundaryPos,yInt; +i) (8-461)
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[0089] Otherwise (subpic_treated_as_pic_flag[SubPi-
cldx] is equal to 0), the following applies:
xInt,=Clip3(0,pic#-1,sps_ref_wraparound_enabled_

flag ? ClipH((sps_ref_wraparound_offset mi-

nusl+1)*MinCbSizeY,pic W, (xInt; +7)):xInt; +i) (8-462)

yInt=Clip3(0,picH-1,yInt; +i) (8-463)

Derivation Process for Subblock-Based Temporal Merging
Candidates

[0090] Inputs to this process are:

[0091] a luma location (xCb, yCb) of the top-left
sample of the current luma coding block relative to the
top-left luma sample of the current picture,

[0092] a variable cbWidth specifying the width of the
current coding block in luma samples,

[0093] a variable cbHeight specifying the height of the
current coding block in luma samples.

[0094] the availability flag availableFlagA, of the
neighbouring coding unit,

[0095] the reference index refldx.XA, of the neigh-
bouring coding unit with X being 0 or 1, the prediction
list utilization flag predFlagl. XA, of the neighbouring
coding unit with X being 0 or 1,

[0096] the motion vector in Vis fractional-sample accu-
racy mvLXA, of the neighbouring coding unit with X
being 0 or 1.

Outputs of this process are:

[0097] the availability flag availableFlagSbCol,

[0098] the number of luma coding subblocks in hori-
zontal direction numSbX and in vertical direction num-
SbY,

[0099] the reference indices refldxLOSbCol and
refldxL1SbCol,
[0100] the luma motion vectors in Y16 fractional-sample

accuracy mvLOSbCol[xSbldx][ySbldx] and mvLISb-
Col[xSbldx][ySbldx] with xSbIdx=0 . . . numSbX-1,
ySbldx=0 . . . numSbY-1,

[0101] the prediction list utilization flags predFla-
gLOSbCol[xSbldx][ySbldx] and predFlagl.1SbCol
[xSbldx][ySbldx] with xSbldx=0 . . . numSbX-1,
ySbldx=0 . . . numSbY-1.

The availability flag availableFlagSbCol is derived as fol-
lows.

[0102] If one or more of the following conditions is
true, availableFlagSbCol is set equal to 0.

[0103] slice_temporal_mvp_enabled_flag is equal to
0

[0104] sps_sbtmvp_enabled_flag is equal to 0.

[0105] cbWidth is less than 8.
[0106] cbHeight is less than 8.
[0107] Otherwise, the following ordered steps apply:

[0108] 1. The location (xCtb, yCtb) of the top-left
sample of the luma coding tree block that contains the
current coding block and the location (xCtr, yCtr) of the
below-right center sample of the current luma coding
block are derived as follows:

xCtb=(xCb>>CtuLog2Size)<<CtuLog2Size (8-542)

yCtb=(yCb>>CtuLog2Size)<<CtuLog2Size (8-543)
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*Ctr=xCb+(cbWidth/2) (8-544)

yCtr=yCb+(cbHeight/2)

[0109] 2. The luma location (xColCtrCb, yColCtrCb) is
set equal to the top-left sample of the collocated luma
coding block covering the location given by (xCtr,
yCtr) inside ColPic relative to the top-left luma sample
of the collocated picture specified by ColPic.

[0110] 3. The derivation process for subblock-based
temporal merging base motion data as specified in
clause 8.5.5.4 is invoked with the location (xCtb,
yCtb), the location (xColCtrCb, yColCtrCb), the avail-
ability flag availableFlagA,, and the prediction list
utilization flag predFlagl. XA, and the reference index
refldxLXA |, and the motion vector mvLXA, with X
being 0 and 1 as inputs and the motion vectors
ctrMvLX, and the prediction list utilization flags ctr-
PredFlagl.X of the collocated block, with X being 0
and 1, and the temporal motion vector tempMv as
outputs.

[0111] 4. The variable availableFlagSbCol is derived as
follows:

[0112] If both ctrPredFlagl.0 and ctrPredFlagl.1 are
equal to 0, availableFlagSbCol is set equal to 0.
[0113]
1.
When availableFlagSbCol is equal to 1, the following
applies:

(8-545)

Otherwise, availableFlagSbCol is set equal to

[0114] The wvariables numSbX, numSbY, sbWidth,
sbHeight and refldx[LXSbCol are derived as follows:
numSbX=cbWidth>>3 (8-546)
numSb Y=cbHeight>>3 (8-547)
sbWidth=cbWidth/numSbX (8-548)
sbHeight=cbHeight/numSbY (8-549)
refldxLXSbCol=0 (8-550)

[0115] For xSbldx=0 . . . numSbX-1 and ySbldx=0 . .
. numSbY-1, the motion vectors mvLXSbCol[xSbldx]
[ySbldx] and prediction list utilization flags pred-
Flagl. XSbCol[xSbldx]|[ySbldx] are derived as follows:
[0116] The luma location (xSb, ySb) specifying the

top-left sample of the current coding subblock rela-
tive to the top-left luma sample of the current picture
is derived as follows:

xSb=xCb+xSbIdx*sbWidth+sbWidth/2 (8-551)

ySb=pCb+ySbldx*sbHeight+sbHeight/2

[0117] The location (xColSb, yColSb) of the collo-
cated subblock inside ColPic is derived as follows.

[0118]
yColSb=Clip3(yCtb,Min(CurPicHeightInSamples¥-1,

yCtb+(1<<CtbLog2SizeY)-1),ySb+(tempMv[1]
>>4Y) (8-553)

(8-552)

The following applies:

[0119] If subpic_treated_as_pic_flag[ SubPicldx]
is equal to 1, the following applies:
xColSb=Clip3(xCtb,Min(SubPicRightBoundaryPos,

xCtb+(1<<<CtbLog2Size¥)+3)xSb+(tempMv[0]
>>4)) (8-554)
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[0120] Otherwise (subpic_treated_as_pic_{flag
[SubPicldx] is equal to 0), the following applies:
xColSb=Clip3(xCtb,Min(CurPicWidthInSamples ¥-1,

xCtb+(1<<CtbLog2Size¥)+3),xSb+(tempMv[0]
>>4Y) (8-355)

Derivation Process for Subblock-Based Temporal Merging
Base Motion Data

[0121] Inputs to this process are:

[0122] the location (XCtb, yCtb) of the top-left sample
of the luma coding tree block that contains the current
coding block,

[0123] the location (xColCtrCb, yColCtrCb) of the top-
left sample of the collocated luma coding block that
covers the below-right center sample.

[0124] the availability flag availableFlagA, of the
neighbouring coding unit,

[0125] the reference index refldxl.XA, of the neigh-
bouring coding unit,

[0126] the prediction list utilization flag predFlagl. XA
of the neighbouring coding unit,

[0127] the motion vector in Vis fractional-sample accu-
racy mvLXA, of the neighbouring coding unit.

Outputs of this process are:

[0128] the motion vectors ctrMvLO and ctrMvL1,

[0129] the prediction list utilization flags ctrPredFlagl.0
and ctrPredFlagl.1,

[0130] the temporal motion vector tempMv.
The variable tempMyv is set as follows:
tempMv[0]=0 (8-558)
tempMv[1]=0 (8-559)

The variable currPic specifies the current picture.
When availableFlagA, is equal to TRUE, the following
applies:
[0131] If all of the following conditions are true,
tempMv is set equal to mvLOA;:

[0132] predFlagl.0A, is equal to 1,
[0133] DiffPicOrderCnt(ColPic, RefPicList[0]
[refldx[LOA,]) is equal to O,
[0134] Otherwise, if all of the following conditions are

true, tempMv is set equal to mvLL1A;:

[0135] slice_type is equal to B,
[0136] predFlagl1A, is equal to 1,
[0137] DiftfPicOrderCnt(ColPic, RefPicList[1]

[refldxL1A,]) is equal to O.

The location (xColCb, yColCb) of the collocated block
inside ColPic is derived as follows.

[0138]

yColCb=Clip3(yCtb,Min(CurPicHeightInSamples Y-
1,yCtb+(1<<CtbLog2SizeY)-1),yColCtrCb+
(tempMv[1]>>4))

[0139] If subpic_treated_as_pic_flag[SubPicldx] is
equal to 1, the following applies:

The following applies:

(8-560)

xColCb=Clip3(xCtb,Min(SubPicRightBoundaryPos,
xCtb+(1<<CtbLog2SizeY)+3),xColCtrCb+

(tempMv[0]>>4)) (8-561)
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[0140] Otherwise (subpic_treated_as_pic_flag[SubPi-
cldx] is equal to O, the following applies:
xColCb=Clip3(xCtb,Min(CurPicWidthInSamples¥-1,

xCtb+(1<<CtbLog2SizeY)+3) xColCtrCb+

(tempMv[0]>>4)) (8-562)

Luma Sample Interpolation Filtering Process

[0141] Inputs to this process are:
[0142] a luma location in full-sample units (xInt,
yIntL)s
[0143] a luma location in fractional-sample units

(xFrac;, yFrac;),

[0144] a luma location in full-sample units (xSblnt,,
ySblnt, ) specifying the top-left sample of the bounding
block for reference sample padding relative to the
top-left luma sample of the reference picture,

[0145] the luma reference sample array refPicL.X,,

[0146] the half sample interpolation filter index hpell-
fldx,

[0147] a variable sbWidth specifying the width of the

current subblock,

[0148] a variable sbHeight specifying the height of the
current subblock,

[0149] a luma location (xSb, ySb) specifying the top-
left sample of the current subblock relative to the
top-left luma sample of the current picture,

Output of this process is a predicted luma sample value
predSamplel.X,
The variables shiftl, shift2 and shift3 are derived as follows:

[0150] The variable shiftl is set equal to Min(4, Bit-
Depth,~8), the variable shift2 is set equal to 6 and the
variable shift3 is set equal to Max(2, 14-BitDepth,).

[0151] The variable picW is set equal to pic_width_in_
luma_samples and the variable picH is set equal to
pic_height_in_luma_samples.

The luma interpolation filter coefficients f,[p] for each Vis
fractional sample position p equal to xFrac; or yFrac; are
derived as follows:

[0152] If MotionModellde[xSb][ySb] is greater than O,
and sbWidth and sbHeight are both equal to 4, the luma
interpolation filter coeflicients f;[p] are specified in
Table 8-12.

[0153] Otherwise, the luma interpolation filter coeffi-
cients f;[p] are specified in Table 8-11 depending on
hpellfldx.

The luma locations in full-sample units (xInt,, ylnt,) are
derived as follows fori=0 ... 7:

[0154] If subpic_treated_as_pic_flag[SubPicldx] is

equal to 1, the following applies:

xInt=Clip3(SubPicLeftBoundaryPos,SubPicRight-

BoundaryPos,xInt; +i-3) (8-771)
yInt~=Clip3(SubPicTopBoundaryPos,SubPicBot-
BoundaryPos,yInt; +i-3) (8-772)

[0155] Otherwise (subpic_treated_as_pic_flag[SubPi-
cldx] is equal to 0), the following applies:

xInt~=Clip3(0,pic#-1,sps_ref_wraparound_enabled_
flag ? ClipH((sps_ref_wraparound_offset_mi-
nus1+1)*MinCbSizeY,pic W, xInt; +i-3):xInt; +i—
3) (8-773)

yInt=Clip3(0,picH-1,yInt; +i-3) (8-774)
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Chroma Sample Interpolation Process

[0156] Inputs to this process are:

[0157] a chroma location in full-sample units (xInt.,
yIntC)’

[0158] a chroma location in Y32 fractional-sample units
(xFrac_, yFrac.),

[0159] a chroma location in full-sample units (xSbIntC,
ySbIntC) specifying the top-left sample of the bound-
ing block for reference sample padding relative to the
top-left chroma sample of the reference picture,

[0160] a variable sbWidth specifying the width of the
current subblock,

[0161] a variable sbHeight specifying the height of the
current subblock,

[0162] the chroma reference sample array refPicL.X.
Output of this process is a predicted chroma sample value
predSamplel.X -

The variables shiftl, shift2 and shift3 are derived as follows:

[0163] The variable shiftl is set equal to Min(4, Bit-
Depth—8), the variable shift2 is set equal to 6 and the
variable shift3 is set equal to Max(2, 14-BitDepth).

[0164] The variable picW is set equal to pic_width_
in_luma_samples/SubWidthC and the variable picH - is
set equal to pic_height_in_luma_samples/SubHeightC.

The chroma interpolation filter coefficients f[p] for each V42
fractional sample position p equal to xFrac. or yFrac. are
specified in Table 8-13.

The variable xOffset is set equal to (sps_ref_wraparound_
offset_minus1+1)*MinCbSizeY)/SubWidthC.

The chroma locations in full-sample units (xInt;, yInt;) are
derived as follows for i=0 . . . 3:

[0165] If subpic_treated_as_pic_flag[SubPicldx] is
equal to 1, the following applies:

xInt,=Clip3(SubPicLeftBoundaryPos/SubWidthC,

SubPicRightBoundaryPos/SubWidthC,xInt, +i) (8-785)
yInt,=Clip3(SubPicTopBoundaryPos/SubHeight C,
SubPicBotBoundaryPos/SubHeightC,yInt, +i) (8-786)

[0166] Otherwise (subpic_treated_as_pic_flag[SubPi-
cldx] is equal to 0), the following applies:
xInt,=Clip3(0,picW—1,sps_ref_wraparound_enabled_

flag ? ClipH(xOffset,picW,xInt Ai—1):xInt A+i—
1] (8-787)

yInt,=Clip3(0,picH —1,yInt -+i-1)

[0167] 2.4 Example Encoder-Only Group of Pictures
(GOP)-Based Temporal Filter

[0168] In some embodiments, an encoder-only temporal
filter can be implemented. The filtering is done at the
encoder side as a pre-processing step. Source pictures before
and after the selected picture to encode are read and a block
based motion compensation method relative to the selected
picture is applied on those source pictures. Samples in the
selected picture are temporally filtered using sample values
after motion compensation.

[0169] The overall filter strength is set depending on the
temporal sub layer of the selected picture as well as the
quantization parameter (QP). Generally, only pictures at
temporal sub layers 0 and 1 are filtered and pictures of layer
0 are filtered by a stronger filter than pictures of layer 1. The
per sample filter strength is adjusted depending on the
difference between the sample value in the selected picture
and the co-located samples in motion compensated pictures

(8-788)
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so that small differences between a motion compensated
picture and the selected picture are filtered more strongly
than larger differences.
[0170] GOP Based Temporal Filter
[0171] A temporal filter is introduced directly after reading
picture and before encoding. Below are the steps described
in more detail.
[0172] Operation 1: Pictures are read by the encoder
[0173] Operation 2: If a picture is low enough in the
coding hierarchy, it is filtered before encoding. Other-
wise the picture is encoded without filtering. Random
access (RA) pictures with picture order count (POC) %
8==0 are filtered as well as low delay (LD) pictures
with POC % 4==0. Artificial intelligence (Al) pictures
are generally not filtered.
[0174] The overall filter strength, s, is set according to the
equation below for RA.

()_{1.5, n mod 16 =0
5o =10.95, # mod 16 %0

[0175] where n is the number of pictures read.
[0176] For the LD case, s,(n)=0.95 is used.

[0177] Operation 3: Two pictures before and/or after the
selected picture (referred to as original picture further
down) are read. In the edge cases e.g., if it is the first
picture or close to the last picture, generally only the
available pictures are read.

[0178] Operation 4: Motion of the read pictures before
and after, relative to the original picture is estimated per
8x8 picture block.

[0179] A hierarchical motion estimation scheme is used
and the layers L0, L1 and 1.2, are illustrated in FIG. 2.
Subsampled pictures are generated by averaging each 2x2
block for all read pictures and the original picture, e.g. L1 in
FIG. 1. 1.2 is derived from L1 using the same subsampling
method.

[0180] FIG. 2 shows examples of different layers of the
hierarchical motion estimation. L0 is the original resolution.
L1 is a subsampled version of LO. L2 is a subsampled
version of L1.

[0181] First, motion estimation is done for each 16x16
block in L.2. The squared difference is calculated for each
selected motion vector and the motion vector corresponding
to the smallest difference is selected. The selected motion
vector is then used as initial value when estimating the
motion in L.1. Then the same is done for estimating motion
in LO. As a final step, subpixel motion is estimated for each
8x8 block by using an interpolation filter on LO.

[0182] The VVC Test Model (VTM) 6-tap interpolation
filter can used:

0: 0, 0, 64, 0, 0, 0
1: 1, -3, 64, 4, -2, 0
2: 1, -6, 62, 9, -3, 1
3: 2, -8, 60, 14, -5, 1
4: 2, -9, 57, 19, =7, 2
5: 3, -10, 53, 24, -8, 2
6: 3, -11, 50, 29, -9, 2
7 3, -11, 44, 35, -10, 3
8: 1, -7, 38, 38, -7, 1
9: 3, -10, 35, 44, -11, 3
10: 2, -9, 29, 50, -11, 3
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11: 2, —8, 24, 53, -10, 3

12: 2, -7, 19, 57, -9, 2

13: 1, -5, 14, 60, -8, 2

14: 1, -3, 9, 62, —0, 1

15: 0, -2, 4, 64, -3, 1

[0183] Operation 5: Motion compensation is applied on
the pictures before and after the original picture accord-
ing to the best matching motion for each block, e.g., so
that the sample coordinates of the original picture in
each block have the best matching coordinates in the
referenced pictures.

[0184] Operation 6: The samples are processed one by
one for the luma and chroma channels as described in
the following steps.

[0185] Operation 7: The new sample value, [

, L,, is cal-
culated using the following formula.

LY wl, ohG)
== T
1+ Ziow,(i, a)

[0186] Where I, is the sample value of the original sample,
L(1) is the intensity of the corresponding sample of motion
compensated picture i and w,(i, a) is the weight of motion
compensated picture i when the number of available motion
compensated pictures is a.

[0187] In the luma channel, the weights, w,(i, a), is defined
as follows:

_AIe?
Wyl @) = 5155 (m)s, (i, )e 27HOP?
Where
s, =04
A 12, i=0
s 2)‘{1.0, i=1
0.60, i=0
A 0.85, i=1
A= 0gs5 j22
0.60, i=3

[0188] For all other cases of i, and a: s,(i, a)=0.3
6,(QP)=3*(QP-10)
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[0189] For the chroma channels, the weights, w,(i, a), is
defined as follows:

_AIG?

Wolis @) = sc50 (s, G, e 2%

[0190] Where 5.=0.55 and 6.=30

[0191] Operation 8: The filter is applied for the current

sample. The resulting sample value is stored separately.

[0192] Operation 9: The filtered picture is encoded.
[0193] 2.5 Example Picture Partitions (Tiles, Bricks,
Slices)
[0194] In some embodiments, a picture is divided into one
or more tile rows and one or more tile columns. A tile is a
sequence of CTUs that covers a rectangular region of a
picture.
[0195] A tile is divided into one or more bricks, each of
which consist of a number of CTU rows within the tile.
[0196] A tile that is not partitioned into multiple bricks is
also referred to as a brick. However, a brick that is a true
subset of a tile is not referred to as a tile.
[0197] Aslice either contains a number of tiles of a picture
or a number of bricks of a tile.
[0198] A sub-picture contains one or more slices that
collectively cover a rectangular region of a picture.
[0199] Two modes of slices are supported, namely the
raster-scan slice mode and the rectangular slice mode. In the
raster-scan slice mode, a slice contains a sequence of tiles in
a tile raster scan of a picture. In the rectangular slice mode,
a slice contains a number of bricks of a picture that collec-
tively form a rectangular region of the picture. The bricks
within a rectangular slice are in the order of brick raster scan
of the slice.
[0200] FIG. 5 shows an example of raster-scan slice
partitioning of a picture, where the picture is divided into 12
tiles and 3 raster-scan slices.
[0201] FIG. 6 shows an example of rectangular slice
partitioning of a picture, where the picture is divided into 24
tiles (6 tile columns and 4 tile rows) and 9 rectangular slices.
[0202] FIG. 7 shows an example of a picture partitioned
into tiles, bricks, and rectangular slices, where the picture is
divided into 4 tiles (2 tile columns and 2 tile rows), 11 bricks
(the top-left tile contains 1 brick, the top-right tile contains
5 bricks, the bottom-left tile contains 2 bricks, and the
bottom-right tile contain 3 bricks), and 4 rectangular slices.

Picture Parameter Set RBSP Syntax

AI(H=L(i)-1, [0203]
Descriptor
pic_parameter_set_rbsp( ) {
single_tile_in_pic_flag u(l)
if( !single_in_pic_flag ) {
vniform_tile_spacing_flag u ()
if( uniform_tile_spacing_flag ) {
tile_cols_width_minus1 ue (v)
tile_rows_height_minnsl ue (v)
} else {
num_tile_columns_minus] ue (v)
num_tile_rows_minus1 ue (v)

for( i =0; i < num_tile_columns_minus1; i++ )
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-continued

tile_column_width_minus1[ i ] ue (v)
for(i=0;i<num_tile rows_minusl; i++ )
tile_row_height minus1[ i ] ue (v)
¥
brick_splitting present_flag u (1)
if( uniform_tile spacing flag && brick_splitting present_flag )
num_tiles_in_pic_minusl ue (v)
for( i = 0; brick_splitting present flag && i <=
num_tiles_in_pic_minusl + 1; i++ ) {
if( RowHeight[ i ]>1)
brick_split_flag[ i ] u (1)
if( brick_split_flag[ i]) {
if( RowHeight[i]>2)

uniform_brick_spacing flag[ i ] u (1)
if( uniform_brick_spacing flag[ i ] )

brick_height_minusl1[ i ] ue (v)
else {

num_brick_rows_minus2[ i ] ue (v)

for( j = 0; j <= num_brick_rows_minus2[ i ]; j++ )

brick_row_height minusl[i ][] ] ue (v)
¥
¥
¥
single brick per_slice_flag u (1)
if( !single_brick per_slice_flag )
rect_slice_flag u (1)
if( rect_slice_flag && !single_brick_per_slice_flag ) {
num_slices_in_pic_minusl ue (v)
bottom_right brick idx_length_minusl ue (v)
for(i=0;i < num_slices_in_pic_minusl; i++ ) {
bottom_right brick idx_delta[ i ] u (v)
brick_idx_delta_sign_flag[ i ] u (1)
¥
¥
loop_filter_across_bricks enabled_flag u (1)

if( loop_filter_across_bricks_enabled_flag )

loop_filter_across_slices_enabled_flag u (1)

}
if( rect_slice_flag ) {

signalled_slice_id_flag u (1)
if( signalled_slice_id_flag ) {

signalled_slice_id_length_minusl ue (v)

for(i=0;i<=num_slices_in_pic_minusl; i++ )

slice_id[ i ] u (v)
¥
¥
Descriptor

slice_header( ) {

slice_pic_parameter_set_id ue (v)
if( rect_slice_flag | | NumBricksInPic > 1)
slice_address u (v)

if( lrect_slice_flag && !single_brick per_slice_flag )
num_bricks_in_slice_minusl ue (v)
non_reference_picture_flag u (1)

slice_type ue (v)
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[0204] single_tile_in_pic_flag equal to 1 specifies that When single_tile_in_pic_flag is equal to 0, NumTilesInPic

there is only one tile in each picture referring to the may be greater than 1.
Picture Parameter Set (PPS). single_tile_in_pic_flag [0211] tile_column_width_minusl[i] plus 1 specifies
equal to O specifies that there is more than one tile in the width of the i-th tile column in units of CTBs.
each picture referring to the PPS. [0212] tile_row_height_minus1[i] plus 1 specifies the
[0205] NOTE—In absence of further brick splitting height of the i-th tile row in units of CTBs.
within a tile, the whole tile is referred to as a brick. [0213] brick_splitting_present_flag equal to 1 specifies
When a picture contains only a single tile without that one or more tiles of pictures referring to the PPS
further brick splitting, it is referred to as a single may be divided into two or more bricks. brick_split-
brick. ting_present_flag equal to O specifies that no tiles of
It may be a requirement of bitstream conformance that the pictures referring to the PPS are divided into two or
value of single_tile_in_pic_flag may be the same for all more bricks.
PPSs that are referred to by coded pictures within a CVS. [0214] num_tiles_in_pic_minusl plus 1 specifies the
[0206] uniform_tile_spacing_flag equal to 1 specifies number of'tiles in each picture referring to the PPS. The

that tile column boundaries and likewise tile row
boundaries are distributed uniformly across the picture
and signalled using the syntax elements tile_cols_
width_minus] and tile_rows_height_minus1. uniform_
tile_spacing_flag equal to O specifies that tile column
boundaries and likewise tile row boundaries may or
may not be distributed uniformly across the picture and
signalled using the syntax elements num_tile_col-
umns_minusl and num_tile_rows_minus] and a list of
syntax element pairs tile_column_width_minus1[i] and
tile_row_height_minus1[i]. When not present, the
value of uniform_tile_spacing flag is inferred to be
equal to 1.

[0207] tile_cols_width_minusl plus 1 specifies the
width of the tile columns excluding the right-most tile
column of the picture in units of CTBs when uniform_
tile_spacing_flag is equal to 1. The value of tile_cols_
width_minus] may be in the range of 0 to
PicWidthInCtbsY -1, inclusive. When not present, the
value of'tile_cols_width_minus] is inferred to be equal
to PicWidthInCtbsY-1.

[0208] tile_rows_height_minusl plus 1 specifies the
height of the tile rows excluding the bottom tile row of
the picture in units of CTBs when uniform_tile_spac-
ing_flag is equal to 1. The value of tile_rows_height_
minus] may be in the range of 0 to PicHeightInCthsY -
1, inclusive. When not present, the value of tile_rows_
height_ minusl is inferred to be equal to
PicHeightInCtbsY-1.

[0209] num_tile_columns_minusl plus 1 specifies the
number of tile columns partitioning the picture when
uniform_tile_spacing_flag is equal to 0. The value of
num_tile_columns_minus1 may be in the range of 0 to
PicWidthInCtbsY-1, inclusive. If single_tile_in_pic_
flag is equal to 1, the value of num_tile_columns_
minus] is inferred to be equal to 0. Otherwise, when
uniform_tile_spacing_flag is equal to 1, the value of
num_tile_columns_minus1 is inferred as specified in
clause 6.5.1.

[0210] num_tile_rows_minusl plus 1 specifies the
number of tile rows partitioning the picture when
uniform_tile_spacing_flag is equal to 0. The value of
num_tile_rows_minusl may be in the range of 0 to
PicHeightInCtbsY -1, inclusive. If single_tile_in_pic_
flag is equal to 1, the value of num_tile_rows_minus]
is inferred to be equal to 0. Otherwise, when uniform_
tile_spacing_flag is equal to 1, the value of num_tile_
rows_minus] is inferred as specified in clause 6.5.1.

The variable NumTilesInPic is set equal to (num_tile_
columns_minus1+1)*(num_tile_rows_minus1+1).

value of num_tiles_in_pic_minusl may be equal to
NumTilesInPic-1. When not present, the value of
num_tiles_in_pic_minus] is inferred to be equal to
NumTilesInPic-1.

[0215] brick_split_flag[i] equal to 1 specifies that the
i-th tile is divided into two or more bricks. brick_split_
flag[i] equal to O specifies that the i-th tile is not divided
into two or more bricks. When not present, the value of
brick_split_flag|i] is inferred to be equal to 0. In some
embodiments, PPS parsing dependency on SPS is intro-
duced by adding the syntax condition “if(RowHeight
[1]>1)” (e.g., similarly for uniform_brick_spacing flag
[i])-

[0216] uniform_brick_spacing_flag[i] equal to 1 speci-
fies that horizontal brick boundaries are distributed
uniformly across the i-th tile and signalled using the
syntax element brick_height_minusl[i]. uniform_
brick_spacing_flag[i] equal to O specifies that horizon-
tal brick boundaries may or may not be distributed
uniformly across i-th tile and signalled using the syntax
element num_brick_rows_minus2[i] and a list of syn-
tax elements brick_row_height_minus1[i][j]. When not
present, the value of uniform_brick_spacing_flag[i] is
inferred to be equal to 1.

[0217] brick_height_minusl1[i] plus 1 specifies the
height of the brick rows excluding the bottom brick in
the i-th tile in units of CTBs when uniform_brick
spacing_flag[i] is equal to 1. When present, the value of
brick_height_minusl may be in the range of 0 to
RowHeight[i]-2, inclusive. When not present, the
value of brick_height_minus1[i] is inferred to be equal
to RowHeight[i]-1.

[0218] num_brick_rows_minus2[i] plus 2 specifies the
number of bricks partitioning the i-th tile when uni-
form_brick_spacing_flag|[i] is equal to 0. When pres-
ent, the value of num_brick_rows_minus2[i] may be in
the range of 0 to RowHeight[i]-2, inclusive. If brick_
split_flag[i] is equal to O, the value of num_brick_
rows_minus2[i] is inferred to be equal to —1. Other-
wise, when uniform_brick_spacing_flag[i] is equal to
1, the value of num_brick_rows_minus2[i] is inferred
as specified in 6.5.1.

[0219] brick_row_height_minus1[i][j] plus 1 specifies
the height of the j-th brick in the i-th tile in units of
CTBs when uniform_tile_spacing_flag is equal to 0.

The following variables are derived, and, when uniform_
tile_spacing_flag is equal to 1, the values of num_tile_
columns_minusl and num_tile_rows_minusl are inferred,
and, for each i ranging from 0 to NumTilesInPic-1, inclu-
sive, when uniform_brick_spacing_flag[i] is equal to 1, the
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value of num_brick_rows_minus2[i] is inferred, by invoking
the CTB raster and brick scanning conversion process as
specified in clause 6.5.1:

[0220] the list RowHeight[j] for j ranging from 0 to
num_tile_rows_minusl, inclusive, specifying the
height of the j-th tile row in units of CTBs,

[0221] the list CtbAddrRsToBs[ctbAddrRs] for
ctbAddrRs ranging from 0 to PicSizeInCtbsY -1, inclu-
sive, specifying the conversion from a CTB address in
the CTB raster scan of a picture to a CTB address in the
brick scan,

[0222] the list CtbAddrBsToRs[ctbAddrBs] for
ctbAddrBs ranging from 0 to PicSizeInCtbsY -1, inclu-
sive, specifying the conversion from a CTB address in
the brick scan to a CTB address in the CTB raster scan
of a picture,

[0223] the list Brickld[ctbAddrBs] for ctbAddrBs rang-
ing from 0 to PicSizelnCtbsY-1, inclusive, specitying
the conversion from a CTB address in brick scan to a
brick ID,

[0224] the list NumCtusInBrick|[brickldx] for brickldx
ranging from 0 to NumBricksInPic-1, inclusive, speci-
fying the conversion from a brick index to the number
of CTUs in the brick,

[0225] the list FirstCtbAddrBs[brickldx] for brickldx
ranging from 0 to NumBricksInPic-1, inclusive, speci-
fying the conversion from a brick ID to the CTB
address in brick scan of the first CTB in the brick.

[0226] single_brick_per_slice_flag equal to 1 specifies
that each slice that refers to this PPS includes one brick.
single_brick_per_slice_flag equal to 0 specifies that a
slice that refers to this PPS may include more than one
brick. When not present, the value of single_brick_per_
slice_flag is inferred to be equal to 1.

[0227] rect_slice_flag equal to O specifies that bricks
within each slice are in raster scan order and the slice
information is not signalled in PPS. rect_slice_flag
equal to 1 specifies that bricks within each slice cover
a rectangular region of the picture and the slice infor-
mation is signalled in the PPS. When brick_splitting_
present_flag is equal to 1, the value of rect_slice_flag
may be equal to 1. When not present, rect_slice_flag is
inferred to be equal to 1.

[0228] num_slices_in_pic_minus] plus 1 specifies the
number of slices in each picture referring to the PPS.
The value of num_slices_in_pic_minus1 may be in the
range of 0 to NumBricksInPic-1, inclusive. When not
present and single_brick_per_slice_flag is equal to 1,
the value of num_slices_in_pic_minusl is inferred to
be equal to NumBricksInPic-1.

[0229] bottom_right_brick_idx_length_minusl plus 1
specifies the number of bits used to represent the syntax
element bottom_right_brick_idx_delta[i]. The value of
bottom_right_brick_idx_length_minusl may be in the
range of 0 to Ceil(Log2(NumBricksInPic))-1, inclu-
sive.

[0230] bottom_right_brick_idx_delta[i] when 1 is
greater than 0 specifies the difference between the brick
index of the brick located at the bottom-right corner of
the i-th slice and the brick index of the bottom-right
corner of the (i-1)-th slice. bottom_right_brick_idx_
delta[0] specifies the brick index of the bottom right
corner of the 0-th slice. When single_brick_per_slice_
flag is equal to 1, the value of bottom_right_brick_idx_
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delta[i] is inferred to be equal to 1. The value of the
BottomRightBrickldx[num_slices_in_pic_minusl] is
inferred to be equal to NumBricksInPic-1. The length
of the bottom_right_brick_idx_delta[i] syntax element
is bottom_right_brick_idx_length_minusl+1 bits.
[0231] brick_idx_delta_sign_flag|i] equal to 1 indicates
a positive sign for bottom_right_brick_idx_delta[i].
sign_bottom_right_brick_idx_delta[i] equal to O indi-
cates a negative sign for bottom_right_brick_idx_delta
[i].
It may be a requirement of bitstream conformance that a
slice may include either a number of complete tiles or only
a consecutive sequence of complete bricks of one tile.

The variable TopLeftBrickldx[i], BottomRightBrickIdx[i],
NumBricksInSlice[i] and BricksToSliceMap[j], which
specify the brick index of the brick located at the top left
corner of the i-th slice, the brick index of the brick located
at the bottom right corner of the i-th slice, the number of
bricks in the i-th slice and the mapping of bricks to slices,
are derived as follows:

for(j =0;i==0 && j < NumBricksInPic; j++ )

BricksToSliceMap[ j ] = -1
NumBricksInSlice[ i ] = 0
BottomRightBrickIdx[ i ] = bottom_right_brick_idx_delta[ i ] ] +
((i==0)20:

( brick_idx_delta_sign flag[ i ] ? BottomRightBrickIdx[i- 1] :

-BottomRightBrickIdx[ i-1 ] )
for( j = BottomRightBrickIdx[ i ]; j >=0; j- - ) {

if( BrickColBd[ j ] <= BrickColBd[ BottomRightBrickIdx[ i ] ] &&

(7-43)

BrickRowBd[ j ] <= BrickRowBd[ BottomRightBrickldx[ i ] ] &&
BricksToSliceMap[j ] ==-1) {
TopLeftBrickldx[ i ] =]

NumBricksInSlice[ i ]++
BricksToSliceMap[ j ] =1

General Slice Header Semantics

[0232] When present, the value of each of the slice header
syntax elements slice_pic_parameter_set_id, non_referen-
ce_picture_flag, colour_plane_id, slice_pic_order_cnt_lsb,
recovery_poc_cnt, no_output_of_prior_pics_flag, pic_out-
put_flag, and slice_temporal_mvp_enabled_flag may be the
same in all slice headers of a coded picture.

The variable CuQpDeltaVal, specifying the difference
between a luma quantization parameter for the coding unit
containing cu_qgp_delta_abs and its prediction, is set equal to
0. The wvariables CuQpOffset,,, CuQpOffset.,, and
CuQpOffsetcb.,, specifying values to be used when deter-
mining the respective values of the Qp'.,, Qp'.,. and
Qp'cpc quantization parameters for the coding unit contain-
ing cu_chroma_qp_offset_flag, are all set equal to 0.

[0233] slice_pic_parameter_set_id specifies the value
of pps_pic_parameter_set_id for the PPS in use. The
value of slice_pic_parameter_set_id may be in the
range of 0 to 63, inclusive.

It may be a requirement of bitstream conformance that the
value of Temporalld of the current picture may be greater
than or equal to the value of Temporalld of the PPS that has
pps_pic_parameter_set_id equal to slice_pic_parameter_
set_id.
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[0234] slice_address specifies the slice address of the
slice. When not present, the value of slice_address is
inferred to be equal to 0.

If rect_slice_flag is equal to 0, the following applies:

[0235] The slice address is the brick 1D as specified by
Equation (7-59).

[0236] The length of slice_address is Ceil(Log2 (Num-
BricksInPic)) bits.

[0237] The value of slice_address may be in the range
of 0 to NumBricksInPic-1, inclusive.

Otherwise (rect_slice_flag is equal to 1), the following

applies:
[0238] The slice address is the slice ID of the slice.
[0239] The length of slice_address is signalled_slice_

id_length_minusl+1 bits.

[0240] If signalled_slice_id_flag is equal to O, the value
of slice_address may be in the range of 0 to num_
slices_in_pic_minus1, inclusive. Otherwise, the value
of slice_address may be in the range of 0 to 2(&"a/ed-
sliceiidilengthiminusl+l)—l, inCluSiVe.

It may be a requirement of bitstream conformance that the
following constraints apply:

[0241] The value of slice_address may not be equal to
the value of slice_address of any other coded slice NAL
unit of the same coded picture.

[0242] When rect_slice_flag is equal to 0, the slices of
a picture may be in increasing order of their slice_
address values.

[0243] The shapes of the slices of a picture may be such
that each brick, when decoded, may have its entire left
boundary and entire top boundary consisting of a
picture boundary or consisting of boundaries of previ-
ously decoded brick(s).
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[0244] num_bricks_in_slice_minusl, when present,
specifies the number of bricks in the slice minus 1. The
value of num_bricks_in_slice_minusl may be in the
range of 0 to NumBricksInPic-1, inclusive. When
rect_slice_flag is equal to O and single brick_per_
slice_flag is equal to 1, the value of num_bricks_in_
slice_minusl] is inferred to be equal to 0. When single_
brick_per_slice_flag is equal to 1, the value of num_
bricks_in_slice_minus1 is inferred to be equal to 0.

The variable NumBricksInCurrSlice, which specifies the
number of bricks in the current slice, and SliceBricklIdx][i],
which specifies the brick index of the i-th brick in the current
slice, are derived as follows:

if( rect_slice_flag ) {
sliceldx = 0
while( slice address != slice_id[ sliceldx ] )
sliceldx++
NumBricksInCurrSlice = NumBricksInSlice[ sliceldx ]
brickldx = TopLeftBrickIdx[ sliceldx ]
for( bldx = 0; brickIdx <= BottomRightBrickIdx[ sliceldx ];
brickIdx++ )(7-92)
if{ BricksToSliceMap| brickIdx ] = = sliceldx )
SliceBrickIdx[ bldx++ ] = brickldx
}else {
NumBricksInCurrSlice = num_bricks_in_slice_minusl + 1
SliceBrickIdx[ 0 ] = slice_address
for( i =1; i < NumBricksInCurrSlice; i++ )
SliceBrickIdx[ i ] = SliceBrickIdx[i- 1]+ 1

The variables SubPicldx, SubPicLeftBoundaryPos, SubPic-
TopBoundaryPos, SubPicRightBoundaryPos, and Sub-
PicBotBoundaryPos are derived as follows:

SubPicldx =

CtbToSubPicldx[ CtbAddrBsToRs[ FirstCtbAddrBs[ SliceBrickIdx[ 0]]1] ]
if( subpic_treated_as_pic_flag[ SubPicldx ] ) {
SubPicLeftBoundaryPos =
SubPicLeft[ SubPicldx ] * ( subpic_grid_col width_minusl +1 ) * 4
SubPicRightBoundaryPos =
( SubPicLeft[ SubPicldx ] + SubPicWidth[ SubPicldx ] ) *

( subpic_grid_col_width_minusl + 1) * 4

(7-93)

SubPicTopBoundaryPos =
SubPicTop[ SubPicldx ] * ( subpic_grid_row_height minusl + 1 )* 4
SubPicBotBoundaryPos = ( SubPicTop[ SubPicldx ] + SubPicHeight[ SubPicldx ] ) *
( subpic_grid_row_height_minusl + 1) * 4

[0245] 2.6 Example Syntax and Semantics

Sequence Parameter Set RBSP Syntax

[0246]
Descriptor
seq_parameter_set_rbsp( ) {
sps_decoding_parameter_set_id u4)
sps_video_parameter_set_id u4)
sps_max_sub_layers_minus1 u@3)
sps_reserved_zero_5bits u()
profile_tier_level( sps_max_sub_layers_minusl )
gdr_enabled_flag u(l)
sps_seq_parameter_set_id u4)
chroma_format_idc u2)

if( chroma_format idc == 3)
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-continued
Descriptor
separate_colour_plane_flag u(l)
ref_pic_resampling enabled_flag u(l)
sps_seq_parameter_set_id ue(v)
chroma_format_idc ue(v)
if( chroma_format idc == 3)
separate_colour_plane_flag u(l)
pic_width_max_in_luma_samples ue(v)
pic_height max_in_luma samples ue(v)
sps_log2_ctu_size_minus5 u(2)
subpics_present_flag u(l)
sps_num_subpics_minus1 m
Jor(i=0; i <= sps_num_subpics_minusl; i++) { -
subpic_ctu_top_left x[ i ] u(v)
subpic_ctu_top_left y| i] u(v)
subpic_width_minusl| i ] W
subpic_height_minusl| i ] u(v)
subpic_treated_as_pic_flag| i | u(l)
loop_filter_across_subpic_enabled flag| i ] @
i
" sps_subpic_id_present_flag u(l)
if( sps_subpics_id_present_flag ) { -
sps_subpic_id_signalling_present flag u(l)
if( sps_subpic_id_signalling_present flag ) { —
sps_subpic_id_len_minusl ue(v)
for(i=0; i <= sps_num_subpics_minusl; i++ ) -
sps_subpic_id[ i ] u()
bit_depth_minus8 ue(v)
min_gp_prime_ts_minus4 ue(v)
sps_weighted_pred_flag u(l)
sps_weighted_bipred_flag u(l)
log2_max_pic_order_cnt_Isb_minus4 u(4)
if( sps_max_sub_layers_minusl > 0 )
sps_sub_layer_ordering info_present_flag u(l)
for( i = ( sps_sub_layer_ordering info_present flag ? 0 :
sps_max_sub_layers_minusl );
i <= sps_max_sub_layers_minusl; i++ ) {
sps_max_dec_pic_buffering minusl[ i ] ue(v)
sps_max_num_reorder_pics[ i ] ue(v)
sps_max_latency_increase_plus1[ i ] ue(v)
}
long_term_ref_pics_flag u(l)
inter_layer_ref pics_present flag u(l)
sps_idr_rpl_present_flag u(l)
1pll_same_as_1pl0_flag u(l)
for(i=0;i<!rpll_same as_rplO_flag ? 2 : 1; i++ ) {
num_ref pic_lists in_sps[ i ] ue(v)
for( j = 0; j < num_ref pic_lists_in_sps[ i ]; j++ )
ref_pic_list_struct( i, j )
if( ChromaArrayType !=0)
qtbtt_dual_tree_intra_flag u(l)
log2_min_luma_coding block size_minus2 ue(v)
partition_constraints_override_enabled_flag u(l)
sps_log2_diff min_qt_min_cb_intra_slice_luma ue(v)
sps_log2_diff min_qt_min_cb_inter_slice ue(v)
sps_max_mtt_hierarchy_depth_inter_slice ue(v)
sps_max_mtt_hierarchy_depth_intra_slice_luma ue(v)
if( sps_max_mtt_hierarchy_depth_intra_slice_luma !=0) {
sps_log2_diff max_bt_min_qt_intra_slice_luma ue(v)
sps_log2_diff max_tt min_qt_intra_slice_luma ue(v)
if( sps_max_mtt_hierarchy_depth_inter_slice !=0) {
sps_log2_diff max_ bt min_qt_inter_slice ue(v)
sps_log2_diff max_tt min_qt_inter_slice ue(v)
if( qtbtt_dual_tree_intra_flag ) {
sps_log2_diff min_qt_min_cb_intra_slice_chroma ue(v)
sps_max_mtt_hierarchy_depth_intra_slice_chroma ue(v)

if( sps_max_mtt_hierarchy_depth_intra_slice_chroma !=0) {

Mar. 28, 2024
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-continued
Descriptor
sps_log2_diff max_bt_min_qt_intra_slice_chroma ue(v)
sps_log2_diff max_tt_min_qt_intra_slice_chroma ue(v)
¥
sps_max_luma_transform_size_64_flag u(l)
sps_joint_cber_enabled_flag u(l)
if( ChromaArrayType !=0) {
same_qp_table_for_chroma u(l)
numQpTables = same_qp_table_for chroma ? 1 : (
sps_joint_cber_enabled_flag 2 3 : 2)
for( i =0; i< numQpTables; i++ ) {
qp_table_start_ minus26[ i ] se(v)
num_points_in_qp_table_minus1[ i ] ue(v)
for( j = 0; j <= num_points_in_gp_table_minus1[ i ]; j++ ) {
delta_qp_in_val_minus1[ i ][] ] ue(v)
delta_qp_diff val[ i ][] ] ue(v)
¥
¥
sps_sao_enabled_flag u(l)
sps_alf_enabled_flag u(l)
sps_transform_skip_enabled_flag u(l)
if( sps_transform_skip_enabled_flag )
sps_bdpem_enabled_flag u(l)
if( sps_bdpem_enabled flag && chroma_format idec == 3)
sps_bdpem_chroma_enabled_flag u(l)
sps_ref wraparound_enabled_flag u(l)
if( sps_ref wraparound_enabled_flag )
sps_ref wraparound_offset_minus1 ue(v)
sps_temporal_mvp_enabled_flag u(l)
if( sps_temporal_mvp_enabled_flag )
sps_sbtmvp_enabled_flag u(l)
sps_amvr_enabled_flag u(l)
sps_bdof enabled_flag u(l)
if( sps_bdof enabled_flag )
sps_bdof pic_present_flag u(l)
sps_smvd_enabled_flag u(l)
sps_dmvr_enabled_flag u(l)
if( sps_dmvr_enabled_flag )
sps_dmvr_pic_present_flag u(l)
sps_mmvd_enabled_flag u(l)
sps_isp_enabled_flag u(l)
sps_mul_enabled_flag u(l)
sps_mip_enabled_flag u(l)
if( ChromaArrayType !=0)
sps_cclm_enabled_flag u(l)
if( sps_cclm_enabled_flag && chroma_format ide ==1)
sps_cclm_colocated_chroma_flag u(l)
sps_mts_enabled_flag u(l)
if( sps_mts_enabled_flag ) {
sps_explicit_mts_intra_enabled_flag u(l)
sps_explicit_mts_inter_enabled_flag u(l)
sps_sbt_enabled_flag u(l)
sps_affine_enabled_flag u(l)
if( sps_affine_enabled_flag ) {
sps_affine_type_flag u(l)
sps_affine_amvr_enabled_flag u(l)
sps_affine_prof enabled flag u(l)
if( sps_affine_prof enabled flag )
sps_prof_pic_present_flag u(l)
if( chroma_format_ide = =3) {
sps_palette_enabled_flag u(l)
sps_act_enabled_flag u(l)
¥
sps_bew_enabled_flag u(l)
sps_ibc_enabled_flag u(l)
sps_ciip_enabled_flag u(l)
if( sps_mmvd_enabled_flag )
sps_fpel_mmvd_enabled_flag u(l)
sps_triangle_enabled_flag u(l)
sps_lmes_enabled_flag u(l)

sps_lfnst_enabled_flag u(l)
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Descriptor

sps_ladf enabled flag
if( sps_ladf _enabled_flag ) {
sps_num_ladf_intervals_minus2
sps_ladf lowest_interval_qp_offset
for( i=0;1i<sps_num_ladf intervals_minus2 + 1; i++ ) {
sps_ladf qp_offset[ i ]
sps_ladf delta_threshold _minusl[ i ]

sps_scaling list_enabled_flag
sps_loop_filter_across_virtual_boundaries_disabled_present_flag
if( sps_loop_filter_across_virtual_boundaries_disabled_present_flag ) {
sps_num_ver_virtual_boundaries
for( i =0;1i < sps_num_ver_virtual_boundaries; i++ )
sps_virtual_boundaries_pos_x[ i ]
sps_num_hor_virtual_boundaries
for(i=0;1i<sps_num_hor_virtual_boundaries; i++ )
sps_virtual_boundaries_pos_y[ i ]

general_hrd_parameters_present_flag
if( general_hrd_parameters_present_flag ) {
num_units_in_tick
time_scale
sub_layer_cpb_parameters_present_flag
if( sub_layer_cpb_parameters_present_flag )
general_hrd_parameters( 0, sps_max_sub_layers_minusl )
else

general_hrd_parameters( sps_max_sublayers_minusl, sps_max_sub_layers

_minusl )

¥

vui_parameters_present_flag

if( vui_parameters_present_flag )
vui_parameters( )

sps_extension_flag

if( sps_extension_flag )
while( more_rbsp_data( ) )

sps_extension_data_flag
rbsp_trailing_bits( )

u(l)

u(2)
se(v)

se(v)
ue(v)
u(1)
u(l)
u(2)

u(13)
u(2)

u(13)
u(l)
u(32)

u(32)
u(l)

u(l)

u(l)

u(l)

Picture Parameter Set RBSP Syntax
[0247]

pic_parameter_set_rbsp( ) {

Descriptor

pps_pic_parameter_set_id
pps_seq_parameter_set_id
pps_seq_parameter_set_id
pic_width_in_luma_ samples
pic_height in_luma_samples
conformance_window_flag
if( conformance_window_flag ) {

conf win_left_offset

conf _win_right offset

conf_win_top_offset

conf win_bottom_offset

scaling_window_flag

if( scaling_window_flag ) {
scaling_win_left offset
scaling_win_right_offset
scaling_win_top_offset
scaling_win_bottom_offset

output_flag_present flag
mixed_nalu_types_in_pic_flag
pps_subpic_id_signalling present flag
ifl pps_subpic_id_signalling_present flag ) {
pps_num_subpics_minusl
pps_subpic_id_len_minusl
Jor( i = 0;i <= pps_num_subpic_minusl; i++ )

ue(v)
u4)
ue(v)
ue(v)
ue(v)

u(l)

ue(v)
ue(v)
ue(v)
ue(v)

u(l)

ue(v)
ue(v)
ue(v)
ue(v)

u(l)
u(l)
@)
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-continued
pic_parameter_set_rbsp( ) { Descriptor
pps_subpic_id[ i ] u(v)
no_pic_partition_flag u(l)
if( !no_pic_partition_flag ) {
pps_log2_ctu_size_minus5 u(2)
num_exp_tile_columns_minusl ue(v)
num_exp_tile_rows_minusl ue(v)
for(i=0; i <=num_exp_tile_columns_minusl; i++ )
tile_column_width_minus1[ i ] ue(v)
for( i =0; i <=num_exp_tile_rows_minusl; i++ )
tile_row_height minus1[ i ] ue(v)
rect_slice_flag u(l)
if( rect_slice_flag )
single_slice_per_subpic_flag u(l)
if( rect_slice_flag && !single_slice_per_subpic_flag ) {
num_slices_in_pic_minusl ue(v)
tile_idx_delta_present_flag u(l)
for(i=0;i < num_slices_in_pic_minusl; i++ ) {
slice_width_in_tiles minus1[ i ] ue(v)
slice_height in_tiles minusl[1i ] ue(v)

if( slice_width_in_tiles minusl[i]==0 &&
slice_height_in_tiles_minus1[i]==0) {
num_slices_in_tile_minus1[ i ] ue(v)
numSlicesInTileMinusl = num_slices_in_tile_minus1[ i ]
for( j = 0; j < numSlicesInTileMinusl; j++ )
slice_height in_ctu_minusl[ i++ ] ue(v)

if{ tile_idx_delta_present_flag && i < num_slices_in_pic_minusl )

tile_idx_delta[ i ] se(v)
¥
loop_filter_across_tiles_enabled_flag u(l)
loop_filter_across_slices_enabled_flag u(l)
entropy_coding sync_enabled_flag u(l)
if( tno_pic_partition_flag | | entropy_coding_sync_enabled_flag )
entry_point_offsets_present_flag u(l)
cabac_init present_flag u(l)
for(i=0;i<2;i++)
num_ref idx_default_active_minus1[ i ] ue(v)
rpll_idx_present_flag u(l)
init_gp_minus26 se(v)
ifl sps_transform_skip_enabled flag )
log2_transform_skip_max_size_minus2 ue(v)
cu_qp_delta_enabled_flag u(l)
pps_cb_gp_offset se(v)
pps_cr_qp_offset se(v)
pps_joint_cber_gp_offset_present flag u(l)
if( pps_joint_cber_qp_offset_present_flag )
pps_joint_cber_gp_offset_value se(v)
pps_slice_chroma_qp_offsets_present_flag u(l)
cu_chroma_qp_offset_enabled_flag u(l)
if( cu_chroma_qp_offset_enabled_flag ) {
chroma_qp_offset_list len_minusl ue(v)
for( i =0;i<=chroma_gp_offset_list len minusl; i++ ) {
cb_qp_offset_list[ i ] se(v)
cr_qp_offset_list[ i ] se(v)
if( pps_joint_cber_qp_offset_present flag )
joint_cber_qp_offset_list[ i ] se(v)
¥
¥
pps_weighted_pred_flag u(l)
pps_weighted_bipred_flag u(l)
deblocking_filter_control_present flag u(l)
if( deblocking_filter_control_present_flag ) {
deblocking_filter_override_enabled_flag u(l)
pps_deblocking filter_disabled_flag u(l)
if( !pps_deblocking_filter_disabled_flag ) {
pps_beta_offset_div2 se(v)
pps_te_offset_div2 se(v)

}
constant_slice_header_params_enabled_flag u(l)
if( constant_slice_header_params_enabled_flag ) {



US 2024/0107036 Al Mar. 28, 2024
18

-continued
pic_parameter_set_rbsp( ) { Descriptor

pps_dep_quant_enabled_ide u(2)

for(i=0;1i<2;i++)
pps_ref _pic_list sps_ide[ i ] u(2)
pps_mvd_l1_zero_idc u(2)
pps_collocated_from_10_ide u(2)
pps_six_minus_max_num_merge_cand_plusl ue(v)
pps_max_num_merge cand_minus_max_num_triangle_cand_plusl ue(v)
picture_header_extension_present_flag u(l)
slice_header_extension_present_flag u(l)
pps_extension_flag u(l)

if( pps_extension_flag )
while( more_rbsp_data( ))
pps_extension_data_flag u(l)
rbsp_trailing_bits( )

}

Picture Header RBSP Syntax

[0248]
picture_header_rbsp( ) { Descriptor
non_reference_picture_flag u(l)
gdr_pic_flag u(l)
no_output_of_prior_pics_flag u(l)

if( gdr_pic_flag )

recovery_poc_cnt ue(v)
ph_pic_parameter_set_id ue(v)

if (sps_subpic_id_present flag && !sps_subpic_id_signalling flag ) {
ph_subpic_id_signalling_flag u(l)
ifl ph_subpic_id_signalling_flag ) { -
ph_subpic_id len_minusl ue(v)
Jor(i = 0;i <= sps_num_subpics_minusl; i++ ) -
ph_subpic_id[ i uv)

i

i_f( tsps_loop_filter_across_virtual_boundaries_disabled_present_flag ) {

ph_loop_filter_across_virtual_boundaries_disabled_present_flag u(l)
if( ph_loop_filter_across_virtual_boundaries_disabled_present flag ) {
ph_num_ver_virtual boundaries u(2)
for(i=0;i<ph_num_ver_virtual_boundaries; i++ )
ph_virtual_boundaries_pos_x[ i ] u(13)
ph_num_hor_virtual_boundaries u(2)
for(i=0;1i<ph_num_hor virtual boundaries; i++ )
ph_virtual_boundaries_pos_y[ i ] u(13)
¥
if( separate_colour_plane flag==1)
colour_plane_id u(2)
if( output_flag_present_flag )
pic_output_flag u(l)
pic_rpl_present flag u(l)

if( pic_rpl_present_flag ) {
for(i=0;i<2;it++){
if( num_ref pic lists_in_sps[ i ] > 0 && !pps_ref pic_list sps_ide[ i ]
&&
(i==011(i==1 && rpll_idx_present_flag ) ) )
pic_tpl_sps_flag[ i ] u(l)
if( pic_pl_sps_flag[i]) {
if{ num_ref pic_lists_in_sps[i]>1 &&
(i==011(i==1 && rpll_idx_present_flag ) ) )
pic_rpl idx[i] u(v)
} else
ref_pic_list_struct( i, num_ref pic_lists_in_sps[i])
for( j = 0; j < NumLtrpEntries[ i ][ RplsIdx[i] ]; j++ ) {
if( Itrp_in_slice_header flag[ i ][ RplsIdx[i]1])

pic_poc_lsb_It[ i ][] ] u(v)
pic_delta_poc_msb_present_flag[ i ][ j ] u(l)
if{ pic_delta_poc_msb_present_flag[ i ][j ])

pic_delta_poc_msb_cycle_It[ i ][] ] ue(v)
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-continued
picture_header_rbsp( ) { Descriptor
}
}
if( partition_constraints_override_enabled_flag ) {
partition_constraints_override_flag ue(v)
if( partition_constraints_override_flag ) {
pic_log2 diff min_qt_min_cb_intra_slice_luma ue(v)
pic_log2 diff min_qt_min_cb_inter_slice ue(v)
pic_max_mtt_hierarchy_depth_inter_slice ue(v)
pic_max_mtt_hierarchy depth_intra_slice luma ue(v)
if( pic_max_mtt_hierarchy_depth_intra_slice_luma !=0) {
pic_log2_diff max_bt min gt intra_slice_luma ue(v)
pic_log2_diff max_tt_min_qt_intra_slice_luma ue(v)
if( pic_max_mtt_hierarchy_depth_inter_slice {=0) {
pic_log2_diff max_bt min_qt_inter slice ue(v)
pic_log2_diff max_tt_min_qt_inter_slice ue(v)
if( qtbtt_dual_tree_intra_flag ) {
pic_log2_diff min_qt min_cb_intra_slice_chroma ue(v)
pic_max_mtt_hierarchy_depth_intra_slice_chroma ue(v)
if{ pic_max_mtt_hierarchy_depth_intra_slice_chroma != 0 ) {
pic_log2_diff max_bt _min_qt_intra_slice_chroma ue(v)
pic_log2_diff max_tt_min_qt_intra_slice_chroma ue(v)
}
}
if( cu_gp_delta_enabled_flag ) {
pic_cu_qp_delta_subdiv_intra_slice ue(v)
pic_cu_qp_delta_subdiv_inter_slice ue(v)
if( cu_chroma_qp_offset_enabled_flag ) {
pic_cu_chroma_qp_offset_subdiv_intra_slice ue(v)
pic_cu_chroma_qp_offset_subdiv_inter_slice ue(v)
if( sps_temporal_mvp_enabled_flag )
pic_temporal_mvp_enabled_flag u(l)
if(!pps_mvd_l1_zero_idc)
mvd_l1_zero_flag u(l)
if( !pps_six_minus_max_num_merge_cand_plusl )
pic_six_minus_max_num_merge_cand ue(v)
if( sps_affine_enabled_flag)
pic_five_minus_max_num_subblock merge_cand ue(v)
if( sps_fpel_mmvd_enabled_flag)
pic_fpel_mmvd_enabled_flag u(l)
if( sps_bdof pic_present_flag )
pic_disable_bdof flag u(l)
if( sps_dmvr_pic_present flag )
pic_disable_dmvr_flag u(l)
if( sps_prof_pic_present_flag )
pic_disable_prof flag u(l)
if( sps_triangle_enabled_flag && MaxNumMergeCand >= 2 &&
!pps_max_num_merge_cand_minus_max_num_triangle cand_minusl )
pic_max_num_merge_cand_minus_max_num_triangle_cand ue(v)
if ( sps_ibc_enabled flag )
pic_six_minus_max_num_ibc_merge_cand ue(v)
if( sps_joint_cber_enabled_flag )
pic_joint_cber_sign flag u(l)
if( sps_sao_enabled_flag ) {
pic_sao_enabled_present_flag u(l)
if( pic_sao_enabled_present_flag ) {
pic_sao_luma_enabled_flag u(l)
if(ChromaArrayType !=0)
pic_sao_chroma_enabled_flag u(l)
}
if( sps_alf__enabled_flag ) {
pic_alf_enabled_present_flag u(l)
if( pic_alf enabled_present_flag ) {
pic_alf enabled_flag u(l)
if( pic_alf enabled_flag ) {
pic_num_alf aps_ids_luma u(3)
for(i=0;i<pic_num_alf aps ids luma; i++ )
pic_alf aps_id luma[i] u(3)
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picture_header_rbsp( ) {

Descriptor

if{ ChromaArrayType !=0)
pic_alf chroma_ idc
if{ pic_alf chroma_idc )
pic_alf aps_id_chroma
}

}

if ( !pps_dep_quant_enabled_flag )
pic_dep_quant_enabled_flag
if( !pic_dep_quant_enabled_flag )
sign_data_hiding_enabled_flag
if( deblocking_filter override_enabled_flag ) {
pic_deblocking_filter override_present flag
if( pic_deblocking_filter override_present_flag ) {
pic_deblocking_filter_override_flag
if( pic_deblocking_filter_override_flag ) {
pic_deblocking filter disabled_flag
if( !pic_deblocking_filter disabled_flag ) {
pic_beta_offset_div2
pic_tc_offset_div2

¥
¥

if( sps_lmcs_enabled_flag ) {
pic_lmes_enabled_flag
if( pic_lmes_enabled_flag ) {
pic_lmes_aps_id
if( ChromaArrayType !=0)
pic_chroma_residual_scale_flag

if( sps_scaling_list_enabled_flag ) {
pic_scaling_list_present_flag
if( pic_scaling_list present flag )
pic_scaling_list_aps_id

if( picture_header_extension_present_flag ) {
ph_extension_length
for( i =0; i< ph_extension_length; i++ )
ph_extension_data_byte[ i ]

rbsp_trailing_bits( )

u(2)

u(3)

u(1)
u(1)
u(1)
u(1)
u(1)

se(v)
se(v)

u(1)
u(2)

u(1)

u(l)

u(3)

ue(v)

u(8)

[0249] subpics_present_flag equal to 1 indicates that
sub-picture parameters are present in the SPS RBSP
syntax. subpics_present_flag equal to O indicates that
sub-picture parameters are not present in the SPS RBSP
syntax.

[0250] NOTE 2—When a bitstream is the result of a
sub-bitstream extraction process and contains only a
subset of the sub-pictures of the input bitstream to
the sub-bitstream extraction process, it might be
required to set the value of subpics_present_flag
equal to 1 in the RBSP of the SPSs.

[0251] sps_num_subpics_minusl plus 1 specifies the
number of sub-pictures. sps_num_subpics_minusl
may be in the range of 0 to 254. When not present, the
value of sps_num_subpics_minusl is inferred to be
equal to 0.

[0252] subpic_ctu_top_left_x[i] specifies horizontal
position of top left CTU of i-th sub-picture in unit of
CtbSizeY. The length of the syntax element is
Ceil( Log2( pic width _max
in_luma_samples / CthSizeY ) ) bits. When not pres-
ent, the value of subpic_ctu_top_left_x[i] is inferred to
be equal to O.

[0253] subpic_ctu_top_left_y[i] specifies vertical posi-
tion of top left CTU of i-th sub-picture in unit of
CtbSizeY. The length of the syntax element is
Ceil( Log2( pic_height max
in_luma_samples / CthSizeY ) ) bits. When not pres-
ent, the value of subpic_ctu_top_left_y[i] is inferred to
be equal to O.

[0254] subpic_width_minusl[i] plus 1 specifies the
width of the i-th sub-picture in units of CtbSizeY. The
length of the syntax element is Ceil(Log2(pic_width_
max_in_luma_samples/CtbSizeY)) bits. When not
present, the wvalue of subpic_width_minusl[i] is
inferred to be equal to Ceil( pic width max in
luma_samples / CtbSizeY) — 1.

[0255] subpic_height_minus1[i] plus 1 specifies the
height of the i-th sub-picture in units of CtbSizeY. The
length of the syntax element is Ceil(Log2(pic_height_
max_in_luma_samples/CtbSizeY)) bits. When not
present, the value of subpic_height minusl[i] is
inferred to be equal to Ceil( pic_height max in_
luma_samples / CtbSizeY) — 1.

[0256] subpic_treated_as_pic_flag[i] equal to 1 speci-
fies that the i-th sub-picture of each coded picture in the
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CVS is treated as a picture in the decoding process
excluding in-loop filtering operations. subpic_treated_
as_pic_flag[i] equal to O specifies that the i-th sub-
picture of each coded picture in the CVS is not treated
as a picture in the decoding process excluding in-loop
filtering operations. When not present, the value of
subpic_treated_as_pic_flag[i] is inferred to be equal to
0.

[0257] loop_filter_across_subpic_enabled_flag[i] equal
to 1 specifies that in-loop filtering operations may be
performed across the boundaries of the i-th sub-picture
in each coded picture in the CVS. loop_filter_across_
subpic_enabled_flag[i] equal to O specifies that in-loop
filtering operations are not performed across the bound-
aries of the i-th sub-picture in each coded picture in the
CVS. When not present, the value of loop_filter_
across_subpic_enabled_pic_flag[i] is inferred to be
equal to 1.

It may be a requirement of bitstream conformance that the
following constraints apply:

[0258] For any two sub-pictures subpicA and subpicB,
when the index of subpicA is less than the index of
subpicB, any coded NAL unit of subPicA may succeed
any coded NAL unit of subPicB in decoding order.

[0259] The shapes of the sub-pictures may be such that
each sub-picture, when decoded, may have its entire
left boundary and entire top boundary consisting of
picture boundaries or consisting of boundaries of pre-
viously decoded sub-pictures.

[0260] sps_subpic_id_present_flag equal to 1 specifies
that sub-picture Id mapping is present in the SPS.
sps_subpic_id_present_flag equal to 0 specifies that
sub-picture Id mapping is not present in the SPS.

[0261] sps_subpic_id_signalling_present_flag equal to
1 specifies that sub-picture Id mapping is signalled in
the SPS. sps_subpic_id_signalling_present_flag equal
to 0 specifies that sub-picture Id mapping is not sig-
nalled in the SPS. When not present, the value of
sps_subpic_id_signalling present_flag is inferred to be
equal to 0.

[0262] sps_subpic_id_len_minusl plus 1 specifies the
number of bits used to represent the syntax element
sps_subpic_id[i]. The value of sps_subpic_id_len_mi-
nus]l may be in the range of 0 to 15, inclusive.

[0263] sps_subpic_id[i] specifies that sub-picture Id of
the i-th sub-picture. The length of the sps_subpic_id[i]
syntax element is sps_subpic_id_len_minusl+1 bits.
When not present, and when sps_subpic_id_present_
flag equal to 0, the value of sps_subpic_id[i] is inferred
to be equal to i, for each i in the range of 0 to
sps_num_subpics_minusl, inclusive.

[0264] ph_pic_parameter_set_id specifies the value of
pps_pic_parameter_set_id for the PPS in use. The
value of ph_pic_parameter_set_id may be in the range
of 0 to 63, inclusive.

It may be a requirement of bitstream conformance that the
value of Temporalld of the picture header may be greater
than or equal to the value of Temporalld of the PPS that has
pps_pic_parameter_set_id equal to ph_pic_parameter_set_
id.

[0265] ph_subpic_id_signalling_present_flag equal to 1
specifies that sub-picture Id mapping is signalled in the
picture header. ph_subpic_id_signalling_present_flag
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equal to O specifies that sub-picture Id mapping is not
signalled in the picture header.

[0266] ph_subpic_id_len_minusl plus 1 specifies the
number of bits used to represent the syntax element
ph_subpic_id[i]. The value of pic_subpic_id_len_mi-
nus]l may be in the range of 0 to 15, inclusive.

It may be a requirement of bitstream conformance that the
value of ph_subpic_id_len_minus] may be the same for all
picture headers that are referred to by coded pictures in a
CVS. ph_subpic_id[i] specifies that sub-picture Id of the i-th
sub-picture. The length of the ph_subpic_id[i] syntax ele-
ment is ph_subpic_id_len_minus1+1 bits.

The list SubpicldList[i] is derived as follows:

for(i=0,i<=sps_num_subpics_minus1i++)Subpi-
cIdList[i]=sps_subpic_id_present_flag ? (sps_
subpic_id_signalling present flag ? sps_subpic_
id[#]:(ph_subpic_id_signalling present_flag ?

ph_subpic_id[#]:pps_subpic_id[7])): (7-39)

Deblocking Filter Process

General

[0267] Inputs to this process are the reconstructed picture
prior to deblocking, i.e., the array recPicture; and, when
ChromaArrayType is not equal to O, the arrays recPicture_,
and recPicture,. Outputs of this process are the modified
reconstructed picture after deblocking, i.e., the array recPic-
ture, and, when ChromaArrayType is not equal to 0, the
arrays recPicture, and recPicture,.

The vertical edges in a picture are filtered first. Then the
horizontal edges in a picture are filtered with samples
modified by the vertical edge filtering process as input. The
vertical and horizontal edges in the CTB s of each CTU are
processed separately on a coding unit basis. The vertical
edges of the coding blocks in a coding unit are filtered
starting with the edge on the left-hand side of the coding
blocks proceeding through the edges towards the right-hand
side of the coding blocks in their geometrical order. The
horizontal edges of the coding blocks in a coding unit are
filtered starting with the edge on the top of the coding blocks
proceeding through the edges towards the bottom of the
coding blocks in their geometrical order.

[0268] NOTE—Although the filtering process is speci-
fied on a picture basis in this Specification, the filtering
process can be implemented on a coding unit basis with
an equivalent result, provided) the decoder properly
accounts for the processing dependency order so as to
produce the same output values.

The deblocking filter process is applied to all coding sub-
block edges and transform block edges of a picture, except
the following types of edges:

[0269] Edges that are at the boundary of the picture,
[0270] Edges that coincide with the boundaries of a

sub-picture for which
loop filter across subpic enabled
Hflagl SubPicldx | is equal to 0,

[0271] Edges that coincide with the virtual boundaries
of the picture when pps_loop_filter_across_virtual_
boundaries_disabled_flag is equal to 1,

[0272] Edges that coincide with tile boundaries when
loop_filter_across_tiles_enabled_flag is equal to O,
[0273] Edges that coincide with slice boundaries when
loop_filter_across_slices_enabled_flag is equal to O,
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[0274] Edges that coincide with upper or left boundaries
of slices with slice_deblocking_filter disabled_flag
equal to 1,

[0275] Edges within slices with slice_deblocking_fil-
ter_disabled_flag equal to 1,

[0276] Edges that do not correspond to 4x4 sample grid
boundaries of the luma component,

[0277] Edges that do not correspond to 8x8 sample grid
boundaries of the chroma component,

[0278] Edges within the luma component for which
both sides of the edge have intra_bdpcm_luma_flag
equal to 1,

[0279] Edges within the chroma components for which
both sides of the edge have intra_bdpcm_chroma_flag
equal to 1,

[0280] Edges of chroma subblocks that are not edges of
the associated transform unit.

Deblocking Filter Process for One Direction

[0281] Inputs to this process are:

[0282] the variable treeType specifying whether the
luma (DUAL_TREE_LUMA) or chroma components
(DUAL_TREE_CHROMA) are currently processed,

[0283] when treeType is equal to DUAL_TREE_
LUMA, the reconstructed picture prior to deblocking,
i.e., the array recPicture;,

[0284] when ChromaArrayType is not equal to 0 and
treeType is equal to DUAL_TREE_CHROMA, the
arrays recPicture, and recPicture_,,

[0285] a variable edgeType specifying whether a verti-
cal (EDGE_VER) or a horizontal (EDGE_HOR) edge
is filtered.

Outputs of this process are the modified reconstructed
picture after deblocking, i.e:

[0286] when treeType is equal to DUAL_TREE_
LUMA, the array recPicture,,

[0287] when ChromaArrayType is not equal to 0 and
treeType is equal to DUAL_TREE_CHROMA, the
arrays recPicture, and recPicture,.

The variables firstCompldx and lastCompldx are derived as
follows:

firstCompldx=(tree Type==DUAL_TREE_CHROMA)
?1:0 (8-1010)

lastCompldx=(treeType==DUAL_TREE_LUMA||Ch-

romaArrayType==0) ? 0:2 (8-1011)

For each coding unit and each coding block per colour
component of a coding unit indicated by the colour com-
ponent index cldx ranging from firstCompldx to lastCom-
pldx, inclusive, with coding block width nCbW, coding
block height nCbH and location of top-left sample of the
coding block (xCb, yCb), when cldx is equal to 0, or when
cldx is not equal to 0 and edgeType is equal to EDGE_VER
and xCb % 8 is equal 0, or when cldx is not equal to 0 and
edgeType is equal to EDGE_HOR and yCb % 8 is equal to
0, the edges are filtered by the following ordered steps:

[0288] 1. The variable filterEdgeFlag is derived as fol-
lows:
[0289] If edgeType is equal to EDGE_VER and one

or more of the following conditions are true, filter-

EdgeFlag is set equal to O:

[0290] The left boundary of the current coding
block is the left boundary of the picture.

Mar. 28, 2024

The left boundary of the current coding
block is the left or right boundary of
the sub-picture and loop _filter _across

subpic_enabled flagf SubPicldx | is
equal to 0.

[0291] The left boundary of the current coding
block is the left boundary of the tile and loop_
filter_across_tiles_enabled_flag is equal to 0.

[0292] The left boundary of the current coding
block is the left boundary of the slice and loop_
filter_across_slices_enabled_flag is equal to 0.

[0293] The left boundary of the current coding
block is one of the vertical virtual boundaries of
the picture and VirtualBoundariesDisabledFlag is
equal to 1.

[0294] Otherwise, if edgeType is equal to EDGE_
HOR and one or more of the following conditions
are true, the variable filterEdgeFlag is set equal to O:

[0295] The top boundary of the current luma cod-
ing block is the top boundary of the picture.

[0296] The top boundary of the current coding
block is the top or bottom boundary of
the sub-picture and loop filter across
subpic enabled flagf SubPicldx | is equal to 0.

[0297] The top boundary of the current coding
block is the top boundary of the tile and loop_
filter_across_tiles_enabled_flag is equal to 0.

[0298] The top boundary of the current coding
block is the top boundary of the slice and loop_
filter_across_slices_enabled_flag is equal to 0.

[0299] The top boundary of the current coding
block is one of the horizontal virtual boundaries of
the picture and VirtualBoundariesDisabledFlag is

equal to 1.
[0300] Otherwise, filterEdgeFlag is set equal to 1.
[0301] 2.7 Example TPM, HMVP and GEO
[0302] triangular Prediction Mode (TPM) in VVC divides

a block into two triangles with different motion information.

[0303] History-based Motion vector Prediction (HMVP)
in VVC maintains a table of motion information to be used
for motion vector prediction. The table is updated after
decoding an inter-coded block, but it is not updated if the
inter-coded block is TPM-coded.

[0304] geometry partition mode (GEO) is an extension of
TPM. With GEO, a block can be divided by a straight-line
into two partitions, which may be or may not be triangles.

[0305] 2.8 ALF, CC-ALF and Virtual Boundary

[0306] Adaptive Loop-Filter (ALF) in VVC is applied
after a picture has been decoded, to enhance the picture
quality.

[0307] VB (Virtual Boundary) is adopted in VVC to make
ALF friendly to hardware design. With VB, ALF is con-

ducted in an ALF processing unit bounded by two ALF
virtual boundaries.

[0308] CC-ALF (Cross-Component ALF) as filters the
chroma samples by referring to the information of luma
samples.



US 2024/0107036 Al

2.9 Example Supplemental Enhancement Information (SEI)
for Sub-Pictures

D.2.8 Sub-Picture Level Information SEI Message Syntax

[0309]
subpic_level_info( payloadSize ) { Descriptor
sli_seq_parameter_set_id u4)
num_ref levels_minusl u(3)
explicit_fraction_present_flag u(l)
for( i=0; i <= num_ref levels minusl; i++ ) {
ref_level _ide[ i ] u(8)
if( explicit_fraction_present_flag )
for( j = 0; j <= sps_num_subpics_minusl; j++ )
ref_level fraction_minus1[ i ][] ] u(8)
¥
¥
D.3.8 Sub-Picture Level Information SEI Message
Semantics
[0310] The sub-picture level information SEI message

contains information about the level that sub-pictures in the
bitstream conform to when testing conformance of extracted
bitstreams containing the sub-pictures according to Annex
A.

When a sub-picture level information SEI message is pres-
ent for any picture of a Coded Layer Video Sequence
(CLVS), a sub-picture level information SEI message may
be present for the first picture of the CLVS. The sub-picture
level information SEI message persists for the current layer
in decoding order from the current picture until the end of
the CLVS. All sub-picture level information SEI messages
that apply to the same CLVS may have the same content.

[0311] sli_seq_parameter_set_id indicates and may be
equal to the sps_seq_parameter_set_id for the SPS that
is referred to by the coded picture associated with the
sub-picture level information SEI message. The value
of sli_seq_parameter_set_id may be equal to the value
of pps_seq_parameter_set_id in the PPS referenced by
the ph_pic_parameter_set_id of the Picture Header
(PH) of the coded picture associated with the sub-
picture level information SEI message. It may be a
requirement of bitstream conformance that, when a
sub-picture level information SEI message is present
for a CLVS, the value of subpic_treated_as_pic_flag[i]
may be equal to 1 for each value of i in the range of 0
to sps_num_subpics_minus], inclusive.

[0312] num_ref levels_minusl plus 1 specifies the
number of reference levels signalled for each of the
sps_num_subpics_minusl+1 sub-pictures.

[0313] explicit_fraction_present_flag equal to 1 speci-
fies that the syntax elements ref_level_fraction_minus1
[1] are present. explicit_fraction_present_flag equal to O
specifies that the syntax elements ref level_fraction_
minusl1[i] are not present.

[0314] ref level_idc[i] indicates a level to which each
sub-picture conforms as specified in Annex A. Bit-
streams may not contain values of ref_level_idc other
than those specified in Annex A. Other values of
ref_level_idc[i] are reserved for future use by ITU-
TIISO/IEC. It may be a requirement of bitstream con-
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formance that the value of ref_level_idc[i] may be less
than or equal to ref_level idc[k] for any value of k
greater than 1.

[0315] ref_level fraction_minusl[i][j] plus 1 specifies
the fraction of the level limits associated with ref
level_idc[i] that the j-th sub-picture conforms to as
specified in clause A.4.1.

The variable SubPicSizeYTj] is set equal to (subpic_width_
minusl [j]+1)*(subpic_height_minus1[j]+1).

When not present, the value of ref_level_fraction_minusl
[1][j] is inferred to be equal to Ceil(256*SubPicSizeY[j]
+PicSizelnSamples Y *MaxLumaPs(general_level_idc)
+MaxLu maPs(ref_level_idc[i])-1.

The variable ReflevelFraction[i][j] is set equal to ref_level _
fraction_minus1[i][j]+1.

The variables SubPicNumTileCols[j] and SubPicNumTile-
Rows[j] are derived as follows:

for( i = 0; i <= sps_num_subpics_minusl; i++) {
SubPicNumTileCols[ i ] =1
SubPicNumTileRows[ i ] =1
for( ctbAddrRs = subpic_ctu_top_left x[ i ] + 1; ctbAddrRs <=
subpic_ctu_top_left x[ i ] + subpic_width_minusl[ i ]; ctbAddrRs++ )
if( CtbToTileColBd[ ctbAddrRs ] = CtbToTileColBd
[ ctbAddrRs - 1])
SubPicNumTileCols[ i J++
(D.5)
for( ctbAddrRs = ( subpic_ctu_top_left y[i]+ 1) * PicWidthInCtbsY;
ctbAddrRs <= ( subpic_ctu_top_left_y[ i ] + subpic_height _minusl
[i]) * PicWidthInCtbsY;
ctbAddrRs += PicWidthInCtbsY )
if( CtbToTileRowBd[ ctbAddrRs ] !=
CtbToTileRowBd[ ctbAddrRs — PicWidthInCtbsY ] )
SubPicNumTileRows[ i ]++

The variables SubPicCpbSizeVcl[i][j] and SubPicCpbSize-
Nal[i][j] are derived as follows:

SubPicCpbSizeVel[i][j]=Floor
(CpbVclFactor*MaxCPB*RefLevelFraction[i][/]
+256) (D.6)

SubPicCpbSizeNal[i][f]=Floor
(CpbNalFactor*MaxCPB*RefLevelFraction[{][/]
+256) (D.7)

with MaxCPB derived from ref_level_idc[i] as specified in
clause A.4.2.

[0316] NOTE 1—When a sub-picture is extracted, the
resulting bitstream has a CpbSize (either indicated in
the SPS or inferred) that is greater than or equal to
SubPicCpbSizeVcl[i][j] and SubPicCpbSizeNal[i][j].

It may be a requirement of bitstream conformance that the
bitstreams resulting from extracting the j-th sub-picture for
j in the range of 0 to sps_num_subpics_minus], inclusive,
and conforming to a profile with general_tier_flag equal to
0 and level equal to ref_level_idc[i] for i in the range of 0
to num_ref_level_minusl, inclusive, may obey the follow-
ing constraints for each bitstream conformance test as speci-
fied in Annex C:

[0317] Ceil(256*SubPicSizeY[i]+ReflevelFraction[i]
[j]) may be less than or equal to MaxL.umaPs, where
MaxLumaPs is specified in Table A.1.

[0318] The wvalue of Ceil(256*subpic_width_minusl
[i]+1)+ReflLevelFraction[i][j]) may be less than or
equal to Sqrt(MaxLumaPs*8).
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[0319] The value of Ceil(256*(subpic_height_minusl
[i]+1)+ReflevelFraction[i][j]) may be less than or
equal to Sqrt(MaxLumaPs*8).

[0320] The value of SubPicNumTileCols[j] may be less
than or equal to MaxTileCols and of SubPicNumTile-
Rows[j] may be less than or equal to MaxTileRows,
where MaxTileCols and MaxTileRows are specified in
Table A.1.

For any sub-picture set containing one ore more sub-pictures
and consisting of a list of sub-picture indices SubPicSet-
Indices and a number of sub-pictures in the sub-picture set
NumSubPicInSet, the level information of the sub-picture
set is derived.

The variable SubPicSetAcclevelFraction[i] for the total
level fraction with respect to the reference level ref_level
idc[i], and the variables SubPicSetCpbSizeVcl[i][j] and
SubPicSetCpbSizeNal[i][j] of the sub-picture set, are
derived as follows:

for (i = 0; i <= num_ref level _minusl; i ++) {

SubPicSetAccLevelFraction[ i ] = 0
SubPicSetCpbSizeVel[i]=0
SubPicSetCpbSizeNal[ i ] =0

for (j = 0; j < NumSubPicInSet; j ++) {
SubPicldx = SubPicSetIndices| j |
SubPicSetAccLevelFraction[ i | += RefLevelFraction[ i ]
[ SubPicldx ](D.8)
SubPicSetCpbSizeVel[ i | += SubPicSetCpbSizeVel[ i ][ SubPicldx ]
SubPicSetCpbSizeNal[ i ] += SubPicSetCpbSizeNal[ i ][ SubPicldx ]
SubPicSetNumTiles[ i ] += SubPicNumTileCols[ SubPicldx ] *

SubPicNumTileRow[ SubPicldx ]
¥

}

The value of the sub-picture set sequence level indicator,
SubPicSetLevelldc, is derived as follows:

SubPicSetLevellde = general_level_idec

for (i = num_ref level_minusl; i >=0; i- —)
if{ SubPicSetNumTiles[ i ] <= ( MaxTileCols * MaxTileRows )
&& (D.9)

SubPicSetAccLevelFraction[ i | <= 256 )
SubPicSetLevellde = ref level_idc[ i ]

where MaxTileCols and MaxTileRows are specified in Table
A.1 for ref_level_idc[i]. The sub-picture set bitstream con-
forming to a profile with general_tier_flag equal to 0 and a
level equal to SubPicSetlevelldc may obey the following
constraints for each bitstream conformance test as specified
in Annex C:

[0321] For the VCL Hypothetical Reference Decoder
(HRD) parameters, SubPicSetCpbSizeVcl[i] may be
less than or equal to CpbVclFactor*MaxCPB, where
CpbVclFactor is specified in Table A.3 and MaxCPB is
specified in Table A.1 in units of CpbVclFactor bits.

[0322] For the NAL HRD parameters, SubPicSetCpb-
SizeVcl[i] may be less than or equal to
CpbNalFactor*MaxCPB, where CpbNalFactor is
specified in Table A.3, and MaxCPB is specified in
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[0323] NOTE 2—When a sub-picture set is extracted,
the resulting bitstream has a CpbSize (either indicated
in the SPS or inferred) that is greater than or equal to
SubPicCpbSizeVcl[i][j] and SubPicSetCpbSizeNal[i]

[i]-

[0324] 2.10. Palette Mode
[0325] 2.10.1 Concept of Palette Mode
[0326] The basic idea behind a palette mode is that the

pixels in the coding unit (CU) are represented by a small set
of representative colour values. This set is referred to as the
palette. And it is also possible to indicate a sample that is
outside the palette by signalling an escape symbol followed
by (possibly quantized) component values. This kind of
pixel is called an escape pixel. The palette mode is illustrated
in FIG. 10. As depicted in FIG. 10, for each pixel with three
color components (luma, and two chroma components), an
index to the palette is founded, and the block could be
reconstructed based on the founded values in the palette.
[0327] 2.10.2 Coding of the Palette Entries

[0328] For a palette coded blocks, the following key
aspects are introduced:

[0329] (1) Construct the current palette based on a
predictor palette and new entries signaled for current
palette, if existing.

[0330] (2) Classify the current samples/pixels to two
categories: one (1* category) to include samples/pixels
in the current palette, and the other (2"? category) to
include samples/pixels beyond the current palette.

[0331] A. For the samples/pixels in the 2" category,
quantization (at encoder) is applied to samples/pixels
and quantized values are signaled; and dequantization
(at decoder) is applied.

[0332] 2.10.2.1 Predictor Palette

[0333] For coding of the palette entries, a predictor palette
is maintained which is updated after decoding a palette
coded block.

[0334] 2.10.2.1.1 Initialization of predictor palette

[0335] The predictor palette is initialized at the beginning
of each slice and each tile. The maximum size of the palette
as well as the predictor palette is signalled in the SPS. In
HEVC-Screen Content Coding (SCC), a palette_predictor_
initializer_present_flag is introduced in the PPS. When this
flag is 1, entries for initializing the predictor palette are
signalled in the bitstream.

[0336] Depending on the value of the palette_predictor_
initializer_present_flag, the size of predictor palette is reset
to O or initialized using the predictor palette initializer
entries signalled in the PPS. In HEVC-SCC, a predictor
palette initializer of size 0 was enabled to allow explicit
disabling of the predictor palette initialization at the PPS
level.

[0337] Corresponding syntax, semantics and decoding
process are defined as follows:

7.3.2.2.3 Sequence Parameter Set Screen Content Coding
Extension Syntax

Table A.1 in units of CpbNalFactor bits. MaxCPB [0338]
sps_scc_extension( ) { Descriptor
sps_curr_pic_ref_enabled_flag u(l)

palette_mode_enabled_flag u(l)
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sps_scc_extension( ) {

Descriptor

if( palette_mode_enabled_flag ) {
palette_max_size
delta_palette_max_predictor_size
sps_palette_predictor_initializer_present_flag
if( sps_palette_predictor_initializer_present_flag) {
sps_num_palette_predictor_initializer_minusl
numComps = ( chroma_format idc ==0) 2 1:3
for( comp = 0; comp < numComps; comp++ )
for(i= 0; i <= sps_num_palette_predictor_initializer_minusl; i++

I~

sps_palette_predictor_initializers| comp ][ i ]

_motionfvectorfresolutionfcontroLidc
intra_boundary_filtering_disabled_flag

ue(v)
ue(v)
u(D)

ue(v)

uy)

u2)
u(l)

[0339] palette_mode_enabled_flag equal to 1 specifies
that the decoding process for palette mode may be used
for intra blocks, palette_mode_enabled_flag equal to 0
specifies that the decoding process for palette mode is
not applied. When not present, the value of palette_
mode_enabled_flag is inferred to be equal to 0.

[0340] palette_max_size specifies the maximum
allowed palette size. When not present, the value of
palette_max_size is inferred to be 0.

[0341] delta_palette_max_predictor_size specifies the
difference between the maximum allowed palette pre-
dictor size and the maximum allowed palette size.
When not present, the value of delta_palette_max_
predictor_size is inferred to be 0. The variable Pal-
etteMaxPredictorSize is derived as follows:

PaletteMaxPredictorSize=palette_max_size+delta_

palette_max_predictor_size (0-57)

It may be a requirement of bitstream conformance that the
value of delta_palette_max_predictor_size may be equal to
0 when palette_max_size is equal to 0.

[0342] sps_palette_predictor_initializer_present_flag
equal to 1 specifies that the sequence palette predictors
are initialized using the sps_palette_predictor_initial-
izers. sps_palette_predictor_initializer_flag equal to 0
specifies that the entries in the sequence palette pre-
dictor are initialized to 0. When not present, the value
of sps_palette_predictor_initializer_flag is inferred to
be equal to O.

It may be a requirement of bitstream conformance that the
value of sps_palette_predictor_initializer_present_flag may
be equal to 0 when palette_max_size is equal to O.

[0343] sps_num_palette_predictor_initializer_minusl
plus 1 specifies the number of entries in the sequence
palette predictor initializer.

It may be a requirement of bitstream conformance that the
value of sps_num_palette_predictor_initializer_minus1 plus
1 may be less than or equal to PaletteMaxPredictorSize.

[0344] sps_palette_predictor_initializers|comp][i]
specifies the value of the comp-th component of the i-th
palette entry in the SPS that is used to initialize the
array PredictorPaletteEntries. For values of i in the
range of 0 to sps_num_palette_predictor_initializer_
minusl, inclusive, the value of the sps_palette_predic-
tor_initializers[O][i] may be in the range of 0 to
(1<<BitDepth;)-1, inclusive, and the values of sps_

palette_predictor_initializers[1][i] and sps_palette_pre-
dictor_initializers[2][i] may be in the range of O to
(1<<BitDepth)-1, inclusive.

7.3.2.3.3 Picture Parameter Set Screen Content Coding
Extension Syntax

[0345]

Descrip-
pps_scc_extension( ) { tor
pps_curr_pic_ref_enabled_flag u(l)
residual_adaptive_colour_transform_enabled_flag u(l)

if( residual_adaptive_colour_transform_enabled_flag ) {

pps_slice_act_qp_offsets_present_flag u(l)
pps_act_y_qp_offset_plus5 se(v)
pps_act_cb_qp_offset_plus5 se(v)
pps_act_cr_qp_offset_plus3 se(v)
pps_palette_predictor_initializer_present_flag u(l)
if( sps_palette_predictor_initializer_present_flag) { —
pps_num_palette_predictor_initializer ue(v)

if( pps_num_palette_predictor_initializer> 0 ) { -
monochrome_palette_flag u(l)
luma_bit_depth_entry_minus8 tT(v)

if( !Imonochrome_palette_flag ) -
chroma_bit_depth_entry_minus8 m

numComps = monochrome_palette_flag? 1 : 3
for( comp = 0; comp < numComps; comp++ )
for(i=0; i< pps_num_palette_predictor_initializer; i++

: pps_palette_predictor_initializers| comp ][ i ] u()
i

—

¥
[0346] pps_palette_predictor_initializer_present_flag

equal to 1 specifies that the palette predictor initializers
used for the pictures referring to the PPS are derived
based on the palette predictor initializers specified by
the PPS. pps_palette_predictor_initializer_flag equal to
0 specifies that the palette predictor initializers used for
the pictures referring to the PPS are inferred to be equal
to those specified by the active SPS. When not present,
the value of pps_palette_predictor_initializer_present_
flag is inferred to be equal to 0.

It may be a requirement of bitstream conformance that the
value of pps_palette_predictor_initializer_present_flag may
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be equal to O when either palette_max_size is equal to 0 or
palette_mode_enabled_flag is equal to 0.

[0347] pps_num_palette_predictor_initializer specifies
the number of entries in the picture palette predictor
initializer.

It may be a requirement of bitstream conformance that the
value of pps_num_palette_predictor_initializer may be less
than or equal to PaletteMaxPredictorSize. The palette pre-
dictor variables are initialized as follows:—

[0348] If the coding tree unit is the first coding tree unit
in a tile, the following applies:

[0349] The initialization process for palette predictor
variables is invoked

[0350] Otherwise, if entropy_coding sync_enabled_
flag is equal to 1 and either CtbAddrinRs %
PicWidthInCtbsY is equal to 0 or Tileld[CtbAddrInTs]
is not equal to Tileld[CtbAddrRsToTs[CtbAddrinRs—
111, the following applies:

[0351] The location (xNbT, yNbT) of the top-left
luma sample of the spatial neighbouring block T is
derived using the location (x0, y0) of the top-left
luma sample of the current coding tree block as

follows:
(x*NbZyNbT)=(x0+CtbSize ¥ y0-CtbSizeY) (0-58)
[0352] The availability derivation process for a block

in z-scan order is invoked with the location (xCurr,
yCurr) set equal to (x0, y0) and the neighbouring
location (xNbY, yNbY) set equal to (xNbT, yNbT) as
inputs, and the output is assigned to availableFlagT.

[0353] The synchronization process for context vari-
ables, Rice parameter initialization states, and palette
predictor variables is invoked as follows:

[0354] If availableFlagT is equal to 1, the synchro-
nization process for context variables, Rice param-
eter initialization states, and palette predictor vari-
able is invoked with  TableStateldxWpp,
TableMpsValWpp, TableStatCoeffWpp, Predictor-
PaletteSizeWpp, and  TablePredictorPaletteEn-
triesWpp as inputs.

[0355] Otherwise, the following applies:
[0356] The initialization process for palette predic-
tor variables is invoked.

[0357] Otherwise, if CtbAddrinRs is equal to slice_
segment_address and dependent_slice_segment_flag
is equal to 1, the synchronization process for context
variables and Rice parameter initialization states is
invoked with TableStateldxDs, TableMpsValDs,
TableStatCoeffDs,  PredictorPaletteSizeDs, and
TablePredictorPaletteEntriesDs as inputs.

[0358] Otherwise, the following applies:

[0359] The initialization process for palette predictor

variables is invoked.

9.3.2.3 Initialization Process for Palette Predictor Entries

[0360] Outputs of this process are the initialized palette
predictor variables PredictorPaletteSize and PredictorPalet-
teEntries.

The variable numComps is derived as follows:
numComps=(ChromaArrayType==0) ? 1:3 (0-59)

[0361] If pps_palette_predictor_initializer_present_flag
is equal to 1, the following applies:
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[0362] PredictorPaletteSize is set equal to pps_num_
palette_predictor_initializer.
[0363] The array PredictorPaletteEntries is derived as
follows:
for(comp=0;comp<numComps;comp++) for(i=0;
i<PredictorPaletteSize;i++)PredictorPaletteEn-

tries[comp][{]=pps_palette_predictor_initializers
[comp][7] (0-60)

[0364] Otherwise (pps_palette_predictor_initializer_
present_flag is equal to 0), if sps_palette_predictor_
initializer_present_flag is equal to 1, the following
applies:

[0365] PredictorPaletteSize is set equal to sps_num_
palette_predictor_initializer_minusl plus 1.

[0366] The array PredictorPaletteEntries is derived as
follows:

for(comp=0;comp<numComps;comp++) for(i=0;
i<PredictorPaletteSize;i++)PredictorPaletteEn-

tries[comp][f]=sps_palette_predictor_initializers
[comp][7] (0-61)
[0367] Otherwise (pps_palette_predictor_initializer_

present_flag is equal to 0 and sps_palette_predictor_
initializer_present_flag is equal to 0), PredictorPalette-
Size is set equal to 0.
[0368] 2.10.2.1.2 Usage of Predictor Palette
[0369] For each entry in the palette predictor, a reuse flag
is signalled to indicate whether it is part of the current
palette. This is illustrated in FIG. 9. The reuse flags are sent
using run-length coding of zeros. After this, the number of
new palette entries are signalled using Exponential Golomb
(EG) code of order 0, i.e., EG-0. Finally, the component
values for the new palette entries are signalled.
[0370] 2.10.2.2 Updating of Predictor Palette
[0371] Updating of predictor palette is performed with the
follow steps:
[0372] (1) before decoding current block, there is a
predictor palette, denoted by PltPred0
[0373] (2) construct current palette table by inserting
those from PltPredoO firstly, followed by new entries for
current palette.
[0374] (3) Constructing PltPred1:
[0375] A. first add those in current palette table (which
may include those from PltPred0)
[0376] B. if not full, then add un-referenced in PltPred0
according to ascending entry index.
[0377] 2.10.3 Coding of Palette Indices
[0378] The palette indices are coded using horizontal and
vertical traverse scans as shown in FIG. 15. The scan order
is explicitly signaled in the bitstream using the palette_
transpose_flag. For the rest of the subsection it is assumed
that the scan is horizontal.
[0379] The palette indices are coded using two palette
sample modes: ‘COPY_LEFT” and ‘COPY_ABOVE’. In
the ‘COPY_LEFT” mode, the palette index is assigned to a
decoded index. In the ‘COPY_ABOVE’ mode, the palette
index of the sample in the row above is copied. For both
“COPY_LEFT’ and ‘COPY_ABOVE’ modes, a run value is
signaled which specifies the number of subsequent samples
that are also coded using the same mode.
[0380] In the palette mode, the value of an index for the
escape sample is the number of palette entries. And, when
escape symbol is part of the run in ‘COPY_LEFT” or
‘COPY_ABOVE’ mode, the escape component values are
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signaled for each escape symbol. The coding of palette
indices is illustrated in FIG. 16.

[0381] This syntax order is accomplished as follows. First
the number of index values for the CU is signaled. This is
followed by signaling of the actual index values for the
entire CU using truncated binary coding. Both the number of
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CurrentPaletteEntries. The array indices xC, yC specity the
location (xC, yC) of the sample relative to the top-left luma
sample of the picture. The value of PalettelndexMap[xC]
[yC] may be in the range of 0 to MaxPaletteIndex, inclusive.

[0387]
follows:

The variable adjustedRefPalettelndex is derived as

adjustedRefPaletteIndex = MaxPaletteIndex + 1
if( PaletteScanPos > 0 ) {

xcPrev =

X0 + TraverseScanOrder| log2Cb Width ][ log2bHeight ][ PaletteScanPos — 1 ][ 0 ]

ycPrev =

y0 + TraverseScanOrder| log2Cb Width ][ log2bHeight ][ PaletteScanPos — 1 ][ 1]
if( CopyAbovelndicesFlag[ xcPrev ][ ycPrev ] ==0) {
adjustedRefPaletteIndex = PaletteIndexMap[ xcPrev ][ ycPrev ] {(7-157)

else {

if( tpalette_transpose_flag )
adjustedRefPaletteIndex = PaletteIndexMap[ xC ][ yC -1 ]

else

adjustedRefPaletteIndex = PaletteIndexMap[ xC — 1 ][ yC ]

indices as well as the index values are coded in bypass mode.
This groups the index-related bypass bins together. Then the
palette sample mode (if necessary) and run are signaled in an
interleaved manner. Finally, the component escape values
corresponding to the escape samples for the entire CU are
grouped together and coded in bypass mode. The binariza-
tion of escape samples is EG coding with 3’7 order, i.e.,
EG-3.

[0382] An additional syntax element, last_run_type_flag,
is signaled after signaling the index values. This syntax
element, in conjunction with the number of indices, elimi-
nates the need to signal the run value corresponding to the
last run in the block.

[0383] In HEVC-SCC, the palette mode is also enabled for
4:2:2, 4:2:0, and monochrome chroma formats. The signal-
ing of the palette entries and palette indices is almost
identical for all the chroma formats. In case of non-mono-
chrome formats, each palette entry consists of 3 compo-
nents. For the monochrome format, each palette entry con-
sists of a single component. For subsampled chroma
directions, the chroma samples are associated with luma
sample indices that are divisible by 2. After reconstructing
the palette indices for the CU, if a sample has only a single
component associated with it, only the first component of the
palette entry is used. The only difference in signaling is for
the escape component values. For each escape sample, the
number of escape component values signaled may be dif-
ferent depending on the number of components associated
with that sample.

[0384] In addition, there is an index adjustment process in
the palette index coding. When signaling a palette index, the
left neighboring index or the above neighboring index
should be different from the current index. Therefore, the
range of the current palette index could be reduced by 1 by
removing one possibility. After that, the index is signaled
with truncated binary (TB) binarization.

[0385] The texts related to this part is shown as follows,
where the CurrPalettelndex is the current palette index and
the adjustedRefPalettelndex is the prediction index.

[0386] The variable PalettelndexMap[xC][yC] specifies a
palette index, which is an index to the array represented by

[0388] When CopyAbovelndicesFlag[xC][yC] is equal to
0, the variable CurrPaletteIndex is derived as follows:

if(CurrPaletteIndex>=adjustedRefPaletteIndex)Curr-
PaletteIndex++

[0389] 2.10.3.1 Decoding Process of a Palette Coded
Block
[0390] 1) read prediction information to mark which of

entries in the predictor palette will be reused; (palette_
predictor_run)
[0391] 2) read new palette entries for the current block
[0392] a) num_signalled_palette_entries
[0393] b) new_palette_entries
[0394] 3) construct CurrentPaletteEntries based on a)
and b)
[0395] 4) read escape symbol present flag: palette_
escape_val_present_flag to derive the MaxPaletteIndex
[0396] 5) code how many samples that are not coded
with copy mode/run mode
[0397] a) num_palette_indices_minusl
[0398] b) for each sample that is not coded with copy
mode/run mode, code the palette_idx_idc in the
current plt table
[0399] 2.11 Merge Estimation Region (MER)
[0400] MER is adopted into HEVC. The way the merge
candidate list is constructed introduces dependencies
between neighboring blocks. Especially in embedded
encoder implementations, the motion estimation stage of
neighboring blocks is typically performed in parallel or at
least pipelined to increase the throughput. For AMVP, this is
not a big issue since the MVP is generally only used to
differentially code the MV found by the motion search. The
motion estimation stage for the merge mode, however,
would typically just consist of the candidate list construction
and the decision which candidate to choose, based on a cost
function. Due to the aforementioned dependency between
neighboring blocks, merge candidate lists of neighboring
blocks cannot be generated in parallel and represent a
bottleneck for parallel encoder designs. Therefore, a parallel
merge estimation level was introduced in HEVC that indi-
cates the region in which merge candidate lists can be
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independently derived by checking whether a candidate
block is located in that merge estimation region (MER). A
candidate block that is in the same MER is not included in
the merge candidate list. Hence, its motion data does not
need to be available at the time of the list construction. When
this level is e.g. 32, all prediction units in a 32x32 area can
construct the merge candidate list in parallel since all merge
candidates that are in the same 32x32 MER, are not inserted
in the list. FIG. 12 illustrates that example showing a CTU
partitioning with seven CUs and ten Prediction Units (PUs).
All potential merge candidates for the first PUO are available
because they are outside the first 32x32 MER.

[0401] For the second MER, merge candidate lists of PUs
2-6 cannot include motion data from these PUs when the
merge estimation inside that MER should be independent.
Therefore, when looking at a PUS for example, no merge
candidates are available and hence not inserted in the merge
candidate list. In that case, the merge list of PUS consists
only of the temporal candidate (if available) and zero MV
candidates. In order to enable an encoder to trade-off par-
allelism and coding efficiency, the parallel merge estimation
level is adaptive and signaled as log2_parallel_merge_
level_minus2 in the picture parameter set. The following
MER sizes are allowed: 44 (no parallel merge estimation
possible), 8x8, 16x16, 32x32 and 64x64. A higher degree of
parallelization, enabled by a larger MER, excludes more
potential candidates from the merge candidate list. That, on
the other hand, decreases the coding efficiency. When the
merge estimation region is larger than a 4x4 block, another
modification of the merge list construction to increase the
throughput kicks in. For a CU with an 88 luma CB, only a
single merge candidate list is used for all PUs inside that CU.

3. Examples of Technical Problems Solved by
Disclosed Embodiments

[0402] (1) There are Some Designs that can Violate the
Sub-Picture Constrain.

[0403] A. TMVP in the affine constructed candidates
may fetch a MV in the collocated picture out of the
range of the current sub-picture.

[0404] B. When deriving gradients in Bi-Directional
Optical Flow (BDOF) and Prediction Refinement
Optical Flow (PROF), two extended rows and two
extended columns of integer reference samples are
required to be fetched. These reference samples may
be out of the range of the current sub-picture.

[0405] C. When deriving the chroma residual scaling
factor in luma mapping chroma scaling (LMCS), the
accessed reconstructed luma samples may be out of
the range of the range of the current sub-picture.

[0406] D. The neighboring block may be out of the
range of the current sub-picture, when deriving the
luma intra prediction mode, reference samples for
intra prediction, reference samples for cross-compo-
nent linear model (CCLM), neighboring block avail-
ability for spatial neighboring candidates for merge/
AMVP/CIIP/IBC/LMCS, quantization parameters,
Context-adaptive binary arithmetic coding (CA-
BAC) initialization process, ctxInc derivation using
left and above syntax elements, and ctxIncfor the
syntax element mtt_split_cu_vertical_flag. The rep-
resentation of sub-picture may lead to sub-picture
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with incomplete CTUs. The CTU partitions and CU
splitting process may need to consider incomplete
CTUs.

[0407] (2) The signaled syntax elements related to sub-
picture may be arbitrarily large, which may cause an
overtlow problem.

[0408] (3) The representation of sub-pictures may lead
to non-rectangular sub-pictures.

[0409] (4) Currently the sub-picture and sub-picture
grid is defined in units of 4 samples. And the length of
syntax element is dependent on the picture height
divided by 4. However, since the current pic_width_
in_luma_samples and pic_height_in_luma_samples
may be an integer multiple of Max(8, MinCbSizeY),
the sub-picture grid may need to be defined in units of
8 samples.

[0410] (5) The SPS syntax, pic_width_max_in_luma_
samples and pic_height max_in_luma_samples may
need to be restricted to be no smaller than 8.

[0411] (6) Interaction between reference picture resam-
pling/scalability and sub-picture is not considered in
the current design.

[0412] (7) Intemporal filtering, samples across different
sub-pictures may be required.

[0413] (8) When signaling the slices, the information
could be inferred without signaling in some cases.
[0414] (9) It is possible that all the defined slices cannot

cover the whole picture or sub-picture.

[0415] (10) The IDs of two sub-pictures may be iden-
tical.

[0416] (11) pic_width_max_in_luma_samples/Ctb-
SizeY may be equal to 0, resulting in a meaningless
Log2( ) operation.

[0417] (12) ID in PH is more preferable than in PPS, but
less preferable than in SPS, which is inconsistent.

[0418] (13) log2_transform_skip_max_size_minus2 in
PPS is parsed depending on sps_transform_skip_en-
abled_flag in SPS, resulting in a parsing dependency.

[0419] (14) loop_filter_across_subpic_enabled_flag for
deblocking only consider the current sub-picture, with-
out considering the neighbouring sub-picture.

[0420] (15) In applications, sub-pictures are designed to
provide a flexibility that regions at the same positions
in pictures of a sequences can be decoded or extracted
independently. The region may be under some special
requirements. For example, it may be a Region of
Interest (ROI), which requires a high quality. In another
example, it may serve as a trace for fast skimming the
video. In still another example, it may provide a
low-resolution, low-complexity and low power-con-
suming bit-stream, which may be fed to a complexity-
sensitive end user. All those applications may require
that the region of a sub-picture should be encoded with
a configuration different to other parts. However, in the
current VVC, there is no mechanisms that can config-
ure sub-pictures independently.

4. Example Techniques and Embodiments

[0421] The detailed listing below should be considered as
examples to explain general concepts. These items should
not be interpreted in a narrow way. Furthermore, these items
can be combined in any manner. Hereinafter, temporal filter
is used to represent filters that require samples in other
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pictures. Max(x, y) returns the larger one of x and y. Min(x,
y) returns the smaller one of x and y.

[0422] 1. The position (named position RB) at which a
temporal MV predictor is fetched in a picture to gen-
erate affine motion candidates (e.g. a constructed affine
merge candidate) must be in a required sub-picture,
assuming the top-left corner coordinate of the required
sub-picture is (xTL, yTL) and bottom-right coordinate
of the required sub-picture is (xBR, yBR).
[0423] a. In one example, the required sub-picture is
the sub-picture covering the current block.
[0424] b. In one example, if position RB with a
coordinate (%, y) is out of the required sub-picture,
the temporal MV predictor is treated as unavailable.
[0425] 1. In one example, position RB is out of the
required sub-picture if x>xBR.

[0426] ii. In one example, position RB is out of the
required sub-picture if y>yBR.

[0427] iii. In one example, position RB is out of
the required sub-picture if x<xTL.

[0428] iv. In one example, position RB is out of the
required sub-picture if y<yTL.

[0429] c. In one example, position RB, if outside of the
required sub-picture, a replacement of RB is utilized.
[0430] i. Alternatively, furthermore, the replacement

position may be in the required sub-picture.

[0431] d. In one example, position RB is clipped to be
in the required sub-picture.

[0432] 1. In one example, x is clipped as x=Min(X,
xBR).
[0433] 1ii. In one example, y is clipped as y=Min(y,
yBR).
[0434] 1iii. In one example, x is clipped as x=Max(x,
xTL).
[0435] iv. In one example, y is clipped as y=Max(y,
yTL).
[0436] e. In one example, the position RB may be the

bottom right position inside the corresponding block of

current block in the collocated picture.

[0437] {£. The proposed method may be utilized in other
coding tools which require to access motion informa-
tion from a picture different than the current picture.

[0438] g. In one example, whether the above methods
are applied (e.g., position RB must be in a required
sub-picture (e.g. to do as claimed in 1.a and/or 1.b))
may depend on one or more syntax elements signaled
in VPS/DPS/SPS/PPS/Adaptation Parameter Set
(APS)/slice header/tile group header. For example, the
syntax element may be subpic_treated_as_pic_flag
[SubPicldx], where SubPicldx is the sub-picture index
of sub-picture covering the current block.

[0439] 2. The position (named position S) at which an
integer sample is fetched in a reference not used in the
interpolation process must be in a required sub-picture,
assuming the top-left corner coordinate of the required
sub-picture is (xTL, yTL) and the bottom-right coor-
dinate of the required sub-picture is (xBR, yBR).
[0440] a. In one example, the required sub-picture is

the sub-picture covering the current block.

[0441] b. In one example, if position S with a coor-
dinate (x, y) is out of the required sub-picture, the
reference sample is treated as unavailable.

[0442] 1. In one example, position S is out of the
required sub-picture if x>xBR.

29

[0453]
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[0443] 1ii. In one example, position S is out of the
required sub-picture if y>yBR.
[0444] 1iii. In one example, position S is out of the
required sub-picture if x<xTL.
[0445] iv. In one example, position S is out of the
required sub-picture if y<yTL.
[0446] c. In one example, position S is clipped to be
in the required sub-picture.

[0447] 1. In one example, x is clipped as x=Min(x,
xBR).
[0448] 1ii. In one example, y is clipped as y=Min(y,
yBR).
[0449] iii. In one example, x is clipped as x=Max
(x, xTL).
[0450] iv. In one example, y is clipped as y=Max(y,
yTL).
[0451] d. In one example, whether position S must be

in a required sub-picture (e.g. to do as claimed in 2.a
and/or 2.b) may depend on one or more syntax
elements signaled in VPS/DPS/SPS/PPS/APS/slice
header/tile group header. For example, the syntax
element may be subpic_treated_as_pic_flag[SubPi-
cldx], where SubPicldx is the sub-picture index of
sub-picture covering the current block.

[0452] e. In one example, the fetched integer sample
is used to generate gradients in BDOF and/or pre-
diction refinement with the optical flow (PROF).

3. The position (named position R) at which the

reconstructed luma sample value is fetched may be in

a required sub-picture, assuming the top-left corner

coordinate of the required sub-picture is (xTL, yTL)

and the bottom-right coordinate of the required sub-
picture is (xBR, yBR).

[0454] a. In one example, the required sub-picture is
the sub-picture covering the current block.

[0455] b. In one example, if position R with a coor-
dinate (x, y) is out of the required sub-picture, the
reference sample is treated as unavailable.

[0456] 1. In one example, position R is out of the
required sub-picture if x>xBR.

[0457] 1ii. In one example, position R is out of the
required sub-picture if y>yBR.

[0458] iii. In one example, position R is out of the
required sub-picture if x<xTL.

[0459] iv. In one example, position R is out of the
required sub-picture if y<yTL.

[0460] c. In one example, position R is clipped to be
in the required sub-picture.

[0461] 1. In one example, x is clipped as x=Min(x,
xBR).

[0462] 1ii. In one example, y is clipped as y=Min(y,
yBR).

[0463] iii. In one example, x is clipped as x=Max
(x, xTL).

[0464] iv. In one example, y is clipped as y=Max(y,
yTL).

[0465] d. In one example, whether position R must be
in a required sub-picture (e.g. to do as claimed in 4.a
and/or 4.b) may depend on one or more syntax
elements signaled in VPS/DPS/SPS/PPS/APS/slice
header/tile group header. For example, the syntax
element may be subpic_treated_as_pic_flag[SubPi-
cldx], where SubPicldx is the sub-picture index of
sub-picture covering the current block.
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[0466] e. In one example, the fetched luma sample is
used to derive the scaling factor for the chroma
component(s) in LMCS.

[0467] 4. The position (named position N) at which the
picture boundary check for BT/TT/QT splitting,
BT/TT/QT depth derivation, and/or the signaling of CU
split flag must be in a required sub-picture, assuming
the top-left corner coordinate of the required sub-
picture is (xTL, yTL) and the bottom-right coordinate
of the required sub-picture is (xBR, yBR).

[0468] a. In one example, the required sub-picture is
the sub-picture covering the current block.

[0469] b. In one example, if position N with a coor-
dinate (x, y) is out of the required sub-picture, the
reference sample is treated as unavailable.

[0470] 1. In one example, position N is out of the
required sub-picture if x>xBR.

[0471] ii. In one example, position N is out of the
required sub-picture if y>yBR.

[0472] iii. In one example, position N is out of the
required sub-picture if x<xTL.

[0473] iv. In one example, position N is out of the
required sub-picture if y<yTL.

[0474] c. In one example, position N is clipped to be
in the required sub-picture.

[0475] 1. In one example, X is clipped as x=Min(x,

xBR).

[0476] ii. In one example, y is clipped as y=Min(y,
yBR).

[0477] iii. In one example, x is clipped as x=Max
(x, xTL).

[0478] d. In one example, y is clipped as y=Max(y,
yTL). In one example, whether position N must be in
a required sub-picture (e.g. to do as claimed in 5.a
and/or 5.b) may depend on one or more syntax
elements signaled in VPS/DPS/SPS/PPS/APS/slice
header/tile group header. For example, the syntax
element may be subpic_treated_as_pic_flag[SubPi-
cldx], where SubPicldx is the sub-picture index of
sub-picture covering the current block.

[0479] 5. History-based Motion Vector Prediction
(HMVP) table may be reset before decoding a new
sub-picture in one picture.

[0480] a. In one example, the HMVP table used for
IBC coding may be reset

[0481] b. In one example, the HMVP table used for
inter coding may be reset

[0482] c. In one example, the HMVP table used for
intra coding may be reset

[0483] 6. The sub-picture syntax elements may be
defined in units of N (such as N=8, 32, and etc.)
samples.

[0484] a. In one example, the width of each element
of the sub-picture identifier grid in units of N
samples.

[0485] b. In one example, the height of each element
of the sub-picture identifier grid in units of N
samples.

[0486] c. In one example, N is set to the width and/or
height of CTU.

[0487] 7. The syntax element of picture width and
picture height may be restricted to be no smaller than
K (K>=R).
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[0488] a. In one example, the picture width may need
to be restricted to be no smaller than 8.

[0489] b. In one example, the picture height may
need to be restricted to be no smaller than 8.

[0490] 8. A conformance bitstream may satisty that
sub-picture coding and Adaptive resolution conversion
(ARC)/Dynamic resolution conversion (DRC)/Refer-
ence picture resampling (RPR) are disallowed to be
enabled for one video unit (e.g., sequence).

[0491] a. In one example, signaling of enabling sub-
picture coding may be under the conditions of dis-
allowing ARC/DRC/RPR.

[0492] i. In one example, when sub-picture is
enabled, such as subpics_present_flag equal to 1,
pic_width_in_luma_samples for all pictures for
which this SPS is active is equal to max_width_
in_luma_samples.

[0493] b. Alternatively, sub-picture coding and ARC/
DRC/RPR may be both enabled for one video unit
(e.g., sequence).

[0494] 1. In one example, a conformance bitstream
may satisfy that the donwsampled sub-picture due
to ARC/DRC/RPR may still be in the form of K
CTUs in width and M CTUs in height wherein K
and M are both integers.

[0495] 1ii. In one example, a conformance bitstream
may satisfy that for sub-pictures not located at
picture boundaries (e.g., right boundary and/or
bottom boundary), the donwsampled sub-picture
due to ARC/DRC/RPR may still be in the form of
K CTUs in width and M CTUs in height wherein
K and M are both integers.

[0496] iii. In one example, CTU sizes may be
adaptively changed based on the picture resolu-
tion.

[0497] 1) In one example, a max CTU size may
be signaled in SPS. For each picture with less
resolution, the CTU size may be changed
accordingly based on the reduced resolution.

[0498] 2) In one example, CTU size may be
signaled in SPS and PPS, and/or sub-picture
level.

[0499] 9. The syntax element subpic_grid_col_width_
minusl and subpic_grid_row_height_minusl may be
constrained.

[0500] a. In one example, subpic_grid_col_width_
minus1 must be no larger (or must be smaller) than
T1.

[0501] b. In one example, subpic_grid row_height_
minus1 must be no larger (or must be smaller) than
T2.

[0502] c. In one example, in a conformance bit-
stream, subpic_grid_col_width_minus1 and/or sub-
pic_grid_row_height_minus1 must follow the con-
straint such as bullet 3.a or 3.b.

[0503] d. In one example, T1 in 3.a and/or T2 in 3.b
may depend on profiles/levels/tiers of a video coding
standard.

[0504] e. In one example, T1 in 3.2 may depend on
the picture width.

[0505] 1. For example, T1 is equal to pic_width_
max_in_luma_samples/4 or pic_width_max_in_
luma_samples/4+Off. Off may be 1, 2, -1, -2, etc.
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[0506] f. In one example, T2 in 3.b may depend on
the picture width.

[0507] 1. For example, T2 is equal to pic_height_
max_in_luma_samples/4 or pic_height_max_in_
luma_samples/4-1+Off. Off may be 1, 2, -1, -2,
etc.

[0508] 10. It is constrained that a boundary between two
sub-pictures must be a boundary between two CTUs.
[0509] a. In other words, a CTU cannot be covered by

more than one sub-picture.

[0510] b. In one example, the unit of subpic_grid_
col_width_minus]l may be the CTU width (such as
32, 64, 128), instead of 4 as in VVC. The sub-picture
grid width should be (subpic_grid_col_width_mi-
nusl+1)*CTU width.

[0511] c. In one example, the unit of subpic_grid_
col_height_minus1 may be the CTU height (such as
32, 64, 128), instead of 4 as in VVC. The sub-picture
grid height should be (subpic_grid_col_height_mi-
nusl1+1)*CTU height.

[0512] d. In one example, in a conformance bit-
stream, the constraint must be satisfied if the sub-
picture approach is applied.

[0513] 11. It is constrained that the shape of a sub-
picture must be rectangular.

[0514] a. In one example, in a conformance bit-
stream, the constraint must be satisfied if the sub-
picture approach is applied.

[0515] b. Sub-picture may only contain rectangular
slices. For example, in a conformance bit-stream, the
constraint must be satisfied if the sub-picture
approach is applied.

[0516] 12. It is constrained that two sub-pictures cannot
be overlapped.

[0517] a. In one example, in a conformance bit-
stream, the constraint must be satisfied if the sub-
picture approach is applied.

[0518] b. Alternatively, two sub-pictures may be
overlapped with each other.

[0519] 13. It is constrained that any position in the
picture must be covered by one and only one sub-
picture.

[0520] a. In one example, in a conformance bit-
stream, the constraint must be satisfied if the sub-
picture approach is applied.

[0521] b. Alternatively, one sample may not belong to
any sub-picture.

[0522] c. Alternatively, one sample may belong to
more than one sub-picture.

[0523] 14. It may be constrained that sub-pictures
defined in a SPS mapped to every resolution presented
in the same sequence should obey the location and/or
size constrained mentioned above.

[0524] a. In one example, the width and height of a
sub-picture defined in the SPS mapped to a resolu-
tion presented in the same sequence, should be
integer multiple times of N (such as 8, 16, 32) luma
samples.

[0525] b. In one example, sub-pictures may be
defined for certain layers and may be mapped to
other layers.

[0526] i. For example, sub-pictures may be defined
for the layer with the highest resolution in the
sequence.
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[0527] 1ii. For example, sub-pictures may be
defined for the layer with the lowest resolution in
the sequence.

[0528] iii. Which layer the sub-pictures are defined
for may be signaled in SPS/VPS/PPS/slice header.

[0529] c. In one example, when sub-pictures and
different resolutions are both applied, all resolutions
(e.g., width or/and height) may be integer multiple of
a given resolution.

[0530] d. In one example, the width and/or height of
a sub-picture defined in the SPS may be integer
multiple times (e.g., M) of the CTU size.

[0531] e. Alternatively, sub-pictures and different
resolutions in a sequence may not be allowed simul-
taneously.

[0532] 15. Sub-pictures may only apply to a certain
layer(s)

[0533] a. In one example, sub-pictures defined in a
SPS may only apply to the layer with the highest
resolution in a sequence.

[0534] b. In one example, sub-pictures defined in a
SPS may only apply to the layer with the lowest
temporal id in a sequence.

[0535] c¢. Which layer(s) that sub-pictures may be
applied to may be indicated by one or multiple
syntax elements in SPS/VPS/PPS.

[0536] d. Which layer(s) that sub-picture cannot be
applied to may be indicated by one or multiple
syntax elements in SPS/VPS/PPS.

[0537] 16. In one example, the position and/or dimen-
sions of a sub-picture may be signaled without using
subpic_grid_idx.

[0538] a. In one example, the top-left position of a
sub-picture may be signaled.

[0539] b. In one example, the bottom-right position
of a sub-picture may be signaled.

[0540] c. In one example, the width of sub-picture
may be signaled.

[0541] d. In one example, the height of a sub-picture
may be signaled.

[0542] 17. For temporal filter, when performing the
temporal filtering of a sample, only samples within the
same sub-picture that the current sample belongs to
may be used. The required samples may be in the same
picture that the current sample belongs to or in other
pictures.

[0543] 18. In one example, whether to and/or how to
apply a partitioning method (such as QT, horizontal BT,
vertical BT, horizontal TT, vertical TT, or not split, etc.)
may depend on whether the current block (or partition)
crosses one or multiple boundary of a sub-picture.
[0544] a. In one example, the picture boundary han-

dling method for partitioning in VVC may also be

applied when a picture boundary is replaced by a

sub-picture boundary.

[0545] b. In one example, whether to parse a syntax
element (e.g. a flag) which represents a partitioning
method (such as QT, horizontal BT, vertical BT,
horizontal TT, vertical TT, or not split, etc.) may
depend on whether the current block (or partition)
crosses one or multiple boundary of a sub-picture.

[0546] 19. Instead of splitting one picture into multiple
sub-pictures with independent coding of each sub-
picture, it is proposed to split a picture into at least two
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sets of sub-regions, with the first set including multiple
sub-pictures and the second set including all the
remaining samples.

[0547] a. In one example, a sample in the second set
is not in any sub-pictures.

[0548] b. Alternatively, furthermore, the second set
may be encoded/decoded based on the information
of the first set.

[0549] c. In one example, a default value may be
utilized to mark whether a sample/MxK sub-region
belonging to the second set.

[0550] 1. In one example, the default value may be
set equal to (max_subpics_minus1+K) wherein K
is an integer greater than 1.

[0551] ii. The default value may be assigned to
subpic_grid_idx[i][j] to indicate that grid belongs
to the second set.

[0552] 20. It is proposed that the syntax element sub-
pic_grid_idx[i][j] cannot be larger than max_subpics_
minusl.

[0553] a. For example, it is constrained that in a
conformance bit-stream, subpic_grid_idx[i][j] can-
not be larger than max_subpics_minus]1.

[0554] b. For example, the codeword to code subpic_
grid_idx[i][j] cannot be larger than max_subpics_
minus]1.

[0555] 21. It is proposed that, any integer number from
0 to max_subpics_minus1 must be equal to at least one
subpic_grid_idx[i][j].

[0556] 22.IBC virtual buffer may be reset before decod-
ing a new sub-picture in one picture.

[0557] a. In one example, all the samples in the IBC
virtual buffer may be reset to -1.

[0558] 23. Palette entry list may be reset before decod-
ing a new sub-picture in one picture.

[0559] a. In one example, PredictorPaletteSize may
be set equal to 0 before decoding a new sub-picture
in one picture.

[0560] 24. Whether to signal the information of slices
(e.g. number of slices and/or ranges of slices) may
depend on the number of tiles and/or the number of
bricks.

[0561] a. In one example, if the number of bricks in
a picture is one, num_slices_in_pic_minusl is not
signaled and inferred to be 0.

[0562] b. In one example, if the number of bricks in
a picture is one, the information of slices (e.g.
number of slices and/or ranges of slices) may not be
signaled.

[0563] c. In one example, if the number of bricks in
a picture is one, the number of slices may be inferred
to be one. And the slice covers the whole picture. In
one example, if the number of bricks in a picture is
one, single_brick_per_slice_flag is not signaled and
inferred to be one.

[0564] 1i. Alternatively, if the number of bricks in a

picture is one, single_brick_per_slice_flag must
be one.
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[0565] d. An exemplary syntax design is as below:
pic_parameter_set_rbsp( ) { Descriptor
if(NumBricksInPic > 1){
single brick per_slice_flag u(l)
if( ! single_brick_per_slice_flag )
rect_slice_flag u(l)
if( rect_slice_flag && !single_brick_per_slice_flag ) {
num_slices_in_pic_minusl ue(v)
bottom_right brick_idx_length_minusl ue(v)
for( i=0;i < num_slices_in_pic_minusl; i++ ) {
bottom_right brick idx_delta[ i ] u(v)
brick_idx_delta_sign_flag[ i ] u(l)
}
}
1
loop_filter_across_bricks_enabled_flag u(l)
if( loop_filter_across_bricks_enabled_flag )
loop_filter_across_slices_enabled_flag u(l)
}
[0566] 25. Whether to signal slice_address may be

decoupled from whether slices are signaled to be rect-
angles (e.g. whether rect_slice_flag is equal to 0 or 1).
[0567] a. An exemplary syntax design is as below:

if( [[rect_slice_flag | 1]] NumBricksInPic > 1)
slice_address u(v)

[0568] 26. Whether to signal slice_address may depend
on the number of slices when slices are signaled to be
rectangles.

if(( rect_slice_flag && num_slices_in_pic_minusl > 0)
Il
(Irect_slice_flag && NumBricksInPic > 1 ))
slice_address u(v)

[0569] 27. Whether to signal num_bricks_in_slice_mi-
nusl may depend on the slice_address and/or the
number of bricks in the picture.

[0570] a. An exemplary syntax design is as below:

if( lrect_slice flag && ! single_brick per

slice_
flag && slice_address < NumBricksInPic -1
num_bricks_in_slice_minusl ue(v)
[0571] 28. Whether to signal loop_filter_across_bricks_

enabled_flag may depend on the number of tiles and/or

the number of bricks.

[0572] a. In one example, loop_filter_across_bricks_
enabled_flag is not signaled if the number of bricks
is less than 2.

[0573] b. An exemplary syntax design is as below:

Descriptor

pic_parameter_set_rbsp( ) {

if(NumBricksInPic > 1)



US 2024/0107036 Al

-continued
Descriptor
loop_filter_across_bricks_enabled_flag u(l)
if( loop_filter_across_bricks_enabled_flag)
loop_filter_across_slices_enabled_flag u(l)

[0574] 29. It may be a requirement of bitstream con-
formance that all the slices of a picture must cover the
whole picture.

[0575] a. The requirement must be satisfied when
slices are signaled to be rectangles (e.g. rect_slice_
flag is equal to 1).

[0576] 30. It may be a requirement of bitstream con-
formance that all the slices of a sub-picture must cover
the whole sub-picture.

[0577] a. The requirement must be satisfied when
slices are signaled to be rectangles (e.g. rect_slice_
flag is equal to 1).

[0578] 31. It may be a requirement of bitstream con-
formance that a slice cannot be overlapped with more
than one sub-picture.

[0579] 32. It may be a requirement of bitstream con-
formance that a tile cannot be overlapped with more
than one sub-picture.

[0580] 33. It may be a requirement of bitstream con-
formance that a brick cannot be overlapped with more
than one sub-picture.

[0581] In the following discussion, a basic unit block
(BUB) with dimensions CWxCH 1is a rectangle
region. For example, a BUB may be a Coding Tree
Block (CTB).

[0582] 34. In one example, the number of sub-pictures
(denoted as N) may be signaled.

[0583] a. It may be required on a conformance bit-
stream that there are at least two sub-pictures in a
picture if sub-pictures are used (e.g. subpics_pre-
sent_flag is equal to 1).

[0584] b. Alternatively, N minus d (i.e., N-d) may be
signaled, where d is an integer such as O, 1, or 2.

[0585] c. For example, N-d may be coded with fixed
length coding e.g., u(x).

[0586] 1. In one example, X may be a fixed number
such as 8.

[0587] ii. In one example, x or x-dx may be
signaled before N-d is signaled, where dx is an
integer such as 0, 1 or 2. The signaled x may not
be larger than a maximum value in a conformance
bitstream.

[0588] iii. In one example, x may be derived
on-the-fly.

[0589] 1) For example, x may be derived as a
function of the total number (denoted as M) of
BUB s in the picture. E.g., x=Ceil(log2(M+
d0))+d1, where d0 and d1 are two integers, such
as =2, -1, 0, 1, 2, etc. Here, Ceil( ) function
returns the smallest integer value that is bigger
than or equal to the input value.

[0590] 2) M may be derived as M=Ceiling(W/
CW)xCeiling(H/CH), where W and H represent
the width and height of the picture, and CW and
CH represent the width and height of a BUB.
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[0591] d. For example, N-d may be coded with a
unary code or a truncated unary code.

[0592] e. In one example, the allowed maximum
value of N-d may be a fixed number.

[0593] 1. Alternatively, the allowed maximum
value of N-d may be derived as a function of the
total number (denoted as M) of BUBs in the
picture. E.g., x=Ceil(log2(M+d0))+d1, where dO
and d1 are two integers, such as -2, -1, 0, 1, 2, etc.
Here, Ceil( ) function returns the smallest integer
value that is bigger than or equal to the input
value.

[0594] 35. In one example, a sub-picture may be sig-
naled by indications of one or multiple of its selected
positions (e.g., top-left/top-right/bottom-left/bottom-
right position) and/or its width and/or its height.
[0595] a. In one example, the top-left position of a

sub-picture may be signaled in the granularity of a

basic unit block (BUB) with dimensions CWxCH.

[0596] 1i. For example, the column index (denoted
as Col) in terms of BUBs of the top-left BUB of
the sub-picture may be signaled.

[0597] 1) For example, Col-d may be signaled,
where d is an integer such as 0, 1, or 2.

a) Alternatively, d may be equal to Col of a
sub-picture previously coded, added by dl,
where d1 is an integer such as -1, 0, or 1.

b) The sign of Col-d may be signaled.

[0598] ii. For example, the row index (denoted as
Row) in term of BUB s of the top-left BUB of the
sub-picture may be signaled.

[0599] 1) For example, Row—d may be signaled,
where d is an integer such as 0, 1, or 2.

a) Alternatively, d may be equal to Row of a
sub-picture previously coded, added by dl,
where d1 is an integer such as -1, 0, or 1.

b) The sign of Row-d may be signaled.

[0600] 1iii. The row/column index (denoted as
Row) mentioned above may be represented in the
Coding Tree Block (CTB) unit, e.g., the X or y
coordinate relative to the top-left position of a
picture may be divided by CTB size and signaled.

[0601] iv. In one example, whether to signal the
position of a sub-picture may depend on the
sub-picture index.

[0602] 1) In one example, for the first sub-
picture within a picture, the top-left position
may be not signaled.

a) Alternatively, furthermore, the top-left posi-
tion may be inferred, e.g., to be (0, 0).

[0603] 2) In one example, for the last sub-
picture within a picture, the top-left position
may be not signaled.

a) The top-left position may be inferred depend-
ing on information of sub-pictures previously
signaled.

[0604] b. In one example, indications of the width/
height/a selected position of a sub-picture may be
signaled with truncated unary/truncated binary/
unary/fixed length/K-th EG coding (e.g., K=0, 1, 2,
3).

[0605] c. In one example, the width of a sub-picture
may be signaled in the granularity of a BUB with
dimensions CWxCH.
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[0606] i. For example, the number of columns of
BUBs in the sub-picture (denoted as W) may be
signaled.

[0607] ii. For example, W—d may be signaled,
where d is an integer such as 0, 1, or 2.

[0608] 1) Alternatively, d may be equal to W of
a sub-picture previously coded, added by dl,
where d1 is an integer such as -1, 0, or 1.

[0609] 2) The sign of W-d may be signaled.

[0610] d. In one example, the height of a sub-picture
may be signaled in the granularity of a BUB with
dimensions CWxCH.

[0611] i. For example, the number of rows of
BUBs in the sub-picture (denoted as H) may be
signaled.

[0612] ii. For example, H-d may be signaled,
where d is an integer such as 0, 1, or 2.

[0613] 1) Alternatively, d may be equal to H of
a sub-picture previously coded, added by dl,
where d1 is an integer such as -1, 0, or 1.

[0614] 2) The sign of H-d may be signaled.

[0615] e. In one example, Col-d may be coded with

fixed length coding e.g. u(x).

[0616] 1i. In one example, X may be a fixed number
such as 8.

[0617] ii. In one example, x or x-dx may be
signaled before Col-d is signaled, where dx is an
integer such as 0, 1 or 2. The signaled x may not
be larger than a maximum value in a conformance
bitstream.

[0618] iii. In one example, x may be derived
on-the-fly.

[0619] 1) For example, x may be derived as a
function of the total number (denoted as M) of
BUB columns in the picture. E.g., x=Ceil(log2
(M+d0))+d1, where dO and d1 are two integers,
suchas -2, -1, 0, 1, 2, etc. Here, Ceil( ) function
returns the smallest integer value that is bigger
than or equal to the input value.

[0620] 2) M may be derived as M=Ceiling(W/
CW), where W represents the width of the
picture, and CW represents the width of a BUB.

[0621] f. In one example, Row—d may be coded with

fixed length coding e.g. u(x).

[0622] 1i. In one example, X may be a fixed number
such as 8.

[0623] ii. In one example, x or x-dx may be
signaled before Row-d is signaled, where dx is an
integer such as 0, 1 or 2. The signaled x may not
be larger than a maximum value in a conformance
bitstream.

[0624] iii. In one example, x may be derived
on-the-fly.

[0625] 1) For example, x may be derived as a
function of the total number (denoted as M) of
BUB rows in the picture. E.g., x=Ceil(log2(M+
d0))+d1, where d0 and d1 are two integers, such
as =2, -1, 0, 1, 2, etc. Here, Ceil( ) function
returns the smallest integer value that is bigger
than or equal to the input value.

[0626] 2) M may be derived as M=Ceiling(H/
CH), where H represents the height of the
picture, and CH represents the height of a BUB.
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[0627] g. In one example, W-d may be coded with

fixed length coding e.g. u(x).

[0628] 1. In one example, X may be a fixed number
such as 8.

[0629] 1ii. In one example, x or x-dx may be
signaled before W-d is signaled, where dx is an
integer such as 0, 1 or 2. The signaled x may not
be larger than a maximum value in a conformance
bitstream.

[0630] iii. In one example, x may be derived
on-the-fly.

[0631] 1) For example, x may be derived as a
function of the total number (denoted as M) of
BUB columns in the picture. E.g., x=Ceil(log2
(M+d0))+d1, where dO and d1 are two integers,
suchas -2, -1, 0, 1, 2, etc. Here, Ceil( ) function
returns the smallest integer value that is bigger
than or equal to the input value.

[0632] 2) M may be derived as M=Ceiling(W/
CW), where W represents the width of the
picture, and CW represents the width of a BUB.

[0633] h. In one example, H-d may be coded with

fixed length coding e.g. u(x).

[0634] 1. In one example, X may be a fixed number
such as 8.

[0635] 1ii. In one example, x or x-dx may be
signaled before H-d is signaled, where dx is an
integer such as 0, 1 or 2. The signaled x may not
be larger than a maximum value in a conformance
bitstream.

[0636] iii. In one example, x may be derived
on-the-fly.

[0637] 1) For example, x may be derived as a
function of the total number (denoted as M) of
BUB rows in the picture. E.g., x=Ceil(log2(M+
d0))+d1, where d0 and d1 are two integers, such
as =2, -1, 0, 1, 2, etc. Here, Ceil( ) function
returns the smallest integer value that is bigger
than or equal to the input value.

[0638] 2) M may be derived as M=Ceiling(H/
CH), where H represents the height of the
picture, and CH represents the height of a BUB.

[0639] 1i.Col-d and/or Row-d may be signaled for all
sub-pictures.

[0640] 1i. Alternatively, Col-d and/or Row-d may
not be signaled for all sub-pictures.

[0641] 1) Col-d and/or Row-d may not be
signaled if the number of sub-pictures are less
than 2. (equal to 1).

[0642] 2) For example, Col-d and/or Row-d
may not be signaled for the first sub-picture
(e.g. with the sub-picture index (or sub-picture
1D) equal to 0).

a) When they are not signaled, they may be
inferred to be 0.

[0643] 3) For example, Col-d and/or Row-d
may not be signaled for the last sub-picture (e.g.
with the sub-picture index (or sub-picture ID)
equal to NumSubPics-1).

a) When they are not signaled, they may be
inferred depending on the positions and dimen-
sions of sub-pictures already signaled.
[0644] j. W-d and/or H-d may be signaled for all
sub-pictures.
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[0645] i. Alternatively, W-d and/or H-d may not
be signaled for all sub-pictures.

[0646] 1) W-d and/or H-d may not be signaled
if the number of sub-pictures are less than 2.
(equal to 1).

[0647] 2) For example, W—-d and/or H-d may
not be signaled for the last sub-picture (e.g. with
the sub-picture index (or sub-picture ID) equal
to NumSubPics-1).

a) When they are not signaled, they may be
inferred depending on the positions and dimen-
sions of sub-pictures already signaled.

[0648] k. In the above bullets, a BUB may be a
Coding Tree Block (CTB).

[0649] 36. In one example, the information of sub-
pictures should be signaled after information of the
CTB size (e.g. log2_ctu_size_minus5) has already been
signaled.

[0650] 37. subpic_treated_as_pic_flag[i] may not be
signaled for each sub-pictures. Instead, one subpic_
treated_as_pic_flag is signaled to control whether a
sub-picture is treated as a picture for all sub-pictures.

[0651] 38. loop_filter_across_subpic_enabled_flag [i]
may not be signaled for each sub-pictures. Instead, one
loop_filter_across_subpic_enabled_flag is signaled to
control whether loop filters can be applied across
sub-pictures for all sub-pictures.

[0652] 39. subpic_treated_as_pic_flag[i] (subpic_treat-
ed_as_pic_flag) and/or loop_filter_across_subpic_en-
abled_flag[i] (loop_filter_across_subpic_enabled_flag)
may be signaled conditionally.

[0653] a. In one example, subpic_treated_as_pic_
flag[i] and/or loop_filter_across_subpic_enabled_
flag[i] may not be signaled if the number of sub-
pictures are less than 2. (equal to 1).

[0654] 40. RPR may be applied when sub-pictures are
used.

[0655] a. In one example, the scaling ratio in RPR
may be constrained to be a limited set when sub-
pictures are used, such as {1:1, 1:2 and/or 2:1}, or
{1:1, 1:2 and/or 2:1, 1:4 and/or 4:1}, {1:1, 1:2 and/or
2:1, 1:4 and/or 4:1, 1:8 and/or 8:1}.

[0656] b. In one example, the CTB size of a picture
A and the CTB size of a picture B may be different
if the resolution of picture A and picture B are
different.

[0657] c. In one example, suppose a sub-picture SA
with dimensions SAWXSAH is in picture A and a
sub-picture SB with dimensions SBWxSBH is in
picture B, SA corresponds to SB, and the scaling
ratios between picture A and picture B are Rw and
Rh along the horizontal and vertical directions, then
[0658] i. SAW/SBW or SBW/SAW should be

equal to Rw.

[0659] ii. SAH/SBH or SBH/SAH should be equal
to Rh.

[0660] 41. When sub-pictures are used (e.g. sub_pics_
present_flag is true), a subpiccutre index (or sub-
picture ID) may be signaled in the slice header, and the
slice address is interrupted as the address in a sub-
picture instead of the whole picture.

[0661] 42. It is required that the sub-picture ID of a first
sub-picture must be different to the sub-picture ID of a
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second sub-picture, if the first sub-picture and the

second sub-picture are not the same sub-picture.

[0662] a. In one example, it may be a requirement in
a conformance bitstream that sps_subpic_id[i] must
be different from sps_subpic_id[j], if i is not equal to

[0663] b. In one example, it may be a requirement in
a conformance bitstream that pps_subpic_id[i] must
be different from pps_subpic_id[j], if i is not equal to

[0664] c. In one example, it may be a requirement in
a conformance bitstream that ph_subpic_id[i] must
be different from ph_subpic_id[j], if i is not equal to

[0665] d. In one example, it may be a requirement in
a conformance bitstream that SubpicldList[i] must
be different from SubpicldList[j], if i is not equal to

[0666] e.Inoneexample, a difference denoted as D[i]
equal to X_subpic_id[i]-X_subpic_id[i-P] may be
signaled.

[0667] 1i. For example, X may be sps, pps or ph.
[0668] ii. For example, P is equal to 1.

[0669] iii. For example, i>P.

[0670] iv. For example, D[i] must be larger than 0.
[0671] v. For example, D[i]-1 may be signaled.

[0672] 43. It is proposed that the length of a syntax
element specifying the horizontal or vertical position of
top left CTU (e.g. subpic_ctu_top_left_x or subpic_
ctu_top_left_y) may be derived to be Ceil(Log2(SS))
bits, wherein SS must be larger than 0. Here, Ceil( )
function returns the smallest integer value that is bigger
than or equal to the input value.

[0673] a. In one example, SS=(pic_width_max_in_
luma_samples+RR)/CtbSizeY when the syntax ele-
ment specifies the horizontal position of top left CTU
(e.g. subpic_ctu_top_left_x).

[0674] b. In one example, SS=(pic_height_max_in_
luma_samples+RR)/CtbSizeY when the syntax ele-
ment specifies the vertical position of top left CTU
(e.g. subpic_ctu_top_left_y).

[0675] c. In one example, RR is a non-zero integer
such as CtbSizeY-1.

[0676] 44. It is proposed that the length of a syntax
element specifying the horizontal or vertical position of
top left CTU of a sub-picture (e.g. subpic_ctu_top_
left_x or subpic_ctu_top_left_y) may be derived to be
Ceil(Log2(SS)) bits, wherein SS must be larger than O.
Here, Ceil( ) function returns the smallest integer value
that is bigger than or equal to the input value.

[0677] a. In one example, SS=(pic_width_max_in_
luma_samples+RR)/CtbSizeY when the syntax ele-
ment specifies the horizontal position of top left CTU
of a sub-picture (e.g. subpic_ctu_top_lett_x).

[0678] b. In one example, SS=(pic_height_max_in_
luma_samples+RR)/CtbSizeY when the syntax ele-
ment specifies the vertical position of top left CTU of
a sub-picture (e.g. subpic_ctu_top_left_y).

[0679] c. In one example, RR is a non-zero integer
such as CtbSizeY-1.

[0680] 45. It is proposed that the default value of the
length of a syntax element (which may plus an offset P
such as 1) specitying the width or height of a sub-
picture (e.g. subpic_width_minusl or subpic_height_
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minusl) may be derived to be Ceil(Log2(SS))-P,

wherein SS must be larger than 0. Here, Ceil( ) function

returns the smallest integer value that is bigger than or
equal to the input value.

[0681] a. In one example, SS=(pic_width_max_in_
luma_samples+RR)/CtbSizeY when the syntax ele-
ment specifies the default width (which may plus an
offset P) of a sub-picture (e.g. subpic_width_mi-
nusl).

[0682] b. In one example, SS=(pic_height_max_in_
luma_samples+RR)/CtbSizeY when the syntax ele-
ment specifies the default height (which may plus an
offset P) of a sub-picture (e.g. subpic_height_mi-
nusl).

[0683] c. In one example, RR is a non-zero integer
such as CtbSizeY-1.

[0684] 46. It is proposed that, the information of IDs of
sub-pictures should be signaled at least in one of SPS,
PPS, and the picture header if it is determined that the
information should be signaled.

[0685] a. In one example, it may be a requirement in
a conformance bitstream that at least one of sps_
subpic_id_signalling present_flag, pps_subpic_id_
signalling_present_flag and ph_subpic_id_signal-
ling_present_flag should be equal to 1 if sps_subpic_
id_present_flag is equal to 1.

[0686] 47. It is proposed that, if the information of IDs
of sub-pictures is not signaled in any one of SPS, PPS,
and the picture header, but it is determined that the
information should be signaled, default IDs should be
assigned.

[0687] a. In one example, if sps_subpic_id_signal-
ling_present_flag, pps_subpic_id_signalling_pres-
ent_flag and ph_subpic_id_signalling_present_flag
are all equal to 0 and sps_subpic_id_present_flag is
equal to 1, SubpicldList[i] should be set equal to i+P,
where P is an offset such as 0. An exemplary descrip-
tion is as below:

for(i=0,i<=sps_num_subpics_minus1i++)Subpi-

cIdList[{]=sps_subpic_id_present_flag ? (sps_
subpic_id_signalling present_flag ? sps_subpic_
id[7]:(ph_subpic_id_signalling present_flag ?
ph_subpic_id[{]:

s subpic id signalling present

flag 2 pps subpic id[i]: i)

[0688] 48. It is proposed that the information of sub-
picture IDs are not signaled in a picture header if they
are signaled in the corresponding PPS.

[0689] a. An exemplary syntax design is as below,

Descriptor

picture_header_rbsp( ) {
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-continued

Descriptor

for( i =0; i <=sps_num_subpics_minusl; i++ )
ph_subpic_id[ i ] u(v)

non_reference_picture_flag
gdr_pic_flag
no_output_of_prior_pics_flag
if( gdr_pic_flag )
recovery_poc_cnt
ph_pic_parameter_set_id
if( sps_subpic_id_present_flag && !sps_subpic_
id_signalling flag && ! pps_subpic_id_signalling
flag ) {
ph_subpic_id_signalling present flag
if( ph_subpics_id_signalling_present_flag ) {
ph_subpic_id_len_minusl

u(l)
u(l)
u(l)

ue(v)
ue(v)

u(l)

ue(v)

[0690] b. In one example, the sub-picture IDs are set
according to the information of sub-picture IDs
signaled in SPS if they are signaled in SPS; other-
wise, the sub-picture IDs are set according to the
information of sub-picture IDs signaled in PPS if
they are signaled in PPS, otherwise, the sub-picture
IDs are set according to the information of sub-
picture IDs signaled in the picture header if they are
signaled in the picture header. An exemplary descrip-
tion is as below,

for(i=0,i<=sps_num_subpics_minus1i++)Subpi-

cIdList[i]=sps_subpic_id_present_flag ? (sps_
subpic_id_signalling present flag ? sps_subpic_
id[#]:(pps_subpic_id_signalling_present_flag?
pps_subpic_id[7]:(ph_subpic_id_signalling pre-
sent_flag? ph_subpic_id[i]:1))):

[0691] c. In one example, the sub-picture IDs are set
according to the information of sub-picture IDs
signaled in the picture header if they are signaled in
the picture header; otherwise, the sub-picture IDs are
set according to the information of sub-picture 1Ds
signaled in PPS if they are signaled in PPS, other-
wise, the sub-picture IDs are set according to the
information of sub-picture IDs signaled in the SPS if
they are signaled in SPS. An exemplary description
is as below,

for(i=0,i<=sps_num_subpics_minus1i++)Subpi-

cIdList[i]=sps_subpic_id_present_flag ? (ph_
subpic_id_signalling present_flag ? ph_subpic_
id[#]:(pps_subpic_id_signalling_present_flag?
pps_subpic_id[7]:(sps_subpic_id_signalling
present_flag? sps_subpic_id[7]:1))):

[0692] 49. It is proposed that the deblocking process on

an edge E should depend on the determination of
whether loop-filtering is allowed across the sub-picture
boundaries (e.g. determined by loop_filter_across_sub-
pic_enabled_flag) on both sides (denoted as P-side and
Q-side) of the edge. P-side represents the side in the
current block, and Q-side represents the side in the
neighbouring block, which may belong to a different
sub-picture. In the following discussion, it is assumed
that P-side and Q-side belongs two different sub-
pictures.  loop_filter_across_subpic_enabled_flag[P]
=0/1 means that loop-filtering is disallowed/allowed
across the sub-picture boundaries of the sub-picture
containing P-side. loop_filter_across_subpic_enabled_
flag[Q]=0/1 means that loop-filtering is disallowed/
allowed across the sub-picture boundaries of the sub-
picture containing Q-side.

[0693] a. In one example, E is not filtered if loop_
filter_across_subpic_enabled_flag[P] is equal to 0 or
loop_filter_across_subpic_enabled_flag[Q] is equal
to 0.
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[0694] b. In one example, E is not filtered if loop_
filter_across_subpic_enabled_flag[P] is equal to O
and loop_filter_across_subpic_enabled_flag[Q] is
equal to 0.

[0695] c. In one example, whether to filter the two
sides of E are controlled separately.

[0696] i. For example, P-side of E is filtered if and
only if loop_filter_across_subpic_enabled_flag[P]
is equal 1.

[0697] ii. For example, Q-side of E is filtered if and
only if loop_filter_across_subpic_enabled_flag
[Q] is equal 1.

[0698] 50. It is proposed that, the signaling/parsing of a
syntax element SE in PPS specifying the maximum
block size used for transform skip (such as log2_
transform_skip_max_size_minus2) should be
decoupled from any syntax element in SPS (such as
sps_transform_skip_enabled_flag).

[0699] a. An exemplary syntax change is as below:

pic_parameter_set_rbsp( ) {

[[if( sps_transform_skip_enabled_flag )]]
log2_transform_skip_max_size _minus2 ue(v)

[0700] b. Alternatively, SE may be signaled in SPS,
such as:

seq_parameter_set_rbsp( ) {

if( sps_transform_skip_enabled_flag)
log2_transform_skip_max_size _minus2 ue(v)

[0701] c. Alternatively, SE may be signaled in the
picture header, such as:

picture_header_rbsp( ) {

if( sps_transform_skip_enabled_flag )
log2_transform_skip_max_size _minus2 ue(v)

[0702] 51. Whether to and/or how to update the HMVP
table (or named as list/storage/map etc.) after decoding

a first block may depend on whether the first block is

coded with geometric partition (GEO).

[0703] a. In one example, the HMVP table may not
be updated after decoding the first block if the first
block is coded with GEO.

[0704] b. In one example, the HMVP table may be
updated after decoding the first block if the first
block is coded with GEO.

[0705] 1. In one example, the HMVP table may be
updated with the motion information of one par-
tition divided by GEO.

[0706] ii. In one example, the HMVP table may be
updated with the motion information of multiple
partitions divided by GEO

[0707] 52.In CC-ALF, luma samples out of the current
processing unit (e.g., ALF processing unit bounded by
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two ALF virtual boundaries) is excluded from filtering

on chroma samples in the corresponding processing

unit.

[0708] a. Padded luma samples out of the current
processing unit may be used to filter the chroma
samples in the corresponding processing unit.
[0709] i. Any padding method disclosed in this

document may be used to pad the luma samples.

[0710] b. Alternatively, luma samples out of the cur-
rent processing unit may be used to filter chroma
samples in the corresponding processing unit.

Signaling of Parameters in Sub-Picture Level

[0711] 53. It is proposed that a set of parameters con-
trolling the coding behavior of a sub-picture may be
signaled associated with the sub-picture. That is, for
each sub-picture, a set of parameters may be signalled.
The set of parameters may comprise:

[0712] a. Quantization Parameter (QP) or delta QP
for the luma component in the sub-picture for inter
and/or intra slices/picture.

[0713] b. Quantization Parameter (QP) or delta QP
for chroma components in the sub-picture for inter
and/or intra slices/picture.

[0714] c. The reference picture list management
information.

[0715] d. CTU size for inter and/or intra slices/
picture.

[0716] e. Minimum CU size for inter and/or intra
slices/picture.

[0717] f Maximum TU size for inter and/or intra
slices/picture.

[0718] g. Maximum/Minimum Qual-Tree (QT) split

size for inter and/or intra slices/picture.

[0719] h. Maximum/Minimum Qual-Tree (QT) split
depth for inter and/or intra slices/picture.

[0720] i. Maximum/Minimum Binary-Tree (BT) split
size for inter and/or intra slices/picture.

[0721] j. Maximum/Minimum Binary-Tree (BT) split
depth for inter and/or intra slices/picture.

[0722] k. Maximum/Minimum Ternary-Tree (TT)
split size for inter and/or intra slices/picture.

[0723] 1. Maximum/Minimum Ternary-Tree (TT)
split depth for inter and/or intra slices/picture.

[0724] m. Maximum/Minimum Multi-Tree (MTT)
split size for inter and/or intra slices/picture.

[0725] n. Maximum/Minimum Multi-Tree (MTT)
split depth for inter and/or intra slices/picture.

[0726] o. Controls (including on/off control and/or
setting control) for coding tools, comprising: (The
abbreviations can be found in JVET-P2001-v14).

[0727] 1. Weighted Prediction

[0728] 1ii. Sample Adaptive Offset (SAO)

[0729] iii. ALF

[0730] iv. Transform Skip

[0731] v. block-based delta pulse code modulation
(BDPCM)

[0732] vi. Joint Cb-Cr Residual coding (JCCR)

[0733] vii. Reference wrap-around

[0734] viii. TMVP

[0735] ix. sbTMVP

[0736] x. Adaptive motion vector resolution
(AMVR)

[0737] xi. BDOF
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[0738] xii. Symmetric Motion Vector Difference
(SMVD)

[0739] «xiii. decoder side motion vector refinement
(DMVR)

[0740] xiv. merge mode with motion vector differ-
ence (MMVD)

[0741] xv. intra sub-partitions (ISP)

[0742] xvi. Multiple Reference Line (MRL)
[0743] xvii. Matrix-Based Intra Prediction (MIP)
[0744] xviii. CCLM

[0745] xix. CCLM collocated chroma control
[0746] xx. Multi Transform Selection (MTS) for

intra and/or inter

[0747] xxi. MTS for inter

[0748] xxii. Sub-block transform (SBT)

[0749] xxiii. SBT maximum size

[0750] xxiv. Affine

[0751] xxv. Affine type

[0752] xxvi. Palette

[0753] xxvii. Biprediction with CU level weights
(BCW)

[0754] xxviii. IBC

[0755] xxix. CIIP

[0756] xxx. Triangular shape based motion com-
pensation

[0757] xxxi. LMCS

[0758] p. Any other parameter with the same mean-

ing to a parameter in VPS/SPS/PPS/picture header/
slice header, but controlling a sub-picture.

[0759] 54. One flag may be firstly signaled to indicate
whether all sub-pictures share the same parameters.
[0760] q. Alternatively, furthermore, if parameters

are shared, then there is no need to signal multiple
sets of parameters for different sub-pictures.

[0761] r. Alternatively, furthermore, if parameters are
NOT shared, then multiple sets of parameters for
different sub-pictures may need to be further sig-
naled.

[0762] 55. Predictive coding of parameters among dif-
ferent sub-pictures may be applied.

[0763] s. In one example, the differences of two
values of the same syntax element for two sub-
pictures may be coded.

[0764] 56. A default set of parameters may be firstly
signaled. Then the differences compared to the default
values may be further signalled.

[0765] t. Alternatively, furthermore, one flag may be
firstly signaled to indicate whether the set of param-
eters of all sub-pictures are identical to those in the
default set.

[0766] 57. In one example, the set of parameters con-
trolling the coding behavior of a sub-picture may be
signaled in SPS or PPS or picture header.

[0767] u. Alternatively, the set of parameters control-
ling the coding behavior of a sub-picture may be
signaled in a SEI message (such as the sub-picture
level information SEI message defined in JVET-
P2001-v14) or a video usability information (VUI)
message.

[0768] 58. In the example, the set of parameters
controlling the coding behavior of a sub-picture may
be signaled associated with the sub-picture ID.

[0769] 59. In one example, a video unit (named
SPPS, Sub-Picture Parameter Set), different to VPS/
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SPS/PPS/picture header/slice header, comprising the
set of parameters controlling the coding behavior of
a sub-picture, may be signaled.

[0770] v. In one example, a SPPS_index is signaled
associated with a SPPS.

[0771] w. In one example, a SPPS_index is signaled
for a sub-picture to indicate the SPPS associated with
sub-picture.

[0772] 60. In one example, a first control parameter in
the set of parameters controlling a coding behavior of
a sub-picture may overwrite or be overwritten by a
second control parameter out of the set of parameters
but controlling the same coding behavior. For example,
the on/off control flag for a coding tool such as BDOF
in the set of parameters of a sub-picture may overwrite
or be overwritten by the on/off control flag for the
coding tool out of the set of parameters.

[0773] x. The second control parameter out of the set
of parameters may be in VPS/SPS/PPS/picture
header/slice header.

[0774] 61. When any of above examples is applied, the
syntax elements associated with a slice/tile/brick/sub-
picture are dependent on the parameters associated with
a sub-picture containing the current slice, instead of
being dependent on the parameters associated with a
picture/sequence.

[0775] 62. It is constrained that in a conformance bit-
stream, a first control parameter in the set of parameters
controlling a coding behavior of a sub-picture must be
the same to a second control parameter out of the set of
parameters but controlling the same coding behavior.

[0776] 63. In one example, a first flag is signalled in the
SPS, one per each sub-picture, and the first flag speci-
fies whether a general_constraint_info( ) syntax struc-
ture is signalled for the sub-picture associated with the
first flag. When present for a sub-picture, the general
constraint_info( ) syntax structure indicates tools that
are not applied for the sub-picture across the CLVS.
[0777] y. Alternatively, a general_constraint_info( )

syntax structure is signalled for each sub-picture.

[0778] =z. Alternatively, a second flag is signalled in
the SPS, just once, and the second flag specifies
whether the first flag is present or absent in the SPS
for each sub-picture.

[0779] 64. In one example, an SEI message or some
VUI parameter are specified to indicate that certain
coding tools are not applied or applied in a specific way
for a set of one or more sub-pictures (i.e., for the coded
slices of the set of sub-pictures) in the CLVS, such that
when the set of sub-pictures are extracted and decoded,
e.g., decoded by a mobile device, the decoding com-
plexity is relatively low and consequently power con-
sumption for the decoding is relatively low.

[0780] a. Alternatively, the same information is sig-
nalled in the Dependency Parameter Set (DPS),
Video Parameter Set (VPS), SPS, or a standalone
NAL unit.

Palette Coding

[0781] 65. The maximum number of palette size and/or
plt predictor size may be restricted to be equal to m*N,
e.g., N=8, wherein m is an integer.
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[0782] a. The value of m or m+offset may be signaled
as a first syntax element, wherein offset is an integer
such as 0.

[0783] 1. The first syntax element may be binarized
by unary coding, exponential Golomb coding, rice
coding, fixed length coding.

Merge Estimation Region (MER)

[0784] 66. The size of MER which may be signaled may
depend on the maximum or minimum CU or CTU size.
The term “size” herein may refer to width, height, both
width and height, or widthxheight.

[0785] a. In one example, S-Delta or M-S may be
signaled, wherein S is the size of MER. Delta and S
are integers which depend on the maximum or
minimum CU or CTU size. For example:

[0786] i. Delta may be the minimum CU or CTU
[0‘;;%7? ii. M may be the maximum CU or CTU
[0%@? iii. Delta may be minimum CU or CTU

size+offset, wherein offset is an integer such as 1
[0708r9]1. iv. M may be maximum CU or CTU size+

offset, wherein offset is an integer such as 1 or -1.

[0790] 67. In a conformance bitstream, the size of MER

which may be constrained, depending on the maximum

or minimum CU or CTU size. The term “size” herein

may refer to width, height, both width and height, or
widthxheight.

[0791] a. For example, the size of MER is not
allowed to be larger than or equal to the size of the
size of maximum CU or CTU size.

[0792] b. For example, the size of MER is not
allowed to be larger than the size of the size of
maximum CU or CTU size.

[0793] c. For example, the size of MER is not
allowed to be smaller than or equal to the size of the
size of minimum CU or CTU size.

[0794] d. For example, the size of MER is not
allowed to be smaller than the size of the size of
minimum CU or CTU size.

[0795] 68. The size of MER may be signaled by an
index.
[0796] a. The size of MER can be mapped to the

index by a 1-1 mapping.
[0797] 69. The size of MER or its index may be coded
by a unary code, an exponential Golomb code, a rice
code or a fixed length code.

5. Embodiments

[0798] In the following embodiments, the newly added
texts are bold italicized and the deleted texts are marked by

“Irn.

5.1 Embodiment 1: Sub-Picture Constraint on
Affine Constructed Merge Candidates

8.5.5.6 Derivation Process for Constructed Affine Control
Point Motion Vector Merging Candidates

[0799] Inputs to this process are:
[0800] a luma location (xCb, yCb) specifying the top-
left sample of the current luma coding block relative to
the top-left luma sample of the current picture,
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[0801] two variables cbWidth and cbHeight specifying
the width and the height of the current luma coding
block,

[0802] the availability flags availableA,, availableA,,
availableA,, availableB,, availableB,, availableB,,
availableB;,

[0803] the sample locations (xNbA,, yNbA,), (xNbA,,
YNbA,), (xXNbA,, yNbA,), (xNbB,, yNbB,), (xNbB,,
yNbB,), (xNbB,, yNbB,) and (xNbB;, yNbB,).

Output of this process are:
[0804] the availability flag of the constructed affine
control point motion vector merging candidiates avail-
ableFlagConstK, with K=1 ... 6,
[0805] the reference indices refldx.XConstK, with
K=1...6, X being O or 1,
[0806] the prediction list utilization flags predFlagl. X-
ConstK, with K=1 ... 6, X being 0 or 1,
[0807] the affine motion model indices motionMod-
elldcConstK, with K=1 . . . 6,
[0808] the bi-prediction weight indices bewldxConstK,
with K=1 .. .6,
[0809] the constructed affine control point motion vec-
tors cpMvLXConst[cpldx] with cpldx=0 . .. 2, K=1.
.. 6 and X being 0 or 1.
[0810]
The fourth (collocated bottom-right) control point motion
vector cpMvLXCorner[3], reference index refldx.XCorned
[3], prediction list utilization flag predFlagl . XCorned[3] and
the availability flag availableFlagCorner|[3] with X being 0
and 1 are derived as follows:
[0811] The reference indices for the temporal merging
candidate, refldxI.XCorner[3], with X being O or 1, are
set equal to 0.
[0812] The wvariables mvLXCol and availableF-
lagl. XCol, with X being 0 or 1, are derived as follows:
[0813] If slice_temporal_mvp_enabled_flag is equal
to 0, both components of mvL.XCol are set equal to
0 and availableFlagl. XCol is set equal to 0.

[0814] Otherwise (slice_temporal_mvp_enabled_
flag is equal to 1), the following applies:

xColBr=xCb+cbWidth (8-601)

yColBr=yCb+cbHeight (8-602)

rightBoundaryPos = subpic_treated
as_pic_flag] SubPicldx | 2
SubPicRightBoundaryPos :

pic_width_in luma _samples — 1

botBoundaryPos = subpic
treated_as_pic_flag] SubPicldx ] ?
SubPicBotBoundaryPos :
pic_height in luma _samples — 1

[0815] If yCb>>>CtbLog2SizeY is equal to
yColBr>>>CtbLog2SizeY, yColBr is less than
or equal to botBoundaryPos and xColBr
is less than or equal to rightBoundaryPos,
the following applies:

[0816] The variable colCb specifies the luma
coding block covering the modified location
given by ((xColBr>>3)<<3, (yColBr>>3)<<3)
inside the collocated picture specified by
ColPic.
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[0817] The luma location (xColCb, yColCb) is
set equal to the top-left sample of the collocated
luma coding block specified by colChb relative
to the top-left luma sample of the collocated
picture specified by ColPic.

[0818] The derivation process for collocated
motion vectors as specified in clause 8.5.2.12 is
invoked with currCb, colCb, (xColCb,
yColCb), refldx.XCorner[3] and sbFlag set
equal to 0 as inputs, and the output is assigned
to mvLXCol and availableFlagl . XCol.

[0819] Otherwise, both components of mvI.XCol
are set equal to 0 and availableFlagl. XCol is set
equal to 0.

[0820]

5.2 Embodiment 2: Sub-Picture Constraint on
Affine Constructed Merge Candidates

8.5.5.6 Derivation Process for Constructed Affine Control
Point Motion Vector Merging Candidates

[0821] Inputs to this process are:

[0822] a luma location (xCb, yCb) specifying the top-
left sample of the current luma coding block relative to
the top-left luma sample of the current picture,

[0823] two variables cbWidth and cbHeight specifying
the width and the height of the current luma coding
block,

[0824] the availability flags availableA,, availableA,,
availableA,, availableB,, availableB,, availableB,,
availableB;,

[0825] the sample locations (XNbA,, yNbA,), (xNbA,,
yNbA ), (xNbA,, yNbA,), (xNbB,, yNbB), (xNbB,,
yNbB, ), (xNbB,, yNbB,) and (xNbB;, yNbB;).

Output of this process are:

[0826] the availability flag of the constructed affine
control point motion vector merging candidiates avail-
ableFlagConstK, with K=1 ... 6,

[0827] the reference indices refldx.XConstK, with
K=1...6,X being O or 1,

[0828] the prediction list utilization flags predFlagl . X-
ConstK, with K=1 ... 6, X being 0 or 1,

[0829] the affine motion model indices motionMod-
elldcConstK, with K=1 . . . 6,

[0830] the bi-prediction weight indices bewldxConstK,
with K=1...6,

[0831] the constructed affine control point motion vec-
tors cpMvLXConstK[cpldx] with cpldx=0 . . . 2, K=1
.. .6 and X being O or 1.

[0832]

The fourth (collocated bottom-right) control point motion
vector cpMvLXCorner[3], reference index refldxLXCorner
[3], prediction list utilization flag predFlagl. XCorner[3] and
the availability flag availableFlagCorner[3] with X being 0
and 1 are derived as follows:

[0833] The reference indices for the temporal merging
candidate, refldx.XCorner[3], with X being O or 1, are
set equal to 0.

[0834] The variables mvLXCol and availableF-
lagl. XCol, with X being O or 1, are derived as follows:
[0835] If slice_temporal_mvp_enabled_flag is equal

to 0, both components of mvL.XCol are set equal to
0 and availableFlagl . XCol is set equal to 0.
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[0836] Otherwise (slice_temporal_mvp_enabled_
flag is equal to 1), the following applies:

xColBr=xCb+cbWidth (8-601)

yColBr=yCb+cbHeight (8-602)

rightBoundaryPos=subpic_treated_as_pic_flag[SubPi-
cldx] ? SubPicRightBoundaryPos:pic_width_in_
luma_samples—1

botBoundaryPos = subpic

treated as pic flag] SubPicldx | 2
SubPicBotBoundaryPos :

pic height in luma samples — 1

xColBr = Min( rightBoundaryPos , xColBr)
yColBr = Min (botBoundaryPos , yColBr)

[0837] If yCb>>CtbLog2SizeY is equal to
yColBr>>CtbLog28SizeY, [[yColBr is less than
pic_height_in_luma_samples and xColBr is less
than pic_width_in_luma_samples, the following
applies]]:

[0838] The variable colCb specifies the luma
coding block covering the modified location
given by ((xColBr>>3)<<3, (yColBr>>3)<<3)
inside the collocated picture specified by
ColPic.

[0839] The luma location (xColCb, yColCb) is
set equal to the top-left sample of the collocated
luma coding block specified by colCh relative
to the top-left luma sample of the collocated
picture specified by ColPic.

[0840] The derivation process for collocated
motion vectors as specified in clause 8.5.2.12 is
invoked with currCb, colCb, (xColCb,
yColCb), refldx.XCorner[3] and sbFlag set
equal to 0 as inputs, and the output is assigned
to mvLLXCol and availableFlagl . XCol.

[0841] Otherwise, both components of mvL.XCol
are set equal to 0 and availableFlagl. XCol is set
equal to O.

[0842]

5.3 Embodiment 3: Fetching Integer Samples
Under the Sub-Picture Constraint

8.5.6.3.3 Luma Integer Sample Fetching Process

[0843]

[0844]

ylnt;).

[0845] the luma reference sample array refPicL.X,,
Output of this process is a predicted luma sample value
predSamplel. X,

The variable shift is set equal to Max(2, 14-BitDepth,).
The variable picW is set equal to pic_width_in_luma_
samples and the variable picH is set equal to pic_height_
in_luma_samples.

The luma locations in full-sample units (xInt, yInt) are
derived as follows:

[0846] —_ If subpic treated as pic flag] SubPicldx

[ is equal to 1, the following applies:
xInt = Clip3( SubPicLeftBoundaryPos,
SubPicRightBoundaryPos, xInt)

Inputs to this process are:
a luma location in full-sample units (xInt;,
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yiInt = Clip3( SubPicTopBoundaryPos,
SubPicBotBoundaryPos, yInt)

[0847] —_ Otherwise:

xInt=Clip3(0,picW-1,sps_ref_wraparound_enabled_
flag ? ClipH((sps_ref_wraparound_offset mi-

nusl+1)*MinCbSizeY,picW,xInt; ):xInt; ) (8-782)

yInt=Clip3(0,picH-1,yInt; ) (8-783)

The predicted luma sample value predSampleLX is derived
as follows:

predSampleLX; =refPicLX; [xInt][yInt]<<shift3 (8-784)

5.4 Embodiment 4: Deriving the Variable
invAvgluma in Chroma Residual Scaling of LMCS

[0848] 8.7.5.3 Picture Reconstruction with Luma Depen-
dent Chroma Residual Scaling Process for Chroma Samples
Inputs to this process are:

[0849] a chroma location (xCurr, yCurr) of the top-left
chroma sample of the current chroma transform block
relative to the top-left chroma sample of the current
picture,

[0850] a variable nCurrSw specitying the chroma trans-
form block width,

[0851] a variable nCurrSh specifying the chroma trans-
form block height,

[0852] a variable tuCbfChroma specifying the coded
block flag of the current chroma transform block,

[0853] an (nCurrSw)x(nCurrSh) array predSamples
specifying the chroma prediction samples of the current
block,

[0854] an (nCurrSw)x(nCurrSh) array resSamples
specifying the chroma residual samples of the current
block,

Output of this process is a reconstructed chroma picture
sample array recSamples.

The variable sizeY is set equal to Min(CtbSizeY, 64).

The reconstructed chroma picture sample recSamples is
derived as follows for

i=0...#nCurtSw-1, j=0 . .. nCurrSh-1:

[0855]
[0856]
[0857]
The variable currPic specifies the array of reconstructed
luma samples in the current picture.
For the derivation of the variable varScale the follow-
ing ordered steps apply:
1. The variable invAvgl.uma is derived as follows:
[0858] The array recLumal[i] with i=0 . . . (2*sizeY-
1) and the variable cnt are derived as follows:
[0859] The variable cnt is set equal to 0.
[0860] The variablerightBoundaryPos and
botBoundaryPos are derived as follows:
rightBoundaryPos = subpic_
treated_as_pic_flag{ SubPicldx | ?
SubPicRightBoundaryPos :
pic_width_in luma_samples — 1

Otherwise, the following applies:

botBoundaryPos = subpic
treated_as_pic_flag{ SubPicldx | ?
SubPicBotBoundaryPos : pic_
height in_luma_samples — 1

Mar. 28, 2024

[0861] When availl. is equal to TRUE, the array
recLuma[i] with i=0 . . . sizeY-1 is set equal to
currPic[xCuCb-1][Min(yCuCb+i, [[pic_height_
in_luma_samples-1]] botBoundaryPos)| with
i=0 . . . sizeY-1, and cnt is set equal to sizeY

[0862] When availT is equal to TRUE, the array
recLumafcnt+i] with i=0 . . . sizeY-1 is set equal
to

[0863] currPic[Min(xCuCb+i, [[pic_width_in_
luma_samples—1]] rightBoundary Pos )]
[yCuCb-1] with i=0 . . . sizeY-1, and cnt is set
equal to (cnt+sizeY)

[0864] The variable invAvgluma is derived as fol-
lows:—

[0865] If cnt is greater than O, the following
applies:

invAvgLuma=Clip1 #{((Z;_" ‘recLumal[k]+

(cnt>>1))>>Log2(cnt)) (8-1013)

[0866] Otherwise (cnt is equal to 0), the following
applies:

invAvglLuma=1<<(BitDepth;—1) (8-1014)

5.5 Embodiment 5: An Example of Defining the
Sub-Picture Flement in Unit of N (Such as N=8 or
32) Other than 4 Samples

7.433 Sequence Parameter Set Raw Byte Sequence
Payload (RBSP) Semantics

[0867] subpic_grid _col_width_minusl plus 1 specifies
the width of each element of the sub-picture identifier
grid in units of 4N samples. The length of the syntax
element is Ceil(Log2(pic_width_max_in_luma_
samples/ 4N) ))) bits.

The variable NumSubPicGridCols is derived as follows:

NumSubPicGridCols=(pic_width_max_in_luma_
samples+subpic_grid_col_width_minus1*[[4+3]]

N+N-1 )/(subpic _grid_col_width_minus1*
[[4+3]1 N +N-1) 7-5)

[0868] subpic_grid row_height_minusl plus 1 speci-
fies the height of each element of the sub-picture
identifier grid in units of 4 samples. The length of the
syntax element is Ceil(Log2(pic_height_max_in_
luma_samples/4£V) ) bits.

The variable NumSubPicGridRows is derived as follows:

NumSubPicGridRows=(pic_height_max_in_luma_
samples+subpic_grid_row_height minus1*
4 N +N-1 )/(subpic_grid_row_height_mi-
nus1*[[4+3) N +N-1)

7.4.7.1 General Slice Header Semantics
[0869] The variables SubPicldx, SubPicLeftBoundaryPos,

SubPicTopBoundaryPos, SubPicRightBoundaryPos, and
SubPicBotBoundaryPos are derived as follows:
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SubPicldx = CtbToSubPicldx[ CtbAddrBsToRs[ FirstCtbAddrBs[ SliceBrickIdx[ O ]

if( subpic_treated_as_pic_flag[ SubPicldx ] )
SubPicLeftBoundaryPos

SubPicLeft[ SubPicldx ] * ( subpic_grid_col width_minusl +1 ) *4 N
SubPicRightBoundaryPos —

( SubPicLeft[ SubPicldx ] + SubPicWidth[ SubPicldx ] ) *

( subpic_grid_col_width_minusl + 1) * 4N

SubPicTopBoundaryPos -

SubPicTop[ SubPicldx ] * ( subpic_grid row_height minusl + 1 * 4 N

(7-93)

111
{

SubPicBotBoundaryPos = ( SubPicTop[ SubPicldx ] + SubPicHeight[ SubPicldx ] ) *

subpic_grid_row_height minusl +
( subpic_grid height_minusl + 1) * 4N

5.6 Embodiment 6: Restrict the Picture Width and
the Picture Height to be Equal or Larger than 8

7.4.3.3 Sequence Parameter Set RBSP Semantics

[0870] pic_width_max_in_luma_samples specifies the
maximum width, in units of luma samples, of each
decoded picture referring to the SPS. pic_width_max_
in_luma_samples may not be equal to 0 and may be an
integer multiple of [[MinCbSizeY]]
Max( 8, MinCbhSizeY)..

[0871] pic_height_max_in_luma_samples specifies the
maximum height, in units of luma samples, of each
decoded picture referring to the SPS. pic_height_max_
in_luma_samples may not be equal to 0 and may be an
integer multiple of [[MinCbSizeY]]

Max( 8, MinChSizeY )..

5.7 Embodiment 7: Sub-Picture Boundary Check
for BT/TT/QT Splitting, BT/TT/QT Depth
Derivation, and/or the Signaling of CU Split Flag

6.4.2 Allowed Binary Split Process

[0872] The variable allowBtSplit is derived as follows:
[0873]
[0874] Otherwise, if all of the following conditions are

true, allowBtSplit is set equal to FALSE

[0875] btSplit is equal to SPLIT_BT_VER

[0876] yO+cbHeight is greater than [[pic_height_in_
luma_samples]]

subpic treated as pic flag] SubPicldx ] ?

SubPicBotBoundaryPos + I: pic
height in luma samples.
[0877] Otherwise, if all of the following conditions are
true, allowBtSplit is set equal to FALSE

[0878] btSplit is equal to SPLIT_BT_VER
[0879] cbHeight is greater than MaxTbSizeY
[0880] xO+cbWidth is greater than [[pic_width_in_

luma_samples]]
subpic_treated_as_pic_flag] SubPicldx | ?
SubPicRightBoundaryPos + 1 :

pic_width_in luma_samples
[0881] Otherwise, if all of the following conditions are

true, allowBtSplit is set equal to FALSE

[0882] btSplit is equal to SPLIT_BT_HOR
[0883] cbWidth is greater than MaxTbSizeY
[0884] yO+cbHeight is greater than [[pic_height_in_

luma_samples]]

subpic treated as pic flag] SubPicldx ] ?

SubPicBotBoundaryPos +
1: pic_height in _luma samples.

[0885] Otherwise, if all of the following conditions are

true, allowBtSplit is set equal to FALSE

[0886] x0+cbWidth is greater than [[pic_width_in_
luma_samples]]
subpic_treated _as_pic flag] SubPicldx ] ?
SubPicRightBoundaryPos + 1 :
pic width in luma samples

[0887] yO+cbHeight is greater than [[pic_height_in_
luma_samples]]
subpic_treated _as_pic flag] SubPicldx ] ?
SubPicBotBoundaryPos +
1: pic_height in_luma_samples.

[0888] cbWidth is greater than minQtSize

[0889] Otherwise, if all of the following conditions are

true, allowBtSplit is set equal to FALSE

[0890] btSplit is equal to SPLIT_BT_HOR

[0891] xO+cbWidth is greater than [[pic_width_in_
luma_samples]]
subpic_treated _as_pic flag] SubPicldx ] ?
SubPicRightBoundaryPos + 1 :
pic_width _in luma samples

[0892] yO+cbHeight is less than or equal to [[pic_
height_in_luma_samples]]
subpic_treated _as_pic flag] SubPicldx ] ?
SubPicBotBoundaryPos +

1: pic height in luma samples.

6.4.2 Allowed Ternary Split Process

[0893] The variable allowTtSplit is derived as follows:
[0894] If one or more of the following conditions are
true, allowTtSplit is set equal to FALSE:

[0895] cbSize is less than or equal to 2*MinTtSizeY

[0896] cbWidth is greater than Min(MaxTbSizeY,
maxTtSize)

[0897] cbHeight is greater than Min(MaxTbSizeY,
maxTtSize)

[0898] mttDepth is greater than or equal to maxMtt-
Depth

[0899] xO+cbWidth is greater than [[pic_width_in_

luma_samples]]

subpic_treated_as_pic flag] SubPicldx | 2

SubPicRightBoundaryPos + 1 :
pic_width_in luma_samples

[0900] yO+cbHeight is greater than [[pic_height_in_
luma_samples]]

subpic_treated as pic flag] SubPicldx ] ?

SubPicBotBoundaryPos +
1: pic height in luma samples.

[0901] treeType is equal to DUAL TREE CHROMA
and (cbWidth/SubWidth .)*(cbHeight/SubHeightC)
is less than or equal to 32
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[0902] treeType is equal to DUAIL_TREE_ 7.3.8.2 Coding Tree Unit Syntax
CHROMA and modeType is equal to MODE_TY-
PE_INTRA
[0903] Otherwise, allowTtSplit is set equal to TRUE. [0904]

Descriptor

dual_tree_implicit_qt_split( X0, y0, cbSize, cqtDepth ) {

if( x1 < [[pic_width_in_luma_samples]]
(subpic treated as pic flag| SubPicldx | ? SubPicRightBoundaryPos + 1 :
pic width in luma samples))
dual_tree_implicit_qt_split( x1, y0, cbSize / 2, cqtDepth + 1 )
if( y1 < [[pic_height in luma samples]]
(subpic treated as pic flag| SubPicldx | ? SubPicBotBoundaryPos +
1: pic height in luma samples) )
dual_tree_implicit_qt_split( x0, y1, cbSize / 2, cqtDepth + 1 )
if( x1 < [[pic_width_in_luma_samples]]
(subpic treated as pic flag| SubPicldx | ? SubPicRightBoundaryPos + 1 :
pic width in luma samples) && y1 < [[pic_height in_luma samples]]
(subpic treated as pic flag| SubPicldx | ? SupPicBotBoundaryPos +
1: pic height in luma samples) )
dual_tree_implicit_qt_split( x1, y1, cbSize / 2, cqtDepth + 1 )

}else {

"
}

7.3.8.4 Coding Tree Syntax
[0905]

Descriptor

coding tree( x0, y0, cbWidth, cbHeight, qgOnY, qgOnC, cbSubdiv, cqtDepth,
mttDepth, depthOffset,
partldx, treeTypeCurr, modeTypeCurr ) {
if( (allowSplitBtVer | | allowSplitBtHor | | allowSplitTtVer | | allowSplitTtHor | |
allowSplitQT )
&&( X0 + cbWidth <= [[pic_width_in_luma samples]]
(subpic treated as pic flag| SubPicldx | ? SubPicRightBoundaryPos + 1 :
pic width in luma samples) )
&& (y0 + cbHeight <= [[pic_height_in_luma samples]]
(subpic treated as pic flag| SubPicldx | ? SubPicBotBoundaryPos +
1: pic height in luma samples) ) )
split_cu_flag ae(v)
if( cu_qp_delta_enabled_flag && qgOnY &&
cbSubdiv <= cu_qp_delta_subdiv ) {

depthOffset += ( yO + cbHeight > [[pic_height_in_luma_ samples]]
(subpic treated as pic flag| SubPicldx | ? SubPicBotBoundaryPos +
1: pic height in luma samples) )71 : 0
y1 = y0 + ( cbHeight / 2 )
coding tree( x0, y0, cbWidth, cbHeight / 2, qgOnY, qgOnC, cbSubdiv + 1,
cqtDepth, mttDepth + 1, depthOffset, 0, treeType, modeType )
if( y1 < [[pic_height in luma_samples]]
(subpic treated as pic flag| SubPicldx | ? SubPicBotBoundaryPos +
1: pic height in luma samples) )
coding tree( x0, y1, cbWidth, cbHeight / 2, qgOnY, qgOnC,
cbSubdiv + 1,
cqtDepth, mttDepth + 1, depthOffset, 1, treeType, modeType )

if( x1 < [[pic_width_in_luma_samples]]
(subpic treated as pic flag| SubPicldx | ? SubPicRightBoundaryPos + 1 :
pic width in luma samples) )
coding tree( x1, y0, cbWidth / 2, cbHeight / 2, qgOnY, qgOnC,
cbSubdiv + 2,
cqtDepth + 1, 0, 0, 1, treeType, modeType )
if( y1 < [[pic_height in luma_samples]]
(subpic treated as pic flag| SubPicldx | ? SubPicBotBoundaryPos +
1: pic height in luma samples))
coding tree( x0, y1, cbWidth / 2, cbHeight / 2, qgOnY, qgOnC,
cbSubdiv + 2,
cqtDepth + 1, 0, 0, 2, treeType, modeType )
if( y1 < [[pic_height in luma_samples]]
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-continued
Descriptor
(subpic_treated_as_pic_ flag| SubPicldx | ? SubPicBotBoundaryPos +
1: pic_height _in_luma_samples) && x1 < [[pic_width_in_luma_samples]]
(subpic treated as pic flag| SubPicldx | ? SubPicRightBoundaryPos + 1 :
pic width in luma samples) )
coding_tree( x1, y1, cbWidth / 2, cbHeight / 2, qgOnY, qgOnC,
cbSubdiv + 2,
cqtDepth + 1, 0, 0, 3, treeType, modeType )
5.8 Embodiment 8: An Example of Defining the -continued
Sub-Pictures
[ 090 6] Descriptor
for( i =0; i < NumSubPicGridRows; i++ )
for( j = 0; j < NumSubPicGridCols; j++ )
. subpic_grid_idx[ i ][] ] u(v)
Descriptor for( i = 0; i <= NumSubPics; i++ ) {
seq_parameter_set_rbsp( ) | subpicftreatedfasfpicfl.iag[ i] . u(l)
sps_decoding_parameter_set_id u(4) ) loop_filter_across_subpic_enabled_flag[ i | u(l)
pic_width_max_in_luma_samples ue(v) }]] .
pic_height_max_in_luma_samples ue(v) bit_depth_luma_minus8 ue(v)
[[subpics_present_flag u(l) ) .
if( subpics_present_flag ) { log2_ctu_size_minus5 u2)
max_subpics_minus1 u(8) - 3
subpic_grid_col_width_minus1 u(v) f”bp 1cs P! resent flag u(@)
subpic_grid_row_height_minus1 u(v) if( subpics p resen t.ﬂag A
for( i =0; i < NumSubPicGridRows; i++ ) num .subp ics min usl . . . ue(v)
for( j = 0; | < NumSubPicGridCols; j++ ) Sor(i =.0; i <= num subpics minusl; i++ ) {
subpic_grid_idx[ i ][ ] | u) subplc ctb addr x[1] u(8)
for( i = 0; i <= NumSubPics; i++ ) { subpl.c ctb ‘"{dr y[i]. u(®)
subpic_treated_as_pic_flag[ i ] u(l) subpl.c ctb wu.lth mlr.msl (7l u(®)
loop_filter_across_subpic_enabled_flag[ i ] u(l) subp e ctb height "fm"ﬂ [i]. u(8)
} subpic treated as pic flag[ i | u(l)
Bl loop filter across subpic enables flag[ i | u(l)
bit_depth_luma_minus8 ue(v) }
log2_ctu_size_minus5 u2)
subpics present flag u(l)
if( subpics present flag ) { 5.10 Embodiment 10: An Example of Defining the
num supics minusl u(8) Sub-Pictures
Jor (i = 0; i <= num subpics minusl; i++ ) {
subpic ctb addy x[i) u(8)
subpic ctb addy y[i] u(8) [0908]
subpic ctb width minus1[i] u(8)
subpic ctb height minusli|i) u(8)
subpic treated as pic flag| i ] u(l) Descriptor
loop filter across subpic enabled flag| i | u(l)
} seq_parameter_set_rbsp( ) {
sps_decoding_parameter_set_id u4)
pic_width_max_in_luma_samples ue(v)
pic_height_max_in_luma_samples ue(v)
5.9 Embodiment 9: An Example of Defining the [[subpics_present_flag u()
Sub-Pictures if( subpics_present_flag ) {
max_subpics_minus1 u(8)
[0907] subpic_grid_col_width_minusl u(v)
subpic_grid_row_height_minus1 u(v)
for( i =0; i < NumSubPicGridRows; i++ )
for( j = 0; j < NumSubPicGridCols; j++ )
Descriptor subpic_grid_idx[i ][] ] u(v)
for( i = 0; i <= NumSubPics; i++ ) {
seq_parameter_set_rbsp( ) { subpic_treated_as_pic_flag[ i ] u(l)
sps_decoding_parameter_set_id u4) loop_filter_across_subpic_enabled_flag[ i | u(l)
pic_width_max_in_luma_samples ue(v) Hl
pic_height_max_in_luma_samples ue(v) .
[[subpics_present_flag u(l) log2_ctu_size_minus5 u2)
if( subpics_present_flag ) { .
max_subpics_minusl u(8) subpics present flag u(l)
subpic_grid_col_width_minusl u(v) if( subpics present flag ) {

subpic_grid_row_height minusl u(v) num subpics minus2 u(v)
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-continued
Descriptor

subpic_addr_x_length_minus1 ue(v)
subpic_addr_y_length_minus1 ue(v)
Jor(i = 0; i < NumSubPics; i++ ) {

subpic ctb addy x[i) u(v)

subpic ctb addy y[i] u(v)

subpic ctb width minus1[i] u(v)

subpic ctb height minusli|i) u(v)

subpic treated as pic flag| i ] u(l)

loop filter across subpic enabled flag| i | u(l)

5.11 Embodiment 11: An Example of Defining the
Sub-Pictures

[0909]
Descriptor
seq_parameter_set_rbsp( ) {
sps_decoding_parameter_set_id u4)
pic_width_max_in_luma_samples ue(v)
pic_height max_in_luma samples ue(v)
[[subpics_present_flag u(l)
if( subpics_present_flag ) {
max_subpics_minusl u(8)
subpic_grid_col width_minusl u(v)
subpic_grid_row_height minusl u(v)
for( i =0; i < NumSubPicGridRows; i++ )
for( j = 0; j < NumSubPicGridCols; j++ )
subpic_grid_idx[i ][] ] u(v)
for( i = 0; i <= NumSubPics; i++ ) {
subpic_treated_as_pic_flag[ i ] u(l)
loop_filter_across_subpic_enabled _flag[ i ] u(l)
}
Bl
log2_ctu_size_minus5 u(2)
subpics_present_flag u(l)
if (‘subpics_present_flag ) { -
num_subpics_minus2 u(v)
subpic_addr_x_length_minus1 M)
subpic_addr_y_length_minusl ue(v)
for( i = 0; i < NumSubPics; i++ ) { -
if(i=0;1<NumSubPics - 1) {
subpic_ctb_addr_x[i] u(v)
subpic_ctb_addr_y[i] uv)
subpic_ctb_width_minusl1[i] u(v)
subpic_ctb_height minus1[i] @
subpic_treated_as_pic_flag[ i ] u(l)
loop_filter_across_subpic_enabled_flag[ i ] ul)

7

NumSubPics=num_subpics_minus2+2.

5.12 Embodiment: Deblocking Considering
Sub-Pictures

8.8.3 Deblocking Filter Process
8.8.3.1 General

[0910] Inputs to this process are the reconstructed picture
prior to deblocking, i.e., the array recPicture; and, when
ChromaArrayType is not equal to 0, the arrays recPicture_,

and recPicture,.
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Outputs of this process are the modified reconstructed
picture after deblocking, i.e., the array recPicture; and, when
ChromaArrayType is not equal to O, the arrays recPicture_,
and recPicture.,.

The vertical edges in a picture are filtered first. Then the
horizontal edges in a picture are filtered with samples
modified by the vertical edge filtering process as input. The
vertical and horizontal edges in the CTB s of each CTU are
processed separately on a coding unit basis. The vertical
edges of the coding blocks in a coding unit are filtered
starting with the edge on the left-hand side of the coding
blocks proceeding through the edges towards the right-hand
side of the coding blocks in their geometrical order. The
horizontal edges of the coding blocks in a coding unit are
filtered starting with the edge on the top of the coding blocks
proceeding through the edges towards the bottom of the
coding blocks in their geometrical order.

[0911] NOTE—Although the filtering process is speci-
fied on a picture basis in this Specification, the filtering
process can be implemented on a coding unit basis with
an equivalent result, provided the decoder properly
accounts for the processing dependency order so as to
produce the same output values.

The deblocking filter process is applied to all coding sub-
block edges and transform block edges of a picture, except
the following types of edges:

[0912] Edges that are at the boundary of the picture,

[0913] [[Edges that coincide with the boundaries of a
sub-picture for which loop_filter_across_subpic_en-
abled_flag [SubPicldx] is equal to 0,]]

[0914] Edges that coincide with the virtual boundaries
of the picture when pps_loop_filter_across_virtual_
boundaries_disabled_flag is equal to 1,

[0915] Edges that coincide with tile boundaries when
loop_filter_across_tiles_enabled_flag is equal to O,

[0916] Edges that coincide with slice boundaries when
loop_filter_across_slices_enabled_flag is equal to O,

[0917] Edges that coincide with upper or left boundaries
of slices with slice_deblocking_filter_disabled_flag
equal to 1,

[0918] Edges within slices with slice_deblocking_fil-
ter_disabled_flag equal to 1,

[0919] Edges that do not correspond to 4x4 sample grid
boundaries of the luma component,

[0920] Edges that do not correspond to 8x8 sample grid
boundaries of the chroma component,

[0921] Edges within the luma component for which
both sides of the edge have intra_bdpcm_luma_flag
equal to 1,

[0922] Edges within the chroma components for which
both sides of the edge have intra_bdpcm_chroma_flag
equal to 1,

[0923] Edges of chroma subblocks that are not edges of
the associated transform unit.

Deblocking Filter Process for One Direction

[0924] Inputs to this process are:

[0925] the variable treeType specifying whether the
luma (DUAL_TREE_LUMA) or chroma components
(DUAL_TREE_CHROMA) are currently processed,

[0926] when treeType is equal to DUAL_TREE_
LUMA, the reconstructed picture prior to deblocking,
i.e., the array recPicture,,
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[0927] when ChromaArrayType is not equal to 0 and
treeType is equal to DUAL_TREE_CHROMA, the
arrays recPicture, and recPicture_,,

[0928] a variable edgeType specifying whether a verti-
cal (EDGE_VER) or a horizontal (EDGE_HOR) edge
is filtered.

Outputs of this process are the modified reconstructed
picture after deblocking, i.e:—

[0929] when treeType is equal to DUAL_TREE_
LUMA, the array recPicture,,

[0930] when ChromaArrayType is not equal to 0 and
treeType is equal to DUAL_TREE_CHROMA, the
arrays recPicture, and recPicture,.

The variables firstCompldx and lastCompldx are derived as
follows:

firstCompldx=(tree Type==DUAL_TREE_CHROMA)
?1:0 (8-1010)

lastCompldx=(treeType==DUAL_TREE_LUMA||Ch-

romaArrayType==0) ? 0:2 (8-1011)

For each coding unit and each coding block per colour
component of a coding unit indicated by the colour com-
ponent index cldx ranging from firstCompldx to lastCom-
pldx, inclusive, with coding block width nCbW, coding
block height nCbH and location of top-left sample of the
coding block (xCb, yCb), when cldx is equal to 0, or when
cldx is not equal to 0 and edgeType is equal to EDGE_VER
and xCb % 8 is equal 0, or when cldx is not equal to 0 and
edgeType is equal to EDGE_HOR and yCb % 8 is equal to
0, the edges are filtered by the following ordered steps:

[0931] 2. The variable filterEdgeFlag is derived as fol-
lows:
[0932] If edgeType is equal to EDGE_VER and one

or more of the following conditions are true, filter-

EdgeFlag is set equal to O:

[0933] The left boundary of the current coding
block is the left boundary of the picture.

[0934] [[The left boundary of the current coding
block is the left or right boundary of the sub-
picture and loop_filter_across_subpic_enabled_
flag[SubPicldx] is equal to 0.]]

[0935] The left boundary of the current coding
block is the left boundary of the tile and loop_
filter_across_tiles_enabled_flag is equal to 0.

[0936] The left boundary of the current coding
block is the left boundary of the slice and loop_
filter_across_slices_enabled_flag is equal to 0.

[0937] The left boundary of the current coding
block is one of the vertical virtual boundaries of
the picture and VirtualBoundariesDisabledFlag is
equal to 1.

[0938] Otherwise, if edgeType is equal to EDGE_
HOR and one or more of the following conditions
are true, the variable filterEdgeFlag is set equal to
0:—

[0939] The top boundary of the current luma cod-
ing block is the top boundary of the picture.

[0940] [[The top boundary of the current coding
block is the top or bottom boundary of the sub-
picture and loop_filter_across_subpic_enabled_
flag[SubPicldx] is equal to 0.]]

[0941] The top boundary of the current coding
block is the top boundary of the tile and loop_
filter_across_tiles_enabled_flag is equal to 0.
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[0942] The top boundary of the current coding
block is the top boundary of the slice and loop_
filter_across_slices_enabled_flag is equal to 0.

[0943] The top boundary of the current coding
block is one of the horizontal virtual boundaries of
the picture and VirtualBoundariesDisabledFlag is
equal to 1.

[0944] Otherwise, filterEdgeFlag is set equal to 1.

. . Filtering process for a luma
sample using short filters
Inputs to this process are:
[0945]
[0946] the locations of p, and q,, (xP,, yP,) and (xQ,,
yQ,) withi=0 ... 2,
[0947] a variable dE,

[0948] the variables dEp and dEq containing decisions
to filter samples pl and ql, respectively,

the sample values p, and q, with i=0 . . . 3,

[0949] a variable t..

Outputs of this process are:
[0950] the number of filtered samples nDp and nDq,
[0951] the filtered sample values p, and q;' with i=0 . .

. nDp-1, =0 . . . nDg-1.
Depending on the value of dE, the following applies:—
[0952] Ifthe variable dE is equal to 2, nDp and nDq are
both set equal to 3 and the following strong filtering
applies:

Po=Clip3(po-3*tc,pot3*1c,pa+2*p 1 +2%pot 2% qotq, +

4)>>3) (8-1150)

pi=Clip3(p=2*tc,p1+2% 1, (PP 14D 90+ 2)>>2) (8-1151)

DP2=Clip3(po-1*1c,py+1%1¢,(2%p3+3*potp 1Pt go+4)
>>3) (8-1152)

90=Clip3(go-3*1c,.qo+3* 1, (0142 pot2*qo+2% q 190+

4)>>3) (8-1153)
q,=Clip3(q,-2%1¢,q,+2*1c, Dot g0t 192+2)>>2) (8-1154)
42=Clip3(go-1%tc,g2+1* 1, Dot qotq 1 +3*4+2%q5+4)

>>3) (8-1155)

[0953] Otherwise, nDp and nDq are set both equal to 0
and the following weak filtering applies:

[0954] The following applies:

A=(9*(g0=po)-3*(q,-p1)+8)>>4

[0955] When Abs(A) is less than t.*10, the following
ordered steps apply:

[0956] The filtered sample values p,' and q,' are
specified as follows:

(8-1156)

A=Clip3(-tctA) (8-1157)

Po=Clip1(pg+A) (8-1158)
90=Clipl{go—A)

[0957] When dEp is equal to 1, the filtered sample
value p,' is specified as follows:

(8-1159)

Ap=Clip3(~(1c>>1),1c>>1,((Ra+po+1)>>1)-p 1 +A)
>>1) (8-1160)

p'=Clip1(p,+Ap) (8-1161)
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[0958] When dEq is equal to 1, the filtered sample
value q,' is specified as follows:

Ag=Clip3(-(tc>>1),tc>>1,9,+q4+1)>>1)-q -A)>>1) (8-1162)

q,'=Clipl(q,+Aq) (8-1163)

[0959] nDp is set equal to dEp+1 and nDq is set
equal to dEq+1.
When nDp is greater than 0 and pred_mode_plt_flag of the
coding unit that includes the coding block containing the
sample p, is equal to 1, nDp is set equal to O
When nDq is greater than 0 and pred_mode_plt_flag of the
coding unit that includes the coding block containing the
sample q, is equal to 1, nDq is set equal to 0
When nDp is greater than 0
and loop _filter across subpic
enabled flagl subPicldxP | is
equal to 0, nDp is set equal to 0,
wherein subPicldxP is the sub-picture index of the sub-
picture containing the sample po.
When nDgq is greater than 0
and loop _filter across subpic
enabled flag[ subPicldxQ [ is

equal to 0, nDq is set equal to 0,
wherein subPicldxQ is the sub-picture index of the sub-

picture containing the sample gq.
Filtering process for a luma sample using long filters
Inputs to this process are:

[0960] the variables maxFilterl.engthP and maxFilter-
LengthQ,
[0961] the sample values p, and q; with i=0 . . . max-

FilterLengthP and j=0 . . . maxFilterLengthQ,

[0962] the locations of p; and g;, (xP,, yP,) and (xQ,,
yQ) with i=0 . . . maxFilterLengthP-1 and j=0 . . .
maxFilterengthQ-1,

[0963] a variable t.

Outputs of this process are:

[0964] the filtered sample values p, and g, with i=0 . .

. maxFilterLengthP-1, j=0 . . . maxFilterLenghtQ-1.
The variable refMiddle is derived as follows:

[0965] If maxFilterLengthP is equal to maxFilter-
LengthQQ and maxFilterL.engthP is equal to 5, the
following applies:
refMiddle=(p,+p3+2* (Do +p +Po+q o+ 4 1 +82)+q 5+ 4+8)

>>>4 (8-1164)

[0966] Otherwise, if maxFilterl.engthP is equal to max-
FilterLengthQ and maxFilterLengthP is not equal to 5,
the following applies:

refMiddle=(pg+ps+pstp3 P40 +2% (Dot qo)+q 1 +q o+

Q3+qat+gs+qet8)>>4 (8- 1165)

[0967]
true,
[0968] maxFilterLengthQ is equal to 7 and maxFil-

terLengthP is equal to 5,
[0969] maxFilterLengthQ is equal to 5 and maxFil-
terLengthP is equal to 7, the following applies:

Otherwise, if one of the following conditions are

refMiddle=ps+ps+p3+p+2*(p 1 +po+qo+q o+ a+

qutqs+8)>>4 8-1166
415

[0970]
true,

[0971] maxFilterLengthQ is equal to 5 and maxFil-
terLengthP is equal to 3,

Otherwise, if one of the following conditions are
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[0972] maxFilterl.engthQ is equal to 3 and maxFil-
terLengthP is equal to 5, the following applies:

refMiddle=(p3+p,+p +Po+qo+q  +9>+q3+4)>>3 (8-1167)

[0973] Otherwise, if maxFilterLengthQ is equal to 7
and maxFilterLengthP is equal to 3, the following
applies:
refMiddle=(2*(po+p 1+ o+ q0)+Po+P 1+9 1 +d 2+ 3 +qa+

qs5+qet8)>>>4 (8-1168)
[0974] Otherwise, the following applies:
refMiddle=ps+ps+patps+pa+p 1+2% (g4 1+90+P o)+
qotq+8)>>4 (8-1169)
The variables refP and refQ are derived as follows:
1efP=( axFitterL enghPPmaxFitierLenganp-1+1)>>1 (8-1170)
1ef0=(,nunFitiert engin gt masFitierLengmo-171)>>1 (8-1171)

The variables f, and t-PD, are defined as follows:

[0975] If maxFilterLengthP is equal to 7, the following
applies:

fo. . 6{59,5041,32,23,14,5} (8-1172)

tcPDo . 6716,54,3,2,1,1} (8-1173)

[0976] Otherwise, if maxFilterLengthP is equal to 5, the
following applies:
Jo. .. 4={58,4532,19,6} (8-1174)
tcPDy . 4=16,54,3,2} (8-1175)
[0977] Otherwise, the following applies:
fo.. 2={53,32,11} (8-1176)
tcPDo . 2=164.2} (8-1177)

The variables g; and t-QD; are defined as follows:

[0978] If maxFilterL.engthQ is equal to 7, the following
applies:
8o...6159,50,41,32,23,14,5} (8-1178)
tcQD .. ¢16,54,3,2,1,1} (8-1179)

[0979] Otherwise, if maxFilterLengthQ is equal to 5,
the following applies:
& ... 4~{58:45,32,19,6} (8-1180)
tcQDo . 2=16,54,3,2} (8-1181)
[0980] Otherwise, the following applies:
8o...2={53.32,11} (8-1182)
tcQDo . =642} (8-1183)

The filtered sample values p," and q;' with i=0 . . . maxFil-
terLengthP-1 and j=0 . . . maxFilterLengthQ-1 are derived
as follows:

p;i=Clip3(p,~(t*1cPD)>>1.p 1 *tcPD)>>1,

(refMiddlef+refP*(64-£)+32)>>6) (8-1184)
q;=Clip3(q;~(1c*1cQD)>>1,q:+(t *1c0D)>>1,
(refMiddle*g+refQ*(64-g;)+32)>>6) (8-1185)

When pred_mode_plt_flag of the coding unit that includes
the coding block containing the sample p;, is equal to 1, the
filtered sample value, p,' is substituted by the corresponding
input sample value p, with i=0 . . . maxFilterLengthP-1.
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When pred_mode_plt_flag of the coding unit that includes
the coding block containing the sample g, is equal to 1, the
filtered sample value, g,' is substituted by the corresponding
input sample value q, with j=0 . . . maxFilterLengthQ-1.
When loop_filter_across_subpic

enabled flag] subPicldxP | is equal to 0, wherein
subPicldxP is the sub-picture

index of the sub-picture containing

the sample py, the filtered sample value, p;' is substituted

by the corresponding input sample value p; with
i=0..maxFilterLengthP — 1.

When loop_filter _across_subpic

enabled flag[ subPicldxQ | is equal to 0, wherein
subPicldx(Q is the sub-picture

index of the sub-picture containing

the sample g, the filtered
sample value, g;' is substituted by

the corresponding input sample value q; with
[ = 0..maxFilterLengthQ — 1.

Filtering Process for a Chroma Sample

[0981] This process is only invoked when ChromaArray-
Type is not equal to O.
Inputs to this process are:
[0982] the variable maxFilterLength,
[0983] the chroma sample values p, and q, with i=0 . . .
maxFilterL.engthCbCr,
[0984] the chroma locations of p, and g,, (xP,, yP,) and
(xQ, yQ,) with

i=0 . .. maxFilterLengthCbCr-1,

[0985] a variable t.
Outputs of this process are the filtered sample values p,' and
q,' with
i=0 . . . maxFilterLengthCbCr-1.

The filtered sample values p,' and q,' with i=0 . . . maxFil-
terLengthCbCr-1 are derived as follows:
[0986] If maxFilterLengthCbCr is equal to 3, the fol-
lowing strong filtering applies:

Po=Clip3(po-tcpottcP3tP2+0 112 potdotq +9214)
>3 (8-1186)

py'=Clip3(p~to.p 1+ o2 ps+po+2%p 1 +D ot g ot 1 +4)
>>3 (8-1187)

P2 =Clip3(po-tcpattc,3*ps+2*potp 1+potqotd)>>3) (8-1188)

90=Clip3(gotc. 9ot e (4P 1 1Pt 2*q ot q  +92+q5+4)
=3 (8-1189)

9, =Clip3(g,~1c.91+c P 1+Pot a0t 2% +q+2%q5+4)
=3 (8-1190)

92" =Clip3(g2-tc.gotic, (Potqotq 1 +2*qo+3%q3+4)>>3) (8-1191)

Otherwise, the following weak filtering applies:

A=Clip3(-t.16((q6-Po)<<2)+p1-9,+4)>>3)) (8-1192)

Po'=Clip1(pg+A) (8-1193)

90=Clipl{go—A)

When pred_mode_plt_flag of the coding unit that includes
the coding block containing the sample p;, is equal to 1, the
filtered sample value, p,' is substituted by the corresponding
input sample value p, with i=0 . . . maxFilterLengthCbCr-1.

(8-1194)
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When pred_mode_plt_flag of the coding unit that includes
the coding block containing the sample g, is equal to 1, the
filtered sample value, g, is substituted by the corresponding
input sample value g, with i=0 . . . maxFilterLengthCbCr-1:
When loop_filter_across_subpic
_enabled flag[ subPicldxP ] is equal to 0, wherein
subPicldxP is the sub-picture

index of the sub-picture containing

the sample po, the filtered sample value, p;' is substituted
by the corresponding input sample value p; with

i = 0..maxFilterLengthCbCr — 1.

When loop filter across subpic enabled flag| subPicldxQ
[ is equal to 0, wherein subPicldxQ is the sub-picture
index of the sub-picture

containing the sample g, the filtered

sample value, q;' is substituted by the corresponding

input sample value q; with
i=0..maxFilterLengthCbCr — 1:

5.13 Embodiment: Deblocking Considering
Sub-Pictures (Solution #2)

8.8.3 Deblocking Filter Process

8.8.3.1 General

[0987] Inputs to this process are the reconstructed picture
prior to deblocking, i.e., the array recPicture; and, when
ChromaArrayType is not equal to 0, the arrays recPicture .,
and recPicture_,. Outputs of this process are the modified
reconstructed picture after deblocking, i.e., the array recPic-
ture; and, when ChromaArrayType is not equal to O, the
arrays recPicture, and recPicture,.

[0988]

The deblocking filter process is applied to all coding sub-
block edges and transform block edges of a picture, except
the following types of edges:

[0989] Edges that are at the boundary of the picture,

[0990] [[Edges that coincide with the boundaries of a
sub-picture for which loop_filter_across_subpic_en-
abled_flag[SubPicldx] is equal to 0,]]

[0991] - Edges that coincide with
the boundaries of a sub-picture X and
loop filter across subpic enabled

flag{ SubPicXldx | is equal to 0,
wherein SubPicXidx is
the sub-picture index of the sub-picture X.

[0992] Edges that coincide with the virtual boundaries
of the picture when VirtualBoundariesDisabledFlag is
equal to 1,

[0993]

8.8.3.2 Deblocking Filter Process for One Direction

[0994] Inputs to this process are:
[0995] the variable treeType specifying whether the
luma (DUAL_TREE_LUMA) or chroma components
(DUAL_TREE_CHROMA) are currently processed,

[0996] 3. The variable filterEdgeFlag is derived as fol-
lows:

[0997] If edgeType is equal to EDGE_VER and one
or more of the following conditions are true, filter-
EdgeFlag is set equal to O:

[0998] The left boundary of the current coding
block is the left boundary of the picture.
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[0999] [[The left boundary of the current coding
block is the left or right boundary of the sub-
picture and loop_filter_across_subpic_enabled_
flag[SubPicldx] is equal to 0.]]

[1000] — The left boundary of the current
coding block concides with a left or a right
boundary of a sub-picture X and
loop filter _across subpic enabled
Mflag/ SubPicXldx | is equal to 0, wherein
SubPicXidx is the sub-picture
index of the sub-picture X.

[1001]

[1002] Otherwise, if edgeType is equal to EDGE_
HOR and one or more of the following conditions
are true, the variable filterEdgeFlag is set equal to O:
[1003] The top boundary of the current luma cod-

ing block is the top boundary of the picture.

[1004] [[The top boundary of the current coding
block is the top or bottom boundary of the sub-
picture and loop_filter_across_subpic_enabled_
flag[SubPicldx] is equal to 0.]]

[1005] — The top boundary of the current
coding block concides with a top or a bottom
boundary of a sub-picture X and
loop filter across subpic enabled
[flag/ SubPicXldx | is equal to 0, wherein

SubPicXidx is the sub-picture
index of the sub-picture X.

[1006] FIG. 3 is a block diagram of a video processing
apparatus 300. The apparatus 300 may be used to implement
one or more of the methods described herein. The apparatus
300 may be embodied in a smartphone, tablet, computer,
Internet of Things (IoT) receiver, and so on. The apparatus
300 may include one or more processors 302, one or more
memories 304 and video processing hardware 306. The
processor(s) 302 may be configured to implement one or
more methods described in the present document. The
memory (memories) 304 may be used for storing data and
code used for implementing the methods and techniques
described herein. The video processing hardware 306 may
be used to implement, in hardware circuitry, some tech-
niques described in the present document.
[1007] FIG. 4 is a flowchart for a method 400 of process-
ing a video. The method 400 includes determining (402), for
a video block in a first video region of a video, whether a
position at which a temporal motion vector predictor is
determined for a conversion between the video block and a
bitstream representation of the current video block using an
affine mode is within a second video region, and performing
(404) the conversion based on the determining.
[1008] The following solutions may be implemented as
preferred solutions in some embodiments.
[1009] The following solutions may be implemented
together with additional techniques described in items listed
in the previous section (e.g., item 1).
[1010] 1. A method of video processing, comprising:
determining, for a video block in a first video region of
a video, whether a position at which a temporal motion
vector predictor is determined for a conversion between
the video block and a bitstream representation of the
current video block using an affine mode is within a
second video region; and performing the conversion
based on the determining.
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[1011] 2. The method of solution 1, wherein the video
block is covered by the first region and the second
region.

[1012] 3. The method of any of solutions 1-2, wherein,
in case that the position of the temporal motion vector
predictor is outside of the second video region, then the
temporal motion vector predictor is marked as unavail-
able and is unused in the conversion.

[1013] The following solutions may be implemented
together with additional techniques described in items listed
in the previous section (e.g., item 2).

[1014] 4. A method of video processing, comprising:
determining, for a video block in a first video region of
a video, whether a position at which an integer sample
in a reference picture is fetched for a conversion
between the video block and a bitstream representation
of the current video block is within a second video
region, wherein the reference picture is not used in an
interpolation process during the conversion; and per-
forming the conversion based on the determining.

[1015] 5. The method of solution 4, wherein the video
block is covered by the first region and the second
region.

[1016] 6. The method of any of solutions 4-5, wherein,
in case that the position of the sample is outside of the
second video region, then the sample is marked as
unavailable and is unused in the conversion.

[1017] The following solutions may be implemented
together with additional techniques described in items listed
in the previous section (e.g., item 3).

[1018] 7. A method of video processing, comprising:
determining, for a video block in a first video region of
a video, whether a position at which a reconstructed
luma sample value is fetched for a conversion between
the video block and a bitstream representation of the
current video block is within a second video region;
and performing the conversion based on the determin-
ing.

[1019] 8. The method of solution 7, wherein the luma
sample is covered by the first region and the second
region.

[1020] 9. The method of any of solutions 7-8, wherein,
in case that the position of the luma sample is outside
of the second video region, then the luma sample is
marked as unavailable and is unused in the conversion.

[1021] The following solutions may be implemented
together with additional techniques described in items listed
in the previous section (e.g., item 4).

[1022] 10. A method of video processing, comprising:
determining, for a video block in a first video region of
a video, whether a position at which a check regarding
splitting, depth derivation or split flag signaling for the
video block is performed during a conversion between
the video block and a bitstream representation of the
current video block is within a second video region;
and performing the conversion based on the determin-

ing.

[1023] 11. The method of solution 10, wherein the
position is covered by the first region and the second
region.

[1024] 12. The method of any of solutions 10-11,

wherein, in case that the position is outside of the
second video region, then the luma sample is marked as
unavailable and is unused in the conversion.
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[1025] The following solutions may be implemented
together with additional techniques described in items listed
in the previous section (e.g., item 8).

[1026] 13. A method of video processing, comprising:
performing a conversion between a video comprising
one or more video pictures comprising one or more
video blocks, and a coded representation of the video,
wherein the coded representation complies with a cod-
ing syntax requirement that the conversion is not to use
sub-picture coding/decoding and a dynamic resolution
conversion coding/decoding tool or a reference picture
resampling tool within a video unit.

[1027] 14. The method of solution 13, wherein the
video unit corresponds to a sequence of the one or more
video pictures.

[1028] 15. The method of any of solutions 13-14,
wherein the dynamic resolution conversion coding/
decoding tool comprises an adaptive resolution con-
version coding/decoding tool.

[1029] 16. The method of any of solutions 13-14,
wherein the dynamic resolution conversion coding/
decoding tool comprises a dynamic resolution conver-
sion coding/decoding tool.

[1030] 17. The method of any of solutions 13-16,
wherein the coded representation indicates that the
video unit complies with the coding syntax require-
ment.

[1031] 18. The method of solution 17, wherein the
coded representation indicates that the video unit uses
sub-picture coding.

[1032] 19. The method of solution 17, wherein the
coded representation indicates that the video unit uses
the dynamic resolution conversion coding/decoding
tool or the reference picture resampling tool.

[1033] The following solutions may be implemented
together with additional techniques described in items listed
in the previous section (e.g., item 10).

[1034] 20. The method of any of solutions 1-19,
wherein the second video region comprises a video
sub-picture and wherein boundaries of the second video
region and another video region is also a boundary
between two coding tree units.

[1035] 21. The method of any of solutions 1-19,
wherein the second video region comprises a video
sub-picture and wherein boundaries of the second video
region and another video region is also a boundary
between two coding tree units.

[1036] The following solutions may be implemented
together with additional techniques described in items listed
in the previous section (e.g., item 11).

[1037] 22. The method of any of solutions 1-21,
wherein the first video region and the second video
region have rectangular shapes.

[1038] The following solutions may be implemented
together with additional techniques described in items listed
in the previous section (e.g., item 12).

[1039] 23. The method of any of solutions 1-22,
wherein the first video region and the second video
region are non-overlapping.

[1040] The following solutions may be implemented
together with additional techniques described in items listed
in the previous section (e.g., item 13).

[1041] 24. The method of any of solutions 1-23,

wherein the video picture is divided into video regions
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such that a pixel in the video picture is covered by one
and only one video region.
[1042] The following solutions may be implemented
together with additional techniques described in items listed
in the previous section (e.g., item 15).

[1043] 25. The method of any of solutions 1-24,
wherein the video picture is split into the first video
region and the second video region due to the video
picture being in a specific layer of the video sequence.

[1044] The following solutions may be implemented
together with additional techniques described in items listed
in the previous section (e.g., item 10).

[1045] 26. A method of video processing, comprising:
performing a conversion between a video comprising
one or more video pictures comprising one or more
video blocks, and a coded representation of the video,
wherein the coded representation complies with a cod-
ing syntax requirement that a first syntax element
subpic_grid_idx[i][j] is not larger than a second syntax
element max_subpics_minusl.

[1046] 27. The method of solution 26, wherein a code-
word representing the first syntax element is not larger
than a codeword representing the second syntax ele-

ment.

[1047] 28. The method of any of solutions 1-27,
wherein the first video region comprises a video sub-
picture.

[1048] 29. The method of any of solutions 1-28,

wherein the second video region comprises a video
sub-picture.

[1049] 30. The method of any of solutions 1 to 29,
wherein the conversion comprises encoding the video
into the coded representation.

[1050] 31. The method of any of solutions 1 to 29,
wherein the conversion comprises decoding the coded
representation to generate pixel values of the video.

[1051] 32. A video decoding apparatus comprising a
processor configured to implement a method recited in
one or more of solutions 1 to 31.

[1052] 33. A video encoding apparatus comprising a
processor configured to implement a method recited in
one or more of solutions 1 to 31.

[1053] 34. A computer program product having com-
puter code stored thereon, the code, when executed by
a processor, causes the processor to implement a
method recited in any of solutions 1 to 31.

[1054] 35. A method, apparatus or system described in
the present document.

[1055] FIG. 13 is a block diagram showing an example
video processing system 1300 in which various techniques
disclosed herein may be implemented. Various implemen-
tations may include some or all of the components of the
system 1300. The system 1300 may include input 1302 for
receiving video content. The video content may be received
in a raw or uncompressed format, e.g., 8 or 10 bit multi-
component pixel values, or may be in a compressed or
encoded format. The input 1302 may represent a network
interface, a peripheral bus interface, or a storage interface.
Examples of network interface include wired interfaces such
as Ethernet, passive optical network (PON), etc. and wire-
less interfaces such as wireless fidelity (Wi-Fi) or cellular
interfaces.

[1056] The system 1300 may include a coding component
1304 that may implement the various coding or encoding
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methods described in the present document. The coding
component 1304 may reduce the average bitrate of video
from the input 1302 to the output of the coding component
1304 to produce a coded representation of the video. The
coding techniques are therefore sometimes called video
compression or video transcoding techniques. The output of
the coding component 1304 may be either stored, or trans-
mitted via a communication connected, as represented by
the component 1306. The stored or communicated bitstream
(or coded) representation of the video received at the input
1302 may be used by the component 1308 for generating
pixel values or displayable video that is sent to a display
interface 1310. The process of generating user-viewable
video from the bitstream representation is sometimes called
video decompression. Furthermore, while certain video pro-
cessing operations are referred to as “coding” operations or
tools, it will be appreciated that the coding tools or opera-
tions are used at an encoder and corresponding decoding
tools or operations that reverse the results of the coding will
be performed by a decoder.

[1057] Examples of a peripheral bus interface or a display
interface may include universal serial bus (USB) or high
definition multimedia interface (HDMI) or Displayport, and
so on. Examples of storage interfaces include serial
advanced technology attachment (SATA), Peripheral Com-
ponent Interconnect (PCI), Integrated Device Electronics
(IDE) interface, and the like. The techniques described in the
present document may be embodied in various electronic
devices such as mobile phones, laptops, smartphones or
other devices that are capable of performing digital data
processing and/or video display.

[1058] FIG. 14 is a block diagram that illustrates an
example video coding system 100 that may utilize the
techniques of this disclosure.

[1059] As shown in FIG. 14, video coding system 100
may include a source device 110 and a destination device
120. Source device 110 generates encoded video data which
may be referred to as a video encoding device. Destination
device 120 may decode the encoded video data generated by
source device 110 which may be referred to as a video
decoding device.

[1060] Source device 110 may include a video source 112,
a video encoder 114, and an input/output (I/O) interface 116.

[1061] Video source 112 may include a source such as a
video capture device, an interface to receive video data from
a video content provider, and/or a computer graphics system
for generating video data, or a combination of such sources.
The video data may comprise one or more pictures. Video
encoder 114 encodes the video data from video source 112
to generate a bitstream. The bitstream may include a
sequence of bits that form a coded representation of the
video data. The bitstream may include coded pictures and
associated data. The coded picture is a coded representation
of a picture. The associated data may include sequence
parameter sets, picture parameter sets, and other syntax
structures. [/O interface 116 may include a modulator/
demodulator (modem) and/or a transmitter. The encoded
video data may be transmitted directly to destination device
120 via /O interface 116 through network 130a. The
encoded video data may also be stored onto a storage
medium/server 13056 for access by destination device 120.

[1062] Destination device 120 may include an /O inter-
face 126, a video decoder 124, and a display device 122.
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[1063] I/O interface 126 may include a receiver and/or a
modem. [/O interface 126 may acquire encoded video data
from the source device 110 or the storage medium/server
1304. Video decoder 124 may decode the encoded video
data. Display device 122 may display the decoded video data
to a user. Display device 122 may be integrated with the
destination device 120, or may be external to destination
device 120 which be configured to interface with an external
display device.

[1064] Video encoder 114 and video decoder 124 may
operate according to a video compression standard, such as
the HEVC standard, VVC standard and other current and/or
further standards.

[1065] FIG. 15 is a block diagram illustrating an example
of video encoder 200, which may be video encoder 114 in
the system 100 illustrated in FIG. 14.

[1066] Video encoder 200 may be configured to perform
any or all of the techniques of this disclosure. In the example
of FIG. 15, video encoder 200 includes a plurality of
functional components. The techniques described in this
disclosure may be shared among the various components of
video encoder 200. In some examples, a processor may be
configured to perform any or all of the techniques described
in this disclosure.

[1067] The functional components of video encoder 200
may include a partition unit 201, a prediction unit 202 which
may include a mode select unit 203, a motion estimation unit
204, a motion compensation unit 205 and an intra prediction
unit 206, a residual generation unit 207, a transform unit
208, a quantization unit 209, an inverse quantization unit
210, an inverse transform unit 211, a reconstruction unit 212,
a buffer 213, and an entropy encoding unit 214.

[1068] In other examples, video encoder 200 may include
more, fewer, or different functional components. In an
example, prediction unit 202 may include an intra block
copy (IBC) unit. The IBC unit may perform prediction in an
IBC mode in which at least one reference picture is a picture
where the current video block is located.

[1069] Furthermore, some components, such as motion
estimation unit 204 and motion compensation unit 205 may
be highly integrated, but are represented in the example of
FIG. 15 separately for purposes of explanation.

[1070] Partition unit 201 may partition a picture into one
or more video blocks. Video encoder 200 and video decoder
300 may support various video block sizes.

[1071] Mode select unit 203 may select one of the coding
modes, intra or inter, e.g., based on error results, and provide
the resulting intra- or inter-coded block to a residual gen-
eration unit 207 to generate residual block data and to a
reconstruction unit 212 to reconstruct the encoded block for
use as a reference picture. In some examples, Mode select
unit 203 may select a combination of intra and inter predic-
tion (CIIP) mode in which the prediction is based on an inter
prediction signal and an intra prediction signal. Mode select
unit 203 may also select a resolution for a motion vector
(e.g., a sub-pixel or integer pixel precision) for the block in
the case of inter-prediction.

[1072] To perform inter prediction on a current video
block, motion estimation unit 204 may generate motion
information for the current video block by comparing one or
more reference frames from buffer 213 to the current video
block. Motion compensation unit 205 may determine a
predicted video block for the current video block based on
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the motion information and decoded samples of pictures
from buffer 213 other than the picture associated with the
current video block.

[1073] Motion estimation unit 204 and motion compen-
sation unit 205 may perform different operations for a
current video block, for example, depending on whether the
current video block is in an I slice, a P slice, or a B slice.
[1074] Insome examples, motion estimation unit 204 may
perform uni-directional prediction for the current video
block, and motion estimation unit 204 may search reference
pictures of list O or list 1 for a reference video block for the
current video block. Motion estimation unit 204 may then
generate a reference index that indicates the reference pic-
ture in list O or list 1 that contains the reference video block
and a motion vector that indicates a spatial displacement
between the current video block and the reference video
block. Motion estimation unit 204 may output the reference
index, a prediction direction indicator, and the motion vector
as the motion information of the current video block. Motion
compensation unit 205 may generate the predicted video
block of the current block based on the reference video block
indicated by the motion information of the current video
block.

[1075] In other examples, motion estimation unit 204 may
perform bi-directional prediction for the current video block,
motion estimation unit 204 may search the reference pic-
tures in list 0 for a reference video block for the current
video block and may also search the reference pictures in list
1 for another reference video block for the current video
block. Motion estimation unit 204 may then generate refer-
ence indexes that indicate the reference pictures in list 0 and
list 1 containing the reference video blocks and motion
vectors that indicate spatial displacements between the ref-
erence video blocks and the current video block. Motion
estimation unit 204 may output the reference indexes and the
motion vectors of the current video block as the motion
information of the current video block. Motion compensa-
tion unit 205 may generate the predicted video block of the
current video block based on the reference video blocks
indicated by the motion information of the current video
block.

[1076] Insome examples, motion estimation unit 204 may
output a full set of motion information for decoding pro-
cessing of a decoder.

[1077] Insome examples, motion estimation unit 204 may
not output a full set of motion information for the current
video. Rather, motion estimation unit 204 may signal the
motion information of the current video block with reference
to the motion information of another video block. For
example, motion estimation unit 204 may determine that the
motion information of the current video block is sufficiently
similar to the motion information of a neighboring video
block.

[1078] In one example, motion estimation unit 204 may
indicate, in a syntax structure associated with the current
video block, a value that indicates to the video decoder 300
that the current video block has the same motion information
as another video block.

[1079] In another example, motion estimation unit 204
may identify, in a syntax structure associated with the
current video block, another video block and a motion vector
difference (MVD). The motion vector difference indicates a
difference between the motion vector of the current video
block and the motion vector of the indicated video block.
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The video decoder 300 may use the motion vector of the
indicated video block and the motion vector difference to
determine the motion vector of the current video block.
[1080] As discussed above, video encoder 200 may pre-
dictively signal the motion vector. Two examples of predic-
tive signaling techniques that may be implemented by video
encoder 200 include advanced motion vector prediction
(AMVP) and merge mode signaling.

[1081] Intra prediction unit 206 may perform intra predic-
tion on the current video block. When intra prediction unit
206 performs intra prediction on the current video block,
intra prediction unit 206 may generate prediction data for the
current video block based on decoded samples of other
video blocks in the same picture. The prediction data for the
current video block may include a predicted video block and
various syntax elements.

[1082] Residual generation unit 207 may generate residual
data for the current video block by subtracting (e.g., indi-
cated by the minus sign) the predicted video block(s) of the
current video block from the current video block. The
residual data of the current video block may include residual
video blocks that correspond to different sample components
of the samples in the current video block.

[1083] In other examples, there may be no residual data
for the current video block for the current video block, for
example in a skip mode, and residual generation unit 207
may not perform the subtracting operation.

[1084] Transform processing unit 208 may generate one or
more transform coefficient video blocks for the current video
block by applying one or more transforms to a residual video
block associated with the current video block.

[1085] After transform processing unit 208 generates a
transform coefficient video block associated with the current
video block, quantization unit 209 may quantize the trans-
form coefficient video block associated with the current
video block based on one or more quantization parameter
(QP) values associated with the current video block.
[1086] Inverse quantization unit 210 and inverse trans-
form unit 211 may apply inverse quantization and inverse
transforms to the transform coefficient video block, respec-
tively, to reconstruct a residual video block from the trans-
form coefficient video block. Reconstruction unit 212 may
add the reconstructed residual video block to corresponding
samples from one or more predicted video blocks generated
by the prediction unit 202 to produce a reconstructed video
block associated with the current block for storage in the
buffer 213.

[1087] After reconstruction unit 212 reconstructs the
video block, loop filtering operation may be performed
reduce video blocking artifacts in the video block.

[1088] Entropy encoding unit 214 may receive data from
other functional components of the video encoder 200.
When entropy encoding unit 214 receives the data, entropy
encoding unit 214 may perform one or more entropy encod-
ing operations to generate entropy encoded data and output
a bitstream that includes the entropy encoded data.

[1089] FIG. 16 is a block diagram illustrating an example
of'video decoder 300 which may be video decoder 124 in the
system 100 illustrated in FIG. 14.

[1090] The video decoder 300 may be configured to
perform any or all of the techniques of this disclosure. In the
example of FIG. 16, the video decoder 300 includes a
plurality of functional components. The techniques
described in this disclosure may be shared among the
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various components of the video decoder 300. In some
examples, a processor may be configured to perform any or
all of the techniques described in this disclosure.

[1091] In the example of FIG. 16, video decoder 300
includes an entropy decoding unit 301, a motion compen-
sation unit 302, an intra prediction unit 303, an inverse
quantization unit 304, an inverse transformation unit 305, a
reconstruction unit 306 and a buffer 307. Video decoder 300
may, in some examples, perform a decoding pass generally
reciprocal to the encoding pass described with respect to
video encoder 200 (e.g., FIG. 15).

[1092] Entropy decoding unit 301 may retrieve an
encoded bitstream. The encoded bitstream may include
entropy coded video data (e.g., encoded blocks of video
data). Entropy decoding unit 301 may decode the entropy
coded video data, and from the entropy decoded video data,
motion compensation unit 302 may determine motion infor-
mation including motion vectors, motion vector precision,
reference picture list indexes, and other motion information.
Motion compensation unit 302 may, for example, determine
such information by performing the AMVP and merge
mode.

[1093] Motion compensation unit 302 may produce
motion compensated blocks, possibly performing interpola-
tion based on interpolation filters. Identifiers for interpola-
tion filters to be used with sub-pixel precision may be
included in the syntax elements.

[1094] Motion compensation unit 302 may use interpola-
tion filters as used by video encoder 200 during encoding of
the video block to calculate interpolated values for sub-
integer pixels of a reference block. Motion compensation
unit 302 may determine the interpolation filters used by
video encoder 200 according to received syntax information
and use the interpolation filters to produce predictive blocks.
[1095] Motion compensation unit 302 may use some of
the syntax information to determine sizes of blocks used to
encode frame(s) and/or slice(s) of the encoded video
sequence, partition information that describes how each
macroblock of a picture of the encoded video sequence is
partitioned, modes indicating how each partition is encoded,
one or more reference frames (and reference frame lists) for
each inter-encoded block, and other information to decode
the encoded video sequence.

[1096] Intra prediction unit 303 may use intra prediction
modes for example received in the bitstream to form a
prediction block from spatially adjacent blocks. Inverse
quantization unit 304 inverse quantizes, i.e., de-quantizes,
the quantized video block coeflicients provided in the bit-
stream and decoded by entropy decoding unit 301. Inverse
transform unit 305 applies an inverse transform.

[1097] Reconstruction unit 306 may sum the residual
blocks with the corresponding prediction blocks generated
by motion compensation unit 302 or intra-prediction unit
303 to form decoded blocks. If desired, a deblocking filter
may also be applied to filter the decoded blocks in order to
remove blockiness artifacts. The decoded video blocks are
then stored in buffer 307, which provides reference blocks
for subsequent motion compensation/intra prediction and
also produces decoded video for presentation on a display
device.

[1098] FIG. 17 is a flowchart representation of a method
1700 for video processing in accordance with the present
technology. The method 1700 includes, at operation 1710,
performing a conversion between a block of a video and a
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bitstream of the video. The bitstream conforms to a format-
ting rule specifying that a size of a merge estimation region
(MER) is indicated in the bitstream and the size of the MER
is based on a dimension of a video unit. The MER comprises
a region used for deriving a motion candidate for the
conversion.

[1099] In some embodiments, the video unit comprises a
coding unit or a coding tree unit. In some embodiments, the
dimension of the video unit comprises at least a width, a
height, or an area of the video unit. In some embodiments,
the dimension of the MER is constrained to be smaller than
the dimension of the video unit. In some embodiments, the
dimension of the MER is constrained to be smaller than or
equal to the dimension of the video unit.

[1100] In some embodiments, the dimension of the MER
is indicated as an index value in the bitstream. In some
embodiments, the index value has a one-to-one mapping
relationship with the dimension of the MER. In some
embodiments, the dimension of the MER or the index value
is coded in the bitstream based on an exponential Golomb
code. In some embodiments, the dimension of the MER or
the index value is coded in the bitstream based on a unary
code, a rice code, or a fixed length code. In some embodi-
ments, the index indicating the dimension of the MER is
represented as S-4 or M-S in the bitstream representation,
where S represents the dimension of the MER, and 4 and/or
M are integer values. In some embodiments, the 4 and/or M
are determined based on the dimension of the maximum or
minimum video unit. In some embodiments, 4 is equal to the
dimension of the minimum video unit. In some embodi-
ments, M is equal to the dimension of the maximum video
unit. In some embodiments, 4 is equal to (the dimension of
the minimum video unit+offset), offset being an integer. In
some embodiments, M is equal to (the dimension of the
maximum video unit+offset), offset being an integer. In
some embodiments, the offset is equal to 1 or -1.

[1101] FIG. 18 is a flowchart representation of a method
1800 for video processing in accordance with the present
technology. The method 1800 includes, at operation 1810,
performing a conversion between a block of a video and a
bitstream of the video in a palette coding mode in which a
palette of representative sample values is used for coding the
block of video in the bitstream. A maximum number of
palette size or palette predictor size used in the palette mode
is restricted to mxN, m and N being positive integers.
[1102] In some embodiments, N is equal to 8. In some
embodiments, a value associated with m is signaled as a
syntax element in the bitstream. In some embodiments, the
value comprises m or m+offset, where offset is an integer. In
some embodiments, the syntax element is binarized in the
bitstream based on unary coding, exponential Golomb cod-
ing, rice coding, or fixed length coding.

[1103] FIG. 19 is a flowchart representation of a method
1900 for video processing in accordance with the present
technology. The method 1900 includes, at operation 1910,
determining, for a conversion between a current block of a
video and a bitstream of the video, that a deblocking filtering
process is disabled for a boundary of the current block in
case the boundary coincides with a boundary of a sub-
picture having a sub-picture index X and a loop filtering
operation is disabled across boundaries of the subpicture, X
being a non-negative integer. The method 1900 also
includes, at operation 1920, performing the conversion
based on the determining.
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[1104] In some embodiments, the deblocking filtering
process is applicable to vertical boundaries, and the deblock-
ing filtering process is disabled for a left boundary of the
current block in case the left boundary coincides with a left
or a right boundary of the sub-picture having the sub-picture
index X and the loop filtering operation is disabled across
boundaries of the subpicture. In some embodiments, the
deblocking filtering process is applicable to horizontal
boundaries, and the deblocking filtering process is disabled
for a top boundary of the current block in case the top
boundary coincides with a top or a bottom boundary of the
sub-picture having the sub-picture index X and the loop
filtering operation is disabled across boundaries of the
subpicture.

[1105] Insome embodiments, the conversion generates the
video from the bitstream representation. In some embodi-
ments, the conversion generates the bitstream representation
from the video.

[1106] In one example aspect, a method for storing bit-
stream of a video includes generating a bitstream of the
video from a block and storing the bitstream in a non-
transitory computer-readable recording medium. The bit-
stream conforms to a formatting rule that specifies a size of
a merge estimation region (MER) is indicated in the bit-
stream and the size of the MER is based on a dimension of
a size of a video unit. The MER comprises a region used for
deriving a motion candidate for the conversion.

[1107] In another example aspect, a method for storing
bitstream of a video includes applying, during a conversion
between a block of a video and a bitstream of the video, a
palette coding mode in which a palette of representative
sample values is used for coding the block of video in the
bitstream, generating the bitstream from the block based on
the applying, and storing the bitstream in a non-transitory
computer-readable recording medium. A maximum number
of palette size or palette predictor size used in the palette
mode is restricted to mxN, m and N being positive integers.

[1108] In yet another example aspect, a method for storing
bitstream of a video includes determining that a deblocking
filtering process is disabled for a boundary of a current block
in case the boundary coincides with a boundary of a sub-
picture having a sub-picture index X and a loop filtering
operation is disabled across boundaries of the subpicture, X
being a non-negative integer. The method also includes
generating the bitstream from the current block based on the
determining and storing the bitstream in a non-transitory
computer-readable recording medium.

[1109] Some embodiments of the disclosed technology
include making a decision or determination to enable a video
processing tool or mode. In an example, when the video
processing tool or mode is enabled, the encoder will use or
implement the tool or mode in the processing of a block of
video, but may not necessarily modify the resulting bit-
stream based on the usage of the tool or mode. That is, a
conversion from the block of video to the bitstream repre-
sentation of the video will use the video processing tool or
mode when it is enabled based on the decision or determi-
nation. In another example, when the video processing tool
or mode is enabled, the decoder will process the bitstream
with the knowledge that the bitstream has been modified
based on the video processing tool or mode. That is, a
conversion from the bitstream representation of the video to
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the block of video will be performed using the video
processing tool or mode that was enabled based on the
decision or determination.

[1110] Some embodiments of the disclosed technology
include making a decision or determination to disable a
video processing tool or mode. In an example, when the
video processing tool or mode is disabled, the encoder will
not use the tool or mode in the conversion of the block of
video to the bitstream representation of the video. In another
example, when the video processing tool or mode is dis-
abled, the decoder will process the bitstream with the
knowledge that the bitstream has not been modified using
the video processing tool or mode that was enabled based on
the decision or determination.

[1111] The disclosed and other solutions, examples,
embodiments, modules and the functional operations
described in this document can be implemented in digital
electronic circuitry, or in computer software, firmware, or
hardware, including the structures disclosed in this docu-
ment and their structural equivalents, or in combinations of
one or more of them. The disclosed and other embodiments
can be implemented as one or more computer program
products, e.g., one or more modules of computer program
instructions encoded on a computer readable medium for
execution by, or to control the operation of, data processing
apparatus. The computer readable medium can be a
machine-readable storage device, a machine-readable stor-
age substrate, a memory device, a composition of matter
effecting a machine-readable propagated signal, or a com-
bination of one or more them. The term “data processing
apparatus” encompasses all apparatus, devices, and
machines for processing data, including by way of example
a programmable processor, a computer, or multiple proces-
sors or computers. The apparatus can include, in addition to
hardware, code that creates an execution environment for the
computer program in question, e.g., code that constitutes
processor firmware, a protocol stack, a database manage-
ment system, an operating system, or a combination of one
or more of them. A propagated signal is an artificially
generated signal, e.g., a machine-generated electrical, opti-
cal, or electromagnetic signal, that is generated to encode
information for transmission to suitable receiver apparatus.
[1112] A computer program (also known as a program,
software, software application, script, or code) can be writ-
ten in any form of programming language, including com-
piled or interpreted languages, and it can be deployed in any
form, including as a stand-alone program or as a module,
component, subroutine, or other unit suitable for use in a
computing environment. A computer program does not
necessarily correspond to a file in a file system. A program
can be stored in a portion of a file that holds other programs
or data (e.g., one or more scripts stored in a markup language
document), in a single file dedicated to the program in
question, or in multiple coordinated files (e.g., files that store
one or more modules, sub programs, or portions of code). A
computer program can be deployed to be executed on one
computer or on multiple computers that are located at one
site or distributed across multiple sites and interconnected
by a communication network.

[1113] The processes and logic flows described in this
document can be performed by one or more programmable
processors executing one or more computer programs to
perform functions by operating on input data and generating
output. The processes and logic flows can also be performed
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by, and apparatus can also be implemented as, special
purpose logic circuitry, e.g., an field programmable gate
array (FPGA) or an application specific integrated circuit
(ASIC).
[1114] Processors suitable for the execution of a computer
program include, by way of example, both general and
special purpose microprocessors, and any one or more
processors of any kind of digital computer. Generally, a
processor will receive instructions and data from a read only
memory or a random-access memory or both. The essential
elements of a computer are a processor for performing
instructions and one or more memory devices for storing
instructions and data. Generally, a computer will also
include, or be operatively coupled to receive data from or
transfer data to, or both, one or more mass storage devices
for storing data, e.g., magnetic, magneto optical disks, or
optical disks. However, a computer need not have such
devices. Computer readable media suitable for storing com-
puter program instructions and data include all forms of
non-volatile memory, media and memory devices, including
by way of example semiconductor memory devices, e.g.,
erasable programmable read-only memory (EPROM), elec-
trically erasable programmable read-only memory (EE-
PROM), and flash memory devices; magnetic disks, e.g.,
internal hard disks or removable disks; magneto optical
disks; and compact disc, read-only memory (CD ROM) and
digital versatile disc read-only memory (DVD-ROM) disks.
The processor and the memory can be supplemented by, or
incorporated in, special purpose logic circuitry.
[1115] While this patent document contains many specit-
ics, these should not be construed as limitations on the scope
of any subject matter or of what may be claimed, but rather
as descriptions of features that may be specific to particular
embodiments of particular techniques. Certain features that
are described in this patent document in the context of
separate embodiments can also be implemented in combi-
nation in a single embodiment. Conversely, various features
that are described in the context of a single embodiment can
also be implemented in multiple embodiments separately or
in any suitable subcombination. Moreover, although features
may be described above as acting in certain combinations
and even initially claimed as such, one or more features from
a claimed combination can in some cases be excised from
the combination, and the claimed combination may be
directed to a subcombination or variation of a subcombina-
tion.
[1116] Similarly, while operations are depicted in the
drawings in a particular order, this should not be understood
as requiring that such operations be performed in the par-
ticular order shown or in sequential order, or that all illus-
trated operations be performed, to achieve desirable results.
Moreover, the separation of various system components in
the embodiments described in this patent document should
not be understood as requiring such separation in all
embodiments.
[1117] Only a few implementations and examples are
described and other implementations, enhancements and
variations can be made based on what is described and
illustrated in this patent document.

What is claimed is:

1. A method of processing video data, comprising:

determining, for a conversion between a current block of

a video and a bitstream of the video, that a first
prediction mode is applied to the current block;
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maintaining a predictor palette table;

constructing, in the first prediction mode, a current palette
comprising one or more palette predictors for the
current block based on the predictor palette table; and

performing the conversion based on the first prediction
mode,

wherein in the first prediction mode, reconstructed

samples of the current block are represented by a set of
representative color values, and the set of representa-
tive color values comprises at least one of 1) palette
predictors derived from the current palette, 2) escaped
samples, or 3) palette information included in the
bitstream, and

wherein a maximum number of entries in the current

palette is restricted to mx8, and a maximum number of
entries in the predictor palette table are restricted to
nx8, and wherein m and n are positive integers.

2. The method of claim 1, wherein m or n is equal to 4 or
8.

3. The method of claim 1, wherein a syntax element
indicating a parallel merge estimation level is included in the
bitstream, and wherein a maximum value of the syntax
element depends on a size of a coding tree unit (CTU).

4. The method of claim 3, wherein the maximum value of
the syntax element is constrained to be smaller than the size
of the CTU.

5. The method of claim 3, wherein the syntax element is
coded by an exponential Golomb code.

6. The method of claim 1, wherein the conversion
includes encoding the current block into the bitstream.

7. The method of claim 1, wherein the conversion
includes decoding the current block from the bitstream.

8. An apparatus for processing video data comprising a
processor and a non-transitory memory with instructions
thereon, wherein the instructions upon execution by the
processor, cause the processor to:

determine, for a conversion between a current block of a

video and a bitstream of the video, that a first prediction
mode is applied to the current block;
maintain a predictor palette table;
construct, in the first prediction mode, a current palette
comprising one or more palette predictors for the
current block based on the predictor palette table; and

perform the conversion based on the first prediction
mode,

wherein in the first prediction mode, reconstructed

samples of the current block are represented by a set of
representative color values, and the set of representa-
tive color values comprises at least one of 1) palette
predictors derived from the current palette, 2) escaped
samples, or 3) palette information included in the
bitstream, and

wherein a maximum number of entries in the current

palette is restricted to mx8, and a maximum number of
entries in the predictor palette table are restricted to
nx8, and wherein m and n are positive integers.

9. The apparatus of claim 8, wherein m or n is equal to 4
or 8.

10. The apparatus of claim 8, wherein a syntax element
indicating a parallel merge estimation level is included in the
bitstream, and wherein a maximum value of the syntax
element depends on a size of a coding tree unit (CTU).
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11. The apparatus of claim 10, wherein the maximum
value of the syntax element is constrained to be smaller than
the size of the CTU.

12. The apparatus of claim 10, wherein the syntax element
is coded by an exponential Golomb code.

13. The apparatus of claim 8, wherein the conversion
includes encoding the current block into the bitstream.

14. The apparatus of claim 8, wherein the conversion
includes decoding the current block from the bitstream.

15. A non-transitory computer-readable storage medium
storing instructions that cause a processor to:

determine, for a conversion between a current block of a

video and a bitstream of the video, that a first prediction
mode is applied to the current block;
maintain a predictor palette table;
construct, in the first prediction mode, a current palette
comprising one or more palette predictors for the
current block based on the predictor palette table; and

perform the conversion based on the first prediction
mode,

wherein in the first prediction mode, reconstructed

samples of the current block are represented by a set of
representative color values, and the set of representa-
tive color values comprises at least one of 1) palette
predictors derived from the current palette, 2) escaped
samples, or 3) palette information included in the
bitstream, and

wherein a maximum number of entries in the current

palette is restricted to mx8, and a maximum number of
entries in the predictor palette table are restricted to
nx8, and wherein m and n are positive integers.

16. The non-transitory computer-readable storage
medium of claim 15, wherein a syntax element indicating a
parallel merge estimation level is included in the bitstream,
and wherein a maximum value of the syntax element
depends on a size of a coding tree unit (CTU).
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17. The non-transitory computer-readable storage
medium of claim 16, wherein the maximum value of the
syntax element is constrained to be smaller than the size of
the CTU.

18. The non-transitory computer-readable storage
medium of claim 16, wherein the syntax element is coded by
an exponential Golomb code.

19. A non-transitory computer-readable recording
medium storing a bitstream of a video which is generated by
a method performed by a video processing apparatus,
wherein the method comprises:

determining that a first prediction mode is applied to a

current block of a video;
maintaining a predictor palette table;
constructing, in the first prediction mode, a current palette
comprising one or more palette predictors for the
current block based on the predictor palette table; and

generating the bitstream based on the first prediction
mode,

wherein in the first prediction mode, reconstructed

samples of the current block are represented by a set of
representative color values, and the set of representa-
tive color values comprises at least one of 1) palette
predictors derived from the current palette, 2) escaped
samples, or 3) palette information included in the
bitstream, and

wherein a maximum number of entries in the current

palette is restricted to mx8, and a maximum number of
entries in the predictor palette table are restricted to
nx8, and wherein m and n are positive integers.

20. The non-transitory computer-readable recording
medium of claim 19, wherein a syntax element indicating a
parallel merge estimation level is included in the bitstream,
wherein a maximum value of the syntax element depends on
a size of a coding tree unit (CTU), and

wherein the maximum value of the syntax element is

constrained to be smaller than the size of the CTU.
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