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(57) ABSTRACT

Apparatus and methods for learning and training in neural
network-based devices. In one implementation, the devices
each comprise multiple spiking neurons, configured to pro-
cess sensory input. In one approach, alternate heterosynaptic
plasticity mechanisms are used to enhance learning and field
diversity within the devices. The selection of alternate plas-
ticity rules is based on recent post-synaptic activity of neigh-
boring neurons. Apparatus and methods for simplifying train-
ing of the devices are also disclosed, including a computer-
based application. A data representation of the neural network
may be imaged and transferred to another computational
environment, effectively copying the brain. Techniques and
architectures for achieve this training, storing, and distribut-
ing these data representations are also disclosed.
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NEURAL NETWORK LEARNING AND
COLLABORATION APPARATUS AND
METHODS

PRIORITY AND CROSS-REFERENCE TO
RELATED APPLICATIONS

[0001] This application claims priority to U.S. Provisional
Patent Application Ser. No. 61/654,738, filed on Jun. 1, 2012,
of'the same title, which is incorporated herein by reference in
its entirety.

[0002] This application is related to co-owned and
co-pending U.S. patent application Ser. No. 13/152,119,
entitled “SENSORY INPUT PROCESSING APPARATUS
AND METHODS”, filed on Jun. 2, 2011, co-owned and
co-pending U.S. patent application Ser. No. 13/152,105,
entitled “APPARATUS AND METHODS FOR TEMPO-
RALLY PROXIMATE OBIJECT RECOGNITION”, filed
Jun. 2, 2011, co-owned and co-pending U.S. patent applica-
tion Ser. No. 13/465,924, entitled “SPIKING NEURAL
NETWORK FEEDBACK APPARATUS AND METH-
ODS”, filed May 7, 2012, co-owned and co-pending U.S.
patent application Ser. No. 13/465,903 entitled “SENSORY
INPUT PROCESSING APPARATUS IN A SPIKING NEU-
RAL NETWORK?™, filed May 7, 2012, co-owned U.S. patent
application Ser. No. 13/465,918, entitled “SPIKING NEU-
RAL NETWORK OBJECT RECOGNITION APPARATUS
AND METHODS?”, filed May 7, 2012, and U.S. Provisional
Patent Application Ser. No. 61/671,434, filed on Jul. 13,2012,
entitled “INTELLIGENT MODULAR ROBOTIC APPA-
RATUS AND METHODS”, now U.S. patent application Ser.
No. 13/829,919 filed herewith on Mar. 14, 2013, entitled
“INTELLIGENT MODULAR ROBOTIC APPARATUS
AND METHODS”, each of the foregoing incorporated
herein by reference in its entirety.

COPYRIGHT

[0003] A portion of the disclosure of this patent document
contains material that is subject to copyright protection. The
copyright owner has no objection to the facsimile reproduc-
tion by anyone of the patent document or the patent disclo-
sure, as it appears in the Patent and Trademark Office patent
files or records, but otherwise reserves all copyright rights
whatsoever.

BACKGROUND

[0004] 1. Field

[0005] The present disclosure relates in one exemplary
aspect to implementing learning in artificial intelligence or
robotic apparatus.

[0006] 2. Description of Related Art

[0007] Current methods for the behavioral control of arti-
ficial intelligence or robotic devices involves text-based cod-
ing, graphical programming, or direct input machine control
panels.

[0008] The text-based programming environment imposes
few constraints on an operator. For example, an operator may
implement virtually any behavior that the operator (or his
team) can conceptualize and translate into formal program-
ming code. The robotic device’s behavior is entirely guided
by the code written into its memory. Typical text-based pro-
gramming disadvantageously requires significant back-
ground knowledge of the functions and logical form of the
language. Using this knowledge, programmers then translate
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the desired behavior of a robotic device into a logical form
compatible with functions of the language. For example, a
programmer interested in creating a robotic device may use
the Robot Operating System (ROS). The programmer may
the compile routines for controlling the robotic device in
Java®, C/C++, MATLAB®, etc. The ROS community also
supplies a host of application programming interfaces (APIs)
and other tools to assist programmers developing applica-
tions for robots.

[0009] Another example, Arduino, is a popular open-
source microcontroller board line. The Arduino microcon-
troller can be programmed through the Arduino Integrated
development Environment (IDE). The Arduino IDE includes
a C/C++ library that provides custom functions for setting up
the functions of the microcontroller board. The provided
C/C++ library greatly simplifies programming the microcon-
troller. With knowledge of microcontroller operation and an
intermediate knowledge of the C/C++ programming environ-
ment, a user may setup control functions for the Arduino
microcontroller.

[0010] Unfortunately, the foregoing programming environ-
ments are inaccessible to users lacking formal programming
knowledge. Graphical programming paradigms have been
used to lessen the knowledge/experience barrier for entry into
the programming arts. LabView® is an example of a widely
used programming package designed for the control of labo-
ratory equipment and general programming. LabView uses a
layout similar to a circuit diagram to map out the functions
performed by a program. The user lays out a series of inter-
connected functions and loops that run from a starting point to
a terminal point, break, or terminal condition setup by the
user. Conceptually, LabView is similarto text based program-
ming environments described supra in that it follows the same
logical guidelines, albeit with a graphical input layout.
[0011] Another system, LEGO® Mindstorms provides a
programmable LEGO brick (Pbrick) that may be pro-
grammed or controlled via a computer link. The LEGO Mind-
storms each include a flow-chart-based programming lan-
guage called the Robotic Command eXplorer (RCX) code for
use with the Pbrick. The language is generally similar in
operationto LabView because auser lays out their commands
graphically in the program editor. However, the RCX is more
linear in its operation than LabView (execution proceeds
from beginning to end with fewer allowed parallel processes),
and a smaller number of functions are available to the user.
The firmware of the Pbrick can be altered to be used with
ROBOLAB. ROBOLARB is an educational firmware version
based on LabView. Furthermore, a wealth of other third party
firmware products are available and allow for programming
of'the Pbrick in a number of programming environments (e.g.
Java® and C/C++).

[0012] Based on the foregoing, there is a salient need for,
inter alia, a more intuitive and easier-to-use learning and
interface paradigm for artificial intelligence/robotic systems.

SUMMARY

[0013] The present disclosure relates to, inter alia, appara-
tus and methods for training artificial neural networks, and
sharing network state and other types of information.

[0014] In a first aspect, a network server apparatus is dis-
closed. In one implementation the network server includes:
(1) processing logic, (ii) a storage entity, and (iii) a network
interface. The storage entity is configured to store a plurality
of'information (such as e.g., images). The network interface is
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in data communication with the processing logic and is opera-
tively connected to a plurality of neural network devices. The
network interface is configured to: (i) receive a request to
upload information, (ii) establish a data connection to aneural
network device of the plurality, (iii) receive the information,
the information describing a state of the neural network
device, and (iv) in response to a second request, transfer the
information to one or more neural network devices of the
plurality.

[0015] Ina second aspect, a non-transitory computer read-
able medium configured to store at least one computer pro-
gram thereon is disclosed. In one implementation, the com-
puter program includes a plurality of instructions configured
to when executed: (i) establish a data connection to a synaptic
device, (ii) receive status information from the synaptic
device, (iii) issue a command to the synaptic device, the
synaptic device executing an action based at least in part on
the command, (iv) receive feedback input from a user, and (v)
forward the feedback input to the synaptic device via the data
connection. The act of forwarding feedback input causes the
synaptic device to alter a behavioral trait.

[0016] Ina third aspect, a method of updating the state of a
neural network device is disclosed. In one implementation,
the method includes: (i) establishing a data connection to a
cloud server apparatus, (ii) browsing a plurality of state files
via a user interface, the state files being stored on the cloud
server apparatus, (iii) selecting an individual one of the plu-
rality of state files, (iv) establishing a second data connection
to the neural network device, and (v) causing the extraction
and application of a state by the neural network device, the
state being described at least in part by the individual one of
the plurality of state files.

[0017] In a fourth aspect, a cloud server apparatus is dis-
closed. In one implementation, the cloud server apparatus
includes: (i) a storage entity configured to store a plurality of
neuromorphic apparatus state data, (ii) a network interface,
and (iii) a processor in data communication with the storage
entity and the network interface. The processor is configured
to run one or more processes thereon. The processes include
a plurality of instructions configured to, when executed: (i)
authenticate a subscriber accessing the cloud server apparatus
via a user interface device, (ii) receive a request from the
subscriber for one or more of the plurality of neuromorphic
apparatus state data, (iii) determine if the subscriber has per-
mission to access to the one or more of the plurality of neu-
romorphic apparatus state data, and (iv) based at least in part
on the determination, transmit the one or more ofthe plurality
of neuromorphic apparatus state data to at least one of: (a) a
neuromorphic apparatus associated with the subscriber and
(b) the user interface device.

[0018] Ina fifth aspect, a method of sharing learned behav-
iors or traits among two or more artificially intelligent entities
is disclosed. In one implementation, the method includes
teaching a first of the entities a desired behavior, and storing
information relating to that learned trait or behavior on a
mutually accessible storage device (such as a cloud server). A
second (and possibly other) one of the entities then accesses
the storage device, and obtains the learned trait/behavior
information, which it can then use to upgrade or modify its
own behavior or traits.

[0019] Inasixthaspect, a method of collaborative behavior
among two or more artificially intelligent entities is disclosed.
In one implementation, the method includes utilization of a
substantially centralized behavioral information storage
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repository that is accessible by the entities simultaneously,
such that adaptive learning experienced by one of the entities
can be communicated to the centralized repository, and hence
communicated to others of the entities so as to either reinforce
similar learning experiences within the other entities, or obvi-
ate the other entities from having to undergo the same or
similar learning process. In some implementations, heteroge-
neous plasticity rules are applied across the entities (and/or
across individual artificial neurons within the entities them-
selves) so as increase micro- and/or macro field diversity
within the entities individually, or as a whole.

[0020] In a seventh aspect, a method of behavioral pro-
gramming in an artificial neural network is disclosed. In one
implementation, the method includes: (i) generating a data
link to at least one device configured to run the artificial
neural network, (ii) receiving one or more data elements
indicating a current status of the associated with the artificial
neural network, (iii) displaying information, on a display,
related to at least a portion of the one or more data elements,
(iv) receiving user input from a user interface, (v) generating
one or more feedback elements based at least in part on the
user input, and (vi) transmitting the one or more feedback
elements to the artificial neural network via the data link.

[0021] In an eighth aspect, a training device configured to
manage activity in a spiking neural network is disclosed. In
one or more implementations, the training device comprises:
atleast one network interface, a user interface, and processing
logic. In an exemplary implementation, the at least one net-
work interface is configured to: (i) establish an operative link
to the spiking neural network, (ii) receive one or more activity
indicators associated with the spiking neural network, and
(iii) transmit feedback input to the spiking neural network. In
one variant, the user interface is configured to: (i) based at
least in part on the one or more activity indicators display one
or more human perceptible signals, and (ii) provide a user
with at least one menu from which to select training options.
The logic is in operative communication with the user inter-
face and network interface, and is the configured to process a
selected training option to generate the feedback input.

[0022] In a ninth aspect, a method of managing activity
within a spiking neural network is disclosed. In various
implementations, the method comprises: (i) establishing a
data link to a user interface device, (ii) sending one or more
status updates related to a plurality of activity states neurons
in the spiking neural network, (iii) receiving, via the link, one
or more feedback indicators, the one or more feedback indi-
cators based at least on part on a selected training option from
the user interface device, and (iv) based on at least one rule,
associating the feedback with a subset of the neurons in the
spiking neural network.

[0023] In a tenth aspect, a computerized neuromorphic
apparatus is disclosed. In one or more implementations, the
apparatus comprises: (1) one or more functional modules, (ii)
a network interface configured to establish a link to a training
device, and (iii) processing logic. In an exemplary implemen-
tation, the logic is configured to: (i) send, to the training
device, status indicators related to a neural network disposed
at least in part on the computerized neuromorphic apparatus,
(ii) receive feedback based on a selected one or more of a
plurality of available management options, and (iii) alter a
state of one or more of a neuron and a connection in accor-
dance with the feedback and at least one timing rule.
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[0024] Further features and various advantages will be
apparent from the accompanying drawings and the following
detailed description.

BRIEF DESCRIPTION OF THE DRAWINGS

[0025] FIG.1is functional block diagram of one exemplary
artificial spiking neural network consistent with one or more
implementations.

[0026] FIG.2is afunctional block diagram of an adaptation
mechanism.
[0027] FIG. 3 is a second functional block diagram of the

adaptation mechanism shown in FIG. 2.

[0028] FIG. 4 is a functional block diagram illustrating a
network merge in accordance with one or more implementa-
tions.

[0029] FIG. 5A is a functional block diagram illustrating
one implementation of an evolutionary transformation.
[0030] FIG. 5B is a functional block diagram illustrating
one implementation of a transformation operation.

[0031] FIG. 5C is a functional block diagram illustrating a
second transformation operation in accordance with some
implementations.

[0032] FIG. 6 is a functional block diagram illustrating one
implementation of a cloud server repository.

[0033] FIG.7 is a functional block diagram illustrating one
implementation of a robotic apparatus.

[0034] FIG. 8 is a logical flow diagram illustrating one
implementation of a generalized method for network life
cycle management.

[0035] FIG.9isalogical flow diagram illustrating a second
implementation of a generalized method for network life
cycle management.

[0036] FIG. 10 is a functional block diagram illustrating a
heterosynaptic plasticity mechanism.

[0037] FIG. 11A is a functional block diagram illustrating
one implementation of a computerized neuromorphic pro-
cessing system.

[0038] FIG.11Bisa functional block diagram illustrating a
second implementation of'a computerized neuromorphic pro-
cessing system.

[0039] FIG.11Cis a functional block diagram illustrating a
third implementation of a computerized neuromorphic pro-
cessing system.

[0040] FIG.11D is afunctional block diagram illustrating a
fourth implementation of a computerized neuromorphic pro-
cessing system.

[0041] FIG.12A is afunctional block diagram illustrating a
connectivity configuration consistent with one or more
implementations.

[0042] FIG.12Bisa functional block diagram illustrating a
second connectivity configuration consistent with one or
more implementations.

[0043] FIG.13 is a functional block diagram illustrating an
exemplary implementation of a user interface device.

[0044] FIG. 14 is a functional block diagram illustrating a
cloud server configuration consistent with one or more imple-
mentations.

[0045] FIG.15is anillustration of an exemplary implemen-
tation of the Instinct submenu of a training application.
[0046] FIG.16is an illustration of an exemplary implemen-
tation of the Training submenu of a training application.
[0047] FIG.17is anillustration of an exemplary implemen-
tation of the Command submenu of a training application.
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[0048] FIG. 18is an illustration of an exemplary implemen-
tation of the Hygiene submenu of a training application.
[0049] FIG. 19 is an illustration of an exemplary implemen-
tation of the Socialize submenu of a training application.
[0050] All Figures disclosed herein are ©Copyright 2013
Brain Corporation. All rights reserved.

DETAILED DESCRIPTION

[0051] Implementations of the present disclosure will now
be described in detail with reference to the drawings, which
are provided as illustrative examples so as to enable those
skilled in the art to practice the architectures and principles
disclosed herein. Notably, the figures and examples below are
not meant to limit the scope of the present disclosure to a
single implementation, but other implementations are pos-
sible by way of interchange of or combination with some or
all of the described or illustrated elements. Wherever conve-
nient, the same reference numbers will be used throughout the
drawings to refer to same or like parts.

[0052] Where certain elements of these implementations
can be partially or fully implemented using known compo-
nents, only those portions of such known components that are
necessary for an understanding of the present disclosure will
be described, and detailed descriptions of other portions of
such known components will be omitted so as not to obscure
the invention.

[0053] Inthe present specification, implementations show-
ing a singular component should not be considered limiting;
rather, the disclosure is intended to encompass other imple-
mentations including a plurality of the same component, and
vice-versa, unless explicitly stated otherwise herein.

[0054] Further, the present disclosure encompasses present
and future known equivalents to the components referred to
herein by way of illustration.

[0055] As used herein, the term “bus™ is meant generally to
denote all types of interconnection or communication archi-
tecture that is used to access the synaptic and neuron memory.
The “bus” could be optical, wireless, infrared or another type
of communication medium. The exact topology of the bus
could be for example standard “bus”, hierarchical bus, net-
work-on-chip, address-event-representation (AER) connec-
tion, or other type of communication topology used for
accessing, e.g., different memories in pulse-based system.
[0056] As used herein, the terms “computer”, “computing
device”, and “computerized device”, include, but are not lim-
ited to, personal computers (PCs) and minicomputers,
whether desktop, laptop, or otherwise, mainframe computers,
workstations, servers, personal digital assistants (PDAs),
handheld computers, embedded computers, programmable
logic device, personal communicators, tablet computers, por-
table navigation aids, J2ME equipped devices, cellular tele-
phones, smart phones, personal integrated communication or
entertainment devices, or literally any other device capable of
executing a set of instructions and processing an incoming
data signal.

[0057] As used herein, the term “computer program” or
“software” is meant to include any sequence or human or
machine cognizable steps which perform a function. Such
program may be rendered in virtually any programming lan-
guage or environment including, for example, C/C++, C#,
Fortran, COBOL, MATLAB™, PASCAL, Python, assembly
language, markup languages (e.g., HITML, SGML, XML,
VoXML), and the like, as well as object-oriented environ-
ments such as the Common Object Request Broker Architec-
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ture (CORBA), Java™ (including J2ME, Java Beans, etc.),
Binary Runtime Environment (e.g., BREW), and the like.
[0058] As used herein, the terms “connection”, “link”,
“synaptic channel”, “transmission channel”, “delay line”, are
meant generally to denote a causal link between any two or
more entities (whether physical or logical/virtual), which
enables information exchange between the entities.

[0059] As used herein, the term “memory” includes any
type of integrated circuit or other storage device adapted for
storing digital data including, without limitation, ROM.
PROM, EEPROM, DRAM, Mobile DRAM, SDRAM,
DDR/2 SDRAM, EDO/FPMS, RLDRAM, SRAM, “flash”
memory (e.g., NAND/NOR), memristor memory, and
PSRAM.

[0060] As used herein, the terms “microprocessor” and
“digital processor” are meant generally to include all types of
digital processing devices including, without limitation, digi-
tal signal processors (DSPs), reduced instruction set comput-
ers (RISC), general-purpose (CISC) processors, microcon-
trollers, microprocessors, gate arrays (e.g., field
programmable gate arrays (FPGAs)), PLDs, reconfigurable
computer fabrics (RCFs), array processors, secure micropro-
cessors, and application-specific integrated circuits (ASICs).
Such digital processors may be contained on a single unitary
IC die, or distributed across multiple components.

[0061] As used herein, the term “network interface” refers
to any signal, data, or software interface with a component,
network or process including, without limitation, those of the
FireWire (e.g., FW400, FW800, etc.), USB (e.g., USB2),
Ethernet (e.g., 10/100, 10/100/1000 (Gigabit Ethernet),
10-Gig-E, etc.), Wi-Fi (802.11), WiMAX (802.16), PAN
(e.g.,802.15), cellular (e.g., 3G, LTE/LTE-A/TD-LTE, GSM,
etc.) or IrDA families.

[0062] As usedherein, the terms “pulse”, “spike”, “burst of
spikes”, and “pulse train” are meant generally to refer to,
without limitation, any type of a pulsed signal, e.g., a rapid
change in some characteristic of a signal, e.g., amplitude,
intensity, phase or frequency, from a baseline value to a higher
orlower value, followed by a rapid return to the baseline value
and may refer to any of a single spike, a burst of spikes, an
electronic pulse, a pulse in voltage, a pulse in electrical cur-
rent, a software representation of a pulse and/or burst of
pulses, a software message representing a discrete pulsed
event, and any other pulse or pulse type associated with a
discrete information transmission system or mechanism.
[0063] As used herein, the term “receptive field” is used to
describe sets of weighted inputs from filtered input elements,
where the weights are adjusted.

[0064] As used herein, the term “Wi-Fi” refers to, without
limitation, any of the variants of IEEE-Std. 802.11 or related
standards including 802.11 a/b/g/n/s/v.

[0065] Asusedherein, the term “wireless” means any wire-
less signal, data, communication, or other interface including
without limitation Wi-Fi, Bluetooth, 3G (3GPP/3GPP2),
HSDPA/HSUPA, TDMA, CDMA (e.g., IS-95A, WCDMA,
etc.), FHSS, DSSS, GSM, PAN/802.15, WiMAX (802.16),
802.20, narrowband/FDMA, OFDM, PCS/DCS, LTE/LTE-
A/TD-LTE, analog cellular, CDPD, satellite systems, milli-
meter wave or microwave systems, acoustic, and infrared
(i.e., IrDA).

Overview

[0066] Currently, systems for programming robotic
devices rely on formal programming structures to provide
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instruction sets. Users of these systems are required to have
specific foreknowledge of the programming environment
before a task may be undertaken. Furthermore, many of these
systems (even those based on more graphical programming
paradigms) require significant experience before a user is
able to easily conceptualize even some seemingly simple
robotic device behaviors within the rubric of a formalized
programming environment.

[0067] It will be apparent in light of the present disclosure,
that the aforementioned problem is readily addressed by an
intuitive robotic device behavioral control system. In one
salient aspect of the disclosure, such an intuitive behavioral
control system is introduced in the form of a robotic device
training application (e.g., a computer program running on a
computerized device such as a PC, smartphone or tablet com-
puter). The training application uses a behavioral control
structure that allows a user to train a robotic device in manner
conceptually similar to the mode in which one goes about
training a domesticated animal such as a dog or cat. This
renders the training/learning process much more accessible
for a broad spectrum of potential users, ranging from infants
to the elderly (and even to include non-human entities such as
other robots or artificially intelligent apparatus or life forms),
as well as those with little or no formal training or knowledge
in robotics or computer programming.

[0068] Corollary to a training paradigm is a robotic control
platform receptive to a user feedback system. As discussed
herein, artificial neural networks are frequently used to gain
an understanding of biological neural networks, and for solv-
ing artificial intelligence problems. Consistent with exem-
plary implementations of the present disclosure, an artificial
neural network model is used to leverage its biologically
analogous training properties (e.g. alteration of behavior
traits via feedback/feed-forward approaches). These training
behaviors are implemented in one exemplary approach
through plasticity in the neutral network. The neural network
exhibits an affinity for their current state (plasticity); how-
ever, with repeated or extreme feedback the neural network
may be altered. This results in the new behavior traits.

[0069] Inoneexemplary implementation, a device running
such a training application is operatively linked to a robotic
device controlled by such a neural network. A user is able to
supply commands and provide feedback (positive and/or
negative) from the application. In some implementations, the
application includes submenus containing tools for the
execution of the training and managing various options for
the robotic device, in effect creating a robotic training virtual
“ecosystem”.

[0070] The present disclosure further pertains to a user
ability to share and discuss content related to the training of
such robotic devices. In various implementations of the
present disclosure, a user may extract the state of a neural
network (or other useful training-related information)
directly from the device. Thus, the artificial mind and its traits
may be copied, stored, and later retrieved. This state informa-
tion may be shared with other users. Consistent with the
present disclosure, a user may download such stored state
information (whether from networked or cloud storage, or in
a peer-to-peer (P2P) fashion) and apply it to a second neural
network, effectively duplicating the first neural network, or
alternatively enabling macro-level heterogeneous plasticity
(i.e., obviating the second neural device from having to “learn
the lessons” learned by the first neural device).
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[0071] Processes and architectures for sharing such state
information among a plurality of users are disclosed as well.
In one exemplary implementation, a cloud-based repository
of brain “images” (e.g., neural network state information) is
introduced. Users may access the cloud repository (such as
under a subscription, per-access, or other business model) and
browse brain images created by other users. Brain images are
also offered for purchase via the repository in an online “app”
store model. Other related content such as user-created train-
ing related media (e.g., a video clip of “how I trained my
robot” or the like) is available through the repository and
social forums and links

DETAILED DESCRIPTION OF THE
EXEMPLARY IMPLEMENTATIONS

[0072] Exemplary implementations of the various facets of
the disclosure are now described in detail. It will be appreci-
ated that while described substantially in the context of arti-
ficial spiking neurons and neural networks, the present dis-
closureis in no way so limited, the foregoing merely being but
one possible approach. The disclosure is contemplated for use
with any number of different artificial intelligence models
and paradigms.

Artificial Spiking Neural Networks

[0073] Artificial spiking neural networks are frequently
used to gain an understanding of biological neural networks,
and for solving artificial intelligence problems. These net-
works typically employ a pulse-coded mechanism, which
encodes information using timing of the pulses. Such pulses
(also referred to as “spikes” or ‘impulses’) are short-lasting
(typically on the order of 1-2 ms) discrete temporal events.
Several exemplary implementations of such encoding are
described in a commonly owned and co-pending U.S. patent
application Ser. No. 13/152,084 entitled APPARATUS AND
METHODS FOR PULSE-CODE INVARIANT OBIJECT
RECOGNITION?, filed Jun. 2, 2011, and U.S. patent appli-
cation Ser. No. 13/152,119, Jun. 2, 2011, entitled “SENSORY
INPUT PROCESSING APPARATUS AND METHODS”,
each being incorporated herein by reference in its entirety
[0074] A typical artificial spiking neural network, such as
the network 100 shown for example in FIG. 1, includes a
plurality ofunits (or nodes) 102, which correspond to neurons
in a biological neural network. Any given unit 102 may
receive input via connections 104, also referred to as commu-
nications channels, or synaptic connections. Any given unit
102 may further be connected to other units via connections
112, also referred to as communications channels, or synaptic
connections. The units (e.g., the units 106 in FIG. 1) provid-
ing inputs to any given unit via for example connections 104,
are commonly referred to as the pre-synaptic units, while the
unit receiving the inputs (e.g., the units 102 in FIG. 1) is
referred to as the post-synaptic unit. Furthermore, the post-
synaptic unit of oneunit layer (e.g. the units 102 in FIG. 1) can
act as the pre-synaptic unit for the subsequent upper layer of
units (not shown).

[0075] Each of the connections (104, 112 in FIG. 1) is
assigned, inter alia, a connection efficacy (which in general
refers to a magnitude and/or probability of influence of pre-
synaptic spike to firing of post-synaptic neuron, and may
comprise, for example a parameter: synaptic weight, by
which one or more state variables of post synaptic unit are
changed). During operation of the pulse-code network (e.g.,
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the network 100), synaptic weights are typically adjusted
using what is referred to as the spike-timing dependent plas-
ticity (STDP) in order to implement, among other things,
network learning.

[0076] One such adaptation mechanism is illustrated with
respect to FIGS. 2-3. Traces 200, 210 in FIG. 2 depict pre-
synaptic input spike train (delivered for example via connec-
tion 104_1 in FIG. 1) and post synaptic output spike train
(generated, for example, by the neuron 102_1 in FIG. 1),
respectively.

[0077] Properties of the connections 104 (such as weights
w) are typically adjusted based on relative timing between the
pre-synaptic input (e.g., the pulses 202, 204, 206,208 in F1G.
2) and post-synaptic output pulses (e.g., the pulses 214, 216,
218 in FIG. 2). One typical STDP weight adaptation rule is
illustrated in FIG. 3, where rule 300 depicts synaptic weight
change Aw as a function of time difference between the time
of'post-synaptic output generation and arrival of pre-synaptic
input At=t, ~t,,.. In some implementations, synaptic con-
nections (e.g., the connections 104 in FIG. 1) delivering pre-
synaptic input prior to the generation of post-synaptic
response are potentiated (as indicated by Aw>0 associated
with the curve 302), while synaptic connections (e.g., the
connections 104 in FIG. 1) delivering pre-synaptic input sub-
sequent to the generation of post-synaptic response are
depressed (as indicated by Aw<0 associated with the curve
304 in FIG. 3). By way of illustration, when the post-synaptic
pulse 208 in FIG. 2 is generated: (i) connection associated
with the pre-synaptic input 214 precedes the output pulse
(indicated by the line denoted 224) and it is potentiated
(Aw>0 in FIG. 3 and the weight is increased); and (ii) con-
nections associated with the pre-synaptic input 216, 218 that
follow are depressed (Aw<0 in FIG. 3 and the weights are
decreased).

[0078] Neural networks, such as illustrated in FIG. 1, are
often utilized in robotic devices.

Network Training

[0079] The robotic brain may comprise one or more neural
networks (e.g., the network 100), each comprising plurality
of connections (e.g., the connections 104 of FIG. 1) having
connection efficacy 6,; associated therewith. In one or more
implementations, the connection efficacy may comprise syn-
aptic weights configured to be updated according to: reward-
modulated spike-timing-dependent plasticity as follows:

d@;j([, a)
dt

d@u([)

Eqn. 1
« R Y e et 0T —pRe
k

where:

[0080] 6,(t) is the efficacy of a synaptic connection
between the pre-synaptic neuron i and the post-synaptic
neuron j;

[0081] m is a parameter referred to as the learning rate
that scales the 8-changes enforced by learning, 1 can be
aconstant parameter or it can be a function of some other
system parameters;

[0082] R(t) is a function describing the reward signal;

[0083] e,(t) is eligibility trace, configured to character-
ize correlation between pre-synaptic and post-synaptic
activity.
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[0084] a is a set of parameters that R, n, and e, are
dependent upon.
[0085] In one or more implementations, a trained network
or collection of networks (hereinafter also referred to as
robotic brain) may be updated and/or merged in accordance
with any of the methodologies described below.
[0086] Insome implementations, the trained network con-
nection efficacy map may be characterized by an efficacy
vector O as follows:
®:{eji}

where 0, is the efficacy of i”* synapse of j* neuron of the
network. Various methods of mapping multi-dimensional
arrays into a single dimension vector exist in the arts (e.g.,
column-wise, row-wise, etc.).
[0087] Based on the values of ® associated with the indi-
vidual neurons, different actions occur. For example, neurons
with low efficacy may be pruned. Alternatively, groups of
neurons with high efficacy may be augmented with new neu-
rons and interconnects. The more the ® vector is used to alter
the spatial state of the robotic brain, the more behavior of the
robot controlled by the brain reflects the series of feedback
used to generate the vector.
[0088] In various implementations consistent with the
present disclosure, the robotic brain is configured to be recep-
tive to training The network may be capable of self-organi-
zation (e.g. the creation (destruction) of links to denote highly
(sparsely) used pathways), unsupervised learning (e.g. prac-
tice to develop refined routines), and reward-modulated
learning as discussed above.
[0089] Inone or more implementations, the efficacy vector
® may comprise a vector of trained network connection
weights W (expressed in a fixed or floating point format),
which are used during the network update/merge. In some
implementations, the neuron state information may be
updated/transferred as well.

(Eqn. 2)

Network Transformations

Network Updates

[0090] FIG. 3 illustrates various exemplary implementa-
tions of robotic brain (network) updates. The network updates
illustrated in FIG. 3 may comprise for instance a complete
weight update 300, where the existing trained weights vector
W 302 is replaced with a different weight vector 304. Such
implementation may be used for example, when operating
several identical robotic devices and the network weight con-
figuration of a single ‘trained’ apparatus is downloaded into
other (untrained) devices. The update implementation may
also be used when (improved) training versions of network
are distributed by one user (and/or a vendor) to other user with
(or without) a cost associated therewith.

[0091] In some implementations, the new weight vector
may comprise more (not shown) of fewer elements, as illus-
trated for example by the update 310, comprising the replace-
ment weight vector 314 comprising fewer elements compared
to the original weight vector 312.

[0092] Insome implementations, only a portion of the net-
work weights may be updated as, as illustrated for example by
the update 320 of FIG. 3, comprising the replacement weight
vector 324 comprises the replacement portion 326, config-
ured to replace the respective weights from the original
weight configuration 322. The remaining portion 328 of the
network weights remains unchanged. Fewer elements remain
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compared to the original weight vector 312. Such implemen-
tation may be used for example, when updating one or more
modules of a partitioned network, (e.g., a motor-control par-
tition, or a signal processing partition). The update imple-
mentation may also be used when (improved) training ver-
sions of network are distributed by one user (and/or a vendor)
to other user with or without a cost associated therewith. In
some implementations, the update 320 may be utilized to
implement a new version of sensor or actuator driver, a more
efficient sensor encoder, input/output interface protocol, etc.
[0093] Insomeimplementations, the weight vector updates
may include removal and replacement of obsolete (or tempo-
rally unused features) such as, for example, replacing a motor
control portion with a more advanced video processing por-
tion of the network when a mobile robotic device is deployed
in stationary fashion in order to comply with the hardware
constraints (e.g. on-board memory size, and or power con-
sumption).

Network Merges

[0094] In some implementations, the network lifecycle
may comprise network weight updates comprising two or
more sources, also referred herein to as “merges”.

[0095] Inone or more implementations, such as the merge
400 illustrated in FIG. 4, the ‘offspring’ network configura-
tion (e.g., the weight vector W) 408 may be obtained using
two parent weight vectors 402, 406 combined via an opera-
tion 404.

[0096] In some implementations, the network merge may
comprise non-interleaved combination as illustrated by the
merges 430 in FIG. 4, where the parents A provides the
portion 432 and the parent B provides the portion 434 to the
off-spring 436. In some implementations (not shown), the
portion 432 may comprises the same number of weights as the
portion 434. The non-interleaved network merge, such as
illustrated in FIG. 4, may be used, for example, to combine
capabilities of two (or more) parents or to add a capability to
one of the parent network.

[0097] Various operations 404 of FIG. 4 may be used to
produce contributions by one or more parent. In one or more
implementations, the off-spring weight vector may be deter-
mined by combining the traits from parent A and parent B are
combined as follows:

WeI=(W4 OR %)

[0098] In one or more implementations, the off-spring
weight vector may be determined by determining traits in the
parent B that are not in the parent A and adding these to the
parent A as follows:

(Eqn. 3)

W= AND W), (Eqn. 4)
Network Evolution
[0099] In some implementations, the network lifecycle

may comprise evolutionary network weight merges (de-
scribed with respect to FIGS. 5A-5B, discussed below). In
one or more implementations, the parent and the off-spring
networks may be configured to operate on robotic devices
comprising the same (or similar) hardware/software configu-
ration, such as for example, sensor and actuator complement,
available synaptic memory and processing capacity.

[0100] Inone or more implementations, such as the merge
400 illustrated in FIG. 4, the evolutionary ‘offspring’ network
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configuration (e.g., the weight vector W) 408 may be obtained
using two parent weight vectors 402, 406 combined via an
operation 404.

[0101] In some implementations, such as the evolutionary
transformation 500 illustrated in FIG. 5, the ‘offspring’ net-
work configuration 508 may be obtained using a single parent
weight vector 502 transformed via the operation 504.

[0102] Various exemplary implementations of the transfor-
mation operations 404, 505 are illustrated with respect to
FIGS. 5B-5C. The merges 510, 520 illustrated in FIG. 5B
comprise interleaved segments of weights from parent A and
parent B (the segments 512, 522 from the parent A and the
segments 514, 524 from the parent B, respectively, in FIG.
5B) to produce the off-spring weight vectors 516, 526,
respectively. While the combination 510 comprises equal
contributions from each parent, the combination 520 may
comprise non-equal contributions, with the parent 522 pro-
viding a larger portion of the weights to the off-spring 526.
Although the parent A, the parent B and the off-spring are
shown as separate entities in F1G. 5B-5C for clarity, it will be
appreciated by those skilled in the arts that such may not
always be the case. By way of illustration, in some imple-
mentations, the offspring may comprise either (or both) of the
parents A or B. In such implementation, a computerized
device may be used to assist the merge store intermediate
off-spring weight configuration during the merge, and to
update one (or both) of the parents.

[0103] Theinterleaved network merge may beused insome
implementations to generate new weight vector for a network
configured to be use by off-spring configured to implement (a
subset) of parent functionality. By way of illustration, two or
more trash collector robotic apparatus, employed in ahome or
an office building, and comprising similar hardware (e.g.,
sensors and actuators) but trained under different conditions
and, hence, comprising different sets of network weights,
may utilize interleaved merge to produce an off-spring exhib-
iting combined set of capabilities.

[0104] In some implementations, the number of segments
512, 514 and segment length may be pre-determined. In some
implementations, the number of segments and/or their length
may be selected at random (given the W vector length con-
straint).

EXAMPLE 1

[0105] By way of illustration, in a network comprising
1000 synapses, the merge 520 may be configured as follows:

[0106] select splice points at locations 75, 225, 300, 600,
892;
[0107] use parent A to provide weights for the segments

in the ranges: 1-74, 225-299, 600-891; and
[0108] use parent B to provide weights for the segments

in the ranges: 75-224, 300-599, 832-1000.
In some implementations, the splice point positions may be
varied with e.g., some random jitter, e.g., with respect to
Example 1, the splice points may be varied by =N points and
comprise (75, 223, 300, 601, 888) in one realization with
N=5.
[0109] Data merges for one or more segments (e.g., the
segment 532, 542 in FIG. 5C) may employ various transfor-
mations 504 as describe with respect to FIG. 5C. In some
implementations, the transformation 504 may be imple-
mented using the following generalized form:

WO, =4 W 4B WP +C N, (Eqn. 5)
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where N, is the random weight component, configured to
effectuate, inter alia, exploration during leaning by the oft-
spring network (i.e., mutations). FIG. 5C illustrates two
exemplary implementations of inter-parent transformation
with mutation 530, 540, that may be performed in accordance
with Eqn. 5 Eqn. 5. In FIG. 5C, the off-spring network weight
vectors 536, 546 comprise weight contributions from both
parents (532, 534) and (542, 544), respectively, with an addi-
tional random component.

[0110] In some implementations, the coefficients A, B, C
may be selected such that the weights of the off-spring are
normalized to the same range as the weights o the parents,
e.g.: A+B+C=1.

[0111] In one implementation, either of the weight coeffi-
cients A, B may be set to zero and the transformation of Eqn.
5 describes ‘self-mutation’.

[0112] In some implementations, the coefficients A, B are
selected A=B=0.5, corresponding to inter-parent average
with mutation.

WO =W +WE,)24+C N,

[0113] Insomeimplementations the transformation of Eqn.
5 may be used to describe the insert/delete transformation as
well as setting weights using a random distribution, for one or
more segments (e.g., the segment 532, 542 in FIG. 5C).
[0114] In some implementations, the transformation 504
may comprise a majority rule so that if both parents have the
same weight values, the offspring has the same value. The rest
of off-spring weights may be set to any of (i) a random value;
(ii) and inter parent average; segment average; etc.

[0115] In some implementations, the transformation 504
may comprise a minority rule so that if both parents have the
same weight values, the offspring has a random weight value.
The rest of oft-spring weights may be set to any of e.g.: (i) a
random value; (ii) and inter-parent average; segment average;
etc.

Exemplary Methods

[0116] Exemplary implementations of the network life
cycle, comprising training and transformation methodology
described herein advantageously enable, inter alia, provision
of trained robotic apparatus via network transfer, update and
merge, and facilitate training of robotic networks via evolu-
tionary merges.

[0117] Referring now to FIGS. 8-9, exemplary uses of the
network life cycle methodology according to the disclosure
are described. In some implementations, the methods of FIG.
8-9 may be used, for example, for operating the robotic appa-
ratus 610 of FIG. 7. The method FIGS. 8-9 may be imple-
mented for example in a robotic device configured for pro-
cessing of sensory data as described with respect to FIG. 10,
infra, thereby advantageously aiding, inter alia, signal com-
pression, and/or object recognition when processing visual
sensory input.

[0118] Returning now to FIG. 8, at step 802 of the method
800, a check is performed whether a transformation of the
network operating robotic device is to be executed.

[0119] When the transformation is to be executed, the
method 800 proceeds to step 804, where the transformation
typeis selected. In some implementations, the transformation
may correspond to the robotic brain update described in detail
with respect to FIG. 4, supra, while in some implementations,
the transformation may correspond to the network merge
described in detail with respect to FIGS. 5A-5B. The trans-
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formation may also include an evolutionary merge of two
parent networks, as described for example, by Eqn. 5, while in
some implementations the transformation may comprise self-
transformation with or without mutation.

[0120] When the selected transformation requires external
source (e.g., one or more parents) at step 805, a connection to
external depository is established. In some implementations,
the depository may comprise cloud server depository 606,
described in detail in FIG. 6. In FIG. 6, one or more remote
user devices 610 may connect via a remote link 614 to the
depository 606 in order to save, load, update, etc. their net-
work configuration. The one or more remote user devices may
further interface with a local user computerized device 604
via alocallink 608 in order to facilitate learning configuration
and software maintenance of the user device 610. In one or
more implementations, the local link 608 may comprise a
network (Ethernet), wireless (e.g. Wi-Fi, Bluetooth, infrared,
radio), or serial link (USB, Firewire, etc.). The local comput-
erized device 604 may communicate with the cloud server
depository 606 via link 612. In one or more implementations,
links 612 and/or 614 may comprise an internet connection,
etc. effectuated via any of the applicable wired and/or wire-
less technologies (e.g., Ethernet, WiFi, LTE, CDMA, GSM,
etc). In some implementations, the remote user devices 610
may interface to a remote control module 616 (e.g., a clicker)
via a short range wireless link (e.g., IR, Bluetooth) in order to
receive, for example, reward signal (e.g., clicks) during train-
ing of the device 610.

[0121] At step 806, the source networks (the parent brains)
are selected. In one or more implementations, the source may
comprise weight vectors of one or more parents, as described
for example with respect to FIGS. 5B-5C. In one or more
implementations, the source may comprise a single parent or
the network being transformed (self transformation), illus-
trated for example in FIG. 5A.

[0122] At step 808, the target network (the offspring) is
selected. In one or more implementations, the target may
comprise the off-spring (e.g., the network of the device being
updated/transformed). In some implementations, the target
may comprise a network image configured to be stored within
a cloud server, and/or downloaded to one or more devices
(e.g., the devices 610 in FIG. 6).

[0123] Atstep 810, the target network configuration is gen-
erated. In one or more implementations, the target configu-
ration may comprise network weights downloaded into the
target robotic device. In some implementations, the target
configuration may comprise network weights vector stored
within the cloud server and available for subsequent down-
loads to one or more robotic devices (e.g., 610 of FIG. 6).
[0124] FIG. 9 illustrates the generation of new network
configuration comprising inter-parent merge in accordance
with one or more implementations. At step 922 of the method
920 the transformation type is selected. In some implemen-
tations, the transformation may correspond to the robotic
brain update described in detail with respect to FIG. 4, supra,
while in some implementations, the transformation may cor-
respond to the network merge described in detail with respect
to FIGS. 5A-5B. In some implementations, the transforma-
tion may comprise an evolutionary merge of two parent net-
works, as described for example, by Eqn. 5, while in some
implementations the transformation may comprise self-trans-
formation (with or without mutation).

[0125] At step 924, the splice points for the merge are
selected. In some implementations, the splice points may be
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configured as fixed locations, as illustrated with respect to
FIG. 5B. In one or more implementations, the splice locations
may be altered by applying some random jitter at each suc-
cessive update.

[0126] At step 926, the source weights (the parent net-
works) are selected for each segment. In one or more imple-
mentation, the source may comprise weight vectors of one or
more parents, as described for example with respect to FIGS.
5B-5C. In one or more implementations, the source may
comprise a single parent and the network of the device being
updated.

[0127] At step 928, the target network (the offspring) con-
figuration is generated for each segment. In one or more
implementation, the target configuration may comprise net-
work weights downloaded into the target robotic device. In
some implementations, the target configuration may com-
prise one or more network weight vectors stored within the
cloud server and available for subsequent downloads to one or
more robotic devices. The target network may be obtained for
example by using a deterministic transformation, such as
described by Eqn. 5, with the parameter C=0.

[0128] If additional segments remain to be transformed, at
step 930 the method 920 proceeds to step 926.

Exemplary Apparatus

[0129] Various implementations of exemplary neural net-
work apparatus comprising one or more of the methods set
forth herein (e.g., using the exemplary heterosynaptic plas-
ticity mechanism explained above) are now described with
respect to FIGS. 10-11D.

Robotic Apparatus

[0130] Referring now to FIG. 7, a functional block diagram
of'a robotic apparatus 610 consistent with the present disclo-
sure is shown. The robotic apparatus includes a robotic brain
712 for control of the device. Additional memory 714 and
processing capacity 716 is available for other hardware/firm-
ware/software needs of the robotic device. In some imple-
mentations, the robotic brain 712 interfaces with the
mechanical 718 sensory 720, electrical 722, and power com-
ponents 724, and network interface 726 via driver interfaces
and software abstraction layers. Thus, additional processing
and memory capacity may be used to support these processes.
However, it will be appreciated that these components may be
fully controlled by the robotic brain. The memory and pro-
cessing capacity may also aid in brain image management for
the robotic device (e.g. loading, replacement, initial startup
etc.). Consistent with the present disclosure, the various com-
ponents of the device may be remotely disposed from one
another, and/or aggregated. For example, the robotic brain
may be executed on a server apparatus, and control the
mechanical components via network or radio connection
while memory or storage capacity may be integrated into the
brain. Further, multiple mechanical, sensory, or electrical
units may be controlled be a single robotic brain via network/
radio connectivity.

[0131] The mechanical components 718 may include vir-
tually any type of device capable of motion or performance of
a desired function or task. These may include, without limi-
tation, motors, servos, pumps, hydraulics, pneumatics, step-
per motors, rotational plates, micro-electro-mechanical
devices (MEMS), electroactive polymers, etc. The devices
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interface with the robotic brain and enable physical interac-
tion and manipulation of the device.

[0132] The sensory devices 720 allow the robotic device to
accept stimulus from external entities. These may include,
without limitation, video, audio, haptic, capacitive, radio,
vibrational, ultrasonic, infrared, and temperature sensors
radar, lidar and/or sonar, etc. The processing associated with
sensory information is discussed below with respect to FIG.
10.

[0133] The electrical components 722 include virtually any
electrical device for interaction and manipulation of the out-
side world. This may include, without limitation, light/radia-
tion generating devices (e.g. LEDs, IR sources, light bulbs,
etc.), audio devices, monitors/displays, switches, heaters,
coolers, ultrasound transducers, lasers, etc. These devices
enable a wide array of applications for the robotic apparatus
in industrial, hobbyist, building management, medical
device, military/intelligence, and other fields (as discussed
below).

[0134] The network interface includes one or more connec-
tions to external computerized devices to allow for, inter alia,
management of the robotic device. The connections may
include any of the wireless or wireline interfaces discussed
above, and further may include customized or proprietary
connections for specific applications.

[0135] The power system 724 is tailored to the needs of the
application of the device. For example, for a small hobbyist
robot, a wireless power solution (e.g. battery, solar cell,
inductive (contactless) power source, rectification, etc.) may
be appropriate. However, for building management applica-
tions, battery backup/direct wall power may be superior. In
addition, in some implementations, the power system may be
adaptable with respect to the training of the robotic apparatus
610. Thus, the robotic may improve its efficiency (to include
power consumption efficiency) through learned management
techniques specifically tailored to the tasks performed by the
robotic apparatus.

[0136] One exemplary apparatus for processing of sensory
information (e.g., visual, audio, somatosensory) using spik-
ing neural network comprising for example the heterosynap-
tic plasticity mechanism is shown in FIG. 10. The illustrated
processing apparatus 1000 comprises an input interface con-
figured to receive an input sensory signal 1020. In some
implementations, this sensory input comprises electromag-
netic waves (e.g., visible light, IR, UV, etc.) entering an
imaging sensor array (comprising RGCs, a charge coupled
device (CCD), or an active-pixel sensor (APS)). The input
signal in this case is a sequence of images (image frames)
received from a CCD camera via a receiver apparatus, or
downloaded from a file. Alternatively, the image is a two-
dimensional matrix of RGB values refreshed at a 24 Hz frame
rate. It will be appreciated by those skilled in the art that the
above image parameters are merely exemplary, and many
other image representations (e.g., bitmap, CMYK, grayscale,
etc.) and/or frame rates are equally useful with the architec-
tures and principles disclosed herein.

[0137] The apparatus 1000 may comprise an encoder 1024
configured to transform the input signal into an encoded
signal 1026. In one implementation, the encoded signal com-
prises a plurality of pulses (also referred to as a group of
pulses) configured to model neuron behavior. The encoded
signal 1026 may be communicated from the encoder 1024 via
multiple connections (also referred to as transmission chan-
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nels, communication channels, or synaptic connections)
1004 to one or more neuronal nodes (also referred to as the
detectors) 1002.

[0138] In the implementation of FIG. 10, different detec-
tors of the same hierarchical layer are denoted by an “_n”
designator, such that e.g., the designator 1002_1 denotes the
first detector of the layer 1002. Although only two detectors
(1002_1, 1002_n) are shown in the implementation of FIG.
10 for clarity, it is appreciated that the encoder can be coupled
to any number of detector nodes that is compatible with the
detection apparatus hardware and software limitations. Fur-
thermore, a single detector node may be coupled to any prac-
tical number of encoders.

[0139] Inone implementation, each of the detectors 1002_
1, 1002_n contain logic (which may be implemented as a
software code, hardware logic, or a combination of thereof)
configured to recognize a predetermined pattern of pulses in
the encoded signal 1004, using for example any of the mecha-
nisms described in U.S. patent application Ser. No. 12/869,
573, filed Aug. 26, 2010 and entitled “SYSTEMS AND
METHODS FOR INVARIANT PULSE LATENCY COD-
ING”, U.S. patent application Ser. No. 12/869,583, filed Aug.
26, 2010, entitled “INVARIANT PULSE LATENCY COD-
ING SYSTEMS AND METHODS”, U.S. patent application
Ser. No. 13/152,105, entitled “APPARATUS AND METH-
ODS FOR TEMPORALLY PROXIMATE OBIECT REC-
OGNITION?, filed Jun. 2, 2011, U.S. patent application Ser.
No. 13/117,048, filed May 26, 2011 and entitled “APPARA-
TUS AND METHODS FOR POLYCHRONOUS ENCOD-
ING AND MULTIPLEXING IN NEURONAL PROS-
THETIC DEVICES”, U.S. patent application Ser. No.
13/152,084, filed Jun. 2, 2011, entitled “APPARATUS AND
METHODS FOR PULSE-CODE INVARIANT OBIECT
RECOGNITION?, each incorporated herein by reference in
its entirety, to produce post-synaptic detection signals trans-
mitted over communication channels 1008. In FIG. 10, the
designators 1008_1, 1008_n denote output of the detectors
1002_1, 1002_n, respectively.

[0140] In one implementation, the detection signals are
delivered to a next layer of the detectors 1012 (comprising
detectors 1012_1, 1012_m, 1012_k) for recognition of com-
plex object features and objects, similar to the exemplary
implementation described in commonly owned and co-pend-
ing U.S. patent application Ser. No. 13/152,084, filed Jun. 2,
2011, entitled “APPARATUS AND METHODS FOR
PULSE-CODE INVARIANT OBJECT RECOGNITION”,
incorporated herein by reference in its entirety. In this imple-
mentation, each subsequent layer of detectors is configured to
receive signals from the previous detector layer, and to detect
more complex features and objects (as compared to the fea-
tures detected by the preceding detector layer). For example,
a bank of edge detectors is followed by a bank of bar detec-
tors, followed by abank of corner detectors and so on, thereby
enabling, inter alia, alphabet recognition by the apparatus.

[0141] Each of the detectors 1002 may output detection
(post-synaptic) signals on communication channels 1008_1,
1008_n (with appropriate latency) that may propagate with
different conduction delays to the detectors 1012. The detec-
tor cascade of the implementation of FIG. 10 may contain any
practical number of detector nodes and detector banks deter-
mined, inter alia, by the software/hardware resources of the
detection apparatus and complexity of the objects being
detected.



US 2016/0155050 Al

[0142] The sensory processing apparatus implementation
illustrated in FIG. 10 may further comprise lateral connec-
tions 1006. In some implementations, the connections 1006
are configured to communicate post-synaptic activity indica-
tions between neighboring neurons of the same hierarchy
level, as illustrated by the connection 1006_1 in FIG. 10. The
neighboring neuron may also comprise neurons having over-
lapping inputs (e.g., the inputs 1004_1,1004_n in FIG. 10) so
that the neurons may compete in order to not learn the same
input features. In one or more implementations, the neighbor-
ing neurons may comprise spatially proximate neurons such
as being disposed within a certain volume/area from one
another on a 3-dimensional (3D) and or two-dimensional
(2D) space.

[0143] The apparatus 1000 may also comprise feedback
connections 1014, configured to communicate context infor-
mation from detectors within one hierarchy layer to previous
layers, as illustrated by the feedback connections 1014_1 in
FIG. 10. In some implementations, the feedback connection
1014 _2 is configured to provide feedback to the encoder 1024
thereby facilitating sensory input encoding, as described in
detail in commonly owned and co-pending U.S. patent appli-
cation Ser. No. 13/152,084, filed Jun. 2, 2011, entitled
“APPARATUS AND METHODS FOR PULSE-CODE
INVARIANT OBJECT RECOGNITION”, incorporated
supra.

Computerized Neuromorphic System

[0144] One particular implementation of the computerized
neuromorphic processing system, for operating a computer-
ized spiking network (and implementing the exemplary
inverse STDP context connection adjustment methodology
described supra), is illustrated in FIG. 11A. The computer-
ized system 1100 of FIG. 11A comprises an input interface
1110, such as for example an image sensor, a computerized
spiking retina, an audio array, a touch-sensitive input device,
etc. The input interface 1110 is coupled to the processing
block (e.g., a single or multi-processor block) via the input
communication interface 1114. The system 1100 further
comprises arandom access memory (RAM) 1108, configured
to store neuronal states and connection parameters (e.g.,
weights 526 in FIG. 5), and to facilitate synaptic updates. In
some implementations, synaptic updates are performed
according to the description provided in, for example, in U.S.
patent application Ser. No. 13/239,255 filed Sep. 21, 2011,
entitled “APPARATUS AND METHODS FOR SYNAPTIC
UPDATE IN A PULSE-CODED NETWORK?”, incorporated
by reference supra.

[0145] In some implementations, the memory 1108 is
coupled to the processor 1102 via a direct connection
(memory bus) 1116. The memory 1108 may also be coupled
to the processor 1102 via a high-speed processor bus 1112).

[0146] The system 1100 may further comprise a nonvola-
tile storage device 1106, comprising, inter alia, computer
readable instructions configured to implement various
aspects of spiking neuronal network operation (e.g., sensory
input encoding, connection plasticity, operation model of
neurons, etc.). in one or more implementations, the nonvola-
tile storage 1106 may be used to store state information of the
neurons and connections when, for example, saving/loading
network state snapshot, or implementing context switching
(e.g., saving current network configuration (comprising, inter
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alia, connection weights and update rules, neuronal states and
learning rules, etc.) for later use and loading previously stored
network configuration.

[0147] In some implementations, the computerized appa-
ratus 1100 is coupled to one or more external processing/
storage/input devices via an 1/O interface 1120, such as a
computer /O bus (PCI-E), wired (e.g., Ethernet) or wireless
(e.g., Wi-Fi) network connection.

[0148] Insome implementations, the input/output interface
comprises a speech input (e.g., a microphone) and a speech
recognition module configured to receive and recognize user
commands.

[0149] TItwill be appreciated by those skilled in the arts that
various processing devices may be used with computerized
system 1100, including but not limited to, a single core/
multicore CPU, DSP, FPGA, GPU, ASIC, combinations
thereof, and/or other processors. Various user input/output
interfaces are similarly applicable to implementations of the
disclosure including, for example, an LCD/LED monitor,
touch-screen input and display device, speech input device,
stylus, light pen, trackball, etc.

[0150] Referring now to FIG. 11B, one implementation of
neuromorphic computerized system configured to implement
inverse STDP context connection adjustment in a spiking
network is described in detail. The neuromorphic processing
system 1130 of FIG. 11B comprises a plurality of processing
blocks (micro-blocks) 1140 where each micro core comprises
a computing logic core 1132 and a memory block 1134. The
logic core 1132 is configured to implement various aspects of
neuronal node operation, such as the node model, and synap-
tic update rules (e.g., the I-STDP) and/or other tasks relevant
to network operation. The memory block is configured to
store, inter alia, neuronal state variables and connection
parameters (e.g., weights, delays, I/O mapping) of connec-
tions 1138.

[0151] The micro-blocks 1140 are interconnected with one
another using connections 1138 and routers 1136. As it is
appreciated by those skilled in the arts, the connection layout
in FIG. 11B is exemplary, and many other connection imple-
mentations (e.g., one to all, all to all, etc.) are compatible with
the disclosure.

[0152] The neuromorphic apparatus 1130 is configured to
receive input (e.g., visual input) via the interface 1142. In one
or more implementations, applicable for example to interfac-
ing with computerized spiking retina, or image array, the
apparatus 1130 may provide feedback information via the
interface 1142 to facilitate encoding of the input signal.

[0153] The neuromorphic apparatus 1130 is also config-
ured to provide output (e.g., an indication of recognized
objector a feature, or amotor command, e.g., to zoom/pan the
image array) via the interface 1144.

[0154] The apparatus 1130, in one or more implementa-
tions, may interface to external fast response memory (e.g.,
RAM) via high bandwidth memory interface 1148, thereby
enabling storage of intermediate network operational param-
eters (e.g., spike timing, etc.). The apparatus 1130 may also
interface to external slower memory (e.g., Flash, or magnetic
(hard drive)) via lower bandwidth memory interface 1146, in
order to facilitate program loading, operational mode
changes, and retargeting, where network node and connec-
tion information for a current task is saved for future use and
flushed, and previously stored network configuration is
loaded in its place.
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[0155] FIG.11C, illustrates one or more implementation of
shared bus neuromorphic computerized system comprising
micro-blocks, described with respect to FIG. 11B, supra.
architecture coupled to a shared bus) 1140. The apparatus
1145 of FIG. 11C utilized one (or more) shared bus 1146 in
order to interconnect micro-blocks 1140 with one another.
[0156] FIG. 11D, illustrates one implementation of cell-
based neuromorphic computerized system architecture con-
figured to implement inverse STDP context connection
adjustment in a spiking network is described in detail. The
neuromorphic system 1150 of FIG. 11D comprises a hierar-
chy of processing blocks (cells block). In some implementa-
tions, the lowest level L1 cell 1152 of the apparatus 1150 may
comprise logic and memory and may be configured similar to
the micro block 1140 of the apparatus shown in FIG. 11B. A
number of cell blocks may be arranges in a cluster and com-
municate with one another a local interconnects 1162, 1164.
Each such cluster may form higher level cell, e.g., cell L2,
denoted as 1154 in FIG. 11d. Similarly several 1.2 clusters
may communicate with one another via a second level inter-
connect 1166 and form a super-cluster L3, denoted as 1156 in
FIG. 11D. The super-clusters 1154 may communicate via a
third level interconnect 1168 and may form a next level clus-
ter, and so on. It will be appreciated by those skilled in the arts
that the hierarchical structure of the apparatus 1150, compris-
ing four cells-per-level, is merely one exemplary implemen-
tation, and other implementations may comprise more or
fewer cells per level, and/or fewer or more levels.

[0157] Different cell levels (e.g., L1, 1.2, 1.3) of the appa-
ratus 1150 may be configured to perform functionality vari-
ous levels of complexity. In one implementation, different [.1
cells may process in parallel different portions of the visual
input (e.g., encode different frame macro-blocks), with the
L2, L3 cells performing progressively higher level function-
ality (e.g., edge detection, object detection). Different .2, .3,
cells may also perform different aspects of operating, for
example, a robot, with one or more [.2/1.3 cells processing
visual data from a camera, and other L.2/1.3 cells operating
motor control block for implementing lens motion what
tracking an object or performing lens stabilization functions.
[0158] The neuromorphic apparatus 1150 may receive
input (e.g., visual input) via the interface 1160. In one or more
implementations, applicable for example to interfacing with
computerized spiking retina, or image array, the apparatus
1150 may provide feedback information via the interface
1160 to facilitate encoding of the input signal.

[0159] Theneuromorphic apparatus 1150 may provide out-
put (e.g., an indication of recognized object or a feature, or a
motor command, e.g., to zoom/pan the image array) via the
interface 1170. In some implementations, the apparatus 1150
may perform all of the /O functionality using single I/O
block (not shown).

[0160] The apparatus 1150, in one or more implementa-
tions, may interface to external fast response memory (e.g.,
RAM) via high bandwidth memory interface (not shown),
thereby enabling storage of intermediate network operational
parameters (e.g., spike timing, etc.). In one or more imple-
mentations, the apparatus 1150 may also interface to external
slower memory (e.g., flash, or magnetic (hard drive)) via
lower bandwidth memory interface (not shown), in order to
facilitate program loading, operational mode changes, and
retargeting, where network node and connection information
for a current task is saved for future use and flushed, and
previously stored network configuration is loaded in its place.
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[0161] Further, the neuromorphic apparatus 1150 need not
necessarily be disposed on the robotic device which it con-
trols. A remote data connection may be used to issue machine
coded commands to a mechanical device from the neuromor-
phic apparatus in second location. Such a configuration may
useful in situations in which a robotic device must operate in
a high danger area and it is advantageous to expose the mini-
mum amount of equipment to the danger. Further, such con-
figurations are also advantageous when numerous indepen-
dent devices must be managed centrally or coordinated in
their actions (e.g. an adaptive sensor array).

User Control System

[0162] Referring now to FIG. 12A, an exemplary user con-
trol system 1200 for the training apparatus is shown. A user
interface device 1202 running a training application 1204
establishes a data connection with the computerized neuro-
morphic apparatus 1150 via a direct link (wireless or wire-
line) 1208. FIG. 12B shows a second exemplary system 1250
in which the direct link is replace with an intermediary net-
work entity 1252. The intermediary network entity may
include an infrastructure element (e.g. a wireless router) or
one or more network servers configured to establish a link
between the user devices and computerized neuromorphic
apparatus.

User Interface Device

[0163] Referring now to FIG. 13, a functional block dia-
gram of an exemplary user interface device 1202 is shown.

[0164] The user device 1202 includes a processor sub-
system 1302 such as a digital signal processor, microproces-
sor, field-programmable gate array, or plurality of processing
components mounted on one or more substrates. The process-
ing subsystem may also include an internal cache memory.
The processing subsystem 1302 is connected to a memory
subsystem 1304 including memory which may for example,
include SRAM, flash, hard drive, and SDRAM components.
The memory subsystem may implement one or a more of
DMA type hardware, so as to facilitate data accesses as is well
known in the art. The processor is configured to, inter alia,
execute computer-readable instructions that are stored within
the memory subsystem. In one implementation, the user
interface device comprises a smartphone running a training
application (described in greater detail infra) thereon. In
another implementation, the user interface device comprises
a personal computer or handheld (e.g., tablet) running the
training application.

[0165] The illustrated memory subsystem 1304 includes an
internal database configured to store and load a one or more
training routines from e.g., a local repository, and/or a larger
remote database of training routines. In one or more imple-
mentations, the memory subsystem is configured to facilitate
transfer of sets of useful data (e.g., synaptic weights) to the
computerized neuromorphic apparatus 1150. The memory
subsystem includes a locally stored version of the training
application 1204. In some implementations, this locally
stored version may include a client of distributed application
or browser type application designed to work in concert with
a server application running on the intermediary network
entity 1252. In some implementations, the locally stored
application includes an independent application able to run
without server assistance.
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[0166] Thenetwork interface 1306 provides connectivity to
one or more networks or external devices. In some implemen-
tations, the network interface is used in an ad hoc networking
mode (e.g., via a Wi-Fi or other ad hoc wireless interface) to
provide a direct link to the computerized neuromorphic appa-
ratus. In some implementations, the user interface device
maintains a connection to a network server to support one or
more social networking functions of the training application
1206. In addition, the network interface is configured to inter-
face with the cloud applications and storage described herein.
The network interface may include wireless and/or wired
network interfaces.

[0167] The exemplary configuration of the user interface
device 1202 includes one or more human interface devices
(HIDs) 1308. The HIDs facilitates user input, allowing a user
to guide the training of the computerized neuromorphic appa-
ratus 1150 and manage preferences for the various compo-
nents of the training apparatus. In various implementations,
the HID allows the user to select media and sets of synaptic
weights for uploading and downloading via the social net-
working functions of the training application. A HID may
include any number of well-known input systems, without
limitation, a keypad, touch screen or “multi-touch” screen,
and microphone.

[0168] Thedisplay 1310 ofthe user interface device 1202 is
configured to present the user with a number of software tools
to implement the training and social networking functions of
the training application. The display may produce for
example video, audio, and/or haptic output. Further, the dis-
play is not limited to presenting materials to a user, but may
also be used to guide the training of the computerized neuro-
morphic apparatus 1150. The display may issue specific
stimuli to the robotic apparatus similar to the use a training
whistle in animal training The use of such stimuli may facili-
tate training in situations in which spatial relations are impor-
tant. For example, instructing the robotic apparatus 610 to
come to the location of the user interface device may be aided
if the device emits a sound that the robotic apparatus is able to
track. The stimuli may include without limitation a series of
colors, machine readable codes, tones, ultrasonic pulses,
vibrations, temperature variations, etc.

[0169] Some implementations of the user interface device
1202 include dedicated stimuli generating tools 1312 to aid in
computerized neuromorphic apparatus 1150 training These
stimuli generating tools may include, inter alia, radiative
beam emitters (e.g. visible, infrared, etc.), beacons, lighting
arrays (e.g. light emitting diodes (LEDs)), heating/cooling
elements (e.g. thermal electric coolers (TECs), etc.). These
stimuli generating tools expand the capabilities beyond that
of the standard display devices on the user interface device.
With these tools, a user has more options for communicating
commands to the computerized neuromorphic apparatus
1150. For example, beams may be used to paint a target of
interest during training or to trace a path to be followed by the
robotic device 610. Alternatively, a lighting array may be used
to associate areas with a specific attribute. For example, the
user may shine a red LED on area to be avoided by the robotic
apparatus, and a blue LED on area the robotic apparatus is
compelled to visit. Using temperature stimuli, a user may
train the computerized neuromorphic apparatus 1150 to send
a signal if high temperatures are detected. For example, with
such stimuli aids, a user may train the computerized neuro-
morphic apparatus 1150 to send an email or text message
(provided the apparatus has network connectivity) if the
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robotic apparatus determines that user has left the oven on for
too long a period. In some implementations, these stimuli
generators are included on a separate device from the other
portions on the main user interface. In some implementations,
the stimuli generators are added as an attachment to the user
interface device.

[0170] In various implementations, the user interface
device includes onboard external /O ports 1314 (e.g. USB
family, SATA, FireWire, Thunderbolt, etc.). The ports may be
utilized to facilitate direct links to robotic apparatus 610.
Wired or wireless links may be achieved using these ports.
For example, wireless USB standards may be implemented.
Alternatively, devices may achieve connectivity with propri-
ety radio or infrared links.

Training Application

[0171] The exemplary implementation of the training
application 1204 is configured to run on the user interface
device 1202. In various implementations, the training appli-
cation running on the user interface device includes a client
portion of distributed application with other portion running
onnetwork entities external to the user device. In some imple-
mentations, the training application 1204 is configured to run
independently on the user interface device. Various software
architectures useful with this functionality will be appreci-
ated by those of ordinary skill in the software arts given the
present disclosure, and hence are not described further herein.

[0172] The training application 1204 includes tools facili-
tating the management and training of the computerized neu-
romorphic apparatus 1150. Within the training program, the
user may provide the neuromorphic apparatus with feedback
and/or feed-forward input, consistent for example with the
methods discussed above. The exemplary neuromorphic
apparatus responds to the input by increasing/decreasing syn-
aptic weights (and/or adding or removing synapses/neurons)
related to the behavior being executed at the time of input.

[0173] The application may also be configured to account
for user delay in input of feedback. Hence, in some imple-
mentations, the training application may apply the input to
actions occurring at a moment that is a predetermined period
(minutes, seconds, milliseconds, etc.) before the input was
offered. In some implementations, the effect of the input may
be applied to all the actions occurring in the moments before
the input (various functions may be used e.g. increasing effect
with increasing temporal proximity to the input, full force to
all, average, action duration-weighted average, etc). The
mode of applying input may be configured in the training
application, such as via pull-down menus, icons, etc. Further,
in some implementations, input may be potentiated on a
spectrum spanning anywhere from maximally negative to
maximally positive.

[0174] The tools are presented in the form of a user inter-
face (UI). Console or text-based user interfaces may be used
in addition to or in place of graphical user interfaces (GUI)
such as e.g., touch-screen inputs. In some implementations,
the Ul includes a set of menus organized by topic or theme.
Thus, the tools are ideally grouped in a fashion that is intuitive
to users. In some implementations using GUIs, user may be
able to use software buttons (soft function keys) to execute
commands and to enter input. In these implementations, but-
tons may be replaced with any of various software input props
(e.g. sliders, switches, knobs, dials, meters, etc.) to better
match the nature of the input option.
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[0175] The exemplary tools provided by the training appli-
cation 1204 include displays of data from the computerized
neuromorphic apparatus 1150. From these displays, the user
may view sensor data, status data, and neuromorphic data
related to current behavior and behavior history. The data aids
the user in training the computerized neuromorphic appara-
tus, and may also be used for instance to generate media
content for sharing. The sensor data may include, inter alia,
live or recorded video (e.g. from light, radiation, or ultrasonic
sensors, etc.), graphical representations of physical metrics
(e.g. temperature or force), or audio. The status data is related
to the current operation of the device (e.g. current movement
speed, battery performance data, torque capacity utilized,
etc.). The neuromorphic data aids the user in determining
which synaptic weights may need alteration to perfect the
training The training application may also include an option
for altering specific weights contributing to the behavioral
routines of the computerized neuromorphic apparatus.
[0176] Simple commands, programmed stimuli responses,
mimicry, and randomized actions may be included as basic
tools to aid in training the computerized neuromorphic appa-
ratus 1150. Simple commands may include those common in
animal training (for example sit, fetch, go, stop). For example,
to train a neuromorphic apparatus a user may map out a
routine using these commands. As the user maps out the
desired actions using these commands, the user may reinforce
the mapping with e.g., positive and/or negative feedback. The
programmed stimuli responses may include “canned” reac-
tions to specific signals (e.g. series of colors, tones, laser
pointer beam, etc.). In another example, the user may use the
stimuli to guide the neuromorphic apparatus to the desired
behavioral routine, and again may reinforce it with feedback.
The neuromorphic apparatus 1150 may also be instructed to
mimic actions by another entity (e.g. apparatus or organism);
for example, in that a human brain is substantially optimized
(via evolution) for rapid learning of certain tasks or functions
such as e.g., organizing a closet or cleaning the garage), the
neuromorphic apparatus, by exactly mimicking the actions of
the human when performing these tasks, may in effect “pig-
gyback” off the human’s rapid learning capabilities. Again,
feedback reinforcement is used to ensure repetition of the
proper routine.

[0177] Alternatively, the user may manually move the
device containing the neuromorphic apparatus to demon-
strate to the proper routine. The neuromorphic apparatus the
attempts to reconstruct the actions demonstrated. In some
cases, users may opt to try to shape a desired routine from
randomized actions by the computerized neuromorphic appa-
ratus. As the neuromorphic apparatus performs randomized
actions the user responds with feedback.

[0178] The exemplary training application may be used to
control the full range of actions performed by the computer-
ized neuromorphic apparatus 1150. In some cases, basic
actions (e.g. wake/sleep routines, battery charging, etc.) may
be altered or taught from a training regimen. Some imple-
mentations allow these options to be manually from the train-
ing application.

[0179] The training application 1204 also includes options
management of the computerized neuromorphic apparatus
1150. Connectivity options for both the neuromorphic appa-
ratus and the user interface device 1202 may be set from the
training application. Link options between the apparatus
1150 and the device 1202 may also be configured. The train-
ing menu may be used to load active “brain images” (e.g.,
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synaptic weight data configurations or profiles) onto the neu-
romorphic apparatus. In some cases, a user may load a brain
image onto the apparatus 1150 that is insufficient to control
all of the features of the robotic apparatus (e.g. no support for
certain sensors). If these features are not controlled by other
firmware/software on the robotic device, they may be ren-
dered inactive (or otherwise inoperable). In other implemen-
tations, the user is barred from loading such brains on the
device, or limited to certain sequences or rates of loading, so
as to protect the device or maintain a desired level of neuro-
morphic “stability”. In other cases, a brain image may be
loaded on an apparatus 1150 associated with a robotic device
610 that lacks functionality used by the brain image. In neu-
rons/synapses associated with the unusable functionality may
be pruned over time from lack of use. Again, in some imple-
mentations, the user may be barred from loading such brain
images.

[0180] In addition, tools for social interaction are also pro-
vided in the exemplary implementation of the training appli-
cation. For example, the training application 1204 may be
used to connect to a server repository of user shared brain
images. The training application may be used with various
other social interaction options discussed elsewhere herein.

Cloud

[0181] Various implementations of the present disclosure
utilize a cloud architecture for the management of brain
images. As individual users (or groups of users) begin creat-
ing brain images through the training process, different tasks
related to brain image management (e.g. storage, backup,
sharing, purchasing, merging, etc.) are performed. User expe-
rience with respect to these tasks is at least partly dependent
on the ease with which they are performed, and the efficacy of
the systems provided for their completion. Cloud-based
architectures allow a user to protect and share their work
easily, because brain images are automatically remotely
stored and are easily retrieved from any location. The remote
storage instantly creates a spatially diverse backup copy of a
brain image. This decreases the chance of lost work. In vari-
ous implementations, a brain image stored on a server is also
available in any location in which a user has access to an
internet connection. As used herein, the term cloud architec-
ture is used to generally refer to any network server managed/
involved system. This may refer to connecting to a single
static server or to a collection of servers (potentially inter-
changeable) with dynamic storage locations for user content.
[0182] It will be appreciated that while the term “user” as
discussed herein is primarily contemplated to be a human
being, it is also contemplated that such users may include
artificially intelligent or neuromorphic apparatus themselves.
For instance, in one exemplary training paradigm of the dis-
closure, a human being trains a first neuromorphic apparatus
(or group of apparatus), the latter which are then used to train
other “untrained” neuromorphic apparatus, thereby in effect
leveraging the training model so as to permit much more rapid
and pervasive training of large numbers of neuromorphic
apparatus such as e.g., robots (i.e., the training process then
goes “viral”).

[0183] Referring now to FIG. 14, a functional block dia-
gram of an exemplary implementation of a cloud-based train-
ing system 1400 according to the disclosure is shown. A
computerized neuromorphic apparatus 1150 uses on-board or
accessible network connectivity to connect to a cloud server
606. An authenticated user connecting through a user inter-
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face device 1202 connects to the cloud server, and identifies a
brain image 1404 to be loaded onto the computerized neuro-
morphic apparatus 1150. The computerized neuromorphic
apparatus downloads the selected brain image, and set its
synaptic weights appropriately. In one or more implementa-
tions, the brain image 1404 may comprise the network
weights so that the download effectuates the weight configu-
ration of the computerized neuromorphic apparatus network.
The user may access personal content and/or public content
(e.g. shared/purchasable content). Alternatively, the exem-
plary networking architecture illustrated in FIG. 12A may be
used and the cloud server 606 connects to the neuromorphic
apparatus 1150 using the user interface device 1202 as a
bridge.

[0184] For sharing applications, a user may designate
brains to upload and download from the cloud server. To
designate brains for download, the user browses the brain
image content of the cloud server via the user interface device
1202 or via abrowser application on another mobile device or
computer. The then selects one or more brain images. The
brain images may be transmitted for local storage on the
robotic device 610, user interface device, or computer. The
images may then be loaded onto the computerized neuromor-
phic device 1150. Alternatively, a designated brain may be
transmitted for direct loading onto the neuromorphic device.

[0185] The brain images displayed in the browser may be
filtered to aid in browsing and/or selection of the appropriate
brain image. Text or other searches may be used to locate
brain images with certain attributes. These attributes may be
identified for example via metadata (e.g. keywords, descrip-
tion, title, tags, user reviews/comments, trained behavior,
popularity, or other metadata) associated with the brain image
file. Further, in some implementations, brain images may be
filtered for compatibility with the user’s hardware (e.g. neu-
romorphic apparatus 1150, on board sensors, cameras, ser-
vos, microphones, or any other device on the robotic appara-
tus). In various ones of these implementations, the cloud
server connects to the neuromorphic apparatus (or otherwise
accesses information about the apparatus, such as from a
network server or cloud database, or other user device) to
collect hardware and other data of utility in determining com-
patibility. In some implementations, the user interface device
1202 collects and sends this information. In other cases, the
user inputs this information via the browser. Thus, the user (or
administrator of the cloud server 606) may control which
brains images are displayed during browsing. Hardware (and
software) compatibility may be judged in a binary fashion
(i.e. any hardware mismatch is deemed incompatible), or may
be listed on a scale based on the severity of the mismatch. For
example, a brain image with training only to identify red balls
is not useful without a color sensing capability. However, a
brain image that controls legs but not sound sensors may still
be ofinterest to auser of a device with legs and a sound sensor.
The cloud process (or user interface device) may also be
configured to assist the user in “fixing” the incompatibilities;
e.g., links or other resources as to where a brain image that
controls sound sensors in the foregoing example.

[0186] Insome implementations, the cloud server may aid
in the improvement of “brain” operation. In an exemplary
implementation, the cloud server receives network operating
performance information from a brain, and determines how to
improve brain performance by adapting the brain’s current
network image. This may be achieved via e.g., an optimiza-
tion done in the cloud, or the cloud server may outline the
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optimization operation for local hardware, and provide it to
the customer’s own computer. In some implementations, the
cloud server may optimize performance by providing a new
image to the brain that has improved performance in similar
situations. The cloud may act as a repository of brain images,
and select which image(s) is/are appropriate for a particular
robot in a particular situation. Such optimization may be
provided as a paid service, or alternatively under one or more
other paradigms such as an incentive, on-demand model, or
even under a barter system (e.g., in trade for another brain or
optimization). In some implementations, users pay a one-
time fee to receive an optimized image. In various implemen-
tations, users may subscribe to an optimization service and
receive periodic updates. In some implementations, a sub-
scription user may be given an assurance that for any given
task, the cloud server provides the most optimized image
currently known/available.

[0187] In various implementations, the performance met-
rics may be supplied by routines running on the brain or
related hardware. For example, a brain may be trained to
perform a specific action, and to determine its speed/effi-
ciency in performing the action. These data may be sent to the
cloud server for evaluation. In some implementations, an
isolated set of routines (running on the same or separate
hardware) monitors brain function. Such separated routines
may be able to determine performance even in the case in
which the brain itself is malfunctioning (rather than just hav-
ing limited performance). Further, the user of the brain may
use search terms based on performance metrics to find can-
didate/suggested brains meeting certain criteria. For
example, the user may wish to find a brain image capable of
doing a specific task twice as fast/efficiently as a currently
loaded image.

[0188] To this end, in the exemplary implementations,
brain images may be uploaded/stored as full or partial images.
Full images may be loaded on to a neuromorphic apparatus
1150 and run as a standalone control. Partial images may lack
the full functions necessary to run certain features of the
robotic device 610. Thus, partial images may be used to
augment or upgrade (downgrade) a pre-loaded brain image or
a stored brain image. It will be appreciated that a full brain
image for a first device may serve as a partial brain image for
second device with all of the functionality of the first plus
additional features. In some implementations, two or more
partial brain images may be combined to form full brain
images.

[0189] Brain merges using the methods discussed above
may also be used for combining brain images with conflicting
or overlapping traits. In various implementations, these
merges techniques may also be used to form full brain images
from partial brain images.

[0190] User accounts are linked to registered computerized
neuromorphic apparatus 1150 and a registered user (or users).
During registration, the user provides personally identifiable
information, and for access to purchasable content, financial
account information may be required. Authentication and
security for users may be achieved using a number of tools
known to those of skill in the art. For example, secure socket
layer (SSL) or transport layer security (TLS) connections
may be used to protect personal data during transfer. Further,
cryptographic hashes may be used to protect data stored on
the cloud servers. Such hashing may further be used to protect
purchasable or propriety brain images (or other content) from
theft.



US 2016/0155050 Al

[0191] For shared and purchasable content the system vali-
dates brain images to ensure that malicious, corrupted, or
otherwise non-compliant images are not passed between
users via the cloud system. In one implementation, an appli-
cation running on the cloud server extracts the synaptic
weight values from the brain image, and creates a new file.
Thus, corrupted code in auxiliary portions of a brain image is
lost. In some implementations, various checksums are used to
verify the integrity of the user uploaded images. Various
implementations require the computerized neuromorphic
apparatus 1150 to have internet connectivity for uploading.
Thus, the cloud server 606 may create brain images directly
from computerized neuromorphic apparatus 1150 for sharing
purposes. In such cases, the cloud server may require that the
computerized neuromorphic apparatus 1150 meet certain
requirements for connectivity (e.g. updated firmware, no
third-party code or hardware, etc.).

[0192] The exemplary cloud server may also provide com-
putational assistance to a brain to expand its size of the net-
work a given brain may simulate. For example, if a brain is
tasked with an operation it has failed to complete with its
current computing resources or current brain image, it may
request assistance from the cloud server. In some implemen-
tations, the cloud server may suggest/initiate the assistance.
In implementations in which the cloud server monitors the
performance of the brain (or is otherwise privy to perfor-
mance metrics), the cloud server may identify that the image
necessary to perform a given task may be beyond the hard-
ware limits of a given brain. Once the deficiency is delimited,
the cloud server may provide a new image and the computa-
tional resources needed to run the image. In some implemen-
tations, the cloud computing expansion may be initiated by a
request for improved performance rather than a deficiency
that precludes operation. A cloud server operator provides the
expanded computing functionality as paid service (examples
of paid services include: usage-based, subscriptions, one-
time payments, or other payment models).

[0193] In various implementations, cloud computing
power may be provided by ad hoc distributed computing
environments such as those based on the Berkeley Open
Infrastructure for Network Computing (BOINC) platform.
Myriad distributed implementations for brains may used,
such as those described in U.S. Provisional Patent Applica-
tion Ser. No. 61/671,434, filed on Jul. 13, 2012, entitled
“INTELLIGENT MODULAR ROBOTIC APPARATUS
AND METHODS”, now U.S. patent application Ser. No.
13/829,919 filed herewith on Mar. 14, 2013, entitled
“INTELLIGENT MODULAR ROBOTIC APPARATUS
AND METHODS” previously incorporated herein in its
entirety.

Social Interaction

[0194] The connectivity structure of the exemplary com-
puterized neuromorphic apparatus 1150, the user interface
device 1202, and the cloud server 606 are designed to aid in
fostering a social environment in which the computerized
neuromorphic apparatus 1150 are trained. Through options in
the training application, users may access content shared by
other users. This content includes without limitation, media
related to the training of the computerized neuromorphic
apparatus 1150 (e.g. videos, pictures, collected sensor data,
wiki entries on training techniques/experiences, forum posts,
etc.), brain images, third-party/homebrew modifications, etc.
Users may also form user groups to collaborate on projects or
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focus on specific topics, or even on the collective formation of
a brain image (somewhat akin to extant distributed gaming
interaction). In some implementations, user may also cross-
link to groups and content on third-party social media web-
sites (e.g. Facebook®, Twitter®, etc.).

[0195] Insomeimplementations, a storefront is provided as
a user interface to the cloud. From the storefront, users may
access purchasable content (e.g. brain images, upgrades,
alternate firmware packages). Purchasable content allows
users to conveniently obtain quality content to enhance their
user experience; the quality may be controlled under any
number of different mechanisms, such as peer review, user
rating systems, functionality testing before the image is
uploadable or made accessible, etc. In some cases, users
prefer different starting points in training. Some users gener-
ally prefer to begin with a clean slate, or to use only their own
brain images as starting points. However, other users gener-
ally prefer not to have to redo training that has already been
(properly or suitably) performed. Thus, these users appreciate
having easy access to quality-controlled purchasable content.
[0196] The cloud may act as an intermediary that may link
images with tasks, and users with images to facilitate
exchange of brain images/training routines. For example, a
robot of a user may have difficulty performing certain task. A
developer may have an image well suited for the task, but he
does not have access to individual robots/users. A cloud ser-
vice may notify the user about the relevant images suited the
task. In some implementations, the users may request assis-
tance with the task. In various implementations, the cloud
server may be configured to identify users training brains for
specific tasks (via one or more monitoring functions), and
alertusers that help may be available. The notification may be
based on one or more parameters. Examples of parameters
may include the hardware/software configuration of the
brain, functional modules installed on the robot, sensors
available for use, kinetic configuration (how the robot
moves), geographical location (e.g. proximity of user to
developer), keywords, or other parameters. Further, in the
case of training routines, the developer may wish to develop
images suitable for a variety of robot configurations. Thus,
the developer may be particularly interested in sharing a
training routine in exchange for a copy of the user’s brain
image once the training routine is complete. The developer
then has an expanded library of pre-trained image offerings to
service future requests. In various implementations, one or
more of the developer and first trainer for a given hardware
configuration may receive compensation for their contribu-
tions.

[0197] Alternatively, a subscription model may be used. In
various implementations, a user gains access to content based
on a periodic payment to the administrator of the networked
service. A hybrid model may also be used. An initial/periodic
subscription fee allows access to general material, but pre-
mium content requires a specific payment.

[0198] Other users that develop skill in training or those
that develop popular brain images may wish to monetize their
creations. The exemplary storefront implementation provides
a platform for such enterprise. Operators of storefronts may
desire to encourage such enterprise both for revenue genera-
tion and for enhanced user experience. Thus, consistent with
the present disclosure, the storefront operator may institute
competitions with prizes for the most popular/optimized
brain images, modifications, and/or media. Consequently,
users motivated to create higher quality content. Alterna-
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tively, the operator may also (in or in lieu of a contest) instate
a system of revenue and/or profit sharing for purchasable
content. Thus, hobbyists and casual developers may see a
reasonable return on their efforts. Such a system may also
attract professional developers. Users as a whole may benefit
from a wider array of content offerings from more skilled
developers. Further, such revenue or profit sharing may be
complemented or replaced with a system of internal credits
for developers. Thus, contributors have expanded access to
paid or otherwise limited distribution materials.

[0199] In various implementations, the cloud model may
offer access to competing provider systems of brain images. A
user may be able to reprogram/reconfigure the software ele-
ments of the system to connect to different management
systems. Thus, competing image provision systems may spur
innovation. For example, image provision systems may offer
users more comprehensive packages ensuring access to brain
images optimized for a wide variety of tasks to attract users to
their particular provision network, and (potentially) expand
their revenue base.

Exemplary Training Application

[0200] One exemplary implementation of the present dis-
closure pertains to a synaptic weight training program run-
ning on a touch-screen device capable of wireless communi-
cations.

[0201] In this exemplary implementation, a user is able to
use an application running on a touch-screen device to control
and program a robotic device whose behavior is dictated by a
brain image. The training application, despite being operative
to program the behavior of a robotic device, uses a training
paradigm rather than relying only on traditional computer
programming systems or environments. Simple commands
and feedback are used within this training paradigm. Any-
thing learned by the robotic device without being pro-
grammed expressly by a user qualifies as training

[0202] Similar to training a domesticated animal, the train-
ing program allows a user to observer the behavior of the
robotic device being trained, and issue intuitive commands
(e.g., fetch, sit (or “be still”), run, attack, find, etc.), and use an
equally intuitive positive/negative feedback system (e.g.
“click’ (similar to petting), reward, or lure (show a prize prior
to a desired action), etc.). The training acts on the brain image
of'the robotic device. In this implementation, the brain image
is loaded onto a “brain stem” (bSTEM) that controls the
robotic device. The bSTEM of this implementation is the
hardware component on which the brain image is executed.
[0203] In an exemplary implementation, the brain image
serves as a spatial mapping (in a simulated space) of the
neurons and synapses of an artificial neural network. The
brain image is expressed as a sparse matrix (allows for empty
space, growth, and connectivity mapping). Other approaches
may be used consistent with the disclosure as well.

[0204] The activity states of this network correspond to all
of the activities of the robotic device. For example, if the
robotic device is exposed to stimuli, the raw data received
from the sensors detecting the stimuli generates a specific
activity state based on the stimuli. The activity state varies
with all aspects of the stimuli. For example, for a robotic
device with color sensing capabilities, exposure to a red ball
activates a given activity state. Subsequently, first exposure to
a green ball activates a related response; however, neurons
related to new events are active and neurons related to the
green sensor are active. The activity states also guide the
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actions of the robotic device. Further, activity states bridge
actions and stimuli. For example, the robotic device is able to
pick up red balls and not green balls because red color sensor
data excites an activity state that maps red stimuli to the
actuation of an arm, while green color sensor data does not.
[0205] The brain image is modified by training Thus, the
robotic learning process is achieved by adding or removing
neurons, and/or generating new links between neurons. Rules
for growth and pruning of these pathways and neurons may
alsobe applied. For example, ifa given neuron is active in less
than a given percentage of states in which neighboring neu-
rons are active, then it is pruned. Alternatively, if a group of
neurons are often active together a link may form among
them. In this implementation, the rules are enforced by the
bSTEM. Further, the weights of various modeled synapses
may be altered through the training process. Thus, the influ-
ence of a neuron on the activity state (and other neurons
participating in the activity state) may be altered. These alter-
ations change the set of allowed activity states, and thus, the
behavior (responses and actions) of the robotic device
changes.

[0206] Further the training application provides the user
with status information on the robotic device. Thus, the user
is able to monitor the robotic device’s training progress and
other metrics (e.g. battery life, connectivity status, etc.).
[0207] Theexemplary applicationis divided into submenus
dedicated to difference portions of the device control, pro-
gramming, and status: Instinct, Training, Command,
Hygiene, and Socialize, now each described in greater detail.

Instinct Submenu

[0208] Referring now to FIG. 15, an exemplary illustration
of'the Instinct submenu 1500 is shown. The Instinct submenu
houses tools for teaching a robotic device basic functions
1502 for maintaining its operational status. These functions
include simple processes (e.g. wake, sleep, or charge com-
mands, etc.). The menu also may provide data on the status
1504 (battery information, health, scores, state information)
of'the robotic device to aid the user in basic function training
[0209] Through this menu, a robotic device may also be
taught to conduct unsupervised practice of activities learned
through supervised training In some cases, a device may learn
more efficient equivalents of a given activity, for example,
picking up a ball. The robotic device develops multiple rou-
tines for picking up the ball (e.g. bend waist, then bend legs,
then extend arm, etc.), and the robotic device notes the power
consumed by each routine (the routines may need to be
repeated multiple times to obtain an accurate average power
consumed). Then, the device may experiment with the mul-
tiple routines during supervised practice. If no particular rou-
tine is favored, the device may select the most efficient rou-
tine. In some implementations, users may provide a score
metric indications (preferences) for unsupervised and/or rein-
forcement learning. For example, if a user always positively
reinforces the fastest of any set of routines, the robotic device
may eventually aim its exploration at learning and developing
faster routines, and may favor the fastest solutions routines in
the absence of reinforcement signals. In some implementa-
tions, the score metrics may comprise one or more of device
response time (latency), consumed energy, network size
(number of neurons and/or synapses), learning time (number
of iterations), etc.

[0210] Using these commands, a user may train their
robotic device to begin and cease activity at certain time, or
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under specific conditions. For example a user may train their
robotic device to wake at the beginning of every hour, and
then sleep after five minutes if no intervening commands are
received. Alternatively, the robotic device may wake trained
to wake in response to certain stimulus and sleep when the
appropriate learned response to the stimulus is complete. In
another example, the robotic device may be trained to return
to its charging station upon detection of a low battery. These
examples are merely illustrative of the varied potential train-
ing that may be effected via the tools available in the Instinct
submenu.

Training Submenu

[0211] The Training submenu includes tools for general
training of the robotic device. Tools for applying positive and
negative feedback to the behavior of the robotic device are
included in this submenu. Referring to now to FIG. 16, an
illustration of the Training submenu 1600 consistent with the
present disclosure is shown. From this submenu, a user may
give the robotic device a ‘reward’ 1602 or interact by ‘click-
ing’ 1604 (respectively analogous to giving a dog a treat and
petting it). A user may also apply negative feedback using
commands analogous to a punishment. A simple overall train-
ing process is advantageously used, thereby providing sig-
nificant benefits of the code-based techniques of the prior art
discussed supra. The user may create a new routine, or con-
tinue training a previous routine. The user then applies simple
pre-programmed routines (fetch, follow, sit, run, stop, etc.) to
initiate activity in the robotic device. This behavior is this
adjusted using the positive and negative feedback. In other
cases, the device may offer a selection of routines developed
during unsupervised practice for review by the user. Alterna-
tively, the robotic device operates in a mode with substan-
tially randomized actions, and feedback may be applied to
carve the desired behavior out of the random actions.

[0212] A ‘lure’ command 1606 may also be included in this
submenu. This command may be used lead a robotic device
along a path or to a specific destination. The lure command
may also be used to demonstrate a particular behavior that is
undesirable. Specifically, the user may lead the robotic device
in a series of actions with the promise of a reward. However,
when the actions are completed, negative feedback is given.
Thus, the robotic device learns exactly what action is not
desired. This prevents the user from having to wait until an
undesired action actually occurs through normal operation to
negatively reinforce it.

[0213] A set of ‘whistles” 1608 is also included in this
submenu. These whistles are sensory instructions for the
robotic device. Naturally, these stimuli have a limited range of
operation, and thus, are for situations in which the user of the
training application is spatially proximate to the robotic
device. These sensory instructions may be used to guide the
robotic device to aid in the training process. For example, a
specific series of colors flashed on the screen of the user
device instructs the robotic device to move toward the device
(similarly, a series of sounds/tones may be used; in some
cases, sounds outside normal human perception are used to
avoid disturbing people or to obfuscate the fact that a signal
was sent).

Command Submenu

[0214] Referring now to FIG. 17, an exemplary illustration
of the Command submenu 1700 is shown. The Command
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submenu enables a user to experiment with the routines that
have been developed using the Training submenu. From this
menu, the user may run routines and offer rewards or negative
feedback similar to the Training submenu. However, in this
menu the individual routines are not altered. Rather, the bal-
ance of the different routines against each other is altered.
Thus, a user may make the robotic device more prone to
execute a certain training routine relative to another. For
example, a user may train their robotic device to bark and to
roll over. However, the user may want the robotic device to
bark more than it rolls over. Thus, in this menu, the user may
reward 1602 the robotic device when it barks, and punish the
robotic device when it rolls over. In this menu, the robotic
device does not alter the way it barks or rolls over regardless
of the rewards or punishment received; rather, it alters the
frequency with which the commands are performed.

[0215] Rewards and punishments have been discussed in
terms of binary operations for the Training and Command
submenus; however, proportionate rewards or punishments
may be used also. Rather than supplying a button for a reward
a slider, dial, or knob may be used to properly size a reward on
a continuum (or discrete set of levels) from none to a maxi-
mum. Alternatively, a full spectrum from maximum punish-
ment to maximum reward may be used.

[0216] The Command submenu also allows the user to
issue instructions to the robotic device while receiving live
information back from the robotic device. This mode of
operation may be used to monitor the output of a sensor
(group or array of sensors) mounted on the robotic device.
The user may remotely view the output from a display 1704
(or display option) in the submenu.

[0217] The live information may alternatively display the
synaptic functions of the robotic device. While an action is
being performed by the robotic device, the neurons that are
speaking are displayed on the live feed 1704. Thus, the user is
visually presented with information on how each of the
weights affects actions being executed by the robotic device.
In this submenu, the synaptic weights may be grouped by the
systems they affect. For example, if a particular weight is
involved in leg movement, it may be grouped with other
weights affecting leg movement. In some implementations,
the user is able to perform ‘brain surgery’ on these weights, by
manually increasing or decreasing weights (or adding and
removing links/neurons) related to certain actions.

Hygiene Submenu

[0218] The Hygiene submenu, shown as item 1800 of FIG.
18, is related to device maintenance, configuration options,
and status of the hardware of the robotic device. From this
submenu, a user may inter alia manage the connectivity set-
tings for the training application and the robotic device. For
example, the connection may be based on a Bluetooth® or
other PAN wireless link. In such cases, the Hygiene menu is
used by the user to achieve paring with the robotic device.
Other links such as Wi-Fi, USB, etc. may be used and man-
aged from the Hygiene menu. In some implementations, a
direct connection is not used. Rather, the robotic device is
operatively connected to the touch-screen device via the
Internet through a remote management server. All of the
above connections may be configured and managed through
the Hygiene submenu.

[0219] Users of multiple robotic devices may switch active
control 1802 between various robotic devices using the
options in the Hygiene menu. The may be achieved through
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switching the abovementioned direct connections among
nearby robotic devices. Alternatively, using more remote con-
nectivity schemes the user may switch through all robotic
devices registered to that user.

[0220] The Hygiene submenu is also used to manage the
brain image 1804 loaded on to the robotic device. The robotic
device may have its brain image replaced or rewritten by the
user at various times. Thus, it is important that the user be able
to manage which brain image is actively loaded on to the
robotic device. The user may select new brain images from
various repositories, personal archives, backups, or via shar-
ing paradigms (including merged brain images).

[0221] As mentioned above, the user may use backups of
brain images to protect training progress against accidental
loss or against failed training experiments (e.g. those with
undesired results). The user may simply revert to previously
saved brain images. These previous versions may be main-
tained locally or stored on a cloud server (as provider or third
party service). Furthermore, these brain image backups may
be scheduled to automatically occur periodically. Alterna-
tively, the robotic device may be trained to automatically
backup its own brain image through the instinct training
discussed above.

Socialize Submenu

[0222] Referring now to FIG. 19, an exemplary illustration
of the Socialize submenu 1900 is shown. The Socialize sub-
menu is geared toward allowing users to share and collaborate
in their robotic device training projects. The menu includes
options for sharing brain images, integrating brain images,
purchasing brain images, joining social media groups (e.g.
chatrooms, forums, websites, Facebook® groups, etc.), and
sharing media related to training or operation of robotic
devices. Thus, the Socialize submenu includes options for
supporting casual users, homebrew communities, and entre-
preneurs.

[0223] Users may post brain images for sharing with other
users. In one exemplary configuration, the sharing is managed
by a centralized server that maintains copies of user-devel-
oped brain images posted for sharing with other users. The
brain images are tagged by the users and creators to denote the
attributes of the brain image (e.g. required sensors/servos,
behavioral traits, training techniques used, etc.). These posted
brain images may include full or partial brain images. Full
brain images may be used as a standalone image to be loaded
on a bSTEM. Partial brain images are similar to upgrades to
augment or expand the functionality of an existing brain.
Users may designate a portion of an existing full brain image
to be uploaded as a partial image. In one implementation, the
Training Application uploads information on the robotic
device such as available processing power (e.g. specification
of the bSTEM), onboard motors, and sensors (or any other
apparatus disposed on the robotic device). The user may then
filter the posted brain images for those compatible with the
hardware on robotic device.

[0224] This repository may also include brain images
developed by professional hardware or software developers.
To support these business interests, some brain images may
have a fee (one-time fee, subscription, etc.) attached to their
download and/or use.

[0225] Theuser may implement a downloaded brain image
in different ways. The Training Application may be config-
ured to automatically backup the brain image initially present
on the bSTEM to be backed up through the creation of a new
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brain image. Thus, a user may revert to a previous brain for
any reason. After backup, the old brain image may be entirely
replaced with the new full brain image. The user may also
augment the old brain image with new functionality from a
partial new brain. Alternatively, the user may select multiple
ones from different new functionalities of partial brain
images to create a custom hybrid brain. Users may also merge
brain full images from the options available in the Socialize
menu. The merging of brain images involves the combination
of one brain image with another brain image. The merge
process is may be guided by any of the methods discussed
above. Further, two or more successive merges of the same or
different types may be used to create new brain images (e.g.
the same “father” may be used in two successive merges once
with the “mother” and then again with the offspring). In some
cases, a full brain image that is incompatible with a given
robotic device is made compatible through one or more brain
merges and/or augmentations.

[0226] The Socialize menu also includes tools for sharing
media and interacting on social media sites. From these por-
tals users may promote discuss and share media related to
their experiences when training and interacting with robotic
devices. These experiences collectively form a community
knowledge allowing user to draw upon the findings of others.
Such interaction is important to both business and hobbyist
usage of the training application.

Exemplary Uses and Applications of Certain Aspects of the
Disclosure

[0227] Various aspects of the disclosure may advanta-
geously be applied to, inter alia, the design and operation of
large spiking neural networks configured to process streams
of input stimuli, in order to aid in detection and functional
binding related aspect of the input.

[0228] The exemplary heterosynaptic —mechanisms
described herein introduce, inter alia, competition among
neighboring neurons by, for example, modifying post-synap-
tic responses of the neurons so that to reduce number of
neurons that respond (i.e., develop receptive fields) to the
same feature within the input. The approach of the disclosure
advantageously increases receptive field diversity, maximizes
feature coverage, and improves feature detection capabilities
of the network, thereby reducing the number of neurons that
are required to recognize a particular feature set. The
increased feature coverage capability may be traded for (i) a
less complex, less costly and more robust network capable of
processing the same feature set with fewer neurons; and/or
(i1) more capable higher performance network capable of
processing larger and more complex feature set with the same
number of neurons, when compared to the prior art solutions.
While such heterosynaptic plasticity mechanisms are espe-
cially useful with the enhanced training and learning
approaches described herein (e.g., by enabling more rapid
learning of new features or behaviors in response to inputs), it
will be appreciated that the various aspects of the disclosure
are in no way limited to such heterosynaptic approaches.
[0229] It is appreciated by those skilled in the arts that
above implementation are exemplary, and the framework of
the disclosure is equally compatible and applicable to pro-
cessing of other information. For example, information clas-
sification using a database, where the detection of a particular
pattern can be identified as a discrete signal similar to a spike,
and where coincident detection of other patterns influences
detection of a particular one pattern based on a history of
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previous detections in a way similar to an operation of exem-
plary spiking neural network may be processed using the
framework of the disclosure.

[0230] Advantageously, exemplary implementations of the
present innovation are useful in a variety of devices including
without limitation prosthetic devices, autonomous and
robotic apparatus, and other electromechanical devices
requiring sensory processing functionality. Examples of such
robotic devises are manufacturing robots (e.g., automotive),
military, medical (e.g. processing of microscopy, x-ray, ultra-
sonography, tomography). Examples of autonomous vehicles
include rovers, unmanned air vehicles, underwater vehicles,
smart appliances (e.g. ROOMBA®), etc.

[0231] Implementations of the principles of the disclosure
are applicable to video data compression and processing in a
wide variety of stationary and portable devices, such as, for
example, smart phones, portable communication devices,
notebook, netbook and tablet computers, surveillance camera
systems, and practically any other computerized device con-
figured to process vision data.

[0232] Implementations of the principles of the disclosure
are further applicable to a wide assortment of applications
including computer human interaction (e.g., recognition of
gestures, voice, posture, face, etc.), controlling processes
(e.g., an industrial robot, autonomous and other vehicles),
augmented reality applications, organization of information
(e.g., for indexing databases of images and image sequences),
access control (e.g., opening a door based on a gesture, open-
ing an access way based on detection of an authorized per-
son), detecting events (e.g., for visual surveillance or people
or animal counting, tracking), data input, financial transac-
tions (payment processing based on recognition ofa person or
a special payment symbol) and many others.

[0233] The techniques and architectures of the disclosure
may be used to achieve adaptive automated building manage-
ment. Control of lighting, safety and heating/cooling may be
improved by adaptive systems such as those discussed herein.
In changing climates and in cases of unexpected emergencies
an adaptive system provides more tailored assistance. For
example, rather than automatically locking all doors heading
inward in a building during a fire emergency, an adaptive
system may be trained to ensure all persons still inside the still
have a safe route out and that locking the doors in this manner
does not impede their escape.

[0234] Implementations of the principles of the disclosure
are further applicable to training coordinated operations of
automated devices. For example, in applications such as
unexploded ordinance/improvised explosive device location
and removal, a coordinated search pattern between multiple
autonomous learning devices leads to more efficient area
coverage. Further, learning devices offer the flexibility to
handle wider (and dynamic) variety of explosive device
encounters. Alternatively such learning devices are also eas-
ily trained to identify targets (e.g. enemy vehicles) and deliver
similar explosives.

[0235] Advantageously, the various methods and apparatus
of the disclosure can be used to simplify tasks related to
motion estimation, such as where an image sequence is pro-
cessed to produce an estimate of the object position (and
hence velocity), either at each point in the image or in the 3D
scene, or even of the camera that produces the images.
Examples of such tasks are: ego motion, i.e., determining the
three-dimensional rigid motion (rotation and translation) of
the camera from an image sequence produced by the camera;
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following the movements of a set of interest points or objects
(e.g., vehicles or humans) in the image sequence and with
respect to the image plane.

[0236] Inanother approach, portions of the object recogni-
tion system are embodied in a remote server, comprising a
computer readable apparatus storing computer executable
instructions configured to perform pattern recognition in data
streams for various applications, such as scientific, geophysi-
cal exploration, surveillance, navigation, data mining (e.g.,
content-based image retrieval). Myriad other applications
exist that will be recognized by those of ordinary skill given
the present disclosure.

[0237] TItwill be recognized that while certain aspects of the
disclosure are described in terms of a specific sequence of
steps of a method, these descriptions are only illustrative of
the broader methods of the disclosure, and may be modified
asrequired by the particular application. Certain steps may be
rendered unnecessary or optional under certain circum-
stances. Additionally, certain steps or functionality may be
added to the disclosed implementations, or the order of per-
formance of two or more steps permuted. All such variations
are considered to be encompassed within the architectures
and principles disclosed and claimed herein.

[0238] While the above detailed description has shown,
described, and pointed out novel features of the disclosure as
applied to various implementations, it will be understood that
various omissions, substitutions, and changes in the form and
details of the device or process illustrated may be made by
those skilled in the art without departing from the disclosure.
The foregoing description is of the best mode presently con-
templated of carrying out the principles and architectures
disclosed herein. This description is in no way meant to be
limiting, but rather should be taken as illustrative of the gen-
eral principles of the disclosure. The scope of the invention
should be determined with reference to the claims.

1.-28. (canceled)

29. A method of behavioral programming in an artificial
neural network, the method comprising:

generating a data link to at least one device configured to

run the artificial neural network;

receiving one or more data elements indicating a current

status associated with the artificial neural network;
causing display of information related to at least a portion
of the one or more data elements;

receiving user input from a user interface;

generating one or more feedback elements based at least in

part on the user input; and

transmitting the one or more feedback elements to the

artificial neural network via the data link.

30. The method of claim 29, wherein the at least one device
configured to run the artificial neural network comprises a
robot comprising one or more functional modules.

31. The method of claim 30, wherein the one or more
functional modules comprise at least one sensory device.

32. The method of claim 31, wherein:

the artificial neural network is configured to generate one

or more discrete output signals in response to input from
the at least one sensory device; and

the discrete output signals cause an action at least one of the

one or more functional modules.

33. The method of claim 32, wherein:

the displayed information comprises an one or more visual

representations of the input from the sensor; and
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at least one indicator configured to indicate one or more
neurons involved in the generation of the one or more
discrete output signals.

34. The method of claim 29, wherein the display and the
user interface are disposed on a mobile wireless-enabled
device.

35. The method of claim 34, wherein the generated data
link is effected via at least a personal area network.

36. The method of claim 34, wherein the generated data
link comprises a data session over at least a Wi-Fi compliant
connection.

37. The method of claim 29, wherein the one or more
feedback elements comprise negative feedback designed to
suppress an output generated by one or more neurons of the
artificial neural network.

38. The method of claim 29, wherein the one or more
feedback elements comprise positive feedback to potentiate
one or more neurons of the artificial neural network.

39. The method of claim 29, further comprising download-
ing an image of the artificial neural network to the at least one
device from a cloud-based server.

40. The method of claim 39, further comprising causing
recommendation of the image via at least one application
running on the cloud-based server, the recommendation
being based at least in part on a task designated by the user.
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