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Aspects comprise a ray tracing shadowing method based on
the data structure of a uniform grid of cells, and on local
stencils in cells. The high traversal and construction costs of
accelerating structures are cut down. The object’s visibility
from the viewpoint and from light sources, as well as the
primary workload and its distribution among cells, are gained
in the preprocessing stage and cached in stencils for runtime
use. In runtime, the use of stencils allows a complete locality
at each cell, for load balanced parallel processing.
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Fig. 1. Prior art.
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Fig. 3A. Prior art.
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Fig. 3B. Prior art.
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SHADOWING METHOD FOR RAY TRACING
BASED ON GEOMETRICAL STENCILS

CROSS-REFERENCE TO RELATED CASES

[0001] The present application is a Continuation-In-Part of
the U.S. application Ser. No. 14/479,322 filed Sep. 7, 2014,
entitled “Ray Shooting Method Utilizing Geometrical Sten-
cils”; which claims priority based on U.S. Provisional Appli-
cation No. 61/894,005 filed Oct. 22, 2013 entitled “System
for Primary Ray Shooting Having Geometrical Stencils™; and
is a Continuation-In-Part of the U.S. application Ser. No.
13/726,763 filed Dec. 26, 2012 entitled “Method and Appa-
ratus for Interprocessor Communication Employing Modular
Space Division”; all of which are hereby incorporated by
reference. The present application makes use of claims of the
abandoned U.S. application Ser. No. 14/479,320 filed Sep. 7,
2014, entitled “Ray Shadowing Method Utilizing Geometri-
cal Stencils”.

FIELD OF THE INVENTION

[0002] The present invention relates generally to solving
data-parallel processing and, more particularly, to data-par-
allel ray tracing technology enabling real time applications
and highly photo-realistic images.

BACKGROUND OF THE INVENTION

[0003] Ray-tracing is a technique for generating images by
simulating the behavior of light within a three-dimensional
scene by typically tracing light rays from the camera into the
scene, as depicted in FIG. 1. In general two types of rays are
used. The ray that comes from the screen or viewer’s eye (aka
point of view) is called the primary ray. Tracing and process-
ing the primary ray is called primary ray shooting, or just ray
shooting. Ifthe primary ray hits an object, at the primary point
of intersection, the light may bounce from the surface of the
object. We call these rays secondary rays. Primary rays are
traced from a particular point on the camera image plane (a
pixel) into the scene, until they hit a surface, at a so-called hit
or primary intersection point. Shadow rays and secondary
rays are traced from a hit point to determine how it is lit. The
origin of a shadow ray is on the surface of an object and it is
directed towards the light sources. If the ray hits any object
before it reaches any light source, the point located at the ray
origin is in the shadow and should be assigned a dark color.
Processing the shadow ray is called shadowing. Finally, to
determine how the surface material appears texture lookups
and shading computations are performed at or near the hit
point. FIG. 2 shows a scene having three objects and a single
light source. Three ray generations are created when the pri-
mary ray spawns other rays (N' surface normal, R' reflected
ray, L' shadow ray, T' transmitted (refracted) ray).

[0004] Ray tracing is a high computationally expensive
algorithm. Fortunately, ray tracing is quite easy to parallelize.
The contribution of each ray to the final image can be com-
puted independently from the other rays. For this reason,
there has been a lot of effort put into finding the best parallel
decomposition for ray tracing. There are two main
approaches in prior art to the parallel ray-tracing: (i) ray-
parallel, in which rays are distributed among parallel proces-
sors, while each processor traces a ray all the way, and (ii)
data-parallel, in which the scene is distributed among mul-
tiple processors, while aray is handled by multiple processors
in a row.

Jun. 2, 2016

[0005] The ray-parallel implementation of ray tracing
would simply replicate all the data with each processor and
subdivide the screen into a number of disjunct regions. Each
processor then renders a number of regions using the unal-
tered sequential version of the ray tracing algorithm, until the
whole image is completed. Whenever a processor finishes a
region, it asks the master processor for a new task. This is also
called the demand driven approach, or an image space sub-
division. Load balancing is achieved dynamically by sending
new tasks to processors that have just become idle. However,
if a very large models need to be rendered, the scene data have
to be distributed over the memories, because the local
memory of each processor is not large enough to hold the
entire scene. Then demand driven approach suffers from mas-
sive copies and multiplications of geometric data.

[0006] Data-parallel is a different approach to rendering
scenes that do not fit into a single processor’s memory. Here,
the object data is distributed over the processors. Each pro-
cessor owns only a subset of the database and it traces rays
only when they pass through its own subspace. Its high data
locality excludes massive moves of data, answering the needs
of'very large models. However, rendering cost per ray and the
number of rays passing through each subset of database are
likely to vary (e.g. hot spots are caused by viewpoints and
light sources), leading to severe load imbalances, a problem
which is difficult to solve either with static or dynamic load
balancing schemes. Efficiency thus tends to be low in such
systems.

[0007] Inorder to exploit locality between data accesses as
much as possible, usually some spatial subdivision is used to
decide which parts of the scene are stored with which proces-
sor. In its simplest form, the data is distributed according to a
uniform distribution. Each processor will hold one or more
equal sized voxels. Having just one voxel per processor
allows the data decomposition to be nicely mapped onto a3D
grid topology. However, since the number of objects may vary
dramatically from voxel to voxel, the cost of tracing a ray
through each of these voxels will vary and therefore this
approach may lead to severe load imbalances.

[0008] The way the data is distributed over processors has a
strong impact on how well the system performs. The more
even the workload associated with a particular data distribu-
tion, the less idle time is to be expected. Three main criteria
need to be observed for such distributions to lead to efficient
execution of the parallel algorithm (Salmon and Goldsmith):
(1) The memory overhead for each processor should be as
equal as possible. (ii) Communication requirements during
rendering need to be minimized. (iii) Processing time for each
processor needs to be equalized.

Generating data distributions which adhere to all three criteria
is a difficult problem, which remains unsolved in prior art.
Most data distributions are limited to equalizing the memory
overhead for each processor. This is a relatively simple exer-
cise, because generating an adaptive spatial subdivision, such
as an octree or KD-tree, gives sufficient clues as to which
regions of space contain how many objects.

[0009] Another problem in ray tracing is the high process-
ing cost of acceleration structures. For each frame, a render-
ing system must find the intersection points between many
rays and many polygons. The cost of testing each ray against
each polygon is prohibitive, so such systems typically use
accelerating structures (such as Octree, KD-tree, other binary
trees, bounding boxes, etc.) to reduce the number of ray/
polygon intersection tests that must be performed. As the data
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is sorted over space with the acceleration structure, the data
distribution over the processors is based on this structure as
well. The spatial subdivision is also used to establish which
data needs to be fetched from other processors. Moreover,
construction of optimized structures is expensive and does
notallow for rebuilding the accelerating structure every frame
to support for interactive ray-tracing of large dynamic scenes.
The construction times for larger scenes are very high and do
not allow dynamic changes.

There has been an attempt in prior art to lower the cost and
complexity of acceleration structures by using its simplest
form, where the data is distributed uniformly. Each processor
will hold one or more equal sized voxels. Having just one
voxel per processor allows the data decomposition to be
nicely mapped onto a 3D grid topology. However, since the
number of objects may vary dramatically from voxel to voxel,
the cost of tracing a ray through each of these voxels will vary
and therefore this approach leads to severe load imbalances,
and consequently the uniform distribution has been aban-
doned.

[0010] Today, the most popular data structure in prior art is
the KD-tree. Ray traversal in a KD-tree is particularly effi-
cient for scenes with non-uniform distribution of objects. The
massive traversal of accelerating structure based on KD-tree
typically consumes major chunk of the frame time. The ray-
object intersection tests of prior art are considered as the
heaviest part of ray tracing due to extensive traversal across
the accelerating data structures and massive memory access.
Thus, there is a great need in the art to devise a method of
improved load balancing, reduced traversals leaned on simple
data structure, and reduced amount of intersection tests.

SUMMARY

[0011] Inourstencil based ray tracing we use data structure
based on a uniform grid of cells and stencils, enabling effi-
cient tracing of rays and cut down the high traversal and
construction costs of the prior art accelerating structures. The
stencil based ray tracing comprises two distinct parts: prepro-
cessing and runtime, while the runtime further breaks downto
primary and secondary stages. Stencils, that are generated in
the preprocessing stage acquire and cache critical data for the
subsequent runtime processing. For each primary rendering
ray the accurate cell along the ray where the intersection with
anobject occurs is pinned down, meaning that rays that do not
hit objects are not tested for intersections. The visibility infor-
mation on local objects, from the viewpoint as well as from all
light sources, is gained in the preprocessing stage. E.g. data
filled cells with no visible objects in the primary stage are not
processed for shooting nor for shadowing. Another important
information gained during preprocessing is the amount of
primary workload at each cell and distribution of these work-
loads among cells. Based on this information an enhanced
load balance is achieved. In runtime, the use of stencils allows
a complete processing and data locality at each cell. In the
primary stage this is a static locality enabling a completely
local processing in a cell, without communication and syn-
chronization. In primary stage each ray is break down into
segments, each segment belongs to a different cell along the
ray’s path. At each cell only the ray segments that hit the
stencil are generated and tested for intersection, when all the
ray-object intersection tests are local. At each ray at most one
segment is tested for intersection, exactly the one that locates
the intersection. Rays that do not intersect are not tested at all.
The parallel processing is balanced statically among evenly
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loaded modules of cells. The transition to secondary stage is
smooth, eliminating processor idle times. The shadow sten-
cils are in use for the secondary stage as well. There is pro-
cessing locality in the secondary stage, but no data locality,
i.e. secondary ray data must be transferred between neighbor-
ing cells. Therefore the parallel processing is done in a
demand driven mode, featuring dynamic load balancing.
[0012] Our ray tracing method is efficiently mapped on
off-the-shelf architectures, such as multicore CPU chips with
or without integrated GPUs, or GPU chips having hundreds
and more shaders, distributed memory parallel systems,
shared memory parallel system, networks of discrete CPUs,
PC-level computers, information server computers, cloud
server computers, laptops, portable processing systems, tab-
lets, smartphones, and essentially any computational-based
machine. There is no need of special purpose hardware.
[0013] It is understood that embodiments of the present
invention will become readily apparent to those skilled in the
art from the following detailed description, wherein are
shown and described only embodiments of the invention by
way of illustration. As will be realized, the invention is
capable of other and different embodiments and its several
details are capable of modification in various other respects,
all without departing from the scope defined by the claims.
Accordingly, the drawings, examples and detailed descrip-
tion are to be regarded as illustrative in nature and not as
restrictive.

[0014] The above summary is not exhaustive. The inven-
tion includes all systems and methods that can be practiced
from all suitable combinations and derivatives of its various
aspects summarized above, as well as those disclosed in the
detailed description below and particularly pointed out in the
claims filed with the application. Such combinations have
particular advantages not specifically recited in the above
summary.

BRIEF DESCRIPTION OF DRAWINGS

[0015] The invention is herein described, by way of non-
limiting examples, with reference to the accompanying fig-
ures and drawings, wherein like designations denote like
elements. Understanding that these drawings only provide
information concerning typical embodiments and are not
therefore to be considered limiting in scope:

[0016] FIG. 1. Prior art. The figure illustrates a setup of a
ray-traced scene including view point, image and scene
object. Reflection, refraction, and shadow rays are spawned
from a point of intersection between primary ray and scene
object.

[0017] FIG. 2. Prior art. Another setup of a ray traveling
across the scene is shown, having three objects and single
light source. Three ray generations are created when the pri-
mary ray spawns other rays. Terms include N' surface normal,
R' reflected ray, L' shadow ray, T" transmitted (refracted) ray.
[0018] FIG. 3A. Prior art. Intersection tests for one ray
passing the scene without hitting an object. The ray is tested
for intersection in every single cell along its track. The num-
ber of tests in each cell equals to the number of objects.
[0019] FIG. 3B. Prior art. A ray is tested for intersection in
every single cell along its track, up to the first positive inter-
section. The number oftests in each cell equals to the number
of objects.

[0020] FIG. 3C. Prior art. Shadowing process of primary
intersection point in regard to light source. The shadow ray,
despite the fact that the intersection point is not occluded,
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must undergo an abundant negative intersection tests with
objects located in cells along the shadowing ray track.
[0021] FIG. 4A. An object viewed from a view point is
projected on facets of successive cells. The projections are
registered as stencils.

[0022] FIG. 4B. A shooting stencil casted on cell’s facet
resulting of external and internal objects.

[0023] FIG. 4C. Generation of a final shooting stencil as a
product of external and local stencils.

[0024] FIG. 4D. Two representing rays in regard to a shoot-
ing stencil.
[0025] FIG. 4E. Elimination of negative tests illustrated on

a ray passing the scene without hitting an object.

[0026] FIG. 4F. Elimination of negative tests illustrated on
a ray which intersects with multiple objects.

[0027] FIG. 4G. Autonomous processing of primary rays
within a cell. All the data required to resolve primary ray
tracing within the cell is available locally.

[0028] FIG. 4H. A simple example of shooting stencils
generated in the pre-processing stage.

[0029] FIG. 41. A simple example of use of shooting sten-
cils in the primary stage.

[0030] FIG. 5A. Creation of stencils during the pre-pro-
cessing stage. Each object is being projected on all data filled
cells ahead of it, relatively to view point.

[0031] FIG. 5B. Final stencil results of the pre-processing
stage. The normalized surface area of a stencil indicates on
the processing load in a cell.

[0032] FIG. 5C. Three representative tracing rays at run
time.
[0033] FIG. 6A. Partial preprocessing flowchart: genera-

tion of shooting stencils.

[0034] FIG. 6B. Flowchart of a runtime ray shooting pro-
cess in a cell.
[0035] FIG. 7A. Shadow stencils generated on the back

facets of cells within the object’s shadow volume.

[0036] FIG. 7B. Shadowing process of a primary intersec-
tion point in regard to light source.

[0037] FIG. 7C. An example showing the difference
between the casted stencils from external and local objects.
[0038] FIG. 7D. Local intersection tests solving shadows
from local objects.

[0039] FIG. 7E. Shadowing of primary intersection points.

[0040] FIG. 8A. Partial preprocessing flowchart: genera-
tion of shadow stencils

[0041] FIG. 8B. Flowchart of the run time shadow process-
ing in a cell
[0042] FIG. 9A. An example of subdivision of cells into

modules according to a pre-calculated load.

[0043] FIG.9B.An extremely imbalanced case of Rabbitin
a stadium.

[0044] FIG. 10. Flowchart of the secondary stage.

[0045] FIG. 11. A runtime workflow in a processor.
[0046] FIG. 12A. Flowchart of preprocessing: setup and

generation of shooting stencils.

[0047] FIG. 12B. Continued flowchart of pre-processing:
generation of shadow stencils and setup of static load balance.
[0048] FIG. 13. A schematic description of a shared
memory and shared caches multiprocessing architecture.
[0049] FIG. 14. A prior art multicore architecture.

[0050] FIG. 15A. A schematic description of multicore
based implementation.
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[0051] FIG. 15B. An example of mapping a multicore pro-
cessing resources onto cell modules according to processing
load.

[0052] FIG. 16. Schematic description of a distributed
memory ray tracing architecture built of multicores.

[0053] FIG. 17. GPU implementation.

[0054] FIG. 18. Implementation on a distributed memory
ray tracing architecture built of GPUs.

DETAILED DESCRIPTION OF THE INVENTION

[0055] Unless specifically stated otherwise, as apparent
from the following discussions, it is appreciated that through-
out the specification discussions, utilizing terms such as “pro-
cessing”, “computing”, “calculating”, “generating”, “creat-
ing” or the like, refer to the action and/or processes of a
computer or computing system, or processor or similar elec-
tronic computing device, that manipulate and/or transform
data represented as physical, such as electronic, quantities
within the computing system’s registers and/or memories
into other data, similarly represented as physical quantities
within the computing system’s memories, registers or other
such information storage, transmission or display devices.

Embodiments of the present invention may use terms such as
processor, computer, apparatus, system, sub-system, module,
processing element (PE), multicore, GPU and device (in
single or plural form) for performing the operations herein.
This may be specially constructed for the desired purposes, or
it may contain a general purpose computer selectively acti-
vated or reconfigured by a computer program stored in the
computer. Several technical terms which are specifically
associated with our ray tracing approach are herein defined.
Uniform grid of cells—grid of cells when all cells in the grid
are substantially of the same size and shape. Empty cell—is a
cell without objects, as opposed to a data fill cell. Shooting
rays—rays shot from the point of view and tracing the scene
looking for a visible object. The hit points are termed points
of primary intersection. Shadow (or shadowing) rays—rays
between light source and points of primary intersections for
testing whether the points are shadowed or litted. Local ray
segments—a ray is subdivided to segments, each segment is
local to a cell along the ray’s path. Stencil—a projection of
objects on cell’s facets. Shooting stencil—stencil created by
aprojection from point of view. Shadow stencil—stencil cre-
ated by a projection from light source. Polygon model is the
way to represent object data such that the surfaces of objects
are approximated with a mesh of polygons. Geometric model
is the way to represent object data such that the surfaces of
objects are defined analytically by procedural representation.
External objects—objects that are outside a cell. Local
objects—objects that are inside a cell. Visible object—is an
object which is visible, at least in part, when looking from the
point of view. It is not fully hidden by other objects. Primary
intersection points—intersection points between tracing rays
and objects resulting of the shooting phase. Shooting work-
load—working load due to runtime shooting process. Shad-
owing workload—working load due to runtime shadowing
process. Load balancing—distributing workload across mul-
tiple processors to achieve optimal resource utilization, maxi-
mize throughput, minimize response time, and avoid over-
load. Shared memory system—parallel computing system
having memory shared between all processing elements in a
single address space. Distributed memory system—parallel
computing system in which each processing element has its
own local address space. Private memory—when in distrib-



US 2016/0155258 Al

uted memory systems the memory is also physically distrib-
uted, each processing element has its own private memory.

[0056] The ray-object intersection tests of prior art are con-
sidered the heaviest part of ray tracing due to extensive tra-
versal across the accelerating data structures and massive
memory access. Ray that intersects an object at some point
has performed many redundant intersection tests along its
track, before the object is hit (FIG. 3B). A ray that does not hit
any object across the scene is even more costly because of the
multiple intersections along the way, all in vain (FIG. 3A).
The processing complexity is of O(N,,,,*N,...), Where
N, pjecss Stands for all objects populating the cells along the
ray’s path, and N, is the number of rays. Moreover, the
intersection tests are accompanied by a time-consuming ray
traversal across accelerating data structures. In prior art vari-
ous accelerating data structures (e.g. KD-tree, Octree) are in
use. A data structure of the whole scene is usually being
constructed during the preprocessing step, while in runtime
the entire data structure is repeatedly traversed for each single
ray, searching for the object hit by a given ray. Actually,
tracing a single ray in within the sequence of successive cells
along the ray’s path is a big and complex task that must be
repeatedly processed for each ray, out of millions of rays.

[0057] Incontrast, we take a novel approach of providing at
each cell a complete knowledge of the scene from the cell’s
standpoint. It is derived from understanding the relationships
between the global objects, cell’s local objects, the point of
view, the light sources, and the cell’s location. As a result,
each cell gains an ultimate process and data locality during
primary ray tracing, enabling a highly embarrassing data
parallelism, linear scalability, high utilization of processors
and caches, a reduced memory access, and lack of commu-
nication. Moreover, the process locality enables to pre-calcu-
late the workload at each cell and the workload distribution
across the entire grid of cells, and then utilizing this knowl-
edge for allocation of processing resources for the best load
balancing. The most expensive elements of the prior art,
ray-object intersections and traversal of acceleration struc-
tures, are dramatically cut down. This is done by exchanging
the global and complex task of tracing a ray across many cells,
with a local and simple task in an utmost one cell. And most
importantly, the algorithm maps efficiently on off-the-shelf
CPUs, GPUs and Multicores, without any additional special
purpose hardware.

[0058] We describe stencils as geometrical means of cach-
ing the scene’s knowledge in cells, although such a knowl-
edge can be cached by other means as well, e.g. by numerical
values. We also describe a grid of uniform cells, whereas grids
of non-uniform cells can be used as well. Our stencil based
approach is actually an “object looking for rays™ policy,
where the objects in the scene are projected on cells, as
stencils, caching the visibility and shadowing information in
cells. The information required for solving the visibility and
shadowing quest is now stored directly in the cells instead of
in an auxiliary data structure. For the global scene we do not
use global accelerating data structures. The runtime process-
ing for primary ray tracing is distributed among cells of a
uniform grid in a mutually exclusive way, meaning that there
is no exchange of data between cells, and each cell gains
maximal locality of processing. The ray tracing is broken
down into inexpensive cell-local processes, wherein all the
data needed for solving are locally accessible, and the cell-
local processes are independent of each other, creating an
embarrassingly parallel processing environment.
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[0059] Thus, the prior art’s expensive traversals of data
structures are replaced by inexpensive local tests. Moreover,
an important feature of the stencil method is a classification of
a cell’s local segment primary ray according to certainty of
intersection, completely eliminating negative tests. This way
the majority of intersection tests are cut. The high runtime
intersection complexity of prior art O(N,,, *N,......), is now
reduced to O(N;, .7 o pjecrs) Only, Where the Ny, .. o 500 Stands
for the amount of local objects in a cell.

[0060] We distinguish between static process locality and
dynamic process locality. Static process locality is when all
the data required for the local process is attainable in advance,
prior to run time, and provided to the cell. In such a case the
amount of working load in each cell can be evaluated in
advance in the preprocessing stage, and applied for static load
balancing by pre-distributing the load among processors. The
static process locality is gained in our primary stage of ray
tracing, wherein all the local data is prepared during the
preprocessing stage. Both our phases of the primary stage,
shooting and shadowing, have the characteristics of a static
process locality. Dynamic process locality is defined when
not all the data feeding the local process are attainable in
advance, but some of the local data are generated at run time.
E.g. secondary rays from adjacent cells are a product of other
local tasks, and must be communicated to a cell prior its local
processing. Therefore, in contrast to the primary stage, an
inter-cell communication is required. The processing load in
such a case cannot be pre-calculated. The dynamic process
locality applies to our secondary ray tracing.

[0061] In the following specifications we first describe
embodiments of the ingredients of the primary ray tracing:
ray shooting, shadowing, preprocessing, secondary ray trac-
ing, parallelization and load balance mechanism, as well as
the transition between primary and secondary stages. Then
we describe implementation embodiments.

Primary Ray Tracing

[0062] Both phases of the primary ray tracing stage; ray
shooting and shadowing, are based on stencils, which are two
dimensional projections of objects on cell’s facets, generated
in pre-processing stage, and utilized at runtime. Our primary
ray tracing (i) greatly reduces the amount of intersection tests,
which is the most expensive element of ray tracing, (ii) gains
process locality, and (iii) enables good load balancing in
runtime by pre-calculating the distribution of load among
cells. According to the basic principles of ray tracing, as
shown in FIG. 1, primary rays are shot from the point of view
(POV), the point from which the scene is observed, through
the image plane into the scene, passing across the scene.
Primary intersection points are generated as a result of inter-
section tests. Subsequently, those primary intersection points
must be processed for shadowing, i.e. to check whether the
point is illuminated or shadowed, by checking for occluding
objects between each intersection point and all light sources.
[0063] Our analysis of a ray-object intersection of primary
rays is done by subdividing the ray into local segments, a
segment per each cell along the ray’s path, wherein all seg-
ments are processed locally, in parallel or in any arbitrary
order. Local segments at a cell are generated and analyzed for
intersection based on cell’s stencil. Two kinds of objects can
participate in creation of stencils: local objects that reside, at
least partly, inside the cell, and external (or non-local) objects
that reside out of the cell. In the ray shooting case both kinds
of objects, local and external, are combined to create cell’s
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stencil. Local segments are created only for those shooting
rays that hit the stencil. When a ray segment hits the stencil, it
means that ray is visible from POV and it must intersect local
object. Then the primary intersection point must be found by
testing the segment for intersection with the local objects. The
shadowing is applied at all the local primary intersection
points produced by shooting. On the other hand, the shadow
stencil is created by casting external objects only. The local
segment of a shadow ray is chosen such that it passes through
one of the primary intersection points; its entrance point to the
cell from the light source direction and its departure point
from the cell are calculated. Its departure point is interrelated
with the shadow stencil. A stencil hit means that the respec-
tive primary intersection point is in shadow. However in the
event of miss, the ray segment must be further tested for an
intersection with local objects. Only the local objects that are
situated between the light source and the primary intersection
point can cast shadow. For shadowing each cell is handled
completely autonomously.

[0064] The primary ray shooting breaks down into two
parts of preprocessing and runtime. (i) During preprocessing
the shooting stencils are generated in all the data filled cells,
as opposed to empty cells which have no stencils. A cell’s
stencil is a combined result of projections cast from the point
of view by external and local objects on the cell’s facets. A
cell’s stencil caches visibility information about local objects
as well as the expected primary processing load in the cell.
The shooting stencils are generated in the preprocessing
stage. Stencils are not created in empty cells or in cells withno
visible objects. Meaning, that even if there are local objects in
acell, butthese objects are hidden from the point of view, then
the cell is exempted from generating stencils and from runt-
ime primary ray tracing. The area of'a shooting stencilina cell
is indicative of the amount of shooting processing load.
Therefore a runtime load balancing is enabled by pre-calcu-
lating in the preprocessing stage the distribution of shooting
load among cells. (ii) The second part is carried out at runt-
ime, utilizing the shooting stencils for finding primary ray-
object intersection points. As will become evident, the stencil
algorithm helps to greatly reduce the amount of intersection
tests, as compared to prior art.

[0065] The principle of generation and usage of primary
stencils is explained by non-limiting examples of FIGS. 4A to
4F. Primary shooting stencils are a projection of objects cast
on cell facets, from the point of view (POV) into the cells. The
stencils are utilized for locating the ray-object intersections
within a cell, and creating the primary points of intersection.
FIG. 4A shows an object 4101 viewed from the POV (point of
view), creating projections on cells’ back facets 4102-4105,
ahead of the object. These projections are registered as sten-
cils. The object 4101, local to the first cell 4106, casts a stencil
4102 on the back facet of the cell. Given that the object 4101
is local, and is not occluded by additional objects on the way
to POV, all rays hitting the stencil must certainly be inter-
sected by the local object, i.e. all their intersection tests must
be positive. All other rays, missing the stencil, do not hit the
object; therefore they should not be tested for intersection. As
opposed to the first cell, the stencil 4103 of the next cell 4107
caches information of a preceding non-local object, meaning
that all the rays originating at POV and departure at the stencil
4103 are already intercepted by some non-local object, there-
fore they shouldn’t be tested for a local intersection. Even if
there is a local object projected on stencil 4103 as well, it
should be disregarded since it is occluded by the object 4101.
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This principle is demonstrated in FIG. 4B. Stencil 4202 is a
projection of object 4201 encountered in one of the preceding
cells. The stencil of the local object 4203 is broken down into
two sections: the section 4205 of the stencil is overlapped by
stencil 4202, therefore it represents an occluded part of the
local object 4203, while the second section 4204 represents
the visible part of the local object. The only ray segments that
should be locally tested for intersection with objects are those
hitting the partial stencil 4204. For all these ray segments the
positive result of an intersection test is definite. Moreover, it
is certainly known what rays are intersected within a cell, and
all the rest must be simply excluded from intersection tests,
cutting in advance all negative tests.

[0066] The use of primary shooting stencils eliminating
unsuccessful intersection tests is illustrated in FIG. 4C. Let’s
name B the stencil 4202 generated by an external object 4201,
and A the stencil generated by a local object, composed of
4204 and 4205. The final shooting stencil S,,,, 4204, com-
prising the stencil part exclusively cast by a local object, and
used for indicating positive intersection tests is obtained from
A and B by the combined Boolean and arithmetic function:

S,

shoot
[0067] Thestencil S, ,,1is showninFIG. 4D as the final ray
shooting stencil 4204. Two rays are shown representing two
different subsets of rays: no hit (1) and local hit(2). The no hit
subset of rays stands for rays that either had an earlier hit with
one of the occluding objects, or rays that are passing the cell
untouched for a later hit, or for no hit at all. The second subset,
local hit, consists of rays that encounter a local object, and are
therefore subject to intersection tests. The same stands for
stencils cast by multiple local objects, eliminating negative
tests.
[0068] The advantage of cutting off all negative tests in our
ray shooting is illustrated in FIG. 4E. A ray is shown passing
the entire scene without hitting an object. In the cells along the
track all the ray segments fall in no hit category, therefore the
ray has no intersection tests at all. This is to be compared with
prior art of FIG. 3A, where the same setting counts 34 nega-
tive tests. Another example is given in FIG. 4F, where a ray
intersects multiple objects. In all preceding cells before the
intersection 4601 the ray segment fall under no hit category.
Inthecell of intersection 4601 it falls under local hit category.
In each of the two successive cells the ray segments fall again
under no hit category. Accordingly, the only intersection tests
occur in the cell of the object 4601, resulting in at most 4
intersection tests with 4 local objects. This is to be compared
with FIG. 3B where the same setting of prior art counts 22
intersection tests.
[0069] The local intersection tests maybe, or maybe not
supported by local acceleration structures, such as a Kd-tree.
When the count of local objects in a cell is high, such a
structure would pay off by eliminating many unnecessary
tests. However an acceleration structure can be built selec-
tively in the most populated cells only. Moreover, the grid
resolution in the preprocessing can be set fine enough to lower
the average cell population.
[0070] Inorder to confirm the conditions for static process
locality of our ray shooting algorithm, we have to make sure
that all the data needed for an autonomous processing at a cell
is locally available during runtime. FIG. 4G details the ingre-
dients of required data and their sources: (i) the viewing
parameters of POV and screen are provided to all cells by the
application, and cell’s parameters like size and location are

=A4~(4 and B)
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provided by the preprocessing stage, (ii) the cell’s subset of
scene’s data is supplied by the preprocessing stage, (iii) emp-
tiness of a cell—empty cells are marked at the preprocessing
stage, (iv) shooting stencils are generated for all cells in the
preprocessing stage, and (v) local KD-tree for each cell,
needed for local intersection tests, is generated in the prepro-
cessing stage as well. Having the above data, each cell can
autonomously solve for visibility, which means that a com-
plete static process locality is achieved.

[0071] FIG.4H shows generation of primary shooting sten-
cils in the preprocessing stage, and F1G. 41 depicts using these
stencils in runtime. In the preprocessing stage the stencil 4802
is cast by object 4801 in the first cell, and the stencil 4804 is
the local part of a combined stencil cast by the external object
4801 and the local object 4903 in the second cell. At runtime,
FIG. 41, each of the two exemplary cells is processed autono-
mously, based on cell-local information with no need of any
external data. At a cell all local segments of shooting rays
passing through the cell are calculated and tested for hitting
the stencil. In cell 4805 only one cluster of these rays is
shown, between 4904 and 4905, all hitting the stencil. Each of
these rays is tested for intersection, resulting in a point of
intersection with the object. 4901 are the bunch of points of
primary intersection in cell 4805. In cell 4906 two clusters of
shooting rays are shown. Although all rays of the cluster
4906-4907, are passing through the object 4803, but they do
not hit the stencil due to their earlier intersections in cell 4905.
Rays belonging to the cluster 4907-4908 hit the stencil, defin-
ing a bunch of points 4903 of primary intersection.

[0072] A detailed process of generating shooting stencils in
apreprocessing stage and usage of these stencils in runtime is
described by additional non-limiting example. FIG. 5A
shows generating stencils during the preprocessing stage on a
grid of nine cells, while only three of them are populated by
objects, the other cells are empty. Notably, only two objects
are visible from POV, 511 and 512. The objects 513 and 514
are hidden by object 511. Each object is being projected on all
data filled cells ahead of it, relatively to view point. All the
initial components of stencils are shown, assisted by a legend.
FIG. 5B shows the final stencil results of the preprocessing
stage. The final set of shoot stencils comprises 525 and 526, in
cells 517 and 513 respectively. Cell 519 has no stencil
because the object 514 is occluded by the object 511. All other
cells are empty, without stencils. FIG. 5C demonstrates the
use of stencils in cell 518 at runtime. Three representative
tracing rays are shown: rays 1 and 3 miss the stencil; therefore
they are exempted from intersection tests in the cell. The
stencil is hit by ray 2, which is then tested for intersection with
the local objects 512 and 513, resulting in a positive intersec-
tion with the object 512.

[0073] The flowchart of ray shooting is given in FIG.
6 A—the preprocessing stage, and in FIG. 6B—the runtime.
The preprocessing stage (F1G. 6a) starts by setting the system
and view parameters 610. The parameters include system
parameters (such as the scene size, uniform grid size and
resolution), and viewing parameters dictated by the applica-
tion (such as POV, image plane’s size and location). The
subdivision of the scene space into uniform grid occurs by
mapping the elements of the object list provided by the appli-
cation (e.g. vertex array, display list, etc.) onto cells 612. Cells
that have no object data are marked as empty cells 613. Once
the cells are populated, a shoot-stencil can be generated. Each
object is taken and projected first on its local cell 614. This
stencil is marked as local. Then the object is projected on all
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data filled cells, cell by cell 615, excluding empty cells. Atthe
end of this step a cell may have two stencils: a local stencil
aggregated for all local objects (A), and a global stencil (B),
aggregated of all external objects. A final stencil S, at each
data filled cell is created 616 by separating the exclusively
local segments from the global stencil. To this end the com-
bined arithmetic and Boolean formula is applied:
Soo~A-(A and B). Finally, a local KD-tree at each data
filled cell is generated. It is needed for local intersections. The
above described sequence of steps can change in one way or
another, e.g. when an object is mapped onto cell 612, taking
advantage of having the object ‘at hand’, a local stencil can be
generated earlier than 614. However, the final result is the
same.

[0074] The flowchart of a runtime ray shooting in a data
filled cell is given in FIG. 6B. All the primary rays originated
at POV, passing through the image area and entering the cell,
are considered. For each such cell a local segment is calcu-
lated 621; its entry point and departure point. If the departure
point coincides with the shoot-stencil, the ray becomes a
subject for intersection tests 622. These intersection tests with
local objects are conducted utilizing local KD-tree. Once an
intersection is found, the tests are discontinued.

[0075] Primary Shadowing.

[0076] Each primary intersection point identified in the ray
shooting phase of the primary ray tracing must be tested for
shadowing, in regard to light sources.

In prior art the shadow test at a primary point of intersection,
see FIG. 3C, is accomplished by firing a shadow ray between
the point of primary intersection and the light source, seeking
for an obstructing object between the point and light source.
If'the ray reaches the light source without being disrupted, the
primary hit point is illuminated by the light source, otherwise
it is shadowed. In the example of FIG. 3C the testing ray goes
from point of primary intersection 331 to the light source 332
passing many objects without being obstructed, however it
must be tested for intersection with every single object on its
way. Therefore intersection testing is a highly intensive pro-
cess, having a high complexity of O, *N,..)-
Although for a shadowed ray the first hit stops the further
testing, however prior this hit multiple intersection tests are
typically done. Moreover, the illuminated rays with no inter-
section are the most expensive, because tests must be made all
the way from the primary point to the light source.

[0077] Incontrastto prior art, in our shadowing process we
replace such an expensive global search for obscuring objects
with a non-expensive local test conducted on local segments
of'shadow rays. The shadow rays originate at light source and
pass through the primary points of intersection, wherein said
primary points of intersection are previously generated by the
primary ray shooting. In fact, the only segment created, is the
one of the cell of test. Our shadowing process is based on use
of stencils, termed shadowing stencils, working very simi-
larly to the ray shooting stencils. The shadow stencils are
projections by light source on a cell’s facets of non-local
objects. All shadowing tests are strictly local to a cell, i.e.
intersection tests are done between local ray segments and
local shadow stencil, or between local ray segments and local
objects. For points of primary intersection, a single local test
can solve the shadowing question. Thus the prior art’s pro-
cessing complexity of O(N,,,,*N,,,...,;) is merely reduced to
O(Nobjects .

[0078] The use of shadow stencil is introduced by non-
limiting examples of FIGS. 7A to 7D. As illustrated in FIG.
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7A, shadow stencils are generated on the back facets of a cell
castby an occluding object located between a light source and
a cell. Preferable, but not necessarily, shadow stencils are
generated in the preprocessing stage. Only data filled cells are
processed for shadow stencils. In the figure a single data filled
cell is depicted. Two primary intersection points, a and b, are
shown tested against the shadow stencil: (i) the extended line
from the first point a to back facet, along the direction from
the light source, hits the shadow stencil at point c. This indi-
cates that the point a is shadowed, (ii) the extended line from
point b to back facet, along the light source direction, hits the
back facet at point d, out of the shadow stencil, meaning that
point b is not shadowed. In both cases the stencil intersection
test is simple: it is local to the cell, without the need to access
non-local objects in memory, and without conducting expen-
sive 3D ray-object intersection tests. The advantage of the
stencil method is demonstrated in FIG. 7B. The primary
intersection point 721 is processed for shadowing in regard to
the light source 722, by testing a stencil 723 hit by local ray
segment 725. The stencil 723 excludes the need of a shadow
ray between the intersection point 721 and the light source
722, as in prior art, eliminating the abundant negative inter-
section tests in all cells along the shadowing ray path.

[0079] One must differentiate between two kinds of shad-
owing stencils in a cell. Global stencils which are cast by
external objects located between the cell and the light source,
and local stencil cast in a cell by local objects. However since
local stencils cause ambiguity, global stencils only are used.
FIG. 7C explains such an ambiguity. There are three compo-
nents comprising the final shadow stencil: 734 is a global
stencil cast by an external object 731, 735 is a local stencil
casted by a local object 732, and 736 is a local stencil casted
by another local object 733. The global stencil 734 overlaps
partly with the local stencil 735. For each intersection point a
stencil is checked for shadowing. When a global stencil seg-
ment is hit, even if it occurs in an overlapping part with a local
stencil, it means that the intersection point is certainly shad-
owed.

[0080] However, hitting solely a local component of stencil
is ambiguous, and has to be solved by local intersection test.
This is evident from the three primary intersection points
737-739. The first point 737 relates to the stencil segment
734, casted by an external object, therefore this point is cer-
tainly shadowed. The two intersection points 738 and 739 fall
exclusively on locally casted stencils. The first point 738 is
illuminated while the second 739 is shadowed. This ambigu-
ity excludes the use of local stencils, and instead, local inter-
section tests must be conducted after all global-stencil related
intersection points are solved. This is shown in FIG. 7D.
Global stencil only is used. All intersection points are tested
first against the global stencil 734 and sorted for shadowed
and non-shadowed. The shadowed intersection points are
stored in RIPP (record of intersected primary points), while
the non-shadowed primary intersection points are further pro-
cessed for intersection with local objects. A primary intersec-
tion point tested for shadowing by local objects is considered
shadowed if an intersection between its associated shadow
ray segment and a local objects occurs between the light
source and the primary intersection point. If no intersection
occurs, or it occurs behind the primary intersection point
(relatively to the light source), than the point is considered as
non shadowed.

[0081] Similarly to the primary stencils, the shadow sten-
cils are also generated in the preprocessing phase, and used at
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runtime during the primary stage. However, the same shadow
stencils are in use in the secondary stage as well. Generic
shadowing stencils are created all over the scene, except of in
empty cells. All objects in the scene cast shadows, except
local objects at each cell, which are not generated. The gen-
erating of stencils start at cells containing light sources, or at
terminal cells in case of external light sources (e.g. sun).
Shadows created from those light sources are projected on the
facets of all data filled cells, creating shadow stencils.

[0082] To summarize the stencil based shadowing, shadow
stencils in data filled cells are first generated by casting non-
local obstructing objects in regard to a light source. Then local
segments of shadow rays are generated based on primary
intersection points, and these local segments are tested for a
hit with shadow stencil, wherein primary intersection points
whose segments hit the shadow stencil are considered as
shadowed, and segments that miss the shadow stencil are
further tested for intersection with local obscuring objects.

[0083] It must be noted that shadow stencils are indifferent
of' the location of point of view (POV). They depend only on
the mutual position between the scene objects and light
sources, therefore changes in the POV do not affect shadow
stencils. For that reason, a renewal of shadow stencils is done
only upon changes in the scene and in light sources. When a
camera (POV) moves in and out or around the scene, without
real modification of the scene, the generation of shadow sten-
cil is saved for each frame’s preprocessing, leaving the gen-
eration of shooting stencils only. The cost of generating
shadow stencils depends very much on number of light
sources, so when multiple light sources are present, the saved
preprocessing time may be significant.

[0084] FIG. 7E shows a non limiting example of generation
and usage of shadow stencils. Two non empty cells are shown,
7501 and 7502, one light source LS and three obstructing
objects 7504, 7505, and 7510. In the preprocessing stage each
of the objects is taken in a turn to generate shadow stencils.
Object 7504 cast a stencil 7507, related to the LS, on cell
7502. All other cells situated in the object’s shadow volume
are empty. Similarly object 7505 adds its contribution to the
stencil 7507. The third object 7510, a resident of cell 7502, do
not contribute its part to that 7507 stencil, because their
mutual locality. It may rather cast stencils on farther cells (not
shown). Cell 7501 remains without stencils, since there are
not objects to cast shadows on it. Empty cells, e.g. 7503 are
not processed for stencils. The cell of light source remains
without stencil as well since the two objects 7504 and 7505 do
not cast stencils in this cell, being local to it.

[0085] Runtime starts with primary shooting phase, which
results in storing primary intersection points of each cell in its
local RIPP (record of intersected primary points). In the given
example there are two clusters of primary intersection points,
cluster 7509 of 4 points in cell 7501, and cluster 7508 of 7
points in cell 7502. Now starts the runtime shadowing phase
of'the primary stage. At each cell, completely independently
of other cells, the primary intersection points are tested for
shadowing. In the cell of LS there are not intersection points,
therefore no tests. Incell 7501, dueto lack of stencil, all points
of'the local RIPP are apparently marked as non shadowed (i.e.
illuminated). In cell 7502 the 7 RIPP points are first tested
against the stencil. 4 points are found as related to the stencil,
then marked as shadowed and removed from RIPP. The two
other points are tested locally for intersection with object
7510. One point is found as shaded by the local object, and
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marked accordingly. The other point 7506 is marked as non-
shaded, and removed from RIPP.

[0086] The flowchart explaining generating and use of
shadow stencils is depicted in FIGS. 8A and 8B. The shad-
owing part of preprocessing in FIG. 8A is a continuation of
generating the shooting stencils of FIG. 6A. Each object is
taken in a turn, to cast its shadow stencil in all data filled cells,
skipping its resident cell. When cast in a cell, it is merged with
the existing stencil previously cast in the cell by other objects
from the same light source 811. This is repeated for all light
sources.

[0087] The runtime (primary stage) use of shadow stencils
is flowcharted in FIG. 8B. The flowchart refers to a single cell
since shadowing is a strictly local and autonomous process at
each cell. The shadow stencils, created during the primary ray
shooting, are applied to all primary intersection points in
RIPP. An empty cell is exempted from shadowing 8201, so is
a cell with no primary intersection points (RIPP empty) 8202.
The following shadowing process repeats for each light
source. All RIPP points are tested first 8203 against the cell’s
shadow stencil. Points that are found hitting the stencil are
marked as shadowed. The other points are tested for intersec-
tion with local objects 8204. A point that is found obscured
from the light source is marked as shadowed; otherwise it is
apparently marked as illuminated. Once all light sources are
exhausted and each point in the local RIPP is marked for
shadowing in regard to all light sources, shading 8205 ofthese
points is done. During the shading, points having reflecting
and/or refracting quality are transferred 8206 to the record of
secondary points (RSP) as an input to the secondary stage
8207.

Performance of the Runtime Shooting and Shadowing

[0088] One of the leading advantages of our stencil based
shooting and shadowing is their improved performance, due
to breaking down one big and complex task of prior art into
many small, local tasks. Our use of uniform grid cuts down
the expensive traversals of the global KD-tree (or other accel-
eration structures), and our localization of processing saves
over 90% of the most expensive element of prior art, the
intersection tests. The performance advantage of our algo-
rithm is demonstrated herein, still in its basic sequential form,
prior any parallelization. As it will become evident hereinaf-
ter, an enhanced load balancing of our parallelization adds
another important improvement to the performance. Our per-
formance analysis is based on the model of ray shooting
performance developed by Vlastimil Havran in Heuristic Ray
Shooting Algorithms, Czech Technical University, Prague,
2000, p. 24.

TR =Nrs#Crs + Nip 2 Cp) # Negys + T =

(cost of traversal+ cost of intersection) # Nyyys + Topp

[0089] N, Average nodes per ray accessed

[0090] C, s Average cost of traversal step among the
nodes (incl. mem. access)

[0091] N, Average number of ray-object intersection
tests per ray

[0092] C, Average cost of intersection test

[0093] T, Remaining computation (same for all algo-
rithms)
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[0094] The performance model separates the cost of ray
traversal and the cost of ray-object intersection tests. The last
element T,,, consists of shading and other remaining com-
putations. Since it is the same for all algorithms, it is not part
of our performance comparison.

Havran’s model, applied to a ray tracing system, assists in
making comparative analysis of the runtime phases of ray
shooting and shadowing, both implemented first by a prior art
algorithm and then by our stencil based algorithm. The fol-
lowing ray tracing system is assumed:

[0095] A scene is subdivided into grid of 43, having in
total 79,507 uniform cells.

[0096] The scene data comprises 1,280,000 triangles
with a uniform distribution of 10 triangles/cell.

[0097] Each cell is farther subdivided into grid of 2°
sub-cells, to be solved for intersections by a small local
KD-tree.

[0098] The number of primary rays is 4,000,000.

[0099] An average number of local rays (passing a cell)
is 2,163 rays/cell (4,000,000/437).

[0100] Anaverageray’s longest pathis 67 cells (43%1.5)
across the 3D space.

[0101] Anaverageray’slongestlocal path withinacell is
6 sub-cells.

[0102] C,=0.3 traversal step for a big global KD-tree
(according to Havran)

[0103] Cgg ;,..,70.1 traversal step for a small local KD-
tree (an approximate)

[0104] C,,=0.7 (according to Havran).

[0105] Asarule ofthumb, the number of cells in a spatial
subdivision structure should be of the same order as the
number of objects N in the scene. At each cell there are
on average 2 intersection tests, therefore N,,=2 for an
average of 10 objects/cell.

[0106] A hit occurs on average in the middle (half the
discrete space: 43/2%1.5), in the 38" cell, therefore
N,"=38.

[0107] When no hit occurs, then a ray passes the entire
space, visiting in average N *=67 cells.

The system assumptions are:

50% of rays hit objects generating primary intersection
points. Each hitting ray generates one intersection point.
[0108] Prior Art Ray Shooting Performance.

The height of Global KD-tree having 79,507 leaf cells is 17,
(2'7=128,000).

The height of Local KD-tree having 8 leaf sub-cells is 3,
(2°=8).

For each ray, two series of KD-tree traversals are performed,
first of the global tree to find the next cell to visit along the
ray’s path, and then in the next visited cell the local tree is
traversed to assist in ray-object intersection tests. We assume
that by using the local KD-tree the number of intersections
per ray is reduced from 10 (number of local objects) to 2 per
cell.

In order to differentiate between the traversal and intersection
elements, we formulate the cost expression in the following
way:

Tonoor = [Global_traversals+ Local_traversals+ Intersection_tests]™ +

[Global_traversals + Local_traversals + Intersection_tests]™ hit



US 2016/0155258 Al

-continued

. 1 . . 1
hit hit hit
= |N7sq*Crs = erayx + Nrse = (NFsr" # CTS_tocat) * erayx +

. 1 . 1 .
N+ (Nipx Cpp) = erayx:| + [N?‘S’é" *Crg % erayx + N

1 . . 1
hit hit
Crs_tocat) * erayx +N7SE" = (N7SL % Crs_tocat) * ENrayx +

NEE (N = Cip)] = %Nrayx]

= Topoor = 38 x0.3x2,000,000 + 38 +(3+0.1) % 2,000,000 +
38 % (2+0.7)%2,000,000 + 67 0.3 x 2,000,000 + 67 *
(6+0.1)2,000,000 + 67+ (2%0.7)%2,000,000 =

151,000,000 + 308,200,000 = 459,200,000

Total of Global_traversals=22,800,000+40,200,000=63,000,
000

Total of Local_traversals=22,800,000+80,400,000=103,200,
000

Total of Intersection_tests=106,400,000+187,600,000=294,
000,000

It is evident that the intersection tests are the most costly part
in primary shooting.

[0109] Stencil Based Shooting Performance.

Each ray is processed in a single cell along its path, and is
subject to traversal of the local KD-tree in that cell, tested for
intersection with 2 out of 10 objects. A ‘no hit’ rays are not
generated and make no tests.

Ateach cell there are 50 segments of rays (4M rays/43°> cells),
but only 2 of these segments are generated. Therefore
N,=25 ray segments. The cost of generating a local segment
of a ray is estimated as C 0.2.

ra yﬁsegmagen:

Tshoor = (Generating_local ray_segment+ Local_traversal+
Local intersection_test9Nbr_of _hitting rays
= (Cray_segm_gen + 3% Crs + 2% Cp) » Nbr_of_hitting rays
Tehoor = (0.2+3%0.1 +2x0.7)%2,000,000 =

400,000 + 600,000 + 2,800,000 = 3,800,000

Total of Global_traversals=0, which are 0% of prior art.
Total of Local_traversals=600,000, which are 0.6% of prior
art.

Total of Intersection_tests=2,800,000, which are about 1% of
prior art.

Total of ray segment gen.=400,000, whereas in priorartitis 0.
However the segment generation consists less than 0.1% of
T 00, Of prior art.

[0110] Our shooting performance compared to prior art is
about 120 times faster, and can be summarized as follows: (i)
Intersection tests, the most costly ingredient of ray tracing,
are reduced to 1% of prior art. (ii) Global KD-tree traversals
are completely eliminated. (iii) Local KD-tree traversals are
reduced to 0.6% of prior art. (iv) We append generation of ray
segment which takes merely 0.1% of the shooting time of
prior art.

[0111] Prior Art Primary Shadowing Performance.

For comparison of the shadowing performance we use the
same basic equation, evaluating the primary intersection
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points consisting of 50% of all rays. Further we assume that
68.75% of these intersection points are shadowed.

Tonadow = [Global_traversals+ Local_traversals+ Intersection_tests™ +

[Global_traversals+ Local_traversals + Intesectionftests]""fh"’

hit hit hit hit
= N # Crs w3 Neays + Nisg  (NFS™ # Crs) w3 Nrgys + Nifs

1 ) 1 ) )
(N Cpp)] = 7 Vs + N2t o Crg 7 Vs + Nkt o (NEofit

1 . 1
Crg)* ZNrayx + NRH 2 (Njp o« Cp) |+ ZNrayx

Assumptions:

[0112] Anaverage distance between primary point of inter-
section and light source is 34 cells. Therefore global average
values are:

N =17 cells, Ny =34 cells.

Ateach cell along the path 034 or 17 cells, on average 2 local
intersection tests per cell. N,,=2.

Local values are: N, " =6, N, ""=3

Torodow = 17%0.3% 1,375,000 + 17 # (6 %0.3) » 1,375,000 + 17 (2% 0.7)] =
1,375,000 + 345 0.3 625,000 + 34 (6%0.3) 625,000 + 34
(2+0.7)] % 625,000
=7,012,500 + 42,075,000 + 32,725,000 + 6,375,000 +

38,250,000 + 29,750,000 = 156,187,500

Total time of Global_traversals=13,387,500
Total time of Local_traversals=80,325,000
Total time of Intersection_tests=62,475,000
As before, the intersection tests show as the most costly part
in primary shadowing.
[0113] Stencil Based Primary Shadowing Performance
We define two additional parameters:
N,,—total number of primary intersection points in an aver-
age cell,
C, on resi—co0st of a shadow stencil test.
During the shooting phase, each of 2,000,000 rays generated
an intersection point. We assume that %2 of these points are
shadowed. Atthe local scale, in an average cell the number of
intersection points is (2,000,000 rays/128,000 cells):
N,,=16 points, when 68.75% are shadowed, alias 11 shad-
owed and 5 non-shadowed.
All 16 points are first being intersected with the shadow
stencil. This intersection with a 2D shape is non-expensive, it
is estimated as:
Csten.test=0.2 (as compared to C,,=0.7).
We assume that 10 points out of the 16 are covered by shadow
stencils (i.e. shadowed), and the additional 6 need local inter-
section tests, out of them only 1 is found shaded.
The shadow processing in a cell consists of two steps:
[0114] (i) stencil intersection tests find the globally shad-
owed intersection points, and
[0115] (ii) ray/local_objects intersection tests are done
for finding locally the shadowed primary intersection
points. Local KD-tree is in use. Positive test (N ;") hits
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an object at an average 3 local sub-cells. Negative test
(N " ") makes a track of 6 sub-cells without hitting an
object.

Tstadow = Tcett shadow *total_nbr of_cells
= (Stencil_test+ Local_traversals+ Local_intersection tests) =
total_nbr of cells
= [16x Csren.test + (S 6 Crg) + 6 2+ Cyr] = total_nbr_of cells
Toradow = 16502579507 + (5x6%0.3 +1%3x0.3)%79,507 +
6%2x0.7%79,507

=254,422 + 214,670 + 668,000 = 1,137,000

Total of Global_traversals=0, which are 0% of prior art.
Total of Local_traversals=214,670, which are 0.3% of prior
art.

Total of Intersection_tests=668,000, which are about 1% of
prior art.

Total of stencil tests=254,422, whereas in prior art is 0. How-
ever this element consists less than 0.2% of T of prior
art.

[0116] Our shadowing performance compared to that of
prior art is over 130 times faster, and can be summarized as
follows: (i) Intersection tests, the most costly ingredient of
ray tracing, are reduced to 1% of prior art. (ii) Global KD-tree
traversals are completely eliminated. (iii) Local KD-tree tra-
versals are reduced to 0.6% of prior art. (iv) tests of stencils,
anew ingredient, takes merely 0.2% of the shadowing time of
prior art.

shadow

To summarize performance comparison of the primary stage,
we save about 99% of intersection tests, the most costly
elements of prior art, and about the same of accelerating
structure traversals.

Parallelism.

[0117] The object of parallel processing is to find a number
of preferably independent tasks and execute these tasks
simultaneously on different processors. Because in ray trac-
ing the computation of one pixel is completely independent of
any other pixel, this algorithm lends itself very well to parallel
processing. This would then lead to the simplest possible
parallel implementation of a ray tracing algorithm. Superfi-
cially, ray tracing does not seem to present any great difficul-
ties for parallel processing. Apart from correctness and
robustness, efficiency and performance are of utmost impor-
tance. However, for this end the most difficult problem to
address, is the fact that the number of rays passing through
each voxel is likely to vary. Certain parts of the scene attract
more rays than other parts. This has mainly to do with the
view point and the location of the light sources. Both the
variations in cost per ray and the number of rays passing
through each cell cause poor utilization of processing and
memory resources, critically deteriorating performance. This
issue calls for just right load balancing. In prior art an effec-
tive load balancing, without the overheads of dynamic load
balancing, is unattainable in view of the fact that the workload
can’t be precalculated prior runtime. In contrast to the prior
art, we are able to precalculate these workloads based on
stencils, and distribute the work to processors accordingly, for
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a balanced load in runtime. The benefit of it spans on the
primary stage of our raytracing.

[0118] Load predictability can be achieved only if the runt-
ime processing at each cell is fed with data which is prepared
in advance of the runtime and is invariable during cell pro-
cessing. Moreover, the processing is strickly local, com-
pletely isolated and not affected by other cells. As argued
before, this is static process locality, which is a prerequisite
for forecasting the workload and allocating the processing
resources accordingly. However, if some of the process inputs
are generated in run time, e.g. as a product of preceding task,
it becomes a dynamic process locality. The processing load in
such a case cannot be pre-calculated; therefore in such a case
a dynamic load balancing must be applied, paying the over-
head toll. In terms of parallel processing the load is balanced
by demand driven approach, dynamically assigning cells to
processors.

[0119] In our parallelism we apply both: the static load
balancing of multiple processors of the primary stage is based
on static locality, while the demand driven way of paralleliz-
ing multiple processors in the secondary stage, is based on
dynamic locality. Within each stage, the utilization of pro-
cessing resources is maximized by enhanced load balance,
whereas during the transition between stages, the idle time is
minimized by applying an efficient transition strategy. The
speed-up to be expected with this combined type of parallel-
ism is near linear with the number of processors. As stated
before, the ability to precalculate loads is conditioned by
presence of static process locality. In turn, this load precalcu-
lation is necessary for balancing the loads of shooting and
shadowing processes. Therefore, itis necessary to confirm the
static locality in ray shooting and shadowing.

[0120] Ray shooting. In general, solving for visibility of
local objects from the view point is conditioned by having
known the setup parameters (view point, screen location, and
cell location), disrupting objects on the way to the cell, and
local objects in the cell. In prior art, visibility is solved per ray,
which passes multiple cells and multiple data subsets when
seeking for intersection, so there is no process locality. What
is needed for process locality, aka the capability to solve
visibility from inside the cell, is to provide each cell with the
information of (i) setup parameters, (ii) local object data, and
(iii) earlier obscuring objects. The setup parameters and local
object data are up priory known at each cell. The information
on obscuring non-local objects is cached in the shooting
stencils. makes the process locality at primary ray shooting
possible.

[0121] Shadowing. In order to locally solve for shadowing
in a cell we need to know: (i) light source(s), (i) objects
located between the light source and the cell, casting shadows
onthe cell, and (iii) local objects. All these are known: the list
of light sources is accessible to all cells, the list of local
objects is known to each cell, and the shadows casted by
non-local objects are cached in shadow stencils.

[0122] Consequently, by adopting data parallel approach
and implementing the stencil algorithm, the conditions for
process locality of both processes, shooting and shadowing,
are met. At run time each cell has all the required data for
these two processes. Due to process locality the processing
amount at each cell is a sole function of the local data, undis-
turbed by runtime developments and inter-cell communica-
tion. All the data is available prior the primary stage, no new
data is added during the stage, making the local process a
static. Then, not only our primary stage occurs autonomously
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within each cell, but also the static process locality gives rise
to predictability of working loads and an enhanced load bal-
ancing.

[0123] Assaid, our load balancing is based on the ability to
pre-calculate the workload at each cell and the workload
distribution across the grid of cells. This knowledge is utilized
to allocate the processing resources for the best load balanc-
ing. Load balancing is assisted by the pre-calculated distri-
bution of shooting and shadow workloads among cells. The
surface area of the shooting stencil and the shadow stencil, as
well as the number of local objects in a cell are indicative of
the primary stage’s workload in a cell. Therefore the expres-
sion to be used in calculating the primary load in each cell
breaks down into two terms of ray shooting and shadowing.
The workload in a cell is proportional to the number of pri-
mary points of intersection during the shooting phase and the
number of primary intersection points and local objects dur-
ing the shadowing phase. The count of the primary intersec-
tion points is proportional to the stencil’s surface area. Let’s
term the surface area of the shooting stencil A

shoot_stencil®

Then the cell’s primary processing load is given by:
Loadl=k*4

shoot_stencil
The constant k is inversely proportional to cell’s distance
from view point.

In order to develop an expression for the shadow workload in
a data filled cell, we denote first the ratio between shadow
stencil area and the total cell wall area as 3:

shadow stencil area

B=

cell wall area

and its complementary unshaded ratio as a.: a=p-1

Since the number of primary intersection points in a cell is
specified by Loadl, then the cost of shadow stencil tests in a
cell is p*Loadl.

[0124] Cell’s shadowing load for a single light source is
given by the following two terms. The term associated with §
stands for the stencil tests of primary intersection points shad-
owed by non-local objects. The other term, associated with o
stands for the local intersections tests for primary intersection
points that are not covered by shadow stencils, but are subject
to shadowing by local objects.

Loadgingie_1s = local intersection tests + stencil tests =

axLoadl = f(N)+ B+ Loadl(a= f(N) + f8)

[0125] The component f(N) is functionally proportional to
the number of local objects in the cell. The non-linearity of
this term stems from the possible use of accelerating data
structures, such as KD-tree, Octree, or other. Apparently, the
first part of the equation is dominant in cells that are located
near to light sources, while the second part in the more distant
cells.

If K is the number of light sources, then the shadowing load
for multiple light sources is:

Load2=Load1*S,_ X(a,, N+,
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And finally, the aggregated primary load at each cell is given
by:

Load

primary
[0126] As argued above, pre-calculating the processing
load is conditioned by predictability of ray tracing process,
which in turn is enabled by locality of processing. The load
prediction at each cell is a product of stencil algorithm; the
size of the shooting stencil area at each cell indicates on
amount of intersected rays, i.e. processing load. In the pre-
processing stage stencils are generated, cell workloads are
extracted from stencils, and load distribution across the scene
is mapped. Once the load distribution is known ahead of run
time, the scene can be optimally distributed among available
processors for balanced run time processing.
[0127] In order to make the static load distribution scheme
of'the primary stage flexible and tunable, the uniform grid of
cells is subdivided into modules. The number of modules
reflects the amount of computing resources in the system. But
each module’s size can vary by number of cells, dispersion
across the scene space, and by assigned processing resources,
for the best load/processors match. The tune up of processing
load within a module is achieved by prioritizing its processing
resources among the cells in run time. A simultaneous
completion of processing at each module is not expected at
all. Each module, upon completion of the primary processing
across its cells, disintegrates into individual cells to join the
secondary stage, and the assigned processor instantaneously
becomes active in the new stage without spending any idle
time. The transition mechanism to secondary stage is
described in details hereinafter. Such a combined load bal-
ancing mechanism can address even the most extremely
imbalanced cases, such as the famous ‘rabbit in the stadium’.
[0128] An example of subdivision of cells into modules
according to the pre-calculated load is shown in FIG. 9A. A
ray tracing system has 12 non-uniformly populated cells and
3 processors for parallel processing. The darkness level of
gray cells reflects the pre-calculated shooting load at each
cell. The load level by no way is correlated with the number of
local objects, as cells 9101 and 9102 have the same number of
local objects, however 9101 has the most shooting load, while
the cell 9102 has no shooting at all, being obstructed from the
point of view by its neighbor’s objects. On the other hand, cell
9101 has little shadowing, being completely shadowed by the
objects of 9102. Cell 9107 is processed for shooting only
moderately, visible via the aperture of 9108, but its shadow-
ing load is high due to multiple local intersection tests. One
possible modular division in a system of 4 processors, gaining
afareloadbalance, is by assigning first processorto cell 9101,
second processor to cells 9108, third processor to 9104 and
9107, and forth processor to cells 9106 and 9105.
[0129] An extremely imbalanced case is shown in FIG. 9B.
It is known as ‘rabbit in the stadium’, when the entire data is
clustered in a small part of the scene space. Such a situation is
readily revealed in advance in the pre-processing stage, and
corrected by constructing a fine grained subdivision of the
populated subspace only, and then assembling modules of
these sub-cells.

=Loadl+Load2

Secondary Stage.

[0130] If the primary ray hits an object, the light may
bounce from the surface of the object. These rays are called
secondary rays. For example, for a shiny surface, a reflected
ray must be calculated. The refracted ray should be consid-
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ered if the ray hits a transparent or semi-transparent object. To
add the shadow effect, a shadow ray must be considered as
well. In FIG. 1 two secondary rays are depicted, a reflected
ray and a refracted ray. See also rays R'1 and T'1 in FIG. 2.

[0131] Our secondary stage is based on data-parallel
approach as well, utilizing the same regular grid of cells as of
the primary stage. The secondary ray shooting starts from the
point of intersection (either primary or secondary). The new
ray can be shot in any direction, depending on the normal at
the point, based on Snail law. The ray mostly leaves the cell
for one of the neighboring cells, being registered in a queue
buffer ofthe addressee. The target cell holds an input queue of
incoming secondary rays, all waiting for intersection tests
with local objects. These incoming rays, generated by other
runtime tasks, are the missing part of the static process local-
ity. Process locality is achieved only after having received the
incoming rays, so according to definition, this is a dynamic
process locality.

[0132] For secondary shadowing the shadow stencils, that
have been created in the preprocessing stage and used in the
primary stage, are used as well. The shadowing process, same
as in the primary stage, contributes to process locality, though
let’s see the overall process locality of the secondary stage. In
the secondary stage of our data parallel approach the incom-
ing rays, stored locally in the input queue buffer, must be
confronted with the local subset of objects. The ray data are
delivered to the cell in its inactive period, prior assigning a
processor. The geometry subset of local objects is loaded into
processor’s cache memory at the launch of the cell’s active
period. It is assumed that the grid resolution of the entire
scene is designed such that the memory footprint for local
scene geometry, cell’s shadow stencils, local KD-tree (or
other accelerating structure) and input queue, would fit within
a cache that might normally be provided with a general pur-
pose processor. Now, having all the required data on place for
processing a cell, all the conditions for dynamic process
locality are fulfilled. The parallel processing load balance of
the secondary stage can’t be solved the same way of the
primary, since the load distribution among cells is not known
in advance, as it was in the primary stage. Therefore, the
parallelism must be solved in demand driven way, where the
work flow is controlled for optimal load balance, dynamically
assigning cells to processors.

[0133] The demand driven mode of the secondary stage is
based on the same subdivision of space into regular grid of
cells, however, whereas in the primary stage those cells were
arranged in modules, in secondary stage each cell is treated
individually as part of ‘soup of cells’. Each processor then
processes a cell at a time, until the cell’s input queue of rays
is exhausted. Whenever a processor finalizes a cell, it turns for
demanding a new cell. In terms of parallel processing, this is
a demand driven approach of data parallel space subdivision.
Although the distribution of cells among processors creates a
managing overhead, however only a little processing is
required to assign cells to processors. In shared memory
systems the inter cell communication of secondary rays is
solved by memory access in non-active time of the receiver. In
distributed memory systems this communication must be
physically performed. Anyway, at the time the receiving cell
turns active, all the required data for solving secondary ray
tracing at each cell is in place and it is local (object data,
stencils, input-queue ray data, accelerating structure, and out-
put-recomposition data). Therefore, this algorithm falls in the
class of embarrassingly parallel algorithms.
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[0134] The cell-wise flowchart of the secondary stage of
our ray tracing method is shown in FIG. 10. Prior the reacti-
vation 1001, the cell is inactive, meaning that no processor
was assigned to the cell, and all the data of incoming second-
ary rays from other active cells accumulates in the memory in
an Input Queue assigned to the cell. All Input Queues are
accessible to all processors. Upon assigning a processor to the
cell, the cell switches to active mode, and all the required local
data is brought 1002 into the cache memory that is associated
with the reactivated cell: local geometry data, cell’s shadow
stencils, input queue, and local KD-tree. According to one
basic embodiment the rays in the input queue are taken one by
one for KD-tree traversal and for other secondary processing.
[0135] Another embodiment calls for tracing the input
queue rays in coherent packets. Packet tracing involves trac-
ing a packet of rays having similar origins and directions
through a grid. The rays emit from a substantially common
grid location and travel in a substantially similar direction,
such that most of the rays go through common grid locations.
Thus, packet tracing requires identifying clusters of rays in
the input queue traveling in a similar direction, from a similar
origin. Residual rays that cannot be matched into packets are
traced individually. The packet based embodiment is built in
FIG. 10. The same flowchart can easily apply to a non pack-
eted rays, if the packet is just replaced by a single ray. The
input queue is sorted 1003 for packets. For each packet the
local KD-tree is traversed 1007 seeking for points of inter-
section. All points of intersection are stored 1008 in RISP
(record of intersected secondary points. Non intersected rays
are sent out 1009 to further cells. When all packets are
exhausted, the turn of individual cells to be traced. A ray is
taken to traverse 1011 the local KD-tree. If found, the inter-
section is stored 1014 in RISP, otherwise the ray is sent 1015
to adjacent cell. When all rays of the input queue are
exhausted, all RISP points are processed for shadowing 1016,
and for shading 1017. Then rays are tested for termination
condition 1018, and if found positive, a ray is stored in recom-
position buffer 1021, for a later transit back to the pixel of
origin. Otherwise the ray is tested for reflection or retraction
1019, while in both events at least one new ray joins the input
queue 1020. In such a case the new rays are subjects to anew
ray tracing sequence. Otherwise, the recomposition buffer of
rays is processed for recomposition 1023 and rays are sent
back on the way to their pixel of origin.

Runtime Workflow

[0136] The two runtime stages of present invention, pri-
mary and secondary, are both data-parallel, however they are
treated by two different load balancing strategies. In the pri-
mary stage, thanks to static processing locality, the cells are
allocated to processors by groups of modules. This allocation
lasts throughout the entire stage. Whereas in the secondary
stage, due to lack of static locality, but having dynamic pro-
cessing locality instead, there is no grouping of cells in mod-
ules, nor permanent allocation of cells to processors, but the
cells are taken for processing in a demand driven fashion.
Within each stage, and particularly in the transition between
these two stages, the utilization of processing resources (such
as processors and cache memories) is kept maximal, while the
idle times are kept minimal. This will become evident from
the following description of the workflow.

[0137] The primary stage consists of a series of sub-stages.
Those sub-stages play fluently with no idle times and with a
smooth transition between the primary and secondary stages.
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A maximal utilization of processing resources is achieved.
The data used in each cell during the primary stage comprises
local object data, local KD-tree, and local stencils. The cache
memory size would be preferably fit to this data, for maximal
cache utilization. Lists of light sources and empty cells are
available globally.

[0138] 1. Primary ray shooting. All local rays are generated
and tested for hitting the stencil-out. Rays that missed the
shooting stencil are dropped. Rays that hit shooting stencil
are checked for intersection with local objects, by way of a
local KD-tree. Each tested ray is a definite candidate for
hitting and object, thus the number of local hits equals to
the number of tested rays. All intersection points are stored
in RIPP (record of intersected primary points).

[0139] 2. Shadowing. All RIPP points must be tested for
shadowing. First, for all light sources, each RIPP point is
tested for hitting the shadow stencil by shooting a ray in the
light source direction. If a hit is recognized, the point is
shadowed. If no hit, the RIPP point is checked for intersec-
tion with relevant local objects vs. each of the light sources,
by means of KD-tree. Points having intersection are
shaded. All the points that survived the shadowing tests are
illuminated.

[0140] The transit to secondary stage is smooth, eliminat-
ing idle times between the primary and secondary stage. At
each cell, upon completing the shadowing, the RIPP points
are shaded. Shaded points are checked for secondary accord-
ing to surface characteristics. Points checked for secondary
are collected in record of secondary points (RSP). These
points are processed first for local points of refraction and
reflection, as a transition to the secondary stage. This process-
ing includes intersections with local objects and emitting rays
to the input queue of adjacent cells. Upon transition com-
pleted, the cell is released to the Demand Driven mechanism
for the secondary stage, and the processor switches to next
cell in the module. Each processor processes all its module’s
cells, one by one. Thus when a cell passes to secondary stage,
the processor is still engaged with remaining cells of its
module as a primary stage.

[0141] The secondary stage takes a demand driven

approach. There are no modules, each cell is treated individu-

ally as part of ‘soup of cells’. Each processoris allocated a cell
at a time. Upon termination, another cell is supplied.

[0142] 3. A cell that has completed primary stage joins the
pool of cells for the secondary stage. During its inactive
state, waiting to be ‘demanded’, its input queue buffer
remains available in the memory for incoming rays from
other cells.

[0143] 4. A processor, upon completing all its allocated
cells of the primary stage, counts in to the Demand Driven
working force. It is instantly allocated the next available
cell for secondary processing. There is no idle transition
time.

[0144] 5.Whena cell becomes active (taken by a processor)
all incoming rays gathered in its input queue buffer are
tested for intersection with local objects. If no hit, they are
sent to the next cell. If intersected, they are treated for
refraction and retraction. If reached terminal condition,
they are treated for texturing and recomposition with all
previous intersection points on the way back to the screen.
Speeding up the traversal of local KD-tree can be done by
presorting the queued rays into coherent packets: rays that
have nearly the same origin and nearly the same direction
are likely to trace out similar paths. The data used at each
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cell during secondary stage comprises local object data,
local KD-tree, local shadow stencils and ray input queue.
The cache memory size should match the size of this data,
for maximal cache utilization. Lists of light sources and
empty cells are available centrally.

[0145] The smooth transitioning between the primary and
secondary stages is illustrated in FIG. 11, a schematic flow-
chart of runtime workflow in a single processor: (a) primary
stage in a single data filled cell, (b) transition to secondary
stage, and (c) secondary stage. A cell taken once by a proces-
sor in the primary stage is fully worked out for primary stage
and for local secondary stage which is a transition to full
secondary stage. Two different approaches of parallelism are
taken. During the primary stage a processor is allocated a
module of cells for the entire stage, whereas in the secondary
stage there is no permanent association between processors
and cells. All cells are rather located in a single pool of cells,
picked up on demand by next available processor. In column
(a) a schematic description of primary stage is shown, where
cells are grouped in modules and each processor works out its
module’s cells one by one. The primary shooting 110 gener-
ates points of primary intersection which are stored in RIPP,
shadowed 111, and shaded 112. The primary shadowed
points having reflecting and/or refracting characteristics are
stored in RSP (record of secondary points), and are taken to
transition phase. (b) The transition phase comprises the first
secondary pass applied on local rays only in each cell, no
input rays from other cells. The local secondary rays are
processed for retraction and reflection, for intersection tests
with local objects 113, and whenever applicable, for shadow-
ing and shading 114. Rays that leave the cell are stored in
adjacent cell’s input queue which resides in main memory,
approachable to all. When the first pass of all local secondary
rays in a cell is completed, the cell is moved to secondary
stage 116, joining the secondary ‘soup of cells’. The proces-
sor picks up the next cell in the module. The processor moves
to the secondary stage 117 only when all its module’s cells
left for full secondary stage. (c) Then the processor joins the
pool of on-demand processing resources. It is allocated next
cell for secondary processing, downloads cell’s input queue
118, and processes the cell for secondary stage. The processor
and its fellow processors are fed cells from ‘soup of cells’ pool
until the secondary stage is exhausted 119. The fact that not
all processors switch at the same time to the second stage
works well due to flexibility of the transition phase; all pro-
cessors are at full utilization all the time, and the overall
processing load is well balanced.

[0146] The comprehensive preprocessing flowchart is
shown in FIGS. 12A and 12B. It repeats on the tasks of system
setup and generation of shooting stencils, described before in
FIG. 18, as well as generation of shadow stencils, described
before in FIG. 25. The tasks of precomputation of the primary
load, and modular division of cells are shown anew. Column
1 of FIG. 12 A describes the setup, including creation of grid
based data structure, mapping objects to cells, and compiling
a list of empty cells and light sources. Column 2 of FIG. 12A
describes generation at all non empty cells: (i) shooting sten-
cils, and (ii) accelerating data structure, i.e. KD-tree. Column
1 of FIG. 12B describes the generating of shadow stencils per
each external light source from a list, at all data filled cells, by
casting non-local objects for each data filled cell. Column 2 of
FIG. 12B describes amending of shadow stencils per each
internal in-scene light source from a list, atall data filled cells,
by casting non-local objects for each data filled cell. In block
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1220 cell’s primary load is calculated, based on surface area
of the shooting and shadow stencils, and on the number of
local objects, as described hereinbefore. Blocks 1221 and
1222 of column 3, respectively, describe distributing cells to
modules according to their primary load and mapping those
modules to processing resources for optimal load balancing.
[0147] Itis noteworthy to state that while the preprocessing
stage in a whole repeats every frame, the task of generating
shadow stencils is performed only upon changes in the scene
and in light sources. When a camera (POV) moves in and out
or around the scene, without real modification of the scene,
the generation of shadow stencil is saved from preprocessing.
The cost of generating shadow stencils is high and depends
very much on the number of light sources, so when multiple
light sources are present in the scene, the saved preprocessing
time may be significant. In prior art animated scenes present
a challenge due to the high cost of rebuilding a kd-tree as the
objects or the POV move. Building the acceleration structure
effectively requires seconds to minutes for moderately com-
plex scenes. Most algorithms for building kd-trees have a
time complexity of O(N log 2 N). E.g. for N=1,000,000, the
complexity is O(1,000,000%¥20)! Kd-trees therefore are
unsuitable for most truly dynamic animations that require
unstructured motion. For full generality, the acceleration
structure must be rebuilt from scratch every frame. For gen-
eral scenes, with kd-trees this is currently infeasible.

As opposed to prior art, we do not use a global kd-tree. The
local kd-trees that we use are small with low time complexity.
Although the time complexity of constructing a uniform grid
is neglectable, but the complexity of generating stencils is not
s0. Therefore, a resultant improval of performance by saving
the construction time of shadow stencil is significant for
running animated scenes.

Implementation Embodiments

[0148] Our stencil based algorithm can be efficiently
implemented on a single processor systems, as well as on
multiprocessor systems, general purpose processors, special
purpose processors, multicore processors, and GPUs. These
processors can be integrated in different computing systems
such as single processor computing systems, parallel com-
puters, PC-level computers, information server computers,
cloud server computers, laptops, portable processing sys-
tems, tablets, Smartphones, and other computer-based
machines. Although a sequential computing system is
capable of performing our shadowing algorithm, however,
parallel computing system would do it for larger models.
Today, a typical classification by model size is to small mod-
els of up to few hundreds of polygons, medium models of up
to a few millions of polygons, and large models of up to
billions of polygons. Due to our enhanced load balancing, the
performance scalability is linear to the number of participat-
ing processors. The multiple processors of a parallel system
can share a single ‘shared’ memory, typically for small or
medium models, when the model resides in a single memory
shared by all processors. For large models the multiple pro-
cessors of a parallel system would preferable have private
memories, so called distributed memory parallel computing
systems, when the large model is distributed among the
memories, and each processor has a sole access to its private
memory. An exemplary schematic description of a shared
memory parallel system competent to efficiently run our sten-
cil based algorithm is depicted in FIG. 13. There are four
processors, four shared caches, one GPU and one shared
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memory. In a preprocessing stage the processors run in par-
allel to distribute the scene objects, to create stencils, to
precalculate the primary loads and to create modules of cells
for the primary stage. Preferable, the GPU can be utilized for
creation stencils, due to the built in efficiency of a graphics
pipeline to process a stream of polygons. The number of
modules depends on the processing resources. For example, 4
processors can be employed in a multithreading way, 2
threads per processor. In such a case the scene space will be
preferable subdivided into 8 modules of cells, for enhanced
load balancing. In primary stage the modules are allocated to
processors (or to threads). Each processor makes a use of
caches and memory to process for visibility and shadowing
among its module’s cells, as described in details hereinbe-
fore. Each cell is processed in an entirely independent way,
generating a complete data of intersected and shadowed
points. The primary intersection points of reflectiveness and
transparency, become a starting point for secondary rays.
Once a primary cell is done, it is moved to the pool of sec-
ondary rays. When a processor exhausted all its primary cells,
it switches to the demanding mode of work of the secondary
stage, serving the pool of cells. When a cell is in its inactive
phase, all its private data; stencils, objects, location param-
eters, intersection points, shadowing results, etc., are kept in
the memory. When a cell is assigned a processor and switches
to active phase, the private data is downloaded to the cache,
serving the cell throughout its activity. Assuming a correct
system design, the cache keeps all the required data for cell’s
activity, reducing possible cache misses.

[0149] Commercial parallel systems may offer advantages
of'lower cost and matured programming environment. One of
such systems is a multi-core architecture by Intel, Sandy-
Bridge or IvyBridge. SandyBridge, as depicted in FIG. 14,
comprises multiple CPU cores 1411, multiple cache memo-
ries 1413, pipeline-graphics core (one or more) 1412, ring
type data interconnection 1418, display interface 1415, and
PCI express interface 1414. This is a shared memory parallel
system, with no private memories, integrated with SOC (sys-
tem on chip) technology (termed also ‘multicore’), where the
entire system resides on a single chip, and silicon constraints
exclude constructing private memories on the chip. Therefore
the main memory 1416 is external to the SOC and connected
by an integrated memory controller IMC 1417.

[0150] An example of efficient implementation of our sten-
cil based algorithm on a multicore system is shown in FIG.
15A. The simplified schematic description includes four CPU
cores, four shared caches, data ring interconnection, and
shared memory. The graphics module 1412 of the multicore is
not shown, but it can be utilized for some parts of our stencil
based algorithm, such as shading, texturing, stencil genera-
tion, etc. FIG. 15B depicts an allocation example of the cell
modules of FIG. 9A onto the CPU cores of the multicore
described. In this example threads are not utilized. Four mod-
ules are shown. Two modules 1521 and 1522, having one cell
each, are allocated to processors 1 and 2, respectively. The
two other modules, 1523 and 1524, having two cells each, are
allocated to processors 3 and 4, respectively.

[0151] If very large models need to be rendered, the pro-
cessing, storage and cache requirements as well as memory
bandwidth will increase in accordance. It may then become
inefficient to run our parallel algorithm on a single multicore
system efficiently. Therefore for large models a distributed
memory parallel system would be more suitable. FIG. 16
shows a non-binding schematic example of a distributed
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memory ray tracing system built of Multicores. There are four
Multicores interconnected by a ring, each multicore has a
private memory for its exclusive use, and all are connected to
secondary storage by means of the ring. The external ring
interconnect is of course much slower than the on-chip inte-
grated interconnection of a multicore. This causes a disad-
vantage in the secondary demand driven stage, due to inten-
sive intercell communication of secondary rays. Fortunately
enough, the primary stage lacks inter cell communication, so
there is no communication along the central ring during the
primary stage. The use of the external ring starts only when
the core processors start to transit from primary to secondary
stage.

[0152] Another example of an efficient implementation of
our stencil based ray tracing is the GPU. In recent years the
GPU has evolved into a processor with unprecedented float-
ing-point performance and programmability; today’s GPUs
greatly outpace CPUs in arithmetic throughput and memory
bandwidth, making them a good match to accelerate a variety
of'data parallel applications. The modern discrete GPUs have
hundreds of processing units called ‘shaders’ matching the
embarrassingly parallel task of running thousands of cells of
our stencil based ray tracing. FIG. 17 shows an example of a
GPU system 170 based on Fermi GPU 171, with video
memory (DRAM) 172, a monitoring host CPU 173, and main
memory 174. The processing at the cell level is done by
threads. The local cell data to a thread is provided by the
memory hierarchy of .1 cache, L.2 cache and DRAM. For the
primary stage the shaders are assigned to modules according
to a preprocessing load balancing considerations. In the sec-
ondary stage the interconnect network is used to deliver the
secondary rays to their cell destination.

[0153] If very large models need to be rendered, the pro-
cessing, storage and cache requirements as well as memory
bandwidth will increase in accordance. It may then become
inefficient to run our parallel algorithm on a single GPU
system. Therefore for large models a distributed memory
parallel system would be more suitable. FIG. 18 shows a
non-binding schematic example of a distributed memory ray
tracing system built of GPUs. There are four GPUs 170 inter-
connected by aring, each GPU has a private DRAM memory,
and all are connected to secondary storage 181 by means of
ring. The host CPU 182 is connected to the ring as well.

What is claimed is:

1. A method of ray tracing in a computer graphics system,
having stencil based shadowing, implemented on cells, com-
prising the steps of:
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A. preprocessing computing phase
a. generating data structure of cells, wherein a cell is a
basic unit of process and data locality;
b. mapping objects of 3D scene_onto cells;
c. generating shadow stencils in cells, said shadow sten-
cils cache shadows of non-local objects that occlude a
light source, wherein said caching of shadows provide
locality of data in cells;
B. runtime computing phase
d. locally at each cell, generating local ray segments of
shadow rays at local primary intersection points;
e. locally at cell, testing each local ray segment of a
shadow ray for a hit with a shadow stencil;
wherein, in the event of a hit, the primary point of
intersection associated with the tested local ray
segment is in shadow; and

wherein, in the event of no hit, the tested ray segment
is further tested for shadow by intersection tests
with local objects.

2. The method of claim 1, wherein said computer data
structure of grid of cells comprises uniform cells.

3. The method of claim 1, wherein at each data filled cell,
local ray segments, are generated for all local primary inter-
section points in a cell.

4. The method of claim 1, wherein in each data filled cell
each local segment of a shadow ray is associated with a
different primary intersection point.

5. The method of claim 11, wherein a hit between local
segments of shadow rays and shadow stencil indicates that
said primary intersection points are in shadow.

6. The method of claim 1, wherein the said method is
implemented using at least one or more of a general purpose
processors, special purpose processors, multicore processors
or GPU.

7. The method of claim 1, wherein all shadowing tests are
strictly local to a cell.

8. The method of claim 1, wherein the shadowing workload
in a cell can be pre-calculated based on the surface area of the
shadow stencil and on the number of local objects in a cell.

9. The method of claim 18, wherein a load balancing of the
system is achievable, and such load balancing is assisted by
pre-calculating the distribution of shadowing workloads
among cells.

10. The method of claim 1, wherein the said method is
implemented on one or more computers selected from the
group consisting of a PC-level computer, information server
computer, cloud server computer, parallel computer, laptop,
portable processing system, tablet, Smartphone, and any
computer-based machine.
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