a2 United States Patent

Chen et al.

US011943468B2

ao) Patent No.: US 11,943,468 B2
45) Date of Patent: Mar. 26, 2024

(54)

(71)

(72)

(73)

")

@
(22)

(65)

(63)

(1)

(52)

METHODS AND APPARATUS OF VIDEO
CODING USING PREDICTION
REFINEMENT WITH OPTICAL FLOW

Applicant: BEIJING DAJIA INTERNET

Inventors:

Assignee:

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 220 days.

Appl. No.: 17/527,024

Filed:

US 2022/0078478 Al

INFORMATION TECHNOLOGY
CO., LTD., Beijing (CN)

Yi-Wen Chen, Beijing (CN); Xiaoyu

Xiu, Beijing (CN); Tsung-Chuan Ma,
Beijing (CN); Hong-Jheng Jhu, Beijing
(CN); Shuiming Ye, Beijing (CN);
Xianglin Wang, Beijing (CN)

BEIJING DAJIA INTERNET

INFORMATION TECHNOLOGY
CO., LTD., Beijing (CN)

Nov. 15, 2021

Prior Publication Data

Mar. 10,

2022

Related U.S. Application Data

No.

Continuation of application
PCT/US2020/028655, filed on Apr. 17, 2020.
(Continued)

Int. CL.

HO4N 19/52 (2014.01)

HO4N 19/176 (2014.01)
(Continued)

U.S. CL

CPC

........... HO4N 19/52 (2014.11); HO4N 19/176

(58) Field of Classification Search
None
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

2018/0098063 Al 4/2018 Chen et al.
2018/0192069 Al 7/2018 Chen et al.

(Continued)

FOREIGN PATENT DOCUMENTS

WO W02020247577 Al 10/2020

OTHER PUBLICATIONS

Luo et al., “CE2-related: Prediction refinement with optical flow for
affine mode,” Joint Video Experts Team (JVET) of ITU-T SG 16
WP 3 and ISO/IEC JTC 1/SC 29/WG 11 14th Meeting: Geneva,
CH, Mar. 19-27, 2019, JVET-N0236-15.*

(Continued)

Primary Examiner — Edemio Navas, Jr.
(74) Attorney, Agent, or Firm — Scully, Scott, Murphy &
Presser, P.C.

(57) ABSTRACT

An electronic apparatus performs a method of updating an
inter-predicted current block using a neighboring affine
block. The electronic apparatus first identifies a pixel within
the inter-predicted current block, the pixel having a first
inter-predicted pixel value. Next, the electronic apparatus
determines a motion vector difference for the pixel based on
a set of affine parameters of the neighboring affine block and
then a pixel value difference for the pixel according to the
motion vector difference. The pixel value difference is an
inner product of the pixel value gradient vector and the
motion vector difference as the pixel value difference.
Finally, the electronic apparatus updates the first inter-
predicted pixel value with the pixel value difference as a
second inter-predicted pixel value.

(2014.11); HO4N 19/182 (2014.11); HO4N

19/577 (2014.11); HO4N 19/80 (2014.11)

18 Claims, 9 Drawing Sheets

¥

Neighbor
ing Block
540-2

4x4 Sub-Block

530-2

Current Block 530

X

iy

Neighbor
ing Block
5401

o

4x4 Sub-Block

530-1

¥y

US 11,943,468 B2
Page 2

Related U.S. Application Data
(60) Provisional application No. 62/836,599, filed on Apr.

19, 2019.
(51) Imt.CL
HO4N 19/182 (2014.01)
HO4N 19/577 (2014.01)
HO4N 19/80 (2014.01)
(56) References Cited

U.S. PATENT DOCUMENTS

2019/0082191 Al 3/2019 Chuang et al.

2019/0116376 Al 4/2019 Chen et al.

2019/0327482 Al* 10/2019 Lin ...ccovvviiivnn. HO4N 19/52
2020/0404256 Al* 12/2020 Zhang HO4N 19/52
2021/0211679 Al1* 7/2021 Zhang HO4N 19/105
2021/0329229 Al* 10/2021 Chen HO4AN 19/463
2022/0070448 Al* 3/2022 Kim ...cccovviiviinnns HO4N 19/54

OTHER PUBLICATIONS

Chen et al., “Algorithm description for Versatile Video Coding and
Test Model 4 (VIM 4)”, Joint Video Experts Team (JVET) of
ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11, 13th
Meeting: Marrakech, MA, Jan. 9-18, 2019, JVET-M1002-v2.*
Beijing Dajia Internet Information Technology Co. Ltd., EP20791062.
1, Extended Furopean Search Report, dated Dec. 8, 2022, 15 pgs.
Xiaoyu Xiu et al., “CE4-related: Harmonization of BDOF and
PROF”, Document: JVET-00593, Joint Video Experts Team (JVET)
of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11, 15th
Meeting: Gothenburg, SE, Jul. 3-12, 2019, 5 pgs.

Jianle Chen et al., “Algorithm descriptionfor Versatile Video Coding
and Test Mode 4 (VIM 4)”, Document: JVET-M1002-v2, Joint
Video Experts Team (JVET) of ITU-T SG 16 WP 3 and ISO/IEC
JIC 1/SC 29/WG 11, 13th Meeting: Marrakech, MA, Jan. 9-18,
2019, 62 pgs.

Haitao Yang et al., “Description of Core Experiment 4 (CE4): Inter
Prediction”, Document: JVET-N1024-v2, Joint Video Experts Team
(JVET) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11,
14th Meeting: Geneva, CH, Mar. 19-27, 2019, 11 pgs.

Chun-Chi Chen et al., “BoG report on CE2 sub-block based motion
prediction related contributions”, Document: JVET-N0776-v4, Joint
Video Experts Team (JVET) of ITU-T SG 16 WP 3 and ISO/IEC
JTC 1/SC 29/WG 11, 14th Meeting: Geneva, CH, Mar. 19-27, 2019,
12 pgs.

Han Huang et al., “CE2-related: Simplified prediction refinement
for affine motion compensation”, Document: JVET-N0504, Joint
Video Experts Team (JVET) of ITU-T SG 16 WP 3 and ISO/IEC
JTC 1/SC 29/WG 11, 14th Meeting: Geneva, CH, Mar. 19-27, 2019,
3 pgs.

Xiang Li et al., “Non-CE2: Combination of affine MV clip and
prediction refinement with optical flow”, Document: JVET-N0737_
rl, Joint Video Experts Team (JVET) of ITU-T SG 16 WP 3 and
ISO/IEC JTC 1/SC 29/WG 11, 14th Meeting: Geneva, CH, Mar.
19-27, 2019, 3 pgs.

Beijing Dajia Internet Information Technology Co. Ltd et al.,
International Search Report and Written Opinion, PCT/US2020/
028655, dated Jul. 27, 2020, 8 pgs.

Jiancong (Daniel) Luo, CE2-related: Prediction refinement with
optical flow for a affine mode, Joint Video Experts Team (JVET) of
ITU-T-SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11, Document:
JVET-N02365, 14th Meeting: Geneva, CH, Mar. 19-27, 2019, 8

pgs.

* cited by examiner

US 11,943,468 B2

Sheet 1 of 9

Mar. 26, 2024

U.S. Patent

g¢ ooepalu| Indu|

¢ Jopooa(08pIA

I

9l

N

Z @oepalu| IndinQ

k

Z 1opooug 08pIA

7S ao1naQq Aeldsiq

Z€ 9oIna(abelois

[@21n8Qg uoneunsaqg

|

[@2JN0S 09pPIA

ZT 991A9Q 9291n0S

US 11,943,468 B2

Sheet 2 of 9

Mar. 26, 2024

U.S. Patent

¢ '9Old
09 1N ¢
Buissad0.d R o %0 Jaung
WIOJSUBIL [yo0q [enpisey o019 alnld peposaq
mm%é_ Pa1ONJISUOIDY Pa1ONJISUOIDY
|G HuN
uoneznuenp
— osJoAU| — ¥ Hun
- upoous le—1 00ig o e | | uonesueduiog
weaJsyig £do e SAldIpald uonow
03PIA i 4
papooug o 75
sjuswia|3 xejuhs wun Buissasoid | | nun uonewnsg
uonoIpald BAu| UONO
7S Hun o
%00|g i
uonezjuend SATOIDaIY N uohiLed
T% 1un Buissesolg uonoipaid
__ 0S a
Zs Hun
Buissaoold | + OF Alows|y ele 09pIA |-
wJojsuels | A00|g [enplsay

Z Jopooaug oapIpn

ejeq O08pIA

US 11,943,468 B2

Sheet 3 of 9

Mar. 26, 2024

U.S. Patent

€ 'Old

6 Jayng
g e
oapip pepooeq | | PEPO”Rd

06

39019
pajoniisuoosy

300|g [eNnplsay

90|d [uonolpald

88 uun Buissaoold
WwJojsues] 9sJaAU|

98 Wun
gg uun Adon uoneziueny) asianu|
300|g elju|
STl ITE=Tolg)
— psziuenp
R
uolnoipald ed| —
08
> < nun Buipodssq Adonug
300|g aoualaley S50 SusWalg ! .
uonesuadwo?) xepks

Uono

78 nun Buissasoud
u

onoIpald

€ 19p029(Q O3PIA

BZ fowsay Bleq 09PIA

<

wealjsiig

O3PIA
papoouy

U.S. Patent Mar. 26, 2024 Sheet 4 of 9 US 11,943,468 B2

CHHEF T
ReF=—"1 P i -+
FIG. 4A
i Luma CTB

(128x128)
64x64 —
32x32
16x16)
CbCTB | CrCTB

FIG. 4B

US 11,943,468 B2

Sheet 5 of 9

Mar. 26, 2024

U.S. Patent

oF 'Ol
8Xg | 8X8
91X91 91X91 91X91
/ 8Xg | 8X8
ZEXTE ~— ovp ZeXTE
91X91 91X91 91X91 91X91
8Xg | 8X8
Om/uwl\\ 91Xgl 91X91 91X91
8Xg | 8X8
ZEXTE zEXTE
91X91 91X91 91X91 91X91
\\\\\\.omv
I
ZEXTE zEXTE
¢ (P9X¥9) NLO
ZEXTE zEXTE

US 11,943,468 B2

Sheet 6 of 9

Mar. 26, 2024

U.S. Patent

8x8 8X8 8Xx8 8xg8
91X0l \ 91x91
Bz
ARSAN
0cy

ar-

0[0)4

Old

8x8 8X8 8x8 8xg8

91x91 91X9l 91X9l

ocy

ARSAN

0Ly

91x91

US 11,943,468 B2

Sheet 7 of 9

Mar. 26, 2024

U.S. Patent

a9 'Old

(raw WA

2G00|g 1ualind

(AW “AWAIN ©

(feAw AW AN

(fiaw *aw) AN

VS "Old

016 o0l|g aln)

(AW “AWAIN @

(foaw XOAW)OAIN

(AW AW AN

US 11,943,468 B2

Sheet 8 of 9

Mar. 26, 2024

U.S. Patent

as 'oid
L-0¥S
1-0€9
%00|g-ans pXxi ooig Bul
JoqybieN
-
X
0EG ¥o0ig uaun)
A

¢ 09

%00|g-aNS pXir

covs
yoo|g Bul
JoqybieN

*A

J¢ 'Ol

N

S

hmﬂcmo>_\/_ / [

\

N

o |

(Fraw AW) AN

(‘onw “oAw)oAN

U.S. Patent Mar. 26, 2024 Sheet 9 of 9 US 11,943,468 B2

[©2]
o
o

identifying a pixel within the inter-predicted current block, the pixel having
a first inter-predicted pixel value 610

l

determining a motion vector difference for the pixel based on a set of
affine parameters of the neighboring affine block 630

l

determining a pixel value difference for the pixel according to the motion
vector difference 650

determining a pixel value gradient vector for the pixel 650-1

!

calculating an inner product of the pixel value gradient vector and
the motion vector difference as the pixel value difference 650-3

l

updating the first inter-predicted pixel value with the pixel value
difference as a second inter-predicted pixel value 670

weighting the pixel value difference by a weighting factor 670-1

!

adding the weighted pixel value difference to the first inter-
predicted pixel value as the second inter-predicted pixel value
670-3

FIG. 6

US 11,943,468 B2

1
METHODS AND APPARATUS OF VIDEO
CODING USING PREDICTION
REFINEMENT WITH OPTICAL FLOW

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of PCT application No.
PCT/US2020/028655, entitled “METHODS AND APPA-
RATUS OF VIDEO CODING USING PREDICTION
REFINEMENT WITH OPTICAL FLOW” filed on Apr. 17,
2020, which claims the benefit of U.S. Provisional Appli-
cation No. 62/836,599, entitled “PREDICTION REFINE-
MENT WITH OPTICAL FLOW USING AFFINE
MOTION MODEL” filed on Apr. 19, 2019, the entire
disclosure of both of which is incorporated herein by refer-
ence.

TECHNICAL FIELD

The present application generally relates to video data
encoding and decoding, and in particular, to method and
system of video coding using prediction refinement with
optical flow.

BACKGROUND

Digital video is supported by a variety of electronic
devices, such as digital televisions, laptop or desktop com-
puters, tablet computers, digital cameras, digital recording
devices, digital media players, video gaming consoles, smart
phones, video teleconferencing devices, video streaming
devices, etc. The electronic devices transmit, receive,
encode, decode, and/or store digital video data by imple-
menting video compression/decompression standards as
defined by MPEG-4, ITU-T H.263, ITU-T H.264/MPEG-4,
Part 10, Advanced Video Coding (AVC), High Efficiency
Video Coding (HEVC), and Versatile Video Coding (VVC)
standard. Video compression typically includes performing
spatial (intra frame) prediction and/or temporal (inter frame)
prediction to reduce or remove redundancy inherent in the
video data. For block-based video coding, a video frame is
partitioned into one or more slices, each slice having mul-
tiple video blocks, which may also be referred to as coding
tree units (CTUs). Each CTU may contain one coding unit
(CU) or recursively split into smaller CUs until the pre-
defined minimum CU size is reached. Each CU (also named
leaf CU) contains one or multiple transform units (TUs) and
each CU also contains one or multiple prediction units
(PUs). Each CU can be coded in either intra, inter or IBC
modes. Video blocks in an intra coded (I) slice of a video
frame are encoded using spatial prediction with respect to
reference samples in neighboring blocks within the same
video frame. Video blocks in an inter coded (P or B) slice of
a video frame may use spatial prediction with respect to
reference samples in neighboring blocks within the same
video frame or temporal prediction with respect to reference
samples in other previous and/or future reference video
frames.

Spatial or temporal prediction based on a reference block
that has been previously encoded, e.g., a neighboring block,
results in a predictive block for a current video block to be
coded. The process of finding the reference block may be
accomplished by block matching algorithm. Residual data
representing pixel differences between the current block to
be coded and the predictive block is referred to as a residual
block or prediction errors. An inter-coded block is encoded

10

15

20

25

30

35

40

45

50

55

60

65

2

according to a motion vector that points to a reference block
in a reference frame forming the predictive block, and the
residual block. The process of determining the motion vector
is typically referred to as motion estimation. An intra coded
block is encoded according to an intra prediction mode and
the residual block. For further compression, the residual
block is transformed from the pixel domain to a transform
domain, e.g., frequency domain, resulting in residual trans-
form coefficients, which may then be quantized. The quan-
tized transform coefficients, initially arranged in a two-
dimensional array, may be scanned to produce a one-
dimensional vector of transform coefficients, and then
entropy encoded into a video bitstream to achieve even more
compression.

The encoded video bitstream is then saved in a computer-
readable storage medium (e.g., flash memory) to be accessed
by another electronic device with digital video capability or
directly transmitted to the electronic device wired or wire-
lessly. The electronic device then performs video decom-
pression (which is an opposite process to the video com-
pression described above) by, e.g., parsing the encoded
video bitstream to obtain syntax elements from the bitstream
and reconstructing the digital video data to its original
format from the encoded video bitstream based at least in
part on the syntax elements obtained from the bitstream, and
renders the reconstructed digital video data on a display of
the electronic device.

SUMMARY

The present application describes implementations related
to video data encoding and decoding and, more particularly,
to system and method of video coding using prediction
refinement with optical flow.

According to a first aspect of the present application, a
method of updating an inter-predicted current block using a
neighboring affine block is performed at an electronic appa-
ratus, the method including: identifying a pixel within the
inter-predicted current block, the pixel having a first inter-
predicted pixel value; determining a motion vector differ-
ence for the pixel based on a set of affine parameters of the
neighboring affine block; determining a pixel value differ-
ence for the pixel according to the motion vector difference;
and updating the first inter-predicted pixel value with the
pixel value difference as a second inter-predicted pixel
value.

According to a second aspect of the present application,
an electronic apparatus includes one or more processing
units, memory and a plurality of programs stored in the
memory. The programs, when executed by the one or more
processing units, cause the electronic apparatus to perform
the method of updating an inter-predicted current block
using a neighboring affine block as described above.

According to a third aspect of the present application, a
non-transitory computer readable storage medium stores a
plurality of programs for execution by an electronic appa-
ratus having one or more processing units. The programs,
when executed by the one or more processing units, cause
the electronic apparatus to perform the method of updating
an inter-predicted current block using a neighboring affine
block as described above.

BRIEF DESCRIPTION OF DRAWINGS

The accompanying drawings, which are included to pro-
vide a further understanding of the implementations and are
incorporated herein and constitute a part of the specification,

US 11,943,468 B2

3

illustrate the described implementations and together with
the description serve to explain the underlying principles.
Like reference numerals refer to corresponding parts.

FIG. 1 is a block diagram illustrating an exemplary video
encoding and decoding system in accordance with some
implementations of the present disclosure.

FIG. 2 is a block diagram illustrating an exemplary video
encoder in accordance with some implementations of the
present disclosure.

FIG. 3 is a block diagram illustrating an exemplary video
decoder in accordance with some implementations of the
present disclosure.

FIGS. 4A-4D are block diagrams illustrating how a frame
is recursively quad-tree partitioned into multiple video
blocks of different sizes in accordance with some imple-
mentations of the present disclosure.

FIGS. 5A and 5B are block diagrams illustrating a 4-pa-
rameter block-based affine motion model and a 6-parameter
block-based affine motion model, respectively, in accor-
dance with some implementations of the present disclosure.

FIG. 5C is a block diagram illustrating exemplary motion
vector distribution of a 4x4 sub-block derived from a
4-parameter affine motion model in accordance with some
implementations of the present disclosure.

FIG. 5D is a block diagram illustrating spatial relationship
between a sub-block within an inter-predicted current block
and a neighboring affine block in accordance with some
implementations of the present disclosure.

FIG. 6 is a flowchart illustrating a process of refining a
prediction for a sub-block within an inter-predicted current
block using a neighboring affine block in accordance with
some implementations of the present disclosure.

DETAILED DESCRIPTION

Reference will now be made in detail to specific imple-
mentations, examples of which are illustrated in the accom-
panying drawings. In the following detailed description,
numerous non-limiting specific details are set forth in order
to assist in understanding the subject matter presented
herein. But it will be apparent to one of ordinary skill in the
art that various alternatives may be used without departing
from the scope of claims and the subject matter may be
practiced without these specific details. For example, it will
be apparent to one of ordinary skill in the art that the subject
matter presented herein can be implemented on many types
of electronic devices with digital video capabilities.

FIG. 1 is a block diagram illustrating an exemplary
system 10 for encoding and decoding video blocks in
parallel in accordance with some implementations of the
present disclosure. As shown in FIG. 1, system 10 includes
a source device 12 that generates and encodes video data to
be decoded at a later time by a destination device 14. Source
device 12 and destination device 14 may comprise any of a
wide variety of electronic devices, including desktop or
laptop computers, tablet computers, smart phones, set-top
boxes, digital televisions, cameras, display devices, digital
media players, video gaming consoles, video streaming
device, or the like. In some implementations, source device
12 and destination device 14 are equipped with wireless
communication capabilities.

In some implementations, destination device 14 may
receive the encoded video data to be decoded via a link 16.
Link 16 may comprise any type of communication medium
or device capable of moving the encoded video data from
source device 12 to destination device 14. In one example,
link 16 may comprise a communication medium to enable

10

15

20

25

30

35

40

45

50

55

60

65

4

source device 12 to transmit the encoded video data directly
to destination device 14 in real-time. The encoded video data
may be modulated according to a communication standard,
such as a wireless communication protocol, and transmitted
to destination device 14. The communication medium may
comprise any wireless or wired communication medium,
such as a radio frequency (RF) spectrum or one or more
physical transmission lines. The communication medium
may form part of a packet-based network, such as a local
area network, a wide-area network, or a global network such
as the Internet. The communication medium may include
routers, switches, base stations, or any other equipment that
may be useful to facilitate communication from source
device 12 to destination device 14.

In some other implementations, the encoded video data
may be transmitted from output interface 22 to a storage
device 32. Subsequently, the encoded video data in storage
device 32 may be accessed by destination device 14 via
input interface 28. Storage device 32 may include any of a
variety of distributed or locally accessed data storage media
such as a hard drive, Blu-ray discs, DVDs, CD-ROMs, flash
memory, volatile or non-volatile memory, or any other
suitable digital storage media for storing encoded video
data. In a further example, storage device 32 may corre-
spond to a file server or another intermediate storage device
that may hold the encoded video data generated by source
device 12. Destination device 14 may access the stored
video data from storage device 32 via streaming or down-
loading. The file server may be any type of computer capable
of storing encoded video data and transmitting the encoded
video data to destination device 14. Exemplary file servers
include a web server (e.g., for a website), an FTP server,
network attached storage (NAS) devices, or a local disk
drive. Destination device 14 may access the encoded video
data through any standard data connection, including a
wireless channel (e.g., a Wi-Fi connection), a wired con-
nection (e.g., DSL, cable modem, etc.), or a combination of
both that is suitable for accessing encoded video data stored
on a file server. The transmission of encoded video data from
storage device 32 may be a streaming transmission, a
download transmission, or a combination of both.

As shown in FIG. 1, source device 12 includes a video
source 18, a video encoder 20 and an output interface 22.
Video source 18 may include a source such as a video
capture device, e.g., a video camera, a video archive con-
taining previously captured video, a video feed interface to
receive video from a video content provider, and/or a
computer graphics system for generating computer graphics
data as the source video, or a combination of such sources.
As one example, if video source 18 is a video camera of a
security surveillance system, source device 12 and destina-
tion device 14 may form camera phones or video phones.
However, the implementations described in the present
application may be applicable to video coding in general,
and may be applied to wireless and/or wired applications.

The captured, pre-captured, or computer-generated video
may be encoded by video encoder 20. The encoded video
data may be transmitted directly to destination device 14 via
output interface 22 of source device 12. The encoded video
data may also (or alternatively) be stored onto storage device
32 for later access by destination device 14 or other devices,
for decoding and/or playback. Output interface 22 may
further include a modem and/or a transmitter.

Destination device 14 includes an input interface 28, a
video decoder 30, and a display device 34. Input interface 28
may include a receiver and/or a modem and receive the
encoded video data over link 16. The encoded video data

US 11,943,468 B2

5

communicated over link 16, or provided on storage device
32, may include a variety of syntax elements generated by
video encoder 20 for use by video decoder 30 in decoding
the video data. Such syntax elements may be included within
the encoded video data transmitted on a communication
medium, stored on a storage medium, or stored a file server.

In some implementations, destination device 14 may
include a display device 34, which can be an integrated
display device and an external display device that is con-
figured to communicate with destination device 14. Display
device 34 displays the decoded video data to a user, and may
comprise any of a variety of display devices such as a liquid
crystal display (LCD), a plasma display, an organic light
emitting diode (OLED) display, or another type of display
device.

Video encoder 20 and video decoder 30 may operate
according to proprietary or industry standards, such as VVC,
HEVC, MPEG-4, Part 10, Advanced Video Coding (AVC),
or extensions of such standards. It should be understood that
the present application is not limited to a specific video
coding/decoding standard and may be applicable to other
video coding/decoding standards. It is generally contem-
plated that video encoder 20 of source device 12 may be
configured to encode video data according to any of these
current or future standards. Similarly, it is also generally
contemplated that video decoder 30 of destination device 14
may be configured to decode video data according to any of
these current or future standards.

Video encoder 20 and video decoder 30 each may be
implemented as any of a variety of suitable encoder cir-
cuitry, such as one or more microprocessors, digital signal
processors (DSPs), application specific integrated circuits
(ASICs), field programmable gate arrays (FPGAs), discrete
logic, software, hardware, firmware or any combinations
thereof. When implemented partially in software, an elec-
tronic device may store instructions for the software in a
suitable, non-transitory computer-readable medium and
execute the instructions in hardware using one or more
processors to perform the video coding/decoding operations
disclosed in the present disclosure. Each of video encoder 20
and video decoder 30 may be included in one or more
encoders or decoders, either of which may be integrated as
part of a combined encoder/decoder (CODEC) in a respec-
tive device.

FIG. 2 is a block diagram illustrating an exemplary video
encoder 20 in accordance with some implementations
described in the present application. Video encoder 20 may
perform intra and inter predictive coding of video blocks
within video frames. Intra predictive coding relies on spatial
prediction to reduce or remove spatial redundancy in video
data within a given video frame or picture. Inter predictive
coding relies on temporal prediction to reduce or remove
temporal redundancy in video data within adjacent video
frames or pictures of a video sequence.

As shown in FIG. 2, video encoder 20 includes video data
memory 40, prediction processing unit 41, decoded picture
buffer (DPB) 64, summer 50, transform processing unit 52,
quantization unit 54, and entropy encoding unit 56. Predic-
tion processing unit 41 further includes motion estimation
unit 42, motion compensation unit 44, partition unit 45, intra
prediction processing unit 46, and intra block copy (BC) unit
48. In some implementations, video encoder 20 also
includes inverse quantization unit 58, inverse transform
processing unit 60, and summer 62 for video block recon-
struction. A deblocking filter (not shown) may be positioned
between summer 62 and DPB 64 to filter block boundaries
to remove blockiness artifacts from reconstructed video. An

10

15

20

25

30

35

40

45

50

55

60

65

6

in loop filter (not shown) may also be used in addition to the
deblocking filter to filter the output of summer 62. Video
encoder 20 may take the form of a fixed or programmable
hardware unit or may be divided among one or more of the
illustrated fixed or programmable hardware units.

Video data memory 40 may store video data to be encoded
by the components of video encoder 20. The video data in
video data memory 40 may be obtained, for example, from
video source 18. DPB 64 is a buffer that stores reference
video data for use in encoding video data by video encoder
20 (e.g., in intra or inter predictive coding modes). Video
data memory 40 and DPB 64 may be formed by any of a
variety of memory devices. In various examples, video data
memory 40 may be on-chip with other components of video
encoder 20, or off-chip relative to those components.

As shown in FIG. 2, after receiving video data, partition
unit 45 within prediction processing unit 41 partitions the
video data into video blocks. This partitioning may also
include partitioning a video frame into slices, tiles, or other
larger coding units (CUs) according to a predefined splitting
structures such as quad-tree structure associated with the
video data. The video frame may be divided into multiple
video blocks (or sets of video blocks referred to as tiles).
Prediction processing unit 41 may select one of a plurality
of possible predictive coding modes, such as one of a
plurality of intra predictive coding modes or one of a
plurality of inter predictive coding modes, for the current
video block based on error results (e.g., coding rate and the
level of distortion). Prediction processing unit 41 may
provide the resulting intra or inter prediction coded block to
summer 50 to generate a residual block and to summer 62 to
reconstruct the encoded block for use as part of a reference
frame subsequently. Prediction processing unit 41 also pro-
vides syntax elements, such as motion vectors, intra-mode
indicators, partition information, and other such syntax
information, to entropy encoding unit 56.

In order to select an appropriate intra predictive coding
mode for the current video block, intra prediction processing
unit 46 within prediction processing unit 41 may perform
intra predictive coding of the current video block relative to
one or more neighboring blocks in the same frame as the
current block to be coded to provide spatial prediction.
Motion estimation unit 42 and motion compensation unit 44
within prediction processing unit 41 perform inter predictive
coding of the current video block relative to one or more
predictive blocks in one or more reference frames to provide
temporal prediction. Video encoder 20 may perform mul-
tiple coding passes, e.g., to select an appropriate coding
mode for each block of video data.

In some implementations, motion estimation unit 42
determines the inter prediction mode for a current video
frame by generating a motion vector, which indicates the
displacement of a prediction unit (PU) of a video block
within the current video frame relative to a predictive block
within a reference video frame, according to a predeter-
mined pattern within a sequence of video frames. Motion
estimation, performed by motion estimation unit 42, is the
process of generating motion vectors, which estimate
motion for video blocks. A motion vector, for example, may
indicate the displacement of a PU of a video block within a
current video frame or picture relative to a predictive block
within a reference frame (or other coded unit) relative to the
current block being coded within the current frame (or other
coded unit). The predetermined pattern may designate video
frames in the sequence as P frames or B frames. Intra BC
unit 48 may determine vectors, e.g., block vectors, for intra
BC coding in a manner similar to the determination of

US 11,943,468 B2

7

motion vectors by motion estimation unit 42 for inter
prediction, or may utilize motion estimation unit 42 to
determine the block vector.

A predictive block is a block of a reference frame that is
deemed as closely matching the PU of the video block to be
coded in terms of pixel difference, which may be determined
by sum of absolute difference (SAD), sum of square differ-
ence (SSD), or other difference metrics. In some implemen-
tations, video encoder 20 may calculate values for sub-
integer pixel positions of reference frames stored in DPB 64.
For example, video encoder 20 may interpolate values of
one-quarter pixel positions, one-cighth pixel positions, or
other fractional pixel positions of the reference frame.
Therefore, motion estimation unit 42 may perform a motion
search relative to the full pixel positions and fractional pixel
positions and output a motion vector with fractional pixel
precision.

Motion estimation unit 42 calculates a motion vector for
a PU of a video block in an inter prediction coded frame by
comparing the position of the PU to the position of a
predictive block of a reference frame selected from a first
reference frame list (List 0) or a second reference frame list
(List 1), each of which identifies one or more reference
frames stored in DPB 64. Motion estimation unit 42 sends
the calculated motion vector to motion compensation unit 44
and then to entropy encoding unit 56.

Motion compensation, performed by motion compensa-
tion unit 44, may involve fetching or generating the predic-
tive block based on the motion vector determined by motion
estimation unit 42. Upon receiving the motion vector for the
PU of the current video block, motion compensation unit 44
may locate a predictive block to which the motion vector
points in one of the reference frame lists, retrieve the
predictive block from DPB 64, and forward the predictive
block to summer 50. Summer 50 then forms a residual video
block of pixel difference values by subtracting pixel values
of the predictive block provided by motion compensation
unit 44 from the pixel values of the current video block
being coded. The pixel difference values forming the
residual vide block may include luma or chroma difference
components or both. Motion compensation unit 44 may also
generate syntax elements associated with the video blocks of
a video frame for use by video decoder 30 in decoding the
video blocks of the video frame. The syntax elements may
include, for example, syntax elements defining the motion
vector used to identify the predictive block, any flags
indicating the prediction mode, or any other syntax infor-
mation described herein. Note that motion estimation unit 42
and motion compensation unit 44 may be highly integrated,
but are illustrated separately for conceptual purposes.

In some implementations, intra BC unit 48 may generate
vectors and fetch predictive blocks in a manner similar to
that described above in connection with motion estimation
unit 42 and motion compensation unit 44, but with the
predictive blocks being in the same frame as the current
block being coded and with the vectors being referred to as
block vectors as opposed to motion vectors. In particular,
intra BC unit 48 may determine an intra-prediction mode to
use to encode a current block. In some examples, intra BC
unit 48 may encode a current block using various intra-
prediction modes, e.g., during separate encoding passes, and
test their performance through rate-distortion analysis. Next,
intra BC unit 48 may select, among the various tested
intra-prediction modes, an appropriate intra-prediction
mode to use and generate an intra-mode indicator accord-
ingly. For example, intra BC unit 48 may calculate rate-
distortion values using a rate-distortion analysis for the

20

25

40

45

55

8

various tested intra-prediction modes, and select the intra-
prediction mode having the best rate-distortion characteris-
tics among the tested modes as the appropriate intra-predic-
tion mode to use. Rate-distortion analysis generally
determines an amount of distortion (or error) between an
encoded block and an original, unencoded block that was
encoded to produce the encoded block, as well as a bitrate
(i.e., a number of bits) used to produce the encoded block.
Intra BC unit 48 may calculate ratios from the distortions
and rates for the various encoded blocks to determine which
intra-prediction mode exhibits the best rate-distortion value
for the block.

In other examples, intra BC unit 48 may use motion
estimation unit 42 and motion compensation unit 44, in
whole or in part, to perform such functions for Intra BC
prediction according to the implementations described
herein. In either case, for Intra block copy, a predictive block
may be a block that is deemed as closely matching the block
to be coded, in terms of pixel difference, which may be
determined by sum of absolute difference (SAD), sum of
squared difference (SSD), or other difference metrics, and
identification of the predictive block may include calculation
of values for sub-integer pixel positions.

Whether the predictive block is from the same frame
according to intra prediction, or a different frame according
to inter prediction, video encoder 20 may form a residual
video block by subtracting pixel values of the predictive
block from the pixel values of the current video block being
coded, forming pixel difference values. The pixel difference
values forming the residual video block may include both
luma and chroma component differences.

Intra prediction processing unit 46 may intra-predict a
current video block, as an alternative to the inter-prediction
performed by motion estimation unit 42 and motion com-
pensation unit 44, or the intra block copy prediction per-
formed by intra BC unit 48, as described above. In particu-
lar, intra prediction processing unit 46 may determine an
intra prediction mode to use to encode a current block. To do
s0, intra prediction processing unit 46 may encode a current
block using various intra prediction modes, e.g., during
separate encoding passes, and intra prediction processing
unit 46 (or a mode select unit, in some examples) may select
an appropriate intra prediction mode to use from the tested
intra prediction modes. Intra prediction processing unit 46
may provide information indicative of the selected intra-
prediction mode for the block to entropy encoding unit 56.
Entropy encoding unit 56 may encode the information
indicating the selected intra-prediction mode in the bit-
stream.

After prediction processing unit 41 determines the pre-
dictive block for the current video block via either inter
prediction or intra prediction, summer 50 forms a residual
video block by subtracting the predictive block from the
current video block. The residual video data in the residual
block may be included in one or more transform units (TUs)
and is provided to transform processing unit 52. Transform
processing unit 52 transforms the residual video data into
residual transform coefficients using a transform, such as a
discrete cosine transform (DCT) or a conceptually similar
transform.

Transform processing unit 52 may send the resulting
transform coefficients to quantization unit 54. Quantization
unit 54 quantizes the transform coefficients to further reduce
bit rate. The quantization process may also reduce the bit
depth associated with some or all of the coefficients. The
degree of quantization may be modified by adjusting a
quantization parameter. In some examples, quantization unit

US 11,943,468 B2

9

54 may then perform a scan of a matrix including the
quantized transform coefficients. Alternatively, entropy
encoding unit 56 may perform the scan.

Following quantization, entropy encoding unit 56 entropy
encodes the quantized transform coefficients into a video
bitstream using, e.g., context adaptive variable length coding
(CAVLC), context adaptive binary arithmetic coding (CA-
BAC), syntax-based context-adaptive binary arithmetic cod-
ing (SBAC), probability interval partitioning entropy (PIPE)
coding or another entropy encoding methodology or tech-
nique. The encoded bitstream may then be transmitted to
video decoder 30, or archived in storage device 32 for later
transmission to or retrieval by video decoder 30. Entropy
encoding unit 56 may also entropy encode the motion
vectors and the other syntax elements for the current video
frame being coded.

Inverse quantization unit 58 and inverse transform pro-
cessing unit 60 apply inverse quantization and inverse
transformation, respectively, to reconstruct the residual
video block in the pixel domain for generating a reference
block for prediction of other video blocks. As noted above,
motion compensation unit 44 may generate a motion com-
pensated predictive block from one or more reference blocks
of the frames stored in DPB 64. Motion compensation unit
44 may also apply one or more interpolation filters to the
predictive block to calculate sub-integer pixel values for use
in motion estimation.

Summer 62 adds the reconstructed residual block to the
motion compensated predictive block produced by motion
compensation unit 44 to produce a reference block for
storage in DPB 64. The reference block may then be used by
intra BC unit 48, motion estimation unit 42 and motion
compensation unit 44 as a predictive block to inter predict
another video block in a subsequent video frame.

FIG. 3 is a block diagram illustrating an exemplary video
decoder 30 in accordance with some implementations of the
present application. Video decoder 30 includes video data
memory 79, entropy decoding unit 80, prediction processing
unit 81, inverse quantization unit 86, inverse transform
processing unit 88, summer 90, and DPB 92. Prediction
processing unit 81 further includes motion compensation
unit 82, intra prediction unit 84, and intra BC unit 85. Video
decoder 30 may perform a decoding process generally
reciprocal to the encoding process described above with
respect to video encoder 20 in connection with FIG. 2. For
example, motion compensation unit 82 may generate pre-
diction data based on motion vectors received from entropy
decoding unit 80, while intra-prediction unit 84 may gen-
erate prediction data based on intra-prediction mode indi-
cators received from entropy decoding unit 80.

In some examples, a unit of video decoder 30 may be
tasked to perform the implementations of the present appli-
cation. Also, in some examples, the implementations of the
present disclosure may be divided among one or more of the
units of video decoder 30. For example, intra BC unit 85
may perform the implementations of the present application,
alone, or in combination with other units of video decoder
30, such as motion compensation unit 82, intra prediction
unit 84, and entropy decoding unit 80. In some examples,
video decoder 30 may not include intra BC unit 85 and the
functionality of intra BC unit 85 may be performed by other
components of prediction processing unit 81, such as motion
compensation unit 82.

Video data memory 79 may store video data, such as an
encoded video bitstream, to be decoded by the other com-
ponents of video decoder 30. The video data stored in video
data memory 79 may be obtained, for example, from storage

10

15

20

25

30

35

40

45

50

55

60

65

10

device 32, from a local video source, such as a camera, via
wired or wireless network communication of video data, or
by accessing physical data storage media (e.g., a flash drive
or hard disk). Video data memory 79 may include a coded
picture buffer (CPB) that stores encoded video data from an
encoded video bitstream. Decoded picture bufter (DPB) 92
of video decoder 30 stores reference video data for use in
decoding video data by video decoder 30 (e.g., in intra or
inter predictive coding modes). Video data memory 79 and
DPB 92 may be formed by any of a variety of memory
devices, such as dynamic random access memory (DRAM),
including synchronous DRAM (SDRAM), magneto-resis-
tive RAM (MRAM), resistive RAM (RRAM), or other types
of memory devices. For illustrative purpose, video data
memory 79 and DPB 92 are depicted as two distinct com-
ponents of video decoder 30 in FIG. 3. But it will be
apparent to one skilled in the art that video data memory 79
and DPB 92 may be provided by the same memory device
or separate memory devices. In some examples, video data
memory 79 may be on-chip with other components of video
decoder 30, or off-chip relative to those components.

During the decoding process, video decoder 30 receives
an encoded video bitstream that represents video blocks of
an encoded video frame and associated syntax elements.
Video decoder 30 may receive the syntax elements at the
video frame level and/or the video block level. Entropy
decoding unit 80 of video decoder 30 entropy decodes the
bitstream to generate quantized coefficients, motion vectors
or intra-prediction mode indicators, and other syntax ele-
ments. Entropy decoding unit 80 then forwards the motion
vectors and other syntax elements to prediction processing
unit 81.

When the video frame is coded as an intra predictive
coded (I) frame or for intra coded predictive blocks in other
types of frames, intra prediction unit 84 of prediction
processing unit 81 may generate prediction data for a video
block of the current video frame based on a signaled intra
prediction mode and reference data from previously decoded
blocks of the current frame.

When the video frame is coded as an inter-predictive
coded (i.e., B or P) frame, motion compensation unit 82 of
prediction processing unit 81 produces one or more predic-
tive blocks for a video block of the current video frame
based on the motion vectors and other syntax elements
received from entropy decoding unit 80. Each of the pre-
dictive blocks may be produced from a reference frame
within one of the reference frame lists. Video decoder 30
may construct the reference frame lists, List 0 and List 1,
using default construction techniques based on reference
frames stored in DPB 92.

In some examples, when the video block is coded accord-
ing to the intra BC mode described herein, intra BC unit 85
of prediction processing unit 81 produces predictive blocks
for the current video block based on block vectors and other
syntax elements received from entropy decoding unit 80.
The predictive blocks may be within a reconstructed region
of the same picture as the current video block defined by
video encoder 20.

Motion compensation unit 82 and/or intra BC unit 85
determines prediction information for a video block of the
current video frame by parsing the motion vectors and other
syntax elements, and then uses the prediction information to
produce the predictive blocks for the current video block
being decoded. For example, motion compensation unit 82
uses some of the received syntax elements to determine a
prediction mode (e.g., intra or inter prediction) used to code
video blocks of the video frame, an inter prediction frame

US 11,943,468 B2

11

type (e.g., B or P), construction information for one or more
of the reference frame lists for the frame, motion vectors for
each inter predictive encoded video block of the frame, inter
prediction status for each inter predictive coded video block
of the frame, and other information to decode the video
blocks in the current video frame.

Similarly, intra BC unit 85 may use some of the received
syntax elements, e.g., a flag, to determine that the current
video block was predicted using the intra BC mode, con-
struction information of which video blocks of the frame are
within the reconstructed region and should be stored in DPB
92, block vectors for each intra BC predicted video block of
the frame, intra BC prediction status for each intra BC
predicted video block of the frame, and other information to
decode the video blocks in the current video frame.

Motion compensation unit 82 may also perform interpo-
lation using the interpolation filters as used by video encoder
20 during encoding of the video blocks to calculate inter-
polated values for sub-integer pixels of reference blocks. In
this case, motion compensation unit 82 may determine the
interpolation filters used by video encoder 20 from the
received syntax elements and use the interpolation filters to
produce predictive blocks.

Inverse quantization unit 86 inverse quantizes the quan-
tized transform coefficients provided in the bitstream and
entropy decoded by entropy decoding unit 80 using the same
quantization parameter calculated by video encoder 20 for
each video block in the video frame to determine a degree
of quantization. Inverse transform processing unit 88 applies
an inverse transform, e.g., an inverse DCT, an inverse
integer transform, or a conceptually similar inverse trans-
form process, to the transform coefficients in order to
reconstruct the residual blocks in the pixel domain.

After motion compensation unit 82 or intra BC unit 85
generates the predictive block for the current video block
based on the vectors and other syntax elements, summer 90
reconstructs decoded video block for the current video block
by summing the residual block from inverse transform
processing unit 88 and a corresponding predictive block
generated by motion compensation unit 82 and intra BC unit
85. An in-loop filter (not pictured) may be positioned
between summer 90 and DPB 92 to further process the
decoded video block. The decoded video blocks in a given
frame are then stored in DPB 92, which stores reference
frames used for subsequent motion compensation of next
video blocks. DPB 92, or a memory device separate from
DPB 92, may also store decoded video for later presentation
on a display device, such as display device 34 of FIG. 1.

In a typical video coding process, a video sequence
typically includes an ordered set of frames or pictures. Each
frame may include three sample arrays, denoted SL, SCb,
and SCr. SL is a two-dimensional array of luma samples.
SCb is a two-dimensional array of Cb chroma samples. SCr
is a two-dimensional array of Cr chroma samples. In other
instances, a frame may be monochrome and therefore
includes only one two-dimensional array of luma samples.

As shown in FIG. 4A, video encoder 20 (or more spe-
cifically partition unit 45) generates an encoded representa-
tion of a frame by first partitioning the frame into a set of
coding tree units (CTUs). A video frame may include an
integer number of CTUs ordered consecutively in a raster
scan order from left to right and from top to bottom. Each
CTU is a largest logical coding unit and the width and height
of the CTU are signaled by the video encoder 20 in a
sequence parameter set, such that all the CTUs in a video
sequence have the same size being one of 128x128, 64x64,
32x32, and 16x16. But it should be noted that the present

10

15

20

25

30

35

40

45

50

55

60

65

12

application is not necessarily limited to a particular size. As
shown in FIG. 4B, each CTU may comprise one coding tree
block (CTB) of luma samples, two corresponding coding
tree blocks of chroma samples, and syntax elements used to
code the samples of the coding tree blocks. The syntax
elements describe properties of different types of units of a
coded block of pixels and how the video sequence can be
reconstructed at the video decoder 30, including inter or
intra prediction, intra prediction mode, motion vectors, and
other parameters. In monochrome pictures or pictures hav-
ing three separate color planes, a CTU may comprise a
single coding tree block and syntax elements used to code
the samples of the coding tree block. A coding tree block
may be an NxN block of samples.

To achieve a better performance, video encoder 20 may
recursively perform tree partitioning such as binary-tree
partitioning, quad-tree partitioning or a combination of both
on the coding tree blocks of the CTU and divide the CTU
into smaller coding units (CUs). As depicted in FIG. 4C, the
64x64 CTU 400 is first divided into four smaller CU, each
having a block size of 32x32. Among the four smaller CUs,
CU 410 and CU 420 are each divided into four CUs of
16x16 by block size. The two 16x16 CUs 430 and 440 are
each further divided into four CUs of 8x8 by block size.
FIG. 4D depicts a quad-tree data structure illustrating the
end result of the partition process of the CTU 400 as
depicted in FIG. 4C, each leaf node of the quad-tree corre-
sponding to one CU of a respective size ranging from 32x32
to 8x8. Like the CTU depicted in FIG. 4B, each CU may
comprise a coding block (CB) of luma samples and two
corresponding coding blocks of chroma samples of a frame
of the same size, and syntax elements used to code the
samples of the coding blocks. In monochrome pictures or
pictures having three separate color planes, a CU may
comprise a single coding block and syntax structures used to
code the samples of the coding block.

In some implementations, video encoder 20 may further
partition a coding block of a CU into one or more MxN
prediction blocks (PB). A prediction block is a rectangular
(square or non-square) block of samples on which the same
prediction, inter or intra, is applied. A prediction unit (PU)
of'a CU may comprise a prediction block of luma samples,
two corresponding prediction blocks of chroma samples,
and syntax elements used to predict the prediction blocks. In
monochrome pictures or pictures having three separate color
planes, a PU may comprise a single prediction block and
syntax structures used to predict the prediction block. Video
encoder 20 may generate predictive luma, Cb, and Cr blocks
for luma, Cb, and Cr prediction blocks of each PU of the CU.

Video encoder 20 may use intra prediction or inter pre-
diction to generate the predictive blocks for a PU. If video
encoder 20 uses intra prediction to generate the predictive
blocks of a PU, video encoder 20 may generate the predic-
tive blocks of the PU based on decoded samples of the frame
associated with the PU. If video encoder 20 uses inter
prediction to generate the predictive blocks of a PU, video
encoder 20 may generate the predictive blocks of the PU
based on decoded samples of one or more frames other than
the frame associated with the PU.

After video encoder 20 generates predictive luma, Cb, and
Cr blocks for one or more PUs of a CU, video encoder 20
may generate a luma residual block for the CU by subtract-
ing the CU’s predictive luma blocks from its original luma
coding block such that each sample in the CU’s luma
residual block indicates a difference between a luma sample
in one of the CU’s predictive luma blocks and a correspond-
ing sample in the CU’s original luma coding block. Simi-

US 11,943,468 B2

13

larly, video encoder 20 may generate a Cb residual block and
a Cr residual block for the CU, respectively, such that each
sample in the CU’s Cb residual block indicates a difference
between a Cb sample in one of the CU’s predictive Cb
blocks and a corresponding sample in the CU’s original Cb
coding block and each sample in the CU’s Cr residual block
may indicate a difference between a Cr sample in one of the
CU’s predictive Cr blocks and a corresponding sample in the
CU’s original Cr coding block.

Furthermore, as illustrated in FIG. 4C, video encoder 20
may use quad-tree partitioning to decompose the luma, Cb,
and Cr residual blocks of a CU into one or more luma, Cb,
and Cr transform blocks. A transform block is a rectangular
(square or non-square) block of samples on which the same
transform is applied. A transform unit (TU) of a CU may
comprise a transform block of luma samples, two corre-
sponding transform blocks of chroma samples, and syntax
elements used to transform the transform block samples.
Thus, each TU of a CU may be associated with a luma
transform block, a Cb transform block, and a Cr transform
block. In some examples, the luma transform block associ-
ated with the TU may be a sub-block of the CU’s luma
residual block. The Cb transform block may be a sub-block
of the CU’s Cb residual block. The Cr transform block may
be a sub-block of the CU’s Cr residual block. In mono-
chrome pictures or pictures having three separate color
planes, a TU may comprise a single transform block and
syntax structures used to transform the samples of the
transform block.

Video encoder 20 may apply one or more transforms to a
Iuma transform block of a TU to generate a luma coefficient
block for the TU. A coefficient block may be a two-
dimensional array of transform coefficients. A transform
coefficient may be a scalar quantity. Video encoder 20 may
apply one or more transforms to a Cb transform block of a
TU to generate a Cb coefficient block for the TU. Video
encoder 20 may apply one or more transforms to a Cr
transform block of a TU to generate a Cr coefficient block
for the TU.

After generating a coefficient block (e.g., a luma coeffi-
cient block, a Cb coefficient block or a Cr coefficient block),
video encoder 20 may quantize the coefficient block. Quan-
tization generally refers to a process in which transform
coefficients are quantized to possibly reduce the amount of
data used to represent the transform coefficients, providing
further compression. After video encoder 20 quantizes a
coefficient block, video encoder 20 may entropy encode
syntax elements indicating the quantized transform coeffi-
cients. For example, video encoder 20 may perform Con-
text-Adaptive Binary Arithmetic Coding (CABAC) on the
syntax elements indicating the quantized transform coeffi-
cients. Finally, video encoder 20 may output a bitstream that
includes a sequence of bits that forms a representation of
coded frames and associated data, which is either saved in
storage device 32 or transmitted to destination device 14.

After receiving a bitstream generated by video encoder
20, video decoder 30 may parse the bitstream to obtain
syntax elements from the bitstream. Video decoder 30 may
reconstruct the frames of the video data based at least in part
on the syntax elements obtained from the bitstream. The
process of reconstructing the video data is generally recip-
rocal to the encoding process performed by video encoder
20. For example, video decoder 30 may perform inverse
transforms on the coefficient blocks associated with TUs of
a current CU to reconstruct residual blocks associated with
the TUs of the current CU. Video decoder 30 also recon-
structs the coding blocks of the current CU by adding the

20

25

30

35

40

45

50

55

60

65

14

samples of the predictive blocks for PUs of the current CU
to corresponding samples of the transform blocks of the TUs
of the current CU. After reconstructing the coding blocks for
each CU of a frame, video decoder 30 may reconstruct the
frame.

With digital video quality going from high definition, to
4Kx2K or even 8Kx4K, the amount of vide data to be
encoded/decoded grows exponentially. It is a constant prob-
lem in terms of how the video data can be encoded/decoded
more efficiently while maintaining the image quality of the
decoded video data. Different approaches have been adopted
by the various video coding standards to solve this problem.
For example, it has been found that the translation motion
model behaves poorly for motion compensation prediction
when there are many kinds of motion, e.g. zoom in/out,
rotation, perspective motions and the other irregular motions
in the real world. Accordingly, multiple block-based affine
motion models have been proposed to increase the accuracy
of motion compensation prediction.

FIGS. 5A and 5B are block diagrams illustrating a 4-pa-
rameter block-based affine motion model and a 6-parameter
block-based affine motion model, respectively, in accor-
dance with some implementations of the present disclosure.
As depicted in FIG. 5A, a current block 510 is related to a
reference block (not shown in the figure) by two motion
vectors, MV (mv,,,, mv,,) at the top-left corner control point
of the current block 510 and MV, (mv,,, mv,,) at the
top-right corner control point of the current block 510.
Assuming that the width of the current block 510 is W, the
motion vector MV(mv,, mv,) at any location (x, y) within
the current block 510 is defined by a linear affine motion
model as follows:

MV, — MV,
w
mviy — mvoy
X
w

mvy, = mvg,
W

MV, — MVox
W

M

Y+ mvo,

y+mvg,

Similarly, as depicted in FIG. 5B, another current block
520 is related to a reference block (not shown in the figure)
by three motion vectors, MVy(mvy,, mv,,) at the top-left
corner control point of the current block 520, MV, (mv,,,
mv,,) at the top-right corner control point of the current
block 520, and MV ,(mv,,, mv,,) at the bottom-left corner
control point of the current block 520. Assuming that the
width and height of the current block 520 are W and H,
respectively, the motion vector MV(mv,, mv,} at any loca-
tion (x, y) within the current block 520 is defined by a linear
affine motion model as follows:

mMV1y — MYy MV — MV

W H
mvy, = mvg, mvy, = mvg,
X+

w H

@

mvy = ¥+ mvox

my, = y+mvg,

FIG. 5C is a block diagram illustrating exemplary motion
vector distribution of a 4x4 sub-block of samples derived
from the 4-parameter block-based affine motion model
described above in accordance with some implementations
of the present disclosure. By applying the coordinate of each
sample within the 4x4 sub-block to the equation (1) above,
a motion vector prediction MV, is calculated at that
sample (i, j) as indicated by a corresponding arrow sign. The
motion vectors based on the affine motion models can be
used by video encoder 20 in an affine inter-prediction mode

US 11,943,468 B2

15

for sub-block based affine motion compensation to improve
the accuracy of the predicted pixel values. After the sub-
block based affine motion compensation is performed, the
Iuma prediction sample can be further refined by adding a
difference derived by the optical flow equation.

First, it is assumed that, after the sub-block-based affine
motion compensation is performed, the luma prediction at
sample (i, j) is I(i, j). The spatial gradients g,(i,j) and g (i.j)
of the sub-block luma prediction are calculated at each
sample location within the sub-block using a 3-tap filter [-1,
0, 1] as follows:

{gx(i,j)=1(i+1,j)—1(i—1,j) &)

&, p=1G, j+ 1) -1G, j-1)

Note that the sub-block luma prediction is extended by
one pixel on each side for the gradient calculation. To reduce
the memory bandwidth and complexity, the pixels on the
extended borders of the sub-block are copied from the
nearest integer pixel position in the reference picture to
avoid additional interpolation for padding region.

According to the optical flow equation, the luma predic-
tion refinement AI(i,j) is an inner product of the pixel value
gradient vector and the motion vector difference as a pixel
value difference, which is defined as follows:

Al =g, (1)) Amv (i,/)+g, (0. Amv, (i.]))

where the Amv(i,j) is a motion vector difference between the
motion vector computed for a sample location (i,j), denoted
by mv(i,j), and the motion vector of the sub-block to which
pixel (i,j). The motion vector difference Amv(i,j) can be
calculated using one of the 4-parameter affine motion model
and the 6-parameter affine motion model or other affine
models known to those skilled in the art.

For illustrative purposes, the 4-parameter affine motion
model is used below. As depicted in FIG. 5C, assume that i
and j are the horizontal-x and vertical-y offsets from the
pixel location to the top-left point of the current sub-block,
the motion vector mv(i,j) of any sample within the current
sub-block can be derived by the following equations:

{mvx(i,j):c*ier*jervox 5)

mvy(i, j) =exi+ fxj+mvg,

As described above, for the 4-parameter affine motion
model, the parameters of the equations above are:

MV, — MVoy
c= f = —_—
w
mvy y — MVoy,
e=—d=—>"—""——

w

©®

For 6-parameter affine model, the parameters of the
equations above are:

MV1x — MVox (@)

c=

W

MV, — MVoy

d=——"——
H

_ mvyy, —mvg,
W

f= mvy, = mvg,
H

20

25

30

35

40

45

50

55

60

65

16

where (mv,,, mvg,), (mv,,, mv,,), (mv,,, mv,,) are the
top-left, top-right and bottom-left control point motion vec-
tors of the current block, W and H are the width and height
of the current block.

Given the definition of the motion vector mv(i,j) above,
the motion vector difference Amv(i,j) of any sample within
the current sub-block can be derived by the following
equations:

{ Amvi(Q,) = mvs(Q,) —m5" ®

Amvy (i, j) = mvy (i, j) —mv5"

where (mv,™, mv,”) is the motion vector of the current
sub-block. By plugging the motion vector difference Amv
(i,j) and the spatial gradients g.(i,j) and g,(i,j) of the sub-
block luma prediction into equation (4), the pixel value
difference, i.e., the luma prediction refinement can be deter-
mined.

Finally, the luma prediction refinement is added to the
Iuma prediction at sample (i, j), I(i, j), which is derived from
the affine model motion prediction and the final prediction
I'(i, j), is generated as follow:

T()=IG)FAIG) ®

In some embodiments, the method described above can be
extended to a CU in the non-affine inter-prediction mode
especially if the CU has a neighboring block that is inter-
predicted according to the affine mode. In this case, the
affine model control point motion vectors used for the
current block can be derived from the affine model control
point motion vectors of a selected neighboring block. In
some implementations, the current block is to directly use
the affine model of the selected neighboring block to derive
the affine motion for each sample in the current block.

FIG. 5D is a block diagram illustrating spatial relationship
between a sub-block within an inter-predicted current block
530 and a neighboring affine block in accordance with some
implementations of the present disclosure. Assuming that
the neighboring block 540-1 is inter-predicted according to
an affine motion model and it is located to the left side of the
current block 530, it is possible that a sub-block (e.g., the
4x4 sub-block 530-1) within the current block 530 near the
neighboring block 540-1 may be able to benefit from the
optical flow-based prediction refinement as described above
because of their spatial proximity (e.g., the 4x4 sub-block
530-1 may be part of the same object as the neighboring
block 540-1). Similarly, if the neighboring block 540-2 is an
inter-predicted block according to an affine motion model,
the 4x4 sub-block 530-2 within the current block 530 that is
located below the neighboring block 540-2 can also benefit
from the optical flow-based prediction refinement as
described above because of their spatial proximity. Note that
the 4x4 sub-block 530-2 may also be able to benefit from a
neighboring block located to the left of the 4x4 sub-block
530-2 (not shown in the figure) if the neighboring block is
also an inter-predicted block according to an affine motion
model for the same reason above. In such case, it is a design
choice to choose which neighboring block for performing
prediction refinement to the sub-block 530-2.

Because the current block is inter-predicted according to
a non-affine mode, it may not have the affine model control
point motion vectors like the ones depicted in FIG. 5A
(4-parameter affine model) and FIG. 5B (6-parameter affine
model). It is necessary to determine a corresponding set of
affine model control point motion vectors for the current
block (more specifically a particular sub-block). For

US 11,943,468 B2

17

example, assuming x and y represent the horizontal and
vertical offset from a pixel location in the current block to
the top-left point of a selected neighboring affine block and
(mv,,, mvy,), (mv,,, mv,), (mv,,, mv,) are the top-left,
top-right and bottom-left control point motion vectors of the
selected neighboring affine block, the motion vector of the
pixel location can be derived using equation (1) for 4-pa-
rameter affine model or equation (2) for 6-parameter affine
model. Alternatively, the motion vectors in the neighboring
block may be used directly to derive the affine motion vector
for each pixel in the current block. In either case, the final
prediction I' is generated according to the following equation

T H)=IE) +w*AIG,f) 10)

where w is a weighting factor to adjust the impact of AI(,
j) on the non-affine mode luma prediction at sample (i, j), I(i,
7). In one example, w is set equal to 1. In another example,
w is set equal to be less than 1, e.g., 0.5. Note that this
weighting factor can be modified from one CU to another
CU or remain the same for the entire picture. Of course, the
value of the weighting factor should be signaled to video
decoder 30 in the video bitstream.

FIG. 6 is a flowchart illustrating a process of refining a
prediction for a sub-block within an inter-predicted current
block using a neighboring affine block in accordance with
some implementations of the present disclosure. Note that
this process may be employed by a video encoder or a video
decoder. For illustrative purposes, the process will be
described as part of a video decoding process by video
decoder 30.

First, video decoder 30 identifies a pixel within an inter-
predicted current block (610), the pixel having a first inter-
predicted pixel value. This step is part of a process of
decoding a CU that is surrounded by one or more neigh-
boring blocks that have been decoded according to an affine
inter-prediction model. Both the current block and the
neighboring blocks correspond to the same reference picture
and the neighboring blocks have already been reconstructed.
The current block is to be reconstructed according to a
non-affine inter-prediction model. But as described above in
connection with FIG. 5D, it is possible to perform prediction
refinement to a sub-block within the current block if the
sub-block is very close to one of the neighboring blocks
(e.g., the 4x4 sub-blocks 540-1 or 540-2). It should be noted
that, like the employment of a weighting factor as described
above, the expansion of the neighboring block’s affine
model is typically limited to those sub-blocks at the bound-
ary of the current block because the result from prediction
refinement may be more unreliable for those inner pixels of
the current block. In other words, at least one pixel value
within the inter-predicted current block is not updated by
any neighboring affine block. Note that the 4x4 sub-block
size is only for illustrative purposes and it can be bigger than
4x4.

Video decoder 30 then determines a motion vector dif-
ference for the pixel based on a set of affine parameters of
the neighboring affine block according to, e.g., equation (8)
above (630). In some implementations, (mv,”™”, mv,™7) is
the motion vector of the sub-block within the current block.
For example, the current block may have a block-based
motion vector. In some other implementations, (mv 7,
mv,”") is the motion vector of the neighboring block. In this
case, the sub-block within the current block is treated as an
extension of the neighboring block.

Next, video decoder 30 determines a pixel value differ-
ence for the pixel according to the motion vector difference
according to, e.g., equation (4) above (650). As noted above,

30

40

45

18

the process of determining a pixel value difference for the
pixel requires that a pixel value gradient vector for the pixel
is determined (650-1) by, e.g., applying a 3-tap filter to pixel
values at the pixel and its neighboring pixels within the
inter-predicted current block, and then an inner product of
the pixel value gradient vector and the motion vector dif-
ference is calculated as the pixel value difference (650-3).

After calculating the pixel value difference, video decoder
30 then updates the first inter-predicted pixel value with the
pixel value difference as a second inter-predicted pixel value
according to, e.g., equation (10) above (670). In some
implementations, a weighting factor is applied to the pixel
value difference (670-1) and the weighted pixel value dif-
ference is added to the first inter-predicted pixel value as the
second inter-predicted pixel value (670-3).

As noted above, the prediction refinement based on opti-
cal flow described herein is based on an assumption that the
sub-block within the current block is close to a neighboring
affine block. Therefore, if the current block has a large size
(e.g., 32x32), the prediction refinement based on optical
flow is applied to only those pixels inside the current block
that are close to the selected neighboring affine block where
the affine model is derived. In one example, the prediction
refinement based on optical flow is applied only to those
sub-blocks (e.g. 4x4) of the current block that are next to the
selected neighboring block where the affine model is
derived.

In some implementations, the current block may have
multiple neighboring affine blocks. In order to refine some
portions of the current block, there should be a predefined
order of searching the neighboring affine blocks. For
example, the first available neighboring affine block is
selected to derive the affine model for applying the predic-
tion refinement based on optical flow to the current block
(more a sub-block within the current block). Accordingly,
the prediction refinement based on optical flow may be
applied to sub-blocks located at different sections (e.g. upper
section, lower section, left section, right section, etc.) in the
current block with different affine models derived from their
corresponding neighboring blocks.

In one example, the current block is divided into 4x4
sub-blocks, the prediction refinement based on optical flow
is only applied to the sub-blocks located at the upper and left
section of the current block. For each sub-block located at
the upper section within the current block, the above neigh-
boring affine block is selected to derive the affine model for
applying the prediction refinement based on optical flow to
this sub-block. Otherwise, no prediction refinement based on
optical flow is applied to this sub-block. For a sub-block
located at the left section within the current block, its left
neighboring affine block is selected to derive the affine
model for applying the prediction refinement based on
optical flow to this sub-block. Otherwise, no prediction
refinement based on optical flow is applied to this sub-block.
As a special case, for a sub-block located at the top-left
section in the current block, the prediction refinement based
on optical flow could be selectively applied using the affine
model from either the left neighboring affine block or the
above neighbouring affine block. In yet another example, for
a sub-block located at the top-left section in the current
block, the prediction refinement based on optical flow could
be jointly applied using the affine model from both the left
neighboring affine block and the above neighboring affine
block in a predefined order.

US 11,943,468 B2

19

In some implementations, the prediction refinement based
on optical flow using the affine model of the neighboring
affine blocks can be applied to a uni-predictive block or a
bi-predictive block.

In some implementations, for pixels and/or sub-blocks
located at different sections (e.g. upper section, lower sec-
tion, left section, right section, etc.) in the current block, the
prediction refinement based on optical flow is only applied
to a subset of sections in the current block. For example, for
a block coded as affine merge mode, the prediction refine-
ment based on optical flow is only applied to the sub-blocks
located at the upper and left section of the current block. In
one example, for a block coded as affine merge mode, the
prediction refinement based on optical flow is applied to the
sub-blocks located at either the upper or left section of the
current block depending on whether above of the left
neighboring affine block is selected for affine merge. In yet
another example, for a block coded as affine merge mode,
the prediction refinement based on optical flow is disabled.

In some implementations, when Amv,(i,j) and/or Amv (i,
j) at the pixels or sub-blocks are larger than a predefined
threshold, it is deemed that the continuity between the
sub-block and the neighboring affine blocks may have been
destroyed or does not exist. In this case, the prediction
refinement based on optical flow is also disabled.

In one or more examples, the functions described may be
implemented in hardware, software, firmware, or any com-
bination thereof. If implemented in software, the functions
may be stored on or transmitted over, as one or more
instructions or code, a computer-readable medium and
executed by a hardware-based processing unit. Computer-
readable media may include computer-readable storage
media, which corresponds to a tangible medium such as data
storage media, or communication media including any
medium that facilitates transfer of a computer program from
one place to another, e.g., according to a communication
protocol. In this manner, computer-readable media generally
may correspond to (1) tangible computer-readable storage
media which is non-transitory or (2) a communication
medium such as a signal or carrier wave. Data storage media
may be any available media that can be accessed by one or
more computers or one or more processors to retrieve
instructions, code and/or data structures for implementation
of the implementations described in the present application.
A computer program product may include a computer-
readable medium.

The terminology used in the description of the implemen-
tations herein is for the purpose of describing particular
implementations only and is not intended to limit the scope
of claims. As used in the description of the implementations
and the appended claims, the singular forms “a,” “an,” and
“the” are intended to include the plural forms as well, unless
the context clearly indicates otherwise. It will also be
understood that the term “and/or” as used herein refers to
and encompasses any and all possible combinations of one
or more of the associated listed items. It will be further
understood that the terms “comprises” and/or “comprising,”
when used in this specification, specify the presence of
stated features, elements, and/or components, but do not
preclude the presence or addition of one or more other
features, elements, components, and/or groups thereof.

It will also be understood that, although the terms first,
second, etc. may be used herein to describe various ele-
ments, these elements should not be limited by these terms.
These terms are only used to distinguish one element from
another. For example, a first electrode could be termed a
second electrode, and, similarly, a second electrode could be

10

15

20

25

30

35

40

45

50

55

60

65

20

termed a first electrode, without departing from the scope of
the implementations. The first electrode and the second
electrode are both electrodes, but they are not the same
electrode.

The description of the present application has been pre-
sented for purposes of illustration and description, and is not
intended to be exhaustive or limited to the invention in the
form disclosed. Many modifications, variations, and alter-
native implementations will be apparent to those of ordinary
skill in the art having the benefit of the teachings presented
in the foregoing descriptions and the associated drawings.
The embodiment was chosen and described in order to best
explain the principles of the invention, the practical appli-
cation, and to enable others skilled in the art to understand
the invention for various implementations and to best utilize
the underlying principles and various implementations with
various modifications as are suited to the particular use
contemplated. Therefore, it is to be understood that the scope
of claims is not to be limited to the specific examples of the
implementations disclosed and that modifications and other
implementations are intended to be included within the
scope of the appended claims.

What is claimed is:

1. A method of updating an inter-predicted current block
using a neighboring affine block, the method comprising:

identifying a pixel within the inter-predicted current

block, wherein the inter-predicted current block com-
prises an inter-predicted non-affine block, and the pixel
having a first inter-predicted pixel value;

determining a motion vector difference between a motion

vector of the pixel calculated using a set of affine
parameters of the neighboring affine block and a
motion vector of the inter-predicted current block,
wherein the pixel is located within a sub-block of the
inter-predicted current block and the sub-block is next
to the neighboring affine block;

determining a pixel value difference for the pixel accord-

ing to the motion vector difference; and

updating the first inter-predicted pixel value with the pixel

value difference as a second inter-predicted pixel value.

2. The method of claim 1, wherein the determining a pixel
value difference for the pixel according to the motion vector
difference further comprises:

determining a pixel value gradient vector for the pixel;

and

calculating an inner product of the pixel value gradient

vector and the motion vector difference as the pixel
value difference.

3. The method of claim 2, wherein the pixel value gradient
vector for the pixel is estimated by applying a 3-tap filter to
pixel values at the pixel and its neighboring pixels within the
inter-predicted current block.

4. The method of claim 1, wherein the sub-block is
located at an upper section of the inter-predicted current
block and the neighboring affine block is located above the
inter-predicted current block.

5. The method of claim 1, wherein the sub-block is
located at a left section of the inter-predicted current block
and the neighboring affine block is located left to the
inter-predicted current block.

6. The method of claim 1, wherein the inter-predicted
current block and the neighboring affine block have the same
reference picture.

7. The method of claim 1, wherein the updating the first
inter-predicted pixel value with the pixel value difference as
a second inter-predicted pixel value further comprises:

US 11,943,468 B2

21

weighting the pixel value difference by a weighting

factor; and

adding the weighted pixel value difference to the first

inter-predicted pixel value as the second inter-predicted
pixel value.

8. The method of claim 7, wherein the weighting factor is
less than 1.

9. The method of claim 1, wherein the neighboring affine
block is a first one of a plurality of neighboring blocks of the
inter-predicted current block having an affine mode accord-
ing to a predefined order.

10. The method of claim 1, wherein the inter-predicted
current block is a bi-predictive block.

11. The method of claim 1, wherein the inter-predicted
current block is a uni-predictive block.

12. The method of claim 1, wherein at least one pixel
value within the inter-predicted current block is not updated
by any neighboring affine block.

13. An electronic apparatus comprising:

one or more processing units;

memory coupled to the one or more processing units; and

a plurality of programs stored in the memory that, when

executed by the one or more processing units, cause the

electronic apparatus to perform acts comprising:

identifying a pixel within the inter-predicted current
block, wherein the inter-predicted current block
comprises an inter-predicted non-affine block, and
the pixel having a first inter-predicted pixel value;

determining a motion vector difference between a
motion vector of the pixel calculated using a set of
affine parameters of the neighboring affine block and
a motion vector of the inter-predicted current block,
wherein the pixel is located within a sub-block of the
inter-predicted current block and the sub-block is
next to the neighboring affine block;

determining a pixel value difference for the pixel
according to the motion vector difference; and

updating the first inter-predicted pixel value with the
pixel value difference as a second inter-predicted
pixel value.

14. The electronic apparatus of claim 13, wherein the
determining a pixel value difference for the pixel according
to the motion vector difference further comprises:

determining a pixel value gradient vector for the pixel;

and

10

15

20

25

30

35

40

22

calculating an inner product of the pixel value gradient
vector and the motion vector difference as the pixel
value difference.

15. The electronic apparatus of claim 14, wherein the
pixel value gradient vector for the pixel is estimated by
applying a 3-tap filter to pixel values at the pixel and its
neighboring pixels within the inter-predicted current block.

16. The electronic apparatus of claim 13, wherein the
sub-block is located at an upper section of the inter-predicted
current block and the neighboring affine block is located
above the inter-predicted current block, or

wherein the sub-block is located at a left section of the

inter-predicted current block and the neighboring affine
block is located left to the inter-predicted current block.

17. The electronic apparatus of claim 13, wherein the
updating the first inter-predicted pixel value with the pixel
value difference as a second inter-predicted pixel value
further comprises:

weighting the pixel value difference by a weighting

factor; and

adding the weighted pixel value difference to the first

inter-predicted pixel value as the second inter-predicted
pixel value.

18. A non-transitory computer readable storage medium
storing a plurality of programs for execution by an electronic
apparatus having one or more processing units, wherein the
plurality of programs, when executed by the one or more
processing units, cause the electronic apparatus to perform
acts comprising:

identifying a pixel within the inter-predicted current

block, wherein the inter-predicted current block com-
prises an inter-predicted non-affine block, and the pixel
having a first inter-predicted pixel value;

determining a motion vector difference between a motion

vector of the pixel calculated using a set of affine
parameters of the neighboring affine block and a
motion vector of the inter-predicted current block,
wherein the pixel is located within a sub-block of the
inter-predicted current block and the sub-block is next
to the neighboring affine block;

determining a pixel value difference for the pixel accord-

ing to the motion vector difference; and

updating the first inter-predicted pixel value with the pixel

value difference as a second inter-predicted pixel value.

#* #* #* #* #*

