US 20220292092A1

a9y United States

a2y Patent Application Publication (o) Pub. No.: US 2022/0292092 Al

Brown et al.

43) Pub. Date: Sep. 15, 2022

(54)

(71)
(72)

@
(22)

(86)

(60)

(1)

SYSTEM AND METHOD FOR QUERYING
MULTIPLE DATA SOURCES

Applicant: Telepathy Labs, Inc., Tampa, FL. (US)

Inventors: Stephen Brown, Singapore (SG);
Xiao-Ming Zhou, Singapore (SG)

Appl. No.: 17/635,276

PCT Filed: Aug. 13, 2020

PCT No.: PCT/US2020/046057
§ 371 (e)(D),

(2) Date: Feb. 14, 2022

Related U.S. Application Data

Provisional application No. 62/887,217, filed on Aug.

15, 2019.

Publication Classification

Int. CL.

GO6F 16/2458 (2006.01)
GO6F 16/2455 (2006.01)
GO6F 16/22 (2006.01)

client
application ™

cellular
network /
bridge

client
application \

ent)
application
N ¥ V)
38T 46

(52) US.CL
CPC ... GOG6F 16/2471 (2019.01); GOGF 16/24556
(2019.01); GO6F 16/2246 (2019.01)
(57) ABSTRACT

A computing system for querying multiple data sources and
a method therefor is provided. The computing system may
comprise one or more nodes in communication with at least
one data source of the multiple data sources to access data
therefrom. The computing system may further comprise a
second node in communication with the one or more nodes.
The second node may be configured to receive a query
instance and process the query instance to generate one or
more relational query instances. The one or more relational
query instances may be distributed among the one or more
nodes to extract data from the at least one data source in
communication therewith corresponding to the respective
one or more relational query instances. The second node
may be further configured to receive extracted data from
each of the one or more nodes queried. The second node may
be further configured to aggregate the extracted data.

client

10

query base
process

1
D‘:

query base J
application

N

54

client |J

application

network (18)

US 2022/0292092 A1

Sep. 15,2022 Sheet 1 of 8

Patent Application Publication

(81) sJomiau

uonpeoydde
aseq Aenb

ssaoo0.ld
aseq Alenb

uoneoydde
el

N

(] weljo

¢
. a:..n:unllo..w

mnammmne
-

uoneoldde

I Ol

8bpuq
] JJoMmiau
Jejnjeo

uoneondde
juslo

I

L

uoneoldde
jusijo

US 2022/0292092 A1

Sep. 15,2022 Sheet 2 of 8

Patent Application Publication

80¢

asnow

¢ Old

(902)
pigoghey

EILET)

:

18jjonu09 Q|

!

lossanoid
0JoI

!

1o0)depe
Keydsip

J18jj0AU0D
HI0MIBU

|

12
Kejdsip

°1%4

US 2022/0292092 A1

Sep. 15,2022 Sheet 3 of 8

Patent Application Publication

Ol

e {I0F

US 2022/0292092 A1

Sep. 15,2022 Sheet 4 of 8

Patent Application Publication

v 'Old

T A0 B3y § annes viegy JOB-ON 4110 AR
F N A f 3 A
h 4 Y ¥ ¥
sadderss Joddurs aaddessy saddern
D00 50N AU V0
4 4 ﬂ A
4
o
Ve e e e 2 o st i i 2 o 0 s o o e s s 0 o o o s s o 0 0 o o o o g
{ e N
(1% 2 i %
#J , “} ; ¥I¥ k]
w $3jqE} SYDRD 6T W
H 1
H 1
£ A H
FO¥ eusmuy
¢ ¥ :
H }
1 i
M SUE 2PORT LI 1R FT+ ooy Suddew apu Smddenr sjox “
H ., f
1 i
oo T AN " i
7y wopsisgng (0 !
s
¥

/
aoF

T e L R ey

ey voneanddy

-‘!“!X‘!!g"t&\

US 2022/0292092 A1

Sep. 15,2022 Sheet 5 of 8

Patent Application Publication

Vs OIid
e ————————————————————————————eSt————I———————————————————————————eec————————
14 A
9pON pat > "
gog N]
o 9L "
.\// T) 10100UT00 '
- : 90108 BIB(] i
Yoy] am. l@? '
soomos e |} Il.l' .IIIV :
; 0ge "
A
' 110dxo Surddewr so1mos ve(g 7eT qee “
‘ Jopymq uejd 2uIud Jnsoy '
" . T7c > FES ;
i el 5 soznundo 1omquIsIp !
“ ! 108 P £1on) Aand "
' 1
" 7S S0F 9PON 104198 i
]]
7 FO¢ 1WA H
! ¥
I b]
I]
' A _ __ " —
; FTF 0FS _) F0S
' o180 Surddew JOJONAISUOD b | rossaooxd
! T 77C ary/Surddewr ooy Jnser Arond) " R
! I0JOJUU0D g IO1BIOUSE '
' Qomos A1ong) Axonb 10OS 3Tc " 4
cy : (0sV) ydeip SIES Al OTF
omﬂnﬁm@ - W] opuewsg rosred Axonb ., |1 yndu)
hi®) Yoy s joRnsqy woneoyddy | - “ woneoiddy
“ |
: O0F SPON U1 ISISEIN :
)

00¥

US 2022/0292092 A1

Sep. 15,2022 Sheet 6 of 8

Patent Application Publication

F<<
2PON

dOH XN

o

7

$20I105 Bl

Ty
oseqeiep
ydein

¥0S

J0ssa001d

eeg

00€ S[NPOIA JSTD) INSEN

a¢ 9ld
. 9Ec
10100UU02
90IN0S BIB(]
) =]
0cs
1adxs Surddewr 9o1mos vje(— A o
(43S 8¢L¢
ropmq ueld Surgud Jnsoy
5o g7c ma FEC
. 1azmundo ronqmsip
1osred 108 N £xond) 1000
7S TGS SMPOJA 19A13S
A — S
iy 0re
o13o; Surddewr I0)ONLISU0D
7S 77T ommy/Surddews aj0y Jnsar Aond)
I0)00UU0D |g— I01BIOUDT g
20IMOS AN Aranb 1OS 3Tc
(DSV) yderp 9Tc
.. N OnuElSg 1osxed Kronb
T e HOﬂbmﬁ< QOﬁﬁOﬂQﬁTﬂ

< r

oLy

U E o]
uoneorddy

”~
\\,

ol
wn

US 2022/0292092 A1

Sep. 15,2022 Sheet 7 of 8

Patent Application Publication

L 'Old

i 1

| S0L - !
! \ IL —

] i\ “

ANia |

I |

! 1

—— I I

(1157 !]

jlielife} o = <] T0L 0T]
P0L f ’

uonesrddy ! P_ t

_ \ _

] 91y i

I I

I I

! — 1
“ Q) m | —

I A\ 1

I e 1

B ——————— - AT T M W W W W M W M M MW M R M M W N o mw mw ww ww

AN
00L ' .
tiL 9 DIA
¥09 orvY
so[qe; eseg So[qe) AX0Id
| RSN NSRS S —
\
809
909
019 200N0§ BIE(] Sj0WY ST Apos, oy
009 e

3 |

)

-
o
=

D

-
<
<

US 2022/0292092 A1

Sep. 15,2022 Sheet 8 of 8

Patent Application Publication

8 Old

AINV.LSNI A9400
NO ASVI dSNOdSTY ALVIENED OL VILVA AELOVIIXT SSHO0Ud

./

HAON
HHAEHES YHHLONY LSVATLV

VIVA HLOVELXE QHAIHDAY HLVDHIDDV

ANV SEOUNO0S VIVA FTJLL TN
d0 d0dNOS VLVA ANO 1SVHT

1

2/

HLOIELSIA OL SHONV.LSNI — P
0¢8 AANO TYNOLLY THd HZINLLIO

\ LV 40 TION 40 ANO DNOWV

SHAON YIAYHS TION
WO ANO JATEANO H0 HOVH WOYA VIVA QHLOVELXH AATADHY

-

|

<)

g.j

NOILVINYOANI VIVAV.L
JATIDTY OL LSANOTY %mw\%d SHAON JHAMAS IO d0 ANO DNONWY
\; ADYAONYT TVENLYN MO SHONVISNI AYANO TYNOILVTEY IO YO ENO ALN4rdLsIia
A LSV JO/ANV DSV A1V IaANHD H
NOLLVINIOANI VIVAv.LaN SHONVLSNI AAN0O TYNOLLY T
ONIZITLLN A9 ISANOTI AN = TAONW YO ANO HLVYANED OL INVISNI AFHN0 SSH00Ud
\. HADOVNONVYT TVINLVN ASUVd
9 ——— . S H
LSENOTY A¥ENO FOVNONYT | |
\» TVANLVN SATHOHY £ HONVLSNI AFANO FATADHT
|

T8

1

.

SHYNO0S VIVA TdLLTON 40 0d9N0S VIVA INO
ISVAT.LY HLIM HLVOINIOWNINOD SHAON dHAYES FHONW 940 INO

v

W,

US 2022/0292092 Al

SYSTEM AND METHOD FOR QUERYING
MULTIPLE DATA SOURCES

RELATED CASES

[0001] This application claims the benefit of U.S. Provi-
sional Application No. 62/887,217, filed on 15 Aug. 2019,
the contents of which are all incorporated by reference

BACKGROUND

[0002] Data proliferation may involve information typi-
cally being generated and stored in multiple data sources
across, for example, an enterprise. Systems, such as database
systems, managing large amounts of data may distribute
and/or replicate that data across multiple data sources, often
in different locations, including on premise, remotely and/or
on the cloud, for any of a number of reasons, including, e.g.,
security issues, disaster prevention and recovery issues, data
locality and availability issues, etc.

BRIEF SUMMARY OF DISCLOSURE

[0003] The present disclosure may include but is not
limited to a computing system for querying multiple data
sources, a computer implemented method for querying
multiple data sources, a computer program product residing
on a computer readable storage medium, and a computing
system including one or more processors and one or more
memories.

[0004] In an example implementation, the computing sys-
tem for querying multiple data sources may comprise one or
more nodes. Each of the nodes may be in communication
with at least one data source of the multiple data sources to
access data therefrom. The computing system may further
comprise a second node in communication with the one or
more nodes. The second node may be configured to receive
a query instance. The second node may be further configured
to process the query instance to generate one or more
relational query instances based, at least in part, on the query
instance, with each of the one or more relational query
instances to be processed by at least one node. The one or
more relational query instances may be distributed among
the one or more nodes to extract data from the at least one
data source in communication therewith corresponding to
the respective one or more relational query instances. The
second node may be further configured to receive extracted
data from each of the one or more nodes queried. The second
node may be further configured to aggregate the extracted
data.

[0005] One or more of the following example features
may be included. The one or more nodes may be arranged
in a hierarchical structure and the one or more relational
query instances may be distributed among the one or more
nodes directionally from upper nodes to lower nodes. In
another example, the second node and the one or more nodes
may be arranged across at least two or more different
enterprise networks. The second node configured to receive
the query instance may further comprise the second node is
configured to receive a natural language query request
related to obtaining data stored in the multiple data sources
and the second node configured to process the query
instance may further comprise the second node is configured
to parse the natural language query request to generate the
one or more relational query instances. The second node
configured to parse the natural language query request may

Sep. 15, 2022

further comprise the second node is configured to utilize
metadata information. The second node may be further
configured to generate at least one of an Abstract Semantic
Graph (ASG) and an Abstract Semantic Tree (AST) for the
natural language query request. At least one of the generated
ASG and AST may receive the metadata information. The
second node may be further configured to process the
extracted data to generate a response based on the query
instance. The at least one node of the one or more nodes may
be further configured to optimize the one or more relational
query instances to distribute among one or more of the at
least one data source of the multiple data sources and at least
another node of the one or more nodes. As an example, at
least one data source of the multiple data sources may be one
of a database and a node of the one or more nodes.

[0006] In another example implementation, a computer-
implemented method for querying multiple data sources is
disclosed. The computer-implemented method may include
receiving a query instance. The query instance may be
processed to generate one or more relational query instances
based at least in part on the query instance, with each of the
one or more relational query instances to be processed by at
least one server node of one or more server nodes. The one
or more relational query instances may be distributed among
one or more server nodes to extract data from the at least one
data source in communication therewith corresponding to
the respective relational query instance received thereby.
The extracted data may be received from each of the queried
one or more server nodes. The extracted data may be
aggregated.

[0007] One or more of the following example features
may be included. Distributing the one or more relational
query instances may further include distributing the one or
more relational query instances among the one or more
server nodes directionally from upper server nodes to lower
server nodes. In another example, distributing the one or
more relational query instances may further include distrib-
uting the one or more relational query instances among the
one or more server nodes across at least two or more
different enterprise networks. Receiving the query instance
may further include receiving a natural language query
request related to obtaining data stored in the multiple data
sources and processing the query instance may further
include parsing the natural language query request to gen-
erate the one or more relational query instances. Parsing the
natural language query request may further include utilizing
metadata information. The computer-implemented method
may further comprise generating at least one of an Abstract
Semantic Graph (ASG) and an Abstract Semantic Tree
(AST) for the natural language query request. At least one of
the generated ASG and AST may receive the metadata
information. The extracted data may be processed to gen-
erate a response based on the query instance. The one or
more relational query instances may be optimized to dis-
tribute among one or more of the at least one data source of
the multiple data sources and at least one of another server
node of the one or more server nodes. At least one data
source of the multiple data sources may be one of a database
and a server node of the one or more server nodes.

[0008] In yet another example implementation, a com-
puter program product residing on a computer readable
storage medium having a plurality of instructions stored
thereon is provided. The computer program product, when
executed across one or more processors, causes at least a

US 2022/0292092 Al

portion of the one or more processors may perform opera-
tions comprising receiving a query instance. The query
instance may be processed to generate one or more relational
query instances based at least in part on the query instance,
with each of the one or more relational query instances to be
processed by at least one server node of one or more server
nodes. The one or more relational query instances may be
distributed among the at least one server node of the one or
more server nodes to extract data from the at least one data
source of the multiple data sources in communication there-
with corresponding to the one or more relational query
instances. The extracted data may be received from each of
the one or more server nodes queried. The extracted data
may be aggregated.

[0009] In another example implementation, a computer-
implemented method for querying multiple data sources is
disclosed. The computer-implemented method may include
receiving a query instance. The query instance may be
processed to generate one or more relational query instances
based at least in part on the query instance, with each of the
one or more relational query instances to be processed by a
server module. The one or more relational query instances
may be sent to the server module to extract data from at least
one data source of the multiple data sources in communi-
cation therewith corresponding to the one or more relational
query instances. The extracted data may be received from
the server module queried. The extracted data may be
aggregated. The method may include one or more enterprise
query nodes where each enterprise query node may include
one of a client module and one of the server module.

[0010] In another example implementation, a computer-
implemented method for querying multiple data sources is
disclosed. The computer-implemented method may include
receiving a query instance. The query instance may be
processed to generate one or more relational query instances
based at least in part on the query instance, with each of the
one or more relational query instances to be processed by at
least one server node. The one or more relational query
instances may be distributed among one or more server
nodes to extract data from the at least one data source in
communication therewith corresponding to the respective
relational query instance received thereby. The extracted
data may be received from each of the queried one or more
server nodes.

[0011] Other example implementations or embodiments
may include: a system as shown and described in this
disclosure, a query base system (e.g., enterprise query base
system), an enterprise query base node, a hierarchy of
enterprise query base nodes, a method for querying multiple
data sources as shown and described in this disclosure, a
method for implementing an enterprise query base system,
a computer-implemented method substantially as described
with reference to any of the examples and/or to any of the
drawings in this disclosure, a computing system including
one or more processors and one or more memories config-
ured to perform operations substantially as described with
reference to any of the examples and/or to any of the
drawings in this disclosure, a computer program product
residing on a computer readable storage medium having a
plurality of instructions stored thereon which, when
executed across one or more processors, causes at least a
portion of the one or more processors to perform operations
substantially as described with reference to any of the
examples and/or to any of the drawings of this disclosure,

Sep. 15, 2022

and an apparatus configured substantially as described in
this disclosure with reference to any of the examples and/or
to any of the drawings in this disclosure.

[0012] The details of one or more example implementa-
tions are set forth in the accompanying drawings and the
description below. Other possible example embodiments,
features, aspects, and/or possible example advantages will
become apparent from the description, the drawings, and the
claims. Some implementations may not have those possible
example features and/or possible example advantages, and
such possible example embodiments, features, aspects, and/
or possible example advantages may not necessarily be
required of some implementations.

BRIEF DESCRIPTION OF THE DRAWINGS

[0013] FIG. 1 is an example diagrammatic view of a query
base process coupled to an example distributed computing
network according to one or more example implementations
of the disclosure;

[0014] FIG. 2 is an example diagrammatic view of a client
electronic device of FIG. 1 according to one or more
example implementations of the disclosure;

[0015] FIG. 3 is an example diagrammatic view of a
network environment implementing a query base system
with multiple enterprise query base nodes distributed therein
according to one or more example implementations of the
disclosure;

[0016] FIG. 4 is an example diagrammatic view of a query
base system including a query base subsystem in commu-
nication with multiple data sources therein according to one
or more example implementations of the disclosure;
[0017] FIG. 5Ais an example detailed diagrammatic view
of a query base subsystem having a master client node and
a server node according to one or more example implemen-
tations of the disclosure;

[0018] FIG. 5B is an example detailed diagrammatic view
of an enterprise query base node having a master client
module and a server module according to one or more
example implementations of the disclosure;

[0019] FIG. 6 is an example diagrammatic view of a proxy
table being mapped to a base table associated with a remote
data source according to one or more example implemen-
tations of the disclosure;

[0020] FIG. 7 is another example diagrammatic view of
the enterprise query base node propagating a query therein
according to one or more example implementations of the
disclosure; and

[0021] FIG. 8 is an example flowchart of the query base
process for querying multiple data sources according to one
or more example implementations of the disclosure.
[0022] Like reference symbols in the various drawings
indicate like elements.

DETAILED DESCRIPTION

[0023] As noted above, data proliferation may involve
information typically being generated and stored in multiple
data sources across, for example, an enterprise. Systems,
such as database systems, managing large amounts of data
may distribute and/or replicate that data across multiple data
sources, often in different locations, including on premise,
remotely and/or on the cloud, for any of a number of
reasons, including, e.g., security issues, disaster prevention
and recovery issues, data locality and availability issues, etc.

US 2022/0292092 Al

Such database systems may be implemented either as a
distributed database or a distributed file system that may
tend not to scale well for data mining and business intelli-
gence applications that may require fast and efficient
retrieval and processing of large volumes of data. Further-
more, such database systems may pose problems for third
party applications, which may face the challenge of access-
ing data behind a firewall without copying or replicating the
sensitive data from the enterprise data source. One example
technique may be to copy or replicate data from one system
into another system, when there is a need to utilize infor-
mation that is present in the other system. This is typically
done using Extract, Transform, and Load (ETL) technology
or replication technology. Some enterprises may implement
enterprise data hubs (EDHs), which may provide a more
practical and scalable solution than other enterprise data
systems. An enterprise data hub may be a large storage
repository that holds a vast amount of raw data in its native
format until it is needed for enterprise-wide information
storage and sharing. The enterprise data hubs may provide
that all content from disparate sources ingested into the
enterprise data hub and made available for search.

[0024] While some applications may be best served by
copying all the data into a data warehouse or a data lake, it
may be beneficial to minimize data redundancy and increase
the freshness of data by providing ways to access the data
from its native location without the need of moving the data
to a single data warehouse or a single data lake. Moreover,
in some cases, legal aspects forbid copying sensitive data to
an external data warehouse or data lake.

[0025] The present disclosure may relate to a computing
system to address the example and non-limiting data pro-
liferation issue, for example, in an enterprise environment,
where information is typically generated and stored in
multiple data sources. The present disclosure may make use
of'a query communication mesh concept to provide a way to
access and process integrated data from multiple data
sources in a network without creating redundant data stores.
This may provide a way to distribute and push down the
query to the data stored at its native location and avoid the
need of transferring large amounts of sensitive data across
the network. The present disclosure may implement an
elastic mesh technique to tackle various complex enterprise
data source issues which may include hybrid data sources
including on premise and in cloud, and/or systems across
geographic regions, different firewalls, and different net-
works separated by firewalls, etc.

[0026] In some implementations, the system may be
implemented as a directional graph or tree-like mesh that
passes the query from an application client to a data source
by employing one or more enterprise query base (EQB)
nodes. Each of the EQB nodes may include or may either act
as one of a client node that receives the query and a server
node which, in turn, is connected to one or more back-end
data sources to access data therefrom. The client node of the
EQB subsystem at the root of the tree may receive the query
(often in natural language), and may translate and pass a
processed query to the server node (e.g., location of data
source). The processed query may be divided into multiple
sub-queries, according to a build plan or an execution plan,
to be processed by one or more data sources in communi-
cation with the server node of the same EQB subsystem
and/or to be selectively distributed among server nodes of
some of the other EQB nodes.

Sep. 15, 2022

[0027] Insome implementations, the query may be pushed
down to the data source(s). There may be a clear direction
and client/server relationship such as a clear direction from
the client node which may receive a natural language query,
may process/translate natural language to be distributed
among different nodes from processing thereof. The system
may send out one query that can move down chain towards
different EQB nodes that are able to pass query in a direction
or directions towards multiple data sources that are associ-
ated therewith and have information needed for processing
the query. The processed query may not include the calcu-
lated route information but instead, each EQB node may
keep destination data source mapping and may optimize the
query plan itself. That is, each EQB node itself may be a
sub-query engine and may process the sub-query (e.g.,
filtering, joining, aggregating, etc.).

[0028] Distributed databases for large volumes of data,
perhaps on the order of terabytes, may be implemented
across several servers, each designed to host a portion of a
database and typically storing a particular table data. Typi-
cally, such distributed database systems may involve a
partitioned database or database grid under the same net-
work (e.g., intranet). The objective of the distribution of the
data partition in different data sources in existing systems
may be typically for performance e.g., using parallel or
distributed approaches to access different data partitions
concurrently and more efficiently. In some examples, a
network of connected nodes may be provided in the form of
a distributed federated database system, which is a type of
metadata base management system (DBMS), which may
transparently map multiple autonomous database systems
into a single federated database. The constituent databases
may be distributed and interconnected via a computer net-
work and may be geographically decentralized. In tradi-
tional database systems, all nodes may be configured to be
able to send/receive queries with all nodes being treated
equal (e.g., no client/server relationship). These types of
database systems are generally not able to handle different
types of data sources from multiple vendors, e.g., where
some data sources are behind a firewall, some data sources
are in the cloud, etc. On the other hand, third party appli-
cations may also face the challenge of accessing data behind
a firewall without copying or replicating the sensitive data
from the enterprise data source.

[0029] The present disclosure may provide a computing
system (also, sometimes, referred to as “query base system”™)
which may be based on a mesh concept, that may work as
a gateway for a data source federation, may distribute
queries, and may aggregate the result from different data
sources. The query base system may not be a database
management system and may not store data with itself, but
may be a query engine, which may be used to query different
types of databases. Therefore, the system may generally be
placed at a level above in the network hierarchy in relation
to database management systems. In some implementations,
the system may facilitate connection to different data
sources, including different locations of the data source
and/or different types of data sources. The system may
provide the ability to understand different types of data
sources (e.g., Oracle, MongoDB, IBM, SAP, or other data
sources). Whereas other data systems may describe querying
data within the same organization, the disclosed system may
be enabled to query at a level above the organization such as
querying different network database systems. Each of these

US 2022/0292092 Al

networks may have varying security concerns depending on
the network. When the query base system queries the
network, the actual network may perform sub-queries of
their actual data and then the network may output results to
the query base system, thus mitigating security and third-
party access concerns. The results obtained from one or
more networks may provide the relevant data by merging
results together, in contradistinction to other example sys-
tems that obtain results from the actual data within their own
network.

[0030] In some implementations, the query base system
may use different operators (e.g., link multiple operators
together) for querying data from different data sources
instead of simply storing data. The system may cross dif-
ferent networks including the Internet to access one or more
data sources behind a firewall. Further, the system may
integrate with Natural Language Processing (NLP), which
may handle semantic mapping and may remove the barrier
for the application to query different data sources with
different query languages. The query base system may use
semantic operations that may be adapted for different types
of data sources, for example, depending on type of data
source, the network/geographic location of the data source,
available access type, etc. (e.g., allowing the system to
access different types of data sources that may require
different accessibility). This means that the system may be
able to generate a sub-query for one data source that may be
completely different from a sub-query generated for a sec-
ond different data source, thus enabling the system to
function across different types of networks and also different
types of data source.

System Overview:

[0031] In some implementations, the present disclosure
may be embodied as a system, method, apparatus, or com-
puter program product. Accordingly, in some implementa-
tions, the present disclosure may take the form of an entirely
hardware implementation, an entirely software implemen-
tation (including firmware, resident software, micro-code,
etc.) or an implementation combining software and hard-
ware aspects that may all generally be referred to herein as
a “circuit,” “module” or “system”. Furthermore, in some
implementations, the present disclosure may take the form
of' a computer program product on a computer-usable stor-
age medium having computer-usable program code embod-
ied in the medium.

[0032] In some implementations, any suitable computer
usable or computer readable medium (or media) may be
utilized. The computer readable medium may be a computer
readable signal medium or a computer readable storage
medium. The computer-usable, or computer-readable, stor-
age medium (including a storage device associated with a
computing device or client electronic device) may be, for
example, but is not limited to, an electronic, magnetic,
optical, electromagnetic, infrared, or semiconductor system,
apparatus, device, or any suitable combination of the fore-
going. More specific examples (a non-exhaustive list) of the
computer-readable medium may include the following: an
electrical connection having one or more wires, a portable
computer diskette, a hard disk, a random access memory
(RAM), a read-only memory (ROM), an erasable program-
mable read-only memory (EPROM or Flash memory), an
optical fiber, a portable compact disc read-only memory
(CD-ROM), an optical storage device, a digital versatile disk

Sep. 15, 2022

(DVD), a static random access memory (SRAM), a memory
stick, a floppy disk, a mechanically encoded device such as
punch-cards or raised structures in a groove having instruc-
tions recorded thereon, a media such as those supporting the
internet or an intranet, or a magnetic storage device. Note
that the computer-usable or computer-readable medium
could even be a suitable medium upon which the program is
stored, scanned, compiled, interpreted, or otherwise pro-
cessed in a suitable manner, if necessary, and then stored in
a computer memory. In the context of the present disclosure,
a computer-usable or computer-readable, storage medium
may be any tangible medium that can contain or store a
program for use by or in connection with the instruction
execution system, apparatus, or device.

[0033] In some implementations, a computer readable
signal medium may include a propagated data signal with
computer readable program code embodied therein, for
example, in baseband or as part of a carrier wave. In some
implementations, such a propagated signal may take any of
a variety of forms, including, but not limited to, electromag-
netic, optical, or any suitable combination thereof. In some
implementations, the computer readable program code may
be transmitted using any appropriate medium, including but
not limited to the internet, wireline, optical fiber cable, RF,
etc. In some implementations, a computer readable signal
medium may be any computer readable medium that is not
a computer readable storage medium and that can commu-
nicate, propagate, or transport a program for use by or in
connection with an instruction execution system, apparatus,
or device.

[0034] In some implementations, computer program code
for carrying out operations of the present disclosure may be
assembler instructions, instruction-set-architecture (ISA)
instructions, machine instructions, machine dependent
instructions, microcode, firmware instructions, state-setting
data, or either source code or object code written in any
combination of one or more programming languages,
including an object oriented programming language such as
Java®, Smalltalk, C++ or the like. Java and all Java-based
trademarks and logos are trademarks or registered trade-
marks of Oracle and/or its affiliates. However, the computer
program code for carrying out operations of the present
disclosure may also be written in conventional procedural
programming languages, such as the “C” programming
language, PASCAL, or similar programming languages, as
well as in scripting languages such as JavaScript, PERL, or
Python. The program code may execute entirely on the
user’s computer, partly on the user’s computer, as a stand-
alone software package, partly on the user’s computer and
partly on a remote computer or entirely on the remote
computer or server. In the latter scenario, the remote com-
puter may be connected to the user’s computer through a
local area network (LAN) or a wide area network (WAN), or
the connection may be made to an external computer (for
example, through the internet using an Internet Service
Provider). In some implementations, electronic circuitry
including, for example, programmable logic circuitry, field-
programmable gate arrays (FPGAs) or other hardware accel-
erators, micro-controller units (MCUs), or programmable
logic arrays (PLAs) may execute the computer readable
program instructions/code by utilizing state information of
the computer readable program instructions to personalize
the electronic circuitry, in order to perform aspects of the
present disclosure.

US 2022/0292092 Al

[0035] In some implementations, the flowchart and block
diagrams in the figures show the architecture, functionality,
and operation of possible implementations of apparatus
(systems), methods and computer program products accord-
ing to various implementations of the present disclosure.
Each block in the flowchart and/or block diagrams, and
combinations of blocks in the flowchart and/or block dia-
grams, may represent a module, segment, or portion of code,
which comprises one or more executable computer program
instructions for implementing the specified logical function
(s)/act(s). These computer program instructions may be
provided to a processor of a general purpose computer,
special purpose computer, or other programmable data pro-
cessing apparatus to produce a machine, such that the
computer program instructions, which may execute via the
processor of the computer or other programmable data
processing apparatus, create the ability to implement one or
more of the functions/acts specified in the flowchart and/or
block diagram block or blocks or combinations thereof. It
should be noted that, in some implementations, the functions
noted in the block(s) may occur out of the order noted in the
figures. For example, two blocks shown in succession may,
in fact, be executed substantially concurrently, or the blocks
may sometimes be executed in the reverse order, depending
upon the functionality involved.

[0036] In some implementations, these computer program
instructions may also be stored in a computer-readable
memory that can direct a computer or other programmable
data processing apparatus to function in a particular manner,
such that the instructions stored in the computer-readable
memory produce an article of manufacture including
instruction means which implement the function/act speci-
fied in the flowchart and/or block diagram block or blocks or
combinations thereof.

[0037] In some implementations, the computer program
instructions may also be loaded onto a computer or other
programmable data processing apparatus to cause a series of
operational steps to be performed (not necessarily in a
particular order) on the computer or other programmable
apparatus to produce a computer implemented process such
that the instructions which execute on the computer or other
programmable apparatus provide steps for implementing the
functions/acts (not necessarily in a particular order) speci-
fied in the flowchart and/or block diagram block or blocks or
combinations thereof.

[0038] Referring now to the example implementation of
FIG. 1, there is shown a query base process 10 that may
reside on and may be executed by a computer (e.g., com-
puter 12), which may be connected to a network (e.g.,
network 14) (e.g., the internet or a local area network).
Examples of computer 12 (and/or one or more of the client
electronic devices noted below) may include, but are not
limited to, a personal computer(s), a laptop computer(s),
mobile computing device(s), a server computer, a series of
server computers, a mainframe computer(s), or a computing
cloud(s). In some implementations, each of the aforemen-
tioned may be generally described as a computing device. In
certain implementations, a computing device may be a
physical or virtual device. In many implementations, a
computing device may be any device capable of performing
operations, such as a dedicated processor, a portion of a
processor, a virtual processor, a portion of a virtual proces-
sor, portion of a virtual device, or a virtual device. In some
implementations, a processor may be a physical processor or

Sep. 15, 2022

a virtual processor. In some implementations, a virtual
processor may correspond to one or more parts of one or
more physical processors. In some implementations, the
instructions/logic may be distributed and executed across
one or more processors, virtual or physical, to execute the
instructions/logic. Computer 12 may execute an operating
system, for example, but not limited to, Microsoft® Win-
dows®; Mac® OS X®; Red Hat® Linux®, or a custom
operating system. (Microsoft and Windows are registered
trademarks of Microsoft Corporation in the United States,
other countries or both; Mac and OS X are registered
trademarks of Apple Inc. in the United States, other coun-
tries or both; Red Hat is a registered trademark of Red Hat
Corporation in the United States, other countries or both;
and Linux is a registered trademark of Linus Torvalds in the
United States, other countries or both).

[0039] In some implementations, as will be discussed
below in greater detail, a query base process, such as query
base process 10 of FIG. 1, may include each of one or more
server nodes communicating with at least one of the multiple
data sources to access data therefrom. The query base
process may further include receiving a query instance. The
query instance may be processed to generate one or more
relational query instances based at least in part on the query
instance, with each of the one or more relational query
instances to be processed by at least one server node. The
one or more relational query instances may be distributed
among one or more server nodes to extract data from the at
least one data source in communication therewith corre-
sponding to the respective relational query instance received
thereby (e.g., one or more server nodes may distribute
relational query instances to different data sources). The
extracted data may be received from each of the queried one
or more server nodes. The received extracted data may be
aggregated.

[0040] In some implementations, the instruction sets and
subroutines of the query base process 10, which may be
stored on storage device, such as storage device 16, coupled
to computer 12, may be executed by one or more processors
and one or more memory architectures included within
computer 12. In some implementations, storage device 16
may include but is not limited to: a hard disk drive; a flash
drive, a tape drive; an optical drive; a RAID array (or other
array); a random access memory (RAM); and a read-only
memory (ROM).

[0041] In some implementations, network 14 may be
connected to one or more secondary networks (e.g., network
18), examples of which may include but are not limited to:
a local area network; a wide area network; or an intranet, for
example.

[0042] In some implementations, computer 12 may
include a data store, such as a database (e.g., relational
database, object-oriented database, triplestore database, etc.)
and may be located within any suitable memory location,
such as storage device 16 coupled to computer 12. In some
implementations, data, metadata, information, etc. described
throughout the present disclosure may be stored in the data
store. In some implementations, computer 12 may utilize
any known database management system such as, but not
limited to, DB2, in order to provide multi-user access to one
or more databases, such as the above noted relational
database. In some implementations, the data store may also
be a custom database, such as, for example, a flat file
database or an XML database. In some implementations, any

US 2022/0292092 Al

other form(s) of a data storage structure and/or organization
may also be used. In some implementations, query base
process 10 may be a component of the data store, a stand-
alone application that interfaces with the above noted data
store and/or an applet/application that is accessed via client
applications 22, 24, 26, 28. In some implementations, the
above noted data store may be, in whole or in part, distrib-
uted in a cloud computing topology. In this way, computer
12 and storage device 16 may refer to multiple devices,
which may also be distributed throughout the network.

[0043] In some implementations, computer 12 may
execute a query base application (e.g., query base applica-
tion 20) examples of which may include, but are not limited
to, e.g., an enterprise query base application, natural lan-
guage understanding application, voice processing system
application, and the like. In some implementations, query
base process 10 may be accessed via one or more of client
applications 22, 24, 26, 28. In some implementations, query
base process 10 may be a standalone application, or may be
an applet/application/script/extension that may interact with
and/or be executed within a query base application 20, a
component of query base application 20, and/or one or more
of client applications 22, 24, 26, 28. In some implementa-
tions, query base application 20 may be a standalone appli-
cation, or may be an applet/application/script/extension that
may interact with and/or be executed within query base
process 10, a component of query base process 10, and/or
one or more of client applications 22, 24, 26, 28. In some
implementations, one or more of client applications 22, 24,
26, 28 may be a standalone application, or may be an
applet/application/script/extension that may interact with
and/or be executed within and/or be a component of query
base process 10 and/or query base application 20. Examples
of client applications 22, 24, 26, 28 may include, but are not
limited to, a query base application such as an enterprise
query base application, a standard and/or mobile web
browser, an email application (e.g., an email client applica-
tion), a textual and/or a graphical user interface, a custom-
ized web browser, a plugin, an Application Programming
Interface (API), or a custom application. The instruction sets
and subroutines of client applications 22, 24, 26, 28, which
may be stored on storage devices 30, 32, 34, 36, coupled to
client electronic devices 38, 40, 42, 44, may be executed by
one or more processors and one or more memory architec-
tures incorporated into client electronic devices 38, 40, 42,
44.

[0044] In some implementations, one or more of storage
devices 30, 32, 34, 36, may include but are not limited to:
hard disk drives; flash drives, tape drives; optical drives;
RAID arrays; random access memories (RAM); and read-
only memories (ROM). Examples of client electronic
devices 38, 40, 42, 44 (and/or computer 12) may include, but
are not limited to, a personal computer (e.g., client electronic
device 38), a laptop computer (e.g., client electronic device
40), a smart/data-enabled, cellular phone (e.g., client elec-
tronic device 42), a notebook computer (e.g., client elec-
tronic device 44), a tablet, a server, a television, a smart
television, a media (e.g., video, photo, etc.) capturing
device, and a dedicated network device. Client electronic
devices 38, 40, 42, 44 may each execute an operating
system, examples of which may include but are not limited
to, Android™ Apple® i0OS®, Mac® OS X®; Red Hat®
Linux®, or a custom operating system.

Sep. 15, 2022

[0045] In some implementations, one or more of client
applications 22, 24, 26, 28 may be configured to effectuate
some or all of the functionality of query base process 10 (and
vice versa). Accordingly, in some implementations, query
base process 10 may be a purely server-side application, a
purely client-side application, or a hybrid server-side/client-
side application that is cooperatively executed by one or
more of client applications 22, 24, 26, 28 and/or query base
process 10.

[0046] In some implementations, one or more of client
applications 22, 24, 26, 28 may be configured to effectuate
some or all of the functionality of query base application 20
(and vice versa). Accordingly, in some implementations,
query base application 20 may be a purely server-side
application, a purely client-side application, or a hybrid
server-side/client-side application that is cooperatively
executed by one or more of client applications 22, 24, 26, 28
and/or query base application 20. As one or more of client
applications 22, 24, 26, 28, query base process 10, and query
base application 20, taken singly or in any combination, may
effectuate some or all of the same functionality, any descrip-
tion of effectuating such functionality via one or more of
client applications 22, 24, 26, 28, query base process 10,
query base application 20, or combination thereof, and any
described interaction(s) between one or more of client
applications 22, 24, 26, 28, query base process 10, query
base application 20, or combination thereof to effectuate
such functionality, should be taken as an example only and
not to limit the scope of the disclosure.

[0047] In some implementations, one or more of users 46,
48, 50, 52 may access computer 12 and query base process
10 (e.g., using one or more of client electronic devices 38,
40, 42, 44) directly through network 14 or through second-
ary network 18. Further, computer 12 may be connected to
network 14 through secondary network 18, as shown with
phantom link line 54. Query base process 10 may include
one or more user interfaces, such as browsers and textual or
graphical user interfaces, through which users 46, 48, 50, 52
may access query base process 10.

[0048] In some implementations, the various client elec-
tronic devices may be directly or indirectly coupled to
network 14 (or network 18). For example, client electronic
device 38 is shown directly coupled to network 14 via a
hardwired network connection. Further, client electronic
device 44 is shown directly coupled to network 18 via a
hardwired network connection. Client electronic device 40
is shown wirelessly coupled to network 14 via wireless
communication channel 56 established between client elec-
tronic device 40 and wireless access point (i.e., WAP) 58,
which is shown directly coupled to network 14. WAP 58
may be, for example, an IEEE 802.11a, 802.11b, 802.11g,
Wi-Fi®, RFID, and/or Bluetooth™ (including Bluetooth™
Low Energy) device that is capable of establishing wireless
communication channel 56 between client electronic device
40 and WAP 58. Client electronic device 42 is shown
wirelessly coupled to network 14 via wireless communica-
tion channel 60 established between client electronic device
42 and cellular network/bridge 62, which is shown directly
coupled to network 14.

[0049] In some implementations, some or all of the IEEE
802.11x specifications may use Ethernet protocol and carrier
sense multiple access with collision avoidance (i.e., CSMA/
CA) for path sharing. The various 802.11x specifications
may use phase-shift keying (i.e., PSK) modulation or

US 2022/0292092 Al

complementary code keying (i.e., CCK) modulation, for
example. Bluetooth™ (including Bluetooth™ Low Energy)
is a telecommunications industry specification that allows,
e.g., mobile phones, computers, smart phones, and other
electronic devices to be interconnected using a short-range
wireless connection. Other forms of interconnection (e.g.,
Near Field Communication (NFC)) may also be used.
[0050] Referring also to the example implementation of
FIG. 2, there is shown a diagrammatic view of client
electronic device 38. While client electronic device 38 is
shown in this figure, this is for example purposes only and
is not intended to be a limitation of this disclosure, as other
configurations are possible. Additionally, any computing
device capable of executing, in whole or in part, query base
process 10 may be substituted for client electronic device 38
(in whole or in part) within FIG. 2, examples of which may
include but are not limited to computer 12 and/or one or
more of client electronic devices 38, 40, 42, 44.

[0051] In some implementations, client electronic device
38 may include a processor and/or microprocessor (e.g.,
microprocessor 200) configured to, e.g., process data and
execute the above-noted code/instruction sets and subrou-
tines. Microprocessor 200 may be coupled via a storage
adaptor (not shown) to the above-noted storage device(s)
(e.g., storage device 30). An I/O controller (e.g., I/O con-
troller 202) may be configured to couple microprocessor 200
with various devices, such as keyboard 206, pointing/select-
ing device (e.g., touchpad, touchscreen, mouse 208, etc.),
custom device (e.g., device 215), USB ports (not shown),
and printer ports (not shown). A display adaptor (e.g.,
display adaptor 210) may be configured to couple display
212 (e.g., touchscreen monitor(s), plasma, CRT, or LCD
monitor(s), etc.) with microprocessor 200, while network
controller/adaptor 214 (e.g., an Ethernet adaptor) may be
configured to couple microprocessor 200 to the above-noted
network 14 (e.g., the Internet or a local area network).
[0052] As will be discussed below, the query base process
10 may be integrated into a practical application to at least
help, e.g., improve existing technological processes associ-
ated with, e.g., querying of multiple data sources necessarily
rooted in computer technology.

[0053] It will be appreciated that the computer processes
described throughout are not considered to be well-under-
stood, routine, and conventional functions.

[0054] The Query Base System:

[0055] The example implementation of FIG. 3 shows a
schematic of a network environment (e.g., network environ-
ment 300), in accordance with one or more example embodi-
ments of the present disclosure. The network environment
300 may implement the query base system 302 (hereinafter,
sometimes, simply referred to as “network system” or “sys-
tem”). In some implementations, the network environment
300 may be an enterprise network environment. An enter-
prise network may be generally defined as an enterprise’s
communications backbone that helps connect computers and
related devices across departments and workgroup net-
works, facilitating insight and data accessibility. The net-
work environment 300 may reduce communication proto-
cols, facilitating system and device interoperability, as well
as improve internal and external enterprise data manage-
ment. The network environment 300 may include local and
wide area networks (LAN/WAN), depending on operational
and departmental requirements. The network environment
300 may effectively combine and use different device and

Sep. 15, 2022

system communication protocols. For example, the network
environment 300 may integrate all systems, including Win-
dows and Apple computers and operating systems (OS),
Unix systems, mainframes and related devices like smart-
phones and tablets.

[0056] Inthe example of FIG. 3, the network environment
300 may be a hybrid cloud network with multiple mesh
nodes 330, 332, 334 which may be communicating with
each other using, for example, Internet 304 as a backbone.
Each of the multiple mesh nodes 330, 332, 334 may form a
sub-net in the network environment 300. In the shown
example, the network environment 300 may include three
sub-nets, namely an application sub-net 306, a local sub-net
308, and a cloud sub-net 310. Each of the sub-nets 306, 308
and 310 may include respective one or more data sources. In
the shown example, the application sub-net 306 may include
a data source 312, the local sub-net 308 may include data
sources 314, 316 and 318 and the cloud sub-net 310 may
include data sources 320 and 322. It may be appreciated that
network environment 300 may be deployed by an enterprise,
for example an organization or a company, which may own
or have access to servers located on company property at
on-premises location and/or servers in the cloud. The on-
premises servers may include some dedicated servers that
are physical machines and other dedicated servers that run a
virtualization host (vHost or hypervisor) software, such as
VMWare or Xen, originally developed by the University of
Cambridge Computer Laboratory. The virtualization host
software runs several virtual-machine nodes, VM nodes,
which can each run applications to service client requests.

[0057] In the example, the network system 302 provides
enterprise query base (EQB) nodes 330, 332, and 334 for
each of the sub-nets 306, 308 and 310, respectively. For
example, the application sub-net 306 may include an appli-
cation EQB node 330, the local sub-net 308 may include a
local EQB node 332, and the cloud sub-net 310 may include
a cloud EQB node 334. The application EQB node 330 may
be deployed locally with the data source 312 (e.g., locally
deployed data source), the local EQB node 332 may be
deployed on-premises with the data sources 314, 316 and
318 (e.g., on-premises deployed data sources), and the cloud
EQB node 332 may be deployed on cloud with the data
sources 320 and 322 (e.g., cloud deployed data sources).
Also, as shown, the application sub-net 306 may include a
client application 336 for receiving/generating a query (e.g.,
variety types of data search queries such as navigational
queries, informational queries, and/or transactional queries)
for the application EQB node 330. For example, the query
may be received as a natural language query such as “show
me the sales for our products last year” (e.g. from user
speech). Further, the application sub-net 306 may include a
graph database 338 for providing metadata for processing
the query (e.g., a semantic service may be used with a graph
database for metadata or a graph database that stores meta-
data from the semantic service—the semantic service may
be part of an NLP system). As shown, the application EQB
node 330 may communicate directly with the graph database
338 and the client application 336 in processing the query.
Further, the client application 336 may communicate with
the graph database 338 in processing the query.

[0058] In some implementations, each of the nodes 330,
332 and 334 may interact with respective data source(s)
only. That is, the application EQB node 330 may interact
with the data source 312 (e.g., containing application data),

US 2022/0292092 Al

the local node 332 may interact with the data sources 314,
316 and 318 (e.g., containing premises data), and the cloud
node 334 may interact with the data sources 320 and 322.
These nodes 330, 332, and 334 may have specific unique
permissions allowing each node 330, 332, 334 to interact
with its respective data source locations (e.g., application
data, premises data, or cloud data). For instance, the cloud
node 322 may not be able to interact with premises data as
the cloud node 322 may not have permissions to access the
on-premises data sources 314, 316 and 318. In summary, the
query may have a direction sent from a front end to data
sources where each EQB node may be connected to data
sources within the same sub-network as described above
(based or dependent on EQB node’s permissions).

[0059] The system 302 may be provided with multiple
nodes, e.g., nodes 330, 332 and 334 in different locations
such that each of the nodes 330, 332 and 334 may become
an interface with respective different data source(s). The
system 302 may allow for mapping of communication
across different parts of the network environment 300,
specifically different data sources. Each of the nodes 330,
332 and 334 may be configured slightly different such that
each node may be deployed with its respective location (e.g.,
based on legal, security policies, etc. relating to the respec-
tive location). Each EQB node 330, 332 and 334 may
provide multiple functionalities, including, but not limited
to, semantic discover and translation based on rules, in-
memory calculation, data source matching, query distribu-
tion, query plan construction, and query result integration/
caching, etc.

[0060] Example FIG. 4 is a schematic diagram of an
example query base system 400 (e.g., enterprise query base
system). As shown, the query base system 400 may include
a query base subsystem 402 (e.g., enterprise query base
subsystem such as an enterprise query base platform) that
may interact with external applications and data sources. As
shown, the query base subsystem 402 may be in communi-
cation with multiple data sources (e.g., data sources 404). As
shown, the EQB subsystem 402 may include (at least) two
nodes: one node may provide client functionality (referred to
as a master client node 406), and another node may provide
server functionality (referred to as a server node 408). The
two nodes 406 and 408 may interact by means of a network
infrastructure, such as via the Internet 304. The data sources
404 may be separated from the master client node 406 via a
firewall, and the server node 408 may be located behind the
firewall to be able to access and communicate with the data
sources 404. In examples where there are at least two nodes
(e.g., master client node 406 and server node 408), the
master client node 406 may not have a direct connection to
the data sources 404 behind the firewall where the server
node instead (e.g., server node 408) may be used to interact
with the data sources 404 directly. This is important to have
separation (e.g., master client node connected to data
sources via at least one server node) for security purposes as
the data sources (e.g., databases) behind the firewall may not
be able to communicate with user directly outside the
firewall. This is also important for performance reasons to
prevent these data sources from negatively impacting per-
formance (e.g., slow down effect) of the user device and/or
the master client node as the server node may be deployed
separately with the data source of the organization/enterprise
(e.g., user accesses data via master client node which
indirectly accesses the data via the at least one server node).

Sep. 15, 2022

Fetching large data from remote data sources over the
Internet and processing such data at the master client node
may impact performance. Instead, the master client node
(and therefore the user device) may interact with data of a
query result (as obtained by the server node). In summary,
this master/client server node example may be elastic
enabling deployment that may address security and/or per-
formance concerns. In other examples, such as single EQB
node example described below, data sources may be directly
accessible by the single master EQB node (e.g., one EQB
node deployed). In the single node examples, there may be
a direct connection to the data sources 404 behind the
firewall.

[0061] The query base system 400 may also include an
application client 410 to receive a query instance such as
from a user (also, sometimes referred to as a user query). The
query base system 400 may further include a graph database
412 that may contain metadata (e.g., ontology metadata for
semantic functionality) for processing the user query. The
graph database 412 may be used for semantic layer to
interpret the query instance (e.g., natural language query
instance). The master client node 406 may be configured to
interact with the application client 410 as well as with the
graph database 412. For example, the application client 410
may receive the query instance and may pass the query
instance to the client node 406 in the EQB subsystem 402.
The master client node 406 may implement a role mapping/
rule mapping logic 414 for processing the received query
instance, for example, for not only structured query lan-
guage (no-SQL) or structured query language (SQL) trans-
lation. SQL may be used with databases (e.g., relational
databases (RDBMS)) such as PostgreSQL, MySQL, Oracle,
Microsoft SQL, and the like whereas no-SQL may be used
with databases (e.g., non-relational or distributed databases)
such as Redis, RavenDB, Cassandra, MongoDB, BigTable,
HBase, Neodj, CouchDB, and the like. In particular, the
master client node 406 may process the query instance to
generate one or more relational query instances based at
least in part on the query instance, with each of the one or
more relational query instances to be processed by the server
node 408. The query instance received may be in the form
of a natural language query (NLQ). The query instance may
be processed to generate the relational query instances that
may be in the form of SQL queries. The master client node
406 may process (and translate) the query instance (e.g., user
query as NLQ) to generate relational query instances that
may be used for accessing and querying e.g. relational
databases. For example, the NLQ query instance may be
“show me the sales for my company” and the corresponding
SQL relational query instances may be generated as “select
sum(invoice.amount) from sales_table” (e.g., NLQ query
instance may be translated to the generated SQL relational
query instance). The SQL relational query instance may be
in different forms such as “select” SQL text format, internal
abstract tree structure, and the like. In some examples, the
master client node 406 may receive a natural language query
request related to obtaining data stored in the multiple data
sources 404. In such case, the master client node 406 may
parse the natural language query request to generate the
query instance. In some implementations, the master client
node 406 may utilize metadata information, from the graph
database 412, for parsing of the natural language query (e.g.,
metadata information may be used to understand and trans-
late natural language query). The graph metadata, as

US 2022/0292092 Al

received from the graph database 412, may help the master
client node 406 to translate the query using a Natural
Language Processing (NLP) service to further disambiguate
the query (e.g., NLP may be used for determining intents and
disambiguate natural language query). As described above,
the graph metadata may be ontology metadata that may be
in the form of ontology graphs for semantic reasoning (e.g.,
ontology metadata may include saved ontology graphs used
for semantic reasoning). The master client node 406 may use
this ontology metadata to parse (e.g., identify vocabulary,
meaning, intent, dimension—such as what does “sales”
mean based on ontology metadata), understand the NLQ
query instance (e.g., may resolve ambiguities in the NLQ
query instance), and then mapping in order to generate
accurate corresponding relational query instances (e.g., SQL
relational query instances). For example, the query instance
may be initially received from the user in natural language
(e.g., as a voice or text). Then, the system may consult the
graph metadata (e.g., of the graph database 412) to provide
NLP and may use mapping to translate the query instance to
the relational query instance (e.g., “select” statement). The
query instance may be translated to the relational query
instance based on the graph metadata (e.g., based on map-
ping).

[0062] Further, the server node 408 may be configured to
optimize the one or more relational query instances to
distribute among one or more of the data sources 404 in
communication therewith (e.g., optimize may mean use of
statistics, histogram, and/or rules to find an optimal plan for
distribution and execution of the relational query instances).
The server node 408 may include proxy tables 416 and local
cache tables 418. The proxy tables 416 (e.g., proxy tables/
views) and the local cache tables 418 may include informa-
tion to build a query plan for distribution of the relational
query instances among one or more of the data sources 404.
In the examples, the proxy tables 416 may include a partial
or a complete map of the data structure in the one or more
of the multiple data sources 404. The partial or complete
map is pre-configured based on the data sources 404. For
example, the partial or complete map is setup at a configu-
ration stage or registration stage (e.g., register data sources
404 or specifically register tables of the data sources 404
which may be used to create pre-configured partial or
complete map of all data sources 404). The partial or
complete map may be updated each time new data is added
to data sources 404 or new data sources are added to
collective group of data sources. The partial or complete
mayp is important as the data is not stored in the server nodes.
The partial or complete map may be a schema or location
mapping to the data structure (e.g., mapping to a table or
tables). The partial or complete map (also may be referred to
as mapping) assists the server node 408 with generating
subqueries that may be sent to data sources 404 or another
server node. The results from different data sources 404 may
be aggregated at later stages e.g. by the master client node
406.

[0063] The local cache tables 418 may be a data repository
which temporarily stores data extracted from the data
sources 404 based on the user query for further use such as
for another similar query or the like. For example, the local
cache tables 418 may be cache tables designed for improv-
ing performance. A frequently used data table may be stored
as cache tables for improving performance of queries. Gen-
erally, it may be understood that the user query may require

Sep. 15, 2022

information from multiple data sources to be processed. The
server node 408 may process the relational query instances
(corresponding to the user query) to determine from which
of the data sources may there be information needed to be
gathered for processing of the user query instance. For
example, the server node 408 may use the partial or com-
plete map to determine that the locations of the information
(needed for processing the query instance) may be in rela-
tional tables tl and t2. The information may be specifically
in column c1 oftable t1 and column c1 of table t2. Using the
partial or complete map, the server node 408 may determine
where table t1 and table t2 reside so that it may generate and
send sub-queries to each data source for the relevant data
and then join the relevant data (e.g., different sub-query per
data source and then join data of same data type). In
summary, this example describes a join between two tables
(e.g., tl and t2) from two different data sources (e.g., data
source 1 and data source 2, respectively) because the rel-
evant data of these tables (based on query instance) may be
joined to create full result (e.g., where part of needed result
is in table t1 and part of needed result is in table t2). For
example, a sub-query related to table t1 may be sent to data
source 1 and another sub-query related table t2 may be sent
to data source 2. The syntax for this SQL relational query
instance may be “select tl.cl, t2, ¢l from tl, t2 where
tl.c2=t2.¢2”, “t1.c2=t2.c2” which means that both tables t1
and t2 have the same data type. This process of joining e.g.
two tables may occur where the tables are the same data

type.

[0064] It is to be understood that the master client node
406 may communicate with the server node 408 using query
language (e.g., translated query language). On the other
hand, the server node 408 may be positioned behind the
firewall and may receive the processed query from the
master client node 406. The server node 408 may then
distribute and interact with the data sources 404. The server
node 408 may directly interact with the data sources 404
which may include, for example, but is not limited to, a file
system, and further with an Online Analytical Processing
(OLAP) wrapper (which interacts with an OLAP), Online
Transaction Processing (OLTP) wrapper (which interacts
with an OLTP), No-SQL wrapper (which interacts with a
NO-SQL), and a Generic Open Database Connectivity
(ODBC) connector/wrapper (which interacts with data
source 1, data source 2, etc.). Further, the functionalities of
the EQB subsystem 402, including the master client node
406 and the server node 408, may be explained in reference
to FIG. 5A below.

[0065] Example FIG. 5A is a schematic diagram of the
EQB nodes 406, 408 of the query base subsystem 402
showing its various sub-components of the query base
system 400. FIG. 5A also depicts internal data flow for the
EQB subsystem 402. The EQB subsystem 402 is shown to
be in external communication with the application client
410, a data processor 504, the graph database 412, data
sources 404 and a next EQB node 502. For simplification,
the data sources 404 may be considered as regular SQL data
sources. As shown, the EQB subsystem 402 may include the
master client node 406 and the server node 408. It is to be
understood that the EQB subsystem 402 may function either
as a standalone client node or a standalone server node if
needed, depending on the required role for processing the

US 2022/0292092 Al

received query. It may be appreciated that at least one of the
multiple data sources is one of a database, a server node, and
another EQB node.

[0066] As discussed, the network implementing the EQB
node (such as, the EQB node 406, 408) may be a directional
graph or tree-like mesh that passes the query from the master
client node 406 to the data sources 404 through the server
node 408. A root of this network tree may generate the query
that is translated and distributed to the leaf nodes (e.g.,
location of data source) where there is a clear direction and
client/server relationship (clear direction from client node
which receives natural language, translates natural language,
and then distributes relational query instance (or subquery)
to different server nodes). In some cases, multiple server
nodes 408 may need to be traversed to reach back end data
source having the relevant data/information for processing
the query.

[0067] Inembodiments of the present disclosure, the EQB
subsystem 402 at the root of the network, e.g., the EQB
subsystem which is connected to the application client 410
may include the master client node 406 (and/or act as a client
node) to process the query received from the application
client 410. The same EQB subsystem 402 may also include
the server node 408 (and/or act as a server node) which is in
communication with one or more data sources (such as the
data sources 404) to extract data for processing of the query
received at the master client node 406. In some examples,
such EQB subsystem 402 may act as a parent node or set of
nodes for the network, which in turn may be connected to
one or more other EQB nodes (such as, the next EQB node
502) which may act as sub-nodes for the query base system
400. The one or more enterprise query nodes (such as, the
EQB nodes 406, 408 of the EQB subsystem 402) may be
arranged in a hierarchical structure (or otherwise). In some
embodiments, the one or more enterprise query nodes (such
as, the EQB nodes 406, 408, 502) may be arranged as
multiple enterprise query nodes across at least two or more
different enterprise networks. These sub-nodes may include
functionalities of the server node 408 (and/or act as the
server node) and may be disposed in communication with
respective one or more data sources to extract relevant data
therefrom for processing the query. For example, when the
server node 408 communicates with the next EQB node 502,
the server node 408 changes its role from working as a
“server node” to working as a “client node” and the next
EQB node 502 works as a “server node” such that the server
node 408 acts as client to the next EQB node 502. In
examples, the next EQB node 502 may have same compo-
nents as server node 408. In some examples, the next EQB
node 502 may then communicate and work as the “client”
with respect to other server nodes until the data is obtained
from appropriate data source based on the query. In
examples, the server node 408 may communicate with the
next EQB node 502 and the next EQB node 502 may
communicate with other EQB nodes via the Internet 304
directing the relational query instances towards relevant data
sources 404 (via the next EQB node 502 and possibly other
EQB nodes). The server node 408 determines where to
direct the relational query instances based on the data source
mapping (e.g., using partial or complete map for determin-
ing most efficient pathway to data sources 404). As
described above, the EQB subsystem 402 preconfigured
with a pre-determined partial or complete map. The mapping
may be done when the EQB subsystem 402 is deployed and

Sep. 15, 2022

may be part of configuration for the EQB subsystem 402
such that all information in the data sources 404 may be
mapped prior to use of the EQB subsystem 402. The
mapping may be updated/configured at different stages in
the future depending on changes to the data sources 404.

[0068] As shown in FIG. 5A, the EQB subsystem 402, or
specifically the master client node 406 therein, may receive
a query as input from the application client 410. It may be
appreciated that the application client 410 (also generally
referred to as a client electronic device) may be a user
device, such as a personal computer, a smartphone, a tablet
computer, or the like which may, optionally, provide a
graphical user interface (GUI) to allow a user to input the
query therein. Generally, the received query may be a natural
language query. In the EQB subsystem 402, the query (e.g.,
user query), in the form of input (e.g., external signal), may
be received by an application query parser 516 in the master
client node 406. In some embodiments, the master client
node 406 may be configured to receive the natural language
query request related to obtaining data stored in the multiple
data sources 404, and parse the natural language query
request to generate the query instance. In the example, the
generated query instance may have the required syntax to be
further converted into an SQL query (as discussed below)
for processing thereof.

[0069] In particular, as shown in FIG. 5A, the application
query parser 516 may convert the user query to an Abstract
Semantic Graph (ASG) 518. In particular, the master client
node 406, or the application query parser 516 of the master
client node 406, may be configured to generate at least one
of an Abstract Semantic Graph (ASG) and an Abstract
Semantic Tree (AST) for the received natural language
query. An ASG, also known as term graph, may be a form
of abstract syntax in which an expression of a formal or
programming language is represented by a graph. ASG is
typically at a higher level of abstraction than AST, which
may be used to express the syntactic structure of an expres-
sion or program. ASG 518 may consult with the graph
database 412 (e.g., graph database storage for client node),
in communication therewith, to get the metadata needed for
the user query. The generated ASG and/or AST may be
implemented to receive the corresponding metadata infor-
mation for the graph database 412 (e.g., metadata received
may be used for semantic translation). Further, the master
client node 406 may be configured to utilize metadata
information, as received from the graph database 412, for
parsing of the natural language query to generate the rela-
tional query instance (e.g., metadata may be used to under-
stand and translate natural language query).

[0070] The metadata from the graph database 412 may be
stored and combined with heuristic rules for role-based
translation. Role-based translation may allow for users with
different roles to access different information. For example,
role-based translation may be used to understand and deter-
mine that “sales” for a CEO may mean the whole company
sales while “sales” for a manager may mean for a specific
designated group only or specific region (e.g., where man-
ager works with sales in the US only). Role-based transla-
tion may include translation of the query instance to gener-
ate relational query instance(s) based on user’s role (e.g.,
role of user requesting query). As described above, deter-
mining the role-based translation and generating the rela-
tional query instances may be based on the metadata and
heuristic rules. For example, the relational query instance

US 2022/0292092 Al

(e.g., SQL relational query instance) may have different
restrictions based on security access (e.g., access to certain
data may vary from a CEO to an engineering manager to a
secretary for marketing group) and possibly different seman-
tics (e.g., from one user to another user based on their role
such as meaning of “sales” for sales manager of US division
may vary from meaning of sales for a CFO). Further, NLP
techniques may be integrated to make translation more
robust and elastic. The system may utilize a set of graph
database style token languages for interfacing of the NLP
unit. Abstract Semantic Graph (ASG) and Abstract Semantic
Tree (AST) may be used as the internal language for pass
through and processing. In some examples, the master client
node 406 may receive Abstract Semantic Graph (ASG)
query from the application client 410 (e.g., in form of JSON
format as user query), may translate the query instance into
a relational query instance (e.g., translate ASG into an SQL
query by consulting a graph database), and send the query to
the server node 408 (or the query is sent to data source
directly).

[0071] The master client node 406 may be further config-
ured to process (e.g., parse, translate or compile, normalize,
etc.) the query instance to generate one or more relational
query instances based at least in part on the query instance.
The parsing (e.g., may parse different languages such as
XML, SQL, language, etc.), translating (e.g., may translate
same different languages that were parsed), normalizing or
compiling (e.g., normalize or compile to system to be
processed as described), and the like may be standard
processes but may use a semantic layer (e.g., semantic layer
used during translation). Each of the one or more relational
query instances may be processed by at least one server node
408. The master client node 406 may utilize role mapping/
rule mapping logic 414. Role mapping/rule mapping logic
414 may be used to control the different queries generated
based on different roles for context/permission. In the
example, the query instance along with the acquired meta-
data (e.g., metadata received by ASG 518 from graph
database 412) may then be passed to an SQL query generator
522 which may make use of the configured role mapping/
rule mapping logic 414 (e.g., stored logic) to generate an
SQL query (e.g., relational query instance). The generated
SQL query may be sent to a query source connector 524. The
query source connector 524 may include a map of the server
nodes, and may send the generated SQL query to the
relevant server node(s) (such as, the server node 408) which
may process the SQL query to extract data from one or more
data sources 404 or further pass down the query to the next
EQB node 502, as required. That is, the one or more
relational query instances may be distributed among one or
more server nodes 408 to extract data from the at least one
data source (such as, the data sources 404) in communica-
tion therewith corresponding to the respective relational
query instance received thereby.

[0072] The server node 408 may include an SQL parser
526 that receives a signal, e.g., the SQL query, from the
query source connector 524 of the master client node 406.
The server node 408 may be configured to optimize the one
or more relational query instances to distribute among one or
more of the at least one data source in communication
therewith and/or at least one of other server nodes. The SQL
parser 526 may parse the SQL query into a query tree and
may send it to a query optimizer 528. The query optimizer
528 may then consult a data source mapping expert 530

Sep. 15, 2022

(e.g., stored expert) to build a query execution plan by a plan
builder 532. The data source mapping expert 530 may
include the proxy tables (such as, the proxy tables 416 of
FIGS. 4 and 5A) and local cache tables (such as, the local
cache tables 418 of FIGS. 4 and 5A). The plan builder 532
in conjunction with the data source mapping expert 530 may
use information from the proxy tables 416 and the local
cache tables 418 to understand the structure and layout of the
data sources and data contained therein to frame sub-queries
for each of the relevant data sources and/or for the next EQB
nodes 502 (with other data sources in communication there-
with) for extracting data therefrom. The plan output, as
generated by the plan builder 532, may be passed to a query
distributor 534. The query distributor 534 may use logic for
distribution in the plan output and may distribute the query
(or queries) to data source connectors 536. The data source
connectors 536 may make use of stored data source infor-
mation in the build plan output to send the query to respec-
tive data sources 404 and/or to the next EQB node 502. The
data source connectors 536 may further receive the extracted
data from each of the queried data sources 404 and the next
EQB node 502. The server node 408 may further include a
result engine 538 which may be configured for the integra-
tion/aggregation/execution of the extracted data from the
data sources 404 and/or from the next EQB node 502. The
result engine 538 (in the server node 408) may be disposed
in communication with a query result constructor 540 (in the
master client node 406). It will be appreciated that any of the
elements (and/or their associated roles) in any of the figures
may be combined and rearranged without departing from the
scope of the disclosure.

[0073] In the master client node 406, the query result
constructor 540 may receive extracted data from each of the
queried one or more server nodes 408. The query result
constructor 540 may aggregate the received extracted data.
The data or results from each data source may not be enough
such that the query instance and the relational query instance
may relate to data from multiple data sources. The query
result constructor 540 may be used to aggregate the received
extracted data when it comes from multiple data sources
(e.g., process sub-query results from different data sources to
answer user’s query instance). In some embodiments, the
query result constructor 540 of the master client node 406
may be further configured to process the aggregated data to
generate a response based on the query instance. The query
result constructor 540 may accordingly send an external
signal, as output. In some implementations, the output
having the aggregated data, as extracted from the queried
data sources 404 and the next EQB node 502, may generally
be raw data. The output from the query result constructor
540 may be received by the data processor 504 which may
process the received aggregated data in the output to be
passed to the application client 410 for perusal of the user
(e.g., the result data and a template of display format of the
data may be sent to a front end or user interface of the
application client 410). For example, the user query may be
a request related to a pie-chart for organization of last
financial year results. In the example, the extracted raw data
may be in the form of values or numbers indicating the
relevant financial year results. The data processor 504 may
process the extracted numbers to generate the required
pie-chart to be sent to the application client 410, where it
may be displayed in the GUI thereof as desired by the user.
As shown, the data processor 504 may be positioned exter-

US 2022/0292092 Al

nal to the EQB subsystem 402. In other examples, e.g.,
where data template is for data visualization, the data
processor 504 may be positioned within the EQB subsystem
402 such that the EQB subsystem 402 is configured to
process the raw data in a format to be received by the
application client 410. For example, as described above, the
data processor 504 may process the result of query (from
query result constructor 540) to generate information or data
for display in the GUI (e.g., generate graph, table, chart of
results based on templates for display).

[0074] Example FIG. 5B is a schematic diagram of a query
base system 550 similar to the query base system 400 of
FIGS. 4 and 5A. In this example, the query base system 550
may include a single EQB node 552 that may provide the
functionalities of the EQB nodes 406, 408 together in one
node instead of two separate nodes. In this example, as
shown in FIG. 5B, the EQB node 552 may include EQB
modules 560, 562 that may respectively provide the func-
tionalities of the EQB nodes 406, 408. For example, a master
client module 560 may provide similar functionality to the
master client node 406 and a server module 562 may provide
similar functionality to the server node 408. As shown, these
EQB modules 560, 562 may have the same (or similar)
sub-components to the EQB nodes 406, 408, respectively.
Accordingly, the above descriptions of these sub-compo-
nents may be applicable to the functionalities of the master
client module 560 and server module 562. FIG. 5B may
depict internal data flow for the EQB node 552 similar to the
internal data flow of the EQB subsystem 402. In this
example, the data flow occurs within the EQB node 552 such
that information may be communicated directly between the
modules 560, 562 without the need for the Internet 304. For
example, EQB node 552 may have access one or more
in-house data sources without needing to use the Internet
304. In other examples, information may be exchanged
between the modules 560, 562 via the Internet. The EQB
node 552 is shown to be in external communication with the
application client 410, a data processor 504, the graph
database 412, data sources 404 and possibly a next EQB
node 554 (via the master client module 560 and server
module 562). In some examples, the next EQB node 554
may not be included in the query base system 550. In other
examples, the EQB node 552 may communicate with the
next EQB node 502 (using server module 562) such that the
EQB node 552 acts as client to the next EQB node 502. The
EQB node 552 may communicate with the next EQB node
502 via the Internet 304 or without using the Internet 304.
In examples, the next EQB node 502 may only include a
server module that has same components as the server
module 562. In some examples, the next EQB node 502 may
then act or function as the “client” with other EQB nodes
(these EQB nodes may also only include server modules
having same components as server module 562) until the
data is obtained from appropriate data source based on the
query.

[0075] Referring now to the example FIG. 6, shown is a
schematic diagram of an example process 600 in which one
or more proxy tables 416 (as described above) are being
mapped to one or more base tables 604 associated with a
remote data source 610 (e.g., the remote data source 610
may include the base tables 604 and/or procedures). The
remote data source 610 may be one of several data sources
(e.g., part of the data sources 404). One of the proxy tables
416 (such as, proxy table 606) may refer to a remote data

Sep. 15, 2022

source mapped to one of the base tables 604 (such as, the
base table 608) or procedure in an external data source. The
utilization of the proxy table (such as, the proxy table 606)
for building the plan for distribution of the query has been
explained in the preceding paragraphs.

[0076] In some implementations, the data sources may
need to be registered. The system may provide a user
interface for configuring/registering new data sources. The
configuring/registering of new data sources may be needed
to access different data sources (e.g., knowledge of an
internet protocol (IP) address of the data source and port
number may be used by system to connect with each data
source). In this regard, the system may need to have pre-
defined data sources that are understood by the EQB nodes,
or specifically the server nodes, therein. For external data
sources, the registration may include a connection definition
depending on the data source type. An example of creating
a remote server for a data source may be using the following
Data Definition Language (DDL) statement as follows:

REGISTER SERVER ‘RemoteSS’

CLASS ‘EQBODBC’

[0077] USING ‘rimu:6666°;

Wherein ‘RemoteSS’ is the name of the remote server,
‘EQBODBC’ is a keyword indicating that the remote server
is EQB and the connection to it is JDBC (Java Database
Connectivity) which is a Java API to connect and execute the
query with the database, and rimu:6666 is the computer
name and the TCP/IP port number where the remote server
is located. It will be appreciated that languages other than
Java may also be used without departing from the scope of
the present disclosure.

[0078] The local proxy table (such as, the proxy table 606)
that maps to the remote object may enable location trans-
parency of remote data. The database administrator (DBA)
may be able to create the proxy table 606 to access any
object (including tables, views, and procedures) that the
remote database exports as a candidate for a proxy table. In
case of a non-relational data source, local proxy tables 416
(such as, the proxy table 606) may not correspond to a
remote relational table. In this case, the mapping from the
non-relational data source to the relational model may be
done by an adapter. For example, in case of flat files, a list
of .csv files with the same structure may map to a single
proxy table. In another example, in case of web services, a
set of XML complex elements may be mapped to a set of
proxy tables 416. In some implementations, a specific GUI
may be needed to custom the mapping at data source
registration for each specific use case. The adapter may be
a software layer that allows the enterprise query base (EQB)
subsystem 402 to connect to a remote data source; for
example, a generic ODBC connection to remote source, a
native data source connection protocol, specific ODBC/
JDBC/ODATA gateway for optimized server access, REST
API based communication and/or a security layer, etc.
[0079] Example FIG. 7 is a simplified schematic diagram
of'a query base system 700 depicting propagation of a query
therein. As shown, the application client 410 may send the
query (e.g., natural language query) to an application query
parser 704 (which is similar to application query parser 516
as discussed above and may provide similar functionality
thereof). In some examples, the query may be constructed
against a federated table 705. For example, the query may be

US 2022/0292092 Al

created using the federated table (e.g., natural language
query created against the federated table 705). During a
consumption phase, the federated view may be used (e.g.,
the federated table 705) with the application query parser
704 for building the queries sent for execution to data
sources 404 via a query engine 708. The data sources 404
may be transparent to the query engine 708. Each data
source 404 may be any external database system or another
EQB node which may act as a proxy for a set of data sources
behind a firewall, etc. Communication between the query
engine 708 and the data sources 404 may be encapsulated
into a query engine operator. The query engine 708 may
access the remote data sources 404 via the EQB nodes 710
with their corresponding encapsulated proxy tables 416
mapped to the data sources 404, similar to a local table
access, by sending sub-queries thereto, which may be in
connection with the data sources 404. The query engine 708
may represent functionality of multiple EQB nodes 710
(e.g., master client node 406 and server node 408 and
optionally next EQB node 502) that may be used to enable
the EQB nodes 710 to generate a query, distribute query,
access data based on query, etc. (as described above and may
provide functionality thereof). The EQB nodes 710 together
with the query engine 708 and the application query parser
704 may form an EQB subsystem 712 (like the EQB
subsystem 402). The data sources 404 may be definable as
taking input parameters (e.g., the mapped data source object
may be a function or procedure with the input parameters).
This mapping to a procedure call may be useful to generate
a result set dynamically. Further, in the examples, for
satisfying the federation mapping workflows of the system,
two kinds of additional objects may be added including, e.g.:
domain tables to be used for specifying domain of values
and lookup tables to be used for associating source column
values to given domain of values. In some examples, low
level class encapsulation may be used such that remote data
source access may be encapsulated into a scan operator, e.g.,
“RemoteScan”. The scan operator “RemoteScan” may be a
leaf node of a query execution plan such that mapping may
refer to a remote table object, a remote procedure or query
result, or the like. Below is an example and non-limiting
process shown in software pseudo-code for “RemoteScan”:

Class RemoteScan

RemoteScan //This is a method to bind the proxy table
(paraml); toa remote database object
// param1 will pass in the location and port of the
remote object.
Open(); //This is to open the connection to the remote

object. When
the connection is opened, the connection will
keep the connection until the data access is fully complete.
Readrow(N); // This is to read N rows from the remote source. It
may depend on how the local batch size is
configured for processing. N
may be 1 if multiple rows are not kept for
processing at a time.
/I Close will disconnect and close for the
current scan. The object can be
re-opened for the second connection and read.
...... // Additional methods could include convert,
transform, join, and other
processing, etc.

Close();

Sep. 15, 2022

[0080] In some implementations, for reducing data trans-
fer, several optimization techniques may be used. For
instance, query processing may push remotely as much work
as possible to minimize data transfer and increase overall
system scalability. This may include, but may not be limited
to, full pass-through of single source statements, joins,
ordering, sub-queries on sources (with and without tree
transformation), filters (explicit expressions and implied
from transitive closure and join clauses), aggregation (e.g.,
Eager-Lazy-Aggregation), semi-join reduction (e.g., bind
join/partial semi join), etc. The main objectives of the query
processing in the federation architecture may include, but is
not limited to, translating the NLP processed semantic
representation into a relational SQL representation, maxi-
mize performance by reducing data transfer and latency,
distribute EQB query processing capabilities to remote data,
optimize for the application performance, etc. It will be
appreciated that any of the figures discussed throughout may
be used in any combination without departing from the
scope of the present disclosure.

[0081] The Query Base Process:

[0082] As discussed above and referring also at least to the
example implementations of FIGS. 3-8, the query base
process 10 may include each of one or more nodes (e.g.,
server nodes) communicating with at least one of the mul-
tiple data sources to access data therefrom. The query base
process may further include receiving a query instance (e.g.,
a second node such as a client node may receive the query
instance). The query instance may be processed to generate
one or more relational query instances based at least in part
on the query instance, with each of the one or more relational
query instances to be processed by at least one node (e.g.,
server node). The one or more relational query instances
may be distributed among the one or more server nodes to
extract data from the at least one data source in communi-
cation therewith corresponding to the respective one or more
relational query instances. The extracted data may be
received from each of the one or more server nodes queried.
The extracted data may be aggregated.

[0083] The present disclosure further provides the query
base process 10 that may be used for querying multiple data
sources. Example FIG. 8 is an example flowchart of the
query base process 10 for querying multiple data sources,
according to example embodiments of the disclosure. The
query base process 10 may communicate 802 (e.g., via one
or more server nodes) with at least one data source of the
multiple data sources to access data therefrom. The query
base process 10 may receive 804 a query instance. In an
example, receiving 804 the query instance may include
receiving 824 a natural language query request related to
obtaining data stored in the multiple data sources. The query
base process 10 may process 806 the query instance to
generate one or more relational query instances based at
least in part on the query instance, with each of the one or
more relational query instances to be processed by at least
one server node of the one or more server nodes. In one or
more examples, processing 806 the query instance may
include parsing 826 the natural language query request to
generate the one or more relational query instances by
utilizing metadata information (e.g., metadata information
may be used to understand and translate natural language
query request) and the query base process 10 may generate
828 an Abstract Semantic Graph (ASG) and/or an Abstract
Semantic Tree (AST) for the natural language query request

US 2022/0292092 Al

to receive the metadata information (e.g., metadata infor-
mation may be used for semantic translation). The query
base process 10 may distribute 808 the one or more rela-
tional query instances among one or more server nodes to
extract data from the at least one data source in communi-
cation therewith corresponding to the respective relational
query instance received thereby. The query base process 10
may receive 810 extracted data from each of the queried one
or more server nodes. In one or more examples, after the
query base process 10 distributes 808 the one or more
relational query instances, the query base process 10 may
optimize 830 the relational query instances to distribute
among one or more of the at least one data source of multiple
data sources and another server node. The query base
process 10 may receive 810 the extracted data after opti-
mizing 830 the relational query instances. The query base
process 10 may aggregate 812 the extracted data. The
extracted data may be processed 814 to generate a response
based on the query instance.

[0084] The query base system may be based on mesh
concept, that works as a gateway for a data source federa-
tion, may distribute query, and may aggregate the result from
different data sources. Although mesh concept may be
generally known, this concept may not have been employed
in a query-base type of system as it has different purposes
and applications. Benefits to using mesh concept may relate
to infrastructure level and application level. For example,
the query base system may provide a query engine that may
be used to query different types of databases (e.g., query
base system may not store data with itself but may instead
connect to “different” data sources where “different” may
mean different locations of the data source and/or different
types of data sources). In contrast from other data base
systems, the query base system may have only network level
of access plan of data but may not have a store level access
plan. The query base system may cross different networks
even including Internet to access data sources that may be
behind a different firewall. The query base system may use
a mesh network structure for allowing a new data source to
plug into the query base system quickly and easily as well
as flexible and elastic. The elastic mesh concept may address
various complex enterprise data source issues which include
hybrid data store including on premise and in cloud, and/or
systems across geographic regions and different firewalls,
etc. The mesh structure or layout may help to solve com-
plicated enterprise scenarios where data may be scattered in
different places such as cloud, on premise, or other locations.
The system may cross different networks including internet
and one or more access data sources behind a different
firewall. This capability provides operational and cost ben-
efits, but may also support the development and deployment
of the next generation of analytical applications which may
require the ability to access, synthesize, and integrate data
from multiple systems in real-time regardless of where the
data is located or what systems are generating it (e.g.,
different server nodes may integrate data residing outside the
EQB subsystem or EQB platform). These applications’
ability for cross-functional data in near-real time may drive
new demand for data federation capabilities (e.g., accessing
integrated data from multiple sources without creating
redundant data stores).

[0085] The query base system may use different operators
for querying data from different data sources (e.g., direct
query base may access data sources transparently by query),

Sep. 15, 2022

which is in contradistinction to some known systems which
may simply store data (e.g., some systems may allow for
data to be copied or replicated from other data sources). In
the system, each EQB node may have multiple data source
connectors to connect to different data sources which are
accessible by the particular EQB node. If a data source
cannot be accessed by the current EQB node, another new
EQB node may be deployed in the system/network acces-
sible to the data source. The previous EQB node may talk to
the new EQB node to access the data source (e.g., the new
EQB node may represent one or more data sources behind
a same firewall). Thus, the system may provide functionality
of being able to query all individual data across different
data sources (e.g., no need to copy or replicate data). That is,
the process may include translating query, then query data
sources (e.g., databases) directly via node to obtain result(s).

[0086] Further, the system may integrate with Natural
Language Processing (NLP), which may handle semantic
mapping and may remove the barrier for the application to
query different data sources with different query languages.
The query base system may use semantic operations that
may be adapted for different types of data sources, for
example depending on type of data source, its network/
geographic location, available access type, etc. This means
that the system may be able to generate a subquery for one
data source that may be completely different from a sub-
query generated for a second different data source, thus
enabling the system to function across different types of
networks and also different types of data sources. In some
examples, the EQB nodes may use specific protocol depend-
ing on data source (e.g., specific protocol may enable EQB
node to communicate with a specific type of data source). In
the system, the EQB node may be configured to translate and
distribute a query into a relational SQL query and seamlessly
access data residing in data sources outside thereof by
distributing query to different data sources. The EQB node
may offer a translation framework for native expressions.
For example, the EQB node may offer a translation frame-
work for mapping a federation function to data source
specific expressions taking into consideration, e.g., native
dialects and semantic native expression differences. Further,
the EQB node may provide a way for pass-through of
expressions or execution of a complete statement in a data
source’s native syntax in order to use database specific
native functions/operators and for performance reasons.

[0087] The EQB node may be a query base which works
as a gateway for a data source federation, may distribute the
query, and may aggregate the result from different data
sources. The EQB node may parse the query, from the
application client, into ASG and may translate graph data-
base semantics into relational query instance(s) based on
role mapping/rule mapping logic. Each EQB subsystem may
include the client node and the server node, where each node
may run independently depending on the need. The client
node of the EQB subsystem may send the relational query
instance(s) to the server node (or single data source port).
The client node may further format/construct result(s)
catered for the application client.

[0088] The system may be one directional in the sense that
the query may be pushed down to the data source(s),
whereas some example database management systems may
be bi-directional that may obtain a query result and may then
send the query result back, and if there is still missing
information, such example systems may have to send a new

US 2022/0292092 Al

query. In contrast, the system may send out one query that
may move down chain towards different EQB nodes that
may be able to pass the query in direction or directions
towards multiple sources that have information needed for
responding to the query. The system may send multiple
queries down the chain to obtain query results from one
source or more than one source. In the system, the query
may not actually include the calculated route information
but instead, each EQB node may keep the destination data
source mapping and may optimize the query plan itself. In
the system, each EQB node may be a sub-query engine and
may process the sub-query (e.g., filtering, joining, aggregat-
ing, etc.).

[0089] The query base system may be a unique query
processing mechanism which may translate a natural lan-
guage processing (NLP) query into data queries and may
distribute the query to different data sources intelligently.
The system may use a query processing node mesh archi-
tecture which makes accessing the data sources elastic and
robust. The system may not actually duplicate the data from
the data sources but instead may query the real time data
directly via the query pipeline. The system may make use of
a query communication mesh concept which may provide a
way to access and process integrated data from multiple
sources without creating redundant data stores. This may
provide a way to distribute and push down the query to the
data stored at its native location and avoid moving massive
sensitive data across the network. Further, the system may
encapsulate the communication of different data sources and
may provide a unified interface for data access and inter-
change. The system may integrate learning optimization
processing to the distributed query plan based on heuristic
rules as well as query execution metrics, which may tune the
query plan automatically. Thus, the system may provide a
unified view of data across multiple servers to access data in
each server, transparently, without copying.

[0090] In some examples, the query base system may
interact with a data lake (e.g., pull and copy all data into a
relatively large repository) with data source replication. For
example, the query base system may connect data from
different data sources to the same data lake (e.g., extract,
translate, and load data from different data sources into one
centralized data lake). For this example, the process may be
similar to what is described above except interactions are
with a single data lake (e.g., EQB nodes may interact with
data in data lake). A benefit of this process may be that data
can be easily accessed from the data lake.

[0091] In other examples, query cache and query/data
encryption may be used. This may improve performance by
running previously executed queries found in query cache.
Query/data encryption may relate to security where encryp-
tion may be added to data protected data during transmission
(e.g., prevent chance of data being obtained through attack
during transmissions).

[0092] The terminology used herein is for the purpose of
describing particular implementations only and is not
intended to be limiting of the disclosure. As used herein, the
singular forms “a”, “an” and “the” are intended to include
the plural forms as well, unless the context clearly indicates
otherwise. As used herein, the language “at least one of A,
B, and C” (and the like) should be interpreted as covering
only A, only B, only C, or any combination of the three,
unless the context clearly indicates otherwise. It will be
further understood that the terms “comprises” and/or “com-

Sep. 15, 2022

prising,” when used in this specification, specify the pres-
ence of stated features, integers, steps (not necessarily in a
particular order), operations, elements, and/or components,
but do not preclude the presence or addition of one or more
other features, integers, steps (not necessarily in a particular
order), operations, elements, components, and/or groups
thereof.

[0093] The corresponding structures, materials, acts, and
equivalents (e.g., of all means or step plus function ele-
ments) that may be in the claims below are intended to
include any structure, material, or act for performing the
function in combination with other claimed elements as
specifically claimed. The description of the present disclo-
sure has been presented for purposes of illustration and
description, but is not intended to be exhaustive or limited
to the disclosure in the form disclosed. Many modifications,
variations, substitutions, and any combinations thereof will
be apparent to those of ordinary skill in the art without
departing from the scope and spirit of the disclosure. The
implementation(s) were chosen and described in order to
explain the principles of the disclosure and the practical
application, and to enable others of ordinary skill in the art
to understand the disclosure for various implementation(s)
with various modifications and/or any combinations of
implementation(s) as are suited to the particular use con-
templated.

[0094] Having thus described the disclosure of the present
application in detail and by reference to implementation(s)
thereof, it will be apparent that modifications, variations,
and any combinations of implementation(s) (including any
modifications, variations, substitutions, and combinations
thereof) are possible without departing from the scope of the
disclosure defined in the appended claims.

What is claimed is:

1. A computing system for querying multiple data sources,
comprising:

one or more nodes, wherein each node is configured to

communicate with at least one data source of the
multiple data sources to access data therefrom; and

a second node in communication with the one or more

nodes, wherein the second node is configured to:

receive a query instance;

process the query instance to generate one or more
relational query instances based upon, at least in part,
the query instance, with each of the one or more
relational query instances to be processed by at least
one node of the one or more nodes, wherein the one
or more relational query instances are distributed
among the one or more nodes to extract data from the
at least one data source in communication therewith
corresponding to the one or more relational query
instances;

receive extracted data from each of the one or more
nodes queried; and

aggregate the extracted data.

2. The computing system according to claim 1, wherein
the one or more nodes are arranged in a hierarchical struc-
ture, and wherein the one or more relational query instances
are distributed among the one or more nodes directionally
from upper nodes to lower nodes.

3. The computing system according to claim 1, wherein
the second node and the one or more nodes are arranged
across at least two or more different enterprise networks.

US 2022/0292092 Al

4. The computing system according to claim 1, wherein
the second node is configured to receive the query instance
further comprises the second node is configured to receive a
natural language query request related to obtaining data
stored in the multiple data sources; and wherein the second
node is configured to process the query instance further
comprises the second node is configured to parse the natural
language query request to generate the one or more rela-
tional query instances.
5. The computing system according to claim 4, wherein
the second node is configured to parse the natural language
query request further comprises the second node is config-
ured to utilize metadata information.
6. The computing system according to claim 5, wherein
the second node is further configured to generate at least one
of an Abstract Semantic Graph (ASG) and an Abstract
Semantic Tree (AST) for the natural language query request,
to receive the metadata information.
7. The computing system according to claim 1, wherein
the second node is further configured to process the
extracted data to generate a response based on the query
instance.
8. The computing system according to claim 1, wherein
the at least one node of the one or more nodes is further
configured to optimize the one or more relational query
instances to distribute among one or more of the at least one
data source of the multiple data sources and at least another
node of the one or more nodes.
9. The computing system according to claim 1, wherein
the at least one data source of the multiple data sources is
one of a database and a node of the one or more nodes.
10. A computer-implemented method for querying mul-
tiple data sources, the computer-implemented method com-
prising:
receiving a query instance;
processing the query instance to generate one or more
relational query instances based upon, at least in part,
the query instance, with each of the one or more
relational query instances to be processed by at least
one server node of one or more server nodes;

distributing the one or more relational query instances
among the at least one server node of the one or more
server nodes to extract data from the at least one data
source of the multiple data sources in communication
therewith corresponding to the one or more relational
query instances;

receiving extracted data from each of the one or more

server nodes queried; and

aggregating the extracted data.

11. The computer-implemented method according to
claim 10 wherein the distributing the one or more relational
query instances further comprises distributing the one or
more relational query instances among the one or more
server nodes directionally from upper server nodes to lower
server nodes.

12. The computer-implemented method according to
claim 10 wherein the distributing the one or more relational
query instances further comprises distributing the one or
more relational query instances among the one or more
server nodes across at least two or more different enterprise
networks.

13. The computer-implemented method according to
claim 10 wherein the receiving the query instance further
comprises receiving a natural language query request related

Sep. 15, 2022

to obtaining data stored in the multiple data sources; and
wherein the processing the query instance further comprises
parsing the natural language query request to generate the
one or more relational query instances.
14. The computer-implemented method according to
claim 13 wherein the parsing the natural language query
request further comprises utilizing metadata information.
15. The computer-implemented method according to
claim 14 further comprising generating at least one of an
Abstract Semantic Graph (ASG) and an Abstract Semantic
Tree (AST) for the natural language query request, to receive
the metadata information.
16. The computer-implemented method according to
claim 10 further comprising processing the extracted data to
generate a response based on the query instance.
17. The computer-implemented method according to
claim 10 further comprising optimizing the one or more
relational query instances to distribute among one or more of
the at least one data source of the multiple data sources and
at least one of another server node of the one or more server
nodes.
18. The computer-implemented method according to
claim 10, wherein the at least one data source of the multiple
data sources is one of a database and a server node of the one
or more server nodes.
19. A computer program product residing on a computer
readable storage medium having a plurality of instructions
stored thereon which, when executed across one or more
processors, causes at least a portion of the one or more
processors to perform operations comprising:
receiving a query instance;
processing the query instance to generate one or more
relational query instances based upon, at least in part,
the query instance, with each of the one or more
relational query instances to be processed by at least
one server node of one or more server nodes;

distributing the one or more relational query instances
among the at least one server node of the one or more
server nodes to extract data from the at least one data
source of the multiple data sources in communication
therewith corresponding to the one or more relational
query instances;

receiving extracted data from each of the one or more

server nodes queried; and

aggregating the extracted data.

20. A computer-implemented method for querying mul-
tiple data sources, the computer-implemented method com-
prising:

receiving a query instance;

processing the query instance to generate one or more

relational query instances based upon, at least in part,
the query instance, with each of the one or more
relational query instances to be processed by a server
module;

sending the one or more relational query instances to the

server module to extract data from at least one data
source of the multiple data sources in communication
therewith corresponding to the one or more relational
query instances;

receiving extracted data from the server module queried;

and

aggregating the extracted data.

US 2022/0292092 Al Sep. 15, 2022
17

21. The method according to claim 20 further comprising
one or more enterprise query nodes, wherein each enterprise
query node comprises one of a client module and one of the
server module.

22. A computer-implemented method for querying mul-
tiple data sources, the computer-implemented method com-
prising:

receiving a query instance;

processing the query instance to generate one or more

relational query instances based at least in part on the
query instance, with each of the one or more relational
query instances to be processed by at least one server
node;

distributing the one or more relational query instances

among one or more server nodes to extract data from
the at least one data source in communication therewith
corresponding to the respective relational query
instance received thereby; and

receiving extracted data from each of the queried one or

more server nodes.

#* #* #* #* #*

