US 20160156665A1

a2y Patent Application Publication o) Pub. No.: US 2016/0156665 A1

a9 United States

MOORING et al. 43) Pub. Date: Jun. 2, 2016
(54) SYSTEMS AND METHODS INVOLVING (52) US.CL
ASPECTS OF HARDWARE VIRTUALIZATION CPC HO4L 63/20 (2013.01); GO6F 9/45545
SUCH AS HYPERVISOR, DETECTION AND (2013.01); GOGF 9/45558 (2013.01); HO4L
INTERCEPTION OF CODE OR 63/1416 (2013.01); GO6F 2009/45587
INSTRUCTION EXECUTION INCLUDING API (2013.01); GO6F 2009/45591 (2013.01)
CALLS, AND/OR OTHER FEATURES
(71) Applicant: Klgcszﬁcv[nge Technologies, Inc., San 7) ABSTRACT
(72) Inventors: Edward T. MOORING, Santa Clara, . .
CA (US); Craig HOWARD, Belmont, Systems, methods., compqter.readabl.e media gnd artl.cles of
CA (US) manufacture consistent with innovations herein are directed
to computer virtualization, computer security and/or memory
(21) Appl. No.: 14/955,018 access. According to some illustrative implementations,
innovations herein may utilize and/or involve a separation
(22) Filed: Nov. 30, 2015 kernel hypervisor which may include the use of a guest oper-
ating system virtual machine protection domain, a virtualiza-
Related U.S. Application Data tion assistance layer, and/or a instruction execution detection/
(63) Continuation of application No. 14/714,241, filed on interception mechanism (which may be proximate in
May 15, 2015, now Pat. No. 9,203,855. temporal and/or spatial locality to malicious code, but iso-
.. .. lated from it). The instruction execution detection/intercep-
(60) Provisional application No. 61/993,296, filed on May
15, 2014, t%on mechamsm may perform processing, inter alia, for.det.ec-
tion and/or notification of, and actions upon by a monitoring
Publication Classification guest, code execution by a monitored guest involving prede-
termined physical memory locations, such as API calls. Such
(51) Int.CL actions may include interception of API calls within the
HO4L 29/06 (2006.01) monitored guest and simulation thereof by the monitoring
GOG6F 9/455 (2006.01) guest or another authorized guest.
200~ 201~ 289~
Guest Operating] | Guest Operating Guest Operating
System Virfual System Virtual System Virtual
Machine Machine ® @ e Machine
Protection Protection Protection
Domain Domain Domain
100~
Separation Kemel Hypervisor
800~
Hardware Platiorm Resources

Patent Application Publication Jun. 2,2016 Sheet10f16 US 2016/0156665 A1

200~ 201~ 289~
Guest Operating] | Guest Operating Guest Operating
System Virtual System Virtual System Virtual
Machine Machine e w & Machine
Protection Protection Frotection
Domain Domain Domain
1 00“\\
Separation Kemel Hypervisor
800~
Hardware Platform Resources

FIG. 1

Patent Application Publication Jun. 2,2016 Sheet2 of 16 US 2016/0156665 A1

200~ 299~
Guest Operaling System Virtual Guest Operating System Virtual
Machine Protection Domain Machine Protection Domain
300 Guest Operating 399 Guest Operaling
System System
400 virtualizaton 499 vinualization
Assistance Layer Assistance Layer
A ! aq Detection
200 :_ ______ ; 588 Mechanism
100~

Separation Kernel Hypervisor

800~

Hardware Flatform Resources

700 701 702 731

Py loryl JoPY e e e
i

E 900~

} Buses and Interconnects ‘T—i Main Memory
' 800

1000~, {1001~ | 1002~
NIC 1 HWDD - 88D
1003~ | 1004~ | 1005~
Graphics [1] Audio [1] Mousse/
Adapter Device Keyboard
1006~ | 1007~, | 1008~
Seral O HH usg HH L RAD

FIG. 2A

Patent Application Publication Jun. 2,2016 Sheet3 0f 16 US 2016/0156665 A1

200~ 208~
Guest Operaling System Virtua Guest Operating System Virtual
Machine Frotection Domain Machine Protection Domain
200 Guest Operating 398 Guest Operating
System System
400 virttualization 498 Viralization
Assistance Layer Assistance Layer
500 509
100,

Separation Kerngl Hypervisor

600~

Hardware Platform Resources

700 701 702 731

900~

! Buses and Interconnects 5————! Main Memory

= 800
1000~ 11001~ 11002~
NiC 1 HDD = SSD
1003~ 11004~ 11006~
Graphics { {1 Audio [} Mousse/

Adapler Device || |Keyboard
1006~ 11007~ 11008~

—! [RAD
Serial /0 UsB Controller

FiG. 2B

Patent Application Publication Jun.

200~

Guest Operating System Virlual
Machine Protection Domain

3040 Guest Operating
- System

400 Virtualization
Assistance Layer

500

100~,

2,2016 Sheet4 of 16

297~

US 2016/0156665 Al

Guest Operating Systern Virtual
Machine Protection Domain

397"\

Minimal Runtime
Environment

Separation Kernel Hypervisor

600~

700 701 702

Hardware Platform Rescurces

731

900~
E Buses and Interconnects Main Memory
! -800
1000~, [1001~, 11002~
NIC 4 HOD 4 88D
1008~ | 1004~ 1005~
Graphics {11 Audio]| Mouse/
Adapter Device Keyboard
’50{36\ 'EGG?'\ 1008\
il B RAID
Serial O i LSE - Controller
FIG. 2C

Patent Application Publication Jun. 2,2016 Sheet5o0f16 US 2016/0156665 A1

200~ 299~
Guest Oparating System Virual Guest Operating System Virtual
Machine Protection Domain Machine Protection Dornain
300 Guest Operating 300 Guest Operating
System Systemn
400 4G9 Virtualization
Seif- Assisted Virtualization Assistance Layer
{HSA\'IH}
500 599
100~

Separation Kernel Hypervisor

800~

Hardware Fiatform Resources

700 701 702 731

: 900~
i Buses and Intsreonnects E—mm——m—-f Main Memory
' 800
1000~ {1001~ | 1002~
NIC =4 HDD = 88D
1003~ |1004~, | 1005~
Graphics {11 Audio ||| Mouse/

Adapter Device Keyboard
1006~, 11007~ 1008~

el i RAID
Serial O UsE Controlier

FiG. 2D

Patent Application Publication

Jun. 2,2016 Sheet 6 of 16

US 2016/0156665 Al

200~ 299~
Guest Operating System Virtual Guest Operating System Virtual
Machine Protachion Domain Machins Pretection Domain
399~
300 Guest Operating System 309
2001~ 2002~ 2003~ 2006~ et oo
e iCorrupted - suest Operating
Anti Virus NF Integrity Atk Svste
SoftWare i%?txg‘{: Cheoker || Rootit System
§€a5\\2960\\2@94\\296?\\
Olynorp- iminnal foCrrupledti "Return
hic M?E&?S Integrity { | Oriented’
virus Checker || Rootkit o o w

400 Virlualization Assistance Layer

540

499 \Virtualization
T Assistance Laver

589

100~
: Separation Kermel Hypervisor
600~
Hardware Platform Resources
700 701 702 731
/
L L ’ L
I T I G I il
T | 900~
! Buses and Interconnects Main Memory
: 800
1000~ 1001~ (1002~
NiC 1 HDD 1 S8D
1003~ | 1004~ | 1005~
Graphics £ | | Audio 1]} Mouse/
Adapter Devica Keyboard
1006~ | 1007~ | 1008~
Serial WOHH USB phi RAD

Patent Application Publication Jun. 2,2016 Sheet 7 of 16 US 2016/0156665 A1

200~ 2899~
Guest Operating System Virtual Guaest Operating System Virtual
Machine Protection Domain Machine Profection Domain
300 (uest Operating System
2010~ 2011~ 2012~ 299
User Space | [Kemel Space Shared
code code code Guest Cparati
and data and data and data bde%\.qu}?amg
2013~ | | 2014~ 2015, y”'
o Signa!
Processes, TI?ZZ%’S Handlers,
Tasks, h{;prgmm IPC, User/
Threads Handlers }fgg??
499 Virtuaiization
400 Virtualization Assistance Layer Assistance Layer
500 Detection 5899 APls of
Machanisms — interost
100~
E Separation Kernel Hypervisor
SO0~
Hardware Platform Resources
700 701 702 731
602~ AR, /
HardWare CPU Virfualization |- s N
Protection Mechanisms Ebpu ”p‘}i !LFL: 800~
Main Memory
HardWare CPU Virlualization , 901~
DMA Protection Mechanisms | Buses and Inferconnects | Memory Accassinle
z : by A Guest OS vig
/ /71000~ 11001~ 11002~ CPU
601 6001 mc i WD ssD 902 .
Memory Accessible
: by A Guest OS via
1 0033 1004~ | 10056~ Aevice DMA
Graphics | | | Audio |]] Mouse/ 903
Adapter Device Keyboard
Mamory Accassible
vl 1 RAID Both Device
Serig HO - USEB M Controiler and CPU

FIG. 4

Patent Application Publication

Jun. 2,2016 Sheet 8 of 16

200~ 298~
Guest Operating System Virtual Guest Operating Svstem Virtual
Machine Protection Domain Machine Protection Domain
300 Guest Operating System 399
400 virtualization Assistance Layer Guest O .
suest Operating
yatem
499

Virftualization Assistance Layer

599a-

US 2016/0156665 Al

Import
API
599
100~
Separation Keme! Hypervisor
600~
Hardware Platform Resources
700 701 702 731
602~ J g)
HardWare CPU Virlualization | i~ v e e ;
Protection Mechanisms EPU CPU - fRU CPY 900~
Main Memory
HardWars CPU Virtualization 1901
DMA Protection Mechanisms E Buses and interconnects i Memary Accessinie
7 ‘ by A Guest 05 via
/ /1000~ 1001~ | 1002~ CPY
601 6001 nc My woo HH ssD 02
Memory Accessible
) - . by A Guest OS via
1003~ 11004~ 11005~ Device DMA
Graphics | | | Audio]| Mouse/ 903
Adapter Device Keyboard A
1006~ 1007~ |1008~ [eren e
e L] RAID Both Device DMA
Serial 11O LUSE Controllar and CRU

FIG. 5

Patent Application Publication Jun. 2,2016 Sheet 9 of 16 US 2016/0156665 A1

600 /\

Memory

Management |
\\ Unit Centmi//

(ity (v}
6;\ (VH)
500~ Y.

660

635
605 ng{j: ;
7 Instruction -
; Execution Detection
30@“}»"\’/ / Machanism /
R /
f o Guest 400 v
Operating T
System Virtualization /
’ Assisiance
_r./ Layer /
! 620 \\\,/4-—/ 640
100- /
810 /?45 AP Calls/interception
Separaficn " Mechanism for
Kemel detecting access
Hypervisor {o specified
\\\' memory locations
andior Intercepting
- 650 APl Calls

FIG. 6A

Patent Application Publication Jun. 2,2016 Sheet 10 of 16 US 2016/0156665 A1

660~

Entry into the Separation Kernel Hypervisor (SKH)

665“\ \ i

SKH Securely Transitions execution to the Virtualization Assistance
Layer, isclated from the Guest Operating System 605

670 ™y ¥
The VAL fransitions execution to the Detection
Machanisms

Analyses the behavior of the Guest Operating System
and its resources, including sensitive memory regions, and
reports information

g?@“\ ¥

Detection mechanism(s) transfer control to the MMU
control mechanism, {0 execuls the instruction and re-map
ihe AP! call as non-executable

G678~ ¥

MMU conirol unit mechanism{s) fransitions execution to the
detection mechanismys)

E Transitions Exscution back o the VAL E
685"\ ¥

The VAL fransitions execution back to the SKH or the SKH
initiates fransition back the SKH

FiG. 6B

Patent Application Publication Jun. 2,2016 Sheet 11 of 16 US 2016/0156665 A1

700

Memaory
Management
Unit Control

725

708

fnstruction
Execution Detection

fMechanism /

!

300
400

Guest

{ Operating
\jysiem

Virtualization
’/@,x Assistance
Layer

Separation
Kemel
Hyparvisor

N 740

FIG. 7A

Patent Application Publication Jun. 2,2016 Sheet 12 of 16 US 2016/0156665 A1

760~

Entry infe the Separation Kernel Hypervisor (SKH)

?6&5\ ¥

SKH Securely transilions execution to the Virtualization Assistance
Layer, isolated from the Guest Operaling System 705

770~ v

The VAL fransitions exeaytion io the Detaction
Mechanisms

775~ %

Analyses Guest Operating System behavior, including the
type of memory access, delermining whelher lo act
on this access

??6"’\ ¥

Detection mechanism(s) transfer control to the MMU
cortrol mechanism, to execute the inskruction and re-map
the AP! call as non-executable

MMU control unit mechanism(s) ransitions execution 1o the
detection mechanism(s)

?8@“\ 4
E The transitions Execution back to the VAL g
785“’\\ ¥

The VAL transitions execution back to the SKH or the SKH
initiates transition back the SKH

mmmmmm :&‘mg@mggﬁm;;&;%;mm or acts independently
though taking the policy dedision under advisement

795~ l “““““““““““““““““““““““““

The SKH transitions execution back to the Guest Operating System to
continue monitoring of a suspicious andior malicious sequence/patiem
of instructions.

FIG. 7B

Patent Application Publication Jun. 2,2016 Sheet 13 of 16 US 2016/0156665 A1

800

Memory
Management

Unit Controt N 855

- 500

805 80 7 Instruction
™y W / Execution Memory
j ‘ ; AC&%S Detection
/ / ; Mechanisms
300 AR A / (vt {viii), {ix)
' 400~ {xi) (xiiy

r\d((?sndteosrte ; Virtuakization
Operating Assistance
Systemn Layer

!

815N

Separation Monitoring

Kemns! T Gusst
Hypervisor 330 : Operaling
(3,(1} 1.'\",5;“\/).5 Sygiem

100~ B 600

Patent Application Publication Jun. 2,2016 Sheet 14 of 16 US 2016/0156665 A1

805~

The monitoring guest requests notification of code execution by
manitered guest

&0~ v

The monitoring guest requests a sel of physical memory locations to
ba menitored for code exscution and execution context
data upon such access

CEERS)

Virtualization Assistance Layer (VAL) fransfers conirol to the detection
mechanism{s)

ETo~ T

Detection mechanismi{s) transfer control to the MMU contral mechanism, to
re-miap the AR call as norn-executable

914~ i,

ML confrol unit mechanism(s) fransitions execution o the
detection mechanism(s)

GO0~ 7

The VAL takes control when the monitored guest atlermpls o
gxecite cods in the mapped physical page

825~ ,E,

The VAL delermines thal the address being executed is
part of monitcred set

930~ @
E The VAL pauses the execution of the monitored guest §
835~ i,

The VAL notifies the moniforing guest of the access and provides
execution context data

G40~ T

The monitoring guest performe computation based on the
execttion context data

945~ !
E The monitoring guest creates a new execution context E
850~ v

The moniloring guest sends the new execution context o the VAL §
955~ ‘i.

The val stores the new execution context info the guest and resumes
exscution of the guest with the new confext
960~)

The monitored guest continues operation as though the page had
always been mapped as execulable

Fiz. 9

Patent Application Publication Jun. 2,2016 Sheet 15 0f 16 US 2016/0156665 A1

mi‘?’ Remap
/ Page X 7 1060
/ Memory Page X ~ 1025

| Management | 1015 Guest OS Execute
Controf Unit gﬁter Remap ?

1605

p ™ Yes, Map Page X
< 855 Fig 64, as Non-
0

1020

10
> Map Page X as

Detection Non-Executable

Mechanisms/

L 1055 ™ /10@5

‘, Requesty Yes, Guest
Remapof | OS8 Execute
- after Remap

r785 Fig 7A, | Executable

or 851 Fig8/ 1086

e, H

B55 Fig ;A\/ 1070

Or7SSFIgTA. | 46g0 Yes, \Requestfor| _ Guest 08
or 851 F]g 8/ Rﬁrﬂap Page X Executive after
N Post Ok \ 1040, Remap
. - Remap
Exgcution / Ok 2
vent 1045
SKH ~1072

Ok o Proceed
Y6’ With Guest 08

1078~ 7 3
Trigger Entry into\l Procead =xecution after

Hypervisor after Guest With Remap 7
0S Executives Y ¥ Execution
/ y
Guest OS)
/

1078
Guest OS Executes
After Remap

FiG. 10

Patent Application Publication Jun. 2,2016 Sheet 16 of 16 US 2016/0156665 A1

1135~

Hosting a first mechanism to copy contents of the physical memory location
into a private memory location

1140~ Il

Hosting a second mechanism to overwrite the location with an instruction
to trap into the separation kernel hypervisor

1145~]

Processing an exception due fo exsclution attermpts of the
overwritten location by the associated virtual machine

1150~]

|Hosting a third mechanism to determine whether the physical memory location is ascessedg
1155~ !

| Pausing or resuming execution of the virtual machine §
1160~

| Replacing the overwritten instruction with a stored copy g
1165~ I

| Allowing the virtual machine to execute the instruction]
1170~ &

| Trapping back into the virtualization assistance layer §
1175~]

[Qverwriting the instruction with a trapping instruction §
1180~]

| Sending a notification of memory access and the specification to the requesting guest g

FiG. 11

US 2016/0156665 Al

SYSTEMS AND METHODS INVOLVING
ASPECTS OF HARDWARE VIRTUALIZATION
SUCH AS HYPERVISOR, DETECTION AND
INTERCEPTION OF CODE OR
INSTRUCTION EXECUTION INCLUDING API
CALLS, AND/OR OTHER FEATURES

CROSS-REFERENCE TO RELATED
APPLICATION INFORMATION

[0001] This is a continuation of application Ser. No.
14/714,241, filed May 15, 2015, published as US2015/
0334126A1, now U.S. Pat. No. 9,203,855, which claims ben-
efit/priority of U.S. provisional patent application No.
61/993,296, filed May 15, 2014, all of which are incorporated
herein by reference in entirety.

BACKGROUND

[0002] 1. Field

[0003] Innovations herein pertain to computer software and
hardware, computer virtualization, computer security and/or
data isolation, and/or the use of a separation kernel hypervisor
(and/or hypervisor), such as to detect and/or process infor-
mation, including notification(s), interception and other pro-
cessing regarding code/instruction execution by guest soft-
ware, such as API calls, and which may include or involve
guest operating system(s).

[0004] 2. Description of Related Information

[0005] In computer systems with hypervisors supporting a
guest operating system, there exist some means to monitor the
guest operating system for malicious or errant activity.
[0006] In avirtualized environment, running under control
of'ahypervisor, a suitably authorized guest may be allowed to
monitor the activities of another guest. Among the reasons for
such monitoring are debugging and security. However, pre-
vious approaches for monitoring other guests may include
various drawbacks, such as allowing guests to poll the
memory and other information within the monitored guest.
[0007] Due to the constantly evolving nature of malicious
code, however, such systems face numerous limitations in
their ability to detect and defeat malicious code. One major
limitation is the inability of a hypervisor to defend itself
against malicious code; e.g., the particular hypervisor may be
subverted by malicious code and/or may allow malicious
code in a guest operating system to proliferate between a
plurality of guest operating systems in the system.

[0008] To solve that issue, the motivation and use of a
Separation Kernel Hypervisor is introduced in environments
with malicious code. The Separation Kernel Hypervisor,
unlike a hypervisor, does not merely support a plurality of
Virtual Machines (VMs), but supports more secure, more
isolated mechanisms, including systems and mechanisms to
monitor and defeat malicious code, where such mechanisms
are isolated from the malicious code but are also have high
temporal and spatial locality to the malicious code. For
example, they are proximate to the malicious code, but incor-
ruptible and unaffected by the malicious code.

[0009] Furthermore the Separation Kernel Hypervisor is
designed and constructed from the ground-up, with security
and isolation in mind, in order to provide security and certain
isolation between a plurality of software entities (and their
associated/assigned resources, e.g., devices, memory, etc.);
by mechanisms which may include Guest Operating System
Virtual Machine Protection Domains (secure entities estab-

Jun. 2, 2016

lished and maintained by a Separation Kernel Hypervisor to
provide isolation in time and space between such entities, and
subsets therein, which may include guest operating systems,
virtualization assistance layers, and detection mechanisms);
where such software entities (and their associated assigned
resources, e.g., devices, memory, etc., are themselves isolated
and protected from each other by the Separation Kernel
Hypervisor, and/or its use of hardware platform virtualization
mechanisms.

[0010] Additionally, where some hypervisors may provide
mechanisms to communicate between the hypervisor and
antivirus software, or monitoring agent, executing within a
guest operating system, the hypervisor is not able to prevent
corruption of the monitoring agent where the agent is within
the same guest operating system; or the guest operating sys-
tem (or any subset thereof, possibly including the antivirus
software, and/or monitoring agent) may be corrupted and/or
subverted.

[0011] Finally, while some known systems and methods
include implementations involving virtualized assistance lay-
ers and separation kernel hypervisors to handle various mali-
cious code intrusions, such systems and method possess
drawbacks with regard to handling and/or intercepting certain
specified attacks, such as those related to API calls.

[0012] Overview of Some Aspects

[0013] Systems, methods, computer readable media and
articles of manufacture consistent with innovations herein are
directed to computer virtualization, computer security and/or
dataisolation, and/or the use of a separation kernel hypervisor
(and/or hypervisor), such as to detect, process information,
provide notification and/or interception features regarding
code/instruction execution in specified physical memory
location(s) by guest software and which may include or
involve guest operating system(s). Information may further
be obtained regarding the context of such code/instruction
execution, the flow of execution within the guest may be
controlled, and the context of the guest may be changed.
Here, for example, certain implementations may include a
suitably authorized guest running under control of a hypervi-
sor and involving features of being immediately notified of
another guest executing code at specified physical memory
location(s). Upon access the monitoring guest may be pro-
vided with execution context information from the monitored
guest. Further, the flow of execution within the guest may be
controlled and/or the context of the guest may be changed.
[0014] According to some illustrative implementations,
innovations herein may utilize and/or involve a separation
kernel hypervisor which may include the use of a guest oper-
ating system virtual machine protection domain, a virtualiza-
tion assistance layer, and/or an instruction (or code) execution
detection/interception mechanism (which may be proximate
in temporal and/or spatial locality to subject code, butisolated
from it), inter alia, for detection, interception etc of code/
instruction execution by guest software in specified memory
locations. In some implementations, for example, a suitably
authorized guest may obtain immediate notification if another
guest it is monitoring executes code at specified physical
memory location(s). Upon such access, the monitoring guest
may be provided with execution context information from the
monitored guest. Further, the monitored guest may be paused
until the monitoring guest provides a new execution context
to the monitored guest, whereupon the monitored guest
resumes execution with the new context. Additionally, as
indicated herein, the flow of execution within the guest may

US 2016/0156665 Al

be controlled and/or the context of the guest may be changed
such that, e.g., API calls within the guest may be intercepted
and simulated by the authorized guest.

[0015] Itisto be understood that both the foregoing general
description and the following detailed description are exem-
plary and explanatory only and are not restrictive of the inven-
tions, as described. Further features and/or variations may be
provided in addition to those set forth herein. For example,
the present inventions may be directed to various combina-
tions and subcombinations of the disclosed features and/or
combinations and subcombinations of several further fea-
tures disclosed below in the detailed description.

BRIEF DESCRIPTION OF THE DRAWINGS

[0016] The accompanying drawings, which constitute a
part of this specification, illustrate various implementations
and features of the present innovations and, together with the
description, explain aspects of the inventions herein. In the
drawings:

[0017] FIG. 11is a block diagram illustrating an exemplary
system and Separation Kernel Hypervisor architecture con-
sistent with certain aspects related to the innovations herein.
[0018] FIG. 2A is a block diagram illustrating an exem-
plary system and Separation Kernel Hypervisor architecture
consistent with certain aspects related to the innovations
herein.

[0019] FIG.2Bisablockdiagramillustrating an exemplary
system and Separation Kernel Hypervisor architecture con-
sistent with certain aspects related to the innovations herein.
[0020] FIG.2Cisablockdiagramillustrating an exemplary
system and Separation Kernel Hypervisor architecture con-
sistent with certain aspects related to the innovations herein.
[0021] FIG. 2D is a block diagram illustrating an exem-
plary system and Separation Kernel Hypervisor architecture
consistent with certain aspects related to the innovations
herein.

[0022] FIG. 3 is a block diagram illustrating an exemplary
system and separation kernel Hypervisor architecture consis-
tent with certain aspects related to the innovations herein.
[0023] FIG. 4 is a block diagram illustrating an exemplary
system and separation kernel hypervisor architecture consis-
tent with certain aspects related to the innovations herein.
[0024] FIG. 51is a block diagram illustrating an exemplary
system and separation kernel hypervisor architecture consis-
tent with certain aspects related to the innovations herein.
[0025] FIGS. 6A-6B are representative sequence/flow dia-
grams illustrating exemplary systems, methods and separa-
tion kernel hypervisor architecture consistent with certain
aspects related to the innovations herein.

[0026] FIGS. 7A-7B are representative sequence/flow dia-
grams illustrating exemplary systems, methods and separa-
tion kernel hypervisor architecture consistent with certain
aspects related to the innovations herein.

[0027] FIG. 8 is a representative sequence diagram illus-
trating exemplary systems, methods, and Separation Kernel
Hypervisor architecture consistent with certain aspects
related to the innovations herein.

[0028] FIG. 9 is a representative flow diagram illustrating
exemplary methodology and Separation Kernel Hypervisor
processing consistent with certain aspects related to the inno-
vations herein.

[0029] FIG. 10 is an exemplary state diagram illustrating
aspects of memory management unit processing in conjunc-

Jun. 2, 2016

tion with the hypervisor and VAL, consistent with certain
aspects related to the innovations herein.

[0030] FIG. 11 is a representative flow diagram illustrating
exemplary methodology and separation kernel hypervisor
processing concerning exception-related instructions consis-
tent with certain aspects related to the innovations herein.

DETAILED DESCRIPTION OF ILLUSTRATIVE
IMPLEMENTATIONS

[0031] Reference will now be made in detail to the inven-
tions herein, examples of which are illustrated in the accom-
panying drawings. The implementations set forth in the fol-
lowing description do not represent all implementations
consistent with the inventions herein. Instead, they are merely
some examples consistent with certain aspects related to the
present innovations. Wherever possible, the same reference
numbers are used throughout the drawings to refer to the same
or like parts.

[0032] To solve one or more of the drawbacks mentioned
above and/or other issues, implementations herein may relate
to various detection, monitoring, notification(s), interception
and/or prevention techniques, systems, and mechanisms, as
may be used with a separation kernel hypervisor. Among
other things, such systems and methods may include and/or
involve the use of the monitoring of the entirety, or suitably
configured subset thereof of guest operating system resources
including virtualized resources, and/or “physical” or “pass-
through” resources. Examples include monitoring of the vir-
tual CPUs, its memory access attempts to execute code
involving specified memory such as monitoring and/or inter-
cepting API calls within the guest.

[0033] With regard to certain implementations, in order to
perform such advanced monitoring in a manner that main-
tains suitable performance characteristics in a system that
may include a separation kernel hypervisor and a guest oper-
ating system, mechanisms such as a separation kernel hyper-
visor, a guest operating system virtual machine protection
domain, virtual machine assistance layer, and/or instruction
execution detection/interception mechanisms, may be used to
monitor a monitored guest on a corresponding guest operat-
ing system.

[0034] Systems and methods are disclosed for detecting
and/or notifying executed code by guest software and which
may include or involve guest operating system(s). According
to some implementations, for example, a suitably authorized
guest running under control of a hypervisor may request that
it be notified of another guest executing code at a specified
physical memory location. Features of real-time notification
of, and action(s) regarding obtaining an execution context are
provided to the monitoring guest upon access by the moni-
tored guest to executed code at specific physical memory
locations. Here, monitoring may also be performed in a
timely and expeditious fashion, including by virtue of the
monitoring context being proximate (in time and space) to the
monitored context. Additionally, isolation may be maintained
between the monitor and monitored context. Further, such
monitoring may be performed by mechanisms providing a
wide and comprehensive set of monitoring techniques and
resources under monitoring, inter alia, so as to monitor
against threats which are multi-lateral and/or multi-dimen-
sional in nature.

[0035] According to some implementations, for example, a
hypervisor is configured to allow a guest (monitoring guest)
to request notifications of code execution by another guest

US 2016/0156665 Al

(monitored guest). The monitoring guest requests that a set of
physical memory locations be monitored for code execution,
and the execution context data be returned on such access.
The virtualization assistance layer (VAL) in the monitored
guest maps (e.g., remaps, unmaps) those physical APIs con-
taining those locations as non-executable. This is distinct
from the monitored guest’s notion of API mappings. When
software in the monitored guest attempts to execute code
involving an API call, for example, control transitions to the
VAL. The VAL determines that the address being executed is
part of the set to be monitored. The VAL notifies the moni-
toring guest of the access and provides the monitoring guest
with the execution context data as configured for that access.
Various innovative features involving mapping (unmapping,
re-mapping) and insertion of exception-causing instruction
(s) may be utilized. As such, the monitored guest is allowed to
continue operation as though the API has always been
mapped executable.

[0036] According to some implementations, for example, a
separation kernel hypervisor (SKH) ensures the isolation of
multiple guest Operating Systems each in its own virtual
machine (VM). The SKH may implement a mechanism
whereby a suitably authorized Monitoring Guest sends a list
of memory locations to be monitored for another guest. Fur-
thermore, each of the physical memory locations may be
associated with a specification for the execution context
information to be obtained upon access to the memory loca-
tion(s). The SKH may send to the other guests the specifica-
tion for the execution context information associated with the
list of memory locations. A Virtualization Assistance Layer of
software runs within the same protection domain as the guest
Virtual Machine but is not directly accessible by the guest. A
Virtualization Assistance Layer implements a virtual moth-
erboard containing a virtual CPU and memory. The VAL and
mechanism may process exceptions caused by non-execut-
able API execution attempts by its associated guest virtual
machine. The VAL may determine whether the memory
address accessed is one of those specified in the list of physi-
cal memory locations sent to another guest. The VAL may
send a notification of the memory access and associated con-
text information to the requesting guest.

[0037] Systems and methods are disclosed for providing
secure information monitoring. According to some imple-
mentations, for example, such information monitoring may
be provided from a context not able to be bypassed, tampered
with or by the context under monitoring. Here, monitoring
may also be performed in a timely and expeditious fashion,
including by virtue of the monitoring context being proxi-
mate (in time and space) to the monitored context. Addition-
ally, isolation may be maintained between the monitor and
monitored context. Further, such monitoring may be per-
formed by mechanisms providing a wide and comprehensive
set of monitoring techniques and resources under monitoring,
inter alia, so as to monitor against threats which are multi-
lateral and/or multi-dimensional in nature.

[0038] Inoneexemplary implementation, there is provided
a method of secure domain isolation, whereby an execution
context within a virtual machine may monitor another execu-
tion context within that virtual machine or another virtual
machine, in a manner maintaining security and isolation
between such contexts. Innovations herein also relate to pro-
vision of these contexts such that neither/none can necessar-
ily corrupt, affect, and/or detect the other.

Jun. 2, 2016

[0039] Moreover, systems and methods herein may include
and/or involve a virtual machine which is augmented to form
a more secure virtual representation of the native hardware
platform for a particular execution context. And such imple-
mentations may also include a virtual representation which is
augmented with a wide and deep variety of built-in detection,
notification(s), monitoring and/or interception mechanisms,
wherein secure isolation between the domains or virtual
machines is maintained.

[0040] In general, aspects of the present innovations may
include, relate to, and/or involve one or more of the following
aspects, features and/or functionality. Systems and methods
herein may include or involve a separation kernel hypervisor.
According to some implementations, a software entity in
hypervisor context that partitions the native hardware plat-
form resources, in time and space, in an isolated and secure
fashion may be utilized. Here, for example, embodiments
may be configured for partitioning/isolation as between a
plurality of guest operating system virtual machine protection
domains (e.g., entities in a hypervisor guest context).

[0041] The separation kernel hypervisor may host a plural-
ity of guest operating system virtual machine protection
domains and may host a plurality of mechanisms including
instruction execution detection/interception mechanisms
which may execute within such guest operating system vir-
tual machine protection domains. The instruction execution
detection/interception mechanisms may execute in an envi-
ronment where guest operating systems cannot tamper with,
bypass, or corrupt the instruction execution detection/inter-
ception mechanisms. The instruction execution detection/in-
terception mechanisms may also execute to increase temporal
and spatial locality of the guest operating system’s resources.
Further, in some implementations, the instruction execution
detection/interception mechanisms may execute in a manner
that is not interfered with, nor able to be interfered with, nor
corrupted by other guest operating system virtual machine
protection domains including their corresponding guest oper-
ating systems. The instruction execution detection/intercep-
tion mechanisms include, but are not limited to, performing
one or more of the following actions on guest operating
systems related to guest code execution at specified memory
location(s), such as access to API calls including sensitive
memory regions, and/or actions in response thereto such as
performing various interception processing.

[0042] Where monitoring may include, but is not limited to,
actions pertaining to observation, detection, mitigation, pre-
vention, tracking, modification, reporting upon, of memory
access within and/or by a guest operating system and/or by
entities configured to perform such monitoring for purposes
which may be used to ascertain, and assist in ascertaining,
when suspect code, and/or code under general monitoring or
instrumented execution/debugging, unit test, regression test,
or similar scrutiny, is or may be operating at specified
memory location(s); or, therein, hiding and/or concealed,
halted, stalled, infinitely looping, making no progress beyond
its intended execution, stored and/or present (either operating
or not), once-active (e.g., extinct/not present, but having per-
formed suspect and/or malicious action), and otherwise hav-
ing been or being in a position to adversely and/or maliciously
affect the hypervisor guest, or resource under control of the
hypervisor guest.

[0043] The term “map” or “mapped” shall broadly mean:
setting a memory page with any of the following properties

US 2016/0156665 Al

applied to it (as set and enforced by the hardware MMU via
the SKH): mapped (present), executable, readable, writeable.
[0044] The term “unmap” or “unmapped” shall broadly
mean: setting a memory page with any of the following prop-
erties applied to it (as set and enforced by the hardware MMU
via the SKH): unmapped (non-present), non-executable, non-
readable, non-writeable.

[0045] FIG. 11is a block diagram illustrating an exemplary
system and separation kernel hypervisor architecture consis-
tent with certain aspects related to the innovations herein.
FIG.1 also shows a separation kernel hypervisor executing on
native hardware platform resources, e.g., where the separa-
tion kernel hypervisor may support the execution, isolated
and partitioned in time and space, between a plurality of guest
operating system protection domains. Here, a guest operating
system domain may be an entity that is established and main-
tained by the separation kernel hypervisor in order to provide
a secure and isolated execution environment for software.
Referring to FIG. 1, a separation kernel hypervisor 100 is
shown executing on top of the native hardware platform
resources 600. Further, the separation kernel hypervisor 100
supports the execution of a guest operating system virtual
machine protection domain 200.

[0046] The separation kernel hypervisor 100 may also sup-
port the execution of a plurality of guest operating system
virtual machine protection domains, e.g., 200 to 299 in FIG.
1. In some implementations, the separation kernel hypervisor
may provide time and space partitioning in a secure and
isolated manner for a plurality of guest operating system
virtual machine protection domains, e.g., 200 to 299 in FIG.
1. Such features may include rigid guarantees on scheduling
resources, execution time, latency requirements, and/or
resource access quotas for such domains.

[0047] According to some implementations, in terms of the
sequence of establishment, after the native hardware platform
resources 600 boot the system, execution is transitioned to the
separation kernel hypervisor 100. The separation kernel
hypervisor 100 then creates and executes a guest operating
system virtual machine protection domain 200, or a plurality
of guest operating system virtual machine protection
domains, e.g., 200 to 299 in FIG. 1. Some implementations of
doing so consonant with the innovations herein are set forth in
PCT Application No. PCT/2012/042330, filed 13 Jun. 2012,
published as W02012/177464A1, and U.S. patent applica-
tion Ser. No. 13/576,155, filed Dec. 12, 2013, published as
US2014/0208442 A1, which are incorporated herein by ref-
erence in entirety.

[0048] Consistent with aspects of the present implementa-
tions, it is within a guest operating system virtual machine
protection domain that a guest operating system may execute.
Further, it is within a guest operating system virtual machine
protection domain that instruction execution detection/inter-
ception mechanisms may also execute, e.g., in a fashion iso-
lated from any guest operating system which may also
execute within that same guest operating system virtual
machine protection domain, or in other guest operating sys-
tem virtual machine protection domains.

[0049] FIG. 2A is a block diagram illustrating an exem-
plary system and separation kernel hypervisor architecture
consistent with certain aspects related to the innovations
herein. FIG. 2A also shows a separation kernel hypervisor
executing on native hardware platform resources (where the
native platform resources may include a plurality of CPUs,
buses and interconnects, main memory, Network Interface

Jun. 2, 2016

Cards (NIC), Hard Disk Drives (HDD), Solid State Drives
(SSD), Graphics Adaptors, Audio Devices, Mouse/Key-
board/Pointing Devices, Serial /O, USB, and/or Raid Con-
trollers, etc.), where the separation kernel hypervisor may
support the execution, isolated and/or partitioning in time and
space, between a plurality of guest operating system protec-
tion domains. Here, some implementations may involve a
guest operating system protection domains which may con-
tain a guest operating system, and/or a virtualization assis-
tance layer (which itself may contain instruction execution
detection/interception mechanisms).

[0050] FIG. 2A shows both a guest operating system 300,
and a virtualization assistance layer 400 executing within the
same guest operating system virtual machine protection
domain 200. In some implementations, the virtualization
assistance layer 400 may provide the execution environment
for the instruction execution detection/interception mecha-
nism(s) 500. Further, the virtualization assistance layer 400
may assist the separation kernel hypervisor in virtualizing
portions of the platform resources exported to a given guest
operating system (e.g., Virtual CPU/ABI, Virtual chipset
ABI, set of virtual devices, set of physical devices, and/or
firmware, etc., assigned to a given guest operating system 300
and/or guest virtual machine protection domain 200). Some
systems and methods herein utilizing such virtualization
assistance layer may include or involve (but are not strictly
limited to) a self-assisted virtualization component, e.g., with
an illustrative implementation shown in FIG. 2D.

[0051] The guest operating system 300 and the virtualiza-
tion assistance layer 400, which may include instruction
execution detection/interception mechanism(s) 500, are iso-
lated from each other by the separation kernel hypervisor 100.
In implementations herein, the guest operating system 300
cannot tamper with, bypass, or corrupt the virtualization
assistance layer 400, nor can it tamper with, bypass or corrupt
the instruction execution detection/interception mechanisms
500. Since the instruction execution detection/interception
mechanisms 500 are isolated from the guest operating system
300, the instruction execution detection/interception mecha-
nisms 500 are able to act on a portion of (or the entirety,
depending on policy and configuration) of the guest operating
system 300 and its assigned resources in a manner that is (a)
is transparent to the guest operating system 300 and (b) not
able to be tampered with by the guest operating system 300 or
its assigned resources (e.g., errant and/or malicious device
DMA originated by devices assigned to the guest operating
system 300), and (c) not able to be bypassed by the guest
operating system 300. For example, the instruction execution
detection/interception mechanisms 500, within the given vir-
tualization assistance layer 400, may read and/or modify por-
tions of the guest operating system 300 and resources to
which the Guest Operating System 300 has been granted
access (by the Separation Kernel Hypervisor 100), while
none of the Guest Operating System 300 nor the resources to
which has access may modify any portion of the instruction
execution detection/interception mechanisms 500 and/or vir-
tualization assistance layer 400.

[0052] By having a given virtualization assistance layer
400 and a given Guest Operating System 300 within the
within the same Guest Virtual Machine Protection Domain
200, isolated from each other by the Separation Kernel
Hypervisor 100, various benefits, non-penalties, or mitiga-

US 2016/0156665 Al

tion of penalties, such as the following, may be conferred to
the system at large and to the instruction execution detection/
interception mechanisms 500.

[0053] Increased Spatial and Temporal Locality of Data
[0054] By being contained within the same Guest Virtual
Machine Protection Domain 300, the virtualization assis-
tance layer 200, and/or corresponding private (local) instruc-
tion execution detection/interception mechanisms 500 exist-
ing in that same Guest Virtual Machine Protection Domain
300, have greater access, such as in time and space, to the
resources of the Guest Operating System 300 than would
entities in other guest virtual machine protection domains or
other Guest Operating Systems; e.g., the subject guest virtual
machine protection domain has faster responsiveness and/or
has lower latency than if processed in another guest virtual
machine protection domain. Though such resources are still
accessed in a manner that is ultimately constrained by the
separation kernel hypervisor 100, there is less indirection and
time/latency consumed in accessing the resources:

[0055] In one illustrative case, the instruction execution
detection/interception mechanisms 500 private (local) to a
given Guest virtualization assistance layer 200 and its asso-
ciated Guest Operating System 300 can react faster to code
execution physical memory access issues, and not need to
wait on actions from another entity in another guest virtual
machine protection domain 200 or guest operating system
300 (which may themselves have high latency, be corrupted,
unavailable, poorly scheduled, or subject to a lack of deter-
minism and/or resource constraint, or improper policy con-
figuration, etc.).

[0056] Here, for example, if a Guest Operating System 300
was to monitor a Guest Operating System 399 located within
another Guest Virtual Machine Protection Domain 107, it
would encounter penalties in time and space for accessing
that Guest Operating System and its resources; furthermore,
there is increased code, data, scheduling, and/or security
policy complexity to establish and maintain such a more
complex system; such increases in complexity and resources
allow for more bugs in the implementation, configuration,
and/or security policy establishment and maintenance.
[0057] Scalability and Parallelism

[0058] Each Guest Operating System 300 may have a vir-
tualization assistance layer 200, and instruction execution
detection/interception mechanisms 500, that are private (lo-
cal) to the Guest Virtual Machine Protection Domain 200 that
contains both that Guest Operating System 300, the virtual-
ization assistance layer 400, and the instruction execution
detection/interception mechanisms.

[0059] Fault Isolation, Low Level of Privilege, Defense in
Depth, Locality of Security Policy, and Constraint of
Resource Access

[0060] Here, for example, relative to the extremely high
level of privilege of the separation kernel hypervisor 100, the
virtualization assistance layer 400, the instruction execution
detection/interception mechanism 500, and the Guest Oper-
ating System 300 within the same Guest Virtual Machine
Protection Domain 200 are only able to act on portions of that
Guest Virtual Machine Protection Domain 200 (subject to the
Separation Kernel Hypervisor 100) and not portions of other
Guest Virtual Machine Protection Domains (nor their con-
tained or assigned resources).

[0061] Subject to the isolation guarantees provided by the
Separation Kernel Hypervisor 100, the virtualization assis-
tance layer 400 accesses only the resources of the Guest

Jun. 2, 2016

Operating System 300 within the same Guest Virtual
Machine Protection Domain 200 and that virtualization assis-
tance layer 400 is not able to access the resources of other
Guest Operating Systems.

[0062] As such, if there is corruption (bugs, programmatic
errors, malicious code, code and/or data corruption, or other
faults, etc.) within a given Guest Virtual Machine Protection
Domain 200 they are isolated to that Guest Virtual Machine
Protection Domain 200. They do not affect other Guest Vir-
tual Machine Protection Domains 299 nor do they affect the
separation kernel hypervisor 100. This allows the separation
kernel hypervisor to act upon (e.g., instantiate, maintain,
monitor, create/destroy, suspend, restart, refresh, backup/re-
store, patch/fix, import/export etc.) a plurality of Guest Vir-
tual Machine Protection Domains 200 and their correspond-
ing virtualization assistance layer 400 and instruction
execution detection/interception mechanisms 500 (or even
Guest Operating Systems 300) without corruption of the most
privileged execution context of the system, the separation
kernel hypervisor 100.

[0063] Similarly, the faults that may occur within a virtu-
alization assistance layer 400 or the instruction execution
detection/interception mechanisms 500 (e.g., by corruption
of'software during delivery) are contained to the Guest Virtual
Machine Protection Domain 200 and do not corrupt any other
Guest Virtual Machine Protection Domain; nor do they cor-
rupt the Separation Kernel Hypervisor 100.

[0064] Furthermore, the faults within a Guest Operating
System 300 are contained to that Guest Operating System
300, and do not corrupt either the virtualization assistance
layer 400 or the instruction execution detection/interception
mechanisms 500.

[0065] FIG. 2B is ablock diagram illustrating an exemplary
system and separation kernel hypervisor architecture consis-
tent with certain aspects related to the innovations herein.
FIG. 2B illustrates a variation of FIG. 2A where a minimal
runtime environment 398 executes in place of a (larger/more
complex) guest operating system. Here, a minimal runtime
environment may be an environment such as a VDS (virtual
device server), and/or a LSA (LynxSecure application), etc.
The minimal runtime environment 398 can be used for policy
enforcement related to activities reported by a virtualization
assistance layer and/or instruction execution detection/inter-
ception mechanisms; such an environment is also monitored
by a virtualization assistance layer and/or instruction execu-
tion detection/interception mechanisms private to the guest
operating system virtual machine protection domain contain-
ing the minimal runtime environment.

[0066] FIG.2Cis ablock diagram illustrating an exemplary
system and separation kernel hypervisor architecture consis-
tent with certain aspects related to the innovations herein.
FIG. 2C illustrates a variation of FIG. 2A and FIG. 2B where
aminimal runtime environment executes in place of a (larger/
more complex) guest operating system but without a virtual-
ization assistance layer or instruction execution detection/
interception mechanisms.

[0067] FIG. 2D is a block diagram illustrating an exem-
plary system and Separation Kernel Hypervisor architecture
consistent with certain aspects related to the innovations
herein. FIG. 2D illustrates a variation of FIG. 2 where a
self-assisted virtualization (SAV) mechanism is used to
implement the virtualization assistance layer.

[0068] FIG. 3 is a block diagram illustrating an exemplary
system and separation kernel Hypervisor architecture consis-

US 2016/0156665 Al

tent with certain aspects related to the innovations herein.
FIG. 3 also shows certain detailed aspects with respect to
FIGS. 2A/B, where the guest operating system may attempt
to process API calls at specified memory locations that may
include a plurality of code and/or data which may constitute
execution contexts which may include the following types of
software including any/all of which malicious code may
attempt to corrupt or utilize: malicious code, anti-virus soft-
ware, corrupted anti-virus software, integrity checkers, cor-
rupted integrity checkers, rootkits, return oriented rootkits,
etc. The inventions herein are not limited to memory access
attempts to malicious code and is discussed below as illustra-
tive examples.

[0069] For example, in FIG. 3, if antivirus software 2001
executes within a given guest operating system 300, and such
anti-virus software 2001 is itself corrupted, and itself
executes malicious code 2002 or fails to prevent the execution
of malicious code 2002, the corruption is constrained to the
given guest operating system 300, and the corruption may be
acted upon (e.g., detected, notified, prevented, mitigated,
reported, tracked, modified/patched, suspended, halted,
restarted, eradicated, etc.) by the instruction execution detec-
tion/interception mechanisms 500 that monitors/acts on code
execution in specified memory location(s) such as API calls,
and is provided within the same guest virtual machine pro-
tection domain 200 as the guest operating system 300.
[0070] With regard to other exemplary implementations, as
may be appreciated in connection with FIG. 3, if an integrity
checker 2003 (e.g., a “security” component or driver within a
guest operating system 300) executes within a given guest
operating system 300, and such integrity checker 2003 is
itself corrupted into a corrupted integrity checker 2004 (and
executes malicious code, or fails to prevent the execution of
malicious code), the corruption is constrained to the given
guest operating system 300, and the corruption may be acted
upon (e.g., detected, notified, prevented, mitigated, reported,
tracked, modified/patched, suspended, halted, restarted,
eradicated, etc.) by the instruction execution detection/inter-
ception mechanisms 500 that monitors/acts on code executed
at the specified memory location(s), and is provided within
the same guest virtual machine protection domain 200 as the
guest operating system 300.

[0071] With regard to another illustration, again with ref-
erence to FIG. 3, if a rootkit 2006 executes within the guest
operating system 300 (e.g., by having fooled the Integrity
Checker 2003 by the nature of the root kit being a return
oriented rootkit 2007, which are designed specifically to
defeat integrity checkers) the corruption is constrained to the
given guest operating system 300, and the corruption may be
acted upon (e.g., detected, notified, prevented, mitigated,
reported, tracked, modified/patched, suspended, halted,
restarted, eradicated, etc.) by the instruction execution detec-
tion/interception mechanisms 500 that monitors/acts on code
execution in specified memory location(s), and is provided
within the same guest virtual machine protection domain 200
as the guest operating system 300.

[0072] In another example, again with respect to FIG. 3, if
apolymorphic virus 2005 (an entity designed to defeat integ-
rity checkers, among other things) executes within the guest
operating system 300 (e.g., by having fooled the integrity
checker 2003, or by having the a corrupted integrity checker
2003) the corruption is constrained to the given guest oper-
ating system 300, and the corruption may be acted upon (e.g.,
detected, notified, prevented, mitigated, reported, tracked,

Jun. 2, 2016

modified/patched, suspended, halted, restarted, eradicated,
etc.) by the instruction execution detection/interception
mechanisms 500 that monitors/acts on code execution in
specified memory location(s), and is provided within the
same guest virtual machine protection domain 200 as the
guest operating system 300.

[0073] In general, referring to FIG. 3, if a malicious code
2000 executes within the guest operating system 300 (e.g., by
means including, but not limited strictly to bugs, defects, bad
patches, code and/or data corruption, failed integrity check-
ers, poor security policy, root kits, viruses, trojans, polymor-
phic viruses, and/or other attack vectors and/or sources of
instability within the guest operating system 300 etc.), the
corruption is constrained to the given guest operating system
300, and the corruption may be acted upon (e.g., detected,
notified, prevented, mitigated, reported, tracked, modified/
patched, suspended, halted, restarted, eradicated, etc.) by the
instruction execution detection/interception mechanisms 500
that monitors/acts on code execution in specified memory
location(s), and is provided within the same guest virtual
machine protection domain 200 as the guest operating system
300.

[0074] Furthermore, in the examples above and other cases,
such corruption of the guest operating system 300, and the
resources to which it has access, do not corrupt the instruction
execution detection/interception mechanisms 500, the virtu-
alization assistance layer 400, the guest virtual machine pro-
tection domain 200, or plurality of other such resources in the
system (e.g., other guest virtual machine protection domains
299), or the separation kernel hypervisor 100.

[0075] Insome implementations, the instruction execution
detection/interception mechanisms 500, in conjunction with
the virtualization assistance layer 400, and the separation
kernel hypervisor 100, may utilize various methods and
mechanisms such as the following, given by way of illustra-
tion and example but not limitation, to act with and upon its
associated guest operating system 300 the resources assigned
to the guest operating system 300, and the systems behavior
generated thereto and/or thereby.

[0076] FIG. 4 is a block diagram illustrating an exemplary
system and separation kernel hypervisor architecture consis-
tent with certain aspects related to the innovations herein. For
example, FIG. 4 illustrates resources that may be assigned to
a Guest Operating System 300 consistent with certain aspects
related to the innovations herein.

[0077] FIG. 4 shows an illustrative extension of either FIG.
2, and/or FIG. 3, where the guest operating system may have
a plurality of code and/or data which may constitute execu-
tion contexts which may include the following types of soft-
ware mechanisms and/or constructs user space code and data
that may be associated with an unprivileged mode of CPU
code execution (as used herein ‘user space’ being an execu-
tion environment of low privilege, versus an execution envi-
ronment of high privilege, such as kernel space), which may
contain processes, tasks, and/or threads, etc.; kernel space
code and data, that may be associated with a privileged mode
of CPU execution, which may contain tasks, threads, inter-
rupt handlers, drivers, etc.; shared code and data, that may be
associated with either privileged and/or unprivileged modes
of CPU execution, and which may include signal handlers,
Inter Process Communication Mechanisms (IPC), and/or
user/kernel mode APIs. It also may include main memory that
may be accessed by the CPU, by DMA from devices, or both.
It also shows protection mechanisms including hardware

US 2016/0156665 Al

CPU virtualization protection mechanisms, and hardware vir-
tualization DMA protection mechanisms. Instruction execu-
tion detection/interception mechanisms 500, 599 such as API
call interception/simulation mechanisms may reside within
corresponding Virtualization Assistance Layers 400, 499
[0078] Such resources, explained here by way of example,
not limitation, may include a subset of (a) hardware platform
resources 600, virtualized hardware platform resources
(hardware platform resources 600 subject to further con-
straint by the separation kernel hypervisor 100, the hardware
CPU virtualization protection mechanisms 602, and/or the
hardware virtualization DMA protection mechanisms 601),
and executiontime ona CPU 700 (or a plurality of CPUs, e.g.,
700 to 731) (scheduling time provided by the separation
kernel hypervisor 100), and space (memory 900 provided by
the separation kernel hypervisor) within which the guest
operating system 300 may instantiate and utilize constructs of
the particular guest operating system 300, such as a privileged
(“kernel” space) modes of execution, non-privileged (“user”
space) modes of execution, code and data for each such mode
of execution (e.g., processes, tasks, threads, interrupt han-
dlers, drivers, signal handlers, inter process communication
mechanisms, shared memory, shared APIs between such enti-
ties/contexts/modes, etc.

[0079] FIG. 51is a block diagram illustrating an exemplary
system and separation kernel hypervisor architecture consis-
tent with certain aspects related to the innovations herein.
FIG. 5 shows an illustrative implementation as may be asso-
ciated with FIG. 2, FIG. 3, and/or FIG. 4, where the instruc-
tion execution detection/interception mechanisms, that may
be within the virtualization assistance layer, may include the
following monitoring systems and mechanisms: memory
monitor, an instruction monitor, etc. FIG. 5 also illustrates
import/export mechanism that may be used by a virtualiza-
tion assistance layer and/or instruction execution detection/
interception mechanisms to communicate between them-
selves and other virtualization assistance layer and/or
instruction execution detection/interception mechanisms in
other guest operating system virtual machine protection
domains (subject to the security policies established, main-
tained, and enforced by the separation kernel hypervisor), in
an isolated, secure, and even monitored fashion.

[0080] FIG.5illustrates mechanism and resources that may
be used by the instruction execution detection/interception
mechanisms 500 to monitor a guest operating system 300.
Such mechanisms and resources may include a memory
monitor 501, and an instruction monitor 502.

[0081] The virtualization assistance layer 400 and/or the
instruction execution detection/interception mechanisms 500
may also use an export API 509 and/or an import API 599 (as
may be configured and governed by the separation kernel
hypervisor 100), in order to provide secure communication
between a plurality of virtualization assistance layers (e.g.,
virtualization assistance layers 400 to 499) and/or a plurality
of instruction execution detection/interception mechanisms
(e.g., instruction execution detection/interception mecha-
nisms 500 to 599).

[0082] Innovations set forth herein, as also described in
additional detail elsewhere herein via notation to the refer-
ence numerals in the description below, reside around various
combinations, subcombinations and/or interrelated function-
ality of the following features or aspects: (i) a separation
kernel hypervisor that ensures the isolation of multiple guest
Operating Systems each in its own Virtual Machine (VM); (ii)

Jun. 2, 2016

a separation kernel hypervisor as in (i) that implements a
mechanism whereby a suitably authorized guest can send a
list of physical memory locations to be watched to another
guest; (iii) a separation kernel hypervisor as in (i) that imple-
ments a mechanism whereby each of the physical memory
locations in (ii) is associated with a specification for what
execution context information is to be obtained on access to
that location; (iv) a separation kernel hypervisor as in (i) that
implements a mechanism whereby the specifications associ-
ated with the list of memory locations in (ii) can be sent to the
other guest as in (ii); (v) a separation kernel hypervisor as in
(1) that implements a mechanism whereby the execution con-
text specified in (iii) can be sent to the other guest as in (ii);
(vi) a virtualization assistance layer (VAL) of software that
runs within the same protection domain as the guest virtual
machine but is not directly accessible by the guest; (vii) a
virtualization assistance layer as in (vi) that implements a
virtual motherboard containing a virtual CPU and memory;
(viii) a VAL as in (vi) that implements a mechanism to map
physical memory pages as non-executable; (ix) a VAL as in
(vi) that processes exceptions caused by non-executable page
execution attempts by its associated guest virtual machine;
(x) a VAL as in (vi) that implements a mechanism to deter-
mine whether the address accessed is one ofthose specified in
(i1); (xi) a VAL as in (vi) that can send a notification of the
memory access and associated context information as in (iii)
to the requesting guest; (xii) a VAL as in (vi) that implements
a mechanism receive context information as in (iii) from the
requesting guest; (xiii) a VAL as in (vi) that can replace the
context information in its associated virtual machine; (xiv) a
VAL as in (vi) that can pause the execution of its virtual
machine; and/or (xv) a VAL as in (vi) that can resume the
execution of its virtual machine.

[0083] Systems and mechanisms, and example embodi-
ments, of the instruction execution detection/interception
mechanisms 500 may include:

[0084] 1. Monitoring of CPU (and CPU cache based) guest
OS memory access (originated from a plurality of resources
available to the guest operating system 300 (in FIGS. 3 and 4),
including CPUs and/or caches assigned and/or associated
with such), as directed by execution and resources (shown in
FIG. 3) within the guest OS 300. For memory assigned to the
guest OS 300, such as a subset of the main memory 900 (in
FIGS. 2,3, 4, and 5) the separation kernel hypervisor 100 may
trap access to that memory, and then pass associated data of
that trap to the virtualization assistance layer 400. The virtu-
alization assistance layer 400 may then pass the associated
data of that trap to the instruction execution detection/inter-
ception mechanisms 500.

[0085] The virtualization assistance layer 400, instruction
execution detection/interception mechanisms 500, and/or the
separation kernel hypervisor 100 may use feedback mecha-
nisms between themselves to recognize and monitor patterns
of guest operating system 300 memory access; not strictly
one-off memory access attempts.

[0086] The monitoring of guest operating system 300
memory access includes, but is not limited to, constructs in
guest operating system 300 memory (including the resources
in the guest operating system 300 in FIGS. 3 and 4) which
may have semantics specific to a particular guest operating
system 300 or a set of applications hosted by the guest oper-
ating system 300 (possibly including antivirus software).
[0087] The virtualization assistance layer 400, instruction
execution detection/interception mechanisms 500, and/or the

US 2016/0156665 Al

Separation Kernel Hypervisor 100 may use feedback mecha-
nisms between themselves to recognize and monitor patterns
of Guest Operating System 300 DMA access to memory; not
strictly one-off access attempts. Illustrative aspects, here, are
shown in FIGS. 6A-6B.

[0088] 2. Monitoring of specific Guest Operating System
300 instruction execution attempts, and/or specific instruc-
tion sequence execution attempts.

[0089] For all such attempts by the Guest Operating System
300, the Separation Kernel Hypervisor 100 (when configured
to do so, or via feedback receive from the virtualization assis-
tance layer 400 and/or the instruction execution detection/
interception mechanisms 500) may trap such access attempts,
then pass associated data of that trap to the virtualization
assistance layer 400 and/or instruction execution detection/
interception mechanisms 500.

[0090] The virtualization assistance layer 400 and/or the
instruction execution detection/interception mechanisms 500
can respond to such instruction sequences; including, but not
limited to, recognition of a significant fraction of a given
sequence, then prevent/block the final instructions of the
malicious sequence from execution.

[0091] Illustrative aspects, here, are shown in FIGS.
7A-7B.
[0092] FIGS. 6A-6B are representative sequence and flow

diagrams illustrating exemplary systems, methods and sepa-
ration kernel hypervisor architecture consistent with certain
aspects related to the innovations herein. FIGS. 6 A-6B relate,
inter alia, to behavior relating to the handling of guest oper-
ating system attempts to access main memory.

[0093] Turning to the illustrative implementations/aspects
of FIG. 6A, at step 605 a Guest Operating System receives a
command for memory access to a specified memory location.
Then, at step 610, the Guest Operating System attempts to
execute code in the memory location(s). The memory usage
attempt triggers entry into the separation kernel hypervisor.
Then, at step 620, the separation kernel hypervisor securely
transitions execution to the virtualization assistance layer; in
a manner isolated from the Guest Operating System. Next, in
step 630 the virtualization assistance layer transitions execu-
tion to the instruction execution detection/interception
mechanisms. Step 630 may include and/or involve aspects
(i1), (iv) and (viii), including aspect (ii) where the separation
kernel hypervisor implements a mechanism whereby a suit-
ably authorized guest can send a list of memory locations to
be watched to another guest. A virtualization assistance layer
(VAL) of software that runs within the same protection
domain as the guest Virtual Machine but is not directly acces-
sible by the guest (aspect vi). The VAL that processes
unmapped memory exceptions taken by its associated guest
virtual machine (aspect viii). Then, at step 635 the instruction
execution detection/interception mechanisms analyze the
behavior of the Guest Operating System and its resources and
makes a policy decision; in this example, it has been config-
ured to understand the memory locations which are sensitive
(e.g., involve API calls), thus decides to disallow, pause or
continue the code execution. The instruction execution detec-
tion/interception mechanism detects access or processing
related to specified memory locations, for example. Then, at
step 655, the instruction execution detection mechanism 500
transfers control to a memory management unit (MMU) con-
trol mechanism 600. This mechanism 600 performs the
memory management unit control operations need to execute
the instruction(s) and map the appropriate page as non-ex-

Jun. 2, 2016

ecutable. Additional details of the MMU functionality, here,
are set forth further below in connection with FIG. 10. Then,
at step 660, the MMU control mechanisms transition execu-
tion to the instruction execution detection mechanism. Next,
at step 640 the instruction execution detection/interception
mechanisms transition execution to the virtualization assis-
tance layer, passing it the policy decision. Then, at step 645
the virtualization assistance layer transitions execution back
to the Separation Kernel Hypervisor, or the Separation Kernel
Hypervisor transitions execution from the virtualization
assistance layer back to the Separation Kernel Hypervisor.
Next, at step 650 the Separation Kernel Hypervisor acts onthe
policy decision generated by the instruction execution detec-
tion/interception mechanisms (in one example, it intercepts
API calls for simulation by the authorized guest), or the
Separation Kernel Hypervisor acts independently of the
policy decision, but in a manner that takes the policy decision
under advisement (depending on configuration). The SKH
may receive, analyze, and/or act upon policy decisions from
multiple sources, which may include multiple detection/no-
tification mechanisms; including cases where multiple
mechanisms monitor a given Guest OS.

[0094] As explained above in connection with FIG. 6A, the
Guest Operating System accesses a specified memory loca-
tion. The memory access may be monitored and identified as
including API calls requiring interception via the instruction
execution detection/interception mechanism to generate a
policy decision. The memory access attempt triggers entry
into the Separation Kernel Hypervisor.

[0095] Turning to FIG. 6B, such system or process may
initiate upon entry into the SKH, at 660. Then, at 665, the
Separation Kernel Hypervisor securely transitions execution
to the Visualization Assistance Layer; in a manner isolated
from the Guest Operating System. Next, at 670, the Visual-
ization Assistance Layer transitions execution to the instruc-
tion execution detection/interception mechanisms. The
instruction execution detection/interception mechanisms
may then analyze, at 675, the behavior of the Guest Operating
System and its resources and makes a policy decision; for
example, it may be configured to understand the memory
locations which are sensitive (e.g. handle the API calls for
interception), thus decides to deny, pause or continue the
memory processing/access attempt. At 676, the detection
mechanism(s) may transfer control to a memory management
unit (MMU) control mechanism, to execute the instruction(s)
and re-map the appropriate page as non-executable. Addi-
tional details of the MMU functionality, here, are set forth
further below in connection with FIG. 10. Then, at 678, the
MMU control mechanism(s) may transition execution to the
detection mechanism. Once the policy decision(s) have been
made, the instruction execution detection/interception
mechanisms transition execution to the virtualization assis-
tance layer, at 680, passing it the policy decision. Then, at
685, the virtualization assistance layer transitions execution
back to the separation kernel hypervisor, or the separation
kernel hypervisor transitions execution from the virtualiza-
tion assistance layer back to the separation kernel hypervisor.
Finally, at 690, the separation kernel hypervisor acts on the
policy decision generated by the instruction execution detec-
tion/interception mechanisms (in this example, it may inter-
cept/simulate the API call, and/or deny processing with
respectto the AP call, although it may also allow or pause the
memory access), or the Separation Kernel Hypervisor acts
independently of the policy decision, but in a manner that

US 2016/0156665 Al

takes the policy decision under advisement (depending on
configuration). Further, the SKH may receive, analyze, and/
or act upon policy decisions from multiple sources, which
may include multiple mechanisms; inducing cases where
multiple mechanisms monitor a given Guest OS.

[0096] FIGS. 7A-7B are representative sequence/flow dia-
grams illustrating exemplary systems, methods and Separa-
tion Kernel Hypervisor architecture consistent with certain
aspects related to the innovations herein. FIGS. 7A-7B relate,
inter alia, to behavior relating to an attempt to access specified
API calls such as by the handling of guest operating system
instruction sequences (e.g., execution attempts of a repeated
pattern/series of MOV, RET, or MOV IRET instruction on an
Intel IA32e architecture; such patterns of which may consti-
tute code of “return oriented” attacks/rootkits). Here, in such
illustrative cases, memory access within the guest operating
system will attempt to corrupt and/or subvert antivirus soft-
ware and/or software integrity checkers within the guest oper-
ating system via a “return oriented” attack (attacks con-
structed to evade integrity checkers); and the instruction
execution detection/interception mechanisms detects/pre-
vents the attack.

[0097] Turning to the illustrative implementations/aspects
of FIG. 7A, at step 705, a Guest Operating System receives a
command for memory access to a specified memory location.
Then at step 710 an attempt to process an API call such as a
specific sequence and/or pattern of CPU instructions is per-
formed, that either triggers transition into the SKH for (2a)
every instruction in the sequence and/or pattern (a single
stepping behavior), or (2b) for anumber of instructions of size
greater than one of the sequence and/or pattern (multiple
stepping). The (2a) or (2b) behavior is based on system con-
figuration. Next, at step 715 the Separation Kernel Hypervi-
sor securely transitions execution to the virtualization assis-
tance layer; in a manner isolated from the Guest Operating
System. Then, at step 720 the virtualization assistance layer
transitions execution to the instruction execution detection/
interception mechanisms. Next, at step 725 the instruction
execution detection/interception mechanisms analyzes the
behavior of the Guest Operating System and its resources and
makes a policy decision. Then, at step 750, the instruction
execution detection/interception mechanism 500 transfers
control to a memory management unit (MMU) control
mechanism 700. This mechanism 700 performs the memory
management unit control operations need to execute the
instruction(s) and map the appropriate page as non-execut-
able. Additional details of the MMU functionality, here, are
set forth further below in connection with FIG. 10. Then
Then, at step 755, the MMU control mechanisms transition
execution to the instruction execution detection mechanism.
Then, the instruction execution detection/interception
mechanisms transition execution to the virtualization assis-
tance layer, at 730, passing it the policy decision. Next, at 735
the virtualization assistance layer transitions execution back
to the Separation Kernel Hypervisor, or the Separation Kernel
Hypervisor transitions execution from the virtualization
assistance layer back to the Separation Kernel Hypervisor.
Then, in step 740 the Separation Kernel Hypervisor acts on
the policy decision generated by the instruction execution
detection/interception mechanisms (in this example it sus-
pends the Guest OS, preventing the Guest OS from accessing
the memory and executing the “Return Oriented” attack; a
type of attack that thwarts code integrity checkers in the Guest
O8), or the Separation Kernel Hypervisor acts independently

Jun. 2, 2016

of the policy decision, but in a manner that takes the policy
decision under advisement (depending on configuration).
The SKH may receive, analyze, and/or act upon policy deci-
sions from multiple sources, which may include multiple
mechanisms; including cases where multiple mechanisms
monitor a given Guest OS. Finally, in step 745, in order to
continue to recognize sequences and/or patterns of instruc-
tions, execution may cycle a multiple times between steps 705
through 740.

[0098] As explained above in connection with FIG. 7A, the
guest operating system attempts specific memory access
relating to an API call. Here, for example, the API call may
involve a specified memory location. The attempt triggers
entry into the Separation Kernel Hypervisor.

[0099] Turning to FIG. 7B, such illustrative system or pro-
cess may initiates upon entry into the SKH, at 760. Then, at
765, the Separation Kernel Hypervisor securely transitions
execution to the Visualization Assistance Layer; in a manner
isolated from the Guest Operating System. Next, at 770, the
Visualization Assistance Layer transitions execution to the
instruction execution detection/interception mechanisms.
The instruction execution detection/interception mechanisms
may then analyze, at 775, the behavior of the Guest Operating
System and its resources and makes a policy decision; in this
example it recognizes the Guest Operating System instruc-
tion sequence and/or pattern as an attempt to process an API
call, and the policy decision is to made to deny further (and/or
future) execution of the sequence and/or pattern, preventing
the Guest Operating System from providing the API call to
the monitored guest. At 776, the detection mechanism(s) may
transfer control to a memory management unit (MMU) con-
trol mechanism, to execute the instruction(s) and map the
appropriate page as non-executable. Additional details of the
MMU functionality, here, are set forth further below in con-
nection with FIG. 10. Then, at 778, the MMU control mecha-
nism(s) may transition execution back to the detection
mechanism. Once the policy decision(s) have been made, the
instruction execution detection/interception mechanisms
transition execution to the virtualization assistance layer, at
780, passing it the policy decision. Then, at 785, the virtual-
ization assistance layer transitions execution back to the
Separation Kernel Hypervisor, or the separation kernel hyper-
visor transitions execution from the virtualization assistance
layer back to the separation kernel hypervisor. Optionally, at
step 790, the separation kernel hypervisor acts on the policy
decision generated by the instruction execution detection/
interception mechanisms (in this example it denies process-
ing of the API call), or the Separation Kernel Hypervisor acts
independently of the policy decision, but in a manner that
takes the policy decision under advisement (depending on
configuration). Further, the SKH may receive, analyze, and/
or act upon policy decisions from multiple sources, which
may include multiple mechanisms; inducing cases where
multiple mechanisms monitor a given Guest OS. In a final
step 795, in order to recognize sequences and/or patterns of
instructions (and/or further monitor an existing monitored
sequence and/or pattern of instructions), execution may cycle
a multiple times between steps 760 through 790.

[0100] FIGS. 8 and 9 are representative sequence/flow dia-
grams illustrating exemplary systems, methods, and separa-
tion kernel hypervisor architecture consistent with certain
aspects related to the innovations herein. FIGS. 8 and 9 relate,
inter alia, to the guest operating system attempting to access
a specified memory location where the detection mechanisms

US 2016/0156665 Al

monitors, detects, and notifies the access and determines an
action in response to the detected access.

[0101] Turning to the illustrative implementations/aspects
of FIG. 8, at step 805, a Monitored Guest Operating System
300 attempts to access a memory location. Then, at step 815,
the request to access the memory location is sent to the SKH.
The separation kernel hypervisor 100 that ensures the isola-
tion of multiple guest Operating Systems each in its own
virtual machine (VM) (step 1). Another Monitored Guest
Operating System 600 allows a suitably authorized Monitor-
ing Guest 600 to send 830 a list of physical memory locations
to be monitored for another guest 300 (step ii). Furthermore,
each of the physical memory locations may be associated
with a specification for the execution context information to
be obtained upon access to the memory location(s) (step iii).
A response from the SKH 100 is provided to the Monitored
Guest Operating System 600 at step 600. Next, at step 820 the
separation kernel hypervisor securely transitions execution to
the virtualization assistance layer 400 in a manner isolated
from the Guest Operating System. Step iv sends the other
guests the specification associated with the list of memory
locations. Step v includes the SKH 100 that implements a
mechanism where the execution context information speci-
fied is sent to the other guests. A virtualization assistance
layer 400 of software runs within the same protection domain
as the guest virtual machine but is not directly accessible by
the guest (step vi). Step (vii) includes a virtualization assis-
tance layer 400 that implements a virtual motherboard con-
taining a virtual CPU and memory. Step (viii) of the VAL 400
implements a mechanism to map physical memory pages as
non-executable. Step (ix) of the VAL 400 processes excep-
tions caused by non-executable page execution attempts by
its associated guest virtual machine. Step (x) of the VAL 400
determines whether the memory address accessed is one of
those specified in feature (ii) in the list of physical memory
locations sent to another guest. Step (xi) of the VAL 400 sends
a notification of the memory access and associated context
information as in step (iii) to the requesting guest. Step (xii) of
the VAL 400 receives context information as in (iii) from the
requesting guest. Step (xii) of the VAL 400 replaces the con-
text information in its associated virtual machine. Step (xiv)
of the VAL 400 pauses the execution of its virtual machine.
Step (xv) of the VAL 400 resumes the execution of'its virtual
machine

[0102] Then, at step 840, the virtualization assistance layer
transitions execution to the instruction execution detection/
interception mechanisms 500. Next, the instruction execution
detection/interception mechanisms analyze the behavior of
the guest operating system and its resources and makes a
policy decision. Here, for example, at 851, the instruction
execution detection mechanism 500 may transfer control to a
memory management unit control mechanism 800. This
mechanism 800 may perform memory management unit
(MMU) control operations needed to execute the instruction
(s) and map the appropriate page as non-executable. Addi-
tional details of the MMU functionality, here, are set forth
further below in connection with FIG. 10. After this, at step
855, the MMU control mechanisms transition execution to
the instruction execution detection mechanism. Then, the
instruction execution detection/interception mechanisms
transition execution to the virtualization assistance layer, at
845, passing to it the policy decision. Next, at 825 the virtu-
alization assistance layer transitions execution back to the
separation kernel hypervisor, or the separation kernel hyper-

Jun. 2, 2016

visor transitions execution from the virtualization assistance
layer back to the Separation Kernel Hypervisor. At step 810,
the SKH 100 transitions execution to the monitored guest
operating system 300 based on the policy decision. At step
825, the separation kernel hypervisor acts on the policy deci-
sion generated by the instruction execution detection/inter-
ception mechanisms, or the separation kernel hypervisor acts
independently of the policy decision, but in a manner that
takes the policy decision under advisement (depending on
configuration). The SKH may receive, analyze, and/or act
upon policy decisions from multiple sources, which may
include multiple code execution mechanisms; including
cases where multiple mechanisms monitor a given Guest OS.
Then, in order to continue to recognize sequences and/or
patterns of memory access, execution may cycle a multiple
times between steps 805 through 850.

[0103] As explained above in connection with FIG. 8, the
guest operating system executes code at a specified memory
location, obtains and replaces execution context information
from the monitored guest. The attempt triggers entry into the
separation kernel hypervisor for monitoring, detection, noti-
fication and/or interception.

[0104] Turning to FIG. 9, such illustrative system or pro-
cess begins at step 905 where a hypervisor is configured to
allow a guest (monitoring guest) to request notifications of
code execution by another guest (monitored guest). The
monitoring guest requests that a set of physical memory loca-
tions be monitored for code execution, and the execution
context data be returned on such access, at step 910. At 912,
the detection mechanism(s) may transfer control to a memory
management unit (MMU) control mechanism, to execute the
instruction and re-map the appropriate page or call as non-
executable. Additional details of the MMU functionality,
here, are set forth further below in connection with FIG. 10.
Then, at 914, the MMU control mechanism(s) may transition
execution to the detection mechanism. The VAL in the moni-
tored guest maps the physical pages containing those loca-
tions as non-executable, at step 915. This is distinct from the
monitored guest’s notion of page mappings. At step 920,
when software in the monitored guest attempts to execute
code in such a page, control transitions to the VAL. The VAL
determines that the address being executed is part of the set to
be monitored, at step 925. The VAL pauses the execution of
the monitored guest, at step 930. The VAL notifies the moni-
toring guest of the access and provides the monitoring guest
with the execution context data as configured for that access,
at step 935. The monitoring guest then performs computation
based on the execution context data, at step 940. The moni-
toring guest creates a new execution context, at step 945,
which may be the same as the original execution context. This
new execution context is sent to the VAL, at step 950. The
VAL stores the new execution context into the guest and
resumes execution of the guest with the new context at step
955. The monitored guest is allowed to continue operation at
step 960 as though the page has always been mapped execut-
able.

[0105] FIG. 10 is an exemplary state diagram illustrating
aspects of memory management unit processing in conjunc-
tion with the hypervisor and VAL, consistent with certain
aspects related to the innovations herein. In FIG. 10, control
is passed to the Memory Management Unit (MMU) Control
1019 via any of the following control paths 1005 including
step 655 (from FIG. 6A), step 755 (from FIG. 7A), and step
851 (from FIG. 8). Step 1015 transitions control from the

US 2016/0156665 Al

Memory Management Control Unit 1010 to the detection
mechanisms 1020 to make a policy decision regarding the
page of memory the GuestOS had attempted to access. The
detection mechanisms 1020 execute a policy decision to
either deny or allow the GuestOS to access the memory. In
step 1025, the detection mechanisms 1020 execute the deci-
sion to allow the GuestOS access to the memory.

[0106] The detection mechanisms may transition execution
to the VAL 1035 with a request that the page of memory the
GuestOS had attempted to access be remapped (mapped as
accessible) to the GuestOS at step 1030.

[0107] The VAL may then transition execution to the SKH
with a request that the page of memory the GuestOS had
attempted to access be remapped (mapped as accessible) to
the GuestOS at step 1040. The SKH executes a policy deci-
sion at step 1045 to allow or deny the request that the page of
memory the GuestOS had attempted to access be remapped
(mapped as accessible) to the GuestOS. In an exemplary
embodiment, the SKH allows the request to map the memory
page as accessible to the GuestOS.

[0108] The SKH may transition execution back to the VAL
at step 1050 with a message that the memory page that the
GuestOS had attempted to access has been remapped
(mapped as accessible) to the GuestOS. The VAL transitions
execution back to the detection mechanisms 1020 at step
1055 with a message that the memory page that the GuestOS
had attempted to access has been remapped (mapped as
accessible) to the GuestOS.

[0109] At step 1060, the detection mechanisms 1020
execute a policy decision to either allow or deny the GuestOS
to complete the execution of the command/instruction that the
GuestOS had attempted which had triggered the GuestOS
access attempt to the memory page.

[0110] At step 1065, the detection mechanisms 1020 deter-
mine to allow the GuestOS to complete execution of the
command/instruction that the GuestOS had attempted which
had triggered the GuestOS access attempt to the memory
page. The detection mechanisms then transition execution to
the VAL 1035.

[0111] At step 1070, the VAL 1035 then transitions execu-
tion to the SKH with a request to allow the GuestOS to
complete execution command/instruction that the GuestOS
had attempted which had triggered the GuestOS access
attempt to the memory page. The SKH executes a policy
decision at step 1072 to allow or deny the GuestOS to com-
plete execution of the command/instruction that the GuestOS
had attempted which had triggered the GuestOS access
attempt to the memory page. In this example, the SKH allows
the GuestOS to complete the execution of that command/
instruction. At step 1074, the SKH securely transition execu-
tion to the GuestOS. At step 1076, the GuestOS completes
execution of the command/instruction that the GuestOS had
attempted which triggered the GuestOS access attempt to the
memory page. At step 1078, the protection mechanisms pro-
vided by the SKH trigger a transition back to the SKH imme-
diately after completion of the GuestOS command/instruc-
tion.

[0112] Atstep 1080, the SKH transitions execution back to
the VAL 1035, with a message that the GuestOS has com-
pleted execution of the command/instruction that the Gues-
tOS had attempted which had triggered the GuestOS access
attempt to the memory page. At step 1082, the VAL 1035
transitions execution to the detection mechanisms 1020 with
a message that the GuestOS has completed execution of the

Jun. 2, 2016

command/instruction that the GuestOS had attempted which
had triggered the GuestOS access attempt to the memory
page. Atstep 1084, the detection mechanisms 1020 determine
whether to map the memory page as nonexecutable again. At
step 1086, the detection mechanisms 1020 make a transition
back to the VAL via any of the control paths including step
600 (from FIG. 6A), step 750 (from FIG. 7A), and step 855
(from FIG. 8).

[0113] FIG. 11 is a representative flow diagram illustrating
exemplary methodology and separation kernel hypervisor
processing concerning exception-related instructions consis-
tent with certain aspects related to the innovations herein.
Innovative processing, here, may occur in the context ofhard-
ware platform resources partitioned via a separation kernel
hypervisor into a plurality of guest operating system virtual
machine protection domains. With regard to list(s) of memory
locations of an authorized guest provides to another guest,
each physical memory location is associated with a respective
specification of execution context information upon access to
the each of the plurality of physical memory locations. A
message of the specification may be transmitted to the
requesting guest, and execution context information may be
provided to such other guest. As set forth elsewhere herein, a
virtualization assistance layer (VAL) may be provided includ-
ing a virtual representation of the hardware platform in each
of the guest operating system virtual machine protection
domains such that the VAL is not directly accessible by the
authorized guest.

[0114] Referring to FIG. 11, the virtualization assistance
layer and detection mechanism(s) may process exceptions
caused by non-executable API execution attempts made by
guest virtual machine(s) associated with the VAL. In process-
ing and/or inserting such exception-causing instructions,
various mechanisms may be employed. For example, a first
mechanism may be hosted, at 1135, to copy contents of the
physical memory location into a private memory location. A
second mechanism may then be hosted, at 1140, to overwrite
the location with an instruction to trap into the separation
kernel hypervisor. At 1145, exceptions may then processed as
a function of non-executable API execution attempts directed
to the overwritten location by the associated virtual machine.
A third mechanism may also be hosted, at 1150, to determine
whether the physical memory location is accessed. If access,
processing or other specified conditions are detected, execu-
tion of the virtual machine may be paused or resumed, at
1155. The overwritten instruction may then be replaced with
a stored copy, at 1160. The virtual machine is then allowed to
execute the instruction, at 1165, and trap back into the virtu-
alization assistance layer at 1170. The instruction may then be
overwritten with a trapping instruction at 1175. Finally, a
notification of memory access and the specification may be
sent to the requesting guest, at 1180.

[0115] Atahighlevel, as may apply to the above examples,
the actions taken on monitored activity may include policy
based actions taken by, and/or coordinated between, the
Separation Kernel Hypervisor 100, virtualization assistance
layer 400, and/or instruction execution detection/interception
mechanisms 500 Such actions may include and/or involve,
though are not limited to any of the following: (1) preventing
the monitored activity; (2) allowing the monitored activity;
(3) allowing the monitored activity, with instrumentation,
and/or partial blocking. It may be that certain sub-sets of the
activity are permissible (by configuration policy), and that a
portion of the activity may be allowed and a portion blocked

US 2016/0156665 Al

and/or substituted with a harmless surrogate; such as inser-
tion of no-ops in malicious code to render malicious code
inert. This may include run-time patching of CPU state of a
guest operating system 300, and/or any resources of the guest
operating system 300; (4) reporting on the monitored activity,
possibly exporting reports to other software in the system, or
on remote systems; and/or (5) replay of the monitored activ-
ity.

[0116] Withregardto (5), immediately above, in separation
kernel hypervisor 100 configurations supporting rewind of
guest operating system 300 state, the state of the guest oper-
ating system 300 can be rewound and the monitored activity
can be replayed and re-monitored (to a degree); e.g., if the
instruction execution detection/interception mechanisms 500
requires more systems resources, and/or to map more context
of the guest operating system 300, the instruction execution
detection/interception mechanisms 500 may request a
rewind, request more resources, then request the replay of the
monitored activity; so that the instruction execution detec-
tion/interception mechanisms 500 may perform analysis of
the monitored activity with the advantage of more resources.
Systems and methods of monitoring activity, as may be uti-
lized by the separation kernel hypervisor 100, virtualization
assistance layer 400, and/or instruction execution detection/
interception mechanisms 500; for activities which may
include guest operating system 300 activities, and/or separa-
tion kernel hypervisor 100, virtualization assistance layer
400, and/or instruction execution detection/interception
mechanisms 500 activities (such as feedback between such
components), including those activities which may cause
transition to the separation kernel hypervisor 100, virtualiza-
tion assistance layer 400, and/or instruction execution detec-
tion/interception mechanisms 500 include (but are not limited
to): synchronous mechanisms, bound to a specific instruction
stream and/or sequence within a processor, CPU, or platform
device and/or ABI, certain elements of which can be used to
trap and/or transition to/from the hypervisor. For example,
instructions which induce trapping. Such events may be gen-
erated by the Separation Kernel Hypervisor 100, virtualiza-
tion assistance layer 400, and/or instruction execution detec-
tion/interception mechanisms 500.

[0117] The innovations and mechanisms herein may also
provide or enable means by which software and/or guest
operating system vulnerabilities, including improper use of
CPU interfaces, specifications, and/or ABIs may be detected
and/or prevented; including cases where software vendors
have implemented emulation and/or virtualization mecha-
nisms improperly.

[0118] Implementations and Other Nuances

[0119] Theinnovations herein may be implemented via one
or more components, systems, servers, appliances, other sub-
components, or distributed between such elements. When
implemented as a system, such system may comprise, inter
alia, components such as software modules, general-purpose
CPU, RAM, etc. found in general-purpose computers, and/or
FPGAs and/or ASICs found in more specialized computing
devices. In implementations where the innovations reside on
a server, such a server may comprise components such as
CPU, RAM, etc. found in general-purpose computers.
[0120] Additionally, the innovations herein may be
achieved via implementations with disparate or entirely dif-
ferent software, hardware and/or firmware components,
beyond that set forth above. With regard to such other com-
ponents (e.g., software, processing components, etc.) and/or

Jun. 2, 2016

computer-readable media associated with or embodying the
present inventions, for example, aspects of the innovations
herein may be implemented consistent with numerous gen-
eral purpose or special purpose computing systems or con-
figurations. Various exemplary computing systems, environ-
ments, and/or configurations that may be suitable for use with
the innovations herein may include, but are not limited to:
software or other components within or embodied on per-
sonal computers, appliances, servers or server computing
devices such as routing/connectivity components, hand-held
or laptop devices, multiprocessor systems, microprocessor-
based systems, set top boxes, consumer electronic devices,
network PCs, other existing computer platforms, distributed
computing environments that include one or more of the
above systems or devices, etc.

[0121] Insome instances, aspects of the innovations herein
may be achieved via logic and/or logic instructions including
program modules, executed in association with such compo-
nents or circuitry, for example. In general, program modules
may include routines, programs, objects, components, data
structures, etc. that perform particular tasks or implement
particular instructions herein. The inventions may also be
practiced in the context of distributed circuit settings where
circuitry is connected via communication buses, circuitry or
links. In distributed settings, control/instructions may occur
from both local and remote computer storage media including
memory storage devices.

[0122] Innovative software, circuitry and components
herein may also include and/or utilize one or more type of
computer readable media. Computer readable media can be
any available media that is resident on, associable with, or can
be accessed by such circuits and/or computing components.
By way of example, and not limitation, computer readable
media may comprise computer storage media and other non-
transitory media. Computer storage media includes volatile
and nonvolatile, removable and non-removable media imple-
mented in any method or technology for storage of informa-
tion such as computer readable instructions, data structures,
program modules or other data. Computer storage media
includes, but is not limited to, RAM, ROM, EEPROM, flash
memory or other memory technology, CD-ROM, digital ver-
satile disks (DVD) or other optical storage, magnetic tape,
magnetic disk storage or other magnetic storage devices, or
any other medium which can be used to store the desired
information and can accessed by computing component.
Other non-transitory media may comprise computer readable
instructions, data structures, program modules or other data
embodying the functionality herein, in various non-transitory
formats. Combinations of the any of the above are also
included within the scope of computer readable media.

[0123] In the present description, the terms component,
module, device, etc. may refer to any type of logical or func-
tional circuits, blocks and/or processes that may be imple-
mented in a variety of ways. For example, the functions of
various circuits and/or blocks can be combined with one
another into any other number of modules. Each module may
even be implemented as a software program stored on a
tangible memory (e.g., random access memory, read only
memory, CD-ROM memory, hard disk drive, etc.) to be read
by a central processing unit to implement the functions of the
innovations herein. Or, the modules can comprise program-
ming instructions transmitted to a general purpose computer,
to processing/graphics hardware, and the like. Also, the mod-
ules can be implemented as hardware logic circuitry imple-

US 2016/0156665 Al

menting the functions encompassed by the innovations
herein. Finally, the modules can be implemented using spe-
cial purpose instructions (SIMD instructions), field program-
mable logic arrays or any mix thereof which provides the
desired level performance and cost.

[0124] As disclosed herein, features consistent with the
present inventions may be implemented via computer-hard-
ware, software and/or firmware. For example, the systems
and methods disclosed herein may be embodied in various
forms including, for example, a data processor, such as a
computer that also includes a database, digital electronic cir-
cuitry, firmware, software, or in combinations of them. Fur-
ther, while some of the disclosed implementations describe
specific hardware components, systems and methods consis-
tent with the innovations herein may be implemented with
any combination of hardware, software and/or firmware.
Moreover, the above-noted features and other aspects and
principles of the innovations herein may be implemented in
various environments. Such environments and related appli-
cations may be specially constructed for performing the vari-
ous routines, processes and/or operations according to the
invention or they may include a general-purpose computer or
computing platform selectively activated or reconfigured by
code to provide the necessary functionality. The processes
disclosed herein are not inherently related to any particular
computer, network, architecture, environment, or other appa-
ratus, and may be implemented by a suitable combination of
hardware, software, and/or firmware. For example, various
general-purpose machines may be used with programs writ-
ten in accordance with teachings ofthe invention, or it may be
more convenient to construct a specialized apparatus or sys-
tem to perform the required methods and techniques.

[0125] Aspects of the method and system described herein,
such as the logic, may also be implemented as functionality
programmed into any of a variety of circuitry, including pro-
grammable logic devices (“PLDs”), such as field program-
mable gate arrays (“FPGAs”), programmable array logic
(“PAL”) devices, electrically programmable logic and
memory devices and standard cell-based devices, as well as
application specific integrated circuits. Some other possibili-
ties for implementing aspects include: memory devices,
microcontrollers with memory (such as EEPROM), embed-
ded microprocessors, firmware, software, etc. Furthermore,
aspects may be embodied in microprocessors having soft-
ware-based circuit emulation, discrete logic (sequential and
combinatorial), custom devices, fuzzy (neural) logic, quan-
tum devices, and hybrids of any of the above device types.
The underlying device technologies may be provided in a
variety of component types, e.g., metal-oxide semiconductor
field-effect transistor (“MOSFET”) technologies like
complementary metal-oxide semiconductor (“CMOS”),
bipolar technologies like emitter-coupled logic (“ECL”),
polymer technologies (e.g., Silicon-conjugated polymer and
metal-conjugated polymer-metal structures), mixed analog
and digital, and so on.

[0126] It should also be noted that the various logic and/or
functions disclosed herein may be enabled using any number
of combinations of hardware, firmware, and/or as data and/or
instructions embodied in various machine-readable or com-
puter-readable media, in terms of their behavioral, register
transfer, logic component, and/or other characteristics. Com-
puter-readable media in which such formatted data and/or
instructions may be embodied include, but are not limited to,
non-volatile storage media in various forms (e.g., optical,

Jun. 2, 2016

magnetic or semiconductor storage media), though do not
include transitory media such as carrier waves.
[0127] Unless the context clearly requires otherwise,
throughout the description, the words “comprise,” “compris-
ing,” and the like are to be construed in an inclusive sense as
opposed to an exclusive or exhaustive sense; that is to say, in
a sense of “including, but not limited to.” Words using the
singular or plural number also include the plural or singular
number respectively. Additionally, the words “herein,” “here-
under,” “above,” “below,” and words of similar import refer to
this application as a whole and not to any particular portions
of'this application. When the word “or” is used in reference to
a list of two or more items, that word covers all of the follow-
ing interpretations of the word: any of the items in the list, all
of'the items in the list and any combination of the items in the
list.
[0128] Although certain presently preferred implementa-
tions of the inventions have been specifically described
herein, it will be apparent to those skilled in the art to which
the inventions pertain that variations and modifications of the
various implementations shown and described herein may be
made without departing from the spirit and scope of the
inventions. Accordingly, it is intended that the inventions be
limited only to the extent required by the applicable rules of
law.
1. A method for processing information securely, the
method comprising:
partitioning hardware platform resources via a separation
kernel hypervisor into a plurality of guest operating
system virtual machine protection domains;
providing a dedicated virtualization assistance layer (VAL)
including a virtual representation of the hardware plat-
form that is a virtual machine in each of the guest oper-
ating system virtual machine protection domains such
that the dedicated VAL security processing is not per-
formed in the separation kernel hypervisor;
processing the virtual machine via another guest;
hosting at least one detection mechanism that executes
within the virtual hardware platform in each of the plu-
rality of guest operating system virtual machine protec-
tion domains via the separation kernel hypervisor;
upon detection of suspect behavior, securely transitioning
execution to the detection mechanism within the VAL in
a manner isolated from the guest operating system;
securely determining, via the detection mechanism, a
policy decision regarding the suspect behavior; and
transitioning execution back to the separation kernel
hypervisor to continue processing regarding enforce-
ment of or taking action in connection with the policy
decision.
2. The method of claim 1 further comprising one or more
of:
providing a list of memory locations of an authorized guest
to another guest;
associating each of a plurality of physical memory loca-
tions with a respective specification of execution context
information upon access to the each of the plurality of
physical memory locations;
providing a message of the specification to the another
guest;
providing the execution context information to the another
guest; and
providing a virtualization assistance layer (VAL) including
avirtual representation of the hardware platform in each

US 2016/0156665 Al

of'the guest operating system virtual machine protection
domains such that the VAL is not directly accessible by
the authorized guest.

3. The method of claim 1 wherein the step of securely
transitioning execution to the detection mechanism within the
VAL in a manner isolated from the guest operating system
includes:

performing processing to transition control of the suspect

behavior to a memory management control unit for han-
dling; and

transitioning handling of the suspect behavior to an

instruction execution detection mechanism to process
and handle back to.

4. The method of claim 1 wherein the securely determin-
ing, via the detection mechanism, the policy decision regard-
ing the suspect behavior comprises:

analyzing the behavior of the guest operating system and

its resources; and

processing unmapped page exceptions taken by the guest

operating system based on the unmapped pages.

5.-6. (canceled)

7. The method of claim 1, wherein the step of securely
transitioning execution to the detection mechanism within the
VAL in a manner isolated from the guest operating system
includes:

performing processing to transition control of the suspect

behavior to a memory management control unit for han-
dling; and

transitioning handling of the suspect behavior to an

instruction execution detection mechanism to process
and handle back to.

8. The method of claim 1, further comprising one or more
of:

hosting an unmapping mechanism to unmap the page; and

unmapping, via the unmapping mechanism, the page.

9. The method of claim 1, further comprising one or more
of:

hosting a remapping mechanism to remap unmapped

pages;

transitioning execution to the remapping mechanism;

remapping, via the remapping mechanism, the unmapped

pages as accessible; and

transitioning, via the remapping mechanism, execution to

the detection mechanism.

10. The method of claim 1, further comprising one or more
of:

hosting an unmapping mechanism to unmap specified

pages on demand from the another guest;

receiving, via the unmapping mechanism, the demand to

unmap the specified pages; and

unmapping, via the unmapping mechanism, the specified

pages.

11. The method of claim 1, further comprising one or more
of:

hosting a remapping mechanism to remap unmapped

pages;

upon securely determining, via the detection mechanism,

the policy decision, transitioning execution to the
remapping mechanism;

remapping, via the remapping mechanism, the unmapped

pages as accessible; and

transitioning, via the remapping mechanism; execution to

the detection mechanism.

Jun. 2, 2016

12. The method of claim 1, further comprising:

implementing a separation kernel hypervisor that ensures

isolation of multiple guest operating systems, each guest
operating system in its own virtual machine.

13. The method of claim 1, further comprising:

implementing a separation kernel hypervisor that imple-

ments a mechanism wherein a suitably authorized guest
can send a list of memory locations and/or physical
memory locations to be watched to another guest.

14.-29. (canceled)

30. A method for processing information securely, the
method comprising:

partitioning hardware platform resources via a separation

kernel hypervisor into a plurality of guest operating

system virtual machine protection domains;

isolating the domains in time and space from each other;

providing a list of memory locations of an authorized
guest to another guest;

associating each of a plurality of physical memory loca-
tions with a respective specification of execution con-
text information upon access to the each of the plu-
rality of physical memory locations;

providing a message of the specification to the another
guest,

providing the execution context information to the
another guest; and

providing a virtualization assistance layer (VAL) includ-
ing a virtual representation of the hardware platform
in each of the guest operating system virtual machine
protection domains such that the VAL is not directly
accessible by the authorized guest.

31. The method of claim 30 wherein the virtual represen-
tation of the hardware platform is a virtual machine compris-
ing a virtual motherboard including a virtual CPU and
memory by the VAL.

32. The method of claim 31 the method further comprising:

hosting a mechanism to map physical memory pages as

non-executable;

processing exceptions to non-executable page execution

attempts by the associated virtual machine;

hosting another mechanism to determine whether the

physical memory locations are accessed;

replacing the context information in the virtual machine;

pausing or resuming execution of the virtual machine; and

sending a notification of memory access and the specifica-
tion to a requesting guest.

33. The method of claim 30 wherein the step of securely
transitioning execution to the detection mechanism within the
VAL in a manner isolated from the guest operating system
includes:

performing processing to transition control of the suspect

behavior to a memory management control unit for han-
dling; and

transitioning handling of the suspect behavior to an

instruction execution detection mechanism to process
and handle back.
34. The method of claim 31 the method further comprising;
hosting a mechanism to copy the contents of the physical
memory address into a private memory location;

hosting a mechanism to overwrite the address with an
instruction that will trap into the separation kernel
hypervisor;

processing exceptions due to execution attempts of the

overwritten address by the associated virtual machine;

US 2016/0156665 Al

hosting another mechanism to determine whether the
physical memory locations are accessed;

pausing or resuming execution of the virtual machine;

replacing the over written instruction with the stored copy;

allowing the virtual machine to execute the original
instruction;

trapping back into the virtualization assistance layer;

overwriting the original instruction with the trapping
instruction; and

sending a notification of memory access and the specifica-
tion to a requesting guest.

35. The method of claim 31 further comprising:

hosting a first mechanism to copy contents of the physical
memory location into a private memory location.

36. The method of claim 35 further comprising:

hosting a second mechanism to overwrite the location with
an instruction to trap into the separation kernel hypervi-
sor; and

processing an exception due to execution attempts of the
overwritten location by the associated virtual machine.

37. The method of claim 36 further comprising:

hosting a third mechanism to determine whether the physi-
cal memory location is accessed.

38. The method of claim 37 further comprising:

pausing or resuming execution of the virtual machine;

replacing the overwritten instruction with a stored copy;
and

allowing the virtual machine to execute the instruction.

39.-64. (canceled)

15

Jun. 2, 2016

