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FLEXIBLE INITIALIZER FOR
ARBITRARILY-SIZED PARAMETRIZED
QUANTUM CIRCUITS

BACKGROUND

Field of the Technology Disclosed

[0001] The disclosed technology relates to a method and
system for creating an optimal set of initializing parameters
for a parametrized quantum circuit (PQC) using machine
learning methods.

Description of Related Art

[0002] The subject matter discussed in this section should
not be assumed to be prior art merely as a result of its
mention in this section. Similarly, any problems or short-
comings mentioned in this section or associated with the
subject matter provided as background should not be
assumed to have been previously recognized in the prior art.
The subject matter in this section merely represents different
approaches, which in and of themselves can also correspond
to implementations of the claimed technology.

[0003] Variational quantum algorithms (VQAs) are a class
of algorithms suitable for near-term quantum computers.
Their applications include quantum simulation and combi-
natorial optimization, as well as tasks in machine learning,
such as data classification, compression, and generation.
Variational quantum algorithms provide a viable approach
for achieving quantum advantage for real-world applications
in the near term. At the core of these near-term quantum
algorithms is a parametrized quantum circuit (PQC) which
acts as the quantum model needed to train a specific prob-
lem. Optimizing PQCs remains is a difficult task. Currently,
only optimizations over small circuit sizes have been real-
ized experimentally. Several obstacles limit the scaling of
VQAs to larger problems. In particular, the presence of
many local minima and barren plateaus in the optimization
landscape preclude successful optimizations for even mod-
erately small problems. Furthermore, contrary to classical
machine learning pipelines, the overhead in obtaining gra-
dient descents (GD) scales linearly with the number of
parameters, which limits the number of iterations that can be
realistically performed. The disclosed technology addresses
and provides a solution to these drawbacks.

SUMMARY

[0004] In one aspect, the disclosed method successfully
generates a set of initial parameters for a parametrized
quantum (PQC) circuit, without using random selection of
initial parameters as in competitive technologies. Extending
ideas from the field of meta-learning, the parameter initial-
ization method uses machine learning to provide a flexible
initializer for arbitrarily-sized parametrized quantum cir-
cuits. The disclosed method is hereinafter referred to as
FLIP, which stands for flexible initializer for arbitrarily-
sized parametrized quantum circuits. Any reference herein
to FLIP should be understood to refer to certain embodi-
ments, and not necessarily to all embodiments, of the claims
herein.

[0005] The disclosed technology provides flexibility in
several areas. For example, FLIP can be applied to any
family of PQCs, and instead of relying on a generic set of
initial parameters, it is tailored to learn the structure of
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successful parameters from a family of related PQC prob-
lems, which are used as the training set. The flexibility of
FLIP provides a method of predicting the initialization of
parameters in quantum circuits with a larger number of
parameters from those used in the training phase. This is a
critical feature lacking in other initializing strategies pro-
posed to date. The advantages of using FLIP are apparent in
three scenarios: a family of problems with proven barren
plateaus, PQC training to solve max-cut problem instances,
and PQC training for finding the ground state energies of 1D
Fermi-Hubbard models.

[0006] The disclosed technology for training PQCs
unlocks the full potential offered by VQAs by addressing
drawbacks from an initialization perspective. In one aspect
of the disclosed technology, a method for a flexible initial-
izer for arbitrarily parameterized quantum circuits is pro-
vided. This initializer is trained, using machine learning
methods, on a family of related problems, so that, after
training, it can be used to initialize the circuit parameters of
similar but new problem instances.

[0007] In one aspect, rather than relying on a generic set
of initial parameters, the initial parameters produced are
specially tailored for families of PQC problems and may be
conditioned on specific details of the individual problems. In
another aspect, the method operates effectively, regardless of
the PQCs employed. The method may be used for any
families of PQCs. And in another aspect, the method may
accommodate quantum circuits of different sizes (in terms of
the number of qubits, circuit depth, and number of varia-
tional parameters), within the targeted family, both during its
training and in subsequent applications.

[0008] The disclosed technology has several practical
advantages. During training, smaller circuits may be
included in the dataset to help mitigate the difficulties arising
in the optimization of larger ones. Once trained, the method
demonstrates dramatically improved performance compared
with random initialization. Also, the method is easier to
train. After training, the method may be successfully applied
to the initialization of larger quantum circuits than the ones
used for its training. In one aspect, the method may be
trained on problem instances that are numerically simulated,
and subsequently be used on larger problems run on a
quantum device. This method advantageously uses inexpen-
sive computational resources to leverage the latest advances
in the numerical simulation of quantum circuits. The quan-
tum circuits may be scaled upwardly so that the VQAs may
encompass previously intractable problems.

[0009] In one embodiment of the disclosed technology, a
generic parametrized quantum circuit (PQC) problem is
composed of a parametrized circuit ansatz U(6) and an
objective C, which can be estimated through repeated mea-

surements on the output state [yp(8)) =U(6)1p0) . Solving a
PQC problem corresponds to the minimization of the cost

function C(6)=C(Iy(8)}). An example of a PQC problem
may be for a system size of N=3 qubits, and a quantum
circuit U with K=6 parameters. FLIP includes an encoding-
decoding scheme which maps a PQC problem to a set of
initial parameters 6(0). Each of the K parameters of the
quantum circuit U is first represented as an encoding vector
h,. This encoding contains information about the parameter
itself, the overall circuit, and optionally the objective.
Importantly, each of the encodings is of fixed size (S=5) and
uniquely represents each parameter. These K encodings are
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then decoded by a neural network, Dy, with weights ¢,
outputting a single value 6(0), per encoding h,.

[0010] This encoding-decoding scheme always produces a
vector of initial parameters 6(0) with the dimension match-
ing the number of circuit parameters. These parameters 6(0)
are used as the starting point for gradient descent (GD)
optimization. During training of FLIP, the weights ¢ of the
decoder are tuned to minimize the meta-loss function L(¢),
corresponding to the value of the cost after s steps of GD.
Gradients of this loss can be back-propagated to the weights
¢ of the decoder, which are updated accordingly. In practice,
the FLIP method may be trained over PQC problems
sampled from a distribution of problems C_~p(C) and tested
over new problems drawn from the same or a similar
distribution. The new problems may involve larger system
sizes and deeper circuits.

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] The disclosed technology, as well as a preferred
mode of use and further objectives and advantages thereof,
will best be understood by reference to the following
detailed description of illustrative embodiments when read
in conjunction with the accompanying drawings. In the
drawings, like reference characters generally refer to like
parts throughout the different views. The drawings are not
necessarily to scale, with an emphasis instead generally
being placed upon illustrating the principles of the technol-
ogy disclosed.

[0012] FIG.1 is a diagram of a quantum computer accord-
ing to one embodiment of the present invention;

[0013] FIG. 2A is a flowchart of a method performed by
the quantum computer of FIG. 1 according to one embodi-
ment of the present invention;

[0014] FIG. 2B is a diagram of a hybrid quantum-classical
computer which performs quantum annealing according to
one embodiment of the present invention; and

[0015] FIG. 3 is a diagram of a hybrid quantum-classical
computer according to one embodiment of the present
invention.

[0016] FIG. 4 shows an overview of a flexible initializer
for arbitrarily-sized parametrized quantum circuits;

[0017] FIGS. 5A, 5B, and 5C illustrate the factors
involved in solving state preparation problems;

[0018] FIGS. 6A, 6B, and 6C illustrate the use of the
flexible initializer for QAOA applied to max-cut problems;
[0019] FIGS. 7A and 7B illustrate the optimization results
for the 1D Fermi-Hubbard model (1D FHM); and

[0020] FIG. 8 is a block diagram illustrating the basic
process flow of the flexible initializer.

DETAILED DESCRIPTION

Overview

[0021] The disclosed technology is, in one embodiment, a
flexible initializer for arbitrarily-sized parametrized quan-
tum circuits (FLIP). The method and system of the disclosed
technology is for accelerating optimization over targeted
families of parametrized quantum circuit (PQC) problems.
Efficient optimization is approached from an initialization
perspective, for learning a set of initial parameters which can
be efficiently refined by gradient-descent.

[0022] In competing methods, the number of parameters
to be optimized is fixed, thus restricting their applicability to
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quantum circuits of fixed sizes. The disclosed technology is
flexible to accommodate arbitrarily-sized circuits. In a fur-
ther aspect, the method also allows incorporation of any
relevant information about the problems to be optimized,
thus producing fully problem-dependent initial parameters.

Learning Over a Family of Related PQC Problems

[0023] A generic PQC problem corresponds to a cost
C(8)=C(U(8)Iy0} ) to be minimized, where U(8) denotes a

parametrized circuit applied to an initial state 10}, and C
denotes an objective evaluated on the output of the circuit,
as illustrated in FIG. 4.

[0024] The objective is defined as any function which can
be estimated based on measurement outcomes. For instance,
the objective may be the expectation value C(ly} )={IOly
? of a Hermitian operator O as it is often the case in VQAs,
or a distance to a probability distribution. There is a subtle
distinction between the objective C(l?), which is unknown
with respect to the quantum circuit employed, and the (PQC
problem) cost C(0) which is a function of the parameters 0
and depends upon both the objective and the choice of
parametrized quantum circuit.

[0025] Rather than considering any such PQC problem
independently, the following discussion focuses on families
of related, similar problems indexed by T and drawn from a
probability distribution, i.e., C~p(C). Such a distribution
can be obtained by fixing the circuit ansatz U while varying
the objective C_~p(C), or by fixing the objective and allow-
ing for different quantum circuits U_~p(U). More generally,
both the underlying objective and quantum circuits are
varied.

[0026] Herein, the aim is to exploit meaningful parameters
patterns over distributions of PQC problems. Some restric-
tions will be imposed on the way these distributions are
defined. Also, in the following, distributions are considered
over quantum circuits of various sizes but with the same
underlying structure, and over objectives with the same
attributes. The exact details of the distributions used are
made explicit when showing the results.

Initialization-Based Meta-Learning

[0027] Meta-learning, i.e., learning how to efficiently opti-
mize related problems, has a rich history in machine-
learning. Focusing now on a subset of such techniques,
initialization-based meta-learners, in which the knowledge
about a distribution of problems p(C) is summarized into a
single set of parameters 0 which is used as a starting point
of a gradient-based optimization for any problem C_~p(C),
as initial parameters of a gradient-based optimization.
[0028] These initial parameters are trained to minimize the
meta-loss function

£OO)p(C)C,(0,2)dC

where the parameters 6*_, for the problem C_, are obtained
after s steps of gradient descent.

[0029] For instance, for a single step, s=1, of gradient
descent 6 =0©—nV,C_(6°). In practice, this number of
steps is taken to be small (s<10) but not null. The case s=0
corresponds to finding good parameters on average rather
than good initial parameters. In some cases, even s=1 can
produce drastically different and better parameters than the
s=0.
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[0030] Training these initial parameters 8 is performed
via gradient descent of the loss function, which requires the
evaluation of the terms V,@ C(62.) where 8“_ depends
implicitly on 8%, These terms can be obtained by the chain
rule but involve second-order derivatives (Hessian) of the
type Vg, ,Co(8). Evaluating these second-order terms is
costly in general and even more in the context of quantum
circuits. Fortunately, approximations of the gradients of the
loss involving only first-order terms have been found to
work well empirically. The following approximation

6 _ g
Vo C0F) = ===

has been shown to be competitive and allows for a straight-
forward implementation.

Encoding-Decoding of the Initial Parameters

[0031] The meta-learning approach requires the set of
initial parameters 8 to be shared by any of the problems
C_~p(C), requiring the problems to have the same number of
parameters. However, good initial parameters for a given
PQC problem be applicable for related problems, even for
different sizes. For instance, the ground state preparation of
an N-particle Hamiltonian probably could share some
resemblance with the preparation of the ground state of a
similar but extended N+AN-particle system. Likewise, opti-
mal parameters for a quantum circuit of depth d may be
informative about an adequate range of parameter values for
a deeper circuit of depth d+Ad.

[0032] The existence of such circuit parameters patterns,
both as a function of the size of the system and of the depth
of the circuit, has been observed in the context of QAOA or
max-cut problems and for the long-range Ising model. This
provides motivation to extend the idea of learning good
initial parameters for fixed-size circuits to learning good
patterns of initial parameters over circuits of arbitrary sizes.
[0033] The disclosed technology introduces a novel
encoding-decoding scheme, mapping the description of a
PQC problem to a vector of parameter values with adequate
dimension. The encoding part of this map is fixed, while the
decoding part can be trained to produce good initial param-
eter values. In addition, this mapping allows the initial
parameters to be conditioned to the relevant details of the
objective, so that they can be incorporated in the description
of the PQC problem produced by the encoding strategy. The
general idea for a single PQC problem is illustrated in FIG.
4.

[0034] Each parameter, indexed by k, of an ansatz U_, is
encoded as a vector h™, containing information about the
specific nature of the parameter and of the ansatz. It
includes, for example, the position and type of the corre-
sponding parametrized gate, and the dimension of the
ansatz. Several choices could be made, but importantly this
encoding scheme results in encoding vectors of the same
dimension S for each parameter, i.e., Vk, T, dim (h*,)=S and
that distinct parameters and circuits have distinct represen-
tations, i.e., Vkzk', h%,#h",' and VU _#U_, h*#h",.

[0035] Once this choice of encoding is taken, any PQC
problem containing an arbitrary number of parameters K is
mapped to K of such encodings. These are then fed to a
decoder, denoted D,, with weights ¢, which is the trainable
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part of the scheme. This decoder is taken to be a neural
network with input dimension S and output dimension one;
that is, for any given encoding h®, it outputs a scalar value,
and when applied to K of such encodings, it outputs a vector
of dimension K which contains the initial parameters 8%
for the problem C_ to be used in the meta-learning frame-
work.

[0036] In addition to the details of the parameters and
ansatz, embodiments of the present invention may also
extend the encoding to incorporate objective-specific details,
which is relevant information about the objective C. This
extension the production of fully problem-dependent initial
parameters.

Training and Testing

[0037] Training FLIP may include learning the weights ¢
of the decoder to minimize the loss-function, such as shown
in the following:

£ @=lp(O)CL82(00dC

where the parameters 8 (0) are now obtained after s steps
of gradient-descent performed from the initial parameters
6‘? (¢) outputted by the decoder (the dependence to the
decoder weights ¢ has been made explicit here). As illus-
trated in FIG. 4, the gradients needed to minimize this loss
function are obtained by virtue of the chain rule:

Vo Cul8,)=V, 01C(0,7) V8.,

where the new Jacobian term V‘DG(O)T contains derivatives of
the output of the neural network D,, for the different encod-
ings h®,.. In practice, each step of training of FLIP consists
of drawing a small batch of problems from the problem
distribution p(C) and using the gradients in prior equation
averaged over these problems to update the weights ¢.
[0038] Finally, once trained, the framework is applied to
unseen testing problems. Testing problems, indexed by T,
are sampled from a distribution Ct'~p'(C). When presented
to a new problem C.., the encoding-decoding scheme is used
to initialize the corresponding quantum circuit U, from
which s' steps (typically larger than the number of steps s
used for training) of gradient descents are performed.

Operation

[0039] FLIP is put into practice starting with state prepa-
ration problems using simple quantum circuits. The con-
struction of a distribution of problems, where both the target
states and sizes of the circuits are varied, highlights how
various problems may be circumvented, such as barren
plateaus arising from random initialization of the circuits.
FLIP may then be applied to other VQAs. For example, the
quantum approximate optimization algorithm (QAOA) in
the context of max-cut problems may be considered.
Because QAOA has been used extensively, benchmarking
against this and other competitive initialization alternatives
can provide further investigations into the learned patterns
of initial parameters.

[0040] Hardware-efficient ansatzes are tailored to exploit
the physical connections of quantum hardware. Typically,
they aim at reducing the depth of quantum circuits, and thus
the coherence-time requirements, at the expense of intro-
ducing many more parameters to be optimized. If success-
fully optimized, they may offer practical applications in the
near-term. The FLIP method may be applied to ground state
preparation of the one-dimensional Fermi-Hubbard model
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(1D FHM) employing the low-depth circuit ansatz (LDCA).
In all these examples the advantage of FLIP is demonstrated
over random initialization and other alternatives. Also, it
may be demonstrated to systematically assess the ability of
the disclosed technology to successfully initialize larger
circuits than the ones it was exposed to during training.

Mitigating Barren Plateaus in State Preparation Problems

[0041]

target state [P*®), a family of target states [}™7) are
considered, which are computational basis states with only

Rather than considering the preparation of a single

one qubit in the |11} state, at target position p,. The objective
is to generate problems, indexed as usual by T, where both
the size of the target state nt and the position pt can be
varied. For example, for nt=3 qubits, and a position pt=2,
the target state reads 1}p*®") =101)).

[0042] The quantum circuits comprise d_ layers of param-
etrized single qubit gates R (0) applied to each qubit,
followed by controlled-Z gates acting on adjacent qubits
(where the first and last qubits are assumed to be adjacent).
The resulting parametrized circuits contain K =n_d, varia-
tional parameters. The objective to be minimized is taken to

be the negated fidelity C_(0)=(y(0)IO_hp(0)), with O =—

[’} (7 |. The distributions of problems are thus speci-
fied by defining how to sample the integers n_, d_ and p,. A
single problem with n_=3 qubits, d =6 layers, and position
p.=2 is illustrated in FIG. 5A.

[0043] For training, a distribution of problems is consid-
ered where the integers nte€[1,8] qubits, dve[1,8] layers,
and p.2[1,n_ | are uniformly sampled within their respective
range. For testing, 50 new problems were sampled with
n_&[4,16] qubits, d_€[4,16] layers, and p_E€[1,n,], from a
distribution containing problems supported by the training
distribution but also larger problems (with quantum circuits
up to twice as wide and as deep as the largest circuit in the
training set).

[0044] Convergence of the optimizations performed over
these testing problems is depicted in FIG. 5B, comparing
circuits initialized with FLIP and circuits randomly initial-
ized. In both cases, 100 steps of simple gradient descent are
performed after initialization. The absolute minimum of the
objective that can be reached for these state preparation
problems is C,,,=-1, and the average of the deviation is
AC=C-C,,,,, from this minimum as a function of the number
of optimization steps.

[0045] Quantum circuits initialized by FLIP can be
quickly refined to reach an average value of AC=0.1% after
fewer than 30 iterations. This is in contrast with optimiza-
tions starting with random initial parameters, which even
after 100 iterations only achieve an average AC~50%. These
individual results show that the benefit of FLIP is particu-
larly appreciable for the largest circuits considered. For
problems with n_=d_=12, most of the optimizations starting
with random parameters fail in even slightly improving the
objective, while optimizations of circuits initialized with
FLIP converge quickly.

[0046] These patterns in optimizations with randomly
initialized parameters are symptomatic of barren plateaus.
FIG. 5C compares the initial values of the objective and
gradients for PQCs initialized randomly and with FLIP. The
top panel shows the deviations AC=C-C,,,,,,, of the objective
values. The bottom panel shows the variances A%3, of the
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cost function gradients. Shaded regions indicate circuit sizes
seen by FLIP during training.

[0047] For random initialization, the deviations of the
objective value are always close to its maximum value 1,
i.e., far away from the optimal parameters. Furthermore,
FIG. 5 shows that amplitude of the gradients exponentially
vanishes with the system size, thus preventing successful
optimizations.

[0048] Quantum circuits initialized with FLIP exhibit
strikingly different patterns. For problem sizes n=8 qubits,
seen during training (shaded regions), both the objective and
the gradient amplitudes are small, showing that FLIP suc-
cessfully learned to initialize parameters close to the optimal
ones. When the size of the circuits is increased further (e.g.,
n>8, n>16, n>32, or n>64), the objective values increase,
indicating that circuits are initialized further away from ideal
parameters. This degradation is expected as FLIP needs to
extrapolate initial parameters patterns ranging from small
circuits to new, larger circuits. Nonetheless, in all cases the
values of the initial objective are demonstrated to be sig-
nificantly better than those obtained for random initializa-
tion. Also, the amplitudes of the initial gradients remain
non-vanishing for the range of quantum circuit sizes studied,
thus allowing for the fast optimization results, as displayed
in FIG. 5B. FLIP remains competitive even when trained
and tested with noisy gradients. The FLIP method consis-
tently learns the patterns of good initial parameters with
respects to the specific objective details and the circuits
dimensions. In these state preparation examples, where the
circuit structure is relatively simple, barren plateaus are
avoided. In random initialization, barren plateaus would not
have been avoided. The disclosed technology thus leads to
more practical VQAs.

Max-Cut Graph Problems with QAOA

[0049] The Quantum Approximate Optimization Algo-
rithm (QAOA) is an approximate method for optimizing
combinatorial problems. Since its proposal, QAOA has
received a lot of attention with recent works focusing on
aspects of its practical implementation and scaling. Alter-
nating-type ansatze such as QAOA as well as the Hamilto-
nian Variational have been shown to be parameter-efficient.
Still, optimizing such ansatze can be challenging even for
small problem sizes, since the optimization landscape is
filled with local minima. There are continuing efforts to
devise more efficient optimization strategies. We first briefly
recall the definition of max-cut problems and of the QAOA
ansatz, then apply FLIP and compare it to random initial-
ization and other more sophisticated initialization strategies.
While ground state preparation could be attempted with any
type of PQCs, it is typical to resort to QAOA ansatze for
these problems. A QAOA ansatz is formed of repeating
composition of problem and mixer unitaries.

[0050] An instance of a QAOA max-cut problem belong-
ing to the training data set is illustrated in FIGS. 6A, 6B, and
6C for the case where d_=4 layers, n.=6 nodes and ¢_=50%.
Optimizations are compared with circuits initialized by the
disclosed FLIP method against random initializations, as
well as more competitive baselines. This follows the prin-
ciple that good parameters obtained for a given graph are
typically also good for other similar graphs. While these
results are obtained for 3-regular graphs and a number of
layers smaller than the number of nodes. A general initial-
ization strategy, hereinafter known as heuristics initializa-
tion, comprises:
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[0051] Performing optimization over randomly drawn
training problems;

[0052] Selecting the set of optimal parameters resulting
in the best average objective value over the training
problems; and

[0053] Reusing these parameters as initial parameters
when optimizing new problems.

[0054] The two-step training strategy allows mitigation
for (i) optimizations trapped in local minima by repeated
optimizations, and (ii) ensures that the selected parameters
are typically good for many other problems. Results are also
included using what is known as the recurrent neural net-
work (RNN) meta-learner approach. An RNN is trained to
act as a black-box optimizer. At each step it receives the
latest evaluation of the objective function and suggests a
new set of parameters to try. After the training, this RNN can
be used on new problem instances for a small number of
steps. The best set of parameters found over these prelimi-
nary steps is subsequently used as initial parameters of a new
optimization.

[0055] In contrast with FLIP, both the heuristics and the
RNN initializer require that all the problem instances share
the same number of parameters. For QAOA circuits, this
restricts the circuits employed to be of fixed depth, although
the number of graph nodes considered can be varied as it
does not relate directly to the number of parameters
involved. Hence, when training these alternative initializers,
we consider a similar training distribution as the one used for
FLIP, with the exception that all circuits are taken to be of
fixed depth, d =8 layers.

[0056] A first batch of testing problems are generated for
graphs with n_=12 nodes and circuits with d_=8 layers.
Average optimization results (and confidence intervals) over
100 of such testing problem instances are reported in FIG.
6B. The four different initialization strategies previously
discussed are compared. The simple heuristic strategy
already provides a significant improvement compared to
random initialization, thus highlighting the importance of
informed initialization of the circuit parameters. An extra
improvement is achieved when using the RNN initializer.
Finally circuits initialized with FLIP exhibit the best final
average performance over these problems. While initial
objective values are similar for circuits initialized by FLIP
and RNN, the initial parameters produced by FLIP are found
to be more auspicious to further optimization.

[0057] Results for new testing problems with an increased
depth of d =12 layers are displayed in FIG. 6C. The
heuristics initial parameters trained on circuits with d =8
layers, are adapted to these larger circuits by padding the
missing additional parameters entries with random values.
However, there is no straightforward way to fairly extend the
RNN trained on circuits with d =8 layers to these larger
circuits. Hence, we include the heuristics and RNN initial-
izer re-trained from scratch on problems with d.=12 layers.
These are labeled as “unfair” in the legend as they are
trained on circuits 50% deeper than the largest ones seen by
FLIP during its training. Remarkably, even in this challeng-
ing set-up, FLIP outperforms all the other approaches, albeit
only showing an almost indistinguishable advantage com-
pared to the RNN trained on the d =12 layered circuits
(AC=0.06).

Sep. 15, 2022

Initializing LDCA for the 1D Fermi-Hubbard Model

[0058] The Fermi-Hubbard model (FHM) is a prototype of
a many-body interacting system, widely used to study col-
lective phenomena in condensed matter physics, most nota-
bly high-temperature superconductivity. Despite its simplic-
ity, FHM features a broad spectrum of coupling regimes that
are challenging for the state-of-the-art classical electronic
structure analyzed the prospect of achieving quantum advan-
tage for the large scale VQE simulations of the two-dimen-
sional FHM, emphasizing the need for efficient circuit
parameter optimization techniques, including those based on
meta-learning. The one-dimensional FHM (1D FHM),
describes a system of fermions on a linear chain of sites with
length 1.. The 1D FHM Hamiltonian is defined as the
following in the second quantization form

Hip ram =
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where j indexes the sites and ¢ indexes the spin projection.
The first term quantifies the kinetic energy corresponding to
fermions hopping between nearest-neighboring sites and is
proportional to the tunneling amplitude t. The second term
accounts for the on-site Coulomb interaction with strength
U. Symbols n;, & refer to number operators. Lastly, the third
term is the chemical potential u that determines the number
of electrons or the filling. For the half-filling case, in which
the number of electrons N is equal to L, p is set to U/2.
[0059] Ground state energies of the 1D FHM over a range
of chain lengths are systematically estimated using the VQE
algorithm. With increasing system size (chain length) and a
corresponding increase in the circuit resources (e.g.. depth or
gate count) of the respective VQE ansatz, the noise in the
quantum device deteriorates the quality of the solutions. The
maximum chain length before the device noise dominates
the quality of VQE solutions informs the maximum capa-
bility of the particular quantum device at solving related
algorithm tasks.

[0060] Implementation of such VQE benchmark on near-
term devices requires a careful design of a variational ansatz
with low circuit depth. A candidate for such ansatz is the
Low-Depth Circuit Ansatz (LDCA), a linear-depth hard-
ware-inspired ansatz for devices with linear qubit connec-
tivity and tunable couplers. While LDCA was shown to be
effective in estimating ground state energies of strongly
correlated fermionic systems, its application has been lim-
ited to small problem sizes due to the quadratic scaling of
parameters with the system size and the corresponding
difficulty in parameter optimization. A recent work proposed
an optimization method for parameter-heavy circuits such as
LDCA, but the reported simulations for LDCA required
many energy evaluations on the quantum computer.
[0061] For a parameter-heavy ansatz like LDCA, in which
the role of each parameter (and its corresponding gate) is not
easily understood, it is beneficial to adopt an initialization
strategy that is effective across a family of related problem
instances. This disclosed technology is a useful strategy for
these problem instances.

[0062] The following discussion provides details and
results for applying FLIP to initialize number-preserving
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LDCA for 1D FHM problem instances of varying chain
lengths [ and numbers d of circuit layers (named “sublay-
ers” in LDCA). In all cases the ansatz circuit is applied to
non-interacting anti-ferromagnetic initial states with two
electrons per occupied lattice site. For this version of LDCA,
which conserves the particle number, there are K=3d(n-
1)+n parameters where the system size n=2L (two qubits per
lattice site).

[0063] Training instances for FLIP were generated for a
number of sites Lt€[1,6], a value of the interaction U €0,
10] and a number of LDCA sublayers d_&[1,6]. For each
new training problem, these values are sampled uniformly
within their respective discrete or continuous ranges and the
cost function is taken to be to the expectation value of the
11-normalized version of the problem Hamiltonian. For
testing, both the number of sites and of circuit layers are
increased to L.={6,8,10} and d,=8 and values of U are
taken at regular intervals in the range [0,10]. Optimization
results averaged over the testing problems are reported in
[0064] Turning now to FIG. 7A, for random parameter
initialization, each problem optimization is restarted five
times. Results corresponding to the average over these
repetitions or to the best per problem are compared to
optimizations of circuits initialized with FLIP. After only 50
steps of optimization, circuits initialized with FLIP achieve
similar convergence when compared to 100 steps of opti-
mizations from random initialization for the average (best of
five) case. Consideringn individual instances, as can be seen
n FIG. 7B, the advantage of the FLIP method is most
prominent for the largest circuits (last row) over which it
was applied. Importantly, FLIP outperforms random initial-
ization in the strong coupling regime (away from U=0),
where the non-interacting initial state generally provides a
poor starting point for VQE optimization. It should be
emphasized that prior to the disclosed technology no method
for initializing parameters of LDCA circuits existed other
than assigning random values.

[0065] Referring now to FIG. 8, a simplified flowchart for
the FLIP method is presented. FLIP may be applied to a
single VQA objective but with quantum circuits of varying
depths. Rather than growing the circuits sequentially and
making incremental adjustments of parameters, FLIP aims at
capturing and exploiting patterns in the parameter space and
thus can provide a more robust approach. This flexibility
towards learning over circuits of different sizes is one of the
outstanding features of our the disclosed technology initial-
ization scheme. The full capability of FLIP appear in sce-
narios where both the circuits and the objectives are varied.
Rather than considering each task individually, FLIP pro-
vides a unified framework to learn good initial parameters
over many problems, resulting in overall faster convergence.
[0066] In step 800, the parameterized quantum circuit
(PQC) problem is defined as an initial ansatz and an objec-
tive. In step 810, using the encoder element of an encoder-
decoder scheme, the PQC problem is mapped to a set of
initial parameters K. In step 820, each of the K parameters
is represented as fixed-size encoding vector containing
information on the parameter, overall circuit, and objective.
In step 830, using a trainable decoder, the K encodings are
decoded by a neural network having weights and output as
a single value per encoding. In step 840, a vector of initial
parameters is generated based on the steps of encoding and
decoding. In step 850, using these initial parameters as a
starting point a gradient descent optimization is performed
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for S steps to minimize the meta-loss function. And finally,
in step 860, the losses are backpropagated and used to
update the weights of the decoder.

[0067] Although the first use case of applying FLIP to
mitigate barren plateaus was demonstrated in a simple
synthetic setting similar to those previously studied in the
literature, it is further demonstrated that FLIP is a promising
initialization technique for more complex problems. With
FLIP, as long as there is some structure in the parameter
space that can be learned by the framework, this can be
exploited to adequately initialize new quantum circuits even
when these circuits are larger than the ones seen during
training.

[0068] A clear demonstration of learning these patterns is
the application of FLIP to the max-cut instances in QAOA,
in which it outperformed other proposed initialization tech-
niques.

[0069] Enhancement over random initialization have been
observed in the application to the 1D FHM instances, where
the structure in the parameter space is not obvious even after
training. The principles of the disclosed technology may be
extended to other application domains, especially those that
lack a problem Hamiltonian to guide the construction of the
circuit ansatz. This can be shown, for example, the case for
probabilistic generative modeling with Quantum Circuit
Born Machines (QCBMs).

[0070] We highlight that our encoding-decoding scheme
allows to fully condition the initial parameters with respect
to specific details of the task-at-hand, e.g., the interaction
strength of the parametrized Hamiltonians. This possibility
to easily incorporate informative details of the task can be
further explored and exploited.

[0071] In addition to training the initial parameters, the
meta-learning aspect of FLIP may be readily used after
initialization and could further contribute to more efficient
optimizations.

[0072] Informed initialization of parameters may acceler-
ate convergence and thus reduce the overall number of
circuits to be run, which is critical for extending the appli-
cation of VQAs to larger problem sizes. As gate-based
quantum computing technologies mature, initialization tech-
niques which embrace this unique flexibility of the disclosed
technology will be essential to mitigate the challenges in
trainability posed for PQC-based models and eventually
scale to their application in real-world applications settings.

[0073] The methods described in this section and other
sections for the technology disclosed can include one or
more of the features described in connection with additional
methods disclosed. In the interest of conciseness, the com-
binations of features disclosed in this application are not
individually enumerated and are not repeated with each base
set of features. The reader will understand how features
identified in this method can readily be combined with sets
of base features identified as implementations. The preced-
ing description is presented to enable the making and use of
the technology disclosed. Various modifications to the dis-
closed implementations will be apparent, and the general
principles defined herein may be applied to other implemen-
tations and applications without departing from the spirit
and scope of the technology disclosed. Thus, the technology
disclosed is not intended to be limited to the implementa-
tions shown but is to be accorded the widest scope consistent
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with the principles and features disclosed herein. The scope
of the technology disclosed is defined by the appended
claims.

[0074] It is to be understood that although the invention
has been described above in terms of particular embodi-
ments, the foregoing embodiments are provided as illustra-
tive only, and do not limit or define the scope of the
invention. Various other embodiments, including but not
limited to the following, are also within the scope of the
claims. For example, elements and components described
herein may be further divided into additional components or
joined together to form fewer components for performing
the same functions.

[0075] Various physical embodiments of a quantum com-
puter are suitable for use according to the present disclosure.
In general, the fundamental data storage unit in quantum
computing is the quantum bit, or qubit. The qubit is a
quantum-computing analog of a classical digital computer
system bit. A classical bit is considered to occupy, at any
given point in time, one of two possible states corresponding
to the binary digits (bits) O or 1. By contrast, a qubit is
implemented in hardware by a physical medium with quan-
tum-mechanical characteristics. Such a medium, which
physically instantiates a qubit, may be referred to herein as
a “physical instantiation of a qubit,” a “physical embodi-
ment of a qubit,” a “medium embodying a qubit,” or similar
terms, or simply as a “qubit,” for ease of explanation. It
should be understood, therefore, that references herein to
“qubits” within descriptions of embodiments of the present
invention refer to physical media which embody qubits.
[0076] Each qubit has an infinite number of different
potential quantum-mechanical states. When the state of a
qubit is physically measured, the measurement produces one
of two different basis states resolved from the state of the
qubit. Thus, a single qubit can represent a one, a zero, or any
quantum superposition of those two qubit states; a pair of
qubits can be in any quantum superposition of 4 orthogonal
basis states; and three qubits can be in any superposition of
8 orthogonal basis states. The function that defines the
quantum-mechanical states of a qubit is known as its wave-
function. The wavefunction also specifies the probability
distribution of outcomes for a given measurement. A qubit,
which has a quantum state of dimension two (i.e., has two
orthogonal basis states), may be generalized to a d-dimen-
sional “qudit,” where d may be any integral value, such as
2,3, 4, or higher. In the general case of a qudit, measurement
of the qudit produces one of d different basis states resolved
from the state of the qudit. Any reference herein to a qubit
should be understood to refer more generally to an d-di-
mensional qudit with any value of d.

[0077] Although certain descriptions of qubits herein may
describe such qubits in terms of their mathematical proper-
ties, each such qubit may be implemented in a physical
medium in any of a variety of different ways. Examples of
such physical media include superconducting material,
trapped ions, photons, optical cavities, individual electrons
trapped within quantum dots, point defects in solids (e.g.,
phosphorus donors in silicon or nitrogen-vacancy centers in
diamond), molecules (e.g., alanine, vanadium complexes),
or aggregations of any of the foregoing that exhibit qubit
behavior, that is, comprising quantum states and transitions
therebetween that can be controllably induced or detected.
[0078] For any given medium that implements a qubit, any
of a variety of properties of that medium may be chosen to
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implement the qubit. For example, if electrons are chosen to
implement qubits, then the x component of its spin degree of
freedom may be chosen as the property of such electrons to
represent the states of such qubits. Alternatively, the y
component, or the z component of the spin degree of
freedom may be chosen as the property of such electrons to
represent the state of such qubits. This is merely a specific
example of the general feature that for any physical medium
that is chosen to implement qubits, there may be multiple
physical degrees of freedom (e.g., the X, y, and z components
in the electron spin example) that may be chosen to represent
0 and 1. For any particular degree of freedom, the physical
medium may controllably be put in a state of superposition,
and measurements may then be taken in the chosen degree
of freedom to obtain readouts of qubit values.

[0079] Certain implementations of quantum computers,
referred to as gate model quantum computers, comprise
quantum gates. In contrast to classical gates, there is an
infinite number of possible single-qubit quantum gates that
change the state vector of a qubit. Changing the state of a
qubit state vector typically is referred to as a single-qubit
rotation, and may also be referred to herein as a state change
or a single-qubit quantum-gate operation. A rotation, state
change, or single-qubit quantum-gate operation may be
represented mathematically by a unitary 2x2 matrix with
complex elements. A rotation corresponds to a rotation of a
qubit state within its Hilbert space, which may be concep-
tualized as a rotation of the Bloch sphere. (As is well-known
to those having ordinary skill in the art, the Bloch sphere is
a geometrical representation of the space of pure states of a
qubit.) Multi-qubit gates alter the quantum state of a set of
qubits. For example, two-qubit gates rotate the state of two
qubits as a rotation in the four-dimensional Hilbert space of
the two qubits. (As is well-known to those having ordinary
skill in the art, a Hilbert space is an abstract vector space
possessing the structure of an inner product that allows
length and angle to be measured. Furthermore, Hilbert
spaces are complete: there are enough limits in the space to
allow the techniques of calculus to be used.)

[0080] A quantum circuit may be specified as a sequence
of quantum gates. As described in more detail below, the
term “quantum gate,” as used herein, refers to the applica-
tion of a gate control signal (defined below) to one or more
qubits to cause those qubits to undergo certain physical
transformations and thereby to implement a logical gate
operation. To conceptualize a quantum circuit, the matrices
corresponding to the component quantum gates may be
multiplied together in the order specified by the gate
sequence to produce a 2”x2” complex matrix representing
the same overall state change on n qubits. A quantum circuit
may thus be expressed as a single resultant operator. How-
ever, designing a quantum circuit in terms of constituent
gates allows the design to conform to a standard set of gates,
and thus enable greater ease of deployment. A quantum
circuit thus corresponds to a design for actions taken upon
the physical components of a quantum computer.

[0081] A given variational quantum circuit may be param-
eterized in a suitable device-specific manner. More gener-
ally, the quantum gates making up a quantum circuit may
have an associated plurality of tuning parameters. For
example, in embodiments based on optical switching, tuning
parameters may correspond to the angles of individual
optical elements.
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[0082] In certain embodiments of quantum circuits, the
quantum circuit includes both one or more gates and one or
more measurement operations. Quantum computers imple-
mented using such quantum circuits are referred to herein as
implementing “measurement feedback.” For example, a
quantum computer implementing measurement feedback
may execute the gates in a quantum circuit and then measure
only a subset (i.e, fewer than all) of the qubits in the
quantum computer, and then decide which gate(s) to execute
next based on the outcome(s) of the measurement(s). In
particular, the measurement(s) may indicate a degree of
error in the gate operation(s), and the quantum computer
may decide which gate(s) to execute next based on the
degree of error. The quantum computer may then execute the
gate(s) indicated by the decision. This process of executing
gates, measuring a subset of the qubits, and then deciding
which gate(s) to execute next may be repeated any number
of times. Measurement feedback may be usetul for perform-
ing quantum error correction, but is not limited to use in
performing quantum error correction. For every quantum
circuit, there is an error-corrected implementation of the
circuit with or without measurement feedback.

[0083] Some embodiments described herein generate,
measure, or utilize quantum states that approximate a target
quantum state (e.g., a ground state of a Hamiltonian). As will
be appreciated by those trained in the art, there are many
ways to quantify how well a first quantum state “approxi-
mates” a second quantum state. In the following description,
any concept or definition of approximation known in the art
may be used without departing from the scope hereof. For
example, when the first and second quantum states are
represented as first and second vectors, respectively, the first
quantum state approximates the second quantum state when
an inner product between the first and second vectors (called
the “fidelity” between the two quantum states) is greater
than a predefined amount (typically labeled €). In this
example, the fidelity quantifies how “close” or “similar” the
first and second quantum states are to each other. The fidelity
represents a probability that a measurement of the first
quantum state will give the same result as if the measure-
ment were performed on the second quantum state. Prox-
imity between quantum states can also be quantified with a
distance measure, such as a Fuclidean norm, a Hamming
distance, or another type of norm known in the art. Prox-
imity between quantum states can also be defined in com-
putational terms. For example, the first quantum state
approximates the second quantum state when a polynomial
time-sampling of the first quantum state gives some desired
information or property that it shares with the second
quantum state.

[0084] Not all quantum computers are gate model quan-
tum computers. Embodiments of the present invention are
not limited to being implemented using gate model quantum
computers. As an alternative example, embodiments of the
present invention may be implemented, in whole or in part,
using a quantum computer that is implemented using a
quantum annealing architecture, which is an alternative to
the gate model quantum computing architecture. More spe-
cifically, quantum annealing (QA) is a metaheuristic for
finding the global minimum of a given objective function
over a given set of candidate solutions (candidate states), by
a process using quantum fluctuations.

[0085] FIG. 2B shows a diagram illustrating operations
typically performed by a computer system 250 which imple-
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ments quantum annealing. The system 250 includes both a
quantum computer 252 and a classical computer 254. Opera-
tions shown on the left of the dashed vertical line 256
typically are performed by the quantum computer 252, while
operations shown on the right of the dashed vertical line 256
typically are performed by the classical computer 254.
[0086] Quantum annealing starts with the classical com-
puter 254 generating an initial Hamiltonian 260 and a final
Hamiltonian 262 based on a computational problem 258 to
be solved, and providing the initial Hamiltonian 260, the
final Hamiltonian 262 and an annealing schedule 270 as
input to the quantum computer 252. The quantum computer
252 prepares a well-known initial state 266 (FIG. 2B,
operation 264), such as a quantum-mechanical superposition
of all possible states (candidate states) with equal weights,
based on the initial Hamiltonian 260. The classical computer
254 provides the initial Hamiltonian 260, a final Hamilto-
nian 262, and an annealing schedule 270 to the quantum
computer 252. The quantum computer 252 starts in the
initial state 266, and evolves its state according to the
annealing schedule 270 following the time-dependent
Schrédinger equation, a natural quantum-mechanical evo-
Iution of physical systems (FIG. 2B, operation 268). More
specifically, the state of the quantum computer 252 under-
goes time evolution under a time-dependent Hamiltonian,
which starts from the initial Hamiltonian 260 and terminates
at the final Hamiltonian 262. If the rate of change of the
system Hamiltonian is slow enough, the system stays close
to the ground state of the instantaneous Hamiltonian. If the
rate of change of the system Hamiltonian is accelerated, the
system may leave the ground state temporarily but produce
a higher likelihood of concluding in the ground state of the
final problem Hamiltonian, i.e., diabatic quantum computa-
tion. At the end of the time evolution, the set of qubits on the
quantum annealer is in a final state 272, which is expected
to be close to the ground state of the classical Ising model
that corresponds to the solution to the original optimization
problem 258. An experimental demonstration of the success
of quantum annealing for random magnets was reported
immediately after the initial theoretical proposal.

[0087] The final state 272 of the quantum computer 252 is
measured, thereby producing results 276 (i.e., measure-
ments) (FIG. 2B, operation 274). The measurement opera-
tion 274 may be performed, for example, in any of the ways
disclosed herein, such as in any of the ways disclosed herein
in connection with the measurement unit 110 in FIG. 1. The
classical computer 254 performs postprocessing on the
measurement results 276 to produce output 280 representing
a solution to the original computational problem 258 (FIG.
2B, operation 278).

[0088] As yet another alternative example, embodiments
of the present invention may be implemented, in whole or in
part, using a quantum computer that is implemented using a
one-way quantum computing architecture, also referred to as
a measurement-based quantum computing architecture,
which is another alternative to the gate model quantum
computing architecture. More specifically, the one-way or
measurement based quantum computer (MBQC) is a method
of quantum computing that first prepares an entangled
resource state, usually a cluster state or graph state, then
performs single qubit measurements on it. It is “one-way”
because the resource state is destroyed by the measurements.
[0089] The outcome of each individual measurement is
random, but they are related in such a way that the compu-
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tation always succeeds. In general the choices of basis for
later measurements need to depend on the results of earlier
measurements, and hence the measurements cannot all be
performed at the same time.

[0090] Any of the functions disclosed herein may be
implemented using means for performing those functions.
Such means include, but are not limited to, any of the
components disclosed herein, such as the computer-related
components described below.

[0091] Referring to FIG. 1, a diagram is shown of a system
100 implemented according to one embodiment of the
present invention. Referring to FIG. 2A, a flowchart is
shown of a method 200 performed by the system 100 of FIG.
1 according to one embodiment of the present invention. The
system 100 includes a quantum computer 102. The quantum
computer 102 includes a plurality of qubits 104, which may
be implemented in any of the ways disclosed herein. There
may be any number of qubits 104 in the quantum computer
102. For example, the qubits 104 may include or consist of
no more than 2 qubits, no more than 4 qubits, no more than
8 qubits, no more than 16 qubits, no more than 32 qubits, no
more than 64 qubits, no more than 128 qubits, no more than
256 qubits, no more than 512 qubits, no more than 1024
qubits, no more than 2048 qubits, no more than 4096 qubits,
or no more than 8192 qubits. These are merely examples, in
practice there may be any number of qubits 104 in the
quantum computer 102.

[0092] There may be any number of gates in a quantum
circuit. However, in some embodiments the number of gates
may be at least proportional to the number of qubits 104 in
the quantum computer 102. In some embodiments the gate
depth may be no greater than the number of qubits 104 in the
quantum computer 102, or no greater than some linear
multiple of the number of qubits 104 in the quantum
computer 102 (e.g., 2, 3, 4, 5, 6, or 7).

[0093] The qubits 104 may be interconnected in any graph
pattern. For example, they be connected in a linear chain, a
two-dimensional grid, an all-to-all connection, any combi-
nation thereof, or any subgraph of any of the preceding.

[0094] As will become clear from the description below,
although element 102 is referred to herein as a “quantum
computer,” this does not imply that all components of the
quantum computer 102 leverage quantum phenomena. One
or more components of the quantum computer 102 may, for
example, be classical (i.e., non-quantum components) com-
ponents which do not leverage quantum phenomena.

[0095] The quantum computer 102 includes a control unit
106, which may include any of a variety of circuitry and/or
other machinery for performing the functions disclosed
herein. The control unit 106 may, for example, consist
entirely of classical components. The control unit 106 gen-
erates and provides as output one or more control signals
108 to the qubits 104. The control signals 108 may take any
of a variety of forms, such as any kind of electromagnetic
signals, such as electrical signals, magnetic signals, optical
signals (e.g., laser pulses), or any combination thereof.

[0096] For example:

[0097] In embodiments in which some or all of the
qubits 104 are implemented as photons (also referred to
as a “quantum optical” implementation) that travel
along waveguides, the control unit 106 may be a beam
splitter (e.g., a heater or a mirror), the control signals
108 may be signals that control the heater or the
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rotation of the mirror, the measurement unit 110 may be
a photodetector, and the measurement signals 112 may
be photons.

[0098] In embodiments in which some or all of the
qubits 104 are implemented as charge type qubits (e.g.,
transmon, X-mon, G-mon) or flux-type qubits (e.g.,
flux qubits, capacitively shunted flux qubits) (also
referred to as a “circuit quantum electrodynamic™ (cir-
cuit QED) implementation), the control unit 106 may
be a bus resonator activated by a drive, the control
signals 108 may be cavity modes, the measurement unit
110 may be a second resonator (e.g., a low-Q resona-
tor), and the measurement signals 112 may be voltages
measured from the second resonator using dispersive
readout techniques.

[0099] In embodiments in which some or all of the
qubits 104 are implemented as superconducting cir-
cuits, the control unit 106 may be a circuit QED-
assisted control unit or a direct capacitive coupling
control unit or an inductive capacitive coupling control
unit, the control signals 108 may be cavity modes, the
measurement unit 110 may be a second resonator (e.g.,
a low-Q resonator), and the measurement signals 112
may be voltages measured from the second resonator
using dispersive readout techniques.

[0100] In embodiments in which some or all of the
qubits 104 are implemented as trapped ions (e.g.,
electronic states of, e.g., magnesium ions), the control
unit 106 may be a laser, the control signals 108 may be
laser pulses, the measurement unit 110 may be a laser
and either a CCD or a photodetector (e.g., a photomul-
tiplier tube), and the measurement signals 112 may be
photons.

[0101] In embodiments in which some or all of the
qubits 104 are implemented using nuclear magnetic
resonance (NMR) (in which case the qubits may be
molecules, e.g., in liquid or solid form), the control unit
106 may be a radio frequency (RF) antenna, the control
signals 108 may be RF fields emitted by the RF
antenna, the measurement unit 110 may be another RF
antenna, and the measurement signals 112 may be RF
fields measured by the second RF antenna.

[0102] In embodiments in which some or all of the
qubits 104 are implemented as nitrogen-vacancy cen-
ters (NV centers), the control unit 106 may, for
example, be a laser, a microwave antenna, or a coil, the
control signals 108 may be visible light, a microwave
signal, or a constant electromagnetic field, the mea-
surement unit 110 may be a photodetector, and the
measurement signals 112 may be photons.

[0103] In embodiments in which some or all of the
qubits 104 are implemented as two-dimensional qua-
siparticles called “anyons” (also referred to as a “topo-
logical quantum computer” implementation), the con-
trol unit 106 may be nanowires, the control signals 108
may be local electrical fields or microwave pulses, the
measurement unit 110 may be superconducting circuits,
and the measurement signals 112 may be voltages.

[0104] In embodiments in which some or all of the
qubits 104 are implemented as semiconducting mate-
rial (e.g., nanowires), the control unit 106 may be
microfabricated gates, the control signals 108 may be
RF or microwave signals, the measurement unit 110
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may be microfabricated gates, and the measurement

signals 112 may be RF or microwave signals.
[0105] Although not shown explicitly in FIG. 1 and not
required, the measurement unit 110 may provide one or
more feedback signals 114 to the control unit 106 based on
the measurement signals 112. For example, quantum com-
puters referred to as “one-way quantum computers” or
“measurement-based quantum computers” utilize such feed-
back 114 from the measurement unit 110 to the control unit
106. Such feedback 114 is also necessary for the operation
of fault-tolerant quantum computing and error correction.
[0106] The control signals 108 may, for example, include
one or more state preparation signals which, when received
by the qubits 104, cause some or all of the qubits 104 to
change their states. Such state preparation signals constitute
a quantum circuit also referred to as an “ansatz circuit.” The
resulting state of the qubits 104 is referred to herein as an
“initial state” or an “ansatz state.” The process of outputting
the state preparation signal(s) to cause the qubits 104 to be
in their initial state is referred to herein as “state preparation”
(FIG. 2A, section 206). A special case of state preparation is
“Initialization,” also referred to as a “reset operation,” in
which the initial state is one in which some or all of the
qubits 104 are in the “zero” state i.e. the default single-qubit
state. More generally, state preparation may involve using
the state preparation signals to cause some or all of the
qubits 104 to be in any distribution of desired states. In some
embodiments, the control unit 106 may first perform initial-
ization on the qubits 104 and then perform preparation on
the qubits 104, by first outputting a first set of state prepa-
ration signals to initialize the qubits 104, and by then
outputting a second set of state preparation signals to put the
qubits 104 partially or entirely into non-zero states.
[0107] Another example of control signals 108 that may
be output by the control unit 106 and received by the qubits
104 are gate control signals. The control unit 106 may output
such gate control signals, thereby applying one or more
gates to the qubits 104. Applying a gate to one or more
qubits causes the set of qubits to undergo a physical state
change which embodies a corresponding logical gate opera-
tion (e.g., single-qubit rotation, two-qubit entangling gate or
multi-qubit operation) specified by the received gate control
signal. As this implies, in response to receiving the gate
control signals, the qubits 104 undergo physical transfor-
mations which cause the qubits 104 to change state in such
a way that the states of the qubits 104, when measured (see
below), represent the results of performing logical gate
operations specified by the gate control signals. The term
“quantum gate,” as used herein, refers to the application of
a gate control signal to one or more qubits to cause those
qubits to undergo the physical transformations described
above and thereby to implement a logical gate operation.
[0108] It should be understood that the dividing line
between state preparation (and the corresponding state
preparation signals) and the application of gates (and the
corresponding gate control signals) may be chosen arbi-
trarily. For example, some or all the components and opera-
tions that are illustrated in FIGS. 1 and 2A-2B as elements
of “state preparation” may instead be characterized as ele-
ments of gate application. Conversely, for example, some or
all of the components and operations that are illustrated in
FIGS. 1 and 2A-2B as elements of “gate application” may
instead be characterized as elements of state preparation. As
one particular example, the system and method of FIGS. 1
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and 2A-2B may be characterized as solely performing state
preparation followed by measurement, without any gate
application, where the elements that are described herein as
being part of gate application are instead considered to be
part of state preparation. Conversely, for example, the sys-
tem and method of FIGS. 1 and 2A-2B may be characterized
as solely performing gate application followed by measure-
ment, without any state preparation, and where the elements
that are described herein as being part of state preparation
are instead considered to be part of gate application.
[0109] The quantum computer 102 also includes a mea-
surement unit 110, which performs one or more measure-
ment operations on the qubits 104 to read out measurement
signals 112 (also referred to herein as “measurement
results”) from the qubits 104, where the measurement results
112 are signals representing the states of some or all of the
qubits 104. In practice, the control unit 106 and the mea-
surement unit 110 may be entirely distinct from each other,
or contain some components in common with each other, or
be implemented using a single unit (i.e., a single unit may
implement both the control unit 106 and the measurement
unit 110). For example, a laser unit may be used both to
generate the control signals 108 and to provide stimulus
(e.g., one or more laser beams) to the qubits 104 to cause the
measurement signals 112 to be generated.

[0110] In general, the quantum computer 102 may perform
various operations described above any number of times.
For example, the control unit 106 may generate one or more
control signals 108, thereby causing the qubits 104 to
perform one or more quantum gate operations. The mea-
surement unit 110 may then perform one or more measure-
ment operations on the qubits 104 to read out a set of one or
more measurement signals 112. The measurement unit 110
may repeat such measurement operations on the qubits 104
before the control unit 106 generates additional control
signals 108, thereby causing the measurement unit 110 to
read out additional measurement signals 112 resulting from
the same gate operations that were performed before reading
out the previous measurement signals 112. The measure-
ment unit 110 may repeat this process any number of times
to generate any number of measurement signals 112 corre-
sponding to the same gate operations. The quantum com-
puter 102 may then aggregate such multiple measurements
of the same gate operations in any of a variety of ways.
[0111] After the measurement unit 110 has performed one
or more measurement operations on the qubits 104 after they
have performed one set of gate operations, the control unit
106 may generate one or more additional control signals
108, which may differ from the previous control signals 108,
thereby causing the qubits 104 to perform one or more
additional quantum gate operations, which may differ from
the previous set of quantum gate operations. The process
described above may then be repeated, with the measure-
ment unit 110 performing one or more measurement opera-
tions on the qubits 104 in their new states (resulting from the
most recently-performed gate operations).

[0112] In general, the system 100 may implement a plu-
rality of quantum circuits as follows. For each quantum
circuit C in the plurality of quantum circuits (FIG. 2A,
operation 202), the system 100 performs a plurality of
“shots” on the qubits 104. The meaning of a shot will
become clear from the description that follows. For each
shot S in the plurality of shots (FIG. 2A, operation 204), the
system 100 prepares the state of the qubits 104 (FIG. 2A,
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section 206). More specifically, for each quantum gate Gin
quantum circuit C (FIG. 2A, operation 210), the system 100
applies quantum gate G to the qubits 104 (FIG. 2A, opera-
tions 212 and 214).

[0113] Then, for each of the qubits Q 104 (FIG. 2A,
operation 216), the system 100 measures the qubit Q to
produce measurement output representing a current state of
qubit Q (FIG. 2A, operations 218 and 220).

[0114] The operations described above are repeated for
each shot S (FIG. 2A, operation 222), and circuit C (FIG.
2A, operation 224). As the description above implies, a
single “shot” involves preparing the state of the qubits 104
and applying all of the quantum gates in a circuit to the
qubits 104 and then measuring the states of the qubits 104;
and the system 100 may perform multiple shots for one or
more circuits.

[0115] Referring to FIG. 3, a diagram is shown of a hybrid
quantum classical computer (HQC) 300 implemented
according to one embodiment of the present invention. The
HQC 300 includes a quantum computer component 102
(which may, for example, be implemented in the manner
shown and described in connection with FIG. 1) and a
classical computer component 306. The classical computer
component may be a machine implemented according to the
general computing model established by John Von Neu-
mann, in which programs are written in the form of ordered
lists of instructions and stored within a classical (e.g.,
digital) memory 310 and executed by a classical (e.g.,
digital) processor 308 of the classical computer. The
memory 310 is classical in the sense that it stores data in a
storage medium in the form of bits, which have a single
definite binary state at any point in time. The bits stored in
the memory 310 may, for example, represent a computer
program. The classical computer component 304 typically
includes a bus 314. The processor 308 may read bits from
and write bits to the memory 310 over the bus 314. For
example, the processor 308 may read instructions from the
computer program in the memory 310, and may optionally
receive input data 316 from a source external to the com-
puter 302, such as from a user input device such as a mouse,
keyboard, or any other input device. The processor 308 may
use instructions that have been read from the memory 310 to
perform computations on data read from the memory 310
and/or the input 316, and generate output from those instruc-
tions. The processor 308 may store that output back into the
memory 310 and/or provide the output externally as output
data 318 via an output device, such as a monitor, speaker, or
network device.

[0116] The quantum computer component 102 may
include a plurality of qubits 104, as described above in
connection with FIG. 1. A single qubit may represent a one,
a zero, or any quantum superposition of those two qubit
states. The classical computer component 304 may provide
classical state preparation signals 332 to the quantum com-
puter 102, in response to which the quantum computer 102
may prepare the states of the qubits 104 in any of the ways
disclosed herein, such as in any of the ways disclosed in
connection with FIGS. 1 and 2A-2B.

[0117] Once the qubits 104 have been prepared, the clas-
sical processor 308 may provide classical control signals
334 to the quantum computer 102, in response to which the
quantum computer 102 may apply the gate operations speci-
fied by the control signals 332 to the qubits 104, as a result
of which the qubits 104 arrive at a final state. The measure-
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ment unit 110 in the quantum computer 102 (which may be
implemented as described above in connection with FIGS. 1
and 2A-2B) may measure the states of the qubits 104 and
produce measurement output 338 representing the collapse
of the states of the qubits 104 into one of their eigenstates.
As a result, the measurement output 338 includes or consists
of bits and therefore represents a classical state. The quan-
tum computer 102 provides the measurement output 338 to
the classical processor 308. The classical processor 308 may
store data representing the measurement output 338 and/or
data derived therefrom in the classical memory 310.
[0118] The steps described above may be repeated any
number of times, with what is described above as the final
state of the qubits 104 serving as the initial state of the next
iteration. In this way, the classical computer 304 and the
quantum computer 102 may cooperate as co-processors to
perform joint computations as a single computer system.
[0119] Although certain functions may be described
herein as being performed by a classical computer and other
functions may be described herein as being performed by a
quantum computer, these are merely examples and do not
constitute limitations of the present invention. A subset of
the functions which are disclosed herein as being performed
by a quantum computer may instead be performed by a
classical computer. For example, a classical computer may
execute functionality for emulating a quantum computer and
provide a subset of the functionality described herein, albeit
with functionality limited by the exponential scaling of the
simulation. Functions which are disclosed herein as being
performed by a classical computer may instead be per-
formed by a quantum computer.

[0120] The techniques described above may be imple-
mented, for example, in hardware, in one or more computer
programs tangibly stored on one or more computer-readable
media, firmware, or any combination thereof, such as solely
on a quantum computer, solely on a classical computer, or on
a hybrid quantum classical (HQC) computer. The techniques
disclosed herein may, for example, be implemented solely
on a classical computer, in which the classical computer
emulates the quantum computer functions disclosed herein.

[0121]

tively refer to the state |1}, and vice versa. In other words,

Any reference herein to the state 10> may alterna-

any role described herein for the states 10} and 11) may be
reversed within embodiments of the present invention. More
generally, any computational basis state disclosed herein
may be replaced with any suitable reference state within
embodiments of the present invention.

[0122] The techniques described above may be imple-
mented in one or more computer programs executing on (or
executable by) a programmable computer (such as a classi-
cal computer, a quantum computer, or an HQC) including
any combination of any number of the following: a proces-
sor, a storage medium readable and/or writable by the
processor (including, for example, volatile and non-volatile
memory and/or storage elements), an input device, and an
output device. Program code may be applied to input entered
using the input device to perform the functions described
and to generate output using the output device.

[0123] Embodiments of the present invention include fea-
tures which are only possible and/or feasible to implement
with the use of one or more computers, computer processors,
and/or other elements of a computer system. Such features
are either impossible or impractical to implement mentally
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and/or manually. For example, embodiments of the present
invention use a neural network to decode a plurality of
decodings and use a hybrid quantum-classical computer to
perform a gradient descent (GD) optimization to minimize a
meta-loss function. These functions are inherently rooted in
computer technology and cannot be performed mentally or
manually.

[0124] Any claims herein which affirmatively require a
computer, a processor, a memory, or similar computer-
related elements, are intended to require such elements, and
should not be interpreted as if such elements are not present
in or required by such claims. Such claims are not intended,
and should not be interpreted, to cover methods and/or
systems which lack the recited computer-related elements.
For example, any method claim herein which recites that the
claimed method is performed by a computer, a processor, a
memory, and/or similar computer-related element, is
intended to, and should only be interpreted to, encompass
methods which are performed by the recited computer-
related element(s). Such a method claim should not be
interpreted, for example, to encompass a method that is
performed mentally or by hand (e.g., using pencil and
paper). Similarly, any product claim herein which recites
that the claimed product includes a computer, a processor, a
memory, and/or similar computer-related element, is
intended to, and should only be interpreted to, encompass
products which include the recited computer-related element
(s). Such a product claim should not be interpreted, for
example, to encompass a product that does not include the
recited computer-related element(s).

[0125] In embodiments in which a classical computing
component executes a computer program providing any
subset of the functionality within the scope of the claims
below, the computer program may be implemented in any
programming language, such as assembly language,
machine language, a high-level procedural programming
language, or an object-oriented programming language. The
programming language may, for example, be a compiled or
interpreted programming language.

[0126] Each such computer program may be implemented
in a computer program product tangibly embodied in a
machine-readable storage device for execution by a com-
puter processor, which may be either a classical processor or
a quantum processor. Method steps of the invention may be
performed by one or more computer processors executing a
program tangibly embodied on a computer-readable medium
to perform functions of the invention by operating on input
and generating output. Suitable processors include, by way
of example, both general and special purpose microproces-
sors. Generally, the processor receives (reads) instructions
and data from a memory (such as a read-only memory and/or
a random access memory) and writes (stores) instructions
and data to the memory. Storage devices suitable for tangi-
bly embodying computer program instructions and data
include, for example, all forms of non-volatile memory, such
as semiconductor memory devices, including EPROM,
EEPROM, and flash memory devices; magnetic disks such
as internal hard disks and removable disks; magneto-optical
disks; and CD-ROMs. Any of the foregoing may be supple-
mented by, or incorporated in, specially-designed ASICs
(application-specific integrated circuits) or FPGAs (Field-
Programmable Gate Arrays). A classical computer can gen-
erally also receive (read) programs and data from, and write
(store) programs and data to, a non-transitory computer-
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readable storage medium such as an internal disk (not
shown) or a removable disk. These elements will also be
found in a conventional desktop or workstation computer as
well as other computers suitable for executing computer
programs implementing the methods described herein,
which may be used in conjunction with any digital print
engine or marking engine, display monitor, or other raster
output device capable of producing color or gray scale pixels
on paper, film, display screen, or other output medium.

[0127] Any data disclosed herein may be implemented, for
example, in one or more data structures tangibly stored on
a non-transitory computer-readable medium (such as a clas-
sical computer-readable medium, a quantum computer-read-
able medium, or an HQC computer-readable medium).
Embodiments of the invention may store such data in such
data structure(s) and read such data from such data structure
(s)-

[0128] Although terms such as “optimize” and “optimal”
are used herein, in practice, embodiments of the present
invention may include methods which produce outputs that
are not optimal, or which are not known to be optimal, but
which nevertheless are useful. For example, embodiments of
the present invention may produce an output which approxi-
mates an optimal solution, within some degree of error. As
a result, terms herein such as “optimize” and “optimal”
should be understood to refer not only to processes which
produce optimal outputs, but also processes which produce
outputs that approximate an optimal solution, within some
degree of error.

What is claimed is:

1. A method, performed on a hybrid quantum-classical
computer system for computing initializing parameters for a
parametrized quantum circuit (PQC), the hybrid quantum-
classical computer system comprising a classical computer
and a quantum computer,

the classical computer including a processor, a non-
transitory computer-readable medium, and computer
instructions stored in the non-transitory computer-read-
able medium;

the quantum computer including a quantum component,
having a plurality of qubits, which accepts a sequence
of instructions to evolve a quantum state based on a
series of quantum gates;

wherein the computer instructions, when executed by the
processor, perform the method, the method comprising:

defining a PQC problem having a parametrized circuit
ansatz and an objective, based on a system size com-
prising N qubits and a quantum circuit with K param-
eters;

using an encoder of an encoder-decoder, mapping the
PQC problem to a set of initial parameters, wherein
each parameter k in the K parameters is represented as
a corresponding encoding vector, the corresponding
encoding vector containing information about the
parameter k, the quantum circuit, and the objective C;

using a trainable decoding element of the encoder-de-
coder, decoding the K encodings by a neural network
having a plurality of weights and wherein a single value
is output for each corresponding encoding vector;

generating a vector of initial parameters having a dimen-
sion equal to K;
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using the vector of initial parameters as a starting point,
performing a gradient descent (GD) optimization for S
steps to minimize a meta-loss function having a loss as
output; and

backpropagating the loss to update the plurality of

weights,
whereby initializing parameters are generated, which incor-
porate relevant information about the objective C, to pro-
duce a fully problem-dependent set of initial parameters.

2. The method of claim 1, wherein each of the corre-
sponding encoding vectors contains information about the
objective.

3. The method of claim 1, wherein each of the corre-
sponding encoding vectors is a fixed size and uniquely
represents the corresponding one of the K parameters.

4. The method of claim 1, wherein the generation of the
vector of initial parameters is accelerated relative to random
generation of initial parameters.

5. The method of claim 1, wherein the initialization
method uses machine learning to provide a flexible initial-
izer for arbitrarily-sized parametrized quantum circuits.

6. The method of claim 1, further comprising applying the
method to quantum circuits of varying sizes.

7. The method of claim 1, wherein the method is applied
to learning arbitrarily-sized quantum circuits.

8. The method of claim 1, wherein encoding vectors are
fully defined by the PQC problem.

9. The method of claim 1, whereby the method computes
the initializing parameters for QAOA applied to max-cut
problems.

10. The method of claim 1, whereby the method computes
the initializing parameters for optimizing the 1D Fermi-
Hubbard model (1D) FHM.

11. The method of claim 1, wherein performing the GD
optimization comprises minimizing local minima.

12. The method of claim 1, wherein performing the GD
optimization comprises minimizing barren plateaus.

13. The method of claim 1, wherein the parametrized
circuit ansatz comprises a Low Depth Circuit Ansatz
(LDCA).

14. A hybrid quantum-classical computer system for
computing the initializing parameters for a parametrized
quantum circuit (PQC), the computer system comprising a
classical computer and a quantum computer,

the classical computer including a processor, a non-

transitory computer-readable medium, and computer
instructions stored in the non-transitory computer-read-
able medium;

the quantum computer including a quantum component,

having a plurality of qubits, which accepts a sequence
of instructions to evolve a quantum state based on a
series of quantum gates;
wherein the computer instructions, when executed by the
processor, perform the method, the method comprising:

defining a PQC problem having a parametrized circuit
ansatz and an objective which can be estimated through
repeated measurements on the output state, based a
system size comprising N qubits and a quantum circuit
with K parameters;

using an encoder element of a encoder-decoder, mapping

the PQC problem to a set of initial parameters, wherein
each of the K parameters is represented as an encoding
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vector, the encoding vector containing information
about the parameter, the overall circuit, and the objec-
tive;

using a trainable decoding element of the encoder-de-

coder, decoding the K encodings by a neural network
having weight and wherein a single value is output for
each encoding;

generating a vector of initial parameters having a dimen-

sion matching K parameters;
using the vector of initial parameters as a starting point,
performing a gradient descent (GD) optimization for S
steps to minimize the meta-loss function; and

backpropagating the loss to update the weights of the
decoder.

15. The system of claim 1, wherein the encoding vector
contains information about the objective.

16. The system of claim 1, wherein each of the encodings
is a fixed size and uniquely represents each parameter.

17. The system of claim 1, wherein the optimization
method accelerates initial parameters generation.

18. The system of claim 1, wherein learning a set of initial
parameters is efficiently refined by gradient descent GD.

19. The system of claim 1, wherein the method uses
meta-learning.

20. The system of claim 1, wherein the method is applied
to quantum circuits of varying sizes.

21. The system of claim 1, wherein the method is applied
for learning arbitrarily-sized quantum circuits.

22. The system of claim 1, wherein initial parameters are
fully defined by the PQC problem.

23. The system of claim 1, wherein the set of initial
parameters are computed for QAOA applied to max-cut
problems.

24. The system of claim 1, wherein the set of initial
parameters are computed for optimizing the 1D Fermi-
Hubbard model (1D) FHM.

25. The system of claim 1, wherein local minima are
minimized.

26. The system of claim 1, wherein barren plateaus are
minimized.

27. The system of claim 1, wherein the quantum circuit
ansatz is a Low Depth Circuit Ansatz (LDCA).

28. A method for solving a parameterized quantum circuit
(PQC) problem for a system having N qubits and K param-
eters, the problem comprising a parametrized circuit ansatz
and an objective C;

defining a PQC problem having a parametrized circuit

ansatz and an objective which can be estimated through
repeated measurements on the output state, based a
system size comprising N qubits and a quantum circuit
with K parameters;

using an encoder element of a encoder-decoder, mapping

the PQC problem to a set of initial parameters, wherein
each of the K parameters is represented as an encoding
vector, the encoding vector containing information
about the parameter, the overall circuit, and the objec-
tive;

using a trainable decoding element of the encoder-de-

coder, decoding the K encodings by a neural network
having weight and wherein a single value is output for
each encoding;

generating a vector of initial parameters having a dimen-

sion matching K parameters;
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using the vector of initial parameters as a starting point,
performing a gradient descent (GD) optimization for S
steps to minimize the meta-loss function; and

backpropagating the loss to update the weights of the
decoder.
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