
(19) United States
US 2015O161046A1

(12) Patent Application Publication (10) Pub. No.: US 2015/0161046A1
DRESSLER et al. (43) Pub. Date: Jun. 11, 2015

(54) METHOD FORCHANGING THE SOFTWARE
IN THE MEMORY OF AN ELECTRONIC
CONTROL UNIT

(71) Applicant: dSPACE digital signal processing and
control engineering GmbH, Paderborn
(DE)

(72) Inventors: Marc DRESSLER, Horn-Bad Meinberg
(DE); Thorsten HUFNAGEL,
Salzkotten (DE); Bastian KELLERS,
Paderborn (DE)

(21) Appl. No.: 14/564,958

(22) Filed: Dec. 9, 2014

(30) Foreign Application Priority Data

Dec. 9, 2013 (EP) 13005730.0

Publication Classification

(51) Int. Cl.
G06F 12/06
G06F I3/24
G06F 9/445

(2006.01)
(2006.01)
(2006.01)

(52) U.S. Cl.
CPC G06F 12/0638 (2013.01); G06F 8/65

(2013.01); G06F 13/24 (2013.01); G06F
2212/202 (2013.01)

(57) ABSTRACT

A method for changing software in a memory of an electronic
control unit, wherein each memory address from the overlay
memory can be assigned to a memory address in the read-only
memory by an assignment information item. During a run
time of the control unit, at least a functional part of a bypass
routine that is to at least partially replace an original program
routine is stored in an address range in the overlay memory, or
a jump instruction is stored in the overlay memory as the first
part of a bypass routine that refers to a second part of the
bypass routine that is stored in an address range accessible to
the processor. To activate an overlay functionality the address
and/or the address range of the overlay memory are assigned
to an address or address range of the program routine to be
replaced.

Patent Application Publication Jun. 11, 2015 Sheet 1 of 8 US 2015/O16104.6 A1

Fig. 1

SP

"""
%

engine idle rev
&

/

8945 F4

"""
RAM

ECU

US 2015/01 6104.6 A1

METHOD FORCHANGING THE SOFTWARE
IN THE MEMORY OF AN ELECTRONIC

CONTROL UNIT

0001. This nonprovisional application claims priority to
European Patent Application No. EP13005730.0, which was
filed on Dec. 9, 2013, and which is herein incorporated by
reference.

BACKGROUND OF THE INVENTION

0002 1. Field of the Invention
0003. The present invention relates to a method for chang
ing the Software in the memory of an electronic control unit,
wherein the memory includes at least one read-only memory
with multiple original program routines stored therein that
constitute at least a portion of the software and that are pro
cessed by at least one processor of the control unit, the
memory has at least one working memory for storing volatile
data, and the memory also has an overlay memory, from
which each memory address can be assigned to a memory
address in the read-only memory by an assignment informa
tion item, with the result that, when an overlay functionality is
activated, instead of processing a program routine instruction
at an address in the read-only memory, the processor pro
cesses the instruction at an assigned address of the overlay
memory.
0004 2. Description of the Background Art
0005. In the automotive industry, the use of software con

trol and regulation mechanisms allows for a degree of effi
ciency that could not be accomplished using purely mechani
cal solutions. Modern automobiles contain a network of
electronic control units (ECUs) that each have at least a
processor that processes program routines, a working
memory, and a read-only memory, the latter of which is
usually implemented in the form of a flash memory.
0006 All control units additionally have interfaces by
means of which they receive sensor data, operate actuators,
and communicate with one another. In keeping with general
practice in the Software industry, use of existing solutions is
popular in ECU programming as well. An already existing
control unit, for example an engine control unit for an engine
from a previous model, then serves as the basis for develop
ment of a new control unit. Individual program routines are
then selectively modified or developed from scratch, while
the majority of the old code is preserved.
0007 Alternatively, manufacturers often contract with
Suppliers for fully programmed development control units,
and then modify them in accordance with their own specific
requirements. In this scenario, the newly developed program
routines must be integrated into the executable binary code of
the control unit, where they replace, change, or Supplement
the original program routine in question. This integration
process is referred to as bypassing.
0008 Various possibilities exist for implementing a
bypass. One very common method is service-based bypass
ing. A service is a special function located in the control units
memory. It is called at specific points in the program code,
and takes over technical performance of the bypass in that it
calls the bypass routine, either in addition to or in place of the
original program routine, makes the bypass routine’s input
quantities available, and ensures that values written by the
bypass routine are stored at the correctlocations in the control
unit memory after the bypass routine has run. Other methods
work without service functions. They are based on modifica

Jun. 11, 2015

tion of the binary code. For example, it is possible to make
variable accesses in a function inactive by inserting Switch
logic statements.
0009. As a matter of principle, the code of a bypass routine
can be located either on an external system or on the control
unit itself. The latter possibility, so-called internal bypassing,
needs less additional hardware and is not dependent on the
presence of special interfaces.
0010. According to the current conventional art, a devel
opment control unit needs to be prepared for execution of a
bypass. When a service-based bypass method is used, this
means that a call to the service function must be integrated
into the binary code of a program routine before and/or after
(depending on the method) and/or within the function that is
to be replaced. In the ideal case, these service calls would
already be implemented at the source code level. In practice,
this cannot always be accomplished. For example, the Sup
plier of the control unit may not be willing to do so, or the
necessity of bypassing a specific function is not identified
until after the control unit has already been completed. In
Such a case, it is also possible to integrate the calls into the
binary code after the fact.
0011. According to the current conventional art, installing
the code of a bypass routine requires the flash memory of the
control unit to be reloaded each time. This is not only time
consuming (from several tens of seconds to minutes) and
interrupts ongoing test series, but it also stresses the flash
memory, which is physically capable of withstanding only a
limited number of storage operations.
0012. In a typical scenario for service-based internal
bypassing according to the conventional art, a special bypass
service function is present in the flash in addition to the actual
program code. A given program routine fthat is prepared for
a bypass is expanded by two calls to the service. The user who
is installing a bypass routine in the flash enters its memory
address in a table. The first call to the service function is
located directly before f for example. The service function
receives a table position as an argument. If it finds a memory
address there, it calls the bypass function that is located at this
address. Otherwise, it remains passive. If it is executed, the
bypass routine writes all values it produces into a buffer
memory having global variables defined especially for it.
After running the bypass routine, the processor jumps back to
the actual program. The function f then runs normally, regard
less of whether a bypass routine was executed or not.
0013 The execution off is followed by a second call to the
service function. It receives a second table position as an
argument, and finds the address of an overwrite function
there. This function is matched to the bypass routine and was
installed together with it. The overwrite routine reads the
buffer memory created by the bypass routine and overwrites
the variables written by f.
0014. The information about the variables processed by f
comes from the A2L file of the control unit. This is a technical
description file that is provided with every development con
trol unit. Among other things, it contains a block that associ
ates the functions running on the control unit with the vari
ables each one reads and writes, as well as a second block that
lists the memory addresses of the variables. Knowledge of the
Source code off thus is not necessary for creating a bypass
routine.

US 2015/01 6104.6 A1

SUMMARY OF THE INVENTION

0015. It is therefore an object of the present invention to
provide a change in Software on a control unit that was not
originally prepared to permit changes to the Software, in
particular was not originally so prepared by the manufacturer,
and thus in particular need not include any prepared service
function calls within the program routines.
0016. In addition, it is an object of the invention to leave
the content of the flash memory largely or even completely
untouched in the process, thus avoiding a majority of the
aforementioned problems that occur with bypassing (physi
cal stressing of the flash memory, great deal of time spent on
loading of the control unit, necessity of advance preparation
using service functions). It is another object to open up the
opportunity to dynamically supplement, change, or replace
the code of a program routine at the run time of the control
unit, in particular without stopping the control unit to do so.
0017. This object is attained according to an embodiment
of the invention in that at least a part of a bypass routine that
is to Supplement or at least partially replace an original pro
gram routine is stored in an address range in the overlay
memory, either through an interface of the control unit by an
influencing device connected to the interface or through a
service code integrated into the control unit program, in par
ticular during the run time of the control unit. According to
the invention, a bypass routine includes functional code that
directly affects the functionality of the control unit, and of
optional auxiliary code that Supplements the functional code
as needed to ensure proper execution of the functional code.
Some examples of auxiliary code are jump instructions, ser
Vice functions, and calls of service functions.
0018 Replacement of a program routine or at least a part
thereof can be defined in accordance with an embodiment of
the invention to mean that the program routine or a portion
thereof is functionally replaced, which is to say that instead of
processing this routine orportion, the processor runs a differ
ent routine or a different portion. The replacement according
to the invention specifically does not, in accordance with the
invention, change the original code in the read-only memory
but instead leaves it untouched. It is ensured according to the
invention that a different code instead of the original code is
executed by the processor.
0019. To this end, the invention makes use of the fact that
control units, especially development control units, which are
not intended to be installed in a product in mass production,
but instead for the development, testing, and calibration of the
Software implemented on the unit, often have a so-called
overlay memory. This is a specific memory area that is used
for fast and uncomplicated overlaying of individual frag
ments of the program code.
0020. This can be, for example, a separate memory mod
ule integrated into the processor, or a reserved or reservable
area of the working or flash memory. Individual addresses or
whole address ranges of the overlay memory can be assigned
to addresses or address ranges of equal size on the flash or
working memory by at least one assignment information
item, which in particular is stored in processor registers pro
vided for this purpose.
0021. According to an embodiment of the invention, an
assignment information item is created with a computer con
nected to the control unit or by Software running on the
computer and/or with an influencing device connected to the
control unit, which information item is then written into the

Jun. 11, 2015

processor register provided for this purpose in order to acti
vate the assignment and thus in order to activate the overlay
functionality.
0022. In a control unit of this type, for every processor
access to a memory address, in particular a memory address
of at least the read-only memory, a check is made as to
whether this address is assigned to an address in the overlay
memory. If this is the case, the content of the memory address
is ignored, and the assigned memory address in the overlay
memory is accessed instead. If an executable instruction is
located there, then this instruction is executed by the proces
sor. The logic carrying out the method preferably is hard
wired on the processor of a control unit.
0023. According to the conventional art, the overlay
memory is used for calibrating the control unit. This can be
understood to mean the adaptation of parameters of the com
pleted and tested control unit software to a specific vehicle
model. In the case of the flash memories typically used in
control units, for physical reasons it is only possible to
manipulate individual values with a great deal of time and
effort because relatively large memory areas of the flash
memory must first be completely erased and then completely
reprogrammed in order to do so. Such erasure and continual
rewriting of the flash memory generally is not justifiable in
terms oftime and effort. It generally is not even possible when
program processing is running, since a completely erased or
only partially reprogrammed flash memory area can result in
unforeseen reactions if the processor is processing its pro
gram code in this area or is processing data stored there. The
parameters are therefore written into the overlay memory so
that they overlay the variables stored in the flash memory,
where they can be manipulated quickly and at run time.
Accordingly, in the conventional art the overlay memory is
only used for overwriting variables or parameters.
0024. The method according to the invention now makes
provision to introduce a new functionality through the use of
the overlay memory, namely to use the overlay memory to
insert the code of a bypass routine into a control unit program
and to at least partially functionally replace or Supplement a
program routine with the code.
0025. Accordingly, a bypass routine is written entirely or
at least partially into the overlay memory, and the register of
the processor used for the overlay functionality is configured
through storage of at least one assignment information item
Such that the bypass routine is executed instead of the original
program routine that is to be replaced. One special embodi
ment makes provision to store in the overlay memory a jump
instruction that directs the processor to a memory address
outside of the active overlay memory, starting at which
address at least a part of the bypass routine is stored. This can
basically be any desired address inside or outside the overlay
memory. The invention thus can also be used with control
units that provide only a very Small overlay memory.
0026. According to the invention, “active overlay
memory” can be understood to mean the totality of all
memory addresses that each have a different memory address
assigned one-to-one to them by an item of assignment infor
mation so that they each overlay the particular different
memory address as explained above.
0027. In contrast to the service-based bypassing known
from the conventional art, use of the invention means that
preparation of the control unit by the Supplier is no longer

US 2015/01 6104.6 A1

necessary. In addition, it is possible to reload or replace code
of a bypass routine quickly and without stopping the control
unit.
0028. To this end, provision can be made, in the event the
overlay function is activated, that it is first deactivated so that
the control unit continues to run, executing the original pro
gram routines. This can be accomplished by erasing the pro
cessor register or the assignment information located therein,
for example.
0029. During this time, the code of a bypass routine in the
overlay memory or a jump instruction in the overlay memory
can be manipulated at will, and the overlay functionality can
be reactivated when this is finished. In this process, it is
necessary to ensure that, at activation of the overlay memory,
the processor is not executing instructions in the memory area
overlaid by the overlay memory if the overlaying code stored
in the overlay memory deviates from the original code.
0030 Conversely, at the time of a deactivation, the pro
gram flow must not be located within a part of the bypass
routine that deviates from the overlaid original code. Other
wise, the result would be an inconsistency in program flow
with unforeseeable consequences up to and including
destruction of the test vehicle, simulator, or test stand.
0031. A scenario of this nature is prevented in that the
(de)activation of the overlay memory is coupled to a memory
address outside of the affected area, for example.
0032. The user then cannot directly initiate a switchover
between the two functions, but instead communicates his
desire for activation or deactivation, by Software running on a
connected computer, and the bypass tool used, for example an
influencing device connected to the control unit through an
interface, carries out this activation/deactivation as soon as
the processor reaches a defined memory address recognized
as safe, which is to say an address outside the affected area.
0033 For example, this is possible through monitoring of
the program counter, by means of which it is possible to read
out the memory address of the machine instruction currently
being processed. In addition, a variety of other possibilities
exist, such as using as a trigger the accessing of a variable that
is known to take place at a safe memory address, or the
monitoring of an I/O pin.
0034. A preferred, especially safe possibility is the use of
a special service function integrated into the program code
that initiates the switchover between the original function and
the bypass code in response to a signal.
0035. Provision can additionally be made that not only is a
bypass routine overlaid over an original program routine by
the overlay functionality, but also the deactivation/activation
of this overlaying is accomplished through the use of the
overlay functionality, e.g. in that an instruction in a program
routine outside the program routine to be replaced is overlaid
by a jump instruction in the overlay memory, wherein the
jump instruction refers to an address starting at which a pro
gram code is programmed that reconstructs the overlaid
instruction, wherein the program code additionally performs
the deactivation/activation of the overlay functionality for the
program routine to be replaced, and that ends with a jump
instruction referring to the instruction in the program routine
outside the program routine to be replaced that follows the
overlaid instruction, in particular wherein the deactivation/
activation is accomplished by calling a Subroutine within this
program code.
0036. In this way it is always ensured that a deactivation/
activation takes place when the processor is processing pro

Jun. 11, 2015

gram code outside the program routine to be replaced. The
program code that takes on the deactivation/activation can
write the assignment information that is required for this
purpose and that was created by the aforementioned Software
or the influencing device into the register of the processor
provided for this purpose, for example.
0037. In the case of the solution according to the invention
that provides for storing only a jump instruction in the active
overlay memory, provision can also be made for an activation
to take place in a safe manner in that a reconstruction of the
entire program routine to be replaced, or of the entire routine
portion to be replaced, is stored in the overlay memory before
the storage in the overlay memory of the jump command that
refers to a memory address outside of the overlay memory
starting at which the bypass routine is stored, and an overlay
functionality for an overlaying of the entire program routine
to be replaced, or of the entire routine portion to be replaced,
is activated through this reconstruction.
0038. In this way the effect is achieved that no change in
functionality whatever initially results from the activation;
namely, the processor processes exactly the same program
code after the activation as before the activation. If the said
jump instruction is now stored at an address of the active
overlay memory, the result is achieved that during the next
execution of the program routine the processing by the pro
cessor is redirected to the bypass routine outside of the over
lay memory. The actual switchover to the bypass routine here
thus does not take place through the activation of the overlay
functionality, but instead through the storage of the jump
instruction at the first address in the assigned overlay memory
area, which in turn preferably is performed by the software
that runs on the computer connected to the control unit
through the said interface
0039. The invention can provide for multiple implemen
tations of the storage of the bypass routine while taking into
account the safe deactivation/activation of the overlay func
tionality for the program routine that is to be at least partially
replaced.
0040. For example, provision can be made that in the case
of a bypass routine with a shorter program code length than
the program routine to be replaced or than the program rou
tine portion to be replaced, the entire address range in the
read-only memory that is occupied by the program routine to
be replaced or by the program routine portion to be replaced
is overlaid in the overlay memory by an address range of
equal length in which the replacing bypass routine is at least
partially stored, preferably in this case is completely stored.
In the preferred case, only overlay memory is required for the
bypass routine.
0041. In the case of a bypass routine with a longer program
code length than the program routine to be replaced or than
the program routine portion to be replaced or than the avail
able overlay memory, the entire address range in the read
only memory that is occupied by the program routine to be
replaced or by the program routine portion to be replaced can
be overlaid in the overlay memory by an address range of
equal length in which is stored at least a first portion of the
bypass routine ending with a jump instruction that causes the
processor to continue processing at an address identified by
the jump instruction and starting at which at least an addi
tional portion of the bypass routine is stored. This at least one
additional bypass routine portion can then also be stored
outside of the overlay memory, for example, Such as in the
working memory.

US 2015/01 6104.6 A1

0042. These embodiments can additionally provide that in
the case of a replacement of an entire program routine by a
bypass routine, this bypass routine ends with a jump instruc
tion, in particular with a return instruction that causes the
processor to return program processing to the program rou
tine that has called the program routine to be replaced, in
particular has called it as a Subroutine. Specifically, when a
subroutine is called in terms of a “gosub’ instruction it is
customary for the processor to automatically store a program
counter state that reflects the address location of this instruc
tion, and for the processor to return to the next instruction
following this address by a “return” instruction as a return
Statement.

0043. In contrast, if only a portion of a program routine is
replaced, then the bypass routine can also end with a jump
instruction that causes the processor to proceed with program
processing at the instruction of the original program routine
that follows the portion to be replaced. In this case, the jump
command typically includes an argument that represents an
absolute or relative address, which is to say precisely the
address to which the processor should jump for further pro
gram processing.
0044 One embodiment can also provide that the entire
bypass routine is stored in a memory area outside of the active
overlay memory and that an instruction at an address of the
program routine to be replaced is overlaid in the overlay
memory with a jump instruction that causes the processor to
continue processing at an address that is identified by the
jump instruction and starting at which the bypass routine is
stored, which routine ends with a return instruction that
causes the processor to return to the particular program rou
tine that has called the program routine to be replaced, in
particular has called it as a Subroutine, as has already been
described above.
0045. Further scope of applicability of the present inven
tion will become apparent from the detailed description given
hereinafter. However, it should be understood that the
detailed description and specific examples, while indicating
preferred embodiments of the invention, are given by way of
illustration only, since various changes and modifications
within the spirit and scope of the invention will become
apparent to those skilled in the art from this detailed descrip
tion.

BRIEF DESCRIPTION OF THE DRAWINGS

0046. The present invention will become more fully
understood from the detailed description given hereinbelow
and the accompanying drawings which are given by way of
illustration only, and thus, are not limitive of the present
invention, and wherein:
0047 FIG. 1 outlines a technical structure of a bypass
scenario.

0048 FIG. 2 shows a development control unit before use
of the method according to the invention.
0049 FIG.3 shows a development control unit after use of
the method according to the invention, wherein the bypass
function is Smaller than the original function.
0050 FIG. 4 shows a development control unit after use of
the method according to the invention, wherein the bypass
function is larger than the original function.
0051 FIG. 5 shows an implementation of the method
according to the invention that works with a small amount of
overlay memory resources.

Jun. 11, 2015

0.052 FIG. 6 shows an implementation of the method
according to the invention in which the bypass code does not
represent a complete function.
0053 FIG. 7 shows, by way of example, the integration of
a service function into the control unit code using the method
according to the invention.
0054 FIG. 8 shows a supplementary integration of a func
tion call into the control unit code using the method according
to the invention.

DETAILED DESCRIPTION

0055 FIG. 1 outlines a typical bypassing scenario accord
ing to the conventional art. An electronic control unit ECU is
being tested. This control unit has at least one read-only
memory SP, usually a flash memory, a Volatile working
memory RAM, and a processor C that can access both memo
ries. Located in the read-only memory SP is a computer
program coded in machine language that determines the func
tionality of the control unit. If the control unit is intended for
installation in an automobile, for example, the program can be
a program for controlling an engine. The control unit also has
interfaces. By means of these, it is able to accept data from
sensors or other control units and evaluate them by the com
puter program stored on the read-only memory SP and
executed by the processor C as well as to forward data pro
duced by this program to other control units and actuators.
0056 Preferably, ECU is a development control unit not
intended to be installed in a completed product in mass pro
duction. Accordingly, it has a number of additional interfaces
that allow software developers and testers to have access to
the control unit beyond the said basic functions. These
include, for example, interfaces for direct access to the read
only memory SP and working memory RAM, for configuring
the processor C, for reading out the program counter that
outputs the memory address presently being processed by the
processor C, or for setting and configuring break points and
watch points.
0057. In typical scenarios, the control unit ECU is con
nected to a bus BUS through an interface. The bus BUS can be
a network of other control units if the control unit ECU is
installed in a test vehicle, for example. However, the bus BUS
can also be a network of virtual control units that is simulated
on a hardware-in-the-loop (HIL) simulator. Communication
with the bus can take place through different bus systems.
Generally, the system is the CAN bus that has become estab
lished in the automotive industry. However, other standards
such as LIN, Ethernet or FlexRay are also possible.
0058. The control unit ECU is also connected to an influ
cencing device GSI. The influcencing device GSI, for
example a dSPACE DCI-GSI1, is a hardware interface that
gives a user access to the said development interfaces. The
control unit ECU is connected to a computer PC through the
influcencing device GSI. Software runs on this computer that
is equipped for implementing bypass code and configuring
the control unit ECU and that, for example, provides the user
with a Suitable graphic user interface.
0059. The influcencing device GSI is used to operate and
monitor the control unit ECU, in particular to configure the
processor registers and read out the program counter. The
connected computer PC has no direct access to the control
unit ECU. Requests for changes initiated by the user, such as
the activation or deactivation of the overlay functionality, are
communicated by the computer to the influcencing device

US 2015/01 6104.6 A1

GSI, which then performs the corresponding reconfiguration
of the control unit ECU on its own.
0060. The structure shown in FIG. 1 is exemplary in nature
and does not limit the method according to the invention.
Accordingly, the functionality of the influcencing device GSI
can be delegated wholly or in part to the processor C of the
control unit in the form of service functions, for example. In
particular, when the control unit ECU has more than one
processor (multi-core), a first processor can process all pro
gram routines that are part of the functionality of the control
unit provided by the Supplier, while a second processor pro
cesses the service functions that belong to the bypass envi
ronment and were installed at a later time in parallel with
out slowing down the first processor in So doing.
0061. Depending on the application, it may also be pos
sible to do without the connected computer PC, once all
bypass routines have been loaded and the control unit ECU
has been prepared in accordance with the invention. For
example, if the influcencing device GSI or a responsible
service function are designed such that the desire for an
activation or deactivation of the overlay functionality is com
municated by the voltage state of an I/O pin of the control unit
or of the influcencing device GSI, then a switchover between
the original code and a bypass routine can also take place
using a connected electrical Switch.
0062 According to the invention, the “bypass environ
ment” refers to the totality of the components from FIG. 1 that
extend beyond the basic functionality of the control unit ECU
(execution of control unit code, communication with the bus
BUS), which is to say the influcencing device GSI, the com
puter PC, the configuration and bypass Software, and the
interfaces through which said Software communicates with
the control unit.
0063 FIG. 2 schematically shows a development control
unit ECU with a processor C, a read-only memory SP which
normally is a flash memory, and a working memory RAM.
Integrated into the processor C are an overlay memory OV
and a set of registers R. The processor C contains an arrange
ment of logic gates that are designed such that memory
address ranges in the read-only memory SP and working
memory RAM can be defined by the register R, the contents
of which ranges are ignored by the processor C and replaced
by contents from the overlay memory OV in processing the
program.
0064. At every memory access, the processor checks
whether the address of the machine instruction currently
being read lies within a range covered by the register R. If this
is the case, the content stored there is ignored, and the content
at the assigned memory address of the overlay memory OV is
accessed and executed instead. In this way, individual con
tents/instructions or even relatively long sequences can be
temporarily deactivated and replaced by other contents/in
struction sequences without the need to overwrite the original
sequences in the read-only memory SP.
0065. The configuration shown in the figure is exemplary
in nature and does not limit the method according to the
invention. Other embodiments are possible. For example, the
overlay memory OV could also be an address range of the
working memory RAM or other addressable memory areas of
the processor C reserved for this purpose. In addition, both
working memory RAM and read-only memory SP can be
integrated into the processor C. Which specific memory areas
can be overlaid by the overlay memory OV can also vary by
control unit or the processor used. For one unit it may perhaps

Jun. 11, 2015

be all memory areas addressable by the processor, including
read-only memory, RAM and external storage media, for
another it may be only parts of the addressable memory.
0.066 Located in the read-only memory SP is a program
coded in machine language, comprising three program func
tions f1, engine idle rev and f3. (The number three serves to
facilitate graphical representation. An actual control unit pro
gram typically has several hundred functions.)
0067. In one realistic exemplary scenario, the control unit
ECU is an engine control unit and the function engine idle
rev is a function for controlling the idle speed. To reduce fuel
consumption, it is useful to keep the idle speed of the engine
as low as possible, which is to say close to the speed that is just
Sufficient to maintain the operation of the engine. However,
this value is not a constant defined forevery engine model, but
instead is a variable value determined by many changeable
factors. In addition to the engine model these include the state
of charge of the battery, the instantaneous engine load due to
electrical loads, or the engine temperature, for example. In
accordance with the many hard-to-quantify influencing fac
tors, there is great potential for optimization. No programmer
of a function for controlling the idle speed can rule out with
certainty the existence of a better Solution. In one scenario an
automobile manufacturer who has received a fully pro
grammed development engine control unit may want to
replace the function for controlling the idle speed that is
implemented on this control unit with another for test pur
poses.

0068. In another scenario, he may want to extend the func
tionality of the control unit. For example, he may want to
equip his automobile model with an automatic shutoff feature
for when the vehicle is stopped. Since the function for con
trolling the idle speed that is present on this control unit does
not have such functionality, he wishes to replace it with his
own function, and test multiple variants of his own function
for this purpose.
0069. The source code generally is not available to the
user. In the conventional art, he would have to read the hex
code from the memory SP. provide it with bypass services,
insert the bypass code, and rewrite the flash memory. Replac
ing the bypass function with a third variant of the function
would in turn require another rewriting of the flash memory,
etc. This is very time-consuming.
0070 The method according to the invention makes it
possible to replace the function engine idle rev without spe
cial preparation of the control unit ECU and without modi
fying the code stored on the flash memory SR FIG. 3 shows
the control unit after use of the method. The registers R are
configured Such that an address range of the overlay memory
OV overlays the function engine idle rev to be replaced.
Located in this address range is a bypass function eir byp
stored by the user, which is now called by the processor in
place of the original function.
0071. When the overlay function is activated, each address
in the overlay memory is assigned to one address in the
read-only memory (or in the working memory). The overlaid
memory and assigned overlay memory are therefore always
of the same size. As long as the bypass code fits into the
assigned overlay memory and has a complete function, this
does not cause any problems. The bypass function closes with
a return instruction that returns the processor to the calling
parent function and the program proceeds normally. In con
trast, if the bypass function is longer than the original func
tion, it cannot be fully integrated into the overlay memory.

US 2015/01 6104.6 A1

0072. One possible method of proceeding in this case is
shown in FIG. 4. The assigned overlay memory in this case is
too small to completely accommodate the bypass function. At
least a portion of it must therefore be relocated into the work
ing memory. Jump instructions provide for a consistent pro
gram execution. It is also possible to relocate the functional
bypass code completely into a memory area not provided as
overlay memory, for example into the working memory
RAM, and to write into the active overlay memory only a
jump instruction that refers to the functional bypass code.
0073. In some development control units, the overlay
memory may be intended only for overlaying a small number
of instructions, and may be too small for storing relatively
long code sequences. Or else, it may not be technically pos
sible to divide the function eir byp, for example due to limi
tations of the compiler used to translate the function. FIG. 5
shows the procedure in this case. The complete original func
tion is not overlaid, but instead only a short sequence, pref
erably at its beginning or at another Suitable location. The
assigned memory area in the overlay memory contains only a
jump instruction to the bypass function relocated into the
working memory RAM.
0074. In practice, the overlay memory cannot always be
allocated as freely as was implicitly presupposed by the
examples presented. Many development control units are
Subject to limitations in this regard, for example in that the
size in bytes of a contiguous overlay memory area must be a
power of two, or that the allocatable memory area is divided
into indivisible intervals of several bytes. In using the method
according to the invention, this means that the allocated over
lay memory generally must be a choice of either larger or
Smaller than is actually desired. This circumstance is not
limiting for the applicability of the invention. In the case of
allocated overlay memory that is too small, the method shown
in FIG. 4 or FIG. 5 can be used. In the case of allocated
overlay memory that is too large, all memory addresses of the
allocated overlay memory that overlay a memory address
outside the memory area provided in accordance with the
invention for an overlay are filled in each case with an exact
copy of the content of the overlaid memory address, so that it
makes no difference whether the processor C executes the
original code or the code stored in the allocated overlay
memory at this point, because the two are identical. Within
the scope of the invention, it is unimportant whether the
overlay memory is allocated in the right size from the start, or
whether a part of the overlay memory is initially allocated in
an undesired manner and then effectively deactivated again in
the manner described.

0075 All the examples that have been considered thus far
presuppose that the bypass code has a complete function.
Since control unit code is made up of Software components,
this will also usually be the case in practice. Software com
ponents are functions that have already been compiled or
packages of a few functions with documented functionality
and documented interfaces, which are combined into pro
grams, frequently using the principles of graphical program
ming (using dSPACE SystemDesk, for example). As long as
the interfaces and the basic functionality of a component are
known—Suitable documentation accompanies each compo
nent—it is not necessary to know the component's code. This
mode of operation is established practice in control unit pro
gramming. This is the reason that the assumption is generally
made that the bypass code also includes components, which is
to say has at least one complete function. However, in prin

Jun. 11, 2015

ciple nothing stands in the way of providing just a relatively
short code sequence, rather than a complete function or soft
ware component, with a bypass by the method described in
the instant patent application.
0076 FIG. 6 shows the execution of one such bypass. The
registers R are configured such that the overlay memory OV
overlays a sequence of machine instructions within the func
tion engine idle rev, for example in order to replace a part of
the functionality of the function engine idle rev. Such as the
calculation of a certain value or the writing of dedicated
variables. Since the bypass code accordingly also does not
describe a complete function, the closing return instruction is
missing. Consequently, the bypass code must be supple
mented by a closing jump statement that directs the processor
C back to the regular program sequence. In the diagram, the
bypass code is Smaller than the overlaid original code. But
because the reserved overlay memory is always exactly the
same size as the overlaid memory, a part of the reserved
overlay memory remains unwritten. Without the jump state
ment, undefined behavior would occur once the processor C
reaches the first unwritten address.
(0077. Alternatively, it is possible to fill the reserved but
unused overlay memory with blank instructions (NOPS=No
OPeration) or with other instructions that are not critical to the
functional flow. However, since processing them generally
takes longer than execution of the original code (program
code contains if statements, and thus is executed selectively),
the method shown in FIG. 5 with the jump statement is pre
ferred in general.
0078 If the bypass code sequence is bigger than the origi
nal code sequence, a portion of the code is relocated into the
working memory RAM or another available memory as
shown in FIG. 4. Yet the bypass code must be extended by a
closing jump statement in this case as well.
0079. With all methods presented, it is necessary to ensure
that no code that is affected by the overlaying by the overlay
memory and that differs from the overlaid or overlaying code
is being executed at the time of an activation ordeactivation of
the overlay memory. For the example illustrated in FIG. 3,
this means that the overlay memory can only be activated
when no code from the function engine idle rev is currently
being executed. Conversely, its deactivation can only be per
mitted when no code from eir byp is being executed.
0080. Otherwise, while in the middle of processing the
code of one function, the processor would jump to the other
function, which is to say it would effectively execute a new
and very probably meaningless function composed of part of
the code of each of the two functions. Or, if it has already left
the memory area overlaid by eir byp, it would jump into the
unwritten area of the reserved overlay memory. It would even
be possible for the change to take place in the middle of an
instruction, combining parts of the original code and the
bypass code into a new and likewise very probably meaning
less instruction. In almost every case, the consequence would
be an unpredictable malfunction of the control unit with
potentially grave consequences.
I0081. To this end, the bypass environment is designed
Such that the user communicates the desire for an activation or
deactivation of a bypass routine to the bypass environment.
I0082. This activation/deactivation is performed at a time
when the processor is processing a memory address recog
nized as safe. This can be ensured through monitoring of the
program counter, for example, which reflects the memory
address currently being processed by the processor, and

US 2015/01 6104.6 A1

analysis of additional units of information, such as, e.g.,
dedicated registers or call stacks, which contain the return
addresses of program routines interrupted by interrupts. This
information can be actively read through, e.g., a debug inter
face (for example, a JTAG debug interface), or can be pas
sively monitored through a program trace interface, through
which the processor outputs the memory address of the
instruction currently being executed.
0083. Another possibility in addition to reading out the
program counter is to couple the (de)activation of the overlay
memory to a trigger event for which it is known that it only
occurs at memory addresses known to be safe. For example,
this could be access to a certain variable or the driving of a
certain I/O pin. The duration of a reconfiguration of the reg
ister for (de)activation of the overlay memory is significantly
shorter than a typical program cycle of a control unit. A
Switchover between bypass code and original code is thus
possible without stopping the control unit. For this purpose,
however, the processor must be currently processing an
address that guarantees a sufficient time period before the
function affected by the overlay.
0084 Thus, a long enough time period must pass from the
start of the activation or deactivation of the overlay function
ality until the next call of the function that the activation or
deactivation through reconfiguration of the register R is sure
to be completed by then. This method therefore requires a
prior analysis of the binary code in order to find all calls of the
function in question and to identify the memory addresses
that permit a safe activation or deactivation of the overlay
functionality. Alternatively, the control unit can be stopped
until the conclusion of the switchover once the processor is
processing code that is not affected by the (de)activation of
the overlay memory. However, stopping of a processor is
undesirable in general, because the entire system (simulator,
test stand, or test vehicle) usually must also be stopped for the
purpose. For example, as a general rule an engine control unit
must not be stopped while the engine is still running.
0085. An especially safe, and therefore preferred, method

is the activation ordeactivation of the overlay functionality by
a service function, which itself is preferably integrated into
the program code by utilizing the overlay memory, without
changing the original code in doing so.
I0086 FIG. 7 shows how such a service integration oper
ates. Located in the working memory RAM or another avail
able memory in addition to the actual bypass function eir byp
is a service function Z, which can be integrated into the
program code at any desired point, in particular outside of the
routine to be replaced through overlaying, by utilizing the
overlay memory OV. The diagram shows an integration into
the function fl. Through overlaying, a short code sequence is
replaced by a jump statement that points to an address in the
working memory RAM. There, the overlaid code is first
reconstructed and supplemented by a call of the service Z. An
additional jump statement follows that brings the processor C
back to the regular program sequence. The service function
contains an instruction for reconfiguration of the processor
register R that is tied to a condition, for example to a control
variable whose value can be modified by an interface or the
signal level of an input pin of the control unit ECU. In this
embodiment of the invention, the user does not have to worry
about what point in time the registers Rare reconfigured. This
is certain to occur within the integrated service function that
is not part of the actual program code. By implication, it is
certain that no function that is part of the program and no

Jun. 11, 2015

bypass function will be executed at this point in time. In order
to prevent interrupt processing in the processor from inter
rupting the service function or the sequences of the service
function that are critical for the reconfiguration of the overlay
areas, the service code can ensure that such an interruption in
these critical sequences cannot occur.
I0087. The activation of the overlay functionality for incor
porating the service function Z takes place before the start of
processing by the processor C of the program code to be
changed by interfaces of the control unit ECU provided for
this purpose, for example immediately after the control unit
ECU is switched on, or during the initialization phase of the
control unit program. In another embodiment, the service
function Z shown in FIG. 7 can also be a classic service
function that calls a bypass function that preferably is stored
in the working memory RAM. In one embodiment, the bypass
function would first write its values into a buffer. The original
function would then execute entirely normally, and after its
execution an overwrite function that overwrites the values
written by the original function with the values from the
buffer would be called with a second service call.

I0088. If the control unit ECU has more than just one pro
cessor core, it can be advantageous for the original function
engine idle rev and the bypass function eir byp to be com
puted in parallel on two processor cores. This means that a
first processor core processes the control unit program,
including the original function engine idle rev, Stored on the
flash memory SP while a second processor core processes the
bypass function eir byp in parallel once the bypass function
has been called. In this way, increases in the runtime that
occur due to the integration of an additional function, impair
ing real-time capability of the control unit ECU, are mini
mized. Especially in time-critical tasks Such as the control of
an engine, this embodiment is considered advantageous.
I0089 FIG. 8 shows another preferred exemplary embodi
ment of the method according to the invention. According to
the method presented in FIG. 7 the call to the original pro
gram function engine idle rev occurring from the function
fl is Supplemented by a call to the bypass function eir byp. In
this way, both functions are processed by the processor C, first
the original function and afterwards the bypass function,
wherein the output values of only one of the two functions are
used for further processing of the control unit program. In this
way it is possible to compare the two functions, the function
engine idle rev originally installed on the control unit ECU
and the bypass function eir byp provided to replace it,
directly with one another or to make the output values of
engine idle rev available to the bypass function eir byp for
processing or validation. It can be part of the functional scope
of eir byp to decide whether its own output values or the
output values of the original program function are used in the
further course of program processing. For example, as a func
tion of the value of a parameter that can be manipulated by the
user, eir byp can store its own output values for later analysis
without making them available to Subsequent program rou
tines, or can overwrite the output values written by engine
idle rev. It can also be part of the functional scope of eir byp
to store the output values written by engine idle rev for later
analysis.
0090 A variant of the invention can also provide that a
one-to-one-copy of the original function is first written into
the overlay memory OV. The first instruction of the function
stored in the overlay memory is then replaced by a return, and
the overlay memory is Subsequently activated. This deacti

US 2015/01 6104.6 A1

vates the function to be replaced. Once it has been ensured
that no program code in the overlay memory is being
executed, for example by monitoring the program counter or
even simply by waiting a short time, the function stored in the
overlay memory is replaced with bypass code, with the return
instruction not being overwritten until the very last. This
variant can only be carried out if the function to be replaced
can simply be deactivated without dangerously impairing the
function of the control unit. Frequently this is the case.
0091 Another variant can provide that a one-to-one-copy
of the original function is written into the overlay memory
OV. The bypass function is first written into an available
memory area not intended as overlay memory, preferably in
the working memory RAM. In a second step, the first instruc
tion of the code in the overlay memory is overwritten with a
jump statement to the bypass function. It is now possible to
switch between the original code and the bypass code without
further safety measures, since the two codes are identical
except for the jump statement.
0092. This variant can only be carried out safely if jump
statements can be formulated as atomic instructions and an
atomic instruction is likewise present at the position in the
original program code that is to be overlaid. So Switchover "in
the middle' of an instruction is not possible. Frequently this is
the case.
0093. In one embodiment of the invention, provision can
be made to create an overlay memory by reprogramming a
memory management unit (MMU), which many develop
ment control units possess. Logical memory addresses can be
assigned to physical memory addresses by the MMU.
According to the invention, it is thus possible to write bypass
code into a free physical memory area and then reprogram the
MMU such that the logical memory addresses assigned to the
code to be replaced point to the bypass code after the repro
gramming of the MMU.
0094. With the MMU it is thus possible to overlay memory
areas, in particular as is done with the overlay units, namely in
that two different assignments of logical memory addresses
are used so that one and the same set of logical memory
addresses points either to the code to be replaced or to the
bypass code.
0095 All methods described in this document are appli
cable regardless of whether an overlay memory is present in
native form or is produced by programming an MMU. If an
MMU with sufficient functionality is available, it is immate
rial to the invention whether assignment information is writ
ten to a register of the processor with an overlay function or to
an MMU in order to activate the overlay functionality. Suffi
cient functionality should be understood to mean, in particu
lar, that the configuration of the MMU can be changed during
ongoing operation of the control unit.
0096. The invention being thus described, it will be obvi
ous that the same may be varied in many ways. Such varia
tions are not to be regarded as a departure from the spirit and
Scope of the invention, and all Such modifications as would be
obvious to one skilled in the art are to be included within the
Scope of the following claims.
What is claimed is:
1. A method for changing a software in the memory of an

electronic control unit, wherein the memory includes at least
one read-only memory with multiple original program rou
tines stored therein that constitute at least a portion of the
Software and that are processed by at least one processor of
the control unit, the memory has at least one working memory

Jun. 11, 2015

for storing volatile data, and the memory also has an overlay
memory, the method comprising:

assigning each memory address from the overlay memory
to a memory address in the read-only memory by an
assignment information item, with the result that, when
an overlay functionality is activated, instead of process
ing a program routine instruction at an address in the
read-only memory, the processor processes the instruc
tion at an assigned address of the overlay memory;

storing, during a run time of the control unit, at least a
functional part of a bypass routine that is to at least
partially replace an original program routine in an
address range in the overlay memory, or storing a jump
instruction in the overlay memory as the first part of a
bypass routine that refers directly or indirectly to a sec
ond part of the bypass routine that is stored in an address
range accessible to the processor, and

creating an assignment information item, in order to acti
vate an overlay functionality, that assigns the address
and/or the address range of the overlay memory to an
address or address range of the program routine to be
replaced or the portion of the program routine to be
replaced and this assignment information item is acti
vated or deactivated through an interface of the control
unit.

2. The method according to claim 1, wherein an entire
address range in the read-only memory that is occupied by the
program routine to be replaced or program routine portion to
be replaced is overlaid by the overlay memory with an address
range of equal length in which the replacing bypass routine is
at least partially stored.

3. The method according to claim 1, wherein in the case of
a bypass routine with a longer program code length than the
program routine to be replaced or than the program routine
portion to be replaced, the entire address range in the read
only memory that is occupied by the program routine to be
replaced or by the program routine portion to be replaced is
overlaid in the overlay memory by an address range of equal
length in which is stored a first portion of the bypass routine
ending with a jump instruction that causes the processor to
continue processing at an address identified by the jump
instruction and starting at which at least an additional portion
of the bypass routine is stored.

4. The method according to claim 2, wherein, in the case of
replacement of an entire program routine, the bypass routine
ends with a return instruction that causes the processor to
return program processing to the program routine that has
called the program routine to be replaced, or has called it as a
Subroutine, or in the case of replacement of only a portion of
a program routine, the bypass routine ends with a jump
instruction that causes the processor to proceed with program
processing at the instruction of the original program routine
that follows the portion to be replaced.

5. The method according to claim 1, wherein the entire
functional code of a bypass routine is stored in a memory area
outside of the active overlay memory and an instruction or
data item at an address of the program routine to be replaced
is overlaid by the overlay memory with a jump instruction that
causes the processor to continue processing at the address
identified by the jump instruction and starting at which is
stored the functional code of the bypass routine, which rou
tine ends with a return instruction that causes the processor to

US 2015/01 6104.6 A1

return to the particular program routine that has called the
program routine to be replaced, in particular has called it as a
subroutine.

6. The method according to claim 1, wherein the functional
code of the bypass routine is stored in a memory area outside
of the active overlay memory and an instruction at an address
of the program routine to be replaced in the overlay memory
is overlaid with a jump instruction that causes the processor to
continue processing at an address identified by the jump
instruction, wherein the jump instruction refers to an address
starting at which a program code further performs calling of
the functional code of the bypass routine, in particular
wherein the calling of the functional code of the bypass rou
tine takes place within a Subroutine called within this program
code.

7. The method according to claim 1, wherein an activation
of the overlay functionality takes place at a time when
machine code to be replaced by the activation of the overlay
functionality is not being executed by the processor of the
control unit.

8. The method according to claim 7, wherein a logic unit
performing the activation, which runs on the influencing
device connected through the interface, monitors the program
processing position of the processor of the control unit by the
program counter, and wherein the activation takes place at a
time when the program processing position points to an
address outside the program routine to be replaced.

9. The method according to claim 7, wherein a logic unit
performing the activation, which runs on the influencing
device connected through the interface, monitors a trigger/
interrupt that is set by program code located outside the
program routine to be replaced, and the activation takes place
when a change in the trigger/interrupt is detected.

10. The method according to claim 9, wherein the trigger is
implemented by the accessing of a variable or a state change
of an I/O pin.

11. The method according to claim 7, wherein the activa
tion is carried out by a subroutine called by a processor of the
control unit.

12. The method according to claim 7, wherein an instruc
tion in a program routine outside the program routine to be
replaced or outside the portion of the program routine to be
replaced is overlaid by a jump instruction in the overlay
memory, wherein the jump instruction refers to an address
starting at which a program code is programmed that recon
structs the overlaid instruction, that additionally performs the
deactivation/activation of the overlay functionality for the
program routine to be replaced, and that ends with a jump
instruction that refers to the instruction in the program routine
outside the program routine to be replaced that follows the
overlaid instruction, and wherein the activation is accom
plished by calling a Subroutine within this program code.

Jun. 11, 2015

13. The method according to claim 1, wherein the code
stored in the active overlay memory exactly reconstructs a
part of the code stored in the corresponding assigned memory
addresses of the read-only memory.

14. The method according to claim 1, wherein the creation
of the assignment information item and the activation of the
overlay functionality take place by an influencing device
connected to an interface of the control unit or a computer
connected to an interface of the control unit.

15. The method according to claim 1, wherein the creation
of the assignment information item and/or the activation of
the overlay functionality take place by a program routine
executed by a processor of the control unit.

16. The method according to claim 15, wherein the control
unit has at least two processor cores, wherein the program
routine for creation of the assignment information and/or the
activation of the overlay functionality is processed by a first
processor core and the original program routines are pro
cessed by a second processor core or by multiple additional
processor cores.

17. The method according to claim 1, wherein the bypass
routine contains a complete function ending with a return
instruction.

18. The method according to claim 1, wherein the bypass
routine or a part of a bypass routine is stored in a memory area
addressable by the processor through an interface of the con
trol unit during the run time of the control unit.

19. The method according to claim 1, wherein at least one
instruction in a program routine is overlaid by a jump instruc
tion in the overlay memory, and wherein the jump instruction
refers to an address starting at which a program code is
programmed that reconstructs the overlaid instruction, that
additionally calls a functional bypass routine, and that ends
with a jump instruction that refers to the instruction in the
program routine that follows the overlaid instruction.

20. The method according to claim 19, wherein the control
unit has at least two processor cores and at least the functional
code of the bypass routine is processed by one or more first
processor cores and the original program routines are pro
cessed by one or more second processor cores.

21. The method according to claim 1, wherein an overlay
memory on a control unit is created by programming a
memory management unit of the control unit Such that the
logical memory addresses that are assigned to the program
routine to be replaced or program routine portion to be
replaced when the overlay functionality is deactivated are
assigned, when the overlay functionality is activated, to
physical memory addresses that in their totality contain at
least a part of the bypass routine.

k k k k k

