US 20210182315A1

a2y Patent Application Publication o) Pub. No.: US 2021/0182315 A1

a9y United States

Haprian et al.

43) Pub. Date: Jun. 17, 2021

(54) HYBRID IN-MEMORY BFS-DFS APPROACH
FOR COMPUTING GRAPH QUERIES
AGAINST HETEROGENEOUS GRAPHS
INSIDE RELATIONAL DATABASE SYSTEMS

(71) Applicant: Oracle International Corporation,
Redwood Shores, CA (US)

(72) Inventors: Vlad Haprian, Zirich (CH); Laurent

Daynes, Saint-Ismier (FR); Shasank K.

Chavan, Menlo Park, CA (US);
Jean-Pierre Lozi, Zirich (CH);
Vasileios Trigonakis, San Jose, CA
(US); Sungpack Hong, Palo Alto, CA
(US); Marco Arnaboldi, Zirich (CH);
Ciprian Baetu, Zirich (CH)

(21) Appl. No.: 16/710,719

(22) Filed: Dec. 11, 2019

Publication Classification

(51) Int. CL
GOGF 16/28 (2006.01)
GOGF 16/22 (2006.01)
GOGF 16/901 (2006.01)
GOGF 16/242 (2006.01)
(52) US.CL
CPC ... GOGF 16/285 (2019.01); GOGF 16/242

(2019.01); GOGF 16/9024 (2019.01); GO6F
16/2246 (2019.01)

(57) ABSTRACT

An in-memory graph query runtime is integrated inside a
database management system and is capable of performing
simple patter-matching queries against homogeneous
graphs. The runtime efficiently combines breadth-first (BFS)
and depth-first (DFS) neighbor traversal algorithms to
achieve a hybrid runtime that takes the best from both sides.
As a result, the hybrid runtime is able to process arbitrarily
large queries with a fixed amount of memory, optimizing for
memory locality.

US 2021/0182315 Al

Jun. 17,2021 Sheet 1 of 25

Patent Application Publication

gz b4

1474 ¢ b 4
01 Z b L
aoUIS pisp plios P
ajqe} smouy|
9¢ Slied €
Le snejsuapy Z
14 usleH b
by aweN PIA
3jge | suosisd
useyed 1ebief

e

GZ ‘30UIS
SMOUY

gz by
Stied :Bwep

cZ :oby
USjoH ;aWweN

1§ by oUY)
sSnejpusyy :sWweN 0} 90uIg

vz b4

ydeis

OWON
OXFy, L0

Patent Application Publication Jun. 17,2021 Sheet 2 of 25 US 2021/0182315 A1

Fig. 3

Sraph o enoods

LR repregentation

i

oy

Patent Application Publication Jun. 17,2021 Sheet 3 of 25 US 2021/0182315 A1

Fig. 4

Targst Pattern GRAPH TABLE Match Opersturs

Fig. 5

cfata_nsizeop . F 3 =§

chunk size =2

op1

US 2021/0182315 Al

Jun. 17,2021 Sheet 4 of 25

Patent Application Publication

soyerado sjgey ydead syl jo synses yoiew aeipauieiws syl Supogs seunyanng BBg

fanay jeay

DS U

|PATY BIRIPAULIRIY JRAw] 3004

US 2021/0182315 Al

Jun. 17,2021 Sheet 5 of 25

Patent Application Publication

uonrueserder Mg

US 2021/0182315 Al

Jun. 17,2021 Sheet 6 of 25

{3} Buoyews {q] Buniew {v} Bunynew
aojerado WIN ioeiado AN ioyeiedo NN

vg "B

Patent Application Publication

Patent Application Publication

Fig. 8B

b4 %
operatny

#i

Hi

i

W

Flrst Beration

gperator

£

it

5

Hi

S

i

Jun. 17,2021 Sheet 7 of 25

LHM
Gperetor

US 2021/0182315 Al

ES

3

2

8

e AR

wpsrator

&i

B

Y
o

Hiha

gptrghor

o

A

S

i3

PR
aperalor

Reogudt set

P

ESV IR & 2%

5

P4

3

8

wi § owd

vl

ANM

operator

i

4

4

%

iang
e

M

/i

B

£

i

LR

Seraty

P 20

o

L%

3

Mi

1

%

4

Patent Application Publication Jun. 17,2021 Sheet 8 of 25 US 2021/0182315 A1

Fig. 8C

BE8
Sneratoy

RS 4

Bing
LHIRT, s

2

Wi S L

L
npwrator

b Bd
FouF | Pak

3

REAE

i

wi

BN

il

114

e o o

oo, o i

Bi ¢ B4

i 2

g
Sperakor

B LRI

LEM
aperator

Regulf set

[E I

i 2

B

i

vE 1 vl

Bibd
orprator

11414

2

i i e

/)

Bif B U

HhA
poerator

H: 2

B oS U

LR
aperatoy

Pegult et

[V § 2

3 2z

ERE

3
%’%:ﬁ

wh

v 1 vl

11414

2

&

2 4

et Mt e

il

s P -

Patent Application Publication Jun. 17,2021 Sheet 9 of 25 US 2021/0182315 A1

Fig. 8D
second Heration

Hhisa Hha R

apsrator onerator operator Result set
molosou MY oS U B wi | ek | vl
4
3

3

1 | gt

BNA SR LM
apsrator spssrator pperaing Result set
Bip 8 4 BN LU B vi i wd ¥
14

2 Gk 2 | 41 4

E IR

Baia nNh LM
speratst Bperater siperator fusult sut

Bi 451 Mif Sl M ¥i §ov2 1 vl

3k

4 U BCHE

[EA R B]

Patent Application Publication Jun. 17,2021 Sheet 10 of 25 US 2021/0182315 Al

Fig. SE

BNM ity LR
coperator poerainy pppraior Resuit st
Bip o8t u B oG o84 5 gl 1 w2 1 o¢B

3 2 4

£

8]

oo

£k

G
Loy

3
H
B
3

s

ANad Bk LhBA

sneralny cxmeratoy apereioy Result set
IR I A ME PR U B wi §owd | wd
2103 i 814
S 41 4 il R
5P E1 02

e s, et

23

/]

Patent Application Publication Jun. 17,2021 Sheet 11 of 25 US 2021/0182315 Al

Fig. SF

Third Besation

Rund Mba LHRE

oprainy poeraioy sperator Result opt
BiopoBEGOL ME G R L g vi b oWl
4 418
21415

253
o
ERS

e Hbd LR
gperator gpsraior Spgrator Fegudt ged

BE:O&EE 43 B G o1 ik 341 ¥ EES 23
“%‘ "3 "@ —? et e e
ST R e e

\: P

Risd KB LA

operator srperator sperator Rasult set
Ri b &4 B¢ 5L B w1 F ¥} w3
4

& oo § o f o
5 %1% SV SR

41314

e e et

/]

Patent Application Publication Jun. 17,2021 Sheet 12 of 25 US 2021/0182315 Al

Fig. 8G

MK B LNR

Spgratar cperator Spergior Rsyslt get
By o&oud Mil oS u i vi § v | 3
4 1 4
515

YRS e .

s i o /

4 1314

O e -

4]

BN B R ST
Sperainr operator DEErabor Ragul sed
B &8 i Wi oS e EE R T O

{‘E ﬁ - S / 3 3 3 i

o 215
4 {1 414

VN eas .

il

Patent Application Publication Jun. 17,2021 Sheet 13 of 25 US 2021/0182315 A1l

908

o

s

Fig. 9

SIMONKS BIED 8ASES) B Ul saomea sogulisu-jes Buymipw 10198 184 pms Buucs pue
‘BINNGS BIED wAsIEIDauLE pies Duisseoor Ag seomen joqulisu-re) Buyoiew 10198 154 e Buielsush Joiessdo BN DIBS
Joieiedo WNT pies BunicaLl o) asucdsel U usisya oiRiede N pies Bunioal
0720t

US 2021/0182315 Al

SIMONAS RIEP 19ASOIBIDSULEI UB Ul ssofen JoquBieu-aisipounisiy Buyoeus jo 198 181y pies Buuois pug
SIMONNS BIER BAB1-008 pies Bussenoe Ag saomea jogqubisu-siapsunsu Busiew 10108 1y v Dugsreush jolsisdo N pes
oeiado i pies BuiMoay) JoiBIado WNTT DIgS 03 9Su0dsel i)
Sint

Jun. 17,2021 Sheet 14 of 25

SHOTS BIEE [9ASIO0I B Ui $200A 1aaslsy Buiuotew 10 195 1oy & Buuios soyeisdo BNy pes
Soyeiedo WNS DS Bupioau: Joieiado NN PIES 0) ssucdsal
Lok

Jopiado GANT | ymew soqubisu-esl B pug opedo () yoeu ogubist-ayipaunea
Soyeiado (NNM) UDIBW XBHRA-I00) B SBRNI0U 1B S1oiesedo yoiRl 10 eousnbas 2 Bunnoexs 1586 18 Ag
‘yoneiuesasdas ydeil Asowsw-u us isuiele uossaidye wened yed v Buenieag

Patent Application Publication

wser Q) B4

US 2021/0182315 Al

Jun. 17,2021 Sheet 15 of 25

Patent Application Publication

Ligl Aanerey Jo Mosy | sy} 14
1861 SSABA [BUOHEYIARID UQ g
uiog sl PIA
ajqey sJaded
L16) JBRA

Ainneray jo Aioayf syj epif

LEG} -fBaA
SSABAN |RUONBIARIO) UQ) BRI}

¥ Z g
g Z Z
¢) b
pleded ployIny pi3
a|qe] 810iM
6181 uisjsurg 4
6061 TELIOY }
uiog SweN DIA
sjqe] ssoyny
B0
6/81 -uiog
UIs)sug ‘suieN
0IM
6061 :uiog
10 USSOY ‘BLEN

g1 "bid

Vil "bid

Patent Application Publication Jun. 17,2021 Sheet 16 of 25 US 2021/0182315 A1l

Fig. 12A
Fig. 12B

Patent Application Publication Jun. 17,2021 Sheet 17 of 25 US 2021/0182315 Al

Patent Application Publication Jun. 17,2021 Sheet 18 of 25 US 2021/0182315 Al

Fig. 14

US 2021/0182315 Al

Jun. 17,2021 Sheet 19 of 25

Patent Application Publication

o

BINONAS BIBD 19ABIES! B 1 $80MsA Joqubiou~ee) BumioiBil 10 198 JusunD pies BULICIS DUB '2INj0NIS 2IBD 19AR-BIBIDIUISIH
coseys mes Bussanon Ag seomen JogyBisu-ies; Dinuniew 1o 19¢ weung g Bugeisush xopeiedo winT senonsed pes umessdo
WY denoned pres Bupioat 01 esucdeal U Uisseym ‘sionmiade piNT 10 Ameinid ples 1o soreiado N seinoiied pies Buioay

SHEONAS BIED 1BAS-TIRIDOULIBIE DRJEUS B Ui seoiusA Joqubisu-amipauns Bulpieu
0185 wouno pies ‘sictesedo [N 10 A £5 10 405 o BULCIS PUZ ‘INONILS BIED 1BABII0GH Dies Buissaooe A saieA
oqubsu-oysipatnisis Bulyoiew 1o 190 JWeLn0 B 'sioiisdo minT 30 Aueimd pies (o yors 1o ‘Dugmisus soiade iy Burgousig pies
‘seopen Jogubicu-ee; Buoieu Jo 198 weang jo voneieush BupsiduicD sioieiedo Wi o Ay
DS 0 18 Sye Joreiado wyi Buitouesg pes Buioat 20105000 PN 10 Aeimnid pies 10 sotisdo WNT senoed g o) ssuodsad uj

SUMICNAS BIEP [PAGIOC) B Ul SBOMLISA [SASIRH
Buguoieus 1o 19¢ wenns & BuLois sommdo N Dies woRisdo mny pes Dumoau smsmedo e Busuouein pies oy ssucdsas
1)

sscpmiado (N) uoiew sonuBisuqee) jo Ausinid e pue Ciojsiado
N Buiouslg B s e soesds () uoipw soqubisu-sipipetueiis Us oreiado (AN) UOIBW XeUBA-I00 B SBpNDWL 1Ry siojeiado
yoRL j0 souanbes g Bunnoexs 1598 ie A uonruasasdal ydeil Aswow-ut uz 1suebe utssaide waned yied g Buienipal

0051

Gl "Bid

yrau of 03 sisym oge
UORBULOM BI018 I SO0I3A JR3
o3 Bupuodssnos sejge) sinssy

US 2021/0182315 Al

Jun. 17,2021 Sheet 20 of 25

Patent Application Publication

_ | {9} pue (g}
DEIBION 84 M POTRINN B0 HiM 5oy porenidas aue
{30 ssouubiou ie} j0 sioqybiou {r} j0 stoqyBisu
H11 Bungoreus uay {o) Bugoew usip W04 BoLBNLIDNY
3 f 1
£ & i & &
i i i
g9} ‘b4
{a}joufelio {phiou‘{oljo {9} jou "{&}10
siogubBisu soa0 siogybisu 8a0 sioqubiou a0

Sjeivy Ol PUSN SIRION O} PO

232403 01 POIN

D

V9l b4

US 2021/0182315 Al

Jun. 17,2021 Sheet 21 of 25

Patent Application Publication

i0peiado UDRUS 188] BIRS JO SINIONAS BIRD 1B B U 3a0meA Jogubeu -ee; Buyieil 10 198 N0 pies
Bupors pue Lopesedo yojew snomaud Mes Jo amyonis eiep snowmeld 2 Bussasoe Ag senea soquiinu-Ee; Buntiew 10 186 el
e Buieisual Joieiodo Yoo 158 DS ioiRiedo UDBi 198 DiBs Bumoau 01 esundses Ui wialsym icieiede o 1se pies Buiioay

JO3RISU0 UOIBUE DLOSES DIBS JO SINIDNAS BIBD PUODSS B Ui SeoiueA Joqubimu-seipeuueiu Buyoew
DUOTSE J0 188 JueLnD pies Bulols pue "sinonks B1Bp 1siy pies Buissaode Ag seniusa Joqubou-aiRipauissiul BUIUMBLL pUCoes JO

185 Wauno g Bunpieush Jolzmdo Y0RW pUoISs pIes oleedn YR puooas pres Bumoaur iotelado UoiBul DI DIRS O} 98u0dsas Uy
GHd

JOReRado UMELL 1S PIBS 0 SINIONAS BIRE 15MY B Ul SO0IUBA jBAsi Burmew
10 198 enno & Buums somiado yojels 184y ples Uoiziedo yoieu 154y pies Bumoaur jojeiedo Yolel PUCOSs DIBS 03 ssuodsas
oLt

soesado ymei 1sey pes Supeosssd Joiesado yoew snomend
e pue “oessdo unjew 188 B Loieiedo yotew pi B 0iRiedo UDiBW pUo0es B oiriado UoIBW 18K B S8DN0UI 1R SioRedD
yoye jo snuanbes g Bugnoaxe 1986 e Ag ‘uonsueselda udest Alcwew-u e 1sumebe usisseidus wisned uied e Bugenieal
GO

L} B4

US 2021/0182315 Al

Jun. 17,2021 Sheet 22 of 25

Patent Application Publication

SIMINNS BIED 19ABMESE B Ui sa0en Joquliet-ipay
S JUBLNG s DULICIS DUR ‘SIMONAS BIBD [SA0-S1Ripaiian 158 pies Dusseooe Ag seonisn joqubieu-jes) Buyme
Supeiauah jopmiado N pies oesedo N pies Bumonaui of asundsal ut weeuam Jopmiado NN pes Bumoay
ekt

fuoys 0 188
0IBS WBUND B

HUONAS BIED 18R S1BIDEULISI
158 B U s20nsea soquBiou-aiaipauniait Siauoew 158 10)86 Wiauno Dies Buuais pue ‘oiiado w158 pres Buipeseid jomeado N
snoinedd B JO 2InONAS BIRp BasreiRIpeuLai snoinad e Buissenor Ag ssomen Joqubisu-ajaipaunisu BLUuNIRW 158 40198 JWSUND

2 Buneieush soiedo N 198 pes ‘suoiesedo wn Jo Auemyd pies 1o sojeiado N 188 e Bunioau Jopeiedo WNT pies o) asuodent i

Gigi
A

SITIONAS BIED |9ABIHO0) B Ul 3801aA 19881 Buiniew 10198 fusing
e funos Jofeiedo Wy pies iosiedo Wiy pres Buplcaw sioieiede N 1o Auminyd pies 10 Joesedo WN 1S4 B O) 9su0dsss u

soteiedo (NG) uotBuL soqyDieu-jae:
2 pue ‘sioieiado (NN umew soqubisu-sepauseis (o Aneind £ Loieiedo (NNY | U0IRU XSUSA-I00) B SEDMOW 184 siojasedo
yaew 10 eouenbes 2 Bunnosxs 1ee e AQ ‘uckeiueseids: ydeil Lowew-w ug suele uoissesdye wened yed v Buneneas
5081

g} ‘b4

Sy 2y 19SUN PUB ORIPIRG O) H1BIS
wiaied 9 980 (1870 == 174 PRUINSUOT §] SRS ¥UNYD 30U

US 2021/0182315 Al

HURYD 84 (i O
F3R3% YUNYo 9yl 9sn ‘(18s s ey pus) ¥IRIOBRY USUM

ek

Jun. 17,2021 Sheet 23 of 25

SR

B

ion

t

‘paodye Aojeidwion jou sism
syoqyBisu YoM JogUIRIWRS 0F pASH S1 Yoy Jod 2815 JUNYD D

.

1ca

61 "By

Patent Application Publ

US 2021/0182315 Al

Jun. 17,2021 Sheet 24 of 25

Patent Application Publication

9¢0¢

910¢
TOYHLINOD
d08dNo

7

174V

L1SOH
ia N 74
HHOMLIN SRHOMIIN FOV4HIIN

o0 NOILYOINNIWINOD H0SS3004d

200
sng
dst
LANYILNI
010¢ 800¢ 900¢
0¢0¢ 301A3d AHONIN
MIAMIS 3OVH0LS NOY NIVIN

vioz
30IA30 1NdNI

L0
AV1dSId

0z B4

US 2021/0182315 Al

Jun. 17,2021 Sheet 25 of 25

Patent Application Publication

e <

{000Z W3LSAS H3LNAWOD “B'8) TUYMAMYH 3¥ve

P

{IND) 0V44TINI
HASN WOIHYYHD

(317 MO 'QIOYANY ‘SOI ‘SO OV XNNIT XINA ‘SMOANIMm “B8)

W3LSAS ONILYH3dO

) 3

: '

N WYHOO0Ud (] ¢ WvHO0™d ¢ NYH9D0Ud
NOILYOl1ddY NOILYOlIddY NOILVYOlddY

:

F NYHO0Hd
NOILYOI TddY

. \
NCOiZ

omo&\ msx\

veole \

<o
-—
o~

KA

US 2021/0182315 Al

HYBRID IN-MEMORY BFS-DFS APPROACH
FOR COMPUTING GRAPH QUERIES
AGAINST HETEROGENEOUS GRAPHS
INSIDE RELATIONAL DATABASE SYSTEMS

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application is related to U.S. patent applica-
tion Ser. No. , entitled “Hybrid In-Memory BFS-
DFS Approach for Computing Graph Queries inside Rela-
tional Database Systems,” and U.S. patent application Ser.
No. , entitled “Hybrid In-Memory BFS-DFS
Approach for Computing Graph Queries inside Relational
Database Systems,” wherein the entire contents of which are
hereby incorporated by reference as if fully set forth herein.

FIELD OF THE INVENTION

[0002] The present disclosure relates to techniques for
graph searches. More specifically, the disclosure relates to a
hybrid in-memory BFS-DFS approach for computing graph
queries inside relational database systems.

BACKGROUND

[0003] The approaches described in this section are
approaches that could be pursued, but not necessarily
approaches that have been previously conceived or pursued.
Therefore, unless otherwise indicated, it should not be
assumed that any of the approaches described in this section
qualify as prior art merely by virtue of their inclusion in this
section.

[0004] Graph processing is an important tool for data
analytics. Relational DBMSs increasingly allow their users
to define property graph from relational tables and to query
them using graph pattern matching queries. Most products
limit users to define a graph out of a single vertex table and
edge table (e.g., Microsoft SQL Server, SAP Hana). These
graphs are called homogeneous graphs. The most advanced
systems may define a graph out of multiple vertex and edge
tables. For example, a heterogeneous graph may be created
out of the existing tables in a database by mapping every
dimension table to a vertex table and every fact table to an
edge table. The only constraint is that vertex tables should
have a primary key column and the edge tables should
associate foreign keys corresponding to the primary keys
into two different/same vertex tables.

[0005] Graph querying and pattern matching enables inter-
active exploration of graphs, similar to how SQL interacts
with databases. Pattern matching refers to finding patterns in
the graph that are homomorphic to a target pattern, such as
a triangle. In addition to the structural pattern, the user can
add projections, filters, etc., similar to SQL.

[0006] Graph queries, which refer to “graph querying and
pattern matching,” are a very challenging workload as they
put the focus on edges, i.e., the connections in the data.
Therefore, executing graph queries might explore immense
amounts of intermediate results and queries can quickly
explode in terms of memory usage. Additionally, graph
queries exhibit very irregular access patterns with limited
memory locality, as the query patterns and the connections
in the data dictate the accesses.

[0007] One way that relational DBMSs implement graph
queries is by translating the graph query into an SQL join

Jun. 17,2021

query and processing it with their existing SQL engine. This
approach is suboptimal in two ways.

[0008] In the case of homogeneous graphs, SQL engines
do not leverage the graph structure when doing neighbor
traversals. In other words, when iterating over the neighbors
of a vertex V, a join operator will have to scan through all
possible vertices and check if they are connected to vertex
V. More advanced join operators may use a hash-join
operation that will build in memory a hash table from the
smallest of the table and, then, probe that table for matching
element when scanning the largest table once. As such, the
“neighbor” scan is often not performed. However, the con-
struction of the hash table is repeatedly performed for every
join in the query and for every query.

[0009] In the case of heterogeneous graphs, most SQL
engines do not take advantage of sharing computation on
common overlapping prefixes across paths belonging to
multiple instantiations of a given path pattern.

[0010] Most of the existing specialized graph processing
engines leverage the graph structure encoded in the data and
use one of the two main traversal approaches when dealing
with graph queries: breath-first traversal (BFS) and depth-
first traversal (DFS). In BFS, all the vertices at a given level
are matched before processing the next level. In DFS; a
vertex at one level is processed at one level before going to
the next level. Once the whole pattern is matched, the path
is backtracked to iterate over more vertices.

[0011] These traversal techniques are not directly suitable
for being integrated into a relational database systems for
several reasons. First, most query execution plan operators
(“plan operator”) work in a pipeline. As soon as a plan
operator produces a set of tuples, it sends them to the next
plan operator in order to be processed to materialize the
whole result before going able to go to the next pipeline
stage. From this point of view, the graph processing runtime
should be pipeline friendly and the results should be pro-
duced as fast as possible. BFS execution mode would not
satisfy this as it needs to produce all the results before being
able to ship them to the next plan operator.

[0012] Inaddition, as databases are deployed in multi-user
scenarios, memory footprint of every query is essential for
maximizing the number of concurrent clients. Thus, the
graph processing runtime should have a low memory foot-
print. BFS execution mode would not satisfy this as it
materializes all intermediate results, possibly monopolizing
the memory of the machine.

[0013] These problems could be solved by using a DFS
exploration approach, which produces results as soon as the
first path is matched and has a very small memory footprint.
However, the issue with DFS exploration is that it breaks
locality when iterating over neighbors as it looks only at a
single neighbor at a time.

[0014] Therefore, there is a need for a solution to address
these challenges found inside a single machine relational
database system when processing graph queries.

BRIEF DESCRIPTION OF THE DRAWINGS

[0015] The example embodiment(s) of the present inven-
tion are illustrated by way of example, and not in way by
limitation, in the figures of the accompanying drawings and
in which like reference numerals refer to similar elements
and in which:

[0016] FIG. 1 illustrates an example graph and an example
target pattern.

US 2021/0182315 Al

[0017] FIG. 2A illustrates an example property graph.
[0018] FIG. 2B illustrates example tables associated with
the graph of FIG. 2A.

[0019] FIG. 3 illustrates an example graph and a corre-
sponding CSR representation thereof.

[0020] FIG. 4 illustrates an example sequence of match
operators.
[0021] FIG. 5 illustrates example data structures of two

consecutive match operators.

[0022] FIG. 6 illustrates example data structures for stor-
ing match results of the graph table operator.

[0023] FIG. 7 illustrates another example graph and cor-
responding CSR representation thereof.

[0024] FIG. 8A illustrates the state of match operators
after one iteration.

[0025] FIGS. 8B-8G illustrate the state of match operators
during each iteration.

[0026] FIG. 9 is an example for a pull-based control flow.
[0027] FIG. 10 illustrates another example flow diagram
that depicts a process 1000 for supporting graph pattern
matching queries inside a relational database system.

[0028] FIG. 11A illustrates another example property
graph.
[0029] FIG. 11B illustrates example tables associated with

the graph of FIG. 11A.

[0030] FIGS. 12A-12B illustrate different instantiations of
a heterogeneous operator path.

[0031] FIG. 13 illustrates an example of a heterogeneous
graph in-memory representation.

[0032] FIG. 14 illustrates an example of a possible state of
the graph table operators.

[0033] FIG. 15 illustrates another example flow diagram
that depicts a process for supporting graph pattern matching
queries inside a relational database system.

[0034] FIG. 16A illustrates an example tree pattern to
compute and a set of data structures corresponding to
vertices in the tree pattern.

[0035] FIG. 16B illustrates example data structures for
storing match results for the tree pattern of FIG. 16A.
[0036] FIG. 17 illustrates another example flow diagram
that depicts a process for supporting graph pattern matching
queries inside a relational database system.

[0037] FIG. 18 illustrates yet another example flow dia-
gram that depicts a process for supporting graph pattern
matching queries inside a relational database system.
[0038] FIG. 19 illustrates a parallel execution example.
[0039] FIG. 20 illustrates a block diagram of a computing
device in which the example embodiment(s) of the present
invention may be embodiment.

[0040] FIG. 21 illustrates a block diagram of a basic
software system for controlling the operation of a computing
device.

DETAILED DESCRIPTION

[0041] In the following description, for the purposes of
explanation, numerous specific details are set forth in order
to provide a thorough understanding of the present inven-
tion. It will be apparent, however, that the present invention
may be practiced without these specific details. In other
instances, well-known structures and devices are shown in
block diagram form in order to avoid unnecessarily obscur-
ing the present invention.

Jun. 17,2021

GENERAL OVERVIEW

[0042] An in-memory graph query runtime is integrated
inside a database management system (DBMS) and is
capable of performing pattern-matching queries against
graphs of different complexities. The runtime efficiently
combines breadth-first (BFS) and depth-first (DFS) neighbor
traversal algorithms to achieve a hybrid runtime that takes
the best from both algorithms. As a result, the hybrid runtime
is able to process arbitrarily large queries with a fixed
amount of memory, optimizing for memory locality. A
tremendous advantage of being integrated in the relational
database is that the runtime can be pipelined with the rest of
already-existing operators. Another advantage is that data
need not be exported from databases in external engines in
order to execute graph queries.

BACKGROUND IN GRAPH PROCESSING
SYSTEMS

[0043] A graph is a mathematical structure used to model
relationships between entities. A graph consists of a set of
vertices (corresponding to entities) and a set of edges
(corresponding to relationships). When data for a specific
application has many relevant relationships, the data may be
represented by a graph.

[0044] Graph processing systems can be split in two
classes: graph analytics and graph querying. Graph analytics
systems have a goal of extracting information hidden in the
relationships between entities, by iteratively traversing rel-
evant subgraphs or the entire graph. Graph querying systems
have a different goal of extracting structural information
from the data, by matching patterns on the graph topology.

BACKGROUND IN GRAPH PATTERN
MATCHING

[0045] Graph pattern matching refers to finding sub-
graphs, in a given directed graph, that are homomorphic to
a target pattern. FIG. 1 illustrates an example graph and an
example target pattern. If the target pattern is (a)—=(b)—(c)
—>(a), then corresponding graph walks or paths of FIG. 1 are
the following:

[0046] (1)—(2)—B)—=>(D),
[0047] (2)—(3)—(1)—>(2). and
[0048] (3)—(1) =(2)—()

One hop corresponds to a graph walk consisting of a single
edge. A walk with n edges is considered as a n-hop pattern.
[0049] As discussed above, three approaches may be used
for performing pattern matching in graph systems. A first
approach includes operations similar to JOINs in relational
DBMSs. To match a hop in the pattern, the system performs
a JOIN with the previous intermediate results. The disad-
vantage of this approach is that it does not exploit the graph
structure by iterating only over the neighbors of a node but
iterates over all possible nodes when performing the JOIN.
[0050] A second approach is a BFS neighbor traversal.
This approach generates all the matches for all possible
pattern prefixes, starting from one single node until reaching
the desired pattern. This algorithm works in an iterative
manner: having all the matches for a prefix pattern, it
computes all the matches for the prefix extended with an
extra hop. The advantage over the first approach is that the
system keeps track of the neighbors of each node and
performs a scan only over the neighbors of a node when it

US 2021/0182315 Al

is needed. However, it still has the disadvantage of possibly
using a big amount of memory for the intermediate results.
[0051] A third approach is a DFS neighbor traversal. With
this approach, the system matches full paths and does not
generate intermediate results. This algorithm does not need
to store all the matches for each pattern prefixes but has the
drawback in that it does not optimize for memory locality
while traversing over the neighbors of each node because
only one node neighbor is considered at each step.

[0052] Embodiments of the present invention relate to a
hybrid traversal to perform pattern matching. The hybrid
traversal is similar to the BFS neighbor traversal, but the
hybrid traversal only explores a limited number of neighbors
in one iteration, following to resume later to process the
remaining neighbors. This algorithm has the advantage in
that it optimizes for memory locality by processing several
neighbors in one iteration, while still restricting the used
memory by limiting the number of neighbors processed at a
specific step.

INTEGRATING GRAPH AND RELATIONAL
DATABASES

[0053] Techniques, described herein, use RAM memory
only for storing a graph topology and keep the rest of the
data on disk. In particular, the techniques use the in-memory
acceleration for graph traversals, without storing redundant
data in memory. Additionally, techniques use existing data-
base tables as vertex or edge tables and can process different
types of graphs, including homogeneous graphs and hetero-
geneous graphs.

TRANSLATION FROM RELATIONAL MODEL
TO PROPETY GRAPH MODEL

[0054] A property graph data model allows vertices and
edges in a graph to have arbitrary properties as key-value
pairs. FIG. 2A illustrates an example property graph. The
property graph in FIG. 2A represents contact relationships
between persons. The persons have name and age properties,
while the relationships have a property indicting the age at
which the subject knew the other person.

[0055] Conceptually, a relational DBMS may be inter-
preted in a graph model. For example, all vertices and their
properties may be grouped in a vertex table, while all
relationships and their properties may be grouped in an edge
table. As an example, the graph illustrated in FIG. 2A may
be stored in a RDBMS as tables, as illustrated FIG. 2B. Each
vertex has a unique identifier (i.e., Vid) in the vertex table
(i.e., Persons Table) where it is stored. Similarly, each edge
has a unique identifier (i.e., Fid) in the edge table (i.e.,
Knows Table) where it is stored. The edge table can be used
for matching patterns; the vertex and edge tables can then be
used for accessing the desired information when the pattern
is matched. The RDBMS keeps track of the referenced
tables by each edge table, in order to be able to reconstruct
the graph structure.

REPRESENTING GRAPHS IN MEMORY

[0056] In an embodiment, a graph may be represented by
compressed sparse rows (CSR). This representation may be
the most useful in graph processing engines because of its
compact size and its neighbor caching behavior. The CSR
compression is performed over the adjacency matrix of the
graph.

Jun. 17,2021

[0057] The CSR representation for a graph G with n
vertices labeled from 0 to n-1, and m edges, labeled from 0
to m-1, includes two arrays, src and dst. FIG. 3 illustrates an
example graph and a corresponding CSR representation
thereof. The graph in FIG. 3 includes 10 vertices and 11
edges.

[0058] Each vertex in the graph is associated with a unique
identifier allocated from a set of numbers. The unique
identifier behaves as the src array index. The vertex id is
referred to herein as Vid. The src array will have size n+1.
For every i€{0, 1, . . ., n~1}, the value stored in src[i] will
be the position in the dst array for the first neighbor of vertex
i. The last position of src array stores the value m, i.e.,
src[n]=m.

[0059] Similarly, each edge in the graph is associated with
a unique identifier that behaves as the dst array index. The
edge identifier is referred to herein as Ni (neighbor index).
The dst array will have size m. For every i€{0, 1, ..., n-1},
the neighbors of vertex i are stored at the positions between
src[i] and src[i+1], meaning that all the neighbors of a vertex
are stored consequently, which helps while traversing all the
neighbors of a specific vertex.

[0060] As an illustration, in the example of FIG. 3, to find
the first neighbor of vertex 1, the value at src array index 1
of the src array (e.g., src[1]) is obtained. The value at src[1],
which is four (4), identifies edge 4 as being the first edge
from vertex 1. Referring to dst array, the value at dst array
index 4 of the dst array (e.g., dst[4]) is then obtained. The
value dst[4], which is five (5), identifies vertex 5 as being the
vertex from edge 4. Accordingly, vertex 5 is the first
neighbor of vertex 1.

[0061] Also, as an illustration, in the example of FIG. 3, to
find all neighbors of vertex 3, the value at src array index 3
and the value at scr array index 4 of the scr array (e.g., scr[3]
and scr[4]) are obtained. The difference between the two
values at scr[3], which is five (5), and at scr[4], which is nine
(9), indicates the number of neighbors vertex 3 has. In this
illustration, vertex 3 has a total of four (4) neighbors. The
value at scr[3] identifies edge 5 as being the first edge from
vertex 3. Referring to dst array, four (4) values starting at dst
array index 5 to dst array index 8 of the dst array (e.g., dst[5],
dst[6], dst[7], and dst[8]) are then obtained. The values at
dst[5] to dst[8], which are six (6) to nine (9), identifies vertex
6 to vertex 9 as being vertices from edges 5 to 8. Accord-
ingly, vertex 6 to vertex 9 are the four (4) neighbors of vertex
3.

[0062] Since the source vertex for edges that have the
same source is stored once, the CSR representation uses
about half the space needed by representations operating on
edge lists. Thus, CSR encoding is a good candidate for
in-memory graph representations because of the small
memory footprint required. In addition, by storing all the
neighbors of a vertex in consecutive memory locations, it is
a strong fit for tasks which need to iteratively process a
vertex’s neighbors, such as pattern matching or graph algo-
rithms.

IN-MEMORY GRAPH QUERY RUNTIME

[0063] In an embodiment, an in-memory graph query
runtime may be integrated inside a RDBMS to improve
efficiency of graph queries. The query runtime may be a
simplified version of an execution engine that includes a set
of operators, a set of data structures that hold corresponding
states and execution mode, including control flow (e.g., how

US 2021/0182315 Al

the operators call each other), and data flow (e.g., how data
flows between the operators. The runtime has access to a
CSR that is in memory for optimizing a graph pattern
matching operation and to graph properties that are on disk
for reducing memory consumption. In an embodiment, the
graph query runtime supports simple path expressions, such

as line-shaped path patterns (e.g., (a,)—=(a,)— ... —=(a,), for
any nz2).
[0064] The graph query runtime is represented in the

RDBMS as a graph table operator, which allows pattern
matching queries containing filters and projections on graph
properties to be written. The graph table operator transforms
result of a graph pattern matching operation into a table,
which will have the same number of rows as the number of
subgraphs matching the pattern.

[0065] The graph table operator can be pipelined with
other execution plan operators already existing into the
database, thus combining pattern matching with SQL-based
querying. The result of the graph table operation can there-
fore be used by other execution plan operators. For example,
the result of a graph table operation may be joined with the
result of another subquery: SELECT*FROM G GRAPH_
TABLE (MATCH (a)—(b) COLUMNS (a.city as takeoff,
b.city as landing)) JOIN FAVORITE_HOTELS f ON
takeoff=f.city.

[0066] The control flow of the graph query runtime is
pull-based. The runtime control flow is further discussed
elsewhere herein. In an embodiment, a graph table operator
is made of a sequence of match operators that each con-
sumes rows from its children in the plan. When used against
the CSR, the graph table operation compiles into a physical
operator that takes the CSR as input and produces a row-set,
which includes a sequence of rows. The term row source
may also be used for a physical operator, such as a graph
table operator and/or match operator.

[0067] The graph query runtime uses multiple match
operators, one for each vertex or node label in a target
pattern to match. The vertex or node may also be referred as
a pattern node. The sequence of match operators is isomor-
phic to the target pattern. FIG. 4 illustrates a sequence of
match operators that follows a target pattern of (a)—(b)—
(c). In this example, match operator OP1 corresponds to
vertex or node (a), match operator OP2 to vertex or node (b),
and match operator OP3 corresponds to vertex or node (c).

TOP LEVEL DESIGN

[0068] A graph table operator computes all paths matching
a given target pattern on a given graph and returns a table
with number of rows equal to the number of paths matched.
The graph table operator includes a sequence of match
operators for evaluating a path pattern expression. Each
match operator in the sequence of match operators receives
as input the result of a previous match operator. Each match
operator processes a single hop in a path (e.g., edge to
follow+destination). Each match operator is specialized to a
specific task. Assembling match operators into a path pattern
expression is performed by a path pattern match compiler
during query compilation. The entire path pattern expression
produces paths according to the target pattern.

[0069] In an embodiment, match operators perform their
logic over multiple vertex/edges in a pipelined manner and
produce a number of matches that they store in a result set.
The first match operator of a path pattern expression always
feeds on a CSR and fills a result set that identifies a number

Jun. 17,2021

of matching vertices. This result set serves as input to the
next match operator in the path pattern expression which
will produce a set of matching vertices corresponding to that
stage (and edges that lead to these vertices). When the last
match operator has filled its result set, the graph table
operator can then fill its output row-set with entire path
match. Once the row-set is filled, control is returned to
parent of the graph table operator which then consumes the
rOws.

SPECIALIZED MATCH OPERATORS

[0070] Path pattern match processing with graph table
operator is performed using multiple match operators, which
are level-specialized, computing units. Each match operator
is responsible for computing vertices for a specific hop of a
target pattern. In an embodiment, there are three types of
match operators.

[0071] One type of match operator is a Root Node Match
(RNM) operator. The RNM operator is responsible for
computing the vertices which match the first or root node of
the pattern. The RNM operator finds the first or root level
vertices that match the pattern.

[0072] Another type of match operator is an Intermediate
Neighbor Match (NM) operator. The NM operator will start
from a set of input vertices and produces a fixed number of
neighbors for each of them. The NM operator is only used
for intermediate nodes in the pattern and is not for the first
or last node in the pattern. In other words, the NM operator
is only used for non-leaf neighbor traversals to find inter-
mediate or non-leaf level vertices that match the pattern.
[0073] Yet another type of match operator is a Leaf
Neighbor Match (LNM) operator. The LNM operator is
similar to the NM operator, but it is only used for matching
the last node in the pattern. The LNM operator finds the last
or leaf level vertices that match the pattern.

[0074] Each type of match operators has a different control
flow. All match operators have access to a CSR on which
they are run. Each type of match operator has additional
specialization, depending on whether a vertex predicate, an
edge predicate, or both vertex and edge predicate must be
evaluated.

[0075] Each match operator is associated with a data
structure where it stores the current state, such as the
matched vertices by the match operator, the number of valid
rows, etc. The control flow enables match operators to move
data through the different level data structures and interact
with the graph table operator.

[0076] Some goals of the data structures include:

[0077] avoiding duplicating vertices along a path: For
example, if multiple paths start with the same source,
the source should be stored only once. In other words,
paths are stored in a prefix encoded way that provides
memory savings.

[0078] providing enough information for path recon-
struction: When results are moved to the output row-
set, full paths can be reconstructed using the informa-
tion collected in each match operator in the path pattern
expression.

[0079] controlling memory footprint: The amount of
memory used by each match operator can be tuned.

[0080] supporting pipelined execution and memory
locality: The number of neighbors explored in one
iteration can be limited.

US 2021/0182315 Al

[0081] To achieve the last two properties, each data struc-
ture represents the state of a match operator in a unique way.
In particular, each data structure has columns of size data_
size, which is a parameter of the match operator. The value
of data_size corresponds with the number of rows in a data
structure. Each row of the data structure holds information
about one vertex matched in a different path. For root and
intermediate data structures, for each vertex stored in the
data structures, the runtime will explore chunk_size neigh-
bors, where chunk_size is also a parameter of the match
operator. Therefore, the data structure of the next match
operator in a path pattern expression will store data_sizex
chunk_size rows.

[0082] FIG. 5 illustrates example data structures of two
consecutive match operators. In this example, the data
structure corresponding to first operator OP1 stores infor-
mation for three (3) vertices (e.g., data_size,»,=3), and each
vertex can process maximum 2 neighbors (e.g., chunk_
size,p;=2), thus the data structure of the next operator OP2
stores information for six (6) vertices (e.g., data_size,»,=6).
[0083] In order to compute the pattern matches for a
graph, vertices are matched starting at the root node and
finishing at the leaf node of the pattern. The first or root
match operator—RNM operator—of a path pattern expres-
sion uses a CSR and fills its first or root level data structure
storing a set of matching vertices. This first or root level data
structure acts as input for the next operator (intermediate
match operator-NM operator) in the path pattern expression
which, using the input and the CSR, computes the vertices
matching the path until that point, and stores the results in
its intermediate level data structure.

[0084] In an embodiment, the pattern matching uses a
batch-DFS algorithm, which means that in the process of
matching the nodes in the next operator, a limited number of
neighbors for each vertex in previous operator is matched.
[0085] This process continues until reaching the leaf node
of the pattern. After the last or leaf match operator—[LNM
operator—fills its last or leaf level data structure, the graph
table operator returns the matching patterns to the parent
operator, which consumes the information.

[0086] As discussed above, there are three different match
operator types, and each match operator type corresponds
with a different data structure to store the state of a match
operator. Vertices and edges matched by a match operator
are stored in the result set. Each match operator uses a
custom result set data structure.

[0087] FIG. 6 illustrates example data structures for stor-
ing match results of the graph table operator. Each of the
different data structures is described below.

ROOT LEVEL DATA STRUCTURE

[0088] The root level data structure stores information
about vertices matched by the RNM operator in a plurality
of columns, which are treated as arrays during compile time
and are referred to as arrays. The root level data structure
includes the following arrays: Ri (Root Index) array, Si
(Start Index) array, Li (Last Index) array, and Next Valid
array, each of them storing on row j.

[0089] The Ri array stores the vertex id of the vertices
matched by the RNM operator.

[0090] The Si array stores the index of the first unpro-
cessed neighbor of Ri[j]. This is the absolute index in the
CSR dst array, which allows for fast neighbor information

Jun. 17,2021

retrieval, such as vertex id or edge id. Si[j] only stores
indices of neighbors of Ri[j] in the dst array of the CSR.
[0091] The Li array stores the index of the last neighbor of
Ri[j]. Like the Si array, it stores absolute indices in the CSR
dst array. Li[j] stores the maximum value of Si[j]. When
Si[j]=Li[j], it means that all the neighbors for vertex Ri[j]
have been processed; as such, the current row can be skipped
in the next iteration.

[0092] The Next Valid array stores the index k of the next
valid row in the data structure. A row k is valid if and only
if Si[k]<Li[k], meaning that there are still some neighbors to
process for that row. Initially, all rows are marked as invalid.

INTERMEDIATE LEVEL DATA STRUCTURE

[0093] The intermediate level data structure stores infor-
mation about vertices matched by the NM operator in a
plurality of columns, which are treated as arrays during
compile time and are referred to as arrays. The intermediate
level data structure includes the following arrays: Ni (neigh-
bor index) array, Si array, Li array, and Next Valid array. The
last three arrays—Si, Li, and Next Valid—are similarly
configured as the Si array, Li array, and Next Valid array the
root level data structure. The Ri array is replaced by the Ni
array.

[0094] On row j, the Ni array stores the index in the CSR
dst array of the edge matched by this vertex with the
corresponding vertex in previous operator. The neighbor/
edge index, and not the neighbor id, is stored because edge
properties may be used in a filtering or projection phase. In
such as case, both vertex and edge properties with the Ni
value can be retrieved.

[0095] In an embodiment, the decision whether to store
the Vid (vertex id) or the Ni information, depending on what
the filters or projected columns are, can be taken up at
compile time. For example, if a query projects an edge, then
neighbor index is stored; otherwise, neighbor id is stored.

LEAF LEVEL DATA STRUCTURE

[0096] The leaf level data structure stores information
about vertices matched by the LNM operator in a plurality
of columns, which are treated as arrays during compile time
and are referred to as arrays. In an embodiment, the leaf
level data structure contains only the Ni and Next Valid
arrays. Since the leaf match operator does not have a next
operator, the Si and Li arrays are undefined. Similar to the
intermediate level, the Ni array can be replaced with a
Neighbor Id array if no information from the edge leading to
the last vertex of the path pattern is needed (e.g., no edge
predicate, or no projection of any properties of that edge).

EXAMPLE MATCH OPERATORS GRAPH

[0097] FIG. 7 illustrates another example graph and cor-
responding CSR representation thereof. In FIG. 7, a direct
graph is shown on the left and its corresponding CSR
representation is shown on the right. Assume the target
pattern to match is (a)—>(b)—(c). In that case, considering
FIG. 4, the graph table operator will consist of three match
operators: one RNM operator, one NM operator, and one
LNM operator. The paths in FIG. 7 matching the target
pattern include:

[0098] (0)—(2)—(4), and

[0099] (5)—(B3)—=(1)

US 2021/0182315 Al

[0100] FIG. 8A illustrates the state of match operators
after one iteration. The RNM operator is for matching (a).
The NM operator is for matching (b). The LNM operator is
for matching (c). The Next Valid arrays of the data structures
are not shown for purposes of clarity and simplicity. A result
set includes the path comprising vertex 0 (e.g., src[0]),
vertex 2 (e.g., dst[0]), and vertex 4 (e.g., dst[2]) after this
first iteration of the NM operator having no more valid rows
in its data structure to be processed and before accessing the
RNM operator for more data. As can been seen, the path in
the result set corresponds to the first path determined above.
[0101] FIGS. 8B-8G illustrate the state of match operators
during each iteration. In particular, FIGS. 8B-8C illustrate
the state of match operators in the first iteration. FIGS.
8D-8E illustrate the state of match operators in the second
iteration. FIGS. 8F-8G illustrate the state of match operators
in the third iteration. As illustrated, the result set includes a
path comprising vertex 0, vertex 2, and vertex 4, and another
path comprising vertex 5, vertex 3, and vertex 1, both of
which correspond to the paths determined above.

SIZING THE DATA STRUCTURE

[0102] As discussed above, each data structure uses sizing
variables to control its memory footprint and to implement
the batch DFS execution. The data_size variable specifies
the number of elements stored in a data structure and is
configurable for every level. The chunk_size variable speci-
fies how many neighbors (e.g., vertices matched by (b)) are
explored for every parent (e.g., vertices matched by (a)) at
every pull operation.

[0103] Each data structure is designed in such a way that
the number of rows in a match operator is equal to the
number of chunks in its child match operator. For example,
in FIG. 8A, the RNM operator has data_size =2, and
chunk_size=2.

[0104] Ifthe chunk size is greater than 1 for each hop, than
the LNM operator stores a number of rows exponential in
the number of hops of the path. This exponential growth can
be stopped by setting chunk size to 1 for various match
operators.

[0105] For chunk_size=1, then the way of traversing the
neighbors is similar to DFS algorithm, and for chunk_
size=co, then the traversal algorithm is similar to BFS.
Varying chunk_size allows for the tradeoft between achiev-
ing a high-degree of parallelism and being pipeline-friendly.

INDEXING

[0106] Every row, at a given level, has a corresponding
chunk at the next level, where its neighbors will be stored.
In order to find the parent of index i, (i/chunk_size) is
computed to determine the index of the parent in the parent
data structure. In order to find the jth child of index i,
(i*child—chunk_size+j) is computed to determine the index
of the child in the child chunk.

RUNTIME CONTROL FLOW

[0107] In an embodiment, match operators are the main
computing blocks of'a graph table operator. They are respon-
sible for producing vertices corresponding to every level of
a target pattern. Given a target pattern, a sequence of match
operators is generated at compile time. Match operators are
chained according to a pull-based control flow. When
requested rows from its parent operator in a query plan, the

Jun. 17,2021

graph table operator pulls results from its chain of match
operators and construct its output row-set from these results.
When rows are accumulated to the capacity of the row-set,
control is returned to the graph table operator’s parent.
[0108] Every match operator has access to a CSR defining
the graph. The result of the LNM operator is written to the
graph table operator row source that can then be pipelined
with other database relational operators.

[0109] FIG. 9 is an example for a pull-based control flow
for a target pattern of form (a)—=(b)—(c). A graph table
operator 904 is pipelined with existing database relational
operators 908 and references an in-memory graph 902. Note
that the control flow and the data flow are in opposite
directions. The control flow is from relational operators 908
to CSR 902, while the data flow is from CSR 902 to
relational operators 908.

[0110] When the parent of the graph table operator 904
requests rows to process, the newly created operator will call
a pull function on the LNM operator 904¢ to request rows
from the graph table operator 904. If the LNM operator 904¢
still has valid rows in its data structure, then it writes them
to the graph table operator’s result table 906. If the LNM
operator 904¢ does not have valid rows in its data structure,
then the LNM operator 904¢ invokes the previous match
operator 9045 to fetch more neighbors from the previous
operator 9045. This is done by calling a pull function on the
previous match operator 9045 and, then, processing the
neighbors of the new vertices and storing results in its data
structure. This process happens for each match operator in
the path until reaching the RNM operator 9044, for which a
pull function is simply loading the next chunk of vertices
existing in a graph, by referencing the CSR 902 which
represents the graph. Accordingly, each match operator in
the chain will either consume more neighbors from its
predecessor in the chain or call its predecessor’s pull func-
tion to fetch the next batch of neighbors.

[0111] In an embodiment, a data structure at a level may
not be filled with neighbors from a parent. The control flow
can be modified to return only when the data structure at the
level is full. For example, the match operator at the level
may pull from the parent until either the level data structure
is full or the parent runs out of data.

[0112] In an embodiment, iteration over valid entries in a
parent data structure can be improved. For example, rather
than iterating over all entries in the parent structure and
jumping over invalid ones, an index of valid entries in a list
is kept and referenced to iterate only over the indices present
in the list. When an index becomes invalid (e.g., all neigh-
bors for that entry were consumed), it is removed from the
list.

EXAMPLE HOMOGENEOUS GRAPH SEARCH
PROCESS

[0113] FIG. 10 illustrates an example flow diagram that
depicts a process 1000 for supporting graph pattern match-
ing queries inside a relational database system. The process
1000 assumes that a homogeneous property graph is defined
from relational tables, and an in-memory representation of
the homogeneous graph uses a CSR format.

[0114] At step 1005, a path pattern expression is evaluated
against an in-memory graph representation by at least
executing a sequence of match operators. The sequence of
match operators includes a root vertex match (RNM) opera-

US 2021/0182315 Al

tor, an intermediate neighbor match (NM) operator, and a
leaf neighbor match (LNM) operator.

[0115] The match operators perform their logic over mul-
tiple vertex/edges in a pipelined manner and produce a
number of matches that are stored as result sets in respective
data structures. Results to a query are pulled from the
sequence of match operators, and an output table is con-
structed from these results. When the parent of a graph table
operator that is associated with the path pattern expression,
requests rows to process, the graph table operator invokes
the LNM operator, which in turn invokes the NM operator,
which in turn invokes the RNM operator.

[0116] At step 1010, in response to the NM operator
invoking the RNM operator, the RNM operator stores a first
set of matching first level vertices in a root level data
structure.

[0117] At step 1015, in response to the LNM operator
invoking the NM operator, the NM operator generates a first
set of matching intermediate neighbor vertices by accessing
the root level data structure and stores the first set of
matching intermediate neighbor vertices in an intermediate
level data structure.

[0118] In an embodiment, the NM operator explores a
particular chunk size of a particular first level vertex in the
first set of matching first level vertices in said root level data
structure, wherein this particular chunk size specifies a
number of neighbors of the particular first-level vertex to
explore.

[0119] In an embodiment, in response to the NM operator
generating the first set of matching intermediate neighbor
vertices by accessing the root level data structure, the RNM
updates data stored in the root level data structure to indicate
the next unprocessed neighbor.

[0120] At step 1020, the LNM operator is invoked and, in
response to invoking the LNM operator, the LNM operator
generates a first set of matching leaf neighbor vertices by
accessing the intermediate level data structure and stores the
first set of matching leaf neighbor vertices in a leaf level data
structure.

[0121] In an embodiment, the LNM operator explores a
particular chunk size of a particular intermediate neighbor
vertex in the first set of matching intermediate neighbor
vertices in the intermediate level data structure, wherein this
particular chunk size specifies a number of neighbors of the
particular intermediate neighbor vertex to explore.

[0122] In an embodiment, in response to the LNM opera-
tor generating the first set of matching leaf neighbor vertices
by accessing the intermediate level data structure, the NM
updates data stored in the intermediate level intermediate
level data structure.

[0123] When the leaf level data structure is filled with
data, at least part of a result for the path pattern expression
is generated. In an embodiment, the at least part of a result
for the path pattern expression is generated based on the leaf
level data structure, the intermediate level data structure, and
the root level data structure. In an embodiment, the result for
the path pattern expression may be pipelined with one or
more database relational operators.

[0124] As shown, when an operator, in a sequence of
match operators, is asked for tuples or rows by a child
operator, if the operator has tuples, then the child operator
will directly iterate over the neighbors of its parent operator.
However, if the operator does not have tuples, then the
operator will ask the same request from its parent operator.

Jun. 17,2021

HETEROGENEOUS GRAPHS

[0125] Most existing graph processing systems only pro-
vide support for handling homogeneous graphs, which
means that the graph is stored by using only one vertex table
and one single edge table, as in the example of FIGS. 2A-2B.
However, this model can be extended such that the vertices
and edges are split across multiple tables with different
semantics and properties. This model would be beneficial
when trying to add a graph processing runtime over an
existing relational database, which has an already-defined
schema.

[0126] FIG. 11A shows an example graph structure of
authors, papers and the author-paper relationships between
them. In the homogeneous graph paradigm, all the authors
and the papers vertices would be stored in the same table,
following that the authors would have no values for the
papers’ properties and, similarly, that the papers would have
no values for the authors’ properties. The heterogeneous
paradigm models better intuition, by having two vertices
tables, one for authors and another for papers, each with
their own specific properties, as shown in FIG. 11B.
[0127] Splitting the vertices and edges over multiple tables
means also splitting the CSR, when using that graph repre-
sentation. Therefore, if the edges are split over n tables, then
n CSRs are constructed in order to define the graph, one for
each edge table.

[0128] When running a pattern-matching query on a het-
erogeneous graph, a given pattern can correspond to mul-
tiple specializations. As an example, consider a graph that
has two different vertex tables VT1 and VT2. When match-
ing the pattern (alS VT1)—(b IS VT2)—(c), two pattern
specializations can be generated:

[0129] (aIS VT1)—(b IS VT2)—(c IS VT1)
[0130] (aIS VT1)—(b IS VT2)—(c IS VT2)
[0131] The specializations are generated at compile time,

based on the metadata tracking the vertex and edge tables of
the graph. Specializations are part of the same specialization
tree if they have an overlapping common prefix (e.g., (alS
VT1)—(b IS VT2)). In an embodiment, a graph table
operator computes the paths matching the pattern for each of
these specializations.

MODIFIED RUNTIME DESIGN

[0132] There are different approaches to support multiple
specializations. One approach to support multiple special-
izations is to create a different chain of match operators for
every specialization. However, this may result in computing
a sequence multiple times. For the example above, the
common prefix (alS VT1)—(b IS VT2) would be computed
twice. FIG. 12A visually reflects this approach.

[0133] Another approach is to compute common prefixes
in overlapping specializations, thereby decreasing pattern-
matching queries run time for heterogeneous graphs. As
further discussed below, this can be done by extending the
match operators and control flow.

EXTENSIONS TO THE IN-MEMORY GRAPH
REPRESENTATION

[0134] An in-memory representation of a heterogeneous
graph includes as many CSRs as there are edge tables in a
graph. A key difference to the homogeneous graph repre-
sentation described above is that the indices stored in the

US 2021/0182315 Al

destination array of a CSR are indices to a destination vertex
table that is different from the source array of the CSR.

[0135] An example of a heterogeneous graph in-memory
representation is illustrated in FIG. 13. In the example of
FIG. 13, The graph includes two vertex tables (e.g., V1, V2)
and two edges table (e.g., E1, E2). The corresponding
in-memory representation includes two CSRs: one for each
edge tables. The src array for E1’s CSR (respectively, E2’s
CSR) has as many entry as there are rows in V1 (respec-
tively, rows in V2). Values stored in the dst array of E1’s
CSR (respectively, E2’s CSR) are indices to src array used
for V2 (respectively, V1). In this example, there is only one
such src array for V1, which is the one used in the CSR for
E2.

[0136] It may be possible for a vertex table to be a source
in multiple edge tables and, therefore, to have a src array in
multiple CSRs; that array would have the same dimension
and the same entry would be assigned to the same row (i.e.,
vertex) in all src arrays. They would, however, hold a
neighbor index specific to the dst array of the specific CSR.

OPERATOR EXTENSIONS

[0137] Compared to the homogeneous implementation,
every match operator involving neighbor matching (e.g.,
RNM operator, NM operator) may use multiple CSRs, one
for each specialization that branches from that match opera-
tor. From the previous example, the match operator match-
ing (¢ IS VT1) will use a CSR corresponding to the edge
table associating VT2 with VT1, and the match operator
matching (¢ IS VT2) will use a CSR corresponding to the
edge table associating VT2 with VT2. FIG. 12B illustrates
an operators graph generated for the previous example
matching the pattern (a IS VI1)—(b IS VT2)—(c).

[0138] An important aspect to observe is that the simple
path pattern is now transformed into a specialization tree of
operators, which might have multiple leaf nodes. Each path
from a tree root to a tree leaf corresponds to a path
specialization, which generates different paths. Also, every
specialization has the same length. In other words, all the
paths from a root operator to a leaf operator have the same
length, which is equal to the length of the initial path pattern.
Furthermore, each leaf node should produce results into the
graph table result table.

MATCH OPERATORS DATA STRUCTURE
EXTENSIONS

[0139] In heterogeneous graphs processing, match opera-
tors may have multiple children match operators. For a
matching operator where a common prefix ends, referred to
as a branching operator (e.g., the node matching (b) in the
previous example), this branching match operator stores
neighbor information for each of its children match opera-
tors. The branching match operator state stores an Si array,
Li array and Next Valid array for every child match operator.
However, since the Ni array only depends on the previous
neighbor index in the CSR, it can be shared among all the
specializations stored in that operator.

[0140] FIG. 14 illustrates an example of a possible state of
the graph table operators when matching the above-defined
pattern of (a IS VI1)—(b IS VT2)—(c). The branching
operator (b) stores neighbor information for each of its
children match operators, (¢ IS VT1) and (c IS VT2).

Jun. 17,2021

[0141] In an embodiment, the additional number of col-
umns in the data structure corresponding to the branching
match operator for the children match operators are gener-
ated at compile time.

[0142] In an embodiment, the vertex id for each row can
be stored in an Vid array, for optimization, so as the CSR
need not be accessed for same information multiple times.
The pull function of every children acts on a corresponding
pair of Si, Li and Next Valid arrays.

CONTROL FLOW EXTENSION

[0143] In heterogeneous graphs processing, a path pattern
is compiled into a set of independent specialization trees. A
graph table operator executes each of those specialization
trees to produce its output row set. The different specializa-
tion trees can be computed sequentially or in parallel, in
which case, different threads are synchronized when writing
results to the output row set.

[0144] As discussed above, a specialization tree contains
multiple leaf operators. In order to return paths from all
possible specializations, the graph table operator sequen-
tially calls the pull function on the leaf match operators and
writes the matches to the graph table result table. The change
at the row set level is one change to the control flow
execution when there are multiple leaf operators in a spe-
cialization tree.

[0145] Sharing the computation of prefix of a path pattern
in the specialization tree requires the graph table operator to
implement additional control flow to synchronize all leaf
operators feeding on the same branching operators in the
specialization tree. In an embodiment, the graph table opera-
tor may maintain a map <NODE, STATE> that keeps track
of the state of every node in the specialization tree, wherein
STATE can be ACTIVE or WAITING. The initial state for
all nodes in the specialization tree may be ACTIVE.
[0146] Another change to the control flow execution is at
a branch node level. Since the Ni array is shared for all the
specializations starting from a branching operator, the
branching operator must first process all the neighbors for
every specialization before calling the pull function of its
parent match operator to fetch more data. In an embodiment,
branching operators have an additional pull method that
their children will call instead of the original pull method. In
addition, the original pull methods of NM and LNM opera-
tors need extensions.

EXAMPLE HETEROGENEOUS GRAPH
SEARCH PROCESS

[0147] FIG. 15 illustrates another example flow diagram
that depicts a process 1500 for supporting graph pattern
matching queries inside a relational database system. The
process 1500 assumes that a heterogeneous property graph
is defined from relational tables, and an in-memory repre-
sentation of the heterogeneous graph uses a CSR format. A
path pattern expression is compiled into multiple special-
izations, with each specialization rooted by a starting vertex
table in the graph.

[0148] At step 1505, a path pattern expression is evaluated
against an in-memory graph representation by at least
executing a sequence of match operators. The sequence of
match operators includes a root vertex match (RNM) opera-
tor, an intermediate neighbor match (NM) operator that is a
branching NM operator, and a plurality of leaf neighbor

US 2021/0182315 Al

match (LNM) operators. The plurality of LNM operators
includes at least two LNM operators of the plurality that are
children match operators of the branching NM operator. The
branching NM operator is the only operator with more than
one child match operators.

[0149] Each path from the RNM operator to a LNM
operator corresponds to a specialization, which generates
different paths. Every specialization is the same length.
[0150] At step 1510, in response to the branching NM
operator invoking the RNM operator, the RNM operator
stores a current set of matching first level vertices in a root
level data structure.

[0151] At step 1515, in response to the particular LNM
operator of the plurality of LNM operators invoking the
branching NM operator after all of the plurality of LNM
operators have completed generation of current sets of
matching leaf neighbor vertices, the branching NM operator
generates, for each of the plurality of LNM operators, a
current set of matching intermediate neighbor vertices by
accessing the root level data structure, and stores, for each
of the plurality of LNM operators, the current set of match-
ing intermediate neighbor vertices in a shared intermediate
level data structure.

[0152] In an embodiment, the in-memory graph represen-
tation for the heterogeneous graph comprises multiple
CSRs, one per edge table in the graph. The CSRs are
referenced by the branching NM operator when generating
the sets of matching intermediate-neighbor vertices.

[0153] The shared intermediate level data structure stores
once a common path pattern prefix of the path pattern
expression.

[0154] At step 1520, the particular LNM operator of the
plurality of LNM operators is invoked and, in response to
invoking the particular LNM operator, the particular LNM
operator generates a current set of matching leaf neighbor
vertices by accessing the shared intermediate level data
structure and stores the current set of matching leaf neighbor
vertices in a leaf level data structure.

[0155] In an embodiment, the branching NM operator
controls the state of its children match operators (e.g.,
ACTIVE/WAITING) to synchronize consumption of
matches from the common path pattern prefix. A pull request
from all but the last active child match operator results in the
children match operators to wait. A pull request from the last
active child match operator triggers pulling more matches
from the parent match operator (e.g., RNM operator) of the
branching NM operator and reactivating all of the children
match operators of the branching NM operator if additional
matches are available.

[0156] Each of the LNM operators is sequentially invoked
and produces results into a graph table result table. Result
for the path pattern expression may be pipelined with one or
more database relational operators.

[0157] In an embodiment, sharing the processing of the
common path pattern prefix reduces processing and memory
usage and turns the specializations into a specialization tree
of match operators including the branching NM operator.
[0158] As shown, when an operator, in a sequence of
match operators, is asked for tuples or rows by a child
operator, if the operator has tuples, then the child operator
will directly iterate over the neighbors of its parent operator.
However, if the operator does not have tuples, then the
operator will ask the same request from its parent operator.

Jun. 17,2021

EXTENSIONS TO SUPPORT COMPLEX PATH
PATTERNS

[0159] The graph query runtime is extendible to support
path patterns that are more complex than line-shaped path
patterns discussed above.
[0160] Example complex path patterns include:
[0161] trees: An example of a query pattern including
trees which are not line-shaped is (a)—=(b)—(c), (a)—
(d), where (c) is not a leaf node. After (¢) is computed,
(d) is then computed. This can be done by adding in the
data structure holding (c) neighbor information for (a),
such that the runtime knows it has to return to continue
matching other paths.
[0162] cycles: An example of a query pattern including
a cycle is (a)—=(b)—=(c)—(a). A naive initial version
would be to convert the cycle in a cross-variable filter
at query compilation time. The resulting query pattern
would be: (a)—=(b)—=(c)—(d), where (a)=(d).

COMPLEX PATH PATTERNS INVOLVING
TREES

[0163] For complex path patterns involving trees, a data
structure must store results matched by every pattern vari-
able. FIG. 16A illustrates an example tree pattern to compute
and a set of data structures corresponding to vertices in the
tree pattern. The tree pattern can be decomposed as line-
shaped path patterns including:

[0164] (a)—(b),
[0165] (a)—>(c)—>(d),
[0166] (c)—(e), and
[0167] (a)—(D).
[0168] From the tree pattern in FIG. 16A, for example,

when matching (f), it is the neighbors of (a), not the
neighbors of the preceding data structure of (e), that need to
be iterated over because (e) is not (f)’s neighbor. Similarly,
when matching (c), it is the neighbors of (a), not the
neighbors of the preceding data structure of (b), that need to
be iterated over because (b) is not (¢)’s neighbor. Unlike (c)
and (f), the neighbors of the preceding data structure of (b)
are iterated over since (a) is indeed (b)’s neighbor, in the
example of FIG. 16A.
[0169] FIG. 16B illustrates example data structures for
storing match results for the tree pattern of FIG. 16A. As
illustrated in FIG. 16B, the Si and Li arrays in the data
structure corresponding to (b) store neighbor information of
(a). Similarly, the Si and Li arrays in the data structure
corresponding to (e) store neighbor information of (a).
Unlike (¢) and (f), (b) has direct access to neighbor infor-
mation of (a) since the data structure of (b) is sequentially
adjacent to the data structure of (a). Accordingly, the fol-
lowing observations are identified:
[0170] Each of (c¢) and (f) requiring preceding (b) and
(e), respectively, to store neighbor information of (a), is
a child of (a); and
[0171] Data structures of (c) and (f) are not sequentially

adjacent to the data structure of (a). (¢) and (f) do not

have direct access to (a).
[0172] In an embodiment, when computing next neighbor
information of (a), the neighbor information is copied or
replicated in the data structures corresponding to (b) and (e).
Although Si and Li arrays give information about which
neighbors to iterate next, they might not be neighbors of the
current vertex.

US 2021/0182315 Al

EXAMPLE GRAPH SEARCH PROCESS OF A
COMPLEX PATH PATTERN INVOLVING A
TREE

[0173] FIG. 17 illustrates another example flow diagram
that depicts a process 1700 for supporting graph pattern
matching queries inside a relational database system. The
process 1700 assumes that a property graph is defined from
relational tables, an in-memory representation of the graph
uses a CSR format, and a path pattern expression involving
a tree.

[0174] At step 1705, a path pattern expression is evaluated
against an in-memory graph representation by at least
executing a sequence of match operators. The sequence of
match operators includes a first match operator, a second
match operator, a third match operator, a last match operator,
and a previous match operator preceding said last match
operatotr.

[0175] In an embodiment, the path pattern expression
comprises a plurality of nodes that includes a root node and
a plurality of parent nodes. Each parent node of the plurality
of parent nodes has at least one child node. Each child node
is a child of one of the plurality of parent nodes. In an
embodiment, each of the plurality of nodes is associated
with a match operator of the sequence of match operators.
[0176] In an embodiment, neighbor information associ-
ated with a parent node of said plurality of parent nodes is
stored in a data structure for a preceding match operator that
is sequentially before a subsequent match operator that (1)
corresponds to a node that is a child of said parent node and
(2) is not sequentially adjacent to a match operator that
corresponds to said parent node. As an illustration, in the
example of FIGS. 16A and 16B, neighbor information of (a)
is stored only in the data structures corresponding to (b) and
(e), which are sequentially before (c) and (f). Although (b)
is a child of (a), neighbor information of (a) is not stored in
the preceding match operator that is sequentially before (b)
because (b) has direct access to (a)’s neighbor information
as it is sequentially adjacent to (a).

[0177] At step 1710, in response to the second match
operator invoking the first match operator, the first match
operator stores a current set of matching first-level vertices
in a first data structure of the first match operator.

[0178] At step 1715, in response to the third match opera-
tor invoking the second match operator, the second match
operator generates a current set of second matching inter-
mediate-neighbor vertices by accessing the first data struc-
ture and stores the current set of second matching interme-
diate-neighbor vertices in a second data structure of the
second match operator.

[0179] At step 1720, the last match operator is invoked
and, in response to invoking the last match operator, the last
match operator generates a current set of matching leaf-
neighbor vertices by accessing a previous data structure of
the previous match operator and stores the current set of
matching leaf-neighbor vertices in a last data structure of the
last match operator.

[0180] When the last data structure is filled with data, at
least part of a result for the path pattern expression is
generated. In an embodiment, the result for the path pattern
expression may be pipelined with one or more database
relational operators.

[0181] As shown, when an operator, in a sequence of
match operators, is asked for tuples or rows by a child
operator, if the operator has tuples, then the child operator

Jun. 17,2021
10

will directly iterate over the neighbors of its parent operator.
However, if the operator does not have tuples, then the
operator will ask the same request from its parent operator.

COMPLEX PATH PATTERNS INVOLVING
CYCLES

[0182] For complex path patterns involving cycles, there
are different options. A naive option, as described above, is
to transform (a)—=(b)—(c)—(a) to (a)—=(b)—(c)—=(d),
where a=d, and execute the pattern via the current runtime.
[0183] Alternatively, a specialized operator, which is
referred to as a common neighbor match operator, may be
used to iterate over common neighbors when there are two
matched nodes (for example, (a) and (c)). In this regard, (a)
and (c) are first matched and (b) is then matched.

EXAMPLE GRAPH SEARCH PROCESS OF A
COMPLEX PATH PATTERN INVOLVING A
CYCLE

[0184] FIG. 18 illustrates yet another example flow dia-
gram that depicts a process 1800 for supporting graph
pattern matching queries inside a relational database system.
The process 1800 assumes that a property graph is defined
from relational tables, an in-memory representation of the
graph uses a CSR format, and a path pattern expression
involving a cycle.

[0185] At step 1805, a path pattern expression is evaluated
against an in-memory graph representation by at least
executing a sequence of match operators. The sequence of
match operators includes a root-vertex match (RNM) opera-
tor, a plurality of intermediate-neighbor match (NM) opera-
tors, and a leaf-neighbor match (LNM) operator.

[0186] In an embodiment, the path pattern expression
comprises a plurality of nodes that includes a particular node
and a plurality of parent nodes. Each parent node of the
plurality of parent nodes has one child node. Each child node
is a child of one of the plurality of parent nodes.

[0187] In an embodiment, a number of match operators in
said sequence of match operators is one more than a number
of nodes in said plurality of nodes. In an embodiment, each
of the plurality of nodes other than the particular node is
associated with a match operator of a NM operator of the
plurality NM operators. The particular node is associated
with both of the RNM operator and the LNM operator.

[0188] At step 1810, in response to a first NM operator of
the plurality of NM operators invoking the RNM operator,
the RNM operator stores a current set of matching first-level
vertices in a root-level data structure.

[0189] At step 1815, in response to the LNM operator
invoking a last NM operator of the plurality of NM opera-
tors, the last NM operator generates a current set of last
matching intermediate-neighbor vertices by accessing a pre-
vious intermediate-level data structure of a previous NM
operator preceding the last NM operator, and stores the
current set of last matching intermediate-neighbor vertices
in a last intermediate-level data structure.

[0190] At step 1820, the LNM operator is invoked and, in
response to invoking the LNM operator, the LNM operator
generates a current set of matching leaf-neighbor vertices by
accessing the last intermediate-level data structure and
stores the current set of matching leaf-neighbor vertices in a
leaf-level data structure.

US 2021/0182315 Al

[0191] When the leaf-level data structure is filled with
data, at least part of a result for the path pattern expression
is generated. In an embodiment, the result for the path
pattern expression may be pipelined with one or more
database relational operators.

[0192] As shown, when an operator, in a sequence of
match operators, is asked for tuples or rows by a child
operator, if the operator has tuples, then the child operator
will directly iterate over the neighbors of its parent operator.
However, if the operator does not have tuples, then the
operator will ask the same request from its parent operator.

PARALLEL EXECUTION

[0193] In an embodiment, the query engine may exploit
parallelism to efficiently process a path pattern. One con-
sideration is to split work across execution threads. The
main unit of work to parallelize is the neighbor iteration.
Level sync parallelism entails parallelizing neighbor itera-
tion for every operator. Every thread will pick a number of
rows from an operator (e.g., at level i) such that the total
number of neighbors to iterate on is equal to a predefined
job_size constant, and it will write its results at the corre-
sponding chunk of its child operator (e.g., at level i+1).
[0194] Another consideration is to achieve work balance
(fair distribution of work) when high-degree nodes are
present in the data set. In order to achieve work balance,
vertices whose number of neighbors is greater than the
job_size parameter is split. A high degree vertex in an
operator is split it by writing its Ni multiple times in the
corresponding chunk in the child operator, such that for
every row it holds Li-Si<job_size. For vertices whose
number of neighbors is greater than chunk_size*job_size, its
remaining neighbor information is written in a chunk state,
from which the operator can consume on backtrack. This
ensures that every thread iterates over a similar number of
neighbors, achieving thus work balance.

[0195] FIG. 19 illustrates a parallel execution example. By
exploiting parallelism, work balance is achieved since each
thread iterates over the same number of neighbors. No
synchronization is needed because different threads write to
different result chunks. In an embodiment, the job_size
constant is configurable such that the compute time limit per
job inside the DB is DB runtime compliant.

ADAPTIVE OPERATORS

[0196] Inan embodiment, operators (control flow and data
structures) may be tuned in order to adapt them to different
input data. The choice of a tuned operator can be done at
compile time based on various data statistics, such as
average degree of neighbors, diameter, connectivity metrics,
etc., on the input graph.

[0197] When RNM and NM operators consume neigh-
bors, it is checked, for every newly generated neighbor, if it
has next neighbors or not. In the case that it has neighbors,
then the vertex and its neighbor information are written to
the underlying data structure; otherwise, the next neighbor is
checked. This control flow is very effective when the path
pattern has a very high degree of selectivity as it avoids
materializing useless data (neighbors that do not have fur-
ther neighbors). For example, if (a)(b)(c) is matched, then
writing to the data structure storing vertices matching (b) all
the vertices that do not have neighbors (so they cannot have
a (¢)) can be avoided.

Jun. 17,2021

[0198] On the other hand, this control flow can be subop-
timal, as every time a value from CSR dst array (the
neighbor id) is read, CSR src array must be accessed to read
neighbor information. This can break locality and reduce the
potential of using SIMD instructions. In this regard, the
control flow can be modified to first store the neighbor id
(regardless if it has more neighbors or not) and only then
access neighbor information. In the case of non-selective
path patterns, this modification can bring big benefits.

[0199] The same modification can be applied in the case of
heterogeneous graphs. In addition to that, in the case of
branching nodes (that store neighbor information for mul-
tiple children), Ni array may be replicated for every <Si, Li>
pair, allowing for independent iteration over neighbors in
different child specializations. This can be very useful when
the two specializations have different degrees of selectivity.

DIFFERENCES AND ADVANTAGES

[0200] Compared to traditional database systems, the run-
time leverages a main-memory graph representation in a
relational execution engine to achieve graph pattern match-
ing performance, which is significantly better than using
state of the art join operators. In the case of heterogeneous
graphs, the runtime allows sharing computation of common
prefixes across multiple instantiations of a path pattern. This
approach brings savings both in terms of compute time and
memory footprint as the overlapping prefixes need to be
computed and stored only once.

[0201] Compared to traditional graph processing systems,
the runtime efficiently combines BFS and DFS exploration
in order to efficiently address challenges found inside a
single machine relational database system when processing
graph queries (e.g., pipeline friendly, small memory foot-
print and locality on neighbor iteration). The result is a
batch-DFS exploration where, at every level, only a batch of
neighbors is explored. The batch size is configurable at
every level.

[0202] The batch-DFS exploration addresses the above-
mentioned graph processing challenges. For example, the
batch-DFS exploration is pipeline friendly. It is suitable for
usage in relational DBMSs. The batch allows for exploration
of only a small number of neighbors at a time, thus allowing
to stream tuples to the next match/relational operator much
faster than a classical BFS approach. The size of a batch can
be adapted just-in-time to available resource (number of
available core/available memory).

[0203] For another example, the batch-DFS exploration
has a small memory footprint. The total memory footprint of
the runtime can be controlled by configuring the batch size
at every level. This does not limit the size of queries that can
be processed. Generated paths can be stored in a prefix
encoded way by using smart data structures.

[0204] For yet another example, the batch-DFS explora-
tion performs locality on neighbor iteration. It can achieve
the performance of the more classic BFS exploration by
iterating over a batch of neighbors at a time, increasing thus
probability for cache hits.

DATABASE OVERVIEW

[0205] Embodiments of the present invention are used in
the context of database management systems (DBMSs).
Therefore, a description of an example DBMS is provided.

US 2021/0182315 Al

[0206] Generally, a server, such as a database server, is a
combination of integrated software components and an
allocation of computational resources, such as memory, a
node, and processes on the node for executing the integrated
software components, where the combination of the soft-
ware and computational resources are dedicated to providing
aparticular type of function on behalf of clients of the server.
A database server governs and facilitates access to a par-
ticular database, processing requests by clients to access the
database.

[0207] A database comprises data and metadata that is
stored on a persistent memory mechanism, such as a set of
hard disks. Such data and metadata may be stored in a
database logically, for example, according to relational
and/or object-relational database constructs.

[0208] Users interact with a database server of a DBMS by
submitting to the database server commands that cause the
database server to perform operations on data stored in a
database. A user may be one or more applications running on
a client computer that interact with a database server.
Multiple users may also be referred to herein collectively as
a user.

[0209] A database command may be in the form of a
database statement. For the database server to process the
database statements, the database statements must conform
to a database language supported by the database server. One
non-limiting example of a database language that is sup-
ported by many database servers is SQL, including propri-
etary forms of SQL supported by such database servers as
Oracle, (e.g. Oracle Database 11g). SQL data definition
language (“DDL”) instructions are issued to a database
server to create or configure database objects, such as tables,
views, or complex types. Data manipulation language
(“DML”) instructions are issued to a DBMS to manage data
stored within a database structure. For instance, SELECT,
INSERT, UPDATE, and DELETE are common examples of
DML instructions found in some SQL implementations.
SQL/XML is a common extension of SQL used when
manipulating XML data in an object-relational database.
[0210] Generally, data is stored in a database in one or
more data containers, each container contains records, and
the data within each record is organized into one or more
fields. In relational database systems, the data containers are
typically referred to as tables, the records are referred to as
rows, and the fields are referred to as columns. In object-
oriented databases, the data containers are typically referred
to as object classes, the records are referred to as objects, and
the fields are referred to as attributes. Other database archi-
tectures may use other terminology. Systems that implement
the present invention are not limited to any particular type of
data container or database architecture. However, for the
purpose of explanation, the examples and the terminology
used herein shall be that typically associated with relational
or object-relational databases. Thus, the terms “table”,
“row” and “column” shall be used herein to refer respec-
tively to the data container, record, and field.

[0211] Query Optimization and Execution Plans

[0212] Query optimization generates one or more different
candidate execution plans for a query, which are evaluated
by the query optimizer to determine which execution plan
should be used to compute the query.

[0213] Execution plans may be represented by a graph of
interlinked nodes, each representing an plan operator or row
sources. The hierarchy of the graphs (i.e., directed tree)

Jun. 17,2021

represents the order in which the execution plan operators
are performed and how data flows between each of the
execution plan operators.

[0214] An operator, as the term is used herein, comprises
one or more routines or functions that are configured for
performing operations on input rows or tuples to generate an
output set of rows or tuples. The operations may use interim
data structures. Output set of rows or tuples may be used as
input rows or tuples for a parent operator.

[0215] An operator may be executed by one or more
computer processes or threads. Referring to an operator as
performing an operation means that a process or thread
executing functions or routines of an operator are perform-
ing the operation.

[0216] A row source performs operations on input rows
and generates output rows, which may serve as input to
another row source. The output rows may be new rows, and
or a version of the input rows that have been transformed by
the row source.

[0217] A match operator of a path pattern expression
performs operations on a set of input matching vertices and
generates a set of output matching vertices, which may serve
as input to another match operator in the path pattern
expression. The match operator performs logic over multiple
vertex/edges to generate the set of output matching vertices
for a specific hop of a target pattern corresponding to the
path pattern expression.

[0218] An execution plan operator generates a set of rows
(which may be referred to as a table) as output and execution
plan operations include, for example, a table scan, an index
scan, sort-merge join, nested-loop join, filter, and impor-
tantly, a full outer join.

[0219] A query optimizer may optimize a query by trans-
forming the query. In general, transforming a query involves
rewriting a query into another semantically equivalent query
that should produce the same result and that can potentially
be executed more efficiently, i.e. one for which a potentially
more efficient and less costly execution plan can be gener-
ated. Examples of query transformation include view merg-
ing, subquery unnesting, predicate move-around and push-
down, common subexpression elimination, outer-to-inner
join conversion, materialized view rewrite, and star trans-
formation.

HARDWARE OVERVIEW

[0220] According to one embodiment, the techniques
described herein are implemented by one or more special-
purpose computing devices. The special-purpose computing
devices may be hard-wired to perform the techniques, or
may include digital electronic devices such as one or more
application-specific integrated circuits (ASICs) or field pro-
grammable gate arrays (FPGAs) that are persistently pro-
grammed to perform the techniques, or may include one or
more general purpose hardware processors programmed to
perform the techniques pursuant to program instructions in
firmware, memory, other storage, or a combination. Such
special-purpose computing devices may also combine cus-
tom hard-wired logic, ASICs, or FPGAs with custom pro-
gramming to accomplish the techniques. The special-pur-
pose computing devices may be desktop computer systems,
portable computer systems, handheld devices, networking
devices or any other device that incorporates hard-wired
and/or program logic to implement the techniques.

US 2021/0182315 Al

[0221] For example, FIG. 20 is a block diagram that
illustrates a computer system 2000 upon which an embodi-
ment of the invention may be implemented. Computer
system 2000 includes a bus 2002 or other communication
mechanism for communicating information, and a hardware
processor 2004 coupled with bus 2002 for processing infor-
mation. Hardware processor 2004 may be, for example, a
general purpose microprocessor.

[0222] Computer system 2000 also includes a main
memory 2006, such as a random access memory (RAM) or
other dynamic storage device, coupled to bus 2002 for
storing information and instructions to be executed by
processor 2004. Main memory 2006 also may be used for
storing temporary variables or other intermediate informa-
tion during execution of instructions to be executed by
processor 2004. Such instructions, when stored in non-
transitory storage media accessible to processor 2004, ren-
der computer system 2000 into a special-purpose machine
that is customized to perform the operations specified in the
instructions.

[0223] Computer system 2000 further includes a read only
memory (ROM) 2008 or other static storage device coupled
to bus 2002 for storing static information and instructions
for processor 2004. A storage device 2010, such as a
magnetic disk, optical disk, or solid-state drive is provided
and coupled to bus 2002 for storing information and instruc-
tions.

[0224] Computer system 2000 may be coupled via bus
2002 to a display 2012, such as a cathode ray tube (CRT),
for displaying information to a computer user. An input
device 2014, including alphanumeric and other keys, is
coupled to bus 2002 for communicating information and
command selections to processor 2004. Another type of user
input device is cursor control 2016, such as a mouse, a
trackball, or cursor direction keys for communicating direc-
tion information and command selections to processor 2004
and for controlling cursor movement on display 2012. This
input device typically has two degrees of freedom in two
axes, a first axis (e.g., x) and a second axis (e.g., y), that
allows the device to specify positions in a plane.

[0225] Computer system 2000 may implement the tech-
niques described herein using customized hard-wired logic,
one or more ASICs or FPGAs, firmware and/or program
logic which in combination with the computer system causes
or programs computer system 2000 to be a special-purpose
machine. According to one embodiment, the techniques
herein are performed by computer system 2000 in response
to processor 2004 executing one or more sequences of one
or more instructions contained in main memory 2006. Such
instructions may be read into main memory 2006 from
another storage medium, such as storage device 2010.
Execution of the sequences of instructions contained in main
memory 2006 causes processor 2004 to perform the process
steps described herein. In alternative embodiments, hard-
wired circuitry may be used in place of or in combination
with software instructions.

[0226] The term “storage media” as used herein refers to
any non-transitory media that store data and/or instructions
that cause a machine to operate in a specific fashion. Such
storage media may comprise non-volatile media and/or
volatile media. Non-volatile media includes, for example,
optical disks, magnetic disks, or solid-state drives, such as
storage device 2010. Volatile media includes dynamic
memory, such as main memory 2006. Common forms of

Jun. 17,2021

storage media include, for example, a floppy disk, a flexible
disk, hard disk, solid-state drive, magnetic tape, or any other
magnetic data storage medium, a CD-ROM, any other
optical data storage medium, any physical medium with
patterns of holes, a RAM, a PROM, and EPROM, a FLASH-
EPROM, NVRAM, any other memory chip or cartridge.
[0227] Storage media is distinct from but may be used in
conjunction with transmission media. Transmission media
participates in transferring information between storage
media. For example, transmission media includes coaxial
cables, copper wire and fiber optics, including the wires that
comprise bus 2002. Transmission media can also take the
form of acoustic or light waves, such as those generated
during radio-wave and infra-red data communications.
[0228] Various forms of media may be involved in carry-
ing one or more sequences of one or more instructions to
processor 2004 for execution. For example, the instructions
may initially be carried on a magnetic disk or solid-state
drive of a remote computer. The remote computer can load
the instructions into its dynamic memory and send the
instructions over a telephone line using a modem. A modem
local to computer system 2000 can receive the data on the
telephone line and use an infra-red transmitter to convert the
data to an infra-red signal. An infra-red detector can receive
the data carried in the infra-red signal and appropriate
circuitry can place the data on bus 2002. Bus 2002 carries
the data to main memory 2006, from which processor 2004
retrieves and executes the instructions. The instructions
received by main memory 2006 may optionally be stored on
storage device 2010 either before or after execution by
processor 2004.

[0229] Computer system 2000 also includes a communi-
cation interface 2018 coupled to bus 2002. Communication
interface 2018 provides a two-way data communication
coupling to a network link 2020 that is connected to a local
network 2022. For example, communication interface 2018
may be an integrated services digital network (ISDN) card,
cable modem, satellite modem, or a modem to provide a data
communication connection to a corresponding type of tele-
phone line. As another example, communication interface
2018 may be a local area network (LAN) card to provide a
data communication connection to a compatible LAN. Wire-
less links may also be implemented. In any such implemen-
tation, communication interface 2018 sends and receives
electrical, electromagnetic or optical signals that carry digi-
tal data streams representing various types of information.
[0230] Network link 2020 typically provides data com-
munication through one or more networks to other data
devices. For example, network link 2020 may provide a
connection through local network 2022 to a host computer
2024 or to data equipment operated by an Internet Service
Provider (ISP) 2026. ISP 2026 in turn provides data com-
munication services through the world wide packet data
communication network now commonly referred to as the
“Internet” 2028. Local network 2022 and Internet 2028 both
use electrical, electromagnetic or optical signals that carry
digital data streams. The signals through the various net-
works and the signals on network link 2020 and through
communication interface 2018, which carry the digital data
to and from computer system 2000, are example forms of
transmission media.

[0231] Computer system 2000 can send messages and
receive data, including program code, through the network
(s), network link 2020 and communication interface 2018. In

US 2021/0182315 Al

the Internet example, a server 2030 might transmit a
requested code for an application program through Internet
2028, ISP 2026, local network 2022 and communication
interface 2018.

[0232] The received code may be executed by processor
2004 as it is received, and/or stored in storage device 2010,
or other non-volatile storage for later execution.

[0233] A computer system process comprises an allotment
of hardware processor time, and an allotment of memory
(physical and/or virtual), the allotment of memory being for
storing instructions executed by the hardware processor, for
storing data generated by the hardware processor executing
the instructions, and/or for storing the hardware processor
state (e.g. content of registers) between allotments of the
hardware processor time when the computer system process
is not running. Computer system processes run under the
control of an operating system, and may run under the
control of other programs being executed on the computer
system.

[0234] In the foregoing specification, embodiments of the
invention have been described with reference to numerous
specific details that may vary from implementation to imple-
mentation. The specification and drawings are, accordingly,
to be regarded in an illustrative rather than a restrictive
sense. The sole and exclusive indicator of the scope of the
invention, and what is intended by the applicants to be the
scope of the invention, is the literal and equivalent scope of
the set of claims that issue from this application, in the
specific form in which such claims issue, including any
subsequent correction.

SOFTWARE OVERVIEW

[0235] FIG. 21 is a block diagram of a basic software
system 2100 that may be employed for controlling the
operation of computing device 2000. Software system 2100
and its components, including their connections, relation-
ships, and functions, is meant to be exemplary only, and not
meant to limit implementations of the example embodiment
(s). Other software systems suitable for implementing the
example embodiment(s) may have different components,
including components with different connections, relation-
ships, and functions.

[0236] Software system 2100 is provided for directing the
operation of computing device 2000. Software system 2100,
which may be stored in system memory (RAM) 2006 and on
fixed storage (e.g., hard disk or flash memory) 2010,
includes a kernel or operating system (OS) 2110.

[0237] The OS 2110 manages low-level aspects of com-
puter operation, including managing execution of processes,
memory allocation, file input and output (I/O), and device
1/0. One or more application programs, represented as
21024, 2102B, 2102C . . . 2102N, may be “loaded” (e.g.,
transferred from fixed storage 2010 into memory 2006) for
execution by the system 2100. The applications or other
software intended for use on device 2100 may also be stored
as a set of downloadable computer-executable instructions,
for example, for downloading and installation from an
Internet location (e.g., a Web server, an app store, or other
online service).

[0238] Software system 2100 includes a graphical user
interface (GUI) 2115, for receiving user commands and data
in a graphical (e.g., “point-and-click” or “touch gesture”)
fashion. These inputs, in turn, may be acted upon by the
system 2100 in accordance with instructions from operating

Jun. 17,2021

system 2110 and/or application(s) 2102. The GUI 2115 also
serves to display the results of operation from the OS 2110
and application(s) 2102, whereupon the user may supply
additional inputs or terminate the session (e.g., log off).
[0239] OS 2110 can execute directly on the bare hardware
2120 (e.g., processor(s) 2004) of device 2000. Alternatively,
a hypervisor or virtual machine monitor (VMM) 2130 may
be interposed between the bare hardware 2120 and the OS
2110. In this configuration, VMM 2130 acts as a software
“cushion” or virtualization layer between the OS 2110 and
the bare hardware 2120 of the device 2000.

[0240] VMM 2130 instantiates and runs one or more
virtual machine instances (“guest machines”). Fach guest
machine comprises a “guest” operating system, such as OS
2110, and one or more applications, such as application(s)
2102, designed to execute on the guest operating system.
The VMI 2130 presents the guest operating systems with a
virtual operating platform and manages the execution of the
guest operating systems.

[0241] In some instances, the VMM 2130 may allow a
guest operating system to run as if it is running on the bare
hardware 2120 of device 2000 directly. In these instances,
the same version of the guest operating system configured to
execute on the bare hardware 2120 directly may also execute
on VMM 2130 without modification or reconfiguration. In
other words, VMM 2130 may provide full hardware and
CPU virtualization to a guest operating system in some
instances.

[0242] In other instances, a guest operating system may be
specially designed or configured to execute on VMM 2130
for efficiency. In these instances, the guest operating system
is “aware” that it executes on a virtual machine monitor. In
other words, VMM 2130 may provide para-virtualization to
a guest operating system in some instances.

[0243] The above-described basic computer hardware and
software is presented for purpose of illustrating the basic
underlying computer components that may be employed for
implementing the example embodiment(s). The example
embodiment(s), however, are not necessarily limited to any
particular computing environment or computing device con-
figuration. Instead, the example embodiment(s) may be
implemented in any type of system architecture or process-
ing environment that one skilled in the art, in light of this
disclosure, would understand as capable of supporting the
features and functions of the example embodiment(s) pre-
sented herein.

EXTENSIONS AND ALTERNATIVES

[0244] Although some of the figures described in the
foregoing specification include flow diagrams with steps that
are shown in an order, the steps may be performed in any
order, and are not limited to the order shown in those
flowcharts. Additionally, some steps may be optional, may
be performed multiple times, and/or may be performed by
different components. All steps, operations and functions of
a flow diagram that are described herein are intended to
indicate operations that are performed using programming in
a special-purpose computer or general-purpose computer, in
various embodiments. In other words, each flow diagram in
this disclosure, in combination with the related text herein,
is a guide, plan or specification of all or part of an algorithm
for programming a computer to execute the functions that
are described. The level of skill in the field associated with
this disclosure is known to be high, and therefore the flow

US 2021/0182315 Al

diagrams and related text in this disclosure have been
prepared to convey information at a level of sufficiency and
detail that is normally expected in the field when skilled
persons communicate among themselves with respect to
programs, algorithms and their implementation.
[0245] In the {foregoing specification, the example
embodiment(s) of the present invention have been described
with reference to numerous specific details. However, the
details may vary from implementation to implementation
according to the requirements of the particular implement at
hand. The example embodiment(s) are, accordingly, to be
regarded in an illustrative rather than a restrictive sense.
What is claimed is:
1. A method comprising:
evaluating a path pattern expression against an in-memory
graph representation, by at least executing a sequence
of match operators that includes a root-vertex match
(RNM) operator, an intermediate-neighbor match
(NM) operator that is a branching NM operator, and a
plurality of leaf-neighbor match (LNM) operators,

wherein said branching NM operator is associated with at
least two LNM operators of said plurality of LNM
operators;

wherein executing said sequence of match operators

includes:

in response to said branching NM operator invoking said

RNM operator, said RNM operator storing a current set
of matching first-level vertices in a root-level data
structure;

in response to a particular LNM operator of said plurality

of LNM operators invoking said branching NM opera-

tor after all of said plurality of LNM operators com-

pleting generation of current sets of matching leaf-

neighbor vertices:

said branching NM operator generating, for each of
said plurality of LNM operators, a current set of
matching intermediate-neighbor vertices by access-
ing said root-level data structure;

said branching NM operator storing, for each of said
plurality of LNM operators, said current set of
matching intermediate-neighbor vertices in a shared
intermediate-level data structure;

wherein said shared intermediate-level data structure
stores once a common path pattern prefix of said path
pattern expression;

invoking said particular LNM operator of said plurality of

LNM operators, wherein in response to invoking said

particular LNM operator:

said particular LNM operator generating a current set
of matching leaf-neighbor vertices by accessing said
shared intermediate-level data structure;

said particular LNM operator storing said current set of
matching leaf-neighbor vertices in a leaf-level data
structure.

2. The method of claim 1, further comprising generating
at least part of a result for said path pattern expression based
on said leaf-level data structure, said shared intermediate-
level data structure, and said root-level data structure.

3. The method of claim 2, wherein said at least part of said
result for said path pattern expression is generated when said
leaf-level data structure is filled with data.

4. The method of claim 3, further comprising pipelining
said result for said path pattern expression with one or more
database relational operators.

Jun. 17,2021

5. The method of claim 1, further comprising in response
to said branching NM operator generating said current set of
matching intermediate-neighbor vertices by accessing said
root-level data structure, said RNM operator updating data
stored in said root-level data structure.
6. The method of claim 1, further comprising in response
to said particular LNM operator generating said current set
of matching leaf-neighbor vertices by accessing said shared
intermediate-level data structure, said branching NM opera-
tor updating data stored in said shared intermediate-level
data structure.
7. The method of claim 1, wherein said RNM operator is
invoked by said branching NM operator in response to said
branching NM operator being invoked.
8. The method of claim 1, wherein said branching NM
operator is invoked by said particular LNM operator in
response to said particular LNM operator being invoked.
9. The method of claim 1, wherein said branching NM
operator generating a current set of matching intermediate-
neighbor vertices by accessing said root-level data structure
comprises exploring a particular chunk size of a particular
first-level vertex in said current set of matching first-level
vertices in said root-level data structure, wherein said par-
ticular chunk size specifies a number of neighbors of said
particular first-level vertex to explore.
10. The method of claim 1, wherein said particular LNM
operator generating said current set of matching leaf-neigh-
bor vertices by accessing said shared intermediate-level data
structure comprises exploring a particular chunk size of a
particular intermediate-neighbor vertex in said current set of
matching intermediate-neighbor vertices in said shared
intermediate-level data structure, wherein said particular
chunk size specifies a number of neighbors of said particular
intermediate-neighbor vertex to explore.
11. The method of claim 1, wherein said in-memory graph
representation comprises graph topologies referenced by
said branching NM operator when generating said current
set of matching intermediate-neighbor vertices.
12. One or more non-transitory computer-readable stor-
age media storing one or more sequences of program
instructions which, when executed by one or more comput-
ing devices, cause:
evaluating a path pattern expression against an in-memory
graph representation, by at least executing a sequence
of match operators that includes a root-vertex match
(RNM) operator, an intermediate-neighbor match
(NM) operator that is a branching NM operator, and a
plurality of leaf-neighbor match (LNM) operators,

wherein said branching NM operator is associated with at
least two LNM operators of said plurality of LNM
operators;

wherein executing said sequence of match operators

includes:

in response to said branching NM operator invoking said

RNM operator, said RNM operator storing a current set
of matching first-level vertices in a root-level data
structure;

in response to a particular LNM operator of said plurality

of LNM operators invoking said branching NM opera-

tor after all of said plurality of LNM operators com-

pleting generation of current sets of matching leaf-

neighbor vertices:

said branching NM operator generating, for each of
said plurality of LNM operators, a current set of

US 2021/0182315 Al

matching intermediate-neighbor vertices by access-
ing said root-level data structure;

said branching NM operator storing, for each of said
plurality of LNM operators, said current set of
matching intermediate-neighbor vertices in a shared
intermediate-level data structure;

wherein said shared intermediate-level data structure
stores once a common path pattern prefix of said path
pattern expression;

invoking said particular LNM operator of said plurality of

LNM operators, wherein in response to invoking said

particular LNM operator:

said particular LNM operator generating a current set
of matching leaf-neighbor vertices by accessing said
shared intermediate-level data structure;

said particular LNM operator storing said current set of
matching leaf-neighbor vertices in a leaf-level data
structure.

13. The one or more non-transitory computer-readable
storage media of claim 12, wherein the one or more
sequences of the program instructions which, when executed
by the one or more computing devices, further cause gen-
erating at least part of a result for said path pattern expres-
sion based on said leaf-level data structure, said shared
intermediate-level data structure, and said root-level data
structure.

14. The one or more non-transitory computer-readable
storage media of claim 13, wherein said at least part of said
result for said path pattern expression is generated when said
leaf-level data structure is filled with data.

15. The one or more non-transitory computer-readable
storage media of claim 14, wherein the one or more
sequences of the program instructions which, when executed
by the one or more computing devices, further cause pipe-
lining said result for said path pattern expression with one or
more database relational operators.

16. The one or more non-transitory computer-readable
storage media of claim 12, wherein the one or more
sequences of the program instructions which, when executed
by the one or more computing devices, further cause in
response to said branching NM operator generating said
current set of matching intermediate-neighbor vertices by
accessing said root-level data structure, said RNM operator
updating data stored in said root-level data structure.

16

Jun. 17,2021

17. The one or more non-transitory computer-readable
storage media of claim 12, wherein the one or more
sequences of the program instructions which, when executed
by the one or more computing devices, further cause in
response to said particular LNM operator generating said
current set of matching leaf-neighbor vertices by accessing
said shared intermediate-level data structure, said branching
NM operator updating data stored in said shared intermedi-
ate-level data structure.

18. The one or more non-transitory computer-readable
storage media of claim 12, wherein said RNM operator is
invoked by said branching NM operator in response to said
branching NM operator being invoked.

19. The one or more non-transitory computer-readable
storage media of claim 12, wherein said branching NM
operator is invoked by said particular LNM operator in
response to said particular LNM operator being invoked.

20. The one or more non-transitory computer-readable
storage media of claim 12, wherein said branching NM
operator generating a current set of matching intermediate-
neighbor vertices by accessing said root-level data structure
comprises exploring a particular chunk size of a particular
first-level vertex in said current set of matching first-level
vertices in said root-level data structure, wherein said par-
ticular chunk size specifies a number of neighbors of said
particular first-level vertex to explore.

21. The one or more non-transitory computer-readable
storage media of claim 12, wherein said particular LNM
operator generating said current set of matching leaf-neigh-
bor vertices by accessing said shared intermediate-level data
structure comprises exploring a particular chunk size of a
particular intermediate-neighbor vertex in said current set of
matching intermediate-neighbor vertices in said shared
intermediate-level data structure, wherein said particular
chunk size specifies a number of neighbors of said particular
intermediate-neighbor vertex to explore.

22. The one or more non-transitory computer-readable
storage media of claim 12, wherein said in-memory graph
representation comprises graph topologies referenced by
said branching NM operator when generating said current
set of matching intermediate-neighbor vertices.

#* #* #* #* #*

