United States Patent

US011907941B2

(12) ao) Patent No.: US 11,907,941 B2
Nair 45) Date of Patent: Feb. 20, 2024
(54) ANONYMIZATION OF DATA FIELDS IN g’(l);g’(l) ég g% ;gg}g E%Oda et aLl
s s aFever et al.
TRANSACTIONS 9,356,993 Bl 5/2016 Kothari et al.
. 9,467,424 B2* 10/2016 Gluck HO4L 63/0281
(71) Applicant: EntIT Software LLC, Sunnyvale, CA 9,846,716 B1* 12/2017 Scott GOGF 21/6245
(as) 10,333,901 B1* 6/2019 Bauman HOA4L 63/0407
2005/0033777 Al* 2/2005 Moraes GO6F 16/27
(72) Inventor: Sushil Nair, Sunnyvale, CA (US) 2012/0131481 Al* 52012 Gupta ..o GOGF 16/254
715/764
(73) Assignee: Micro Focus LL.C, Santa Clara, CA 2012/0221421 AL* 82012 Hammadc...... G06Q7(1)(5);(1)2
US .
Us) (Continued)
(*) Notice: Subject. to any disclaimer,. the term of this FOREIGN PATENT DOCUMENTS
patent is extended or adjusted under 35
US.C. 154(b) by 813 days. CcA 2363687 AL * 9/2000 HO4L 69/04
WO WO-2017187207 Al 2/2017
(21) Appl. No.: 15/862,346
(22) Filed: Jan. 4, 2018 OTHER PUBLICATIONS
. L Lautenschlager, et al., “A generic Solution for web-based manage-
(65) Prior Publication Data ment of pseudonymized data”, BMC Medical Informatics and
US 2019/0205869 A1 Jul. 4, 2019 Decision Making (2015). (Year: 2015)*
(Continued)
(51) Imt.CL
G060 20/38 (2012.01) Primary Examiner — Neha Patel
GO6F 21/62 (2013.01) Assistant Examiner — Clay C Lee
G060 20/32 (2012.01) (74) Attorney, Agent, or Firm — Sheridan Ross P.C.
(52) US. CL
CPC ... G06Q 20/383 (2013.01); GO6F 21/6254 (57) ABSTRACT
(2013.01); G06Q 20/3223 (2013.01); GO6Q In some examples, a system renders, in a user interface, data
. . . 20/3226 (2013.01) fields of an interface code, the interface code to input or
(58) Field of Classification Search output the data fields in a transaction, and receives a
None o] selection, made in the user interface, of a first data field from
See application file for complete search history. among the data fields of the interface code. The system
. modifies the interface code by adding an indicator associated
(56) References Cited with the first data field, the indicator specifying anonymiza-

U.S. PATENT DOCUMENTS

7,167,924 B1* 1/2007 Symonds G06Q 20/10
705/43
8,930,381 B2 1/2015 Raghunathan et al.
L2 NETWORK
USER DEVICE
14—t | INTERFACE
/\ EDITOR USER M
106—] | INTERFACE 03
DISPLAY DEVICE
16 —— INPUT
DEVICE

tion of the first data field during the transaction that uses the
first data field, the modifying of the interface code producing
a modified interface code.

20 Claims, 5 Drawing Sheets

—104
INTERFACE CODE MODIFICATION SYSTEM
112
2 L 124
INTERFACE INTERFACE |10
EDITOR EXECUTABLE
. CODE FILE
1]
130
INTERFACE
1.
executasle |
POLICY CODE GENERATOR
132 e
ORIGINAL MODIFIED 118
108 INTERFACE INTERFACE
SOURCE SOURCE
CODE FILE CODE FILE
110 T =

US 11,907,941 B2

Page 2
(56) References Cited
U.S. PATENT DOCUMENTS

2014/0040134 Al* 2/2014 Ciurea G06Q 20/383
705/44
2014/0201007 Al* 7/2014 Stackccccoeeeennne G06Q 10/10
705/14.66

2017/0142092 Al 5/2017 Lim
2017/0149793 Al* 5/2017 Spertus HO4L 63/105

OTHER PUBLICATIONS

ARX—Powerful Data Anonymization, Anonymization Tool down-
loaded Nov. 15, 2017 (5 pages).

IBM Knowledge Center, Basic mapping support, https://www.ibm.
com/support’/knowledgecenter/en/SSGMCP_4.2.0/com.ibm.cics.ts
applicationprogramming.doc/topics/dfthp370.html downloaded on
Dec. 7, 2017 (3 pages).

Voltage Security, White Paper, Streamlining Information Protection
Through a Data-centric Security Approach, 2013 (13 pages).
Wikipedia, CICS last edited Jul. 6, 2017 (15 pages).

Wikipedia, Mainframe computer last edited Nov. 19, 2017 (8
pages).

* cited by examiner

US 11,907,941 B2

Sheet 1 of 5

Feb. 20, 2024

U.S. Patent

r r =11
T4 3000 rEsIL 2
304N0S 304N0S N
a1 3ovaIN JOVAHILNI 801
314100 TYNIDINO
|
| BN
| |
\
4OLVYINID 300D r
1] Tavinoaa
0cl JOVANIINI
| 0€1
P !
I714 3009 _
| Y mavinoaa yoLla3
¢el— JOV4YIINI FOVAUILNI
<> N—zn
W3LSAS NOILYOIJICON 300D IDVAYILINI
01—

€01

[Ol

NHOMLIN

ENILEI
1NdNI

N

J0IA3d AV1dSId
JOVAYALINI

-1 43SN YOLIdI N

JOVAYLINI

01A30 ¥3SN

— 9Tl

— 901
— V1l

01—/

US 11,907,941 B2

Sheet 2 of 5

Feb. 20, 2024

U.S. Patent

~— N

_H AJM0d R
>

e

3114 3003
319v1N33IX3 [

30I1A3d
viz—1 3J0V44IINI
A
ANIHNI
ADI10d -
N—01¢
| —80¢
NHNJ 3007
379Y.LNo3AX3
WYHO0dd = JOVAYILNI

W3LSAS ONISSI0048d NOILIVSNYHL

N— 90z

JOV4HALNI

N
S,

US 11,907,941 B2

Sheet 3 of 5

Feb. 20, 2024

U.S. Patent

€ Ol

WILSAS DNISSIO0Ud NOILOVSNYYL
01— NI 3NTVA Y1va 3LVOINNIWINOD

/

/

NOILYZINANONY WH0443d ANV ADI70d
JHL 'INIONT AOIT0d JHL A9 ‘AlddV

~—80¢

A

AJN0d ONIANOdSIHH0O FAII¥LFY
ANV Q1314 v1vd d30404N3-A0I10d
JHL INIONT AOIM0d JHL A9 ‘AJIINAQI

~—90¢

A

@114 v1vd d30H0AN3-AJIT0d
FHL HLIM Q31VIO0SSY 1IX3 3Fdi4

~—10¢

/

Q1314 V1vd d30404N3-AOITOd-NON V
404 d3¥34IN3 INIVA VIVad vV 133144

d1314 V1vd d33404N3-A3I10d
404 d3¥4IN3 INIVA vVIVad vV 133144

~—20¢

U.S. Patent Feb. 20, 2024 Sheet 4 of 5 US 11,907,941 B2

STORAGE MEDIUM (400)

DATA FIELD RENDERING INSTRUCTIONS |1 402
DATA FIELD SELECTION INSTRUCTIONS b #04
INTERFACE CODE MODIFICATION INSTRUCTIONS | 1~406

SYSTEM (500)

502 PROCESSOR

S04 STORAGE MEDIUM

INTERFACE CODE EXECUTING INSTRUCTIONS 506
DATA VALUE RECEIVING INSTRUCTIONS 508
ANONYMIZATION APPLYING INSTRUCTIONS 510
ANONYMIZED DATA FIELD USING INSTRUCTIONS KT T 2%

FIG. 5

U.S. Patent Feb. 20, 2024 Sheet 5 of 5 US 11,907,941 B2

RENDER, IN A USER INTERFACE, DATA FIELDS
OF AN INTERFACE CODE, THE INTERFACE CODE TO
INPUT OR OUTPUT THE DATA FIELDS IN A TRANSACTION

,— 602

Y

RECEIVE A SELECTION, MADE IN THE USER INTERFACE,
OF A FIRST DATA FIELD FROM AMONG THE DATA
FIELDS OF THE INTERFACE CODE

,—604

MODIFY THE INTERFACE CODE BY ADDING AN
INDICATOR ASSOCIATED WITH THE FIRST DATA FIELD,
THE INDICATOR SPECIFYING ANONYMIZATION OF THE ,—606
FIRST DATA FIELD DURING THE TRANSACTION THAT
USES THE FIRST DATA FIELD, THE MODIFYING OF THE

INTERFACE CODE PRODUCING A MODIFIED INTERFACE CODE

DURING THE EXECUTION OF THE MODIFIED INTERFACE
CODE IN THE TRANSACTION, INTERCEPT A RECEIVED VALUE
OF THE FIRST DATA FIELD IN RESPONSE TO THE
INDICATOR, AND ANONYMIZE THE RECEIVED VALUE OF THE
FIRST DATA FIELD FOR USE IN THE TRANSACTION

,— 608

FIG. 6

US 11,907,941 B2

1
ANONYMIZATION OF DATA FIELDS IN
TRANSACTIONS

BACKGROUND

Transactions can be executed in transaction processing
systems. During a transaction, data can be communicated
and output. Transactions can be executed in a computer or
in a collection of computers.

BRIEF DESCRIPTION OF THE DRAWINGS

Some implementations of the present disclosure are
described with respect to the following figures.

FIG. 1 is a block diagram of an arrangement that includes
a user device and an interface code modification system,
according to some examples.

FIG. 2 is a block diagram of an arrangement that includes
a ftransaction processing system according to further
examples.

FIG. 3 is a flow diagram of a process according to some
examples.

FIG. 4 is a block diagram of a storage medium storing
machine-readable instructions according to further
examples.

FIG. 5 is a block diagram of a system according to
additional examples.

FIG. 6 is a flow diagram of a process according to other
examples.

Throughout the drawings, identical reference numbers
designate similar, but not necessarily identical, elements.
The figures are not necessarily to scale, and the size of some
parts may be exaggerated to more clearly illustrate the
example shown. Moreover, the drawings provide examples
and/or implementations consistent with the description;
however, the description is not limited to the examples
and/or implementations provided in the drawings.

DETAILED DESCRIPTION

In the present disclosure, use of the term “a,” “an”, or
“the” is intended to include the plural forms as well, unless
the context clearly indicates otherwise. Also, the term
“includes,” “including,” “comprises,” “comprising,”
“have,” or “having” when used in this disclosure specifies
the presence of the stated elements, but do not preclude the
presence or addition of other elements.

Data can be communicated between different entities
(e.g., users, programs, and/or machines) during a transac-
tion. As used here, a “transaction” refers to any collection of
activities that processes or uses data. A transaction can be
supported by a transaction processing system, which is a
system implemented with a computer or a collection of
computers.

In some examples, a transaction processing system can be
implemented using a mainframe computer or a collection of
mainframe computers. A mainframe computer can refer to a
computer with relatively extensive processing capabilities
and redundancy to protect against failure of electronic
components and/or errors in data. For example, a mainframe
computer can include redundant processors, and/or redun-
dant memory or storage subsystems, and/or other redundant
resources. Although reference is made to mainframe com-
puters in some examples, it is noted that in other examples,
transaction processing systems can be implemented using
non-mainframe computers.

10

15

20

25

30

35

40

45

50

55

60

65

2

A transaction processing system can support multiple
transactions using system resources (e.g., processing
resources, memory resources, communication resources,
etc.) of the transaction processing system. For example, the
multiple transactions can be executed in an interleaved or
concurrent manner to allow the multiple transactions to
share the system resources.

To protect data against unauthorized access during trans-
actions performed by a transaction processing system, ano-
nymization can be applied to the data communicated
between different entities. Anonymization of data can refer
to encrypting the data, applying tokenization to the data,
scrambling the data, or performing any other type of obfus-
cation of the data such that the data is transformed from an
original form to a different form that prevents an unauthor-
ized entity from accessing the data in the original form.

In some examples, a human programmer may have to
manually analyze a source code of a program that executes
during a transaction. In the manual analysis of the program
source code, the human programmer can identify sensitive
data fields that are to be protected. However, the program
source code can be complex, especially in program source
code for mainframe computers or in situations where per-
sonnel with the appropriate skills are not available or
comments or documents are not available. Moreover, under-
standing inter-dependencies between different parts of the
program and between different programs for the purpose of
identifying data fields to anonymize can be challenging.

It can thus be challenging to identify exact locations in the
program source code where anonymization or de-anony-
mization calls have to be introduced. Also, it can be complex
to ensure that modified portions of the source code are
functionally equivalent to corresponding portions of the
original source code, and to test the source code to ensure
that there is no security exposure. The foregoing analysis
and source code modification is labor-intensive and error-
prone.

In accordance with some implementations of the present
disclosure, techniques and mechanisms for anonymizing
data used during transactions can include an analysis stage
and a runtime stage. In the analysis stage, a system can
render data fields of an interface code in a user interface. An
“interface code” can refer to a code that inputs and outputs
data. An interface code can be associated with a program,
with the interface code used to output data for the program.
Examples of an interface code include an interface code to
display data in a display screen, an interface code to print
data, an interface code to transmit data over a network, and
so forth. Note that the interface code can be separate from
the program, or can be part of the program.

In the analysis stage, a system can receive a selection,
made in the user interface, of a selected data field from
among the data fields input and/or output by the interface
code. The system can modify the interface code by adding
an indicator associated with the selected data field, the
indicator specifying anonymization of the selected data field
during the transaction that uses the selected data field. The
modifying of the interface code produces a modified inter-
face code.

By adding the indicators specifying anonymization of
selected data fields to the interface code instead of the
associated program, some techniques or mechanisms
according to the present disclosure can avoid making modi-
fications to the associated program or having to understand
the logic of the program. Thus, adding the indicators speci-
fying anonymization to the interface code allows for achiev-

US 11,907,941 B2

3

ing a level of security to protect selected data fields without
having to modify the associated program.

In the runtime stage, when a data value for the selected
data field is received in a transaction, the system can
intercept the selected data field, apply the anonymization of
the selected data field during the transaction (applied ano-
nymization producing an anonymized data field), and use
the anonymized first data field during the given transaction
without de-anonymizing the anonymized first data field. For
example, when a data value is entered for the selected data
field, the data value of the selected data field can be
anonymized. The data value of the selected data field can
remain anonymized throughout the transaction (such as
when the data value of the selected data field is read, stored
to memory, stored in a persistent storage such as a disk, or
processed by processor) so that data leak is prevented or
reduced. In some cases, if the data value of the selected data
field is to be displayed, the data value of the selected data
field can be de-anonymized (either fully or partially) so that
an authorized user can view the fully or partially de-
anonymized data value.

FIG. 1 is a block diagram of an example arrangement that
includes a user device 102 and an interface code modifica-
tion system 104 according to some implementations of the
present disclosure. The user device 102 can be any elec-
tronic device that includes a display device 106 to allow a
user to display information provided by the interface code
modification system 104 over a network 103. For example,
the user device 102 can include a terminal device, a com-
puter (e.g., a notebook computer, a desktop computer, a
tablet computer, etc.), a smartphone, and so forth.

The interface code modification system 104 can be used
during the analysis stage, and can include a source code
repository 108 that stores original interface source code files
110. The source code repository 108 can be implemented
using a storage device or a collection of storage devices.
Although a specific number of original interface source code
files 110 is depicted in FIG. 1, it is noted that in other
examples, the source code repository 108 can store a dif-
ferent number of original interface source code files (one
original interface source code file or more than one original
interface source code file).

Each original interface source code file 110 can include
source code that inputs data and outputs data, such as
displays data, prints data, or communicates data over a
network, as examples. The data that is output by the original
interface source code file 110 (or more specifically, by an
interface executable code that is produced based on the
original interface source code file 110), can include data
fields. A “data field” can refer to any piece of data that can
be output, such as a person’s name, a person’s social security
number, a quantity of a product, a price of a product, or any
other information that relates to a person, a product, a
service, or any other entity.

The interface code modification system 104 also can
include an interface editor 112, which can be implemented
as machine-readable instructions executable on a processor
(or multiple processors) of the interface code modification
system 104.

The interface editor 112 can include a parser that is able
to parse the original interface source code file 110 to
generate an output that includes the data fields. The syntax
specifies each data field, where in the interface the data field
is to be output (e.g., displayed, printed, etc.), attributes of the
data field (e.g., a display attribute of the data field, such as
whether the data field should be made bright, highlighted,
etc.), and so forth. The parser when parsing the original

5

10

15

20

25

30

35

40

45

50

55

60

65

4

interface source code file 110 can then render on an interface
editor user interface 114 exactly what the user would see on
each type of device the data is to be output. In addition, the
interface editor user interface 114 provided by the interface
editor 112 can allow a user to select interesting data fields
(such as for anonymization) and assign characteristics to
modify the data field.

In some examples, there can be separate interface editors
112 for respective original interface source code files 110.
For example, each different type of original interface source
code file 110 can be associated with a corresponding inter-
face editor 112. In other examples, the same interface editor
can be used to process different types of original interface
source code files 110.

The interface editor 112 can produce the output including
the data fields of the original interface source code file 110
in the interface editor user interface 114 that is displayed by
the display device 106 of the user device 102. In some
examples, the interface editor user interface 114 can include
a graphical user interface that includes selectable graphical
elements representing respective data fields. In other
examples, the interface editor user interface 114 can include
a different type of user interface, such as a text-based
interface, a command line interface, and so forth.

Using an input device 116 of the user device 102, a user
at the user device 102 can select a data field (or alternatively,
multiple data fields) of the output that is presented by the
interface editor 112 in the interface editor user interface 114.
The input device 116 can include a keyboard, a pointing
device such as a mouse device or a track pad, or a touch-
sensitive surface such as a touch-sensitive display screen,
and so forth.

A selection of a data field for anonymization can be
communicated back from the user device 102 to the inter-
face code modification system 104, such as over the network
103.

In response to each received selection of a data field for
anonymization from the user device 102, the interface editor
112 can modify the corresponding original interface source
code file 110 to produce a respective modified interface
source code file 118. The modified interface source code file
118 can be stored in the source code repository 108 (or
alternatively, in a separate source code repository). For each
original interface source code file 110 that is modified, the
interface editor 112 can generate a corresponding modified
interface source code file 118.

The modification of the original interface source code file
110 can involve adding an indicator associated with each
data field selected in the interface editor user interface 114
for anonymization. The indicator that is added specifies
anonymization of a data field during a transaction that uses
the data field. The modified interface source code file 118
can include the indicator that is added.

In some examples, the indicator that is associated with
each data field to be anonymized is an exit indicator that
causes the interface code to call back an exit or callback
function when a data value of the data field is to change
during execution of the interface code. In examples where a
transaction processing system is a Customer Information
Control System (CICS) from IBM, each original interface
source code file 110 can be according to the Basic Mapping
Support (BMS) interface, and the exit indicator can include
a Global User Exit (GLUE). BMS is an application pro-
gramming interface (API) between a CICS program and a
terminal device.

US 11,907,941 B2

5

In other examples, other types of transaction processing
systems can be used, and each original interface source code
file 110 can be according to other formats.

In some examples, a data field can be associated with a
number of attributes. Some of the attributes can specity an
output form of the data field, such as a brightness attribute,
an attribute to indicate that the data field is not to be
displayed when a value is entered, or any other attribute that
controls how the data field is to be displayed. In further
examples, other attributes can be associated with a data field.
A further attribute that can be associated with a data field can
be an exit attribute (or more generally, the exit indicator),
which if set to an active value causes execution of the
interface code to be directed to a callback program. On the
other hand, if the exit attribute is an inactive value, then a
callback program is not invoked when the data field is
encountered during execution of the interface code in a
transaction.

An interface executable code generator 120 in the inter-
face code modification system 104 can generate respective
interface executable code files 122 from the corresponding
modified interface source code files 118. In some examples,
the interface executable generator 120 can include a com-
piler to compile each modified interface source code file 118.
In other examples, the interface executable code generator
120 can include a macro generator that generates a macro (in
the form of an interface executable code file 122) from a
respective modified interface source code file 118. In further
examples, the interface executable code generator 120 can
include an assembler to assemble the modified interface
source code file 118 into assembly code, which is machine
code executable by a system.

In additional examples, other types of code generators can
be used.

The interface executable code files 122 can be stored in an
executable code repository 124, which can be implemented
with a storage device or a number of storage devices. The
repository 124 can be the same as or different from the
repository 108.

In addition to being able to select data fields for anony-
mization, the user at the user device 102 can also set
anonymization policies 132, using the interface editor user
interface 114 presented by the interface editor 112, govern-
ing how a data field selected for anonymization is to be
anonymized or de-anonymized. FIG. 1 shows an example
where policies 132 set by the user at the interface editor user
interface 114 can be stored in a policy database 130. The
interface editor user interface 114 can include elements that
represent respective policies that are selectable by a user to
associate the selected policies 132 with respective data
fields. The policies 132 stored in the policy database 130 can
be associated with a data field (or multiple data fields) of an
interface executable code file 122.

FIG. 2 shows a transaction processing system 206 in
which an interface executable code 208 is executed during
the runtime stage. Although FIGS. 1 and 2 show the inter-
face code modification system 104 of FIG. 1 and the
transaction processing system 206 of FIG. 2 as being sepa-
rate systems, it is noted that in other examples, the interface
code modification system 104 and the transaction processing
system 206 can be part of the same system.

The interface executable code 208 can be executed from
an interface executable code file 122 produced by the
interface executable code generator 120 of FIG. 1 from a
corresponding modified interface source code file 118.

The transaction processing system 206 also can include a
policy engine 210 that can apply the policies 132 associated

10

15

20

25

30

35

40

45

50

55

60

65

6

with a data field (or multiple data fields) that are to be output
by the interface executable code 208 during runtime execu-
tion in the transaction processing system 206. The interface
executable code 208 can be associated with a program 212
that executes in the transaction processing system 206. The
program 212 can contain logic for performing transactions,
whereas the interface executable code 208 includes the logic
to output data fields.

The data fields can be output by the interface executable
code 208 to an interface device 214, which can be a display
of a user device or other electronic device, a printer, a
network, and so forth. The multiple policies 132 can be
associated with a particular data field. The different policies
132 can correspond to different user privileges, in some
examples. More generally, the different policies 132 can be
associated with different entities, such as users, programs, or
machines.

For example, if a first user having a first privilege initiates
a transaction executed by the transaction processing system
206, then a first policy 132 would be used to apply anony-
mization of the particular data field. On the other hand, if a
second user having a second privilege initiates a transaction
in the transaction processing system 206, then a second
policy 132 would be used to apply anonymization (or
de-anonymization) to the particular data field.

It is noted that after anonymization is applied to a data
value of the particular data field, de-anonymization may be
desirable in some cases. For example, for a user having a
given privilege, it may be permissible to de-anonymize
(either fully or partially) the data value of the particular data
field to display the data value of the particular data field. The
de-anonymization can be performed according to a selected
policy—the selected policy can be a first policy if the
requesting user or other entity has a first privilege, a first
role, or some other permission level, and the selected policy
can be a second policy if the requesting user or other entity
has a second privilege, a second role, or some other per-
mission level.

For example, the particular data field can be a social
security number field, and the transaction processing system
206 may allow for the social security number to be com-
pletely visible (or partially visible) to a user on a display
screen. A first policy can specify that the social security
number is completely de-anonymized, so that the full social
security number can be displayed. A second policy can
specify that the social security number is partially de-
anonymized (e.g., the last four digits of the social security
number are de-anonymized, while the remaining digits of
the social security number remain anonymized).

In cases where a data value of a data field is de-anony-
mized, the de-anonymized data value of the data field can be
stored in a secure memory of the transaction processing
system 206, to prevent the de-anonymized data value of the
data field from being accessible to an unauthorized entity.
The transaction processing system 206 can prevent the
de-anonymized data value of the data field in the secure
memory from being logged into a log file, such as a log file
created when a crash or other error of the transaction
processing system 206. This can avoid inadvertently storing
a de-anonymized data value of a data field into a log file.

FIG. 3 is a flow diagram of a process relating to how
entered data values are processed for a transaction by the
transaction processing system 206, such as by machine-
readable instructions executable in the transaction process-
ing system 206. The transaction processing system 206
detects (at 302) a data value entered for a policy-enforced
data field. The data value can be entered by a user or by

US 11,907,941 B2

7

another entity. A policy-enforced data field refers to a data
field associated with an indicator set to an active value to
indicate that the data field is to be anonymized during a
transaction.

In response to the detecting (at 302), the transaction
processing system 206 fires (at 304) the exit associated with
the policy-enforced data field. Firing the exit refers to
invoking the corresponding callback program associated
with the exit indicator in the interface executable code 208.
The callback program can be an entry point into the policy
engine 210.

The policy engine 210 identifies (at 306) the policy-
enforced data field and retrieves the corresponding policy,
which can be selected from among multiple policies depend-
ing on a permission level of the entity that entered the data
value. The policy engine 210 then applies (at 308) the
corresponding policy and performs the specified anonymiza-
tion (or de-anonymization) on the policy-enforced data field.
The transaction processing system 206 then communicates
(at 310) the anonymized data value in the transaction
processing system. In the case of the policy-enforced data
field, the data value that is communicated is an anonymized
version of the data value of the policy-enforced data field.

In other examples, the transaction processing system 206
can detect (at 312) a data value entered for a non-policy-
enforced data field. In such cases, anonymization of the data
value for the non-policy-enforced data field is not per-
formed, and the data communicated (at 310) in the transac-
tion processing system 206 can be a non-anonymized ver-
sion of the data value for the non-policy-enforced data field.

FIG. 4 is a block diagram of a non-transitory machine-
readable or computer-readable storage medium 400 storing
machine-readable instructions that upon execution cause a
system to perform various tasks. The machine-readable
instructions include data field rendering instructions 402 to
render, in a user interface (such as the interface editor user
interface 114 of FIG. 1), data fields of an interface code that
is to input or output the data fields in a transaction. The
machine-readable instructions further include data field
selection instructions 404 to receive a selection, made in the
user interface, of a first data field from among the data fields
of the interface code. The machine-readable instructions
further include interface code modification instructions 406
to modify the interface code by adding an indicator associ-
ated with the first data field, the indicator specifying ano-
nymization of the first data field during the transaction that
uses the first data field, the modifying of the interface code
producing a modified interface code.

FIG. 5 is a block diagram of a system 500 that includes
a processor 502 (or multiple processors), and a non-transi-
tory storage medium 504 storing machine-readable instruc-
tions executable on the processor to perform various tasks.
A processor can include a microprocessor, a core of a
multi-core microprocessor, a microcontroller, a program-
mable integrated circuit, a programmable gate array, or
another hardware processing circuit. Machine-readable
instructions executable on a processor can refer to machine-
readable instructions executable on a single processor or
machine-readable instructions executable on multiple pro-
Cessors.

The machine-readable instructions include interface code
executing instructions 506 to execute, in a transaction, an
interface code that includes an indicator associated with a
first data field to be input or output by the interface code. The
machine-readable instructions further include data value
receiving instructions 508 to receive a data value of the first
data field during the transaction. The machine-readable

5

10

15

20

25

30

35

40

45

50

55

60

65

8

instructions further include anonymization applying instruc-
tions 510 to apply anonymization of the data value of the
first data field in response to the indicator, to produce an
anonymized first data field value. The machine-readable
instructions further anonymized data field using instructions
512 to use the anonymized first data field value during the
transaction.

The system 500 can retrieve an anonymization policy
from among a plurality of anonymization policies that are
associated with the first data field in a policy database, where
the applying of the anonymization of the data value of the
first data field is based on retrieved anonymization policy. In
some examples, the plurality of anonymization policies are
associated with different entities, and the retrieving of the
anonymization policy from among the plurality of anony-
mization policies is responsive to which entity invoked the
transaction.

FIG. 6 is a flow diagram of a process performed by a
system according to some examples. The process includes
rendering (at 602), in a user interface, data fields of an
interface code, the interface code to input or output the data
fields in a transaction. The process includes receiving (at
604) a selection, made in the user interface, of a first data
field from among the data fields of the interface code. The
process further includes modifying (at 606) the interface
code by adding an indicator associated with the first data
field, the indicator specifying anonymization of the first data
field during the transaction that uses the first data field, the
modifying of the interface code producing a modified inter-
face code. The process further includes, during execution of
the modified interface code in the transaction, intercepting
(at 608) a received value of the first data field in response to
the indicator, and anonymizing the received value of the first
data field for use in the transaction.

The storage medium 400 of FIG. 4 or 504 of FIG. 5 can
include any or some combination of the following: a semi-
conductor memory device such as a dynamic or static
random access memory (a DRAM or SRAM), an erasable
and programmable read-only memory (EPROM), an elec-
trically erasable and programmable read-only memory (EE-
PROM) and flash memory; a magnetic disk such as a fixed,
floppy and removable disk; another magnetic medium
including tape; an optical medium such as a compact disk
(CD) or a digital video disk (DVD); or another type of
storage device. Note that the instructions discussed above
can be provided on one computer-readable or machine-
readable storage medium, or alternatively, can be provided
on multiple computer-readable or machine-readable storage
media distributed in a large system having possibly plural
nodes. Such computer-readable or machine-readable storage
medium or media is (are) considered to be part of an article
(or article of manufacture). An article or article of manu-
facture can refer to any manufactured single component or
multiple components. The storage medium or media can be
located either in the machine running the machine-readable
instructions, or located at a remote site from which machine-
readable instructions can be downloaded over a network for
execution.

In the foregoing description, numerous details are set
forth to provide an understanding of the subject disclosed
herein. However, implementations may be practiced without
some of these details. Other implementations may include
modifications and variations from the details discussed
above. It is intended that the appended claims cover such
modifications and variations.

US 11,907,941 B2

9

What is claimed is:

1. A non-transitory machine-readable storage medium
storing instructions that, when executed by one or more
processors in a system, cause the one or more processors of
the system to:

parse a first interface source code to generate selectable

data fields that are to be used in a transaction;

cause the generated selectable data fields to be displayed

on a user interface;

receive a selection of a first data field from among the

generated selectable data fields displayed on the user
interface;

in response to receiving the selection of the first data field,

modify the first interface source code by adding, at a
location in the first interface source code that generates
the first data field, an indicator that instructs the one or
more processors to anonymize a data value of the first
data field during a given transaction that uses the first
data field; and

generate an executable interface code based on the modi-

fied first interface source code wherein the executable
interface code is executable to perform an anonymiza-
tion of the data value of the first data field.

2. The non-transitory machine-readable storage medium
of claim 1, wherein the instructions are executable to cause
the one or more processors of the system to:

associate a policy with the first data field, the policy

defining the anonymization of the data value of the first
data field to apply during the given transaction.

3. The non-transitory machine-readable storage medium
of claim 2, wherein the instructions are executable to cause
the one or more processors of the system to:

receive a selection of the policy through the user interface.

4. The non-transitory machine-readable storage medium
of claim 2, wherein the anonymization defined by the policy
is a first type of anonymization, and wherein the instructions
are executable to cause the one or more processors of the
system to:

associate a second policy with the first data field, the

second policy defining a second type of anonymization
of the first data field to apply during a further transac-
tion that uses the first data field.

5. The non-transitory machine-readable storage medium
of claim 2, wherein the policy specifies that the anonymiza-
tion is applied responsive to a first entity or a first group of
entities invoking the given transaction, and wherein the
instructions are executable to cause the one or more pro-
cessors of the system to:

associate a second policy with the first data field, the

second policy specifying that the anonymization is not
to be applied if a second entity or a second group of
entities invokes a further transaction that uses the first
data field.

6. The non-transitory machine-readable storage medium
of claim 1, wherein the indicator in the modified first
interface source code comprises an exit indicator that causes
invocation of a callback program, and wherein the execut-
able interface code when executed invokes the callback
program to cause the anonymization of the data value of the
first data field during the given transaction.

7. The non-transitory machine-readable storage medium
of claim 6, wherein the callback program is an entry point
to a policy engine, and the instructions are executable to
cause the one or more processors of the system to:

during the given transaction that uses the first data field,

intercept the first data field; and

5

10

20

25

30

35

40

45

50

55

60

10

apply, by the policy engine responsive to the callback
program, the anonymization of the data value of the
first data field during the given transaction.

8. The non-transitory machine-readable storage medium
of claim 7, wherein the applying of the anonymization of the
data value of the first data field during the given transaction
comprises accessing a policy database to retrieve a policy
that specifies the anonymization of the data value of the first
data field.

9. The non-transitory machine-readable storage medium
of claim 1, wherein the instructions are executable to cause
the one or more processors of the system to:

during execution of the executable interface code in the

given transaction that uses the first data field, intercept
the first data field;
apply the anonymization of the data value of the first data
field during the given transaction, the applied anony-
mization producing an anonymized first data field; and

use the anonymized first data field during the given
transaction without de-anonymizing the anonymized
first data field.

10. A method executed by a system comprising a hard-
ware processor, the method comprising:

parsing a first interface source code to generate selectable

data fields that are to be used in a transaction;
causing the generated selectable data fields to be dis-
played on a user interface;

receiving a selection of a first data field from among the

generated selectable data fields displayed on the user
interface;

in response to receiving the selection of the first data field,

modifying the first interface source code by adding, at
a location in the first interface source code that gener-
ates the first data field, an indicator that instructs the
hardware processor to anonymize a data value of the
first data field during a given transaction that uses the
first data field; and

generating an executable interface code based on the

modified first interface source code, wherein the
executable interface code is executable to perform an
anonymization of the data value of the first data field.
11. The method of claim 10, further comprising:
during execution of the executable interface code in the
given transaction, intercepting a received value of the
first data field in response to the indicator; and

anonymizing the received value of the first data field for
use in the given transaction, wherein the anonymizing
of the received value of the first data field comprises at
least one selected from among encrypting the received
value of the first data field, applying tokenization to the
received value of the first data field, or scrambling the
received value of the first data field.

12. The method of claim 10, further comprising:

associating a policy with the first data field, the policy

defining the anonymization of the data value of the first
data field to apply during the given transaction.

13. The method of claim 12, further comprising:

receiving a selection of the policy through the user

interface.

14. The method of claim 12, wherein the anonymization
defined by the policy is a first type of anonymization, and the
method further comprising:

associating a second policy with the first data field, the

second policy defining a second type of anonymization
of the first data field to apply during a further transac-
tion that uses the first data field.

US 11,907,941 B2

11

15. The method of claim 12, wherein the policy specifies
that the anonymization is applied responsive to a first entity
or a first group of entities invoking the given transaction, and
the method further comprising:

associating a second policy with the first data field, the

second policy specifying that the anonymization is not
to be applied if a second entity or a second group of
entities invokes a further transaction that uses the first
data field.

16. The method of claim 10, wherein the indicator com-
prises an exit indicator that causes invocation of a callback
program.

17. A system comprising:

a processor; and

a non-transitory storage medium storing instructions

executable on the processor to:

parse a first interface source code to generate selectable
data fields that are to be used in a transaction;

cause the generated selectable data fields to be dis-
played on a user interface;

receive a selection of a first data field from among the
generated selectable data fields displayed on the user
interface;

in response to receiving the selection of the first data
field, modify the first interface source code by add-
ing, at a location in the first interface source code that
generates the first data field, an indicator that
instructs the processor to anonymize a data value of
the first data field during a given transaction that uses
the first data field; and

5

10

15

20

25

12

generate an executable interface code based on the
modified first interface source code, wherein the
executable interface code is executable to perform an
anonymization of the data value of the first data field.

18. The system of claim 17, wherein the instructions are
executable to cause the processor to:

during execution of the executable interface code in the

given transaction that uses the first data field, intercept
the first data field;
apply the anonymization of the data value of the first data
field during the given transaction, the applied anony-
mization producing an anonymized first data field; and

use the anonymized first data field during the given
transaction without de-anonymizing the anonymized
first data field.

19. The system of claim 17, wherein the indicator in the
modified first interface source code file comprises an exit
indicator that causes invocation of a callback program, and
wherein the executable interface code when executed
invokes the callback program to cause the anonymization of
the data value of the first data field during the given
transaction.

20. The system of claim 19, wherein the callback program
comprises an entry point to a policy engine, and the instruc-
tions are executable to cause the processor to:

during the given transaction that uses the first data field,

intercept the first data field; and

apply, by the policy engine responsive to the callback

program, the anonymization of the data value of the
first data field during the given transaction.

#* #* #* #* #*

