(19) United States ## (12) Patent Application Publication (10) Pub. No.: US 2024/0017138 A1 Sanchez et al. Jan. 18, 2024 (43) **Pub. Date:** ### (54) GOLF CLUB HAVING AN ADJUSTABLE WEIGHT ASSEMBLY - (71) Applicant: Acushnet Company, Fairhaven, MA (US) - (72) Inventors: Richard Sanchez, Temecula, CA (US); Sang Yi, Carlsbad, CA (US); Richard L. Cleghorn, Oceanside, CA (US) - (73) Assignee: Acushnet Company, Fairhaven, MA (US) - (21) Appl. No.: 17/961,308 - (22) Filed: Oct. 21, 2022 ### Related U.S. Application Data (63) Continuation-in-part of application No. 17/863,328, filed on Jul. 12, 2022. ### **Publication Classification** (51) Int. Cl. A63B 53/06 (2006.01)A63B 53/08 (2006.01) (52) U.S. Cl. CPC A63B 53/06 (2013.01); A63B 53/08 (2013.01); A63B 2053/0491 (2013.01) ### (57) ABSTRACT The present invention relates to a golf club head having an adjustable weight assembly. More specifically, the adjustable weight assembly utilizes a weight member that's secured via a fastener along various positions within an elongate channel. FIG. 2 # FIG. 20 FIG. 21 FIG. 22 # FIG. 23 FIG. 24 FIG. 25 FIG. 33 FIG. 36 FIG. 39 FIG. 43 # GOLF CLUB HAVING AN ADJUSTABLE WEIGHT ASSEMBLY ## CROSS-REFERENCE TO RELATED APPLICATIONS [0001] The current application is a Continuation-In-Part (CIP) of U.S. patent application Ser. No. 17/863,328, filed on Jul. 12, 2022, the disclosure of which is incorporated by reference in its entirety. #### FIELD OF THE INVENTION [0002] The present invention relates generally to a golf club head, and more specifically, to a golf club head having an adjustable weight assembly. #### BACKGROUND OF THE INVENTION [0003] It is no surprise that over time golf clubs have evolved and improved. However, golf club improvements are limited by the rules of golf. Golf club bodies are subjected to volumetric limitations and golf club faces are subjected to "speed limits" based on characteristic time (CT) and coefficient of restitution (COR). Golf clubs are even subjected to limitations on "forgiveness" in terms of various moments of inertias (MOIs) measured about the center of gravity (CG) of the golf club head. [0004] While the limitations on golf club seem substantial, there are still areas that are ripe for the picking. One such area is CG adjustability. By shaving mass from various areas of a golf club head, mass may be discretionarily concentrated in positions that afford the greatest performance benefits. Adjusting the CG location within a golf club head can result in the modification of all sorts of different aspects of the golf club. For example, adjusting the location and amount of discretionary weight within the golf club head can have a marked impact on launch angle, MOI, ball speed, spin, swing weight and the like. [0005] Therefore, what is needed is an adjustable weight assembly that allows for discretionary mass to be adjusted in a simple and secure manner. ### BRIEF SUMMARY OF THE INVENTION [0006] In some aspects, the techniques described herein relate to a golf club head including: a striking face portion located at a frontal portion of said golf club head; and a body portion attached to the rear of said striking face portion; wherein said body portion incorporates a weight adjustment portion further including; an elongate channel further including a plurality of scalloped depressions along a lower wall of said elongate channel, a weight member having a fastener receiving aperture, and a fastener further including a fastener head and a threaded shaft, wherein said fastener head is adapted to engage at least one of said plurality of scalloped depression to secure said weight member within said elongate channel. [0007] In some aspects, the techniques described herein relate to a golf club head including: a striking face portion located at a frontal portion of said golf club head; and a body portion attached to the rear of said striking face portion; wherein said body portion incorporates a weight adjustment portion further including; an elongate channel, a weight member having a fastener receiving aperture further including; an outer upper surface, and an inner upper surface, wherein said outer upper surface and said inner upper surface create an angle θ of between about 0° and about 45° , and a fastener. [0008] In some aspects, the techniques described herein relate to a golf club head including: a striking face portion located at a frontal portion of said golf club head; and a body portion attached to the rear of said striking face portion; wherein said body portion incorporates a weight adjustment portion further including; an elongate channel, a weight member further including; a fastener receiving aperture, a locking edge located at a terminal end of said fastener receiving aperture, and a seating wall located adjacent to said locking edge, and a fastener further including; a fastener head having a maximum radius portion and a reduced radius portion, and a shaft having a locking portion located at a terminal end of said shaft and a groove adjacent to said locking portion, wherein said locking edge is adapted to engage said locking portion and said seating wall is adapted to engage said groove to secure said weight member within said elongate channel. [0009] In another aspect of the present invention is a golf club head including: a striking face portion located at a frontal portion of said golf club head; and a body portion attached to the rear of said striking face portion; wherein said body portion incorporates a weight adjustment portion further including; an elongate channel having a toe opening, further comprising a lower undercut and a retention rail, a weight member further comprising a lower protrusion and a fastener receiving aperture, a fastener adapted to directly engage the fastener receiving aperture, wherein a tightening of the fastener shifts a location of the weight member within the elongate channel to engage a retention rail to secure the weight member to the golf club head. [0010] In another aspect of the present invention is a golf club head including: a striking face portion located at a frontal portion of said golf club head; and a body portion attached to the rear of said striking face portion; wherein said body portion incorporates a weight adjustment portion further including; an elongate channel having a toe opening, further comprising a lower undercut and a retention rail, a weight member further comprising a lower protrusion and a fastener receiving aperture, a fastener adapted to directly engage the fastener receiving aperture, wherein the weight adjustment portion can be configured to be in either one of an unlocked configuration or a locked configuration, wherein when the weight adjustment portion is in the unlocked configuration, the weight member is not engaged with the retention rail, and wherein when the weight adjustment portion is in the locked configuration, the weight member is engaged with the retention rail. [0011] In another aspect of the present invention is a golf club head including: a striking face portion located at a frontal portion of said golf club head; and a body portion attached to the rear of said striking face portion; wherein said body portion incorporates a weight adjustment portion further including; an elongate channel having a toe opening, further comprising a lower undercut and a retention rail, a weight member further comprising a lower protrusion and a fastener receiving aperture, a fastener adapted to directly engage the fastener receiving aperture, a toe cap, adapted to close the toe opening, and a screw, adapted to secure the toe cap to the body portion. [0012] These and other features, aspects and advantages of the present invention will become better understood with reference to the following drawings, description and claims. #### BRIEF DESCRIPTION OF THE DRAWINGS [0013] The foregoing and other features and advantages of the invention will be apparent from the following description of the invention as illustrated in the accompanying drawings. The accompanying drawings, which are incorporated herein and form a part of the specification, further serve to explain the principles of the invention and to enable a person skilled in the pertinent art to make and use the invention. [0014] FIG. 1 of the accompanying drawings shows a frontal perspective view of a golf club head 100 in accordance with an embodiment of the present invention; [0015] FIG. 2 of the accompanying drawings shows a rear perspective view of the golf club head 100 in accordance with an embodiment of the present invention; [0016] FIG. 3 of the accompanying drawings shows an enlarged perspective view of an elongate channel 130 in accordance with an embodiment of the present invention; [0017] FIG. 4 of the accompanying drawings shows an alternative enlarged perspective view of an elongate channel 130 in accordance with an embodiment of the present invention: [0018] FIG. 5 of the accompanying drawings shows an enlarged perspective view of a weight member 180 in accordance with an embodiment of the present invention; [0019] FIG. 6 of the accompanying drawings shows another enlarged perspective view of a weight member 180 in accordance with an embodiment of the present invention from a different angle; [0020] FIG. 7 of the accompanying drawings shows a cross-sectional view of the adjustable weighting assembly before insertion in accordance with an embodiment of the present invention; [0021] FIG. 8 of the accompanying drawings shows a cross-sectional view of the adjustable weighting assembly midway through insertion in accordance with an embodiment of the present invention; [0022] FIG. 9 of the accompanying drawings shows a cross-sectional view of the adjustable weighting assembly fully inserted but in an unlocked orientation in accordance with an embodiment of the present invention; [0023] FIG. 10 of the accompanying drawings shows a cross-sectional view of the adjustable weighting assembly in a locked orientation in accordance with an embodiment of the present invention; [0024] FIG. 11 of the accompanying drawings shows an enlarged perspective view of an elongate channel 230 in accordance with an alternative embodiment of the present invention; [0025] FIG. 12 of the accompanying drawings shows a cross-sectional view of an adjustable weight assembly in accordance with an alternative embodiment of the present invention: [0026] FIG. 13 of the accompanying drawings shows an enlarged perspective view of an elongate channel 330 in accordance with an alternative embodiment of the present invention; [0027] FIG. 14 of the accompanying drawings shows a cross-sectional view of an adjustable weight assembly in accordance with an alternative embodiment of the present invention: [0028] FIG. 15 of the accompanying drawings shows a rear view of a weight member 480 in accordance with an alternative embodiment of the present invention; [0029] FIG. 16 of the accompanying drawings shows a perspective view of a weight member 480 in accordance with an alternative embodiment of the present invention; [0030] FIG. 17 of the accompanying drawings shows a perspective view of a fastener 490 in accordance with an alternative embodiment of the present invention; [0031] FIG. 18 of the accompanying drawings shows a perspective view of a fastener 490 from a different angle in accordance with an alternative embodiment of the present invention; [0032] FIG. 19 of the accompanying drawings shows a rear view of an adjustable weight assembly in an unlocked orientation in accordance with an alternative embodiment of the present invention; [0033] FIG. 20 of the accompanying drawings shows a rear view of an adjustable weight assembly in a partially locked orientation in accordance with an alternative embodiment of the present invention; [0034] FIG. 21 of the accompanying drawings shows a cross-sectional view of an adjustable weight assembly in an unlocked orientation in accordance with an alternative embodiment of the present invention; [0035] FIG. 22 of the accompanying drawings shows a cross-sectional view of an adjustable weight assembly in a locked orientation in accordance with an alternative embodiment of the present invention; [0036] FIG. 23 of the accompanying drawings shows a rear view of an adjustable weight assembly in an unlocked orientation in accordance with a further alternative embodiment of the present invention; [0037] FIG. 24 of the accompanying drawings shows a rear view of an adjustable weight assembly in a locked orientation in accordance with a further alternative embodiment of the present invention; [0038] FIG. 25 of the accompanying drawings shows a cross-sectional view of a weight member and a fastener both in accordance with a further alternative embodiment of the present invention; [0039] FIG. 26 of the accompanying drawings shows a cross-sectional view of an adjustable weight assembly while being installed in accordance with a further alternative embodiment of the present invention; [0040] FIG. 27 of the accompanying drawings shows a cross-sectional view of an adjustable weight assembly in an installed but unlocked orientation in accordance with a further alternative embodiment of the present invention; [0041] FIG. 28 of the accompanying drawings shows a cross-sectional view of an adjustable weight assembly in an installed and locked orientation in accordance with a further alternative embodiment of the present invention; [0042] FIG. 29 of the accompanying drawings shows an iron type golf club head having an adjustable weight assembly in accordance with a further alternative embodiment of the present invention; [0043] FIG. 30 of the accompanying drawings shows a cut apart sectional view of an iron type golf club head in an uninstalled orientation in accordance with a further alternative embodiment of the present invention; [0044] FIG. 31 of the accompanying drawing shows a cut apart sectional view of an iron type golf club head in an installed locked orientation in accordance with a further alternative embodiment of the present invention; [0045] FIG. 32 of the accompanying drawings shows a rear perspective view of a golf club head in accordance with a further alternative embodiment of the present invention; [0046] FIG. 33 of the accompanying drawings shows a cross-sectional view of a golf club head in accordance with a further alternative embodiment of the present invention; [0047] FIG. 34a of the accompanying drawings shows an enlarged cross-sectional view of a weight member in a fully engaged orientation in accordance with a further alternative embodiment of the present invention; [0048] FIG. 34b of the accompanying drawings shows an enlarged cross-sectional view of a weight member in a partially engaged orientation in accordance with a further alternative embodiment of the present invention; [0049] FIG. 34c of the accompanying drawings shows an enlarged cross-sectional view of a weight member in a fully disengaged orientation in accordance with a further alternative embodiment of the present invention; [0050] FIG. 35 of the accompanying drawings shows a rear perspective view of a golf club head in accordance with a further alternative embodiment of the present invention; [0051] FIG. 36 of the accompanying drawings shows a cross-sectional view of a golf club head in accordance with a further alternative embodiment of the present invention; [0052] FIG. 37a of the accompanying drawings shows an enlarged cross-sectional view of a weight member in a fully engaged orientation in accordance with a further alternative embodiment of the present invention; [0053] FIG. 37b of the accompanying drawings shows an enlarged cross-sectional view of a weight member in a partially engaged orientation in accordance with a further alternative embodiment of the present invention; [0054] FIG. 37c of the accompanying drawings shows an enlarged cross-sectional view of a weight member in a fully disengaged orientation in accordance with a further alternative embodiment of the present invention; [0055] FIG. 38 of the accompanying drawings shows a rear perspective view of a golf club head in accordance with a further alternative embodiment of the present invention; [0056] FIG. 39 of the accompanying drawings shows a cross-sectional view of a golf club head in accordance with a further alternative embodiment of the present invention; [0057] FIG. 40a of the accompanying drawings shows an enlarged cross-sectional view of a weight member in a fully engaged orientation in accordance with a further alternative embodiment of the present invention; [0058] FIG. 40b of the accompanying drawings shows an enlarged cross-sectional view of a weight member in a partially engaged orientation in accordance with a further alternative embodiment of the present invention; [0059] FIG. 40c of the accompanying drawings shows an enlarged cross-sectional view of a weight member in a fully disengaged orientation in accordance with a further alternative embodiment of the present invention; [0060] FIG. 41 of the accompanying drawings shows a rear perspective view of a golf club head in accordance with a further alternative embodiment of the present invention; [0061] FIG. 42 of the accompanying drawings shows an exploded rear perspective view of a golf club head in accordance with a further alternative embodiment of the present invention; and [0062] FIG. 43 of the accompanying drawings shows a cross-sectional view of a golf club head in accordance with a further alternative embodiment of the present invention. ## DETAILED DESCRIPTION OF THE INVENTION [0063] The following detailed description describes the best currently contemplated modes of carrying out the invention. The description is not to be taken in a limiting sense, but is made merely for the purpose of illustrating the general principles of the invention, since the scope of the invention is best defined by the appended claims. [0064] Various inventive features are described below and each can be used independently of one another or in combination with other features. However, any single inventive feature may not address any or all of the problems discussed above or may only address one of the problems discussed above. Further, one or more of the problems discussed above may not be fully addressed by any of the features described below. [0065] Notwithstanding that the numerical ranges and parameters setting forth the broad scope of the invention are approximations, the numerical values set forth in the specific examples are reported as precisely as possible. Any numerical value, however, inherently contains certain errors necessarily resulting from the standard deviation found in their respective testing measurements. Furthermore, when numerical ranges of varying scope are set forth herein, it is contemplated that any combination of these values inclusive of the recited values may be used. [0066] It should be understood, of course, that the foregoing relates to exemplary embodiments of the present invention and that modifications may be made without departing from the spirit and scope of the invention as set forth in the following claims. and scope of the invention as set forth in the following claims. [0067] FIG. 1 of the accompanying drawings shows a frontal perspective view of a golf club head 100 in accordance with an embodiment of the present invention. In this perspective view shown in FIG. 1, the golf club head 100 may not look very different than other golf club heads, but the subsequent figures and discussion thereof will show the unique features of this golf club head 100 allow it to achieve unique performance properties consistent with the present invention. What FIG. 1 does show is a golf club head 100 having a striking face 120, a crown 106, a sole 108 opposite the crown 106, a heel 104, a toe 102 opposite the heel 104, a hosel 124 proximate the heel for coupling the golf club head 100 to a shaft (not shown), and a skirt 112 joining the crown 106 and the sole 108 and extending from the heel 104 proximate the striking face 120 to the toe 102 proximate the striking face 120. Besides the striking face 120, the combination of the crown 106, the sole 108, the heel 104, the toe 102 combine to create a body portion of a golf club head 100. [0068] FIG. 2 of the accompanying drawings shows a rear perspective view of the golf club head 100. In this perspective view, an elongate channel 130 is defined within the golf club head 100. According to the present embodiment, the elongate channel 130 is defined within the skirt 112 proxi- mate the rear of the golf club head 100, though it is within the scope and content of the present invention for the elongate channel 130 to be formed at other positions on the golf club head 100 or even on an iron-type golf club head. [0069] A weight member 180 is housed within the elongate channel 130, and the weight member 180 is secured at least partially by a fastener 190 as will be described below in detail. It is worth noting at this time that according to the present embodiment, the threads (not shown) of the fastener 190 mate only with the weight member 180 and not with the golf club head 100. Several additional features are shown within the elongate channel 130. Specifically, several of the surfaces that define the elongate channel 130 are illustrated in FIG. 2, though these features and more will be more clearly shown and described below. The elongate channel 130 is defined by an upper wall 141, a lower wall 151 opposite the upper wall 141, side walls 161 formed proximate the heel 104 and the toe 102, and a base wall 171 being a closest wall to the striking face 120. [0070] The elongate channel 130 may include a plurality of lower recesses 152 defined within the lower wall 151 proximate the base wall 171. The plurality of lower recesses 152 may be separated by a plurality of ribs 153. A plurality of scalloped depressions 154 may be formed on the lower wall 151. The structure and function of these features will be more apparent when examined more closely hereinbelow. [0071] Referring now to FIG. 3, a perspective view of the elongate channel 130 is provided. FIG. 3 is taken from a lower perspective thus affording a clearer view of the upper wall 141. Visible from this perspective are a plurality of upper depressions 145 configured to receive a corresponding upper protrusion (see FIG. 6) formed on the weight member 180 to facilitate alignment of the weight member 180 within the elongate channel 130. [0072] Referring now to FIG. 4, another perspective view of the elongate channel 130 is provided. The perspective view of FIG. 4 is slightly elevated so as to better illustrate the lower wall 151. As shown in FIG. 4, each of the scalloped depressions 154 are aligned with plurality of ribs 153 in between the plurality of lower recesses 152. The scalloped depressions 154, the lower recesses 152, and the ribs 153 collectively aid in securely positioning the weight member 180 in discrete positions along the elongate channel 130. In the present embodiment, five discrete positions are defined along the elongate channel 130 and the weight member 180 is shown positioned in the middle-most position. In the present embodiment, the position of the weight member 180 is maintained by one of the scalloped depressions 154, three of the ribs 153, and one of the upper depressions 145 (see FIG. 3). [0073] Referring now to FIG. 5, an external frontal perspective view of a weight member 180 according to an embodiment of the present invention is provided. FIG. 5 is taken from a lower perspective thus affording a clearer view of the bottom of the weight member 180. Weight member 180 includes a lower surface 181, an upper surface 182, a front surface 183, and a rear surface 184. A fastener receiving aperture 185 is defined through the front surface 183 and the rear surface 184 for receiving a fastener (not shown). A fastener receiving aperture 185 is partially surrounded by a head wall 186 proximate the front surface 183. One or more lower protrusions 187 are defined at the interface between the rear surface 184 and the lower surface 181. Upper protrusion 188 extend from the upper surface 182 to the front surface 183. [0074] Referring now to FIG. 6, an elevated perspective view of a weight member 180 according to another embodiment of the present invention is provided. The elevated perspective of FIG. 6 affords a clear view of the top of the weight member 180. Another unique feature that is shown in FIG. 6 is the duel faceted nature of the upper surface 182. Specifically, the upper surface 182 includes an outer upper surface 182a proximate the front surface 183 and an inner upper surface 182b proximate the rear surface 184. The outer upper surface 182a and the inner upper surface 182b define an angle θ . Preferably the angle θ is between 0° and 45° , more preferably the angle θ is between 10° and 40° , most preferably the angle θ is between about 15° and about 35°. An upper protrusion 188 is formed on the outer upper surface 182a. The upper protrusion 188 is dimensioned to mate with the upper depression 145 (shown in FIG. 3) to aid in securing and aligning the weight member 180 within the elongate channel 130. [0075] Cross-sectional views of weight member 180 shown in FIGS. 7-10 illustrate the manner in which the weight member 180 is received within the elongate channel 130. Each of FIGS. 7-10 is a cross-sectional view is taken along the line A-A' in FIG. 2. The fastener 190 is shown whole rather than sectioned to better illustrate the manner in which the weight member 180 is secured within the elongate channel 130. The line A-A' is perpendicular to the length dimension of the elongate channel 130 and offset in a heelward direction from the center of the fastener 190 so as to pass through a scalloped depression 154 and a lower recesses 152. [0076] Referring now to FIG. 7, prior to insertion within the elongate channel 130, the weight member 180 is angled such that that inner upper surface 182b is roughly parallel to the upper wall 141 and the fastener 190 is partially secured within the fastener receiving aperture 185. As shown in FIG. 7, the angled orientation of the weight member 180 allows for the one or more lower protrusions 187 to clear the lower wall 151 of the elongate channel 130. FIG. 7 also shows two identifiable heights H1 and 112 of the weight member 180, both of which work in conjunction with one another to allow the weight member 180 to be secured within the elongate channel 130. The first height H1 is measured between the outer upper surface 182a and the lowest portion of the lower protrusion 187, along an axis that is parallel to the fastener 190. A second height H2 is measured between the inner upper surface 182b and the lowest portion of the lower protrusion 187, but this time along the depth axis of the elongate channel 130, resulting in a second height 112 that is smaller than the first height H1. It is noted that that the first height H1 and the second height H2 are offset by the angle θ (shown in FIG. 6), which accounts for the rotational insertion and locking of the weight member 180 within the elongate channel 130 as described in detail below. [0077] It is worth noting here that the fastener 190 may further be comprised of a fastener head 190a and a threaded shaft 190b, with the fastener head 190a adapted to engage the scalloped depressions 154 when the fastener 190 is fully engaged in a locked position. [0078] Referring now to FIG. 8, the weight member 180 and the partially secured fastener 190 are inserted into the elongate channel 130 until the one or more lower protrusions 187 are proximate the lower recesses 152. For the purposes of this discussion, when the weight member 180 is partially inserted as shown in FIG. 8, the weight member 180 may be in an unlocked configuration. In this partially inserted unlocked configuration the weight member 180 is inserted into the elongate channel 130 and the inner upper surface 182b is generally parallel to the upper wall 141. In this partially inserted unlocked configuration, the weight member 180 may be freely moved along the various positions within the elongate channel 130 so that weight member 180 may be aligned with any of the discrete positions defined along the elongate channel 130. [0079] Referring now to FIG. 9, the weight member 180 and the partially secured fastener 190 are tilted inward until the lower protrusions 187 are engaged with one of the plurality of lower recesses 152, causing the upper protrusion 188 is received within the upper depression 145. In this rotated position, the rear surface 184 is in contact with the base wall 171, the outer upper surface 182a is in contact with the upper wall 141, and the lower surface 181 is in contact with the lower wall 151. Finally, from this cross-sectional view, it can be seen that the head wall 186 and the scalloped depression 154 define a cavity that is dimensioned to receive the head of the fastener 190. [0080] Referring now to FIG. 10, the fastener 190 is fully inserted to lock the weight member 180 in place. As shown in FIG. 10, the fastener 190 has a tapered head geometry to help engage the taper walls of the fastener receiving aperture **185**. The taper angle α of the tapered head corresponds to a taper angle of the upper wall 141 and a taper angle of the scalloped depression 154. These corresponding taper angles are critical to locking the weight member 180 in position within the elongate channel 130. Preferably the taper angle α of the tapered head **191** is between about equal to the taper angle of the scalloped depression 154 and the taper angle θ of the upper wall 141 and about 10° greater than the taper angle of the scalloped depression 154 and the taper angle θ of the upper wall 141. As the fastener 190 is tightened, the outer upper surface 182a is driven toward to the upper wall 141 while the lower protrusions 187 are driven toward the lower recesses 152, thereby further rotating the weight member 180 until the one or more lower protrusions 187 are locked within the lower recesses 152 and the upper protrusion 188 is locked within the upper depression 145. [0081] For the purposes of this discussion, when the weight member 180 and fastener 190 are inserted as shown in FIG. 10, the weight member 180 may be described as being in a locked configuration. In the locked configuration the weight member 180 is inserted into the elongate channel 130 and the outer upper surface 182a is generally parallel to the upper wall 141. In the locked configuration, the weight member 180 is securely fixed within the elongate channel 130 [0082] It is worth noting at this time that it is also within the scope and content of the present invention for the weight member 180 to be inserted and rotated into position within the elongate channel 130 as shown in FIGS. 7-9 without partially inserting the fastener 190. In such a case, the fastener 190 may be inserted entirely after the weight member is inserted and rotated into position within the elongate channel 130. [0083] FIGS. 11-12 show a weighting assembly in accordance with another embodiment of the present invention wherein a weight member 280 is secured within an elongate weight channel 230 by a fastener 290. The elongate weight channel 230 and the weight member 280 fundamentally function in a way very similar to those describe above in the discussion relating to FIGS. 1-10, but the current weight assembly has added risers 242 and shelfs 243. More specifically, the upper wall 241 may include a riser 242 extending down from the upper wall 241, and a shelf 243 extending from the riser 242 to the base wall 271. The lower wall 251 is substantially the same as lower wall 151, including a plurality of scalloped depressions 254 and a plurality of lower recesses 252, which may be separated by a plurality of ribs 253. [0084] FIG. 12 shows a sectional view taken along a line B-B' in FIG. 11 passing through a center of the fastener 290. Looking first at the weight member 280, several notable features are apparent from this sectional view. Specifically, the upper surface 282 includes an outer upper surface 282a proximate the front surface 283 and an inner upper surface 282b proximate the rear surface 284. The outer upper surface 182a and the inner upper surface 182b define an angle θ . Preferably the angle θ is between 0° and 45° , more preferably the angle θ is between 10° and 40° , most preferably the angle θ is between about 15° and about 35°. The angle θ between the outer upper surface 182a and the inner upper surface 182b allows for the same rotation based insertion technique illustrated above in FIGS. 7-10. It is noted that the weight member 280 includes lower protrusions, though the lower protrusions are not visible through the rib 253 from this sectional view. [0085] The orientation of the riser 242 and the shelf 243 are shown much more clearly in FIG. 12. According to an embodiment of the present invention, the riser 242 may extend downward from the upper wall 241 and the shelf 243 extends rearward from the riser 242 so as to join the upper wall 241 and the base wall 271. The riser 242 and the shelf 243 afford further contact surfaces for securing the weight member 280 within the elongate channel 230. The shaft 292 of the fastener 290 contacts the shelf 243 and the upper portion of the rear surface 284 of the weight member 280 contacts the riser 242 when the weight member is locked within the elongate weight channel 230. These additional points of contact between the weight member 280 and the elongate channel 230 thus further ensuring a secure fit between the weight member 280 and the elongate channel 230. [0086] When fully seated and secured within the elongate channel 230, the weight member 280 and the fastener 290 contact numerous portions of the elongate channel 230. When the weight member 280 is rotated into the elongate channel 230 such that the lower protrusions (not shown) are received within the lower recesses (not shown), the fastener 290 is tightened to secure the weight member 280 within the elongate channel 230. As shown in FIG. 12, the rear surface 284 contacts not only the rear wall 271, but also the riser 242. When the weight member 280 is fully seated and secured within the elongate channel 230, the lower portion of the rear surface 284 may contact the rear wall 271 and the rear surface 284 may contact the riser 242. Further, when the weight member 280 is fully seated and secured within the elongate channel 230, the shaft 292 of the fastener 290 may contact the shelf 243. Finally, as described above, when the weight member 280 is fully seated and secured within the elongate channel 230, the head 291 of the fastener 290 is contacted by the scalloped shape depression 254 which drives the outer upper surface **282***a* toward the upper wall **241**, further locking the weight member **280** in place. While the present embodiment does not include an upper protrusion or a corresponding upper depression, their inclusion is within the scope and content of the present invention. [0087] FIGS. 13 and 14 of the accompanying drawings shows a rear view and cross-sectional view of a weight member 380 in accordance with a further alternative embodiment of the present invention. [0088] FIG. 13 shows an enhanced rear view of the elongate channel 330 wherein the elongate channel 330 is similar to those described above but includes a further modified upper wall 341. In detail, the upper wall 341 may include a riser 342 extending down from the upper wall 341, and a shelf 343 extending from the riser 342 to the base wall 371. [0089] FIG. 14 shows a sectional view taken along a line C-C' in FIG. 13 passing through a center of the fastener 390. From this perspective the riser 342 and the shelf 343 joining the upper wall 341 and the base wall 371 are clearly illustrated. While the structure of the elongate channel 330 is similar to the elongate channel 230, two notable differences are apparent from this sectional view. First, the shaft 392 of the fastener 390 contacts a cutout 346 defined on the shelf 343 when the weight member is locked within the elongate channel 330. This additional point of contact between the weight member 380 and the elongate channel 330 thus further ensuring a secure fit between the weight member 380 and the elongate channel 330. Second, the upper rear surface 382 does not contact the riser 342. While it is within the scope and content of the present invention for the upper rear surface 382 and the riser 342 to contact each other when the weight member 380 is fully inserted and secured within the elongate channel 330, the weight member 380 may be sufficiently secured within the elongate channel 330 even without this additional point of contact. [0090] The plurality of cutouts 346 correspond to discrete seating locations of the weight member 380. According to an embodiment of the present invention, although not aligned linearly, each of the plurality of cutouts 346 corresponds with one of the plurality of scalloped depressions 354 such that for any given position the head 391 of the fastener 390 contacts a scalloped depression 354 and the shaft 392 of the fastener 390 contacts the corresponding cutout 346. In other words, the elongate channel 330 differs from elongate channel 230 in that a plurality of cutouts 346 are defined in the riser 342 and the shelf 343, and the shelf 343 and the riser 342 are dimensioned such that the riser 342 does not contact the weight member 380 when the weight member 380 is fully inserted and secured within the elongate channel 330. The cutouts 346 offer an additional means of aligning a weight member within the elongate channel 330 and also offer additional support in preventing the weight member from moving within the elongate channel 330 during impact with a golf ball. [0091] FIGS. 15-22 show a weight member 480 and a fastener 490 according to yet another embodiment of the present invention. The weight member 480 is similar to the above weight members with a few notable differences. In fact, with the exception of the fastener receiving hole 485 and a corresponding fastener 490, the weight member 480 may be dimensioned to fit within any of the elongate channels described above. [0092] Referring to FIGS. 15 and 16, a frontal and rear view of weight member 480 is provided. The weight member 480 includes a lower surface 481, an upper surface 482, a front surface 483, and a rear surface 484. A fastener receiving hole 485 is defined through the front surface 483 and the rear surface 484 for receiving a fastener (not shown). A first abutment surface 489 is located around a periphery of the fastener receiving hole 485, partially recessed from the front surface 483. One or more lower protrusions 487 are defined at the interface between the rear surface 484 and the lower surface 481. The fastener receiving hole 485 is neither threaded nor cylindrical, but rather is keyed so as to receive a keyed fastener therein as described below. The sectional shape of the fastener receiving hole 485 is variable along a depth direction from the front surface 483 toward the rear surface 484. From this perspective, the front portion 4851 of the fastener receiving hole 485 is visible. The front portion **4851** is generally cylindrical in shape and functions to align the fastener within the fastener receiving hole 485. Moving inward from the front portion 4851, the fastener receiving hole 485 includes a seating wall 4852 that extends a partial width of the fastener receiving hole 485 and sets a maximum insertion depth for the fastener. While the seating wall 4852 is situated toward the right or toe-side of the fastener receiving hole 485, the present invention is not limited in this regard. It is within the scope and content of the present invention for the seating wall 4852 to be positioned anywhere within the fastener receiving hole 485 so long as the seating wall 4852 only extends a partial width of the fastener receiving hole 485. [0093] Referring now to FIG. 16, a rear perspective view of the weight member 480 sheds additional light on the structure of the weight member 480, specifically that of the fastener receiving hole 485. From this perspective, the rear of the seating wall 4852 is visible. Moving inward (toward the rear surface 484) from the seating wall 4852, the fastener receiving hole 485 includes a locking ledge 4853. The locking ledge 4853 is located behind the seating wall 4852 in the depth direction from the front surface 483 toward the rear surface 484. The locking ledge 4853 between the uppermost and lowermost extents of the fastener receiving hole 485. Alternatively, it can be said that a height of the locking ledge 4853 measured in an upper surface 481 lower surface 482 direction is less than a diameter of the fastener receiving hole 485. [0094] The elevated perspective of FIG. 16 affords a clear view of the dual faceted nature of the upper surface 482. Specifically, the upper surface 482 includes an outer upper surface 482a proximate the front surface 483 and an inner upper surface 482b proximate the rear surface 484. The outer upper surface 482a and the inner upper surface 482b define an angle θ . Preferably the angle θ is between 0° and 45° , more preferably the angle θ is between 10° and 40° , most preferably the angle θ is between about 15° and about 35° . An upper protrusion 488 is formed on the outer upper surface 482a. [0095] Referring now to FIGS. 17 and 18, two perspective views of the fastener 490 that begin to show how the fastener 490 functions to lock the weight member 480 within an elongate channel. The fastener 490 and the fastener receiving hole 485 are designed to lock the weight member 480 within the elongate channel 430 with only a quarter of a turn $(90^{\circ}\ \text{rotation})$ of the fastener 490. [0096] FIG. 17 is a frontal overhead perspective view of the fastener 490. As shown in FIG. 17, the fastener 490 includes a head 491 and a shaft 492. The head 491 has a cam surface including a maximum radius portion 4911 and a reduced radius portion 4912 having a radius less than that of the maximum radius portion 4911. The shaft 492 includes an alignment portion 4921, a groove 4922, a locking portion 4923, and an abutment surface 4924. [0097] FIG. 18 shows a rear overhead perspective view of the fastener 490. FIG. 18 shows the same features as FIG. 17, but more clearly shows how the key-like structure of the fastener 490. Specifically, from this perspective it is easy to see how the shaft 492 is generally cylindrical and how the groove 4922 and the locking portion 4923 are essentially carved from the generally cylindric shape shaft 492. [0098] FIGS. 19-20 show the weight member 480 positioned within an elongate channel 430 in an unlocked configuration and a locked configuration. [0099] Referring now to FIG. 19, a frontal view of the weight member 480 is shown within the elongate channel 430 in an unlocked configuration. In the unlocked configuration, the weight member 480 may be freely moved between each of the discrete weight locations. From this perspective, it is clear the role that the head 491 plays when the weight member 480 is in the unlocked configuration. As shown in FIG. 19, in the unlocked configuration, the maximum radius portion 4911 is positioned away from the lower wall 451 of the elongate channel 430 and the reduced radius portion 4912 is positioned proximate the lower wall 451. [0100] Referring now to FIG. 20. a frontal view of the weight member 480 is shown within the elongate channel 430 in the partially locked configuration. In the partially locked configuration, the fastener 490 is rotated 90° relative to its position in the unlocked configuration and the weight member 480 is securely fastened within one of the discrete weight locations defined by the positions of the lower recesses (not shown). From this perspective, it is clear the role that the head 491 plays in transitioning from the unlocked configuration to the partially locked configuration. As shown in FIG. 20, in the partially locked configuration, the maximum radius portion 4911 no engages the lower wall 451 while the reduced radius portion 4912 is positioned away from the lower wall 451. By rotating the fastener 490 such that the maximum radius portion 4911 of the fastener 490 contacts the lower wall 451, the upper surface 484 of the weight member 480 is driven up toward the upper wall 441 of the elongate channel 430 thus locking the weight member 480 in place. [0101] FIGS. 21 and 22 show sectional views of the weight member 480 positioned within the elongate channel 430 in the unlocked and locked configurations. [0102] Referring to FIG. 21, a sectional view taken along the sectional line D-D' of FIG. 19 of the weight member 480 in an unlocked configuration is provided. It is noted that the fastener is shown whole rather than in section for clarity. From this perspective, the asymmetry and lock and key like nature of the fastener 490 and the fastener receiving hole 485 are on full display. [0103] As shown in FIG. 21, the fastener 490 is fully inserted within the fastener receiving hole 485 such that the head 491 is abutting the first abuttment surface 489 and the alignment portion 4921 is fitted within the generally cylindrical front portion 4851 and abutting the seating wall 4852. [0104] The head 491 of the fastener 490 is surrounded on the top and sides by the head wall 486 and on the bottom by the lower wall 451. The maximum radius portion 4911 of the head 491 is in contact with the head wall 486 and the reduced radius portion 4912 of the head 491 is spaced apart from the lower wall 451. [0105] The seating wall 4852 of the shaft 492 is positioned proximate the seating wall 4852 and the locking portion 4923 is positioned proximate the locking ledge (not shown). The abutment surface 4924 is positioned proximate a side surface of the fastener receiving hole 485. [0106] As described above, in this configuration the fastener 490 may be freely inserted and removed from the fastener receiving hole 485 and the weight member 480 may be removed from the elongate channel 430 or adjusted within the elongate channel 430. [0107] As shown in FIG. 22, the fastener 490 has been rotated 90° in a clockwise direction and is now in the locked configuration. The head 491 of the fastener 490 is surrounded on the top and sides by the head wall 486 and on the bottom by the lower wall 451. [0108] In transitioning from the unlocked configuration to the locked configuration, the fastener 490 has not moved in a longitudinal direction as the alignment portion 4921 remains centered within the frontal portion 4851. [0109] However, by rotating the fastener 490 into the locked configuration, several key features are now apparent. First of all, the maximum radius portion 4911 of the head 491 is now in contact with both the lower wall 451 and the head wall 486. This drives the weight member 480 up so as to contact the upper wall 441 and prevents vertical movement of the weight member 480. Similarly the groove 4922 now surrounds the seating wall 4852 which prevents longitudinal translation of the fastener 490 within the fastener receiving hole 485. The locking portion 4923 is also driven into contact the locking ledge 4853, which prevents the fastener 490 from moving vertically within the fastener receiving hole 485. [0110] FIGS. 23 through 28 show a weight member 580 and a fastener 590 according to yet another embodiment of the present invention. [0111] Referring to FIG. 23, an enhanced view of an elongate channel 530 is provided. A weight member 580 is positioned within the elongate channel 530 and a fastener 590 is in an unlocked configuration. In this configuration the weight member 580 may be moved along a length of the elongate channel 530. The elongate channel 530 includes an upper wall 541 having a riser 542 extending down from the upper wall 541 and a shelf 543 extending from the riser 542 to the base wall 571. The lower wall 551 includes a plurality of scalloped depressions 554 and a plurality of lower recesses 552, which may be separated by a plurality of ribs 553. [0112] Fastener 590 is similar to fastener 490. Fastener 590 includes a fastener head 591 having a maximum radius portion 5911 and a reduced radius portion 5912 having a radius less than that of the maximum radius portion 5911. Fastener 590 also may be transitioned from an unlocked state to a locked state with only a half of a turn (180°). [0113] FIG. 24 shows the weight member 580 in a locked configuration with the fastener 590 rotated a half turn (180°) elative to FIG. 23. From this perspective, the only differences between the locked and unlocked configuration is the relative positioning of the fastener 590, though additional features will be apparent upon closer examination. Notably from this perspective is that the maximum radius portion 5911 of the head 591 is proximate one of the scalloped depressions 554. As described above in detail, when the maximum radius portion 5911 contacts the scalloped depression 554 is drives the weight member 580 into the upper wall 541, thus locking the weight member 580 in place. [0114] FIGS. 25-28 show various sectional views that further detail the interaction of the fastener 590, the weight member 580, and the elongate channel 530. [0115] Referring now to FIG. 25, a sectional view of the weight member 580 and the fastener 590 is provided prior to being installed in the elongate channel 530. In this view, when the fastener 590 is midway between a locked configuration and an unlocked configuration, we can see the interface between the components better. However, to see how the weighting apparatus fits in within the channel, FIG. 26-28 have been provided below. [0116] Referring now to FIG. 26, the fastener 590 is positioned with the elongate channel 530 angularly aligned with the locking protrusion 5852 so that the fastener 590 may be freely inserted into the fastener receiving hole 585 until the alignment portion 5921 contacts the abutment surface 5824 of the locking protrusion 5852. When in the insertion configuration, the position of the fastener 590 is angularly offset from the position of the fastener 590 when in the locked configuration and unlocked configuration. Preferably when in the insertion configuration, the fastener 590 is rotated outside of the range of motion between the locked configuration and the locked configuration. Most preferably, the fastener may be rotated half of a turn (180°) between in a first direction to transition from the unlocked configuration to the locked configuration, and the fastener may be rotated less than half of a turn in a second direction opposite the first direction to transition from the unlocked configuration to the insertion configuration. [0117] Referring now to FIG. 27, a modified sectional view taken along the line F-F' in FIG. 23 is provided. As shown in FIG. 27, the fastener 590 is positioned in the unlocked configuration within the weight member 580 while the weight member 580 is rotated so as to be moved within the elongate channel 530. Several features allow for the insertion of the weight member 580 and the fastener 590 to be inserted and removed from the elongate channel 530, and to be freely moved between the discrete weight positions. First, the upper surface 582 includes an outer upper surface 582a proximate the front surface 583 and a inner upper surface 582b proximate the rear surface 584. The outer upper surface 582a and the inner upper surface 582b define an angle θ . Preferably the angle θ is between 0° and 45° , more preferably the angle θ is between 10° and 40° , most preferably the angle θ is between about 15° and about 35°. The angle θ between the outer upper surface 582a and the inner upper surface 582b allows for the same rotation based insertion technique illustrated above in FIGS. 7-10. Second, the reduced radius portion 5912 is oriented distal the upper surface 582 and proximate a scalloped depression 554. The combination of the angle θ between the outer upper surface **582***a* and the inner upper surface **582***b*, the reduced radius portion 5912, and the scalloped depression 554 allow for the lower protrusions 587 to pass through the constricted entry point, even though the lower protrusions are not visible through the rib 253 from this sectional view. [0118] Several unique features of the present invention are apparent from this sectional view. In the unlocked configuration, the fastener 590 is fully seated within the weight member 580 and the maximum radius portion 5911 of the head 591 is positioned proximate the upper wall 541. The alignment portion 5921 contacts the entire internal perimeter of the fastener receiving hole 585 to align the fastener 590 with the fastener receiving hole 585. [0119] Referring now to FIG. 28, a modified sectional view taken along line G-G' in FIG. 24 is provided. As shown in FIG. 28, the fastener is now positioned in the locked configuration with the weight member 580 and the fastener 590 are now secured within each of the desired locations. The maximum radius portion 5911 of the fastener 590 is now fitted within the recessed scalloped depressions 554 to lock the weight member 580 within the elongate channel 530 to facilitate engagement of the weight member 580 in the elongate channel 530. In this locked configuration, the lower protrusion 587 is now rotated upwards towards the riser 342 to prevent the weight member 580 and fastener 590 combination from tilting up and potentially being removed. [0120] FIGS. 29 through 31 of the accompanying drawings shows an iron type golf club head 600 in accordance with an alternative embodiment of the present invention. In this embodiment of the present invention, a similar type of rotatable locking mechanism is used to secure a weight member 680 via a fastener 690 along the rear surface of the golf club head 600 itself. [0121] In the rear perspective view of the golf club head 600 shown in FIG. 29, we can see that the weight member 680 and the fastener 690 secure work in conjunction to be secured in an elongate channel 630 that has a plurality of scalloped depressions 654 adapted to receive the head of the fastener 690 for retention. The details of the retention mechanism will be shown in more detail via the sectional views in FIGS. 30 and 31, but it utilizes a similar rotational attachment mechanism described in previous embodiment but adapted in an iron type chassis. [0122] In the sectional view of the golf club head 600 shown in FIG. 30, the weight member 680 and fastener 690 are in an unlocked position with the lower protrusion 687 disengaged from the lower recess 652 to allow for insertion. The same dual angled upper surface 682 that was previously discussion will facilitate the insertion of the weight member 680 and the fastener 690 into the elongate channel 630. [0123] FIG. 3I of the accompanying drawings shows golf club head 600 wherein the weight member 680 and the fastener 690 are now in a fully inserted locked position within the elongate channel 630. In this fully inserted and locked position, we can see that the lower protrusion 687 is not fully engaged within the lower recess 652 while the upper surface 682 works in conjunction with a fully inserted fastener 690 within the weight member 680 to fully secure the weight adjustment feature within the elongate channel 630 without departing from the scope and content of the present invention. [0124] FIG. 32 of the accompanying drawings shows a rear perspective view of a golf club head 3200 in accordance with an alternative embodiment of the present invention. In this alternative embodiment of the present invention, the golf club head 3200 has a weight adjustment portion that further comprises of recessed elongate channel 3230 that is adapted to receive a weight member 3280 that is secured to the recessed elongate channel 3230 via a fastener 3290. In this rear perspective view of the golf club head 3200 shown in FIG. 32, it can be seen that the elongate channel 3230 is located along a rear surface of an iron type golf club head 3200 and the weight member 3280 can be moved along various locations within the recessed elongate channel 3230. [0125] The recessed elongate channel 3230 shown here has a retention rail 3235 further comprising at least one insertion cutout 3232 adapted to engage an insertion tab 3433 (shown in FIG. 34c) in the weight member 3280 during insertion. More specifically, in FIG. 32, the recessed elongate channel 3230 has two insertion cutout 3232 without departing from the scope and content of the present invention. [0126] FIG. 33 of the accompanying drawings shows a cross-sectional view of a golf club head 3300 taken along the central location of the golf club head 3300 to illustrate the relationship between the recessed elongate channel 3330, the weight member 3380 and the fastener 3390. In this cross-sectional view of the golf club head 3300, the weight member 3330 has a lower protrusion 3381 that is shaped to engage a lower undercut 3331 in the recessed elongate channel 3330 to help retain the weight member 3380 within the elongate channel 3230. In this cross-sectional view shown in FIG. 33, we can see that the movement of the weight member 3320 as the fastener 3390 will move the lower protrusion 3381 rearward away from the striking face direction within the lower undercut 3331 to achieve the retention. Alternatively speaking, it can be said that the lower protrusion 3381 contacts an internal rear surface of said lower undercut 3331 to achieve said retention. The weight member 3380 will have a fastener receiving aperture adapted to receive the fastener 3390. In a fully engaged state, the weight member 3380 is being pushed away from the striking face via the fastener 3390, allowing it to engage the retention rail 3335 for secure retention. [0127] In order to illustrate the actual retention mechanism, FIGS. 34a, 34b, and 34c are added to provide three enlarged cross-sectional views of the weight member 3480 in a fully installed position, a partially installed position, and a fully disengaged position. FIG. 34a shows the weight member 3480 in a fully installed position. In this fully installed position, the lower protrusion 3481 of the weight member 3480 is pushed rearward against the lower undercut 3431 of the recessed elongate channel 3430 when the fastener 3490 is tightened and the bottoming out of the fastener pushes the entirety of the weight member 3480 rearward. [0128] In FIG. 34b, we can see that the weight member 3480 is in a partially installed position. In this position, we can see that when the fastener 3490 has not fully bottomed out, the weight member 3480 has a lot of room to wiggle loose and even potentially be slidably adjusted to different portions along the recessed elongate channel 3430. Finally, FIG. 34c of the accompanying drawings shows the weight member 3480 being in a fully disengaged position wherein the weight member 3480 is fully removed from the recessed elongate channel 3430 and the lower protrusion 3481 of the weight member 3480 can rotate away from the lower undercut 3431 of the recessed elongate channel 3430 to facilitate the removal. In this cross-sectional view shown in FIG. 34c, the insertion tabs 3433 is shown, and the weight member 3480 can only be removed when the insertion tabs 3433 is aligned with the insertion cutouts 3232 (shown in FIG. 32). [0129] It can be seen here that an upper portion of the weight member 3480 rotates clockwise into the striking face portion of the golf club head to facilitate the engagement and installation of the weight member 3480 within the elongate channel 3430, allowing the lower protrusion 3481 to rotate into the lower undercut 3431. Conversely, the upper portion of the weight member 3480 rotates counter clockwise away from the striking face portion of the golf club head to facilitate the disengagement and removal of the weight member 3480 from the elongate channel 3430, allowing the lower protrusion 3481 to rotate out of the lower undercut 3431 [0130] FIGS. 35 through 37 of the accompanying drawings shows another embodiment of the present invention similar to what is described above in FIGS. 32 through 34, but with an additional retaining nut 3692 (shown in FIG. 36) to help retain the fastener 3590 to the weight member 3580. FIG. 35 of the accompanying drawings shows a rear perspective view of a golf club head 3500 in accordance with an even further alternative embodiment of the present invention. Similar to above, the golf club head 3500 has a weight adjustment portion that further comprises of a fastener 3590 that engages a threaded weight member 3580 to secure the weight member 3580 within a recessed elongate channel 3530. The recessed elongate channel 3530 has at least one insertion indicators 3533 adapted to engage insertion tabs to help identify location of insertion. [0131] FIG. 36 of the accompanying shows a cross-sectional view of a golf club head 3600 in accordance with this alternative embodiment of the present invention. In this cross-sectional view shown in FIG. 36 we can see that this embodiment of the present invention differs slightly from the previous embodiment shown in FIG. 33 in two major ways. First off, the golf club head 3600 shown here adds an additional retaining nut 3692 located internally on the other side of the weight member 3680 to help retain the fastener 3690 such that the fastener 3690 does not fall out during the loosening of the fastener 3690. Secondly, the cross-sectional view of the golf club head 3600 shown in FIG. 36, despite using a similar rotation type of insertion movement, has a slightly different shape and geometry for the lower protrusion 3681 to mate with the lower undercut 3631. In this embodiment of the present invention shown in FIG. 36, the dimensions of both the lower protrusion 3681 on the weight member 3680 and the corresponding lower undercut 3631 in the recessed elongate channel 3630 are both reduced to make the insertion of the weight member 3680 simpler. [0132] FIGS. 37a, 37b, and 37c of the accompanying drawings show three enlarged cross-sectional views of the weight member 3780 in a fully installed position, a partially installed position, and a fully disengaged position respectively. FIG. 37a shows the weight member 3780 in a fully installed position with the fastener 3790 engaging the retaining nut 3792 to secure the fastener 3790 to the weight member 3780 if it was accidentally loosened too much. In this fully engaged position, a cutout within the retaining nut 3792 engages at least one of the insertion indicators 3533 (shown in FIG. 35) via rotation to secure the weight member 3780 to the recessed elongate channel 3730. In this enlarged cross-sectional view shown in FIG. 37a, the lower protrusion 3781 fully engages the lower undercut 3731 in this fully installed position to secure the weight member 3780 within the recessed elongate channel 3730. [0133] FIG. 37b of the accompanying drawings shows the weight member 3780 being partially disengaged to allow for an adjustment of the location of the weight member 3780 within the recessed elongate channel 3730. In this partially disengaged position shown in FIG. 37b, we can see that with the retaining nut 3792 being rotated out of position, the weight member 3780 is free to move along various positions in the track. Finally, in FIG. 37c, the enlarged cross-sectional view of the weight member 3780 is shown in a fully disengaged position, allowing the entirety of the weight to be rotated out of its location within the recessed elongate channel 3730 for removal. [0134] FIGS. 38, 39, 40a, 40b, and 40c all illustrate a golf club head 3800 in accordance with another further alternative embodiment of the present invention. Because of the similarities of this embodiment with earlier embodiments, FIGS. 38, 39, 40a, 40b, and 40c will be described as a collective here. FIG. 38 shows a rear perspective view of a golf club head 3800 in accordance with an exemplary embodiment of the present invention with a weight member 3880 in the shape of an "X", wherein the "X" shaped weight member 3880 has two retention tabs 3881 that is adapted to engage a retention rail 3835 to help secure the weight member 3880 within the recessed elongate channel 3830. The relationship of the retention can be shown more clearly in the cross-sectional view of the golf club head 3800 shown in FIG. 39, where we can see one of the retention tabs 3881 engaging the retention rail 3835 to facilitate the retention once the fastener 3890 moves the weight member 3880 upward when the threads are fully engaged. [0135] Finally, FIGS. 40a, 40b, and 40c of the present invention shows enlarged cross-sectional views of the weight member 3880 in a fully engaged, partially engaged, and a fully disengaged location respectively. In the fully engaged view shown in FIG. 40a, we can see that the retention tabs 3881 of the "X" shaped weight member 3880 engages the retention rail 3835 as the fastener pushes the weight member 3880 upwards into the retention rail 3835. In the partially disengaged enlarged cross-sectional view shown in FIG. 40b, we can see that the retention tab 3881 can be retracted out of the retention rail 3835 when the fastener 3890 is loosened. Finally, in the fully disengaged view shown in FIG. 40c, we can see that for complete removal, the weight can be rotated away from the striking face portion of the golf club head 3800 for full removal. [0136] FIGS. 41, 42, and 43 of the accompanying drawings shows a rear view, a cross-sectional view, and an exploded view respectively, of a golf club head 4100 in accordance with an even further alternative embodiment of the present invention. Similar to the previous embodiment, FIG. 41 shows the weight member 4180 being secured in a recessed elongate channel 4130 of a golf club head 4100 via a fastener 4190 while pushing the legs of the weight member 4180 upwards towards a retention rail 4135, it adds an additional feature to make the installation and removal of the weight member 4180 easier. In this embodiment of the present invention, a toe cap 4134 is added to the toe end of the golf club head 4100 that can be removably attached to the golf club head 4100 via a screw 4136 to open up a terminal end of the recessed elongate channel 4130. [0137] FIG. 42 of the accompanying drawings provided an exploded view of the golf club head 4100 allowing the toe cap 4134 and its retention screw 4136 to be shown more clearly. In this exploded view shown in FIG. 42, we can see that the weight member 4180 can be slidably inserted into the recessed elongate channel 4130 via a toe opening of the golf club head 4100. Once the weight member 4180 is slidably inserted, it's location can be determined via the fastener 4190 that pushes the weight member 4180 higher within the recessed elongate channel so the weight member 4180 engages the in retention rail 4135. The additional component of the 4134 toe cap and the screw 4136 helps close the toe opening to prevent the weight member 4180 from falling out. [0138] In the cross-sectional view of the golf club head 4100 shown in FIG. 43, we can see the interface of the weight 4180 with the recessed elongate channel 4130. This cross-sectional view looks very similar to the cross-sectional view of golf club head 4800 shown in FIG. 39, as the weighting components are very similar. [0139] It should be noted that most of the embodiments discussed here aims to create a releasable hosel hole cover, however, all of these embodiments may include glue to make the hosel hole cover stay within the hosel hole, removing the ability to remove the hosel hoe cover without departing from the scope and content of the present invention. [0140] Other than in the operating example, or unless otherwise expressly specified, all of the numerical ranges, amounts, values and percentages such as those for amounts of materials, moment of inertias, center of gravity locations, loft, draft angles, various performance ratios, and others in the aforementioned portions of the specification may be read as if prefaced by the word "about" even though the term "about" may not expressly appear in the value, amount, or range. Accordingly, unless indicated to the contrary, the numerical parameters set forth in the above specification and attached claims are approximations that may vary depending upon the desired properties sought to be obtained by the present invention. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter should at least be construed in light of the number of reported significant digits and by applying ordinary rounding techniques. [0141] Notwithstanding that the numerical ranges and parameters setting forth the broad scope of the invention are approximations, the numerical values set forth in the specific examples are reported as precisely as possible. Any numerical value, however, inherently contains certain errors necessarily resulting from the standard deviation found in their respective testing measurements. Furthermore, when numerical ranges of varying scope are set forth herein, it is contemplated that any combination of these values inclusive of the recited values may be used. [0142] It should be understood, of course, that the foregoing relates to exemplary embodiments of the present invention and that modifications may be made without departing from the spirit and scope of the invention as set forth in the following claims What is claimed is: - 1. A golf club head comprising: - a striking face portion located at a frontal portion of said golf club head, and - a body portion attached to a rear of said striking face portion; wherein said body portion incorporates a weight adjustment portion further comprising; - an elongate channel further comprising a lower undercut and a retention rail, - a weight member further comprising a lower protrusion and a fastener receiving aperture, and - a fastener adapted to directly engage said fastener receiving aperture, - wherein a tightening of said fastener shifts a location of said weight member within said elongate channel to engage said retention rail to secure said weight member to said golf club head. - 2. The golf club head of claim 1, wherein said weight adjustment portion can be configured to be in either one of an unlocked configuration or a locked configuration, - wherein when said weight adjustment portion is in said unlocked configuration, said weight member is not engaged with said retention rail, and - wherein when said weight adjustment portion is in said locked configuration, said weight member is engaged with said retention rail. - 3. The golf club head of claim 2, wherein said tightening of said fastener shifts said weight member rearward within said elongate channel. - **4**. The golf club head of claim **2**, wherein said tightening of said fastener shifts said weight member upward within said elongate channel. - 5. The golf club head of claim 2, wherein when said weight adjustment portion is in said locked configuration, said lower protrusion of said weight member contacts an internal rear surface of said lower undercut. - 6. The golf club head of claim 2, wherein an upper portion of said weight member rotates into said striking face portion of said golf club head to insert said weight member into said elongate channel. - 7. The golf club head of claim 6, wherein said upper portion of said weight member rotates away from said striking face portion of said golf club head to remove said weight member from said elongate channel. - 8. The golf club head of claim 7, further comprising a retaining nut, wherein said retaining nut engages said fastener to sandwich said weight member. - 9. A golf club head comprising: - a striking face portion located at a frontal portion of said golf club head, and - a body portion attached to a rear of said striking face portion; - wherein said body portion incorporates a weight adjustment portion further comprising; - an elongate channel further comprising a lower undercut and a retention rail, - a weight member further comprising a lower protrusion and a fastener receiving aperture, and - a fastener adapted to directly engage said fastener receiving aperture, - wherein said weight adjustment portion can be configured to be in either one of an unlocked configuration or a locked configuration, - wherein when said weight adjustment portion is in said unlocked configuration, said weight member is not engaged with said retention rail, and - wherein when said weight adjustment portion is in said locked configuration, said weight member is engaged with said retention rail. - 10. The golf club head of claim 9, wherein a tightening of said fastener shifts said weight member rearward within said elongate channel. - 11. The golf club head of claim 10, wherein when said weight adjustment portion is in said locked configuration, said lower protrusion of said weight member contacts an internal rear surface of said lower undercut. - 12. The golf club head of claim 9, wherein a tightening of said fastener shifts said weight member upward within said elongate channel. - 13. The golf club head of claim 12, wherein an upper portion of said weight member rotates into said striking face portion of said golf club head to insert said weight member into said elongate channel. - 14. The golf club head of claim 9, wherein an upper portion of said weight member rotates into said striking face portion of said golf club head to insert said weight member into said elongate channel. - 15. The golf club head of claim 14, wherein said weight member further comprises an insertion tab at said upper portion of said weight member, - wherein said insertion tabs mate with an insertion cutout to allow said weight member to rotate into said elongate channel. - 16. A golf club head comprising: - a striking face portion located at a frontal portion of said golf club head, and - a body portion attached to a rear of said striking face portion; - wherein said body portion incorporates a weight adjustment portion further comprising; - an elongate channel having a toe opening, further comprising a lower undercut and a retention rail, - a weight member further comprising a lower protrusion and a fastener receiving aperture, - a fastener adapted to directly engage said fastener receiving aperture, - a toe cap, adapted to close said toe opening, and - a screw, adapted to secure said toe cap to said body portion. - 17. The golf club head of claim 16, wherein a tightening of said fastener shifts a location of said weight member within said elongate channel to engage said retention rail to secure said weight member to said golf club head. - 18. The golf club head of claim 17, wherein said weight adjustment portion can be configured to be in either one of an unlocked configuration or a locked configuration, - wherein when said weight adjustment portion is in said unlocked configuration, said weight member is not engaged with said retention rail, and - wherein when said weight adjustment portion is in said locked configuration, said weight member is engaged with said retention rail. - 19. The golf club head of claim 18, wherein said tightening of said fastener shifts said weight member upward within said elongate channel. - 20. The golf club head of claim 19, wherein an upper portion of said weight member rotates into said striking face portion of said golf club head to insert said weight member into said elongate channel. * * * * *