US 20160162380A1

a2y Patent Application Publication o) Pub. No.: US 2016/0162380 A1

a9 United States

Hendrickson et al.

43) Pub. Date: Jun. 9, 2016

(54) IMPLEMENTING PROCESSOR
FUNCTIONAL VERIFICATION BY

Publication Classification

GENERATING AND RUNNING (51) Imnt.ClL
CONSTRAINED RANDOM IRRITATOR GO6F 11263 (2006.01)
TESTS FOR MULTIPLE PROCESSOR GO6F 1122 (2006.01)
SYSTEM AND PROCESSOR CORE WITH (52) US.CL
MULTIPLE THREADS CPC ... GO6F 11/263 (2013.01); GO6F 11/2242
(2013.01)
(71) Applicant: International Business Machines
Corporation, Armonk, NY (US) (57) ABSTRACT
(72) Inventors: Olaf K. Hendrickson, Rochester, MN A method and system are provided for implementing func-
(US); Yugi Morimoto, Poughkeepsie, tional verification including generating and running con-
NY (US); Michael P. Mullen, strained random irritator tests for a multiple processor system
Pouglikeepsie, NY (US); Michal Rimon, and for a processor core with multiple threads. Separate tests
Nofit (IL) are generated, a main test for one thread, and an irritator test
for each other thread in the configuration. The main test and
(21) Appl. No.: 14/562,908 each irritator test are saved and randomly mixed then com-
bined together again, where the main thread is not forced to be
22) Filed: Dec. 8, 2014 generated with any particular irritator.
ed 1 with icular irri
SYSTEM MEMORY 106
10
TEST GENERATOR 110
PROCESSOR BUS 116
102 nikg (USER INTERFACE 112
(#1)
*
" CACHE OPERATING SYSTEM 108
104
*
PROCESSOR /O BUS INTERFACE 114
102 >
(#N) .
/0 DEVICE [™| PRINTER/FAX 136A
INTERFACE
134 <«—| PRINTER 136B
STORAGE |e| DASD122
BUS 118 INTERFACE 120 |
“—™CD-ROM 124
e | TERMINAL (#1) @l
TERMINAL X
INTERFACE 126 X

TERMINAL (#M) 128

NETWORK

INTERFACE

130

Patent Application Publication Jun. 9,2016 Sheet1 of10 US 2016/0162380 A1

SYSTEM MEMORY 106
100
TEST GENERATOR 110
PROCESSOR BUS 116
102 Rl (USER INTERFACE 112
(#1)
*
. C':\SZ'E OPERATING SYSTEM 108
*
PRO?EZSSOR /O BUS INTERFACE 114
(#N) -
I/O DEVICE [* > PRINTER/FAX 136A
INTERFACE
134 <—> PRINTER 1368
] STORAGE e DASD 122
BUS 118 INTERFACE 120 |
<> CD-ROM 124

e | TERMINAL (#1)@|
TERMINAL ”

INTERFACE 126 X
»ITERMINAL (#M) 128

' §

NETWORK
INTERFACE
130

FIG. 1

Patent Application Publication

00

Jun. 9,2016 Sheet2 of 10

TEST GENERATION CONTEXT
CONTROLS (GENERATE AS
IRRITATOR OR NOT) 202

A CONFORMING STANDARD
TEST DEFINITION 204

OPTIONAL IRRITATORY
INDICATION 206/

\

/"LOCAL TESTING KNOWLEDGE \
208

LOCAL INSTRUCTION CLASS
DEFINITION FOR IRRITATOR
GENERATION MODE 210

LOCAL LOOP CONSTRUCT
TESTING KNOWLEDGE FOR
IRRITATOR GENERATION

MODE 212

INFINITE LOOP CONSTRUCT
TESTING KNOWLEDGE 214
2 v

Y

TEST GENERATOR 218
(IRRITATOR GENERATION MODE 220)

C)

(' CONVERGED BRANCH BNT 224)

|EXPECTED EXCEPTION HANDLING 226|
MANDATORY READ ONLY REGISTERS

C)

FINITE LOOP GENERATION
COMPATIBLE WITH IRRATORS 230
UNEXPECTED EXCEPTION HANDLER
232

IRRITATOR INSTRUCTION
RESTRICTIONS 222

CONVERT LOOP FROM FINITE TO
INFINITE 234

MASK ALL IRRITATOR STORE
RESULTS 236

END OF IRRITATOR HANDLING 238

Y

A TEST 240

TEST EXECUTION CONTEXT

v

CONTROLS (IRRITATOR OR NOT)
246

IGNORE IRRITATOR THREAD TEST
EXPECTED RESULTS 242

INITIATE END OF IRRITATOR
PROCESS 244

C)

FIG.

2

US 2016/0162380 A1

Patent Application Publication Jun. 9,2016 Sheet3o0f10 US 2016/0162380 A1

PRIOR ART

4 A
MULTI THREAD TEST DEFINITION

VICTIM THREAD
VI%EMJ?E)E]AD INITIATES IRRITATOR
SHUTDOWN

IRRITATOR
SHUTDOWN | TEST !
GENERATOR A

Y IRRITATOR THREAD

IRRITATOR
THREAD DEFINITION

. J

Y

FIG. 3

Patent Application Publication Jun. 9,2016 Sheet4 of 10 US 2016/0162380 A1

400
ANY STANDARD TEST ANY STANDARD TEST
DEFINITION SINGLE DEFINITION SINGLE
THREAD 402 THREAD 408
TEST GENERATOR TEST GENERATOR
404 410
SINGLE THREADED SINGLE THREADED
TEST 406 IRRITATOR 412

TEST STITCH 414

! !

MAIN 418 IRRITATOR 420

MULTI-THREADED TEST 41

FIG. 4

Patent Application Publication Jun. 9,2016 Sheet5of10 US 2016/0162380 A1

00

ANY STANDARD TEST
DEFINITION SINGLE

THREAD 502

!

TEST GENERATOR 504

TESTING KNOWLEDGE TO TRANSFORM
STANDARD DEFINITION TO IRRITATOR 506

!

SINGLE THREADED IRRITATOR
TEST 508

FIG. 5

Patent Application Publication Jun. 9,2016 Sheet 6 0of 10 US 2016/0162380 A1

600
ANY STANDARD TEST ANY STANDARD TEST
DEFINITION SINGLE DEFINITION SINGLE
THREAD 602 THREAD 606

DEFINITION STITCHER 604

! !

CMAIN THREAD 610) CRRITAT%TZTHREAI?

MULTI-THREADED TEST DEFINITION 608

TEST GENERATOR 614

l Y

IRRITATOR THREAD
620

MAIN THREAD 618

MULTI-THREADED TEST 616

FIG. 6

Patent Application Publication

Jun. 9,2016 Sheet7 of 10

PRIOR ART

INTERRUPTED
INSTRUCTION

NEXT SEQUENTIAL
INSTRUCTION
ADDRESS

US 2016/0162380 A1

'

INTERRUPTED
INSTRUCTION

REUSABLE

FIXED LOCATION
INTERRUPT
HANDLER

NEXT SEQUENTIAL
INSTRUCTION
ADDRESS

/

FIG. 7

Patent Application Publication Jun. 9,2016 Sheet 8 of 10 US 2016/0162380 A1

PRIOR ART

INTERRUPTED o

INSTRUCTION
FIRST SINGLE USE
INTERRUPT
HANDLER

RANDOM RETURN
INSTRUCTION n
ADDRESS

'

INTERRUPTED
INSTRUCTION

SECOND SINGLE USE
INTERRUPT

RANDOM RETURN HANDLER
INSTRUCTION [*+——
ADDRESS

FIG. 8

Patent Application Publication

Jun. 9,2016 Sheet 9 of 10

US 2016/0162380 A1

UNEXPECTED
INTERRUPT
HANDLER
RETURNS TO
TOP OF
IRRITATOR
922

900
902 912
UNINTERRUPTED UNINTERRUPTED
INSTRUCTION — INSTRUCTION
ADDRESS 904 »| ADDRESS 914
v v
UNINTERRUPTED UNEXPECTED
INSTRUCTION INTERRUPT
ADDRESS 906 ADDRESS 916
Y Y
UNINTERRUPTED UNINTERRUPTED
INSTRUCTION INSTRUCTION
ADDRESS 908 ADDRESS 918
UNINTERRUPTED UNINTERRUPTED
INSTRUCTION INSTRUCTION
ADDRESS 910 ADDRESS 920
TEST EXECUTION
WITH UNEXPECTED
TEST GENERATION INTERRUPT

FIG. 9

Patent Application Publication Jun. 9,2016 Sheet 10 of 10 US 2016/0162380 A1

COMPUTER
RECORDING PROGRAM
MEDIUM PRODUCT
1002 1000

PROGRAM

MEANS 1010 PROGRAM

MEANS 1004

PROGRAM

PROGRAM MEANS 1006

MEANS 1008

FIG. 10

US 2016/0162380 Al

IMPLEMENTING PROCESSOR
FUNCTIONAL VERIFICATION BY
GENERATING AND RUNNING
CONSTRAINED RANDOM IRRITATOR
TESTS FOR MULTIPLE PROCESSOR
SYSTEM AND PROCESSOR CORE WITH
MULTIPLE THREADS

FIELD OF THE INVENTION

[0001] The present invention relates generally to the data
processing field, and more particularly, relates to a method
and apparatus for implementing functional verification
including generating and running constrained random irrita-
tor tests for a multiple processor system and for a processor
core with multiple threads.

DESCRIPTION OF THE RELATED ART

[0002] Functional verification techniques are needed for a
multiple processor system and for a processor core with mul-
tiple threads. There are many examples of computer proces-
sor design which make use of simultaneous multiple thread
designs. Processors designed with simultaneous multiple
threading (SMT) or systems with multiple processors present
similar requirements and challenges for pre-silicon func-
tional verification. Some of the challenges are related to veri-
fying the functionality of several aspects of the design that
relate to multithreading, such as WO 9921083A1 to Borken-
hagen et al., published Apr. 29, 1999, and entitled “Thread
Switch Control in a Multithreaded Processor System”;
EP747816A2 to Eickenmeyer et al, published Dec. 11, 1996,
and entitled “Method and System for High Performance Mul-
tithread Operation in a Data Processing System”; or US
patent publication US 20130205118 to Buyuktosunoglu et al,
published Aug. 8, 2013 and entitled “Multi-Threaded Proces-
sor Instruction Balancing Through Instruction Uncertainty”.
Other challenges are related to verification efficiency, which
is described by US patent publication US 2010/0011345 A1
to Hickerson et al., published Jan. 14, 2010, and entitled
“Efficient and Self-Balancing Verification of Multi-Threaded
Microprocessors”; and U.S. Pat. No. 8,479,173 B2 to Hick-
erson et al., Jul. 2, 2013, and entitled “Efficient and Self-
Balancing Verification of Multi-Threaded Microprocessors”.

[0003] Microprocessor Pre-Silicon functional verification
is typically accomplished by supplying test templates into an
automated test case generation tool which produces assembly
level instruction sequences. These templates are typically
produced by engineers to exercise certain Architectural and
Micro Architectural functions within the microprocessor.
Such test case generation tools are some times referred to as
constrained random test generators. An example constrained
random test generator is described by U.S. Pat. No. 6,006,
028, to Aharon et al, Dec. 21, 19999, and entitled “Test
Program Generator”.

[0004] A method of creating test cases described by the
above identified U.S. Pat. No. 8,479,173 in the context of
constrained random test generation for a symmetric multi-
threaded processor (or multi-processor system) is commonly
referred to as an Irritator”, which refers to a short segment of
code that runs as an infinite loop in simulation on one or more
threads in a simulation environment while there is at least one
thread in the same simulation that is not an irritator, which is
referred to as a main thread. This is done for a variety of
reasons, including simplifying the test generation process for

Jun. 9, 2016

processor cores with high degrees of multi-threading.
Another reason is to provide what looks like a long and very
fast executing stream of instructions while only using the test
generation resources necessary to generate a very short test.
FIG. 3 illustrates the prior art victim thread and irritator
threads that are custom definitions, for example, as described
by the above identified U.S. Pat. No. 8,479,173.

[0005] The very long stream of instructions in an irritator
thread is obtained by generating a code loop and then altering
the test to make the code loop infinite. This loop is the salient
feature of an irritator and is characterized by a finite genera-
tion sequence and an indeterminate number of executions in
simulation. Several common problems exist in the current art
of generating tests that contain irritator threads. In an envi-
ronment where register and storage values change with each
iteration of the loop (a given when generating random instruc-
tions), it is necessary to restrict the random nature of opera-
tions as the loop iterates indefinitely. Several of these prob-
lems are addressed for example, by US patent application
publication US 2014/0257739 A1 to Dagan et al., published
Sep. 11, 2014, entitled “Implementing Random Context of
Program Loops in Random Test Generation for Processor
Verification” and assigned to the present assignee. There is an
important difference between a fully generated loop and a
loop that is partially generated and then runs for an indeter-
minate number of iterations or partial iterations. The earlier
art for generating irritators is to avoid instructions which
would cause problems. Several new developments allow
more random instructions.

[0006] Random conditional branch instructions which
could change the branch direction. A fully generated loop
with random branches can experience a change in direction of
the branch and provide a predicted code path and expected
results for the new path. The change in direction is predicted,
as explained in the above identified US 2014/0257739 Al,
such a change in direction may be undesirable from the point
of view of the test objective in terms of early exit from the
loop, however, the test remains valid in terms of all expected
results in the test are valid. A problem (1a) is that an irritator
branch that remains in one direction for the entire loop gen-
eration but changes direction in simulation after all genera-
tion results have been exhausted may end up with no pre-
dicted code path and no expected results. For an irritator, this
situation is a catastrophic failure and the test is architecturally
invalid. Another problem (1b) is that the test environment has
many checkers that verity that any memory location accessed
by the hardware during simulation was predicted to be used
by the test. Random test generation of a loop contains many
hazards, such as using a register in a memory storage address
calculation, then later preforming an operation that alters that
register, then executing the loop sequence again so that the
next storage address is different from the first. As an irritator
loop will iterate an indefinite number oftimes, itis impossible
to predict all possible values of future storage locations based
on a finite number of loop iterations in the original test gen-
eration. Also, no instruction in an irritator thread is guaran-
teed to complete in simulation so the final result of any pre-
dicted store may never have changed in simulation. The
simulation environment is not able to distinguish between end
of test memory results due to a store from one thread or
another and it has a hard time dealing with a situation where
a store may or may not occur. In our environment a main
thread can race ahead of an irritator thread and finish, which
triggers a shut down of the irritator thread before reaching a

US 2016/0162380 Al

particular store, so that it is possible that any particular store
predicted in the irritator test does not occur in simulation.
[0007] The indefinite number of loop iterations poses a
problem (1c) for expecting exceptions. In a fully generated
loop any data or storage addressing exception that occurs with
subsequent iterations of the loop are fully predicted and
exception handlers are added to the test during generation. An
irritator execution could experience a data exception or stor-
age addressing exception that is not predicted, leaving an
unpredicted code path.

[0008] Another problem (1d) is that many instructions are
not currently solvable and must be avoided.

[0009] A second problem (2) results from the embodiment
described by the above identified U.S. Pat. No. 8,479,173
states that when the main thread completes, it initiates action
to shut down the irritator threads. This is done through
instructions generated in both the main and irritator threads,
requiring system synchronization between them at test gen-
eration time. That requires that each main thread and irritator
be generated together at the same time as part of the same test.
[0010] A need exists for an effective method and apparatus
for implementing functional verification including generat-
ing and running constrained random irritator tests for a mul-
tiple processor system and for a processor core with multiple
threads.

SUMMARY OF THE INVENTION

[0011] Principal aspects of the present invention are to pro-
vide a method and apparatus for implementing functional
verification including generating and running constrained
random irritator tests for a multiple processor system and for
a processor core with multiple threads. Other important
aspects of the present invention are to provide such method,
and apparatus substantially without negative effects and that
overcome many of the disadvantages of prior art arrange-
ments.

[0012] In brief, a method and system are provided for
implementing functional verification including generating
and running constrained random irritator tests for a multiple
processor system and for a processor core with multiple
threads. Separate tests are generated, a main test for one
thread, and an irritator test for each other thread in the con-
figuration. The main test and each irritator test are saved and
randomly mixed then combined together again, where the
main thread is not forced to be generated with any particular
irritator.

[0013] In accordance with features of the invention, the
main test and each irritator test are allowed to be completely
independent. The main tests can be generated as single thread
tests, run in a simulation environment, saved, and later
stitched to an irritator test and reused, significantly reducing
the processing power required to generate tests for simulation
and also reduces effort of writing tests.

[0014] In accordance with features of the invention, an
enhanced test definition with local testing knowledge allows
most standard test definitions to be generated in either a main
or irritator context without modification of the test definition.
This eliminates the need to write separate test definitions for
different contexts. The definitions can be written for a single
thread and allow other processes to manipulate them into
multi threaded tests. Test definitions can be stitched together
before generation (definition stitching), providing a new
method used for irritators, but can also be used for general
purpose combining of different and unrelated test definitions

Jun. 9, 2016

into new tests that allow the test generator to create shared
address interaction between threads that is not possible with
simple test stitching.

[0015] In accordance with features of the invention, any
instruction that can get an exception due to iterative execution
in a loop can be tolerated by addition to the test of an unex-
pected exception handler that returns control of the irritator
program stream to a known location and a known state, such
as to top or bottom of the irritator loop.

[0016] In accordance with features of the invention, most
store instructions where the storage address (or addresses) are
randomly selected (random stores) are allowed and managed
by masking the memory location in the final test file so that
the simulation environment ignores the data value at that
location while checking results.

BRIEF DESCRIPTION OF THE DRAWINGS

[0017] The present invention together with the above and
other objects and advantages may best be understood from the
following detailed description of the preferred embodiments
of the invention illustrated in the drawings, wherein:

[0018] FIG. 1 is a block diagram of an example computer
system for implementing functional verification including
generating and running constrained random irritator tests for
a multiple processor system and for a processor core with
multiple threads in accordance with preferred embodiments;
[0019] FIG. 2 is a block diagram of a test generator of the
system of FIG. 1 for implementing functional verification
including generating and running constrained random irrita-
tor tests for a multiple processor system and for a processor
core with multiple threads in accordance with the preferred
embodiment;

[0020] FIG. 3 illustrates a prior art victim thread and irri-
tator thread interaction at a test definition level;

[0021] FIG. 4 illustrates an example method for generating
and running a single main thread and irritator thread where
the main thread and the irritator thread are totally independent
and can be randomly mixed in accordance with preferred
embodiments;

[0022] FIG. 5 illustrates an example method for transform-
ing of any standard single threaded test definition into an
irritator thread that can be stitched to a random main thread
test in accordance with preferred embodiments;

[0023] FIG. 6 illustrates an example method for test defi-
nition stitching allowing any standard single threaded test
definitions to be combined to form a test definition with
multiple threads with main and irritator threads in accordance
with preferred embodiments;

[0024] FIGS. 7 and 8 illustrate respective prior art excep-
tion handlers;
[0025] FIG. 9 illustrates an example method for imple-

menting an unexpected exception handler that returns control
of the irritator program stream to a known location and a
known state, such as to top or bottom of the irritator loop in
accordance with preferred embodiments; and

[0026] FIG. 10 is a block diagram illustrating a computer
program product in accordance with the preferred embodi-
ment.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS

[0027] In the following detailed description of embodi-
ments of the invention, reference is made to the accompany-

US 2016/0162380 Al

ing drawings, which illustrate example embodiments by
which the invention may be practiced. It is to be understood
that other embodiments may be utilized and structural
changes may be made without departing from the scope of the
invention.

[0028] The terminology used herein is for the purpose of
describing particular embodiments only and is not intended to
be limiting of the invention. As used herein, the singular
forms “a”, “an” and “the” are intended to include the plural
forms as well, unless the context clearly indicates otherwise.
It will be further understood that the terms “comprises” and/
or “comprising,” when used in this specification, specify the
presence of stated features, integers, steps, operations, ele-
ments, and/or components, but do not preclude the presence
or addition of one or more other features, integers, steps,
operations, elements, components, and/or groups thereof.

[0029] In accordance with features of the invention, a
method and apparatus are provided for implementing func-
tional verification including generating and running con-
strained random irritator tests for a multiple processor system
and for a processor core with multiple threads in accordance
with preferred embodiments. Separate tests are generated, a
main test for one thread, and an irritator test for each other
thread in the configuration, these tests are saved and randomly
mixed then combined together again, so that the main thread
is not forced to be generated with any particular irritator.

[0030] Having reference now to the drawings, in FIG. 1,
there is shown an example computer system generally desig-
nated by the reference character 100 for implementing func-
tional verification including generating and running con-
strained random irritator tests for a multiple processor system
and for a processor core with multiple threads in accordance
with preferred embodiments. Computer system 100 includes
one or more processors 102 or general-purpose program-
mable central processing units (CPUs) 102, #1-N. As shown,
computer system 100 includes multiple processors 102 typi-
cal of a relatively large system; however, system 100 can
include a single CPU 102. Computer system 100 includes a
cache memory 104 connected to each processor 102.

[0031] Computer system 100 includes a system memory
106, an operating system 108, a test generator 110 in accor-
dance with an embodiment of the invention and a user inter-
face 112. System memory 106 is a random-access semicon-
ductor memory for storing data, including programs. System
memory 106 is comprised of, for example, a dynamic random
access memory (DRAM), a synchronous direct random
access memory (SDRAM), a current double data rate (DDRx)
SDRAM, non-volatile memory, optical storage, and other
storage devices.

[0032] 1/O bus interface 114, and buses 116, 118 provide
communication paths among the various system components.
Bus 116 is a processor/memory bus, often referred to as
front-side bus, providing a data communication path for
transferring data among CPUs 102 and caches 104, system
memory 106 and I/O bus interface unit 114. I/O bus interface
114 is further coupled to system I/O bus 118 for transferring
data to and from various I/O units.

[0033] As shown, computer system 100 includes a storage
interface 120 coupled to storage devices, such as, a direct
access storage device (DASD) 122, and a CD-ROM 124.
Computer system 100 includes a terminal interface 126
coupled to a plurality of terminals 128, #1-M, a network
interface 130 coupled to a network 132, such as the Internet,

Jun. 9, 2016

local area or other networks, and a I/O device interface 134
coupled to I/O devices, such as a first printer/fax 136 A, and a
second printer 136B.

[0034] 1/O bus interface 114 communicates with multiple
I/O interface units 120, 126, 130, 134, which are also known
as /O processors (IOPs) or VO adapters (IOAs), through
system [/O bus 116. System 1/O bus 116 is, for example, an
industry standard PCI bus, or other appropriate bus technol-
ogy.

[0035] Computer system 100 is shown in simplified form
sufficient for understanding the present invention. It should
be understood that the present invention is not limited to the
illustrated arrangement of computer system 100.

[0036] Test generation 200 is shown in simplified form as
illustrated and described with respect to FIG. 2 and should be
understood that the present invention is not limited to the
illustrated arrangement of test generation apparatus 200.
Example embodiments for implementing test generation 200
in accordance with invention further include the example
methods as illustrated and described with respect to FIGS. 4,
5,6,and 9.

[0037] Referring now to FIG. 2 there is shown an example
test generator apparatus 200 of the system 100 for implement-
ing functional verification including generating and running
constrained random irritator tests for a multiple processor
system and for a processor core with multiple threads in
accordance with preferred embodiments. Test generator
apparatus 200 includes test generation context controls 202 to
generate as an irritator or not, and a conforming standard test
definition 204 with optional irritator indication 206 in accor-
dance with preferred embodiments. For example, the stan-
dard test definition template, such as conforming standard test
definition 204 is macro based. Various standard macros, such
as, Prolog, Body and Epilog macros are updated to accom-
modate generating the test as an irritator in test generator
apparatus 200.

[0038] Test generator apparatus 200 includes local testing
knowledge 208 including local instruction class definition for
irritator generation mode 210, local loop construct 212 for
irritator generation mode, and infinite loop construct testing
knowledge 214 in accordance with preferred embodiments.
[0039] Test generator apparatus 200 includes a test genera-
tor 218 including example enhanced functions of irritator
generation mode 220, irritator instruction restrictions 222,
converged branch or Branch Not Taken (BNT) 224, expected
exception handling 226, mandatory read only registers 228,
finite loop generation compatible with irrators 230, unex-
pected exception handler 232, convert loop from finite to
infinite 234, and mask all irritator store results 236 in accor-
dance with preferred embodiments. Test generator apparatus
200 includes a test 240 output of the test generator 218. Test
204 is applied to testing functions ignore irritator thread test
expected results 242 and initiate end of irritator process 244 in
accordance with preferred embodiments.

[0040] Test generator apparatus 200 includes test execution
context controls 246 to execute as an irritator or not applied to
the testing function ignore irritator thread test expected
results 242 and initiate end of irritator process 244.

[0041] In accordance with features of the invention, using
the disclosed looping method of US 2014/0257739, new
alterations are added in accordance with preferred embodi-
ments.

[0042] US patent application publication US 2014/
0257739 A1 to Dagan et al., published Sep. 11, 2014, entitled

US 2016/0162380 Al

“Implementing Random Context of Program Loops in Ran-
dom Test Generation for Processor Verification” discloses
method and apparatus for implementing random content of
program loops in random test generation for processor veri-
fication.

[0043] The subject matter of the above-identified US 2014/
0257739 is incorporated herein by reference.

[0044] In accordance with features of the invention, more
operations (ops) are allowed to be generated randomly and
using existing test definitions to generate either a main or
irritator test. Branches are handled using the Looping method
of US 2014/0257739 that establishes a branch not taken
sequence that always ends with an unconditional branch to
the original branch target location.

[0045] Inaccordance with features of the invention, storage
instructions use Read-Only registers as in the Looping
method and the mandatory use of Read-Only registers. How-
ever the consequences of inadvertently ignoring or bypassing
this requirement for a fully generated loop are that the loop
may exit before the intended number of iterations or that a
storage operation accesses a new and/or different storage
location. As the loop is fully generated, this results in a legal
test that poses no adverse consequences in the simulation
environment. Such non-conforming behavior in an irritator
context results in storage or instruction activity outside of the
established storage footprint and results in a failing test in the
simulation environment, which is a false fail that uses valu-
able debug resources. The implementation of Read-Only reg-
isters in the irritator context requires updating a few non-
conforming behaviors in the test generator to align the
generator behavior to the expectations of a truly mandatory
Read-Only register use for storage operands. A few complex
instructions are dealt with by adding them to a list of instruc-
tions that are not allowed to be used in the irritator context.
Using this method allows many existing test definition to be
generated in the context of an irritator and still generate a legal
test and avoid the need to write duplicate test definitions of
main or irritator test varieties.

[0046] A method exists in a directed test definition of
avoiding Read-Only registers for storage operands using spe-
cific biasing, and this method is well known to experienced
practitioners of the art of constrained random processor veri-
fication. As an alternative to using the exact same storage
locations each time an irritator loop iterates, storage displace-
ment values, and base, and index registers advantageously are
maintained by the test definition to vary slightly, either ran-
domly or periodically and guarantee that no matter how many
iterations an irritator loop will make in simulation, the storage
footprint will never leave a predefined range. Using this
method requires detailed knowledge of the simulation envi-
ronment and its rules on storage footprint checking. For
instance, many processor designs use a cached interface to
main storage and apply footprint checking to ensure that all
storage operations encountered in the test are within any
block of storage bounded by a cache line defined in the test.
Or, all footprint checking could be disabled in the simulation
environment.

[0047] Instructions can trigger program exceptions for a
number of reasons. Some reasons are related to storage
addressing which is described above in (1b). Data flow opera-
tions can also experience exceptions when a register values
change with successive iterations of a looping sequence. A
simple algebraic equation serves to illustrate the problem:
y=Remainder(x/y). If this equation is implemented in an irri-

Jun. 9, 2016

tator test body, then during test generation, a few answers are
predicted and there are no exceptions. While in simulation it
could loop an indefinite number of times. For integer calcu-
lations, with starting values of x=97 and y=11, successive
values of y are: 11, 9, 7, 6, 1, 0, divide-by-zero-exception. If
the original test generation was, (as disclosed in U.S. Pat. No.
8,479,173B2 for p/irritators), generated once then no excep-
tion is predicted in the test. In simulation the first 5 iterations
of'the equation in the loop result in normal completion of the
instruction while the 6th iteration results in a divide by zero
exception and execution is transferred to an architected
exception handler location, which is not initialized by the test,
resulting in a simulation fail and a waste of valuable debug
time.

[0048] In accordance with features of the invention, the
enhanced test generator apparatus 200 solves the above prob-
lem, adding a special exception handler to irritator tests. This
unexpected-exception handler is the last thing generated in
the test and creates a code sequence to restore the machine
state to the original condition which existed at the beginning
of'the irritator loop, and return the program flow to a location
provided by the test definition and which in the demonstrated
embodiment is the first instruction location of the irritator
loop.

[0049] A second case of program exceptions to deal with is
generating an instruction for which a program exception is
predicted. In this case the generated test contains an instruc-
tion that experiences a program exception and the exception
handler is present in the test. Test generator apparatus 200
uses features that are present in the Looping method to pro-
vide deterministic return from the program interrupt handler
and to avoid randomization of the return from program inter-
rupt handler. Both of these are now standard controls as test
generator directives. Test generator apparatus 200 takes into
account any prior predicted program interrupt handlers when
placing the new unexpected program interrupt handler.

[0050] In accordance with features of the invention, test
generator apparatus 200 includes the ability to use the simu-
lation environment to communicate between the main thread
and irritator thread simplifies test generation and allows pre-
viously generated single thread main tests to be reused with
arbitrarily selected irritator tests. It also allows an irritator to
avoid a specific interlock code sequence running in the irri-
tator loop. For cases where the object of an irritator requires
co-generation with the main thread test, it simplifies genera-
tion. In the demonstrated embodiment, the simulation envi-
ronment is told which thread in a test is a main thread and
which is an irritator thread by means of flags placed in the test
by the test generator. A main thread will run from start to
finish and is guaranteed (in a good hardware design) to reach
the finish point. An irritator thread is an infinite loop that will
never reach the designated finish point with out intervention.
In known test generator apparatus, the simulation environ-
ment monitors the main thread to see when it completes, by
executing certain instruction(s) at a designated location
flagged as the end-of-test in the test case. When the main
thread is observed to complete, the simulation environment
intervenes in the execution of the irritator thread. Fora simple
environment, a direct shutdown of all irritator threads by
stopping simulation is possible. To avoid complex situations
of dealing with simulation environment checkers, that verify
that the hardware has actually completed all of its expected
tasks and returned to a natural state, it is better to use a natural
means of intervention. In the known simulation environment

US 2016/0162380 Al

use an external interrupt to terminate all irritator threads after
all main threads have completed execution.

[0051] In the embodiment of test generator apparatus 200
global test generation controls are used to initialize the archi-
tected external interrupt handler location in storage to contain
an end-of-test sequence. In test generator apparatus 200, the
hardware simulation running the irritator code, experiences
an external interrupt and uses natural hardware sequences to
redirect the program execution to the end-of-test location at
the external interrupt handler location. At this point, the simu-
lation environment finishes normal end of test checking then
terminates the simulation of the test.

[0052] Referring now to FIG. 4, an example method gen-
erally designated by the reference character 400 illustrates
generating and running a single main thread and irritator
thread where the main thread and the irritator thread are
totally independent and can be randomly mixed in accor-
dance with preferred embodiments.

[0053] As indicated in a block 402, any standard test defi-
nition single thread is applied to a test generator as indicated
in a block 404. A single threaded test is provided as indicated
in a block 406. In a separate process, any standard test defi-
nition single thread as indicated in a block 408 is applied to
the test generator as indicated in a block 410. A single
threaded irritator is provided as indicated in a block 412. As
shown in FIG. 2, enhanced test definition 204 with local
testing knowledge 208 allows most standard test definitions
to be generated in either a main or irritator context without
modification of the test definition. This eliminates the need to
write separate test definitions for different contexts. The defi-
nitions can be written to provide a single thread as shown at
blocks 406 and 412 and allow other processes to manipulate
them into multi threaded tests.

[0054] A test stitch function is provided as indicated in a
block 414. Test definitions can be stitched together before
generation (definition stitching), providing a new method
used for irritators, but can also be used for general purpose
combining of different and unrelated test definitions into new
tests that allow the test generator to create shared address
interaction between threads that is not possible with simple
test stitching. As indicated in a block 416, a multi-threaded
test is provided including a main test 418 and an irritator test
402.

[0055] Referring now to FIG. 5, an example method gen-
erally designated by the reference character 500 illustrates
transforming of any standard single threaded test definition
into an irritator thread that can be stitched to a random main
thread test in accordance with preferred embodiments. As
indicated in a block 502, any standard test definition single
threadis applied to a test generator as indicated in a block 504,
which includes standard knowledge to transform the standard
definition to irritator as indicated in a block 406. A single
threaded irritator test is provided as indicated in a block 508.
[0056] Referring now to FIG. 6, an example method gen-
erally designated by the reference character 600 illustrates
test definition stitching allowing any standard single threaded
test definitions to be combined to form a test definition with
multiple threads with main and irritator threads in accordance
with preferred embodiments. As indicated in a block 602, any
standard test definition single thread is applied to a test defi-
nition stitcher as indicated in a block 604. Any standard test
definition single thread as indicated in a block 606 is applied
to the test definition sticher at block 604. A multi-threaded
test definition as indicated in a block 608 includes a main

Jun. 9, 2016

thread 610 and an irritator thread 612. A test generator 614
receives the multi-threaded test definition 608 including the
main thread 610 and irritator thread 612 provides an output
applied to a multi-threaded test function as indicated in a
block 616, which includes a main thread 618 and irritator
thread 620.

[0057] Referring now to FIG. 9, an example method gen-
erally designated by the reference character 900 illustrates
implementing an unexpected exception handler that returns
control of the irritator program stream to a known location
and a know state, such as to top or bottom of the irritator loop
in accordance with preferred embodiments. FIGS. 7 and 8
illustrate respective prior art exception handlers.

[0058] In accordance with features of the invention, any
instruction that can get an exception due to iterative execution
in a loop can be tolerated by addition to the test of an unex-
pected exception handler that returns control of the irritator
program stream to a known location and a know state, such as
to top or bottom of the irritator loop.

[0059] In FIG. 9, method 900 includes a test generation
function 902 including an example loop including uninter-
rupted instruction addresses 904, 906, 908, 910, returning to
uninterrupted instruction address 904 and continuing.
Method 900 includes a test execution function 912 including
an example loop including uninterrupted instruction
addresses 914, 918, 920, returning to uninterrupted instruc-
tion address 914 and continuing. An unexpected interrupt
address 916 triggers an unexpected interrupt handler 922 that
returns control of the irritator program stream to a known
location and a known state, such as the top of the irritator loop
at uninterrupted instruction address 914, as shown.

[0060] Referring now to FIG. 10, an article of manufacture
or a computer program product 1000 of the invention is illus-
trated. The computer program product 1000 is tangibly
embodied on a non-transitory computer readable storage
medium that includes a recording medium 1002, such as, a
floppy disk, a high capacity read only memory in the form of
anoptically read compact disk or CD-ROM, a tape, or another
similar computer program product. Recording medium 1002
stores program means 1004, 1006, 1008, and 1010 on the
medium 1002 for carrying out the methods for implementing
functional verification including generating and running con-
strained random irritator tests for a multiple processor system
and for a processor core with multiple threads in system 100
of FIG. 1.

[0061] A sequence of program instructions or a logical
assembly of one or more interrelated modules defined by the
recorded program means 1004, 1006, 1008, and 1010, direct
the computer system 200 for implementing functional verifi-
cation including generating and running constrained random
irritator tests for a multiple processor system and for a pro-
cessor core with multiple threads

[0062] While the present invention has been described with
reference to the details of the embodiments of the invention
shown in the drawing, these details are not intended to limit
the scope of the invention as claimed in the appended claims.

1-9. (canceled)

10. A computer system for implementing functional veri-
fication including generating and running constrained ran-
dom irritator tests for a multiple processor system and for a
processor core with multiple threads comprising:

a processor;

a test generator apparatus receiving a test definition single

thread;

US 2016/0162380 Al

said processor using said test generator for generating a
main test for one thread, and generating an irritator test
for each other thread;

said processor using said test generator for saving the gen-
erated main test and each irritator test and randomly
mixing the generated main test and each irritator test;
and

said processor using said test generator for combining the
saved and mixed main test and each irritator test,
wherein the main thread is not forced to be generated
with any particular irritator.

11. The system as recited in claim 10 includes control code
stored on a computer readable medium, and wherein said
processor uses said control code for generating and running
constrained random irritator tests.

12. The system as recited in claim 10 includes said test
generator apparatus receiving a test definition with local test-
ing knowledge, allowing said processor using said test gen-
erator for generating standard test definitions in either a main
or irritator context without modification of the test definition.

13. The system as recited in claim 12 includes said test
generator apparatus receiving test generation context controls
and wherein said test generator apparatus includes an irritator
generation mode.

14. The system as recited in claim 10 wherein said test
generator apparatus includes an expected exception handling
function.

Jun. 9, 2016

15. The system as recited in claim 10 wherein said test
generator apparatus includes an unexpected exception han-
dler.

16. The system as recited in claim 15 wherein said proces-
sor using said test generator and said unexpected exception
handler for returning control of an irritator program stream to
a known location and a known state responsive to an unex-
pected exception interrupt.

17. The system as recited in claim 10 includes said test
generator apparatus receiving a first test definition single
thread and a second test definition single thread, each applied
to a definition stitcher for definition stitching and generating
multi-threaded test definition.

18. The system as recited in claim 10 includes said test
generator apparatus receiving a test definition with local test-
ing knowledge including local instruction class definition for
irritator generation mode.

19. The system as recited in claim 18 wherein said local
testing knowledge includes local loop construct for irritator
generation mode.

20. The system as recited in claim 18 wherein said local
testing knowledge includes infinite loop construct testing
knowledge.

