(19)

US 20160163016A1

a2y Patent Application Publication o) Pub. No.: US 2016/0163016 A1

United States

GOULD et al. 43) Pub. Date: Jun. 9, 2016
(54) THREAD DISPATCHING FOR GRAPHICS HO4N 19/70 (2006.01)
PROCESSORS GOG6F 9/48 (2006.01)
] (52) US.CL
(71) Applicants: JULIA A. GOULD, San Jose, CA (US); CPC oo GO6T 1/20 (2013.01); GOGF 9/4881
HAIHUA WU, San Jose, CA (US) (2013.01); GOSF 9/3009 (2013.01); HO4N
19/70 (2014.11); GO6T 2210/52 (2013.01)
(72) Inventors: JULIA A. GOULD, San Jose, CA (US);
HAIHUA WU, San Jose, CA (US) (57) ABSTRACT
(21) Appl. No.: 14/565,240 Techniques to dispatch threads of a graphics kernel for execu-
tion to increase the interval between dependent threads and
(22) Filed: Dec.9,2014 the associated are disclosed. The dispatch interval may be
increased by dispatching associated threads, followed by
Publication Classification threads without any dependencies, followed by threads
dependent on the earlier dispatched associated threads. As
(51) Int.ClL such, the interval between dependent threads and their asso-
GO6T 120 (2006.01) ciated threads can be increased, leading to increased parallel-
GO6F 9/30 (2006.01) ism.
200
204
202 (MEDIA ENGINE - 237
COMMAND VQE MFX
" STREAMER 230 233
203
| e]
VIDEQ I T i e o 1
I einr AN SUB-CORE 250A | SUB-CORE 250N
234 EUs || SAMPLERS D egs ! rSAMPLERS} I
200 || 254 b osan T sy
KERNEL - 152 3 ===ty
T i
» O SHARED RESOURCES |: SHARED-RESOURCES 1
= 270A - - 270N
_154. GEOMETRY Elia | 2N | |
4 ,,
* 26 -
SUB-CORE - 2804 I ™ suB-CORE - 260N }1
b e 1 Teampers ! !
EUs SAMPLERS || EUs SAMPLERS ' | |
2608 || 264n |y ey,
R | Bt |
|
GRAPHICS CORE - 280A : GRAPHICS CORE - 280N

Patent Application Publication

Jun. 9,2016 Sheet1 of 15

US 2016/0163016 A1

/

100

100
7 B S S e T o I I I I I I I D Ln L, —"‘—"‘—"‘—"‘I‘l
PROCESSOR CORE(S) - 107 | |I!
GRAPHICS CACHE || REGISTER i
PROCESSOR(S) 104 FILE INSTRUCTION SET I
104 1
108 106 109 b
1
PROCESSOR(S)
102
| PROCESSOR BUS |
_______ . MEMORY - 120 KERNEL - 152
EXTERNAL MEMORY
GRAPHICS 1 CONTROLLER INSTRUCTIONS - | | |_THREAD-1541 |
PROCESSOR | HUB 121 [THREAD-1542 |
12 l 116
~~~~~~~ 4 o DATA- 122 | THREAD-1543 |
DATA . LEGACY 1/0
STORAGE qamp|  CONTROLLER
124 140
USB CONTROLLER(S)
WIRELESS 7o) 142
TRANSCEIVER “ CONTROLLER “ P —KE—YB—O;RB T
126 HUB | MOUSE-144 |
ﬂ) - e
FIRMWARE
INTERFACE (e g., AUDIO CONTROLLER
BIOS, EFI) - =) 146
128

NETWORK
CONTROLLER
134

FIG. 1




US 2016/0163016 A1

Jun. 9,2016 Sheet2 of 15

Patent Application Publication

_ NOSC - 3400 SOIHdVYD _ ¥08C - 30D SOIHAVHD
Tt/
LA A ViEE veur
|y | suTdivs | sna | Sy3TdAvs || sna
hilm—==le— 1 —
|| No%Z-3wooans | YO0z - 3400-6nS
I | 5 .
I | INIT3dld = R v
_“ iz | - VoG AMLINOID =
__ SIOUNOSTRAQRIVHS | SIOUNOSIY aTuvHS || | f [ 7% - avauHL
I o —
_r lllllllll I 9 | 1751 - QvauHL
Ikl e B S 25T - TANY
IR A \77r 7474
|| Su3dws | sn3 ) SHTTIAYS || sn3 ez
— — — — — “ —

11 o 3wooans | 052 340-8NS ON3 LNOZ
(L e PR ] 030IA

— | == €02

4 02 HINVIILS B

X4 30A ONVIWINOD 202

IEZ - INION3 VIGIN

$0Z )



US 2016/0163016 A1

Jun. 9,2016 Sheet 3 of 15

Patent Application Publication

¥ 'Ol

0S¥
AV3YHL 1SYld 3HL HOLVdSId

ﬁ

ovv
AvdyHL QYIHL IHL HOLVASIa

ﬂ

372
Aav3yH1 ANOO3S 3HL HOLVdSIa

a

4%
JINIANI43ANI
ONIF9 QVIYHL 1SHid
IHL 'AV3YHL QYIHL V A4LLNIA)

ﬂ

0lv
‘av3dHL GNOO3S
JHL NOdN INION3Id3a Av3ayHL
18414 IHL ‘GQv3dHL ANOO3S
V AONV QV3YHL LSHId V AJLLNIAI

¢ old

0ze
‘aAvayHL
ONODZS NV LSdid 3H1 40
NOILNOIX3 NIIMLFE TVALYILNI
NV 3SVY3HONI 01 SAv3IYHHL
40 "39NWNN ¥V J04 NOLLND3X3
40 "3AHO NV ININYF 130

i

0l€
"AvadH L ANCO3S
JHL NOdN LNIAN3Id3A Av3dHL
1SHId IHL ‘avIYHL ONOO3S
V ONV GVIHHL 1SYId ¥ AJILNIA1

(o
(394



Patent Application Publication Jun. 9,2016 Sheet4 of 15 US 2016/0163016 A1

FOR
300/400

STORAGE MEDIUM - 500
COMPUTER EXECUTABLE INSTRUCTIONS




Patent Application Publication Jun. 9,2016 Sheet5of15 US 2016/0163016 A1

654-128

610

/

FIG. 6

654-2  654-3

654-1




US 2016/0163016 A1

Jun. 9,2016 Sheet 6 of 15

Patent Application Publication

L "Old

(1)

T-8%7
avadHL
Q3 LVID0SSY
0w (00 (0 “‘t-) (0‘g)
/-8G/ 957 £657 Z2-8%/7
AvIHHL AvIHHL AvVIYHL AVAHHL
a31vID0SSY INIAN343A a31vID0SSY A3 LVIDOSSY
(-1 (1-"0) (1-"1)
5867 &-g6/ ¥-857
AvIHHL AvIHHL QvIHHL
a3LvIDossyY a3LvIDOoSsyY a3 LvYID0OSSY
00z




Patent Application Publication Jun. 9,2016 Sheet7 of 15 US 2016/0163016 A1

o0 (o}
o0 (e o]
< <
L 118
gl S
< Q
o0 o
3 ]
L. L.




US 2016/0163016 A1

Jun. 9,2016 Sheet 8 of 15

Patent Application Publication

dé "ol




US 2016/0163016 A1

Jun. 9,2016 Sheet 9 of 15

Patent Application Publication

0l "Old

(LLH) #59

871

¥o

LIT

95 |

81

2

5CT

or

Pt

[43

ECT

1L

N\zz1

9T

¥4

14

£9

6Ll

495

gt |

Ly

£11

6t

g1t

|43

SI1

£

v

51

£l

1T

24

117

bs |

01t

9¥

601

B¢

801

0t

£L01

[

|soT

¥i

50T

FOT

39

€07

€5 |

0t |

14

101

lt

001

6T

66

17|

86

€T

L6

96

0%

S6

z5 |

6 |

€6

9t

6

8¢

16

oz |

06

[4)

68

88

6%

L8

15 |

o8 |

134

48

13

¥e

LE

€8

61

i1

18

08

84

6L

0s |

8L |

[ 4

LL

149

94

9Z

S4

8T

¥

01

L

L

L5

1L

6v |

oL |

¥

69

tE

89

52

L9

H

L1

94

L3

5%

-

S oled (4 fen ieF (AN (W [ (00

(o2
Q

Rt




US 2016/0163016 A1

Jun. 9,2016 Sheet 10 of 15

Patent Application Publication

L} "Old

(LLH) 99

8Ll

571

LET

[ 143

{4

1 N

BLY

L0%

Z1t

LB

€01 |

G

574

L5

921

mﬁ

(14}

PIT

81T

907

1t%

&

Ot

e

6 |

0L

¥4

£y

2zl

11

0T

Ott

56

101

£8

(6

59

(L

55

&¥

it

E15¢

po1

&01

¥G

DOt

L8

68

B9

4l

¥5

29 |

v

g

801 |

£6

18

B8

L9

SL

£5

19

Ot

i

be

SL

el

26 |

08

99

FL

Z5

09

1

8T

98 |

g9

1%

65

8k

¥

LT

EE

21

e |

61

1!

9T

£

ZL |

05

LE

LLd

af

43

LY

4

Ot

S fwed |49y B

[




Patent Application Publication Jun. 9,2016 Sheet 11 of 15 US 2016/0163016 A1

1201-10
1201-16
1201-21
1201-24

1201-7
1201-13
1201-19
1201-23

1511

1201-17
1201-22

FIG. 12

1201-5
1201-11

FIG. 15

1201-3
1201-8
1201-14
1201-20

1512

1201-2
1201-6
1201-12
1201-18

o

——

12011

12014
1201-9
1201-15




Patent Application Publication Jun. 9,2016 Sheet 12 of 15

—

land

RECEIVE THREADS FROM
SUPERBLOCKS IN A WAVEFRONT.
1310

!

DISPATCH ALL VERTICAL
THREADS IN EACH SUPERBLOCK
OF THE WAVEFRONT.

1320

!

DISPATCH ALL HORIZONTAL
THREADS IN EACH SUPERBLOCK
OF THE WAVEFRONT.

1330

FIG. 13

US 2016/0163016 A1



Patent Application Publication

1400

RECEIVE THREADS FROM
SUPERBLOCKS IN A WAVEFRONT.
1410

\ 4

DISPATCH FIRST COLUMN OF
VERTICAL THREADS IN EACH
SUPERBLOCK OF THE
WAVEFRONT.

1420

Jun. 9,2016 Sheet 13 of 15

US 2016/0163016 A1

DISPATCH SECOND COLUMN OF
VERTICAL THREADS IN EACH
SUPERBLOCK OF THE
WAVEFRONT.

1425

DISPATCH NEXT COLUMN OF
VERTICAL THREADS [N EACH
SUPERBLOCK OF THE
WAVEFRONT.

1440

DISPATCH SECOND COLUMN OF
HORIZONTAL THREADS IN EACH
SUPERBLOCK OF THE
WAVEFRONT.

1455

ALL
COLUMNS OF
VERTICAL EDGE THREADS
DISPATCHED?
1430

YES

DISPATCH FIRST COLUMN OF
HORIZONTAL THREADS IN EACH
SUPERBLOCK OF THE
WAVEFRONT.

1450

Y

ALL
COLUMNS OF
HORIZONTAL EDGE
THREADS
DISPATCHED?
1460

FIG. 14

NO

DISPATCH NEXT COLUMN OF
HORIZONTAL THREADS IN EACH
SUPERBLOCK OF THE
WAVEFRONT.

1470




Patent Application Publication Jun. 9,2016 Sheet 14 of 15 US 2016/0163016 A1

1611

FIG. 16

1612




Patent Application Publication Jun. 9,2016 Sheet 15 of 15 US 2016/0163016 A1

FOR
1300/1400

STORAGE MEDIUM - 1700
COMPUTER EXECUTABLE INSTRUCTIONS




US 2016/0163016 Al

THREAD DISPATCHING FOR GRAPHICS
PROCESSORS

BACKGROUND

[0001] Modern graphic processors include an array of
cores, referred to as execution units (EUs) that process
instructions. A set of instructions comprises a kernel. Kernels
are dispatched to the GPU in the form of multiple threads. The
GPU processes the threads of the kernel (e.g., execute the
instructions corresponding to the kernel) using the EUs.
Often GPU’s process the threads in parallel using multiple
EUs at once.

[0002] Many kernels, particularly kernels corresponding to
encoded display data contain dependencies between threads
in the kernel. Said differently, execution of some of the
threads in the kernel must wait for the threads from which
they depend to be executed before their own execution can be
started. As such, only a subset of the total number of threads
in a kernel can be executed by a GPU in parallel.

[0003] Conventionally, a GPU executes a kernel by dis-
patching those threads without any dependencies first and
those with dependencies last. This is sometimes referred to as
wavefront dispatching. However, as will be appreciated ker-
nels that have a substantial amount of spatial thread depen-
dency will often experience reduced parallelism when dis-
patched according to wavefront dispatch methodologies. It is
with respect to the above, that the present disclosure is pro-
vided.

BRIEF DESCRIPTION OF THE DRAWINGS

[0004] FIG. 1 illustrates an embodiment of a thread dis-
patch system.
[0005] FIG. 2 illustrates an embodiment of a graphics pro-

cessor that may be implemented in the system of FIG. 1.
[0006] FIGS. 3-4 illustrate examples of logic flows for dis-
patching threads.

[0007] FIG. 5 illustrates a storage medium according to an
embodiment.
[0008] FIGS. 6-7 illustrate examples of a graphics kernel

according to an embodiment.

[0009] FIGS. 8A-8D illustrates tables depicting depen-
dency relationships between the graphics kernel of FIGS. 6-7
[0010] FIGS. 9A-9D illustrates tables depicting depen-
dency relationships between the graphics kernel of FIGS. 6-7
[0011] FIG. 10 illustrates a table depicting an example dis-
patch order for the graphics kernel of FIGS. 6-7.

[0012] FIG. 11 illustrates a table depicting an example dis-
patch order for a graphics kernel.

[0013] FIG. 12 illustrates a table showing superblocks of a
graphics kernel.
[0014] FIGS. 13-14 illustrate examples of logic flows for

dispatching threads.
[0015] FIGS. 15-16 illustrate tables showing threads within
waves of superblocks of a graphics kernel.

[0016] FIG.17illustrates a storage medium according to an
embodiment.

DETAILED DESCRIPTION
[0017] Various embodiments are generally directed to tech-

niques to dispatch threads of a graphics kernel for execution.
More specifically, the present disclosure provides for dis-
patching threads of a graphics kernel to increase the interval
between dependent threads and the associated (e.g., threads

Jun. 9, 2016

upon which execution depends) threads. As such, the present
disclosure may dispatch threads to reduce the computing
penalty (e.g., reduced parallelism, or the like) caused by
waiting for associated threads to finish execution before
dependent threads can start execution using the associated
threads’ results.

[0018] Insome implementations, the dispatch interval may
be increased by dispatching associated threads (e.g., those
threads upon which other threads execution depends), fol-
lowed by threads without any dependencies, followed by
threads dependent on the earlier dispatched associated
threads. As such, the interval between dependent threads and
their associated threads can be increased, leading to increased
parallelism.

[0019] Reference is now made to the drawings, wherein
like reference numerals are used to refer to like elements
throughout. In the following description, for purposes of
explanation, numerous specific details are set forth in order to
provide a thorough understanding thereof. It may be evident,
however, that the novel embodiments can be practiced with-
out these specific details. In other instances, well known
structures and devices are shown in block diagram form in
order to facilitate a description thereof. The intention is to
cover all modifications, equivalents, and alternatives within
the scope of the claims.

[0020] FIG. 1 is a block diagram of a thread dispatch sys-
tem 100, according to an embodiment. In general, the system
100 is configured to optimize the dispatch of threads for
execution by a graphics processor. In particular, the system
100 is configured to dispatch the threads to increase the inter-
val between execution of associated threads and correspond-
ing dependent threads. The thread dispatch system 100
includes one or more processors 102 and one or more graph-
ics processors 108, and may be a single processor desktop
system, a multiprocessor workstation system, or a server
system having a large number of processors 102 or processor
cores 107. In on embodiment, the thread dispatch system 100
is a system on a chip integrated circuit (SOC) for use in
mobile, handheld, or embedded devices.

[0021] An embodiment of the thread dispatch system 100
can include, or be incorporated within a server-based gaming
platform, a game console, including a game and media con-
sole, a mobile gaming console, a handheld game console, or
an online game console. In one embodiment, the thread dis-
patch system 100 is a mobile phone, smart phone, tablet
computing device or mobile Internet device. The thread dis-
patch system 100 can also include, couple with, or be inte-
grated within a wearable device, such as a smart watch wear-
able device, smart eyewear device, augmented reality device,
or virtual reality device. In one embodiment, the thread dis-
patch system 100 is a television or set top box device having
one or more processors 102 and a graphical interface gener-
ated by one or more graphics processors 108.

[0022] The one or more processors 102 each include one or
more processor cores 107 to process instructions which, when
executed, perform operations for system and user software. In
one embodiment, each of the one or more processor cores 107
is configured to process a specific instruction set 109. The
instruction set 109 may facilitate complex instruction set
computing (CISC), reduced instruction set computing
(RISC), or computing via a very long instruction word
(VLIW). Multiple processor cores 107 may each process a
different instruction set 109 that may include instructions to
facilitate the emulation of other instruction sets. A processor



US 2016/0163016 Al

core 107 may also include other processing devices, such a
digital signal processor (DSP).

[0023] In one embodiment, the processor 102 includes
cache memory 104. Depending on the architecture, the pro-
cessor 102 can have a single internal cache or multiple levels
of internal cache. In one embodiment, the cache memory is
shared among various components of the processor 102. In
one embodiment, the processor 102 also uses an external
cache (e.g., a Level 3 (L3) cache or last level cache (LLC))
(not shown) that may be shared among the processor cores
107 using known cache coherency techniques. A register file
106 is additionally included in the processor 102 which may
include different types of registers for storing different types
of data (e.g., integer registers, floating point registers, status
registers, and an instruction pointer register). Some registers
may be general-purpose registers, while other registers may
be specific to the design of the processor 102.

[0024] The processor 102 is coupled to a processor bus 110
to transmit data signals between the processor 102 and other
components in the system 100. The system 100 uses an exem-
plary ‘hub’ system architecture, including a memory control-
ler hub 116 and an input output (I/O) controller hub 130. The
memory controller hub 116 facilitates communication
between a memory device and other components of the sys-
tem 100, while the I/O controller hub (ICH) 130 provides
connections to I/O devices via a local I/O bus.

[0025] The memory device 120, can be a dynamic random
access memory (DRAM) device, a static random access
memory (SRAM) device, flash memory device, or some other
memory device having suitable performance to serve as pro-
cess memory. The memory controller hub 116 also couples
with an optional external graphics processor 112, which may
communicate with the one or more graphics processors 108 in
the processors 102 to perform graphics and media operations.
The memory 120 can store data 122 and instructions 121 for
use when the processor 102 executes a process. The instruc-
tions 121 can be a sequence of instructions operative on the
processors 102 and/or the external graphics processor 112 to
implement logic to perform various functions.

[0026] The ICH 130 enables peripherals to connect to the
memory 120 and processor 102 via a high-speed I/O bus. The
1/O peripherals include an audio controller 146, a firmware
interface 128, a wireless transceiver 126 (e.g., Wi-Fi, Blue-
tooth), a data storage device 124 (e.g., hard disk drive, flash
memory, etc.), and a legacy /O controller for coupling legacy
(e.g., Personal System 2 (PS/2)) devices to the system. One or
more Universal Serial Bus (USB) controllers 142 connect
input devices, such as keyboard and mouse 144 combina-
tions. A network controller 134 may also couple to the ICH
130. In one embodiment, a high-performance network con-
troller (not shown) couples to the processor bus 110.

[0027] In various embodiments, the memory 120 stores
(e.g., as data 122) one or more of a kernel 152 including
threads 154-a. It is important to note, that the kernel 152 can
include any number of threads. For example, the kernel 152 is
depicted in this figure as including the threads 154-1, 154-2,
and 154-3. However, it is to be appreciated, that in practice the
kernel 152 may include many more threads than depicted.
Examples are not intended to be limiting in this context.
[0028] In general, the system 100 dispatches the threads
154-a to increase an interval between execution of dependent
threads and associated threads. As used herein, a dependent
thread is a thread that depends upon, or consumes results of,
another thread. The thread whose results the dependent thread

Jun. 9, 2016

consumes is referred to herein as the associated thread. A
dependent thread may have multiple associated threads. Said
differently, a dependent thread may consume results from
multiple threads. For example, in some common graphics
encoding standards, a thread may depend upon the results of
7 other threads. However, it is to be appreciated, that some
threads do not have any dependency. More particularly, they
are not dependent thread or associated threads. As used
herein, such threads are referred to as independent.

[0029] For example, assume that the thread 154-1 depends
upon the thread 154-2, while the thread 154-3 is independent.
As such, the thread 154-1 is dependent while the thread 154-2
is its associated thread. The system 100 can dispatch the
threads 154-1, 154-2, and 154-3 to increase the interval
between the threads 154-1 and 154-2. As such, in some
examples, the system 100 can dispatch the thread 154-2 for
execution (e.g., by the graphics processor 108 and/or 112).
Subsequently, the system 100 can dispatch the thread 154-3
for execution. Subsequently, the system 100 can dispatch the
thread 154-1 for execution. As such, the interval between
execution of the dependent thread (e.g., 154-1) and its asso-
ciated thread (e.g., 154-2) is increased.

[0030] Insomeexamples,the processor 102 may determine
the order to dispatch the threads 154-a (e.g., the execution
order). More particularly, the processor may execution
instructions (e.g., instruction set 109) to determine the order
in which the threads are to be dispatched (the “dispatch
order”). With some examples, the graphics processor (e.g.,
the graphics processor 108 and/or 112) may determine the
dispatch order.

[0031] FIG. 2 is a block diagram of an embodiment of a
graphics processor 200. In some examples, the graphics pro-
cessor 200 may be the graphics processor 108 and/or the
graphics processor 112 of the system 100 shown in FIG. 1. In
general, the graphics processor 200 may be configured to
execute threads to increase an interval between execution of
dependent and associated threads.

[0032] Inoneembodiment, the graphics processor includes
a ring interconnect 202, a pipeline front-end 204, a media
engine 237, and graphics cores 280A-N. The ring intercon-
nect 202 couples the graphics processor to other processing
units, including other graphics processors or one or more
general-purpose processor cores. In one embodiment, the
graphics processor is one of many processors integrated
within a multi-core processing system.

[0033] The graphics processor receives batches of com-
mands via the ring interconnect 202. The incoming com-
mands are interpreted by a command streamer 203 in the
pipeline front-end 204. For example, the ring interconnect
202 can receive the kernel 152 and threads 154-a. The graph-
ics processor includes scalable execution logic to perform 3D
geometry processing and media processing via the graphics
core(s) 280A-N. For 3D geometry processing commands, the
command streamer 203 supplies the commands to the geom-
etry pipeline 236. For at least some media processing com-
mands, the command streamer 203 supplies the commands to
a video front end 234, which couples with a media engine
237. The media engine 237 includes a video quality engine
(VQE) 230 for video and image post processing and a multi-
format encode/decode (MFX) 233 engine to provide hard-
ware-accelerated media data encode and decode. The geom-
etry pipeline 236 and media engine 237 each generate
execution threads for the thread execution resources provided
by at least one graphics core 280A.



US 2016/0163016 Al

[0034] The graphics processor includes scalable thread
execution resources featuring modular cores 280 A-N (some-
time referred to as core slices), each having multiple sub-
cores 250A-N, 260A-N (sometimes referred to as core sub-
slices). The graphics processor can have any number of
graphics cores 280A through 280N. In one embodiment, the
graphics processor includes a graphics core 280A having at
least a first sub-core 250A and a second core sub-core 260A.
Inanother embodiment, the graphics processoris a low power
processor with a single sub-core (e.g., 250A). In one embodi-
ment, the graphics processor includes multiple graphics cores
280A-N, each including a set of first sub-cores 250A-N and a
set of second sub-cores 260A-N. Each sub-core in the set of
first sub-cores 250 A-N includes at least a first set of execution
units 252A-N and media/texture samplers 254 A-N. Each sub-
core in the set of second sub-cores 260A-N includes at least a
second set of execution units 262A-N and samplers 264A-N.
In one embodiment, each sub-core 250A-N, 260A-N shares a
set of shared resources 270A-N. In one embodiment, the
shared resources include shared cache memory and pixel
operation logic. Other shared resources may also be included
in the various embodiments of the graphics processor.
[0035] FIGS. 3-4 illustrate embodiments of logic flows that
may be implemented to increase the interval between execu-
tion of associated threads and a dependent thread. The logic
flows may be representative of some or all of the operations
executed by one or more embodiments described herein. In
some examples, the logic flows may be executed by compo-
nents of the system 100. More specifically, the logic flows
may illustrate operations performed by the processor 102 in
dispatching the threads 154-a to the graphics processor 200.
Additionally, or alternatively, the logic flows may illustrate
operations performed by the graphics processor 200 in
executing the threads 154-a to increase an interval between
dependent and associated threads.

[0036] Although reference to the system 100 and compo-
nent of the system 100 are made in describing the logic flows,
the logic flows may be implemented using component other
than those shown or component in alternative configuration.
Examples are not limited in this context.

[0037] Turning more specifically to FIG. 3, alogic flow 300
is depicted. The logic flow 300 may begin at block 310. At
block 310 “identify a first thread and a second thread, the first
thread dependent upon the second thread,” a first thread (e.g.,
dependent thread) and a second thread (e.g., associated
thread) from a number of threads are identified. For example,
assuming the thread 154-1 was dependent upon the thread
154-2, the threads 154-1 and 154-2 may be identified. In some
examples, the processor 102 may identify the threads 154-1
and 154-2 from the threads 154-a. In some examples, the
graphics processor 200 may identify the threads 154-1 and
154-2 from the threads 154-a.

[0038] Continuing to block 320 “determine an order of
execution for a number of threads to increase an interval
between execution of the first and second threads,” an order of
execution or dispatch order for the threads 154-a may be
determined in order to increase the interval between execu-
tion of the thread 154-2 and 154-1. In some examples, the
processor 102 may determine the dispatch order. With some
examples, the graphics processor 200 may determine the
dispatch order.

[0039] Turning more specifically to FIG. 4, alogic flow 400
is depicted. The logic flow 400 may begin at block 410. At
block 410 “identify a first thread and a second thread, the first

Jun. 9, 2016

thread dependent upon the second thread,” a first thread (e.g.,
dependent thread) and a second thread (e.g., associated
thread) from a number of threads are identified. For example,
assuming the thread 154-1 was dependent upon the thread
154-2, the threads 154-1 and 154-2 may be identified. In some
examples, the processor 102 may identify the threads 154-1
and 154-2 from the threads 154-a. In some examples, the
graphics processor 200 may identify the threads 154-1 and
154-2 from the threads 154-a.

[0040] Continuing to block 420 “identify a third thread
independent thread,” a third thread that is independent is
identified from the number of threads. For example, assuming
the thread 154-3 is independent, the thread 154-3 may be
identified. In some examples, the processor 102 may identify
the threads 154-1 and 154-2 from the threads 154-a. In some
examples, the graphics processor 200 may identify the
threads 154-1 and 154-2 from the threads 154-a.

[0041] Continuing to blocks 430-450, the threads may be
dispatched in a particular order to increase an interval
between execution of the dependent and associated threads.
In particular, at block 430 “dispatch the second thread” the
second thread is dispatched for execution before either the
first or third threads. For example, using the threads 154-1,
154-2, and 154-3 as laid out above, the second thread 154-2
can be dispatched for execution before the threads first and
third threads 154-1 and 154-3. In some examples, the proces-
sor 102 may dispatch the thread 154-2. In some examples, the
graphics processor 200 may dispatch the thread 154-2.

[0042] At block 440 “dispatch the third thread” the third
thread is dispatched for execution before the first thread. For
example, using the threads 154-1,154-2, and 154-3 as laid out
above, the third thread 154-3 can be dispatched for execution
before the first thread 154-1. In some examples, the processor
102 may dispatch the thread 154-3. In some examples, the
graphics processor 200 may dispatch the thread 154-3.

[0043] At block 450 “dispatch the first thread” the first
thread is dispatched for execution. For example, using the
threads 154-1, 154-2, and 154-3 as laid out above, the first
thread 154-1 can be dispatched for execution. As such, the
interval between execution of the first thread 154-1 (depen-
dent thread) and the second thread 154-2 (associated thread)
is increased. In some examples, the processor 102 may dis-
patch the thread 154-1. In some examples, the graphics pro-
cessor 200 may dispatch the thread 154-1.

[0044] FIG. 5 illustrates an embodiment of a storage
medium 500. The storage medium 500 may comprise an
article of manufacture. In some examples, the storage
medium 500 may include any non-transitory computer read-
able medium or machine readable medium, such as an opti-
cal, magnetic or semiconductor storage. The storage medium
500 may store various types of computer executable instruc-
tions, such as instructions to implement logic flows 300 and/
or400. Examples of a computer readable or machine readable
storage medium may include any tangible media capable of
storing electronic data, including volatile memory or non-
volatile memory, removable or non-removable memory, eras-
able or non-erasable memory, writeable or re-writeable
memory, and so forth. Examples of computer executable
instructions may include any suitable type of code, such as
source code, compiled code, interpreted code, executable
code, static code, dynamic code, object-oriented code, visual
code, and the like. The examples are not limited in this con-
text.



US 2016/0163016 Al

[0045] In various examples, the system 100 and the logic
flows 300 and 400 may be implemented to dispatch threads
from a graphics kernel (e.g., the kernel 152) to increase an
interval between execution of a dependent thread and its
associated threads. In general, the kernel can be encoded
based on any of a variety of graphics encoding standards. For
example, the kernel 152 can be encoded using any one of the
following graphics encoding standards: WMV, MPEG-4,
H.264/MPEG-4, VC1, VP8, VP9, and HEVC.

[0046] As a specific example, the present disclosure can be
applied to dispatch threads from a kernel encoded using the
VP9 standard, and particularly, to dispatch threads using a
VP9 Deblock GPU approach. In general, FIGS. 6-8 illustrate
threads of a VP9 encoded graphics kernel and corresponding
dispatch order that can be generated based on the present
disclosure. In particular, FIG. 6 is a table illustrating a super-
block (e.g., 64x64 pixels) of the VP9 kernel; FIG. 7 is a table
illustrating dependency relationships for the threads in the
superblock; FIGS. 8A-8D and 9A-9D are tables illustrating
dependency relationships for various threads; FIG. 10 is a
table illustrating a dispatch order for the threads of the super-
block, dispatched according to embodiments of the present
disclosure; and FIG. 11 is a table illustrating a dispatch order
for the threads of the superblock, dispatched according to a
conventional technique.

[0047] Turning more specifically to FIG. 6, the table 600 is
shown. It is to be appreciated, that the threads of a graphics
kernel (e.g., the threads 154-a of the graphics kernel 152) are
splitinto multiple superblocks (e.g., see FIG. 9). For example,
the graphics kernel can be split into superblocks of 128
threads that cover a 64x64 pixel area. In particular, the table
600 shows threads 654-1 to 654-128 from a superblock 610.
It is important to note, that not all the threads are called out
with numeric identifiers in FIG. 6 for purposes of clarity.
However, as can be seen the 128 threads 654-1 to 654-128 are
formed by interleaving 64 vertical edge threads from an 8x8
pixel space and 64 horizontal edge threads from an 8x8 pixel
space into the threadspace of the superblock 610. It is to be
appreciated, that the threads are mapped as depicted to have
enough parallel software threads for processing.

[0048] Turning more specifically to FIG. 7, the table 700 is
shown. Itis to be appreciated, that a dependent thread ina VP9
encoded graphics kernels can have up to 7 associated threads.
Table 700 depicts the dependency for a particular thread
based on the VP9 standard. In particular, table 700 shows a
dependent thread 756 and associated threads 758-1 to 758-7.
As can be seen, for a dependent thread 756, with coordinates
(0,0), the associated threads’ coordinates in relation to the
dependent thread 756 can be: associated thread 758-1 having
coordinates (-1, 1); associated thread 758-2 having coordi-
nates (-2, 0); associated thread 758-3 having coordinates (-1,
0); associated thread 758-4 having coordinates (-1, —1); asso-
ciated thread 758-5 having coordinates (0, —1); associated
thread 758-6 having coordinates (1, -1); and associated
thread 758-7 having coordinates (1, 0).

[0049] Depending on the specific dependent thread’s loca-
tion, only some of the 7 associated threads need to be
enforced. Said differently, the output of some of the associ-
ated threads may not be required to process the dependent
thread. This concept can be reflected in a dependency ranking
that includes an indication of the likelihood the dependency
will not need to be enforced. In particular, the likelihood that
each dependency relationship (e.g., between the dependent
thread 756 and each associated thread 758) can be measured.

Jun. 9, 2016

In some examples, this measurement is binary (e.g., O=yes
likely, 1=no not likely, or the like). Said differently, some of
the dependency relationships can be considered “weak”
while the other are considered “strong.” With run time data
(i.e., transform size, tile boundary, picture boundary, or the
like), the “weak” dependencies may not need to be enforced.

[0050] For example, FIGS. 8A-8D illustrate tables 801,
802, 803, and 804, respectively. These tables depict location
specific dependency patterns for vertical threads 654 in the
superblock 610. FIGS. 9A-9D illustrate tables 901, 902, 903,
and 904, respectively. These tables depict location specific
dependency patterns for horizontal threads in the superblock
610. It is important to note, that these tables refer to various
dependent threads and corresponding associated threads. In
particular, the associated threads are referenced based on the
table 700 shown in FIG. 7. More specifically, similar numeric
identifiers for the associated threads are used in these tables
such that referencing the table 700 can identify the relative
location of the associated thread to the dependent thread.

[0051] Furthermore, these tables highlight associated
thread where a dependency ranking including an indication of
the likelihood the dependency will need to be enforced during
runtime. More specifically, these tables indicate some threads
where the dependency may not need to be enforced. In some
examples, if there exists a 50% or greater chance that the
dependency on an associated thread will not be necessary and
can be cleared (e.g., not enforced at runtime) there is a greater
priority to increase the interval between execution of the other
associated thread and the dependent thread first. As such, the
present disclosure provides for determining a dependency
ranking and dispatching the associated threads based on the
dependent ranking. In particular, the associated threads are
dispatched to increase the interval of execution between asso-
ciated threads that are likely to need to be enforced and the
dependent thread to a greater interval than the interval
between the associated threads that are unlikely to need to be
enforced.

[0052] Turning more particularly to FIG. 8 A, the table 801
is shown. The table 801 depicts a dependent thread 811 and
corresponding associated threads 858-a. It is important to
note that the table 801 depicts a dependency pattern for a
vertical edge thread where the coordinates are [y>7, x=0]. As
depicted the dependent thread 811 has three associated
threads 858-a. In particular, the threads 858-1, 858-2, and
858-3 are associated with the dependent thread 811.

[0053] Turning more particularly to FIG. 8B, the table 802
is shown. The table 802 depicts a dependent thread 812 and
corresponding associated threads 858-a. It is important to
note that the table 802 depicts a dependency pattern for a
vertical edge thread where the coordinates are [y=7, x=0]. As
depicted the dependent thread 812 has three associated
threads 858-a. In particular, the threads 858-1, 858-2, and
858-3 are associated with the dependent thread 812.

[0054] It is important to note, that for the dependency pat-
terns depicted in tables 801 and 802, the dependency of the
associated thread 858-2 is guaranteed by the associated
thread 858-2.

[0055] Turning more particularly to FIG. 8C, the table 803
is shown. The table 803 depicts a dependent thread 813 and
corresponding associated threads 858-a. It is important to
note that the table 803 depicts a dependency pattern for a
vertical edge thread where the coordinates are [y<7, x>0]. As
depicted the dependent thread 813 has two associated threads



US 2016/0163016 Al

858-a. In particular, the threads 858-2 and 858-3 are associ-
ated with the dependent thread 813.

[0056] Turning more particularly to FIG. 8D, the table 804
is shown. The table 804 depicts a dependent thread 814 and
corresponding associated threads 858-a. It is important to
note that the table 804 depicts a dependency pattern for a
vertical edge thread where the coordinates are [y=7, x>0]. As
depicted the dependent thread 814 has two associated threads
858-a. In particular, the threads 858-2 and 858-3 are associ-
ated with the dependent thread 814.

[0057] With respect to the vertical edge threads depicted in
tables 801, 802, 803, and 804, the dependency of each thread
upon the associated thread 858-3 is “weak.” More specifi-
cally, the dependency of each dependent thread upon the
associated thread 858-3 can be ranked as likely to not be
enforced during runtime. As such, a dependency ranking may
be determined (e.g., low, weak, unlikely, 0, 1, or the like) to
include an indication that the dependency upon the associated
thread 858-3 may not need to be enforced. Furthermore, it is
important to note, that the associated threads depicted in
tables 801 and 802 cross superblocks and as such, may be a
special case.

[0058] Turning more particularly to FIG. 9A, the table 901
is shown. The table 901 depicts a dependent thread 911 and
corresponding associated threads 958-a. It is important to
note that the table 901 depicts a dependency pattern for a
horizontal edge thread where the coordinates are [y=7, x<0].
As depicted the dependent thread 911 has five associated
threads 958-a. In particular, the threads 958-3, 958-4, 958-5,
958-6, and 958-7 are associated with the dependent thread
911.

[0059] Turning more particularly to FIG. 9B, the table 902
is shown. The table 902 depicts a dependent thread 912 and
corresponding associated threads 958-a. It is important to
note that the table 902 depicts a dependency pattern for a
horizontal edge thread where the coordinates are [y=0, x=7].
As depicted the dependent thread 912 has four associated
threads 958-a. In particular, the threads 958-3, 958-4, 958-5
and 958-6 are associated with the dependent thread 912.
[0060] Turning more particularly to FIG. 9C, the table 903
is shown. The table 903 depicts a dependent thread 913 and
corresponding associated threads 958-a. It is important to
note that the table 903 depicts a dependency pattern for a
horizontal edge thread where the coordinates are [y>0, x<0].
As depicted the dependent thread 913 has five associated
threads 958-a. In particular, the threads 958-3, 958-4, 958-5,
958-6, and 958-7 are associated with the dependent thread
913.

[0061] Turning more particularly to FIG. 9D, the table 904
is shown. The table 904 depicts a dependent thread 914 and
corresponding associated threads 958-a. It is important to
note that the table 904 depicts a dependency pattern for a
horizontal edge thread where the coordinates are [y>7, x=7].
As depicted the dependent thread 914 has three associated
threads 958-a. In particular, the threads 958-3, 958-4 and
958-5 are associated with the dependent thread 914.

[0062] With respect to the horizontal edge threads depicted
in tables 901, 902, 903, and 904, the dependency of each
thread upon the associated thread 958-5 is “weak.”” More
specifically, the dependency of each dependent thread upon
the associated thread 958-5 can be ranked as likely to not be
enforced during runtime. As such, a dependency ranking may
be determined (e.g., low, weak, unlikely, 0, 1, or the like) to
include an indication that the dependency upon the associated

Jun. 9, 2016

thread 958-5 may not need to be enforced. Furthermore, it is
important to note, that the associated thread 958-3 depicted in
tables 901 and 902 cross superblocks and as such, may be a
special case.

[0063] Returning to the table 600 shown in FIG. 6, the
threads 654-a can be dispatched in a particular order to
increase the interval between execution of associated threads
(e.g., refer to FIGS. 7, 8A-8D, 9A-9D) and corresponding
dependent threads. In particular, the present disclosure pro-
vides for dispatching the threads to increase the execution
interval based on the dependency ranking (e.g., likelihood the
dependency will be enforced). FIG. 10 illustrates a table 1000
that shows dispatch ordering for each of the threads 654
depicted in the table 600. In particular, the dispatch ordering
depicted in table 1000 is based on embodiments of the present
disclosure. For comparison purposes, FIG. 11 illustrates a
table 1100 that shows dispatch ordering for each of the
threads 654 depicted in the table 600 based on a conventional
(e.g., WAVEFRONT) dispatching method.

[0064] An example of increasing the interval between
executions of associated threads and their corresponding
dependent thread is described with reference to FIGS. 10 and
11. In particular, with reference to the horizontal edge depen-
dent thread 654 at coordinate H[1, 1]. This thread and its
dispatch order are indicated in the tables 1000 and 1100. This
particular thread has five dependencies. Said differently, this
particular thread has five associated threads, four of which are
“strong,” that is likely to be enforced at runtime and one is
“weak,” that is unlikely to be enforced at runtime (e.g., refer
to FIGS. 7 and 9A-9D). The associated threads that are likely
to be enforced at runtime are the vertical edge threads V[1, 1],
VI0, 1], V[0, 2], and V[1, 2] while the associated thread that
is unlikely to be enforced at runtime is H[O, 2].

[0065] The present disclosure provides that the dependent
thread H[ 1, 1] is dispatched 74 Its associated threads where
the dependency ranking indicates the dependency is likely to
be enforced (e.g., >50%, or the like) are dispatched 10th, 9th,
17 and 18”, respectively. Its associated thread where the
dependency ranking indicates the dependency is unlikely to
be enforced at runtime is dispatched 66

[0066] Conversely, using a conventional dispatching tech-
nique, the dependent thread H[1, 1] is dispatched 15*. Its
associated threads where the dependency ranking indicates
the dependency is likely to be enforced (e.g., >50%, or the
like) are dispatched 6%, 2, 5% and 11, respectively. Its
associated thread where the dependency ranking indicates the
dependency is unlikely to be enforced at runtime is dis-
patched 87

[0067] Accordingly, the present disclosure provides that
the associated threads are dispatched significantly sooner
providing greater time for the execution of the associated
threads to finish as compared to conventional techniques. As
a result, memory pressure and parallelism can be increased
when the present disclosure is implemented to dispatch
threads.

[0068] An actual bit stream (e.g., kernel 152) includes mul-
tiple superblocks (e.g., the superblock 610). For example,
FIG. 12 illustrates a table 1200 showing multiple superblocks
1201-a, where each superblock includes 128 threads corre-
sponding to a 64x64 pixel area. Each of the superblocks
1201-a are typically dispatched in a 26 degree pattern, as
illustrated in this figure. In some examples, all the super-
blocks 1201-a in the same wavefront (e.g., 1201-3/1201-4,
1201-5/1201-6, 1201-7/1201-8/1201-9, or the like) and can



US 2016/0163016 Al

be dispatched together. In some examples, the threads in each
superblock may be dispatched individually, for example as
illustrated in FIG. 10. With some examples, with each wave-
front of superblocks (e.g., 1201-3 and 1201-4) the vertical
threads from all the superblocks 1201-a can be dispatched,
followed by the horizontal threads. This is illustrated in FIGS.
13-16. In general, FIGS. 13-14 depict logic flows for dis-
patching threads within superblocks of a wavefront while
FIGS. 15-16 depict tables showing the dispatch order of
thread within superblocks of a number of consecutive wave-
fronts. It is important to note, that the superblocks depicted in
FIGS. 15-16 only show 32 threads for purposes of clarity.
[0069] Turning more specifically to FIG. 13, the logic flow
1300 is depicted, the logic flow 1300 can be used to increase
the interval between execution of associated threads and cor-
responding dependent threads across multiple superblocks in
awavefront. The logic flow 1300 may begin at block 1310. At
block 1310 “receive threads from superblocks in a wavefront™
the threads of superblocks (e.g., superblocks 1201-a) for a
particular wavefront of superblocks may be received. In some
examples, the processor 102 may receive the threads.

[0070] Continuing to block 1320 “dispatch all vertical edge
threads in each superblock” the columns of vertical threads in
each superblock may be dispatched. In some examples, the
processor 102 and/or the graphics processor 200 may dis-
patch the vertical edge threads column by column for each
superblock in the wavefront. Continuing to block 1330 “dis-
patch all horizontal edge threads in each superblock™ the
columns of horizontal threads in each superblock may be
dispatched. In some examples, the processor 102 and/or the
graphics processor 200 may dispatch the horizontal edge
threads column by column for each superblock in the wave-
front.

[0071] For example, FIG. 15 illustrates a table 1500 show-
ing three wavefronts of superblocks 1501, 1502, and 1503. As
depicted, the third wavefront includes two superblocks 1511
and 1512. Furthermore, as noted, the table 1500 shows the
dispatch order for the threads within the superblocks. As can
be seen, the columns of vertical edge threads from both super-
blocks 1511 and 1512 are dispatched prior to the horizontal
edge threads being dispatched. In particular, the vertical edge
threads from the first superblock are dispatched, followed by
the vertical edge threads of the second superblock.

[0072] Turning more specifically to FIG. 14, the logic flow
1400 is depicted, the logic flow 1400 can be used to increase
the interval between execution of associated threads and cor-
responding dependent threads across multiple superblocks in
awavefront. The logic flow 1400 may begin at block 1410. At
block 1410 “receive threads from superblocks in a wavefront™
the threads of superblocks (e.g., superblocks 1201-a) for a
particular wavefront of superblocks may be received. In some
examples, the processor 102 may receive the threads.

[0073] Continuing to block 1420 “dispatch the first column
of vertical threads in each superblock™ the first column of
vertical threads in each superblock may be dispatched. In
some examples, the processor 102 and/or the graphics pro-
cessor 200 may dispatch the first column of vertical edge
threads in each superblock in the wavefront. Continuing to
block 1425 “dispatch the second column of vertical edge
threads in each superblock” the second column of vertical
threads in each superblock may be dispatched. In some
examples, the processor 102 and/or the graphics processor
200 may dispatch the second column of vertical edge threads
in each superblock in the wavefront.

Jun. 9, 2016

[0074] Continuing to block 1430 “all columns of vertical
edge threads in each superblock dispatched?”” a determination
of whether all the columns of vertical edge threads in each
superblock have been dispatched is made. In some examples,
the processor 102 and/or the graphics processor 200 may
determine whether all columns of vertical edge threads in
each superblock in the wavefront have been dispatched.
[0075] Based on the determination at block 1430 the logic
flow 1400 may continue to block 1440 or to block 1450. In
particular, if not all columns of vertical edge threads in each
superblock have been dispatched, the logic flow may continue
to block 1440 “dispatch the next column of vertical edge
threads in each superblock™ the next column of vertical
threads in each superblock may be dispatched. In some
examples, the processor 102 and/or the graphics processor
200 may dispatch the next column of vertical edge threads in
each superblock in the wavefront.

[0076] Alternatively, if all columns of vertical edge threads
have been dispatched the logic flow 1400 may continue to
block 1450 “dispatch the first column of horizontal edge
threads in each superblock™ the first column of horizontal
edge threads in each superblock may be dispatched. In some
examples, the processor 102 and/or the graphics processor
200 may dispatch the first column of horizontal edge threads
in each superblock in the wavefront. Continuing to block
1455 “dispatch the second column of horizontal edge threads
in each superblock™ the second column of horizontal edge
threads in each superblock may be dispatched. In some
examples, the processor 102 and/or the graphics processor
200 may dispatch the second column of horizontal edge
threads in each superblock in the wavefront.

[0077] Continuingto block 1460 “all columns ofhorizontal
edge threads in each superblock dispatched?”” a determination
of' whether all the columns of horizontal edge threads in each
superblock have been dispatched is made. In some examples,
the processor 102 and/or the graphics processor 200 may
determine whether all columns of horizontal edge threads in
each superblock in the wavefront have been dispatched.
[0078] Based on the determination at block 1460 the logic
flow 1400 may continue to block 1470 or the logic flow may
end. In particular, if not all columns of horizontal edge
threads in each superblock have been dispatched, the logic
flow may continue to block 1470 “dispatch the next column of
horizontal edge threads in each superblock” the next column
of horizontal threads in each superblock may be dispatched.
In some examples, the processor 102 and/or the graphics
processor 200 may dispatch the next column of horizontal
edge threads in each superblock in the wavefront.

[0079] For example, FIG. 16 illustrates a table 1600 show-
ing three wavefronts of superblocks 1601, 1602, and 1603. As
depicted, the third wavefront includes two superblocks 1611
and 1612. Furthermore, as noted, the table 1500 shows the
dispatch order for the threads within the superblocks. As can
be seen, the first columns of vertical edge threads from both
superblocks 1611 and 1612 are dispatched, followed by the
second columns of vertical edge threads, etc. After the verti-
cal edge threads are dispatched, the first columns of horizon-
tal edge threads are dispatched, followed by the second col-
umns of vertical edge threads, etc.

[0080] FIG. 17 illustrates an embodiment of a storage
medium 1700. The storage medium 1700 may comprise an
article of manufacture. In some examples, the storage
medium 1700 may include any non-transitory computer read-
able medium or machine readable medium, such as an opti-



US 2016/0163016 Al

cal, magnetic or semiconductor storage. The storage medium
1700 may store various types of computer executable instruc-
tions, such as instructions to implement logic flows 1300
and/or 1400. Examples of a computer readable or machine
readable storage medium may include any tangible media
capable of storing electronic data, including volatile memory
or non-volatile memory, removable or non-removable
memory, erasable or non-erasable memory, writeable or re-
writeable memory, and so forth. Examples of computer
executable instructions may include any suitable type of
code, such as source code, compiled code, interpreted code,
executable code, static code, dynamic code, object-oriented
code, visual code, and the like. The examples are not limited
in this context.

[0081] To the extent various operations or functions are
described herein, they can be described or defined as hard-
ware circuitry, software code, instructions, configuration,
and/or data. The content can be embodied in hardware logic,
or as directly executable software (“object” or “executable”
form), source code, high level shader code designed for
execution on a graphics engine, or low level assembly lan-
guage code in an instruction set for a specific processor or
graphics core. The software content of the embodiments
described herein can be provided via an article of manufac-
ture with the content stored thereon, or via a method of
operating a communication interface to send data via the
communication interface.

[0082] A non-transitory machine readable storage medium
can cause a machine to perform the functions or operations
described, and includes any mechanism that stores informa-
tion in a form accessible by a machine (e.g., computing
device, electronic system, etc.), such as recordable/non-re-
cordable media (e.g., read only memory (ROM), random
access memory (RAM), magnetic disk storage media, optical
storage media, flash memory devices, etc.). A communication
interface includes any mechanism that interfaces to any of a
hardwired, wireless, optical, etc., medium to communicate to
another device, such as a memory bus interface, a processor
bus interface, an Internet connection, a disk controller, etc.
The communication interface is configured by providing con-
figuration parameters or sending signals to prepare the com-
munication interface to provide a data signal describing the
software content. The communication interface can be
accessed via one or more commands or signals sent to the
communication interface.

[0083] Various components described can be a means for
performing the operations or functions described. Each com-
ponent described herein includes software, hardware, or a
combination of these. The components can be implemented
as software modules, hardware modules, special-purpose
hardware (e.g., application specific hardware, application
specific integrated circuits (ASICs), digital signal processors
(DSPs), etc.), embedded controllers, hardwired circuitry, etc.
Besides what is described herein, various modifications can
be made to the disclosed embodiments and implementations
of the invention without departing from their scope.

[0084] Some embodiments may be described using the
expression “one embodiment” or “an embodiment” along
with their derivatives. These terms mean that a particular
feature, structure, or characteristic described in connection
with the embodiment is included in at least one embodiment.
The appearances of the phrase “in one embodiment” in vari-
ous places in the specification are not necessarily all referring
to the same embodiment. Further, some embodiments may be

Jun. 9, 2016

described using the expression “coupled” and “connected”
along with their derivatives. These terms are not necessarily
intended as synonyms for each other. For example, some
embodiments may be described using the terms “connected”
and/or “coupled” to indicate that two or more elements are in
direct physical or electrical contact with each other. The term
“coupled,” however, may also mean that two or more ele-
ments are not in direct contact with each other, but yet still
co-operate or interact with each other. Furthermore, aspects
or elements from different embodiments may be combined.

[0085] It is emphasized that the Abstract of the Disclosure
is provided to allow a reader to quickly ascertain the nature of
the technical disclosure. It is submitted with the understand-
ing that it will not be used to interpret or limit the scope or
meaning of the claims. In addition, in the foregoing Detailed
Description, it can be seen that various features are grouped
together in a single embodiment for the purpose of stream-
lining the disclosure. This method of disclosure is not to be
interpreted as reflecting an intention that the claimed embodi-
ments require more features than are expressly recited in each
claim. Rather, as the following claims reflect, inventive sub-
ject matter lies in less than all features of a single disclosed
embodiment. Thus the following claims are hereby incorpo-
rated into the Detailed Description, with each claim standing
onits own as a separate embodiment. In the appended claims,
the terms “including” and “in which” are used as the plain-
English equivalents of the respective terms “comprising” and
“wherein,” respectively. Moreover, the terms “first,” “sec-
ond,” “third,” and so forth, are used merely as labels, and are
not intended to impose numerical requirements on their
objects.

[0086] What has been described above includes examples
of the disclosed architecture. It is, of course, not possible to
describe every conceivable combination of components and/
or methodologies, but one of ordinary skill in the art may
recognize that many further combinations and permutations
are possible. Accordingly, the novel architecture is intended
to embrace all such alterations, modifications and variations
that fall within the spirit and scope of the appended claims.
The detailed disclosure now turns to providing examples that
pertain to further embodiments. The examples provided
below are not intended to be limiting.

Example 1

[0087] An apparatus for dispatching threads for execution
by a graphics processing unit (GPU) comprising: a graphics
processor configured to execute a plurality of threads; and a
thread dispatcher to determine an order of execution of the
plurality of threads to increase an interval between execution
of a first thread and second thread, the first thread dependent
upon the second thread.

Example 2

[0088] The apparatus of example 1, the thread dispatcher
to: identify the first thread and the second thread of the plu-
rality of threads; identify a third thread of the plurality of
threads, the third thread independent from the first and second
threads; dispatch the second thread for execution by the
graphics processor; dispatch the third thread for execution by
the graphics processor; and dispatch the first thread for execu-
tion by the graphics processor.



US 2016/0163016 Al

Example 3

[0089] The apparatus of example 1, the thread dispatcher
to: identify the first thread; identify a subset of threads, the
subset of threads to include the second thread and one or more
other ones of the plurality of threads, the first thread depen-
dent upon the threads of the subset of threads; determine, for
each thread of the subset of threads, a dependency ranking,
the dependency ranking to include an indication of the like-
lihood the dependency will not need to be enforced; and
determine an order of execution of the threads of the subset of
threads based on the dependency ranking.

Example 4

[0090] The apparatus of example 3, the subset of threads to
include a third thread, wherein the dependency ranking of the
second and third threads indicates the likelihood the depen-
dency of second thread will not need to be enforced is higher
than the likelihood the dependency of the third thread will not
need to be enforced; the thread dispatcher to: dispatch the
third thread for execution by the graphics processor; dispatch
the second thread for execution by the graphics processor;
and dispatch the first thread for execution by the graphics
processor.

Example 5

[0091] The apparatus of example 1, the thread dispatcher to
determine the order of dispatching based in part upon whether
a thread is a vertical edge thread or a horizontal edge thread.

Example 6

[0092] The apparatus of example 5, the thread dispatcher
to: dispatch the threads of the plurality of threads that are
vertical edge threads; and dispatch the threads of the plurality
of threads that are horizontal edge threads.

Example 7

[0093] The apparatus of example 5, the thread dispatcher
to: dispatch the threads of the plurality of threads in a first
column that are vertical edge threads; dispatch the threads of
the plurality of threads in the first column that are horizontal
edge threads; dispatch the threads of the plurality of threads in
a second column that are vertical edge threads; and dispatch
the threads of the plurality of threads in the second column
that are horizontal edge threads.

Example 8

[0094] The apparatus of any one of example 1-7, wherein
the plurality of threads are threads of a graphics kernel.

Example 9

[0095] The apparatus of example 7, the graphics kernel
encoded based on an encoding standard selected from the
group comprising WMV, MPEG-4, H.264/MPEG-4, VC1,
VP8, VP9, and HEVC.

Example 10

[0096] The apparatus of any one of examples 1 to 7, further
comprising a display operably coupled to the graphics pro-
cessing unit to display data processed by the graphics pro-
cessing unit.

Jun. 9, 2016

Example 11

[0097] The apparatus of any one of examples 1 to 7, further
comprising a wireless radio operably coupled to the graphics
processing unit to receive data to be processed by the graphics
processing unit.

Example 12

[0098] A computing-implemented method comprising:
identifying a first thread and a second thread of a plurality of
threads to be executed by a graphics processor, the first thread
dependent upon the second thread; and determining an order
of execution of the plurality of threads to increase an interval
between execution of the first thread and the second thread.

Example 13

[0099] The computing-implemented method of example
12, comprising: identifying a third thread of the plurality of
threads, the third thread independent from the first and second
threads; dispatching the second thread for execution by the
graphics processor; dispatching the third thread for execution
by the graphics processor; and dispatching the first thread for
execution by the graphics processor.

Example 14

[0100] The computing-implemented method of example
12, comprising: identifying a subset of threads, the subset of
threads to include the second thread and one or more other
ones of the plurality of threads, the first thread dependent
upon the threads of the subset of threads; determining, for
each thread of the subset of threads, a dependency ranking,
the dependency ranking to include an indication of the like-
lihood the dependency will not need to be enforced; and
determining an order of execution of the threads of the subset
of threads based on the dependency ranking.

Example 15

[0101] The computing-implemented method of example
14, the subset of threads to include a third thread, wherein the
dependency ranking of the second and third threads indicates
the likelihood the dependency of second thread will not need
to be enforced is higher than the likelihood the dependency of
the third thread will not need to be enforced; the method
comprising: dispatching the third thread for execution by the
graphics processor; dispatching the second thread for execu-
tion by the graphics processor; and dispatching the first thread
for execution by the graphics processor.

Example 16

[0102] The computing-implemented method of example
12, comprising determining the order of dispatching based in
part upon whether a thread is a vertical edge thread or a
horizontal edge thread.

Example 17

[0103] The computing-implemented method of example
16, comprising: dispatching the threads of the plurality of
threads that are vertical edge threads; and dispatching the
threads of the plurality of threads that are horizontal edge
threads.



US 2016/0163016 Al

Example 18

[0104] The computing-implemented method of example
16, comprising: dispatching the threads of the plurality of
threads in a first column that are vertical edge threads; dis-
patching the threads of the plurality of threads in the first
column that are horizontal edge threads; dispatching the
threads of the plurality of threads in a second column that are
vertical edge threads; and dispatching the threads of the plu-
rality of threads in the second column that are horizontal edge
threads.

Example 19

[0105] The computing-implemented method of any one of
examples 12-18, wherein the plurality of threads are threads
of a graphics kernel.

Example 20

[0106] The computing-implemented method of example
19, the graphics kernel encoded based on an encoding stan-
dard selected from the group comprising WMV, MPEG-4,
H.264/MPEG-4, VC1, VP8, VP9, and HEVC.

Example 21

[0107] An apparatus comprising means for performing the
method of any of examples 12-20.

Example 22

[0108] At least one machine-readable storage medium
comprising instructions that when executed by a computing
device, cause the computing device to: identify a first thread
and a second thread of a plurality of threads to be executed by
a graphics processor, the first thread dependent upon the
second thread; and determine an order of execution of the
plurality of threads to increase an interval between execution
of the first thread and the second thread.

Example 23

[0109] The at least one machine-readable storage medium
of example 22, comprising instructions that when executed
by the computing device, cause the computing device to:
identify a third thread of the plurality of threads, the third
thread independent from the first and second threads; dis-
patch the second thread for execution by the graphics proces-
sor; dispatch the third thread for execution by the graphics
processor; and dispatch the first thread for execution by the
graphics processor.

Example 24

[0110] The at least one machine-readable storage medium
of example 22, comprising instructions that when executed
by the computing device, cause the computing device to:
identify a subset of threads, the subset of threads to include
the second thread and one or more other ones of the plurality
of threads, the first thread dependent upon the threads of the
subset of threads; determine, for each thread of the subset of
threads, a dependency ranking, the dependency ranking to
include an indication of the likelihood the dependency will
not need to be enforced; and determine an order of execution
of the threads of the subset of threads based on the depen-
dency ranking.

Jun. 9, 2016

Example 25

[0111] The at least one machine-readable storage medium
of'example 24, the subset of threads to include a third thread,
wherein the dependency ranking of the second and third
threads indicates the likelihood the dependency of second
thread will not need to be enforced is higher than the likeli-
hood the dependency of the third thread will not need to be
enforced, comprising instructions that when executed by the
computing device, cause the computing device to: dispatch
the third thread for execution by the graphics processor; dis-
patch the second thread for execution by the graphics proces-
sor; and dispatch the first thread for execution by the graphics
processor.

Example 26

[0112] The at least one machine-readable storage medium
of example 22, comprising instructions that when executed
by the computing device, cause the computing device to
determine the order of dispatching based in part upon whether
a thread is a vertical edge thread or a horizontal edge thread.

Example 27

[0113] The at least one machine-readable storage medium
of example 26, comprising instructions that when executed
by the computing device, cause the computing device to:
dispatch the threads of the plurality of threads that are vertical
edge threads; and dispatch the threads of the plurality of
threads that are horizontal edge threads.

Example 28

[0114] The at least one machine-readable storage medium
of example 22, comprising instructions that when executed
by the computing device, cause the computing device to:
dispatch the threads of the plurality of threads in a first col-
umn that are vertical edge threads; dispatch the threads of the
plurality of threads in the first column that are horizontal edge
threads; dispatch the threads of the plurality of threads in a
second column that are vertical edge threads; and dispatch the
threads of the plurality of threads in the second column that
are horizontal edge threads.

Example 29

[0115] The at least one machine-readable storage medium
of'any one of Example 2228, wherein the plurality of threads
are threads of a graphics kernel.

Example 30

[0116] The at least one machine-readable storage medium
of example 29, the graphics kernel encoded based on an
encoding standard selected from the group comprising WMV,
MPEG-4, H.264/MPEG-4, VC1, VP8, VP9, and HEVC.
What is claimed is:
1. An apparatus for dispatching threads for execution by a
graphics processing unit (GPU) comprising:
a graphics processor configured to execute a plurality of
threads; and
a thread dispatcher to determine an order of execution of
the plurality of threads to increase an interval between
execution of a first thread and second thread, the first
thread dependent upon the second thread.



US 2016/0163016 Al

2. The apparatus of claim 1, the thread dispatcher to:

identify the first thread and the second thread of the plu-

rality of threads;

identify a third thread of the plurality of threads, the third

thread independent from the first and second threads;
dispatch the second thread for execution by the graphics
processor;

dispatch the third thread for execution by the graphics

processor; and

dispatch the first thread for execution by the graphics pro-

Ccessor.

3. The apparatus of claim 1, the thread dispatcher to:

identify the first thread;

identify a subset of threads, the subset of threads to include

the second thread and one or more other ones of the

plurality of threads, the first thread dependent upon the

threads of the subset of threads;

determine, for each thread of the subset of threads, a
dependency ranking, the dependency ranking to
include an indication of the likelihood the depen-
dency will not need to be enforced; and

determine an order of execution of the threads of the
subset of threads based on the dependency ranking.

4. The apparatus of claim 3, the subset of threads to include
athird thread, wherein the dependency ranking of the second
and third threads indicates the likelihood the dependency of
second thread will not need to be enforced is higher than the
likelihood the dependency of the third thread will not need to
be enforced; the thread dispatcher to:

dispatch the third thread for execution by the graphics

processor;

dispatch the second thread for execution by the graphics

processor; and

dispatch the first thread for execution by the graphics pro-

Ccessor.

5. The apparatus of claim 1, the thread dispatcher to deter-
mine the order of dispatching based in part upon whether a
thread is a vertical edge thread or a horizontal edge thread.

6. The apparatus of claim 5, the thread dispatcher to:

dispatch the threads of the plurality of threads that are

vertical edge threads; and

dispatch the threads of the plurality of threads that are

horizontal edge threads.

7. The apparatus of claim 5, the thread dispatcher to:

dispatch the threads of the plurality of threads in a first

column that are vertical edge threads;

dispatch the threads of the plurality of threads in the first

column that are horizontal edge threads;

dispatch the threads of the plurality of threads in a second

column that are vertical edge threads; and

dispatch the threads of the plurality of threads in the second

column that are horizontal edge threads.

8. The apparatus of claim 1, wherein the plurality of threads
are threads of a graphics kernel.

9. The apparatus of claim 8, the graphics kernel encoded
based on an encoding standard selected from the group com-
prising WMV, MPEG-4, H.264/MPEG-4, VC1, VP8, VP9,
and HEVC.

10. The apparatus of claim 1, further comprising a display
operably coupled to the graphics processing unit to display
data processed by the graphics processing unit.

11. The apparatus of claim 1, further comprising a wireless
radio operably coupled to the graphics processing unit to
receive data to be processed by the graphics processing unit.

Jun. 9, 2016

12. A computing-implemented method comprising:
identifying a first thread and a second thread of a plurality
of threads to be executed by a graphics processor, the
first thread dependent upon the second thread; and

determining an order of execution of the plurality of
threads to increase an interval between execution of the
first thread and the second thread.

13. The computing-implemented method of claim 12,
comprising:

identify a third thread of the plurality of threads, the third

thread independent from the first and second threads;
dispatching the second thread for execution by the graphics
processor;

dispatching the third thread for execution by the graphics

processor; and

dispatching the first thread for execution by the graphics

processor.

14. The computing-implemented method of claim 12,
comprising:

identifying a subset of threads, the subset of threads to

include the second thread and one or more other ones of

the plurality of threads, the first thread dependent upon

the threads of the subset of threads;

determining, for each thread of the subset of threads, a
dependency ranking, the dependency ranking to
include an indication of the likelihood the depen-
dency will not need to be enforced; and

determining an order of execution of the threads of the
subset of threads based on the dependency ranking.

15. The computing-implemented method of claim 14, the
subset of threads to include a third thread, wherein the depen-
dency ranking of the second and third threads indicates the
likelihood the dependency of second thread will not need to
be enforced is higher than the likelihood the dependency of
the third thread will not need to be enforced; the method
comprising:

dispatching the third thread for execution by the graphics

processor;

dispatching the second thread for execution by the graphics

processor; and

dispatching the first thread for execution by the graphics

processor.

16. The computing-implemented method of claim 12,
comprising determining the order of dispatching based in part
upon whether a thread is a vertical edge thread or a horizontal
edge thread.

17. The computing-implemented method of claim 16,
comprising:

dispatching the threads of the plurality of threads that are

vertical edge threads; and

dispatching the threads of the plurality of threads that are

horizontal edge threads.

18. The computing-implemented method of claim 16,
comprising:

dispatching the threads of the plurality of threads in a first

column that are vertical edge threads;

dispatching the threads of the plurality of threads in the first

column that are horizontal edge threads;

dispatching the threads of the plurality of threads in a

second column that are vertical edge threads; and
dispatching the threads of the plurality of threads in the
second column that are horizontal edge threads.



US 2016/0163016 Al

19. At least one machine-readable storage medium com-
prising instructions that when executed by a computing
device, cause the computing device to:
identify a first thread and a second thread of a plurality of
threads to be executed by a graphics processor, the first
thread dependent upon the second thread; and

determine an order of execution of the plurality of threads
to increase an interval between execution of the first
thread and the second thread.

20. The at least one machine-readable storage medium of
claim 19, comprising instructions that when executed by the
computing device, cause the computing device to:

identify a third thread of the plurality of threads, the third

thread independent from the first and second threads;
dispatch the second thread for execution by the graphics
processor;

dispatch the third thread for execution by the graphics

processor; and

dispatch the first thread for execution by the graphics pro-

Ccessor.

21. The at least one machine-readable storage medium of
claim 19, comprising instructions that when executed by the
computing device, cause the computing device to:

identify a subset of threads, the subset of threads to include

the second thread and one or more other ones of the

plurality of threads, the first thread dependent upon the

threads of the subset of threads;

determine, for each thread of the subset of threads, a
dependency ranking, the dependency ranking to
include an indication of the likelihood the depen-
dency will not need to be enforced; and

determine an order of execution of the threads of the
subset of threads based on the dependency ranking.

22. The at least one machine-readable storage medium of
claim 21, the subset of threads to include a third thread,
wherein the dependency ranking of the second and third

Jun. 9, 2016

threads indicates the likelihood the dependency of second
thread will not need to be enforced is higher than the likeli-
hood the dependency of the third thread will not need to be
enforced, comprising instructions that when executed by the
computing device, cause the computing device to:

dispatch the third thread for execution by the graphics

processor;

dispatch the second thread for execution by the graphics

processor; and

dispatch the first thread for execution by the graphics pro-

Ccessor.

23. The at least one machine-readable storage medium of
claim 19, comprising instructions that when executed by the
computing device, cause the computing device to:

determine the order of dispatching based in part upon

whether a thread is a vertical edge thread or a horizontal
edge thread.

24. The at least one machine-readable storage medium of
claim 23, comprising instructions that when executed by the
computing device, cause the computing device to:

dispatch the threads of the plurality of threads that are

vertical edge threads; and

dispatch the threads of the plurality of threads that are

horizontal edge threads.

25. The at least one machine-readable storage medium of
claim 19, comprising instructions that when executed by the
computing device, cause the computing device to:

dispatch the threads of the plurality of threads in a first

column that are vertical edge threads;

dispatch the threads of the plurality of threads in the first

column that are horizontal edge threads;

dispatch the threads of the plurality of threads in a second

column that are vertical edge threads; and

dispatch the threads ofthe plurality of threads in the second

column that are horizontal edge threads.

#* #* #* #* #*



