
US 20210306333A1
ME INI

(19) United States
(12) Patent Application Publication (10) Pub . No .: US 2021/0306333 A1

Rolf et al . (43) Pub . Date : Sep. 30 , 2021

(54) SYSTEMS AND METHODS FOR
INTEGRATING SYSTEMS OVER
UNTRUSTED NETWORKS

(52) U.S. CI .
CPC H04L 63/0884 (2013.01) ; H04L 63/083

(2013.01) ; H04L 63/102 (2013.01) ; G06F
9/541 (2013.01) (71) Applicants : Atlassian Pty Ltd. , Sydney (AU) ;

Atlassian Inc. , San Francisco , CA (US)
(57) ABSTRACT (72) Inventors : Carl Christian Rolf , Sydney (AU) ;

Oliver Burn , Sydney (AU) ; James
Navin , Sydney (AU) ; Rafal Krzysztof
Myslek , Sydney (AU)

(21) Appl . No .: 16 / 836,535
(22) Filed : Mar. 31 , 2020

Described herein is a computer implemented method for
configuring a receiving system to receive data from a
sending system . The method comprises receiving an inte
gration creation request from a client application . In
response , a specific integration user account is created with
credentials which provide access to the receiving system .
The credentials are communicated to the client application .
In addition , an integration record comprising details in
respect of the integration is created , stored , and associated
with the specific integration user account .

Publication Classification

(51) Int . Ci .
H04L 29/06 (2006.01)
GO6F 9/54 (2006.01)

100

-190
Client system (CS) 160

SS client
application 162

Client system (CS) 140
180 RS client

application 142

Sending system (SS)
120
SS server

Fire application 124
wall
128 Integration

component 126

Receiving system (RS) 102

API proxy 110 RS front end server
application 104

Integrations management
component (IMC) 106

RS data store 112
Public API data 114

User directory component
108

RS application data 116
RS gen . data 118
SS gen . data 120

Patent Application Publication Sep. 30 , 2021 Sheet 1 of 10 US 2021/0306333 A1

1007
-190 ,

Client system (CS) 160
SS client

application 162

T
I
|

Client system (CS) 140
180 RS client

application 142

Sending system (SS)
120
SS server

Fire application 124
wall
128 Integration

component 126

Receiving system (RS) 102

API proxy 110 RS front end server
application 104

RS data store 112 Integrations management
component (IMC) 106 Public API data 114

User directory component
108

RS application data 116
RS gen . data 118
SS gen . data 120

Figure 1

Patent Application Publication Sep. 30 , 2021 Sheet 2 of 10 US 2021/0306333 A1

200

202 206 208 210

Processing
unit

System
memory

Volatile
memory

Non - transient
memory

212 204

User input /
output

Communications
interface (s)

214 216

180

Figure 2

Patent Application Publication Sep. 30 , 2021 Sheet 3 of 10 US 2021/0306333 A1

300

RS Client application 142
Receiving system 102

Integrations management RS server application 104 component (IMC) 106
302

Display create new
integration RS - side

interface

304

Receive new
integration RS - side

data

306 308 312

Generate / communicate
new RS - side integration

request
Receive new RS - side
integration request 310

General
int . user account

exists ?

314 No

Create general
integrations user

account
Yes

316

Create specific
integration user

account

318

Generate credentials
for specific integration

user account

326 324 320

Receive integration
credentials

Communicate
integration credentials -322 Create new integration

328
Make integration

credentials available
for transfer to SS client

application

Figure 3

Patent Application Publication Sep. 30 , 2021 Sheet 4 of 10 US 2021/0306333 A1

300
(cont .)

Sending system 120 Receiving system 102 SS Client application 162

352 SS server application 124

Display create new
integration SS - side

interface

354

Receive new
integration SS - side

data

356 358

Generate / communicate
new SS - side integration

request
Receive new SS - side
integration request

360

Save SS - side
integration data

380

Test integration
382

Respond to attempted
connection from
Sending system 386

No
Integration

successful ?

Yes 390 388

Receive integration
created message

Generate / communicate
integration created

message

392

Display integration
created Ul element

Figure 4

Patent Application Publication Sep. 30 , 2021 Sheet 5 of 10 US 2021/0306333 A1

500

Sending system 120 Receiving system 102

SS server application 124 RS API proxy 110 User directory 108

502

Detect data
communication trigger

event

504 506

Attempt connection with
RS API proxy

Receive attempted
connection

508 509

Perform system access
check Validate permissions

510
512

Yes
Connection
successful ?

Accept (or reject)
connection

514 No
RS data store 112

Generate connection
failed message

516 518 522

Generate / communicate
event data Receive event data -520 Perform API access

check

524
API access
allowed ?

Yes 532 530 526 No

Receive data type
inaccessible message

Communicate data type
inaccessible message -528 Generate data type

inaccessible message

534

Deliver event data
communication failed

message
To
550

Figure 5

Patent Application Publication Sep. 30 , 2021 Sheet 6 of 10 US 2021/0306333 A1

500 (cont .)

Sending system 120 Receiving system 102

SS server application 124 RS API proxy 11 RS data store 112

From
524

550

Determine RS data
event data should be

associated with

552

Store event data
associated with RS

data

560 558 554

1 Receive event data
stored message

Communicate event
data stored message 556 Generate event data

stored message 1

1

562

Process event data
stored message

Figure 6

700

Receiving system 102

RS Client application 142

RS server application 104

Integrations management component (IMC) 106

User directory 108

RS data store 112

702

Patent Application Publication

Display integration management interface
704

Detect initiation of integration management request
706

708

712

Generate integration management request

Receive integration management request

Determine tenant identifier

Sep. 30 , 2021 Sheet 7 of 10

710
714

718

Generate / run integrations user account details query

716

Respond to integrations user account query ?? 720

US 2021/0306333 A1

Figure 7

700 (cont .)

Receiving system 102

RS Client application 142

RS server application 104

Integrations management component (IMC) 106

User directory 108

RS data store 112

Patent Application Publication

From 718

720

Int , user account exists ?

Yes

728

726

722

No

Receive no integrations message

Communicate no integrations message
724

Generate no integrations message

730

732

736

Sep. 30 , 2021 Sheet 8 of 10

Display no integrations Ul element

Generate / run integrations details query

734

Respond to integrations details query

738

Receive list of integrations ?? 740

US 2021/0306333 A1

Figure 8

700 (cont .)

Receiving system 102

RS Client application 142

RS server application 104

Integrations management component (IMC) 106

User directory 108

RS data store 112

Patent Application Publication

From 738

740

744

Generate specific integration user account IDs query

742

Respond to specific integration user account IDs query

760

758

746

Receive integrations summary

Generatel communicate integrations summary

Receive list of specific integration user account IDs

Sep. 30 , 2021 Sheet 9 of 10

748

762

752

Display integrations summary data

Generate integrations credentials query

750

Respond to integrations credentials query

764

754

756

Generate integrations

Perform management operations

summary data

US 2021/0306333 A1

Figure 9

Patent Application Publication Sep. 30 , 2021 Sheet 10 of 10 US 2021/0306333 A1

1000

Owners table 1002
Tenant ID
General integrations user ID

Installations table 1004
Tenant ID
General integrations user ID
Installation ID

Specific installation table 1006
Tenant ID
General integrations user ID
Installation ID
Integration ID
Integration name
Sending system resource locator
Integration data type (s)
Integration graphic

**

Integrations table 1010
Tenant ID
General integrations user ID
Installation ID
Integration ID
Specific integration user ID

Figure 10

US 2021/0306333 A1 Sep. 30 , 2021
1

SYSTEMS AND METHODS FOR
INTEGRATING SYSTEMS OVER

UNTRUSTED NETWORKS

FIELD

[0001] The present disclosure is directed to systems and
methods for integrating systems over untrusted networks .

standing of the claimed invention . It will be apparent ,
however , that the claimed invention may be practiced with
out these specific details . In some instances , well - known
structures and devices are shown in block diagram form in
order to avoid unnecessary obscuring .
[0012] This description takes the following outline :
[0013] 1. Overview
[0014] 2. Example networked environment
[0015] 3. Example computer processing system
[0016] 4. Creating an integration between two systems
[0017] 5. Communicating data between two integrated
systems
[0018] 6. Receiving system - side integration management
[0019] 7. Example communication between outgoing and
receiving systems
1. Overview

BACKGROUND
[0002] In modern computing , many situations arise where
configuring separate systems to allow for data communica
tion between those systems is desirable . Where systems
communicate over untrusted networks , though , two often
competing concerns arise : security and convenience . With
respect to security , most system integrations will need to be
provided in a way that does not expose one or both systems
to security threats . Most integrations will also need to
operate in a way that ensures any sensitive data involved in
either setting up the integration or in use of the integration
is secure . With respect to convenience , it is advantageous for
integration setup and management processes , and processes
for communicating data between integrated systems , to be as
simple as possible . The systems and techniques described
herein address these competing requirements by integrating
various systems over an untrusted network .
[0003] Background information described in this specifi
cation is background information known to the inventors .
Reference to this information as background information is
not an acknowledgment or suggestion that this background
information is prior art or is common general knowledge to
a person of ordinary skill in the art .

BRIEF DESCRIPTION OF THE DRAWINGS

[0004] FIG . 1 is a diagram depicting a networked envi
ronment in which various features of the present disclosure
may be implemented .
[0005] FIG . 2 is a block diagram of a computer processing
system configurable to perform various features of the
present disclosure .
[0006] FIGS . 3 and 4 provide a flowchart depicting opera
tions involved in creating a new integration between two
systems .
[0007] FIGS . 5 and 6 provide a flowchart depicting opera
tions involved in using an integration between two systems
to communicate data .
[0008] FIGS . 7 to 9 provide a flowchart depicting opera
tions involved in managing one or more integrations .
[0009] FIG . 10 provides example database tables for stor
ing integration data .
[0010] While the invention as claimed is amenable to
various modifications and alternative forms , specific
embodiments are shown by way of example in the drawings
and are described in detail . It should be understood
however , that the drawings and detailed description are not
intended to limit the invention to the particular form dis
closed . The intention is to cover all modifications , equiva
lents , and alternatives falling within the scope of the present
invention as defined by the appended claims .

[0020] The present disclosure is directed to configuring
two systems to allow the communication of data between
those systems . This involves setting up one or more inte
grations .
[0021] As used herein , the term integration refers to a
mechanism by which a receiving system and a sending
system can communicate data . In the present context , a
given integration involves configuring both the outgoing and
receiving systems . The sending system is configured to
access a defined set of application programming interfaces
(APIs) provided by the receiving system (RS) . Using those
APIs , the sending system can communicate defined data to
the receiving system (and manage the data it has provided) .
The receiving system is configured to permit the sending
system to access the defined set of APIs , and to receive and
process data received from the sending system via those
APIs (for example by storing it , displaying it , associating
with other receiving system data , further communicating it ,
and / or processing it in any other useful way) .
[0022] There are innumerable use cases for such integra
tions .
[0023] As one set of examples , consider an issue tracking
system such as Jira made available by Atlassian . Amongst
other things , Jira allow users to perform various actions with
respect to issues — for example , create issues , associate
issues with projects and / or other issues , transition issues
between workflow states , add / edit information associated
with issues , assign issues to specific people / teams . One
common use scenario for an issue tracking system such as
Jira is to set up projects corresponding to software products .
A person or team who comes up with an idea for a new
feature may then create an issue (or set of related issues) for
the feature and associate the issue with the relevant project .
[0024] As development of the feature progresses (e.g. the
feature is planned , developed , built , tested , released ,
enabled , marketed , supported , etc.) , the issue (s) created for
the feature transition (s) through various workflow states ,
with information regarding the progress of the feature being
added to the issue by the relevant stakeholders .
[0025] While the issue tracking system can be used to
track the development progress of a given feature , actual
development typically involves a number of other software
systems . By way of example : code for the feature may be
stored / managed using a version control system (e.g. Bit
bucket , Github , or an alternative version control system) ;
integration and / or delivery may be performed using a con
tinuous integration / delivery (CI / CD) system (e.g. Bamboo ,

2

DETAILED DESCRIPTION OF THE
EMBODIMENTS

[0011] In the following description numerous specific
details are set forth in order to provide a thorough under

US 2021/0306333 A1 Sep. 30 , 2021
2

Jenkins , or another CI / CD system) ; features may be released
under feature flags managed by a feature flag system (e.g.
Launch Darkly , Rollout , or an alternative feature flag sys
tem) ; a documentation system (for example a wiki system
such as Confluence or an alternative documentation system) .
[0026] In order to improve the software development
process , therefore , integrating the various systems used in
developing the software is advantageous .
[0027] For example , by creating an integration in which
the issue tracking system is the receiving system and the
CI / CD system is the sending system , the CI / CD system can
be configured to automatically communicate CI / CD data
regarding the integration / delivery of a feature to the issue
tracking system . The issue tracking system receives the
incoming data (in this case CI / CD data) , determines the
issue or issues that data is relevant to , associates the incom
ing data with that / those issue (s) , and stores the incoming
data . The issue tracking system can then make use of the
stored CI / CD data in downstream operations : for example it
can raise alerts based on the CI / CD data , display the CI / CD
data (or parts thereof) to a user- e.g. when the user views an
issue the data is associated with , and / or perform other
operations using the CI / CD data .
[0028] In addition , or alternatively , receipt of particular
CI / CD data may trigger certain issue tracking system opera
tions (or sequences of operations) to be performed . For
example , the issue tracking system can process the CI / CD
data received to determine whether it triggers an issue
tracking system automation (one or more operations to be
automatically performed by the issue tracking system) and ,
if so , perform that automation . As one example , a trigger
may be defined that causes the issue tracking system to
transition an issue from one state to another state and notify
one or more users that are subscribed to that issue of the
CI / CD data received / issue transition .
[0029] As another example , by integrating a feature flag
system (the sending system) with the issue tracking system
(the receiving system) , the feature flag system can be
configured to automatically communicate feature flag data
regarding the roll out or release of a feature to the issue
tracking system . Once again , the issue tracking system
receives the incoming data (in this case feature flag data) ,
determines the issue or issues that data is associated with ,
and stores the data for use in downstream operations .
[0030] As noted , a given integration provides a sending
system access to a defined set of receiving system APIs .
Because of this it is possible for there to be multiple
integrations between the same pair of incoming and sending
systems . Consider again the above example of an integration
between an incoming issue tracking system and an outgoing
CI / CD system . A single integration may be created to
achieve this , the single integration providing the CI / CD
system with access to APIs that allow it to communicate (for
example) both build data and deployment data to the issue
tracking system . Alternatively , two separate integrations
may be created : one integration providing the CI / CD system
with access to APIs that allow it to communicate build data ;
another integration providing the CI / CD system with access
to APIs that allow it to communicate deployment .
[0031] Initially , examples of a networked environment and
computer processing system will be provided . Following
this , example processes for creating an integration , using an
integration to communicate data , and manage integrations
are described in turn .

2. Example Networked Environment
[0032] FIG . 1 depicts one example of a networked envi
ronment 100 in which the various operations and techniques
described herein can be performed .
[0033] Networked environment 100 includes a receiving
system (RS for short) 102 , a sending system (SS for short)
120 , and two client systems (CS for short) 140 and 160 .
These systems are interconnected via a public / untrusted
communications network 180 (e.g. the Internet) .
[0034] RS 102 and SS 120 may be any two systems where
services provides (and data generated) by the SS 120 are in
some way related to services provided by the RS 102. As one
example , described above , RS 102 may be an issue tracking
system such as Jira and SS 120 may be a CI / CD system such
as Jenkins .
[0035] RS 102 and SS 120 may be cloud based systems or
private systems . In this context , a cloud based system is a
system that runs outside the private network (virtual or
physical) of an organisation that is using the software
services provided by the cloud based system . In contrast , a
private system in this context is a system that runs inside a
private network (virtual or physical) of the company using
the software services of that system .
[0036] In the specific examples described herein , RS 102
is a multi - tenanted cloud based system , i.e. a cloud based
system that provides software as a service to multiple
different tenants / organisations (and runs outside the private
networks of those tenants / organisations . RS 120 in the
examples described herein is a private system of a given
tenant / organisation (running inside the private network of
that tenant / organisation) .
[0037] Furthermore , while a single receiving system and a
single sending system have been depicted and described , the
techniques described herein can be used to manage multiple
integrations . For example : RS 102 may be integrated with
any number of different sending systems 120 (i.e. configured
to receive data from those sending systems) ; SS 120 may be
integrated with any number of different receiving systems
102 (i.e. configured to send data to those receiving systems) ;
and a given system may be both a receiving system (i.e.
receive data from one or more sending systems) and a
sending system (i.e. communicate data to one or more
receiving systems) .

Receiving System (RS) 102
[0038] RS 102 is illustrated with various functional com
ponents . Although these components are described and
depicted separately , the functionality of the components
could be provide by fewer , additional , or alternative com
ponents to those depicted and described .
[0039] One component of RS 102 is an RS front - end
server application 104. The RS server application 104 is
executed by a computer processing system to configure that
system to provide server - side functionality to one or more
corresponding client applications (e.g. RS client application
142 described below) . The server - side functionality includes ' normal ' operational functionality provided by the RS 102 .
For example , where RS 102 is an issue tracking system such
' normal ' functionality may include creating / viewing / editing
issues managing users and user permissions , and other issue
tracking system operations . As described further below , the
server - side functionality also includes (at least for users with
appropriate permissions) integration administration func

US 2021/0306333 A1 Sep. 30 , 2021
3

tions which , in this case , include setting up , using , and
managing integrations with sending systems such as SS 120 .
[0040] To provide the server - side functionality , the RS
server application 104 comprises one or more application
programs , libraries , APIs or other software elements that
implement the features and functions that are described
herein . For example , where the RS client application 142 is
a web browser , the RS server application 104 will be a web
server such as Apache , IRS , nginx , GWS , or an alternative
web server . Where the RS client application 142 is a specific
application , the RS server application 104 will be an appli
cation server configured specifically to interact with that
client application 142. RS 102 may be provided with both
web server and application server modules .
[0041] In the present example , RS 102 also includes an
integrations management component 106 (IMC) 106. As
described further below , the IMC 106 performs various
operations with respect to creating and managing integra
tions .
[0042] In the present example , RS 102 also includes a user
directory component 108. User base component 108 stores
account details for the user accounts maintained by RS 102 .
When external applications or systems (e.g. client applica
tions such as 142 , sending system server applications such
124 , or any other application / system) attempt to connect to
the RS 102 or control RS 102 to perform operations they do
so using a user account . The user directory component 108
is responsible for validating user accounts and associated
permissions .
[0043] In the present example , RS 102 also includes an
API proxy 110. API proxy 110 provides access to APIs that
the RS 102 makes available to external systems .
[0044] In the present example , RS 102 also includes an RS
data store 112. RS data store 112 is used to store various data
used by RS 102 in the course of its operations . In the present
example this data includes public API data 114 , and RS
application data 116 .
[0045] The public API data 114 includes data in respect of
the APIs the RS 102 makes available to external systems .
[0046] The RS application data 116 includes data relevant
to the services provided by the RS system 102. In the present
disclosure , this data includes RS generated data 118 and SS
generated data 120 .
[0047] The RS generated data 118 is data generated by the
RS 102. For example , where the RS system 102 is an issue
tracking system , the RS generated data 118 may include
configuration type data (e.g. issue types available for a given
project , workflows of particular issue types , and any other
configuration type data) as well as actual issue data in
respect of issues created / managed by the issue tracking
system .
[0048] The SS generated data 118 is data generated by an
SS 120 and communicated to the RS 102 using an integra
tion . For example , if RS 102 is an issue tracking system and
SS 120 is a CI / CD system , the SS generated data 120 may
include build and or deployment data relating to one or more
issues maintained by the RS 102 .
[0049] The public API data 114 and RS application data
116 have been illustrated as separate data blocks within RS
data store 112. These different types of data may , however
be maintained by a single data storage application (e.g. a
single database) or by separate data storage applications
(e.g. separate database) that run on one or on multiple
physical data store server computer systems . Similarly ,

while the RS generated data 118 and SS generated data 120
have been illustrated as separate blocks in FIG . 1 , both types
of data may be stored in a single data store (i.e. once the SS
generated data has been received it is associated with the
relevant RS data and stored with it) .
[0050] In order to provide server side functionality to
clients , RS 102 will typically include additional components
to those illustrated and described . As one example , RS 102
will typically include one or more firewalls (and / or other
network security components) and load balancers (for man
aging access to the RS server application 104 and API proxy
110) .
[0051] The RS system 102 components described herein
may be implemented by hardware , software (data and com
puter readable instructions which are stored in memory and
executed by one or more computer processing systems) , or
a combination of hardware and software . The precise hard
ware architecture of RS 102 will vary depending on imple
mentation , however it will typically include multiple com
puter processing systems (e.g. server systems) which
communicate with one another either directly or via one or
more networks , e.g. one or more LANS , WANs , or other
networks (with a secure logical overlay , such as a VPN , if
required)
[0052] As noted , in some implementations the RS 102
maybe a cloud system providing the functionality of the
system as a service to clients . In this case RS 102 can be
configured to commission / decommission components
such as the front end server application and API proxy 110
(and hardware on which those components execute) _as
demand requires .
[0053] RS 102 provides services to multiple users (with
user account details stored , for example , in user directory
component 108) .
[0054] In the implementations described herein , RS 102 is
a multi - tenant system : i.e. RS 102 provides services to users
of multiple distinct tenants (keeping each tenant's data
separate from the data of each other tenant) . In this case ,
each user account managed by the RS 102 is associated with
a tenant identifier that identifies the tenant that the user
account belongs to .
[0055] In other implementations , however , RS 102 is
single - tenancy system : i.e. a system that provides services to
users of a single organisation . In this case , all user accounts
are associated with that single tenancy / organisation .
Sending System (SS) 120

[0056] SS 120 is also illustrated with various functional
components . Although these components are described and
depicted separately , the functionality of the components
could be provide by fewer , additional , or alternative com
ponents to those depicted and described .
[0057] One component of SS 104 is an SS server appli
cation 124. The SS server application 124 is executed by a
computer processing system to configure that system to
provide server - side functionality to one or more correspond
ing client applications (e.g. SS client application 162
described below) . The server - side functionality includes
normal operational functionality provided by the SS 120 .
For example , where SS 120 is a CI / CD system , such normal
functionality may include setting up and running CI / CD
pipelines (e.g. accessing code from a code base , building
artefacts / executables using the code , running tests , and
deploying to one or more environments) . As described

US 2021/0306333 A1 Sep. 30 , 2021
4

further below , the SS server - side functionality also includes
(at least for users with appropriate permissions) administra
tive functionality which , in this case , includes setting up
integrations with a receiving system such as RS 102 .
[0058] To provide the server - side functionality , the SS
server application 124 comprises one or more application
programs , libraries , APIs or other software elements that
implement the features and functions that are described
herein . For example , where the SS client application 162 is
a web browser , the SS server application 124 will be a web
server such as Apache , IRS , nginx , GWS , or an alternative
web server . Where the SS client application 162 is a specific
application , the SS server application 124 will be an appli
cation server configured specifically to interact with that
client application 162. SS 120 may be provided with both
web server and application server modules .
[0059] In the present example , SS 120 also includes an
integration component 126. As described below , the inte
gration component 126 handles (or configures the SS server
application 126 to handle) communication with the RS 102 .
Integration component 126 may be software module such as
an add - on or plug - in that operates in conjunction with the SS
server application 142 to expand the functionality thereof . In
alternative embodiments , the functionality provided by the
integration component may be natively provided by the SS
server application 124 (i.e. the SS server application 124
itself is released with instructions and data which , when
executed , cause the SS server 120 to perform the function
ality described herein) .
[0060] In the present example , SS 120 also includes a
firewall component 128 to provide security for the SS 120 .
[0061] In order to provide server side functionality to
clients , SS 120 will typically include additional components
to those illustrated and described . As one example , SS 120
will typically include some kind of data storage system or
component for storing data associated with the functions
provided by the SS 120 .
[0062] The SS system 120 components described herein
may be implemented by hardware , software , or a combina
tion of hardware and software . The precise hardware archi
tecture of SS 120 will vary depending on implementation ,
however it will typically include multiple computer process
ing systems (e.g. server systems) which communicate with
one another either directly or via one or more networks , e.g.
one or more LANS , WANs , or other networks (with a secure
logical overlay , such as a VPN , if required) .
[0063] In some implementations the SS 120 maybe a
cloud system providing the functionality of the system as a
service . In this case , SS 120 can be configured to commis
sion / decommission components (and hardware on which
those components execute) as demand requires .
[0064] In the implementations described herein SS 120 is
a single tenant system . SS 120 may , however , be a multi
tenant system .

Opera , or an alternative web browser application) which
accesses the RS server application 104 via an appropriate
uniform resource locator (URL) and communicates with RS
server application 104 via general world - wide - web proto
cols (e.g. http , https , ftp) . Alternatively , the RS client 142
may be a specific application programmed to communicate
with RS server application 104 using defined application
programming interface (API) calls .
[0067] CS 160 hosts an SS client 162 (SS client 162 for
short) which , when executed by the CS 160 , configures the
CS 160 to provide client - side functionality for / interact with
the server application 124 of the SS 102. Operations per
formed by the SS client 162 are described further below .
[0068] SS client 162 may be a general web browser
application (such as Chrome , Safari , Internet Explorer ,
Opera , or an alternative web browser application) which
accesses the SS server application 124 via an appropriate
uniform resource locator (URL) and communicates with SS
server application 124 via general world - wide - web proto
cols (e.g. http , https , ftp) . Alternatively , the SS client 162
may be a specific application programmed to communicate
with SS server application 124 using defined application
programming interface (API) calls .
[0069] While RS client 142 and SS client 162 have been
described as being on two separate systems (CS 140 and 160
respectively) , the RS and SS clients 142 and 162 may — and
will often - be installed on a single client system . Further
more , a client system may have multiple clients installed
thereon . For example , a single client system (such as CS
140) could be provided with : a web browser application
(capable of use as both RS and SS client 142 and 162) , a
dedicated RS client 142 , and a dedicated SS client 162 .
[0070] In terms of hardware , each client system 140 and
160 may be any computer processing system which is
configured (or configurable) by hardware and / or software to
offer client - side functionality . By way of example , either or
each of CS 140 and 160 may be a desktop computer , a laptop
computer , a netbook computer , a tablet computing device , a
mobile / smart phone device , a personal digital assistant , or an
alternative computer processing system .
[0071] Although not illustrated in FIG . 1 , CS 140 and CS
160 will typically have additional applications installed
thereon , for example an operating system application such
as Microsoft Windows® , Apple SSX , Apple RSS , Android ,
Unix , or Linux .

Client Systems (CS) 140 and 160
[0065] CS 140 hosts an RS client 142 (RS client 142 for
short) which , when executed by the CS 140 , configures the
CS 140 to provide client - side functionality for / interact with
the front end server application 104 of the RS 102. Opera
tions performed by the RS client 142 are described further
below .
[0066] RS client 142 may be a general web browser
application (such as Chrome , Safari , Internet Explorer ,

3. Example Computer Processing System
[0072] Various features and techniques described herein
are implemented using one or more computer processing
systems .
[0073] For example , in networked environment 100
described above , CSs 140 and 160 are both computer
processing systems (for example , personal computers , tab
let / phone devices , or other computer processing systems) .
Similarly , the various functional components of RS 102 are
implemented using one or more computer processing sys
tems (e.g. server computers or other computer processing
systems) , as are the various components of SS 120 .
[0074] FIG . 2 provides a block diagram of a computer
processing system 200 configurable to implement embodi
ments and / or features described herein . System 200 is a
general purpose computer processing system . It will be
appreciated that FIG . 2 does not illustrate all functional or
physical components of a computer processing system . For

US 2021/0306333 A1 Sep. 30 , 2021
5

be

example , no power supply or power supply interface has
been depicted , however system 200 will either carry a power
supply or be configured for connection to a power supply (or
both) . It will also be appreciated that the particular type of
computer processing system will determine the appropriate
hardware and architecture , and alternative computer pro
cessing systems suitable for implementing features of the
present disclosure may have additional , alternative , or fewer
components than those depicted .
[0075] Computer processing system 200 includes at least
one processing unit 202. The processing unit 202 may be a
single computer processing device (e.g. a central processing
unit , graphics processing unit , or other computational
device) , or may include a plurality of computer processing
devices . In some instances , where a computer processing
system 200 is described as performing an operation or
function all processing required to perform that operation or
function will be performed by processing unit 202. In other
instances , processing required to perform that operation or
function may also be performed by remote processing
devices accessible to and useable by (either in a shared or
dedicated manner) system 200 .
[0076] Through a communications bus 204 the processing
unit 202 is in data communication with a one or more
machine readable storage (memory) devices which store
instructions and / or data for controlling operation of the
processing system 200. In this example system 200 includes
a system memory 206 (e.g. a BRSS) , volatile memory 208
(e.g. random access memory such as one or more DRAM
modules) , and non - volatile memory 210 (e.g. one or more
hard disk or solid state drives) .
[0077] System 200 also includes one or more interfaces ,
indicated generally by 212 , via which system 200 interfaces
with various devices and / or networks . Generally speaking ,
other devices may be integral with system 200 , or may be
separate . Where a device is separate from system 200 ,
connection between the device and system 200 may be via
wired or wireless hardware and communication protocols ,
and may be a direct or an indirect (e.g. networked) connec
tion .
[0078] Wired connection with other devices / networks
may be by any appropriate standard or proprietary hardware
and connectivity protocols . For example , system 200 may be
configured for wired connection with other devices / commu
nications networks by one or more of : USB ; FireWire ;
eSATA ; Thunderbolt ; Ethernet ; SS / 2 ; Parallel ; Serial ;
HDMI ; DVI ; VGA ; SCSI ; Audio Port . Other wired connec
tions are possible .
[0079] Wireless connection with other devices / networks
may similarly be by any appropriate standard or proprietary
hardware and communications protocols . For example , sys
tem 200 may be configured for wireless connection with
other devices / communications networks using one or more
of : infrared ; BlueTooth ; WiFi ; near field communications
(NFC) ; Global System for Mobile Communications (GSM) ,
Enhanced Data GSM Environment (EDGE) , long term
evolution (LTE) , wideband code division multiple access
(W - CDMA) , code division multiple access (CDMA) . Other
wireless connections are possible .
[0080] Generally speaking , and depending on the particu
lar system in question , devices to which system 200 con
nects — whether by wired or wireless means — include one or
more input devices to allow data to be input into / received by
system 200 for processing by the processing unit 202 , and

one or more output device to allow data to be output by
system 200. Example devices are described below , however
it will be appreciated that not all computer processing
systems will include all mentioned devices , and that addi
tional and alternative devices to those mentioned may well
be used .
[0081] For example , system 200 may include or connect to
one or more input devices by which information / data is
input into (received by) system 200. Such input devices may
include keyboards , mice , trackpads , microphones , acceler
ometers , proximity sensors , GPS devices and the like . Sys
tem 200 may also include or connect to one or more output
devices controlled by system 200 to output information .
Such output devices may include devices such as a CRT
displays , LCD displays , LED displays , plasma displays ,
touch screen displays , speakers , vibration modules , LEDs /
other lights , and such like . System 200 may also include or
connect to devices which may act as both input and output
devices , for example memory devices (hard drives , solid
state drives , disk drives , compact flash cards , SD cards and
the like) which system 200 can read data from and / or write
data to , and touch screen displays which can both display
(output) data and receive touch signals (input) .
[0082] System 200 also includes one or more communi
cations interfaces 216 for communication with a network ,
such as network 180 of environment 100 (and / or a local
network within the RS 102 or SS 120) . Via the communi
cations interface (s) 216 system 200 can communicate data to
and receive data from networked devices , which may them
selves be other computer processing systems .
[0083] System 200 may any suitable computer process
ing system , for example , a server computer system , a
desktop computer , a laptop computer , a netbook computer ,
a tablet computing device , a mobile / smart phone , a personal
digital assistant , or an alternative computer processing sys
tem .

[008] System 200 stores or has access to computer appli
cations (also referred to as software or programs) i.e.
computer readable instructions and data which , when
executed by the processing unit 202 , configure system 200
to receive , process , and output data . Instructions and data
can be stored on non - transient machine readable medium
accessible to system 200. For example , instructions and data
may be stored on non - transient memory 210. Instructions
and data may be transmitted to / received by system 200 via
a data signal in a transmission channel enabled (for
example) by a wired or wireless network connection over
interface such as 212 .
[0085] Applications accessible to system 200 will typi
cally include an operating system application such as
Microsoft Windows® , Apple SSX , Apple RSS , Android ,
Unix , or Linux .
[0086] System 200 also stores or has access to applications
which , when executed by the processing unit 202 , configure
system 200 to perform various computer - implemented pro
cessing operations described herein . For example , and refer
ring to the networked environment of FIG . 100 above : client
system 140 includes an RS client 142 and client system 160
includes an SS client 162 , the clients configuring the client
system 140 and 160 to perform the operations described
herein .
[0087] In some cases part or all of a given computer
implemented method will be performed by system 200

US 2021/0306333 A1 Sep. 30 , 2021
6

itself , while in other cases processing may be performed by
other devices in data communication with system 200 .
4. Creating an Integration between Two Systems
[0088] This section describes operations performed to
create an integration between two systems — e.g . a receiving
system 102 and a sending system 120 .
[0089] Creating an integration between the two systems
requires a user to logon / access the RS server application 104
using an RS client 142 and RS user account . Integration
creation also requires a user (the same user who has accessed
the RS 102 or a different user) to login / access the SS server
application 124 , using an SS client 162 and SS user account .
[0090] In the implementations described herein , RS 102
and SS 120 are configured so that only user accounts with
appropriate permissions are able to perform integration
creation and integration management operations — for
example admin user accounts with administrative permis
sions .
[0091] In many cases the same single user may have
access to appropriately permissioned RS and SS admin user
accounts , and as noted above both the RS and SS clients 142
and 162 may in fact be installed on a single computer system
or device .

less of the specific user account under which creation of the
integration as initially requested .
[0098] To illustrate a further benefit , consider a tenant
which has multiple user accounts with permissions to create
integrations at the RS 102 (e.g. multiple administrative user
accounts) . In this case , if no general integrations user
account was created / used , a given user of the tenant would
not (via their use account) be able to query the RS 102 to
identify or manage all integrations created for that tenant .
Instead , the particular user could only identify and access
integrations created with that user's account . Once again ,
where a general integrations user account is created and
used , any appropriately permissioned user account for a
tenant can access all integrations created for the tenant .
[0099] Furthermore , because of the way the general inte
grations user account is created strong protection from
malicious access is not required . Because the password of
the general integrations user account is not stored , the only
way for a malicious attacker (e.g. a hacker) to access the
username / password of the general integrations user account
is via network snooping . Even if a hacker was able to access
the username / password of the general integrations user
account , though , the general integrations user account has no
permissions so cannot be used to access sensitive data or
perform sensitive operations . Once again , this can be con
trasted to an implementation in which integrations are
created using actual user accounts of the tenant (which , as
noted , will typically be an admin account) . In this case , if a
hacker successfully obtained details of the user account used
to create an integration they would obtain details of an actual
user account (and in all likelihood an admin user account) .
[0100] Still further benefits that arise , at least in part , due
to use of general integrations user accounts are described
below in the section dealing with the management of inte
grations .

General Integrations User Account
[0092] In the implementations described herein the RS
102 creation and use of what will be referred to as a general
integrations user account .
[0093] In these implementations , a given tenant for which
RS 102 provides services has at most one general integra
tions user account associated therewith — the general inte
grations user account effectively being a proxy account for
all integrations created by user accounts associated with that
tenant (e.g. via a tenant ID) .
[0094] For example , a given tenant that RS 102 provides
services for may have multiple administrator user accounts ,
multiple ' normal ' user accounts , and a single general inte
grations user account . Any appropriately permissioned user
accounts associated with the tenant (e.g. admin user
accounts) can be used to create one or more integrations with
one or more sending systems . As discussed below , each of
the tenant's integrations is created and managed using that
tenant's single general integrations user account .
[0095] As also discussed below , general integrations user
accounts are created without any permissions and the pass
word for the account is not stored anywhere .
[009] Creation and use of a general integrations user
account as described provides a number of benefits .
[0097] To illustrate one benefit , consider an implementa
tion in which instead of creating integrations using a general
integrations user account for a tenant , a given integration is
created using the specific user account requesting creation of
the integration . If the owner of that user account left the
tenant , the user account would then be deleted or become
unusable , and it would no longer be possible to audit or
manage the integration (s) created using that user account
(e.g. to audit the integration , deactivate / delete the integra
tion , change the APIs accessible to the integration , change
the sending system resource locator for the integration ,
and / or perform other management operations for the inte
gration) . By using a general integrations user account ,
however , any user account of the tenant with appropriate
permissions (e.g. admin user accounts) can be used to
audit / manage all integrations created for that tenant , regard

New Integration Creation
[0101] Turning to FIGS . 3 and 4 , an example receiving
system RS integration creation process 300 will now be
described . Process 300 is described in two parts : receiving
system operations (including operations performed by RS
102 and RS client 142) described with reference to FIG . 3 ,
and sending system operations (including operations per
formed by SS 120 and SS client 162) described with
reference to FIG . 4 .
[0102] A number of operations and features described in
the following two sections (the ' New integration creation :
receiving system operations ' and ' New integration creation :
sending system operations ' sections) have the same names .
As an example , both of these sections describe a ' create new
integration user interface ' and ' new integration data ' . These
features can be more fully described using an SS - side or
RS - side descriptore.g . a ' create new integration SS - side
user interface ' , a “ create new integration RS - side user inter
face ' , ' new integration SS - side data ' , and ' new integration
RS - side data ' .
[0103] For readability , however , the " SS - side ' and ' RS
side ’ descriptors have not , for the most part , been used in
these two sections .
[0104] Unless otherwise stated , references to operations
and features in the New integration creation : receiving
system operations ' section should be considered to be ref
erences to RS - side operations and features .

US 2021/0306333 A1 Sep. 30 , 2021
7

[0105] Similarly , unless otherwise stated , references to
operations and features in the ‘ New integration creation :
sending system operations ' section should be considered to
be references to SS - side operations and features .
[0106] Elsewhere in the description and claims , the SS
and RS - side descriptors will be used where needed to avoid
ambiguity .

user New Integration Creation : Receiving System Operations
[0107] At 302 , RS client 142 displays a create new inte
gration user interface (UI) on client system 140 (i.e. a create
new integration RS - side UI) .
[0108] The RS client 142 may be configured to display the
create new integration UI on detecting activation of a create
new integration UI control . The new integration UI allows
new integration data to be provided (i.e. new integration
RS - side data) for a new integration that is to be created
between the RS 102 and a particular SS 120 .
[0109] The create new integration UI provides various UI
elements (in a single view / page or multiple views / pages) for
receiving new integration datae.g . by prompting entry of
relevant data and / or otherwise allowing a user to enter / select
relevant details using one or more appropriate UI elements
(e.g. data entry fields and / or data selection interfaces) .
[0110] In the present embodiment , the new integration
data includes an integration name (i.e. an RS - side integra
tion name) , a sending system resource locator , and one or
more data type identifiers .
[0111] Any integration name may be defined . As an
example , the integration name may be a name of the SS 120
for which the integration is being created and or a type of
data the integration is created for — e.g . “ Build and deploy
ment data ” or “ Build data ” or “ Deployment data ” .
[0112] The sending system resource locator is a resource
locator (e.g. a URL) for an appropriate endpoint of the SS
120. This resource locator can be used by the receiving
system 102 in downstream operations based on data
received from the sending system 120. For example , an
integration may allow a build system (the sending system
120) communicate build data an issue tracking system
(the receiving system 102) . A user of the issue tracking
system may then view an issue that the build data is
associated with . The issue tracking system can then incor
porate both the received build data and the build system
URL into the issue view — e.g . by displaying a build sum
mary (with data based on the received build data) as well as
a hyperlink / control that , when activated , redirects to the
build system so the user can view additional build informa
tion / perform build system operations .
[0113] The data type identifier (s) define the type (s) of data
that can be communicated and managed using the integra
tion . The data type identifier (s) determine the set of one or
more receiving system APIs that , on creation of the integra
tion , can be accessed by the SS 120. The integration data
type identifier (s) may be provided in various ways .
[0114] For example , the RS client 142 may display a data
type search and / or selection interface in which available data
types are displayed for selection - for example ‘ Build data ' ,
‘ Deployment data ' , ' Feature flag data , ' x type data ' , ' y type
data ’ , etc. Selection of a given data type then provides access
to the APIs associated with that data type . For example , the
' build data ’ type may provide access to APIs which allow :
the communication / submission of build data , the deletion of
build data that has previously been provided to the RS by the

SS , the retrieval of build data that has previously been
provided to the RS by the SS .
[0115] Additional new integration data may also be
allowed for . For example an integration graphic (such as a
logo) may also be provided / received . In this case , the
graphic can be used by the RS 102 in downstream operations
that involve displaying data received using that integration .
[0116] At 304 , RS client 142 receives the new integration
data . The new integration data may be received via
interface as described above (re 302) . The new integration
data may be alternatively provided , however , for example
via a command line interface , uploading / transmittal of a new
integration configuration file containing the new integration
data , or by other means .
[0117] At 306 , the RS client 142 generates a new integra
tion request (i.e. a new RS - side integration request) which
includes the new integration data and communicates this to
the RS server application 104 .
[0118] At 308 , the RS server application 104 receives the
new integration request . The integration request is associ
ated with a user identifier (the identifier of the specific
receiving system user account used to make the request) , and
the user identifier is in turn associated with a tenant identifier
(i.e. the tenant that the user ID belongs to) .
[0119] At 310 , the RS server application 104 passes the
new integration request (or data therefrom) to the IMC 106 .
[0120] At 312 , the IMC 106 determines if a general
integrations user account exists for the tenant that the user
identifier is associated with . The IMC 106 determines if a
general integrations user account exists for the tenant in
question by generating and submitting an appropriate query
to the user directory component 108 e.g. a query using the
tenant identifier associated with the user account . If a
general integrations user account does not exist for the
tenant , processing proceeds to 314. If a general integrations
user account does exist for the tenant , an identifier of that
general integrations user account is returned to the IMC 106
and processing proceeds to 316 .
[0121] At 314 , a general integrations user account does
not exist for the tenant in question . In this case the IMC 106
creates , with the user directory component 108 , a general
integrations user account for the tenant (and associated with
that tenant) . In certain embodiments , the general integrations
user account created for the tenant is a system user account
without any permissions . Furthermore , on creation of the
general integrations user account the IMC 106 discards the
account password : i.e. the password is not communicated to
any other system and is not stored by the RS 102 itself .
[0122] Creating a general integrations user account results
in details of the general integrations user account being
stored in the user directory component 108 and a general
integrations user account identifier being returned to the
IMC 106. Once the general integrations user account has
been created , processing continues to 316 .
[0123] At 316 , the IMC 106 uses the general integrations
user account to create (via the user directory component
108) a further user account : a specific integration user
account for the integration . The specific integration user
account is , ultimately , the account that is used by the SS 120
to access the access the set of APIs matching the integrations
data type (s) for the particular integration being created .
Details of the specific integration user account are stored in
the user directory component 108 .

US 2021/0306333 A1 Sep. 30 , 2021
8

[0124] At 318 , if not performed as part of creating the
specific integration user account , the IMC 106 creates (or
causes the creation of) credentials for the specific integration
user account . The credentials for the specific integration user
account become — and will be referred to as - integration
credentials . As described below , the integration credentials
are used by the SS server application 124 to access the RS
102 (specifically the RS API proxy 110) .
(0125] In the present embodiment , the OAuth authoriza
tion protocol is used . In this case , the integration credentials
include a client identifier (namely the identifier of the
integrations - specific user account) and an associated secret .
Further , the integration credentials are created with a spe
cific set of scopes that allow the credentials to be used to
access the public API data 114. Notably , in the present
embodiments the OAuth scope does not specify any specific
APIs that the specific integration user account can or cannot
access : rather , the scopes simply provide general access to
the APIs provided by the public API data 114 .
[0126] At 320 , the IMC 106 creates the new integration .
The new integration can be created in various ways . Gen
erally speaking , however , creation of the integration
includes recording relevant data based on the data in the new
integration requeste.g .: the integration name , the sending
system resource locator , the integration data type identifier
(s) (defining the set of RS APIs the integration provides
access to) , the integration graphic (if allowed for and pro
vided) , and the user identifier of the specific integration user
account created for the integration . The new integration
record may further include data (or associated metadata)
such as the creation date of the new integration . The data in
respect of the new integration can be stored by the IMC 106
in the RS data store 112 or in an alternative data store
accessible to the IMC 106 .
(0127] In the present embodiments , and in order to main
tain versatility (e.g. the ability for a given integration to be
installed by multiple tenants) , creating the new integration
involves writing data to several database tables . By way of
specific example , in one implementation the RS 102 has a
relational database (shown in FIG . 10) that includes an
owners table 1002 , an installations table 1004 , a specific
installation table 1006 , and an integrations table 1010 .
[0128] In the present example , the owners table 1002 is
used to create records which associate a given tenant iden
tifier with a general integrations user ID for that tenant . This
table can be queried at 312 above to determine if a general
integrations user account exists for a particular tenant , and
when a new general integrations user account is created (at
314) , a new owners record can be created to associated the
identifier of that account with the relevant tenant ID .
[0129] In the present example , the installations table 1004
is used to create records that associate a particular integra
tion installation with a given general integrations user ID . To
do so an installation identifier is created , and in this
particular example) associated with a (tenant ID , general
integrations user ID) tuple .
[0130] In the present example , the specific installation
table 1006 is used to create records that provide details in
respect of a specific integration installation . To do so an
integration identifier is created , and in this particular
example) associated with a (tenant ID , general integrations
user ID , installation ID) tuple . The specific installation table
1006 stores additional data for the specific installation , in
this case the integration name , sending system resource

locator , integration data type (s) , and integration graphic .
(One or more of these may be keys that link to additional
database tables .)
[0131] In the present example , the integrations table 1010
is used to create records that include the specific integration
user ID for a given integration . In this particular example ,
the specific integration user ID is identified by a (tenant ID ,
general integrations user ID , installation ID , and integration
ID) tuple .
[0132] In this example , therefore , creation of the new
integration at 320 involves : creating a new installations
record (per table 1004) that associates the tenant ID and
general integrations user ID with a new installation ID (the
new installation ID generated by the RS 102) ; creating a new
specific installation record (per table 1004) that associates
the tenant ID , general integrations user ID , and installation
ID with a new integration ID (the new integration ID
generated by the RS 102) and other integration data ; and
creating a new integration record (per table 1010) that
associates the tenant ID , general integrations user ID , instal
lation ID , and integration ID with the specific integration
user ID (generated at 316) .
[0133] As noted , the particular tables of FIG . 10 have been
provided as an example designed to be versatile . Alternative
relational database schemas for creating an integration /
storing integration data are possible , including schemas that
include fewer or additional tables (and / or table fields) .
[0134] At 322 , the IMC 106 passes the integration cre
dentials (i.e. the credentials of the specific integration user
account) the RS server application 104 .
[0135] At 324 , the RS server application 104 communi
cates the integration credentials to the RS client 142 .
[0136] At 326 , the RS client 142 receives the integration
credentials .
[0137] At 328 , the RS client 142 makes the integration's
credentials available for transfer to the SS 120. For example ,
the RS client 142 makes the credentials available for transfer
to the SS client 162 and / or transfers the credentials to the SS
client 162 (the SS client 162 then providing the credentials
to the SS 120. Transfer of the integration's credentials to SS
client (and making it available for transfer) may be per
formed in various ways .
[0138] For example , the RS client 142 may generate a
copy credentials user interface control which , when acti
vated , copies the integration credentials to a temporary
memory (e.g. a clipboard or the like) . Where the RS client
142 and SS client 162 are installed on the same system , this
allows the copied credentials to then be provided to the SS
client 162 by a paste type operation (e.g. activating a paste
credentials user interface control generated by the SS client
162) .
[0139] Alternatively , where the RS client 142 and SS
client 162 are installed on different systems (e.g. systems
140 and 160) , the integration credentials can be copied to a
file . That file can then be saved to a memory that is (or is
made) accessible to the SS client 162 , and / or communicated
by an electronic message using a messaging system that is
accessible on both systems : e.g. an email application , instant
messaging application , or an alternative messaging system .
[0140] Transfer of the integration credentials from the RS
client 142 to the SS client 162 is indicated by broken line
190 , indicating that this communication may — though need
not be via network 180 .

US 2021/0306333 A1 Sep. 30 , 2021
9

New Integration Creation : Sending System Operations
[0141] Tuning to FIG . 4 , operations performed by the SS
120 and SS client 162 to create a new integration will be
described .
[0142] Where integration component 126 is an add - on or
plugin , the sending system operations presume that add - on /
plugin has been installed at the SS 120 (in order to extend
the native functionality of SS server application 124) . In this
case , installation of the add - on / plugin can be performed by
use of a plugin manager or the like provided by the SS server
application 124 .
[0143] At 350 , SS client 162 displays a create new inte
gration UI on client system 160 (i.e. a create new integration
SS - side UI) .
[0144] The SS client 162 may be configured to display the
create new integration UI on detecting activation of a create
new integration UI control . The new integration UI allows
new integration SS - side data to be provided for a new
integration that is to be created between the SS 120 and a
particular RS 102 .
[0145] The new integration UI provides various UI ele
ments (in a single view / page or multiple views / pages) for
receiving new integration datae.g . by prompting entry of
relevant data , allowing data (such as the integration creden
tials) to be pasted from a clipboard or accessed from a file ,
and / or otherwise allowing a user to enter / select relevant
details .
[0146] In the present embodiment , the new integration
data includes an integration description (i.e. an SS - side
integration description) , a receiving system resource locator ,
and integration credentials .
[0147] Any integration description may be used . As an
example , the integration description may be a name of the
RS 102 for which the integration is being created and / or the
reason the integration is created for e.g. “ Issue tracking
system integration ” , “ Build data to issue tracking system ” ,
or any other description .
[0148] The receiving system resource locator is a resource
locator (e.g. a URL) of an appropriate endpoint of the
receiving system 102 : e.g. a URL of the API proxy 110 of
the tenant's receiving system cloud site that is hosted by the
RS 102. This resource locator is used by the sending system
120 in downstream operations to make use of the receiving
system APIs the integration provides the sending system 120
with access to .
[0149] The integration credentials are the credentials gen
erated by the RS 102 (e.g. at 318 above) and made available
by the RS client 142 / transferred from the RS client 142 to
the SS client 162. As described at 328 above , the integration
credentials may be transferred to the SS client 162 (and
entered in the new integration SS - side interface) in various
ways .
[0150] Additional new integration data may also be
allowed for .
[0151] At 354 , the SS client 162 receives the new inte
gration data . The new integration data may be received via
a user interface as described above (re 352) . The new
integration data may be alternatively provided , however , for
example via a command line interface , uploading / transmittal
of a new integration configuration file containing the new
integration data , or by other means .
[0152] At 356 , the SS client 162 generates a new integra
tion request (i.e. a new SS - side integration request) which

includes the new integration data and communicates this to
the SS server application 124 .
[0153] At 358 , the SS server application 124 receives the
new integration request . The integration request is associ
ated with a user identifier (the identifier of the specific
sending system user account used to make the request) .
[0154] At 360 , the SS server application 124 stores the
new integration data from (or based on the new integration
request for downstream use -for example in an SS 120 data
store (not shown) . In certain embodiments , storage (and
downstream use of) the integration data is functionality
provided by integration component 126 .
[0155] At the completion of 360 the integration has been
created . In certain implementations , following 360 process
ing proceeds directly to 388 to confirm creation of the
integration (despite the fact that the integration may not have
been successfully created , which will be discovered on any
downstream attempt to communicate data to the RS 102
using the integration) .
[0156] In other implementations , however , following 360
processing continues to 380 to test the integration .
[0157] For convenience , testing the integration in process
300 has been illustrated as two processing blocks : 380
performed by the SS server application 124 , and 382 per
formed by the receiving system 102. The SS server appli
cation 124 can test the integration at 380 in various ways ,
however , most of which will involve additional processing
at both the SS 120 and RS 102 .
[0158] For example , testing the integration may involve
attempting to connect to the RS 102 in a similar or the same
way as described at operations 502 to 512 of process 500
described below . In this case testing the integration only
involves testing that the SS server application 124 can
access the RS API proxy 110 using the receiving system
resource locator and integration credentials .
[0159] Alternatively , testing may involve attempting to
connect to the RS 102 and communicate dummy or test data
using an RS API the integration is supposed to provide

e.g. in the same or a similar way as described at
operations 502 to 562 of process 500 described below . In
this case testing the integration involves testing both that the
SS server application 124 can access the RS API proxy 110
(using the receiving system resource locator and integration
credentials) and that the SS server application 124 has
access to at least one API that the integration is intended to
provide access to .
[0160] As a further example , testing may involve attempt
ing to connect to the RS 102 (per operations 502 to 512 of
process 500) and , if the connection is successful at 512 ,
generating and communicating an accessible API call (itself
using an API) to the RS 102. The RS 102 then responds to
this call with a listing of any APIs the integration provides
access to (e.g. by the RS API proxy passing the request to the
RS data store 112 , which checks the data types associated
with the integration record for the integration and generates
a response based thereon) .
[0161] At 386 , the SS server application 124 determines ,
based on any data received back from the RS 102 , whether
creation of the integration was successful .
[0162] If a defined time - out period is reached before the
SS server application 124 receives a response from the RS
102 (optionally with a defined number of retries) , the SS
server application 124 determines at 386 that creation of the
integration was not successful . In this case , the SS server

access to

US 2021/0306333 A1 Sep. 30 , 2021
10

application 124 generates and communicates an integration
failed communication to the SS client application 162 indi
cating that creation of the integration has failed and , option
ally , suggesting that the receiving system resource locator
may have been incorrectly entered .
[0163] If a response is received from the SS server appli
cation 124 indicating that the credentials are invalid , the SS
server application 124 again determines at 386 that creation
of the integration was not successful . In this case , the SS
server application 124 generates and communicates an inte
gration failed communication to the SS client application
162 indicating that creation of the integration has failed and ,
optionally , indicates that invalid credentials have been pro
vided .
[0164] If a response is received from the SS server appli
cation 124 indicating that the integration does not provide
access to the RS API the SS server application 124 attempted
to call (or any RS API) , the SS server application 124 again
determines at 386 that creation of the integration was not
successful . In this case , the SS server application 124
generates and communicates an integration failed commu
nication to the SS client application 162 indicating that
creation of the integration has failed and , optionally , indi
cates that the integration does not have permissions to access
a particular (or any) RS API .
[0165] In these integration creation unsuccessful cases , the
SS client application 162 may return to the create new
integration interface (or a similar interface) to allow the new
integration data to be amended / re - entered .
[0166] Ifa response is received (within any timeout period
defined) from the SS server application 124 indicating that
the credentials are valid (and one or more RS APIs can be
used , if this is tested) , the SS server application 124 deter
mines at 386 that creation of the integration was successful .
In this case , processing proceeds to 388 .
[0167] At 388 , the SS server application 124 generates and
communicates an integration created successfully message
to the SS client application 162. If testing involves checking
the RS APIs the integration provides access to the SS server
application 124 can confirm the APIs it has access to are as
intended for the integration .
[0168] At 390 , the SS client application 162 receives the
integration created successfully message from the SS server
application 124 .
[0169] At 392 , the SS client application displays an inte
gration successfully created UI element - for example a text
box , information pane , graphic , or other UI element indi
cating the integration has been successfully created .

provide access to the receiving system . The method also
includes communicating , by the receiving system , the spe
cific integration user account credentials to the client appli
cation . The method also includes creating , by the receiving
system , an integration record comprising details in respect
of the integration being created , the integration record being
associated with the specific integration user account . The
integration record may be stored at the receiving system .
[0172] In some cases , creating the specific integration user
account the method further comprises : determining , by the
receiving system , a tenant associated with the receiving
system user account ; accessing a general integrations user
account associated with the tenant ; and creating the specific
integration user account using the general integrations user
account .

[0173] In some cases , accessing the general integrations
user account associated with the tenant comprises : deter
mining whether a general integrations user account associ
ated with the tenant exists , and in response to determining
that a general integrations user account associated with the
tenant does not exist , creating a new general integrations
user account for the tenant . In some implementations , on
creating the new general integrations user account for the
tenant , a password for the general integrations user account
is discarded .

(0174] In some embodiments , the specific integration user
account is associated with one or more data types , each data
type defining a type of data that the sending system will be
able to send to the receiving system and providing access to
one or more specific APIs provided by the receiving system
for sending the type of data . The one or more data types may
be associated with the integration record .
[0175] In some cases , the one or more data types include
a build data type . In some cases , the one or more data types
include a deployment data type .
[0176] In some implementations , a user directory compo
nent of the receiving system is used to create and store
details of the specific integration user account . Further , the
integration record may be stored at a data store component
of the receiving system that is separate to the user directory
component .
[0177] In some cases , communicating the specific integra
tion user account credentials to the client application causes
the client application to make the specific integration user
account credentials available to the sending system . In some
cases the specific integration user account credentials are
OAuth credentials having a set of scopes that provides
access to a proxy API server of the receiving system .
[0178] Some example embodiments are directed to a com
puter processing system comprising : a processing unit ; a
communication interface ; and a non - transient computer
readable storage medium storing sequences of instructions ,
which when executed by the processing unit , cause the
processing unit to perform a computer implemented method
according to one or more of the examples described above .
[0179] Some example embodiments are directed to a non
transient storage medium readable by a processor , the stor
age medium storing instructions executable by a processing
unit to cause the processing unit to perform a computer
implemented method according to or more of the examples
described above .

Integration Creation Example Embodiments
[0170] Further non - limiting examples of specific feature
combinations taught within the present disclosure are set out
in the following example embodiments .
[0171] One example embodiment is directed to a computer
implemented method for configuring a receiving system to
receive data from a sending system , the method includes
receiving , at the receiving system , an integration creation
request from a client application , the integration creation
request being made via a receiving system user account and
being a request to create an integration between the receiv
ing system and the sending system . The method also
includes creating , by the receiving system , a specific inte
gration user account , the specific integration user account
including specific integration user account credentials which

US 2021/0306333 A1 Sep. 30 , 2021
11

5. Communicating Data between Two Integrated Systems
[0180] Turning to FIGS . 5 and 6 , an example process 500
for communicating data from an SS 120 to an RS 102 (the
SS 120 and RS 102 having being configured as described
above) will be described .
[0181] At 502 , the SS server application 124 detects
occurrence of a data communication trigger event . In certain
embodiments , the data communication trigger and detecting
occurrence thereof is functionality provided by integration
component 126 .
[0182] The precise nature of the data communication
trigger event will depend on various factors , such as : the
type of the SS 120 (and , therefore , the operations the SS
performs and data it generates) ; the type of the RS (and ,
therefore , the operations the RS performs and data from the
SS 120 is relevant to the RS 102) ; the integration (s) between
the SS 120 and RS 102 (the data type (s) of which define the
RS APIs the SS 120 has access to) .
[0183] In order to provide examples , however , consider
again an integration between an issue tracking type RS 102
and a CI / CD type SS 120 .
[0184] Where the integration allows for the communica
tion of build data , the integration may define data commu
nication triggers that include one or more build event
triggers , for example : a build commencement trigger , which
is triggered when the SS 120 detects commencement of a
build that relates to one or more issues maintained by the RS
102 ; a build success trigger , which is triggered when the SS
120 detects successful completion of a build that relates to
one or more issues maintained by the RS 102 ; a build failure
trigger , which is triggered when the SS 120 detects an
attempted build that relates to one or more issues maintained
by the RS 102 has failed ; and / or alternative triggers based on
any other relevant build event .
[0185] As a further example , where the integration
between the issue tracking RS 102 and CI / CD SS 120 allows
for the communication of deployment data , the integration
may define data communication triggers that include one or
more deployment event triggers , for example : a deployment
commencement trigger , which is triggered when the SS 120
detects commencement of a deployment that relates to one
or more issues maintained by the RS 102 to a particular
environment (e.g. a test environment , staging environment ,
production environment , or other environment) ; a deploy
ment success trigger , which is triggered when the SS 120
detects successful completion of a deployment that relates to
one or more issues maintained by the RS 102 to a particular
environment ; a deployment failure trigger , which is trig
gered when the SS 120 detects failure of an attempted
deployment that relates to one or more issues maintained by
the RS 102 to a particular environment ; and / or alternative
triggers based on any other relevant deployment event .
[0186] Additional types and specific instances) of data
communication trigger events are possible .
[0187] At 504 , in response to detecting occurrence of a
data communication trigger event , the SS server application
124 attempts to connect to the RS 102 and in particular the
RS API proxy 110 .
[0188] Initially this involves the SS server application 124
determining the particular integration that the data commu
nication trigger event relates to . For example , if SS 120 has
separate build data and deployment data integrations and a
build event trigger is detected , the SS 120 will determine
that the event relates to the build data integration (as this will

be the integration that defines the trigger event in question) .
Once the particular integration has been determined , the SS
120 accesses the credentials stored for that integration and
attempts connection with the RS 102 using those credentials .
[0189] As noted , in the present disclosure the OAuth
authorisation protocol is used to access to the RS API proxy
110. In this case normal OAuth protocol is followed . For
example , the SS server application 124 initially uses the
credentials to request an OAuth access token . If the creden
tials are valid , the access token is returned to the SS server
application 124. The SS server application 124 then uses the
access token to communicate with RS API proxy 110 .
[0190] At 506 , the RS API proxy 110 receives the
attempted connection from the SS server application 124 .
[0191] At 508 , the RS API proxy 110 performs a system
access check . The system access check is performed to
determine whether the connection requested by the SS
server application 124 should be accepted or rejected and is
based on the credentials being used to access the RS 102. In
order to perform the system access check , the RS API proxy
queries the user directory component 108 which (at 509)
validates (or otherwise) the permissions associated with the
SS server application's credentials to determine whether the
SS server application 124 can connect to the API proxy 110 .
[0192] At 510 , if the system access check is successful , the
RS API Proxy 110 communicates data back to the SS server
application 124 indicating this . If not , the RS API proxy 110
may either communicate data indicating this back to the SS
server application 124 or make no response to the SS server
application 124 .
[0193] At 512 , the SS server application 124 determines
whether the attempted connection was successful based on
either receipt of data indicating success / failure , or on not
receiving a response within a defined timeout period (op
tionally with a defined number or retries) .
[0194] If , at 512 , the SS server application 124 determines
the connection was not successful , processing continues to
514 where the SS server application 124 generates a con
nection failed message . This message may be delivered to an
appropriate user of the SS 120 (e.g. an admin user) at some
point to let them know that the integration has failed . It does
not , however , otherwise interrupt the operations of the SS
120 .
[0195] If , at 512 , the SS server application 124 determines
the connection succeeded , processing continues to 516
where the SS server application 124 generates an event
message (if not already generated) and communicates this to
the RS API proxy 110 .
[0196] The format of the event message , and actual data
provided , depends on the particular event that has occurred
and the data / format required by the relevant RS API that will
be used to communicate the event data to the RS 120 .
Example APIs are described below . Generally speaking ,
however , the event message will include sending system
data that has been generated by the SS server application 124
and relates to the trigger event in question (e.g. data in
respect of a build , data in respect of a deployment , other
data) .
[0197] In addition , the event message will also include a
receiving system data identifier : i.e. an identifier of particu
lar data that is maintained by the RS 120 and that the sending
system data is intended to be associated with .
[0198] In order to illustrate this , consider again the
example in which the RS 120 is an issue tracking system .

US 2021/0306333 A1 Sep. 30 , 2021
12

[0199] In this case , the receiving system data identifier
may be an issue identifier : i.e. the identifier of a particular
issue that is maintained by the RS 120 .
[0200] Further , where the integration allows for the com
munication of build data , the SS server application 124 may
be configured to determine that a build event relates to one
or more particular issues maintained by the RS 102 (and ,
accordingly the issue identifiers of those issues) in various
ways . For example , a given build event may be performed
on source code managed by a source code repository system
(for example Bitbucket or another source code repository
system) . In such cases , one or more issue identifiers can be
referenced in relevant source code management system
actions , events , or data fields . For example , one or more
issue identifiers can be included in : a commit message ; a
source branch name ; a pull request title ; and / or any other
relevant source code repository system action / event / data
field . In turn , the CI / CD SS 120 performs a build on source
code identified (for example) by a commit identifier . If the
commit message (or other data) associated with the commit
identifier includes one or more issue identifiers , the CI / CD
SS 102 detects these , determines that the build event relates
to one or more issues maintained by the issue tracking RS
102 , and extracts the issue identifier (s) (i.e. the receiving
system data identifiers) for inclusion in the build event
message that is to be communicated to the issue tracking RS
102 (described further below) .
[0201] Build events may be associated with one or more
issue identifiers in other ways . For example , when config
uring a build a user can manually associate the build with
one or more issue identifiers .
[0202] As a further example , where the integration allows
for the communication of deployment data , the SS server
application 124 may be configured to determine that a
deployment event relates to one or more issues maintained
by the RS 102 in various ways . For example , the SS server
application 124 may be configured to determine that a
deployment event relates to one or more issues in a similar
way to determines that a build event relates to one or more
issues (as described above) . For example , a given deploy
ment performed by the CI / CD SS 120 system may be based
on an artefact (e.g. a build) which , in turn , is generated based
on source code . Per the above example , the source code can
be identified by a particular commit identifier . If the commit
message (or other data) associated with the commit identifier
includes one or more issue identifiers , the CI / CD SS system
120 can identify the associated issue (s) from the commit
message (or other data) .
[0203] Deployment events may be associated with one or
more issues in other ways . For example , when configuring
a deployment a user can manually associate the deployment
with one or more issue identifiers .
[0204] At 518 , the RS API proxy 110 receives the event
data .
[0205] At 520 , the RS API proxy 110 passes the event data
and the identifier of the user account being to connect to the
RS API proxy 110 to the RS data store 112 .
[0206] At 522 , the RS data store 112 performs an API
access check . The API access check is performed in order to
ensure that the SS server application 124 has permission to
access the specific API it is attempting to use to communi
cate the event data . In the present example , in order to
perform the API access check , the RS data store 112
determines the API that the SS server application 124 is

attempting to use (e.g. by reference to the API endpoint) .
The RS data store 112 also checks to see if an integration
record that is associated with the user account used to
connect to the RS API proxy 110 (and send the event data)
exists and , if so , whether that integration record includes
data type (s) that give access to the required API .
[0207] At 524 , the RS data store 112 determines if the API
access check was successful .
[0208] If , at 524 , the RS data store 112 determines there is
not an integration record giving the SS server application
124 access to the API the SS server application 124 is
attempting to use , the RS data store 112 determines the
second credential check to be unsuccessful and processing
continues to 526. At 526 , the RS data store 112 generates a
data type inaccessible message to indicate that the SS server
application 124 does not have permission to use the API (S)
required to communicate the event data message . The data
type inaccessible message may include further information ,
for example information on the integration that is missing
would be required to communicate the event data message
in question .
[0209] At 528 , the RS data store 112 passes the date type
inaccessible message to the RS API proxy 110 , and at 530
the RS API proxy communicates the data type inaccessible
message (or a message including data based thereon) to the
SS server application 124 .
[0210] At 532 , the SS server application 124 receives the
data type inaccessible message from the RS API proxy 110 .
[0211] At 532 , the SS server application 124 delivers an
event data communication failed message . This message
may be delivered to an appropriate user of the SS 120 (e.g.
an admin user) at some point to let them know that while the
SS 120 can access the RS 102 , the SS 120 does not have
access to the specific APIs required to send the particular
type of event data in question . Once again , delivery of the
event data communication failed message to a user does not
otherwise interrupt the operations of the SS 120 .
[0212] If , at 524 , the RS data store 112 determines there is
an integration record giving the SS server application 124
access to the API the event data message is attempting to
use , the SS server application determines the API access to
be successful and processing continues to 550 (FIG . 6) .
[0213] At 550 , the RS data store 112 determines particular
RS data that the received event data should be associated
with . This determination will depend on the various systems
being integrated and the type of data being communicated
(and API being used) .
[0214] Returning to the issue tracking RS 102 and CI / CD
SS 120 example , determining the RS data that the extracted
event data should be associated with involves determining
one or more issues that the extracted event data should be
associated with . These issues may be determined , for
example , by issue identifiers included in the extracted event
data .
[0215] At 552 , the RS data store 112 stores the received
event data as RS application data 116 , and in a way that is
associated with the existing RS data determined at 550. For
example , where the RS 102 is an issue tracking system , the
received event data is associated with one or more issues
maintained by the issue tracking system .
[0216] In certain embodiment , the RS data store 112
records additional data relating to the event data stored at
552. For example , the RS data store 112 may record data
such as the user account used to send the event data (i.e. the

US 2021/0306333 A1 Sep. 30 , 2021
13

specific integration user account generated on creating the
integration at 320) , a date stamp recording the time the event
data was received , a date stamp recording the time the event
data was processed , and / or any other data associated with
the API call communicating the event data . This additional
data provides audit data in respect of the event data RS 102
has received from the SS 120 .
[0217] At 554 , the RS data store 112 generates an event
data stored message and , at 556 , passes this message to the
RS API proxy .
[0218] At 558 , the RS API proxy communicates the event
data stored message (or a message with data based thereon)
to the outgoing server application 124 .
[0219] At 560 , the outgoing server application 124
receives the event data stored message from the RS API
proxy 110 .
[0220] At 562 , the outgoing server application 124 pro
cesses the event data stored message . The outgoing server
application 124 can be configured to process the event data
stored message in various ways , ranging from ignoring the
message to logging the message (and data associated there
with) for audit trail purposes at the SS 120 (e.g. a record of
what event data has been sent to the RS 102 and when) .
[0221] Process 500 is then complete .
[0222] Process 500 as described above includes two sepa
rate access checks .
[0223] The first access check — the system access check at
508 — is performed by the RS API proxy 110 and is based on
the credentials received from the SS server application 124 .
This access check involves accessing the user directory
component 108 , and is a typical credential check performed
at a server environment endpoint .
[0224] The second access check — the API access check at
522is a runtime validation of whether the SS server
application 124 can access the specific RS API it is attempt
ing to use . This check is performed with reference to the
integration record in question (stored , for example , in the RS
data store 112) and therefore , advantageously , does not
require the RS data store 112 to access the user directory
component 108 (and any sensitive data , such as permissions
data , stored therein) .
[0225] By using two separate access checks , more useful
data can be provided to the SS server application 124 in the
even that an attempt to communicate data to the RS 102
fails . For example , if an attempt to communicate data fails ,
the present embodiments allow the SS server application
124 to be notified that its credentials are invalid , and
therefore it cannot connect to the API proxy 112 , or that its
credentials are valid but it does not have access to one or
more specific RS APIs it is attempting to use .
[0226] Furthermore , performing two access checks in the
manner described effectively provides for a validation to be
performed (i.e. whether access to the specific API is per
mitted) based on non - sensitive data . The system access
check involves the user credentials and access to the user
directory component . Given the system check determines
whether an external system can access the RS 102 , this
check is security - critical and , therefore , will typically be
managed by a dedicated security team . In contrast , the API
access check can be considered a less security - critical check ,
and need not (though can if desired) be managed by the
security team . Using two checks as described also simplifies
the system access check (which can be a binary access

allowed denied check) , avoiding the need , for example to
manage additional OAuth scopes .
Communicating Data between Two Integrated Systems -
Example Embodiments
[0227] Further non - limiting examples of specific feature
combinations taught within the present disclosure are set out
in the following example embodiments .
[0228] Some example embodiments are directed to a com
puter implemented method for sending data from a sending
system to a receiving system . The method may include
detecting , by the sending system , occurrence of a data
communication trigger event . In response to detecting
occurrence of the data communication trigger event , the
method may include : determining a particular integration
that the data communication trigger event relates to ; access
ing credentials associated with the particular integration ;
determining an event data communication format ; generat
ing an event message , the event message including sending
system data , the sending system data being generated by the
sending system , the event message being formatted accord
ing to the event data communication format associated with
the particular integration ; and attempting to communicate
the event message to the receiving system using the creden
tials associated with the particular integration .
(0229] In some implementations , prior to attempting to
communicate the event message to the receiving system the
method further comprises : attempting to establish a connec
tion with the receiving system using the credentials associ
ated with the particular integration ; determining if the
attempt to establish the connection with the receiving system
was successful ; and in response to determining that the
attempt to establish the connection with the receiving system
was successful , attempting to communicate the event mes
sage to the receiving system .
[0230] In response to determining that the attempt to
establish the connection with the receiving system was not
successful , the method may further comprise : generating a
connection failed message indicating that the credentials
associated with the particular integration do not provide
access to the receiving system ; and foregoing attempting to
communicate the event message to the receiving system .
[0231] In some cases , after attempting to communicate the
event message to the receiving system the method further
comprises : determining whether the attempt to communicate
the event message to the receiving system was successful ;
and in response to determining that the attempt to commu
nicate the event message to the receiving system was not
successful , generating an event communication failed mes
sage indicating that the sending system does not have access
to a particular API required to communicate the event
message .
[0232] In some implementations , determining an event
data communication format comprises determining a par
ticular API that is associated with the particular integration
and the data communication trigger event , the particular API
defining the event data communication format .
[0233] In some implementations , generating an event mes
sage comprises : determining a receiving system data iden
tifier that identifies particular data that is maintained by the
receiving system and that the sending system data is
intended to be associated with ; and including the receiving
system data identifier in the event message .
[0234] In some cases , the receiving system is an issue
tracking system and the receiving system data identifier is an

US 2021/0306333 A1 Sep. 30 , 2021
14

issue identifier that identifies an issue maintained by the
receiving system . In some cases , the data communication
trigger event relates to a software build . In some cases , the
data communication trigger event relates to a software
deployment .
[0235] Some example embodiments are directed to a com
puter implemented method for receiving data from a sending
system at a receiving system . The method may include :
receiving , at the receiving system , an event message from
the sending system , the event message including sending
system data ; determining a particular API associated with
the event message ; determining whether the sending system
is permitted to use the particular API ; and in response to
determining that the sending system is permitted to use the
particular API . The event message may be processed by :
determining particular receiving system data maintained by
the receiving system that the event message relates to ;
storing the sending system data at a data store of the
receiving system ; and associating the stored sending system
data with the particular receiving system data .
[0236] In response to determining that the sending system
is not permitted to use the particular API , the method
comprises foregoing processing the event message . In some
cases , prior to receiving the event message from the sending
system , the method further comprises : receiving , at the
receiving system , an attempt by the sending system to
establish a connection with the receiving system using
credentials ; determining , by the receiving system , if the
credentials are valid . In response to determining that the
credentials are not valid : refusing the connection with the
sending system ; and not receiving the event message . In
some cases , the receiving system is an issue tracking system
and the particular receiving system data is an issue main
tained by the receiving system .
[0237] Some example embodiments are directed to a com
puter processing system comprising : a processing unit ; a
communication interface ; and a non - transient computer
readable storage medium storing sequences of instructions ,
which when executed by the processing unit , cause the
processing unit to perform a computer implemented method
according to or more of the examples described above .
[0238] Some example embodiments are directed to a non
transient storage medium readable by a processor , the stor
age medium storing instructions executable by a processing
unit to cause the processing unit to perform a computer
implemented method according to or more of the examples
described above .

[0242] At 702 , RS client 142 displays a manage integra
tions UI control on client system 140. The manage integra
tions UI control may for example , be displayed in an
administration view , menu , or any other user interface
view / screen .
[0243] At 704 , RS client 142 detects activation of the
manage integrations UI control .
[0244] At 706 , the RS client 142 generates an integration
management request and communicates this to the RS server
application 104 .
[0245] At 708 , the RS server application 104 receives the
integration management request . The integration manage
ment request is associated with a user identifier (the iden
tifier of the specific receiving system user account used to
make the request) .
[0246] At 710 , the RS server application 104 communi
cates the integration management request to the IMC 106 .
[0247] On receiving the integration management request ,
the IMC 106 initially determines if a general integrations
user account exists for the tenant .
[0248] To do this , at 712 the IMC 106 determines the
tenant identifier that is associated with the user account
making the integration management request (i.e. the user
account that has been used to log into the receiving system
and initiate / submit the integration management request at
704/706) .
[0249] At 714 , the IMC 106 generates a general integra
tions user account details query to obtain the identifier of the
general integrations user account associated with the tenant
(if one exists) . In the present example , the general integra
tions user account details query is a query of the owners
table 1002 using the tenant identifier determined at 712 .
[0250] At 716 , the IMC 106 passes the general integra
tions user account details query to the RS data store 112 .
[0251] At 718 , the RS data store 112 receives the general
integrations user account details query and responds . If a
general integrations user account is associated with the
tenant identifier included in the query , the RS data store 112
responds with the identifier of that general integrations user
account . Otherwise , the RS data store 112 response indicates
that no general integrations user account exists for the
tenant .
[0252] At 720 (FIG . 8) , the IMC 106 receives the response
from the RS data store 112. If no general integrations user
account identifier has been returned , processing proceeds to
722. If a general integrations user account identifier has been
returned , processing proceeds to 732 .
[0253] At 722 , no general integrations user account exists
for the tenant . In this case the IMC 106 generates a no
integrations message and passes this to the RS server
application at 724 .
[0254) At 726 , the RS server application 104 communi
cates the no integrations message (or a message based
thereon) to the RS client application 142 .
[0255] At 728 , the RS client application 142 receives the
no integrations message from the RS server application 104 .
[0256] At 730 , the RS client application displays a no
integrations UI element - e.g . a text box , information pane ,
or other UI element indicating that no integrations have been
installed for the tenant .
[0257] At 732 , a general integrations user account is
associated with the tenant and the IMC 106 has received the
identifier of that account . In this case , the IMC 106 generates
an integrations details query to obtain the integration and

6. Receiving System - Side Integration Management
[0239] Turning to FIGS . 7-9 , an example receiving sys
tem - side integration management process 700 will be
described .
[0240) Process 700 can be performed by an appropriately
permissioned RS user account to determine what (if any)
integrations have been installed for a particular tenant's RS
102 instance and , if desired , to manage those integrations .
Process 700 is performed via an appropriately permissioned
user account of a given tenant (e.g. an admin account) .
[0241] Process 700 assumes that integrations data is stored
in database tables as shown in FIG . 10 and described above ,
and that the database tables are stored in RS data store 112 .
Where alternative tables / data structures are sued to store
integration data , and / or the data is stored at a data store other
than RS data store 112 , process 700 can be modified .

US 2021/0306333 A1 Sep. 30 , 2021
15

installation identifiers of any integrations that have been
installed by users associated with the tenant . In the present
example , the integrations details query is a query of the
integrations table 1010 (and / or the specific installation table
1006) using the tenant identifier determined at 712 and the
general integrations user account ID obtained at 720 .
[0258] At 734 , the IMC 106 passes the integrations details
query to the RS data store 112 .
[0259] At 736 , the RS data store 112 receives the integra
tions details query and responds . Specifically , in the present
example the RS data store 112 generates and returns a list of
any integrations associated with the general integrations user
account identifier and tenant identifier included in the query .
For each integration in the list , the integration identifier and
installation identifier are provided (e.g. by returning a list of
(integration identifier , installation identifier) tuples) .
[0260] At 738 , the IMC 106 receives the list of integra
tions — e.g . a list of installation identifiers and integration
identifiers for all integrations associated with the tenant .
[0261] At 740 (FIG . 9) , the IMC 106 generates a (or
several) specific integration user account identifiers query to
obtain specific integration user account identifiers . In the
present example , the specific integration user account iden
tifiers query is a query of the integrations table 1010 using
the tenant identifier determined at 712 , the general integra
tions user account ID obtained at 720 , and the installation
and integration identifiers obtained at 738 .
[0262] At 742 , the IMC 106 queries the RS data store 112
component 108 using the specific integration user account
identifiers query .
[0263] At 744 , the RS data store 112 receives the specific
integration user account identifiers query (or queries) and
responds . For each integration , the RS data store 112
retrieves and returns the specific integration user identifier
(e.g. from the integrations table 1010) .
[0264] At 746 , the IMC 106 receives the response to the
specific integration user identifiers query (or queries) . The
response includes specific integration user account identifi
ers for each of the tenant's integrations .
[0265] At 748 , the IMC 106 uses the specific integration
user account identifiers generates an integration credentials
query (or a series of integration credential queries) to
retrieve credentials for each of the specific integration user
account identifiers received at 746 .
[0266] At 750 , the IMC 106 queries the user directory
component 108 using the integrations credentials query .
[0267] At 752 , the user directory component 108 receives
the integrations credentials query (or queries) and responds .
For each integration , the user directory component 108
retrieves and returns the integration's credentials : e.g. for
each integration the OAuth credentials for the specific
integration user account initially created at 316 .
[0268] At 754 , the IMC 106 receives the response to the
integrations credentials query from the user directory com
ponent 108 and generates integrations summary data . The
integrations summary data can include , for example , a list of
all integrations installed for the tenant along with some or all
of the details for those integrations . For example , for each
integration , the integrations summary data may include one
or more of : the integration name ; the sending system
resource locator for the integration ; the graphic associated
with the integration ; the data type identifier (s) for the
integration ; the API (s) that the data type identifier (s) relate

(s) to ; and the credentials for the integration . The IMC 106
passes the integrations summary data to the RS server
application 104 at 756 .
[0269] At 758 , the RS server application 104 generates
and communicates an integrations summary message to the
RS client 142. The integrations summary message includes
the integrations summary data .
[0270] At 760 , the RS client 142 receives the integrations
summary message .
[0271] At 762 , the RS client 142 displays some or all of
the integrations summary data in one or more user inter
faces .
[0272] At 764 , one or more integration management
operations can be performed . Various integrations manage
ment operations are possible .
[0273] For example , a user of the RS client 142 may wish
to re - perform SS - side integration setup (e.g. per the opera
tions of FIG . 4 described above) . In this case , the user can
use the credentials of the relevant integration (available at
the RS client 142 from the integrations summary received at
752) to do so as described above .
[0274] As a further example , a user of the RS client 142
may wish to delete an integration . In this case the user
activates a ' delete integration ' UI element displayed by the
RS client 142 , which causes appropriate data to be commu
nicated to the RS in order to delete (or render defunct) the
integration in question (e.g. by deleting the relevant inte
gration record or otherwise flagging the record as being in
respect of an integration that has been uninstalled) .
[0275] As yet a further example , a user of the RS client
142 may wish to modify the attributes an integration : for
example change its name , identifier , integration graphic ,
data types , and / or a sending system resource locator . In this
case user interface elements for performing the desired
changes are displayed by the RS client 142 , with any
changes (ultimately) being communicated back to the RS
102 and recorded in the relevant integration record for the
integration .
[0276] Process 700 as described above provides a number
of benefits .
[0277] For example , process 700 allows a single user of a
given tenant to access (via their appropriately permissioned
user account) information in respect of all integrations
installed for that tenant . For example , if tenant 1 has four
administrative user accounts (with user account identifiers
A , B , C , and D) , user account A can be used to determine all
integrations for tenant 1 , regardless of whether a given
integration was created by user account A , B , C , or D. This
benefit arises from providing a tenant with a single general
integrations user account (created at 314 above) and using
the tenant's general integrations user account to create all
integrations for the tenant .
[0278] As another example , a user of a given tenant is (via
their appropriately permissioned user account) able to query
all integrations created for the tenant and retrieve sensitive
data (e.g. integration credentials) without having to submit
any additional , sensitive credentials or identifiers . Per pro
cess 700 , once the tenant identifier has been identified for an
appropriately permissioned user account (at 712) , it can be
used to retrieve / access the general integrations user account
identifier (another non - sensitive identifier , given the general
integrations user account is a systems account created with
out any permissions) , which is in turn used to retrieve / access
integration identifier (s) and installation identifier (s) for any

US 2021/0306333 A1 Sep. 30 , 2021
16

integrations . Together , the tenant identifier , general integra
tions user account identifier , installation identifier (s) and
integration identifier (s) are used to retrieve the (sensitive)
credentials for an integration .
[0279] As a further example , process 700 is such that the
number of queries required to return sensitive integration
data is reduced . Reducing the number of queries required to
access / retrieve integration data reduces communications ,
processing , and improves the response time . This benefit
arises by having a one - to - one relationship between an instal
lation identifier and a corresponding integration identifier .
Accordingly , process 700 involves : a first query to retrieve /
access the general integrations user account identifier for the
tenant (at 714 , 716 , and 718) ; a second query to retrieve /
access both installation identifier (s) and integration identi
fier (s) of integrations installed for the tenant (at 732 , 734 ,
and 736) ; and a third query to retrieve / access credentials of
the integration (s) (at 740 , 742 , 744) .
[0280] This can be contrasted , for example , to alternative
approaches in which the second query of process 700 would
need to be performed in two separate queries : one query to
retrieve / access the installation identifier (s) (using , for
example , the tenant identifier and general integrations user
account identifier) ; and a separate , second query to access
the integration identifier (s) (using , for example , the tenant
identifier , general integrations user account identifier , and
installation identifier (s)) .
[0281] Still further , in the described embodiments neither
creation nor use of an integration requires the SS 120 to
provide RS 102 (or any other external / third party system)
access to any of its components (e.g. through firewall 128) .
The only incoming access needed for the SS 120 to create /
use an integration is via SS client application 162 (which , of
course , already has access in order to perform normal SS
120 operations)

ing integration identifiers of all integrations that that have
been installed at the receiving system and that are associated
with the general integrations user account .
[0286] In some cases , for a particular integration identifier
that identifies a particular integration that is associated with
a particular sending system , the set of integration details
comprises specific integration user account details , the spe
cific integration user account details being details in respect
of a user account that can be used by the particular sending
system to communicate data to the receiving system in
accordance with the integration . In some cases , the specific
integration user account is associated with the general
integrations user account . In some cases , the specific inte
gration user account details are retrieved from a user direc
tory component of the receiving system .
[0287] In some implementations , determining the general
integrations user account associated with the tenant identi
fier comprises querying a data store of the receiving system ,
the data store being separate to the user directory compo
nent .
[0288] In some cases , for a particular integration identifier
that identifies a particular integration that is associated with
a particular sending system , the set of integration details
includes an identifier of the particular sending system .
[0289] In some cases , for a particular integration identifier
that identifies a particular integration that is associated with
a particular sending system , the set of integration details
includes a resource locator of an endpoint of the sending
system .
[0290] In some example embodiments , for a particular
integration identifier that identifies a particular integration
that is associated with a particular sending system , the set of
integration details includes one or more data types . Each
data type may identify : a particular type of data that the
particular sending system can communicate to the receiving
system using the particular integration ; and one or more
receiving system APIs that can be used by the particular
sending system to communicate the particular type of data to
the receiving system .
[0291] Some example embodiments are directed to a com
puter processing system comprising : a processing unit ; a
communication interface ; and a non - transient computer
readable storage medium storing sequences of instructions ,
which when executed by the processing unit , cause the
processing unit to perform a computer implemented method
according to one or more of the example embodiments
described above .
[0292] Some example embodiments are directed to a non
transient storage medium readable by a processor , the stor
age medium storing instructions executable by a processing
unit to cause the processing unit to perform a computer
implemented method according to one or more of the
example embodiments described above .
7. Example Communication between Outgoing and Receiv
ing Systems
[0293] In the implementations described above , a given
integration provides an SS 120 access to a defined set of
APIs (the set of APIs defined according to the scope selected
at the time of creating the integration or in a downstream
modification thereof) .
[0294] This section provides example of API calls that can
be used where the RS 102 is an issue tracking system and the
SS 120 is a build system (e.g. a CI / CD system or other build
system) .

Receiving System - Side Integration Management - Example
Embodiments
[0282] Further non - limiting examples of specific feature
combinations taught within the present disclosure are set out
in the following example embodiments .
[0283] Some embodiments are directed to a computer
implemented method . The method may include : receiving ,
at a receiving system , an integration management request
from a client application ; determining integration identifiers
in respect of one or more integrations , each integration being
associated with a sending system and providing a mecha
nism for the sending system to communicate data to the
receiving system . For each integration identifier determined :
retrieving a set of integration details ; and returning the
retrieved set of integration details to the client application .
[0284] In some implementations , the integration manage
ment request is made via a receiving system user account .
The receiving system user account may be associated with
a particular tenant that the receiving system provides soft
ware services for . Determining integration identifiers may
include determining integration identifiers in respect of all
integrations that that have been installed at the receiving
system by all user accounts associated with the particular
tenant .
[0285] In some implementations , determining integration
identifiers comprises : determining a tenant identifier of the
particular tenant ; determining a general integrations user
account associated with the tenant identifier ; and determin

US 2021/0306333 A1 Sep. 30 , 2021
17

[0295] The present examples include APIs by which an SS
120 can submit build data associated with one or more issue
key (s) (the issue keys being maintained by the issue tracking
RS 120) , delete build data (that the SS 120 has previously
provided to the issue tracking RS 102) , and querying build
data (that the SS 120 has previously provided to the issue
tracking RS 102) .
[0296] Additional and / or alternative APIs could be pro
vided , and / or similar APIs could be provided with different
schemas .

These properties can be used , for example , in delete opera
tions (described below) to clean up build information pre
viously provided by the build SS 120 .
[0300] The builds ' array provides a list of builds and
associated information that are submitted to the issue track
ing RS 102. Each build may be associated with 1 or more
issue tracking RS 102 issue identifiers / keys , and will also be
associated with any properties included in the request .
[0301] Each element of the builds ' array is an object
providing data related to a single (distinct) build .
[0302] The ‘ schemaVersion ' string in the example ‘ builds '
array element is used to define the schema version used for
the build update . Where no schema changes are anticipated
(and there will only ever be one schema version) this string
can be omitted .

Submit Build Data

[0297] The table below provides a specific example of a
submit build data API call (in cURL format) :

curl --request PSSTI
--url ' < receiving system URL > /rest/rest/builds/0.1/bulk '
--header ' Accept : application / json '
--header " Content - Type : application / json '
--data ' {
" properties " : {

" accountId " : " account - 234 ” ,
“ projectId ” : “ project - 123 "

} ,
“ builds " : [

{
" schema Version " : " 1.0 " ,
" pipelineId ” : “ my - build - plan ” ,
" buildNumber " : 16 ,
" updateSequenceNumber " : 1523494301448 ,
" displayName " : " My Project build # 16 ” ,
" description " : " My Project build # 16 : Failed ” ,
" label ” : “ < string > ,
" url " : " < string > " ,
" state " : " failed ” ,
" lastUpdated ” : “ 2018-01-20T23 : 27 : 25 + 00 : 00 " ,
“ issueKeys " : [

“ RSSUE - 123 "
] ,
" testInfo " : {

" totalNumber " : 150 ,
numberPassed ” : 145 ,
" numberFailed ” : 5 ,
“ numberSkipped ” : 0

} ,
" references " : [

{
“ commit " : {

“ id ” : “ 08cd9c26b2b8d7cf6e6af6b49da88950065c259f " " ,
" repositoryUri " : " https : // < repository URI > " }

} ,
" ref " : {

" name " : " feature / RSSUE - 123 - some - work ” ,
" uri " : " https : // < ref URI > "

}
}

]
}

] ,
“ providerMetadata " : {

" product " : “ < e.g . name of sending system > "
}

}

[0298] The following paragraphs describe the example
submit build data call shown above . It will be appreciated
that this is by way of specific example only . Alternative
schemas capturing additional , reduced , or alternative build
information / data (in the same or alternative ways) are pos
sible .
[0299] The ' properties object can be used to provide
arbitrary properties that submitted builds are tagged with .

[0303] The ' pipelineld ' string in the example " builds '
array element provides a build sequence identifier which is
used to relate a sequence of builds . This could , for example ,
be a project identifier , a pipeline identifier , a plan key , or any
other identifier used to group a sequence of builds .
[0304] The ' buildNumber ' integer in the example ‘ builds '
array element is used to identify a particular build in the

US 2021/0306333 A1 Sep. 30 , 2021
18

sequence of builds identified by the pipeplineld string . It can
be used to identify the most recent build in the sequence of
builds .
[0305] Together , the pipelineld ' and ' buildNumber ' pro
vide build identify information to identify a build .
[0306] The ' updateSequenceld ' integer in the example
" builds ' array element provides an identifier that is used to
apply an ordering to updates to the build in the case of
out - of - order receipt of update requests . In an example imple
mentation , epoch milliseconds from the build system (i.e. SS
120) are used for the updateSequenceld . Other alternatives
are , however , possible (e.g. the SS 120 may maintain a
counter against each build and increment that on each update
to the RS 102) . Updates for a build that are received with an
updateSqeuenceld lower than what is currently stored will
be ignored .
[0307] The ' displayName ' string in the example ' builds '
array element is used to provide a human - readable name for
the build .
[0308] The ' description ' string in the example builds ’
array element is optional and can be used to provide a
description .
[0309] The ' label ' string in the example ‘ builds ' array
element can be used to provide further (human - readable)
information in respect of the build .
[0310] The ' url ' string in the example ‘ builds ' array ele
ment is used to provide a URL to the build in the build SS
120 .
[0311] The “ state ’ string in the example ‘ builds ' array
element is used to provide the state of the build . This may ,
for example , be pending , in_progress , successful , failed ,
cancelled , unknown , and / or any other relevant build state .
[0312] The ' lastUpdated ' string in the example builds '
array element is used to provide a timestamp at which the
state of the build was provided .
[0313] The ‘ issueKeys ' array in the example ‘ builds ' array
element is used to provide one or more issue tracking RS
102 issue keys to associate the build information with . As
discussed above , issue keys may be identified / extracted
from data associated with the source code on which the build
was performed (e.g. a commit message or the like) .
[0314] The ‘ testInfo ' object in the example ‘ builds ' array
element is used to provide optional information in respect of
tests executed during the build .
[0315] In the ‘ testInfo'object , the “ totalNumber ' integer is
used to provide the total number of tests considered during
the build .

[0318] In the ‘ testInfo ' object , the ‘ numberSkipped'inte
ger is used to provide the total number of tests that were
skipped during the build .
[0319] The ‘ references ' array in the example ‘ builds ' array
element is optional and can be used to provide information
that links a build to source code system information (e.g. a
commit , a branch or other information) . Each item of the
references array is an object that includes a commit object
and a ref object .
[0320] The commit object of the references array element
provides details about the commit that the build was run
against . The commit object includes an id string which
provides the ID of the commit (for example , for a Git
repository this would be the SHA1 hash) , and a reposito
ryUri string used to identify the repository containing the
commit (i.e. the source code on which the build was based) .
In most cases the repository Uri will be the URL of the
repository in the source code management system provider .
For cases where the build was executed against a local
repository (for example) the repository URI is used to
provide a unique identifier for the repository .
[0321] The ref object of the references array element
provides details about the ref (for example branch , tag , etc.)
the build was run on . The ref object includes a name string
which is used to provide the name of the ref the build ran on
and a uri string which identifies the ref (e.g. the URL of the
tag / branch in question) .
[0322] The providerMetadata object is optional , including
a string that can be used to provide information about the
build SS 120 that has submitted the build data .

Delete Builds by Key
[0323] The table below provides a specific example of a
delete builds by key API call (in cURL format) :

curl --request DELETE
--url ‘ https : // < receiving system

url > /rest/rest/builds/0.1/pipelines/ { pipelineId } / builds / { buildNumber } '

[0324] This example delete builds by key API call requires
a pipelineID and buildNumber in order to identify the build
data that is to be deleted . On receiving the call the issue
tracking RS 102 identifies the specified build information
(i.e. build information with the specified pipelineld and
buildNumber) and deletes it .

Delete Builds by Property
[0325] The table below provides a specific example of a
delete builds by key API call (in cURL format) :

curl --request DELETE
--url ' https : // < receiving system url > /rest/rest/builds/0.1/bulkBy Properties ’

[0316] In the ‘ testInfo'object , the “ numberPassed ' integer
is used to provide the number of tests that passed during the
build .
[0317] In the ' testInfo ' object , the ‘ numberFailed’integer
is used to provide the total number of tests that failed during
the build .

(0326] In this case one or more properties are defined (e.g.
DELETE
/ bulkBy Properties ? accountId = < 123 > & createdBy = < 456 >) .
On receiving the call the issue tracking RS 102 identifies the
specified build information (i.e. build information matching
all defined properties) and deletes it .

US 2021/0306333 A1 Sep. 30 , 2021
19

Get Build by Key
[0327] The table below provides a specific example of a
get build by key API call (in cURL format) :

curl --request GET \
--url ' https : // < receiving system

url > /rest/rest/builds/0.1/pipelines/ { pipelineId } / builds / { buildNumber } ' |
--header Accept : application / json ?

[0328] In this example , the build information is identified
by a pipelineID and buildNumber . In response to a valid get
build by key call , the issue tracking RS 102 identifies and
returns the build information associated with the specified
build (for example using the submit build update schema
described above) . A call such as this may be made , for
example , to review the build data that has been submitted by
the build SS 120 and / or to confirm that a delete operation
was successful .
[0329] In the above description , operations performed by
the RS 102 are described as being performed by specific
components thereof . In alternative implementations , the RS
operations can be performed by a single component , or
multiple components (additional and / or alternative to the
components described above) . Similarly , operations per
formed by the SS 120 could be performed by one or more
alternative and / or additional components .
[0330] The flowcharts illustrated in the figures and
described above define operations in particular orders to
explain various features . In some cases the operations
described and illustrated may be able to be performed in a
different order to that shown / described , one or more opera
tions may be combined into a single operation , a single
operation may be divided into multiple separate operations ,
and / or the function (s) achieved by one or more of the
described / illustrated operations may be achieved by one or
more alternative operations . Still further , the functionality /
processing of a given flowchart operation could potentially
be performed by different systems or applications .
[0331] Unless otherwise stated , the terms “ include ” and
" comprise ” (and variations thereof such as “ including ” ,
" includes " , " comprising " , " comprises " , " comprised " and
the like) are used inclusively and do not exclude further
features , components , integers , steps , or elements .
[0332] It will be understood that the embodiments dis
closed and defined in this specification extend to alternative
combinations of two or more of the individual features
mentioned in or evident from the text or drawings . All of
these different combinations constitute alternative embodi
ments of the present disclosure .
[0333] The present specification describes various
embodiments with reference to numerous specific details
that may vary from implementation to implementation . No
limitation , element , property , feature , advantage or attribute
that is not expressly recited in a claim should be considered
as a required or essential feature . Accordingly , the specifi
cation and drawings are to be regarded in an illustrative
rather than a restrictive sense .

1. A computer implemented method for configuring a first
server system to receive data from a second server system
across an open unsecured network , the first server system
providing server - side functionality for a first client - side
application executed at a client device and the second server

system providing server - side functionality for a second
client - side application executed at the client device , the
method comprising :

receiving , at the first server system , an integration cre
ation request from the first client - side application , the
integration creation request being made via a first
server system user account and being a request to create
an integration between the first server system and the
second server system ;

creating , by the first server system , a integration - specific
user account and integration - specific user account cre
dentials which provide access to the first server system ;

communicating , by the first server system , the integration
specific user account credentials to the first client - side
application ;

creating , by the first server system , an integration record
comprising details in respect of the integration being
created , the integration record being associated with the
integration - specific user account ; and

storing , at the first server system , the integration record .
2. The computer implemented method according to claim

1 , wherein prior to creating the integration - specific user
account the method further comprises :

determining , by the first server system , a tenant associated
with the first server system user account ;

accessing a general integrations user account associated
with the tenant ; and

creating the integration - specific user account using the
general integrations user account .

3. The computer implemented method according to claim
2 , wherein accessing the general integrations user account
associated with the tenant comprises :

determining whether a general integrations user account
associated with the tenant exists , and :

in response to determining that a general integrations user
account associated with the tenant does not exist ,
creating a new general integrations user account for the
tenant .

4. The computer implemented method according to claim
3 , wherein on creating the new general integrations user
account for the tenant , a password for the general integra
tions user account is discarded .

5. The computer implemented method according to claim
1 , wherein :

the integration - specific user account is associated with
one or more data types , each data type defining a type
of data that the sending second server system will be
able to send to the first server system and providing
access to one or more specific APIs provided by the first
server system for sending the type of data ; and

the one or more data types are associated with the
integration record .

6. The computer implemented method according to claim
5 , wherein the one or more data types include a build data
type .

7. The computer implemented method according to claim
5 , wherein the one or more data types include a deployment
data type .

8. The computer implemented method according to claim
1 , wherein :

a user directory component of the first server system is
used to create and store details of the integration
specific user account ; and

US 2021/0306333 A1 Sep. 30 , 2021
20

the integration record is stored at a data store component
of the first server system that is separate to the user
directory component .

9. The computer implemented method according to claim
1 , wherein communicating the integration - specific user
account credentials to the first client - side application causes
the first client - side application to make the integration
specific user account credentials available to the second
server system .

10. The computer implemented method according to
claim 1 , wherein the integration - specific user account cre
dentials are OAuth credentials having a set of scopes that
provides access to a proxy API server of the first server
system .

11. A computer processing system comprising :
a processing unit ;
a communication interface ; and
a non - transient computer - readable storage medium stor

ing sequences of instructions , which when executed by
the processing unit , cause the processing unit to :
receive , via the communication interface , an integra

tion creation request from a first client - side applica
tion , the integration creation request being made via
a first server system user account and being a request
to create an integration between the first server
system and a second server system across an unse
cured network , the first server system providing
server - side functionality for the first client - side
application and the second server system providing
server - side functionality for a second client - side
application by the processing unit ;

create a integration - specific user account , the integra
tion - specific user account including integration - spe
cific user account credentials which provide access
to the first server system ;

communicate the integration - specific user account cre
dentials to the first client - side application ;

create , by the first server system , an integration record
comprising details in respect of the integration being
created , the integration record being associated with
the integration - specific user account ; and

store the integration record .
12. The computer processing system according to claim

11 , wherein prior creating the integration - specific user
account the sequences of instructions , when executed , cause
the processing unit to :

determine a tenant associated with the first server system
user account ;

access a general integrations user account associated with
the tenant ; and

create the integration - specific user account using the
general integrations user account .

13. The computer processing system according to claim
12 , wherein accessing the general integrations user account
associated with the tenant comprises :

determining whether the general integrations user account
associated with the tenant exists , and :

in response to determining that the general integrations
user account associated with the tenant does not exist ,
creating a new general integrations user account for the
tenant .

14. The computer processing system according to claim
13 , wherein on creating the new general integrations user
account for the tenant , a password for the general integra
tions user account is discarded .

15. The computer processing system according to claim
11 , wherein :

the integration - specific user account is associated with
one or more data types , each data type defining a type
of data that the second server system will be able to
send to the first server system and providing access to
one or more specific APIs provided by the first server
system for sending the type of data ; and

the one or more data types are associated with the
integration record .

16. The computer processing system according to claim
15 , wherein the one or more data types include a build data
type . .

17. The computer processing system according to claim
15 , wherein the one or more data types include a deployment
data type .

18. The computer processing system according to claim
11 , wherein :

a user directory component of the first server system is
used to create and store details of the integration
specific user account ; and

the integration record is stored at a data store component
of the first server system that is separate to the user
directory component .

19. The computer processing system according to claim
11 , wherein communicating the integration - specific user
account credentials to the first client - side application causes
the first client - side application to make the integration
specific user account credentials available to the second
server system .

20. The computer processing system according to claim
11 , wherein the integration - specific user account credentials
are OAuth credentials having a set of scopes that provides
access to a proxy API server of the first server system .

