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STRUCTURED DATA MODEL AND
PROPAGATION THEREOF FOR CONTROL
OF MANUFACTURING EQUIPMENT

CROSS-REFERENCE TO RELATED
APPLICATION

[0001] This application claims the benefit of U.S. provi-
sional application No. 63/336,597, filed Apr. 29, 2022, the
entire contents of which is incorporated by reference herein.

TECHNICAL FIELD

[0002] This disclosure relates to the control of manufac-
turing equipment.

BACKGROUND

[0003] A manufacturing control system may respond to
input signals and generate output signals that cause the
equipment under control to operate in a particular manner.

SUMMARY

[0004] A method includes, following activation of a first
machine, instantiating in a controller of the first machine a
standardized structured data model describing the first
machine according to predefined categories populated with
predefined labels that are indicative of measured parameters
of the first machine, components of the first machine, and
subsystems of the first machine. The predefined labels have
a parent-child relationship defined by the predefined catego-
ries and in which the predefined labels indicative of the
measured parameters are categorized by the predefined
labels indicative of the components, and the predefined
labels indicative of the components are categorized by the
predefined labels indicative of the subsystems. The pre-
defined categories and predefined labels correspond to cat-
egories and labels describing a second machine such that the
parent-child relationship correlates to a parent-child rela-
tionship of the labels describing the second machine. The
method also includes instantiating in the controller a version
of'a machine learning model trained on the second machine
and in communication with the standardized structured data
model, and controlling operation of the first machine accord-
ing to output of the machine learning model.

BRIEF DESCRIPTION OF THE DRAWINGS

[0005] FIGS. 1 and 2 are block diagrams of manufacturing
systems.

DETAILED DESCRIPTION
[0006] Embodiments are described herein. It is to be

understood, however, that the disclosed embodiments are
merely examples and other embodiments may take various
and alternative forms. The figures are not necessarily to
scale. Some features could be exaggerated or minimized to
show details of particular components. Therefore, specific
structural and functional details disclosed herein are not to
be interpreted as limiting, but merely as a representative
basis for teaching one skilled in the art.

[0007] Various features illustrated or described with ref-
erence to any one example may be combined with features
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illustrated or described in one or more other examples to
produce embodiments that are not explicitly illustrated or
described. The combinations of features illustrated provide
representative embodiments for typical applications. Various
combinations and modifications of the features consistent
with the teachings of this disclosure, however, could be
desired for particular applications or implementations.

[0008] Standardized structured data models proposed
herein enable one to model a manufacturing line and all of
the machines on it. These models can be defined in a
database. Use of the word “model” suggests that there is an
ability to create a multi-level parent/child relationship of a
machine and its properties. For example, given an extruder,
amodel of the same includes a screw, which has temperature
control zones, a speed controller, etc. These properties of the
machine may be important not only so that data can be
collected and analyzed, but also to enable a common label-
ing language for use with other extruders. This could be
helpful for creating software tools that can, continuing with
this example, compare one extruder to another, report on
capability/efficiency in a common way, and create machine
learning models that can apply what is learned from one line
to another. With regard to the latter, if it is discovered that
when the temperature zone on a screw of one extruder
increases, a corresponding change in product dimension
occurs for that extruder. This insight can be used to increase
the rate of learning for other extruders given that all are
modeled in the same way.

[0009] The standardized structured modeling process is
generally as follows. A user inputs the machines of a
manufacturing line along with their properties into a data-
base using a series of drop down boxes provided by a front
end user interface to the database. The database model then
instantiates these as objects in the database, thus now having
the object definitions for all of the equipment on the line of
interest. Once the modeling process is complete, the follow-
ing are enabled. The architecture uses these instantiated
object definitions to connect to the data sources and store
data from them in a structured way, i.e., attaches data points
to their appropriate machine properties. The storing of the
data in this standardized structure enables standard reporting
of machine efficiencies, anomaly detection, etc. As
described more below, the machine learning process is also
improved by using this strategy.

[0010] Referring to FIG. 1 and continuing with the
example above, an extruder 10 may have a screw 12, several
temperature sensors 14a, 145, 14¢ corresponding to zones
164, 165, 16¢, a humidity sensor 18, a motor 20, and a
controller 22. Upon initial installation, a standardized struc-
tured data model of the extruder 10 can be constructed. The
table below illustrates one such possibility. To facilitate ease
of discussion, this example contains relatively few catego-
ries and labels. The ideas conveyed, however, can be applied
to more complicated environments having hundreds, if not
thousands, of categories and labels.
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TABLE 1
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Abstractions Components Features

Driver (key Motor 20 (active driver) RPM (1000 to 1150), Power Consumption

data) (correlated with Change in Temperature)

Mechanism  Screw 12 (active driver) RPM (200 to 300)

Region 1 Temperature Sensor 14a (sensor) Temperature (influenced by Motor 20),

Change in Temperature

Zone 16a (key data) Temperature, Change in Temperature
Humidity Sensor 18 (sensor) Humidity (<80%)

Region 2 Temperature Sensor 14b (sensor) Temperature, Change in Temperature
Zone 16b Temperature, Change in Temperature
Humidity Sensor 18 (sensor) Humidity (<80%)

Region 3 Temperature Sensor 14¢ (sensor) Temperature, Change in Temperature
Zone 16¢ Temperature, Change in Temperature
Humidity Sensor 18 (sensor) Humidity (<80%)

[0011] In this example, three categories are used to char- active driver. “Screw 12” is identified as an active driver,

acterize the extruder 10: Abstractions, Components, and
Features. Features (measured parameters in this example)
belong to Components in a parent/child relationship, Com-
ponents belong to Abstractions (subsystems in this example)
in a parent/child relationship, and by extension Features
belong to Abstractions. The Abstractions category, as the
name suggests, characterizes the extruder 10 at a more
conceptual level. The Components category characterizes
the extruder 10 by its actual devices, as grouped according
to the corresponding abstraction. The numbered elements of
FIG. 1 are thus assigned to the Components category. As
such, a single or several components can belong to an
identified member of the Abstractions category. The
“Mechanism”™ abstraction, for example, includes only the
screw 12, whereas the “Region 17 abstraction includes the
temperature sensor 14a, zone 164, and humidity sensor 18.
A same component can thus belong to more than one
identified abstraction. The humidity sensor 18, for example,
belongs to each of the “Region 1,” Region 2,” and “Region
3” abstractions. As discussed more below, use of the
Abstractions category in addition to the Components cat-
egory may facilitate faster machine learning.

[0012] The Features category characterizes the extruder
10 according to measurable parameters, as grouped accord-
ing to the corresponding component. A single feature or
multiple features can be used to describe a particular com-
ponent. Measured RPM of the screw 12, for example, is used
to describe the screw 12, whereas measured temperature and
change in temperature are used to describe the zone 16a.

[0013] The labels, in this example, also include other
contextual information that further aid in accelerating the
machine learning process because this information does not
need to be learned from training data. Some of the feature
labels identify acceptable range of operation data and/or
whether signals associated with the same are correlated. The
feature “RPM” belonging to “Motor 20” indicates an accept-
able range of operation of 1000 rpm to 1150 rpm. The
feature “Power Consumption” belonging to “Motor 20”
indicates that its signal values are correlated with “Change
in Temperature” signal values. The feature “Temperature”
belonging to “Temperature Sensor 14a¢” indicates that its
signal values are influenced by activity of “Motor 20.” The
feature “Humidity” belonging to each of “Region 1,”
“Region 2,” and “Region 3” indicates an acceptable range of
less than 80% relative humidity. Some of the component
labels include identifiers indicating whether a device asso-
ciated with a particular component label is a sensor or an

whereas “Temperature Sensor 144” is identified as a sensor.
Some of the labels include markers indicating that data
corresponding therewith should necessarily be included
when creating training data sets. The abstraction label
“Driver” is marked as being associated with key data (e.g.,
data from “Motor 20” in the form of “RPM” and “Power
Consumption.”) The component label “Zone 16a” is simi-
larly marked. Contextual information need not be limited to
the examples here. Any relevant information may thus be
included when constructing labels.

[0014] The mappings detailed by Table 1, including the
contextual information, can be strategically created by one
or more users based on experience and other factors. And in
contrast to existing mapping strategies, the concept of
abstractions and contextual information is introduced via
Table 1. This, as mentioned above, can increase machine
learning rate as the collective relevance of temperature
sensor, zone, and humidity sensor, captured in terms of the
abstraction “Region,” need not be learned during the train-
ing phase. For example, to the extent measured parameters
associated with the temperature sensor, zone, and humidity
sensor collectively express a pattern of behavior under
certain conditions that correlate with and/or impact perfor-
mance of the extruder 10, training time and training data are
not necessary to recognize such correlation and/or impact as
it is already predefined. The same is true of the contextual
information, etc.

[0015] Still further, if a second extruder were later intro-
duced, either at a same or different manufacturing facility,
and conventional techniques were used to create a model of
the extruder for machine learning purposes, that model
might be created on an ad-hoc basis with no regard for the
model of Table 1 describing the extruder 10. Under such
circumstances and even though both of the extruders are the
same, that which is machine learned about the extruder 10
cannot be easily applied/transferred to the second extruder
because the underlying mappings used to describe each are
not the same.

[0016] Leveraging the concept of the standardized struc-
tured data model described above and continuing with the
example, mappings corresponding to those used to describe
the extruder 10 are used to describe the second extruder.
Referring to FIG. 2, an extruder 110 includes a screw 112,
several temperature sensors 114a, 1145, 114¢ corresponding
to zones 1164, 1165, 116¢, a humidity sensor 118, a motor
120, and a controller 122. Table 2 illustrates that the map-
pings (and thus parent/child relationships) and contextual
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information for the extruder 110 correlate to those for the
extruder 10. In this example they are the same, but need not
be (and need not be one to one) provided the correspondence
is clear.

TABLE 2
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parameter values to change control settings (e.g., RPM
setting, power consumption settings, etc.) to keep the pre-
dicted feature parameter values, and thus actual values, at or
near their targets.

Abstractions Components Features

Driver (key  Motor 120 (active driver) RPM (1000 to 1150), Power Consumption

data) (correlated with Change in Temperature)

Mechanism  Screw 112 (active driver) RPM (200 to 300)

Region 1 Temperature Sensor 114a (sensor) Temperature (influenced by Motor 120),

Change in Temperature

Zone 116a (key data) Temperature, Change in Temperature
Humidity Sensor 118 (sensor) Humidity (<80%)

Region 2 Temperature Sensor 114b (sensor) Temperature, Change in Temperature
Zone 116b Temperature, Change in Temperature
Humidity Sensor 118 (sensor) Humidity (<80%)

Region 3 Temperature Sensor 114¢ (sensor) Temperature, Change in Temperature

Zone 116¢

Humidity Sensor 118 (sensor) Humidity (<80%)

Temperature, Change in Temperature

[0017] When applying machine learning in the manufac-
turing context, a template physics model for the machine in
question is typically selected and then trained with training
data before use in control of the machine. Training of the
template model, among other things, results in the weighting
factors between nodes being altered so the template model
better performs against the training data (and production
data). Training of the template model can thus be data and
time intensive. If the data models between the same
machines are different (as is typically the case when gener-
ated in an ad-hoc fashion), the respective physics models
linked with the corresponding data models each must expe-
rience the data and time intensive training phase as the
physics model of one cannot be directly applied to the other.

[0018] Here it is suggested that, when data models (such
as those of Tables 1 and 2) of machines are standardized, a
second machine can be initialized with a version of a trained
physics model of a first machine—drastically shortening the
training phase of the physics model of the second machine.
This is because aspects of the machine learning tied to the
second machine itself need only be learned once by the first
machine, leaving the remaining training for learning about
the unique environment of the second machine and the effect
on its operation. Thus, the controller 122 can be instantiated
with a version of a machine learning model trained on the
extruder 10 so as to be in communication with the standard-
ized structured data model of Table 2 such that the machine
learning model, among other things, is informed of the
parent/child relationships captured therein and the contex-
tual information provided thereby (e.g., the machine learn-
ing model has access to the information held by the stan-
dardized structured data model, etc.).

[0019] The machine learning model of the controller 122
may then generate predicted parameter values associated
with parts output by the extruder 110 based on a live
streaming feature set derived via pre-processing (e.g., data
cleansing, principal component analysis, etc.) of live data
that includes output from the temperature sensors 114a,
1145, 114c¢, humidity sensor 118, and motor 120. The
controller 122 may further direct control actions to the
extruder 110 (e.g., the motor 120) based on the predicted

[0020] Given the extruders 10, 110 are of the same con-
figuration, have the same standardized structured data mod-
els, and have versions of the same machine learning model
that share a common training history (each in communica-
tion with its corresponding one of the same structured data
models), control aspects learned with respect to one of the
extruders 10, 110 can be applied to the other of the extruders
10, 110. If, for example, it is learned with respect to the
extruder 10 that a particular combination of RPM for the
screw 12 and temperature in the zone 165, as detected by the
temperature sensor 145, results in a property of components
produced by the extruder 10 being out of its target range
(e.g., component length is greater than a target length) only
when relative humidity, as detected by the humidity sensor
18, is greater than some threshold value (e.g., 70%), and that
reducing power consumption of the motor 20 by 15% during
presence of such conditions returns the property to its target
range, the controller 22 may communicate control settings
reflecting the same to the controller 122, which may be at the
same or another location or facility. The controller 122 may
automatically implement these received settings when the
specified conditions occur to control the extruder 110 and
avoid component parameters falling outside the target
ranges. Moreover, given the extruders 10, 110 have the same
standardized structured data models, analyzing, comparing,
reporting, and visualizing data related to the same may be
more efficient as compared with extruders having different
structured data models.

[0021] The algorithms, methods, or processes disclosed
herein can be deliverable to or implemented by a computer,
controller, or processing device, which can include any
dedicated electronic control unit or programmable electronic
control unit. Similarly, the algorithms, methods, or processes
can be stored as data and instructions executable by a
computer or controller in many forms including, but not
limited to, information permanently stored on non-writable
storage media such as read only memory devices and
information alterably stored on writeable storage media such
as compact discs, random access memory devices, or other
magnetic and optical media. The algorithms, methods, or
processes can also be implemented in software executable
objects. Alternatively, the algorithms, methods, or processes
can be embodied in whole or in part using suitable hardware
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components, such as application specific integrated circuits,
field-programmable gate arrays, state machines, or other
hardware components or devices, or a combination of firm-
ware, hardware, and software components.
[0022] While exemplary embodiments are described
above, it is not intended that these embodiments describe all
possible forms encompassed by the claims. The words used
in the specification are words of description rather than
limitation, and it is understood that various changes may be
made without departing from the spirit and scope of the
disclosure. The words controller and controllers, for
example, may be used interchangeably herein.
[0023] As previously described, the features of various
embodiments may be combined to form further embodi-
ments of the invention that may not be explicitly described
or illustrated. While various embodiments could have been
described as providing advantages or being preferred over
other embodiments or prior art implementations with respect
to one or more desired characteristics, those of ordinary skill
in the art recognize that one or more features or character-
istics may be compromised to achieve desired overall sys-
tem attributes, which depend on the specific application and
implementation. These attributes may include, but are not
limited to cost, strength, durability, life cycle cost, market-
ability, appearance, packaging, size, serviceability, weight,
manufacturability, ease of assembly, etc. As such, embodi-
ments described as less desirable than other embodiments or
prior art implementations with respect to one or more
characteristics are not outside the scope of the disclosure and
may be desirable for particular applications.
What is claimed is:
1. A method comprising:
following activation of a first machine, instantiating in a
controller of the first machine a standardized structured
data model describing the first machine according to
predefined categories populated with predefined labels
that are indicative of measured parameters of the first
machine, components of the first machine, and subsys-
tems of the first machine, wherein the predefined labels
have a parent-child relationship defined by the pre-
defined categories and in which the predefined labels
indicative of the measured parameters are categorized
by the predefined labels indicative of the components,
and the predefined labels indicative of the components
are categorized by the predefined labels indicative of
the subsystems, and wherein the predefined categories
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and predefined labels correspond to categories and
labels describing a second machine such that the par-
ent-child relationship correlates to a parent-child rela-
tionship of the labels describing the second machine;

instantiating in the controller a version of a machine
learning model trained on the second machine and in
communication with the standardized structured data
model; and

controlling operation of the first machine according to

output of the machine learning model.

2. The method of claim 1 further comprising receiving
data from the second machine defining settings for the
second machine and updating the version of the machine
learning model with the data such that the controller imple-
ments the settings.

3. The method of claim 1, wherein some of the predefined
labels include information defining a range of target values
for a corresponding one or more of the measured parameters.

4. The method of claim 1, wherein some of the predefined
labels include information indicating corresponding signals
are correlated.

5. The method of claim 1, wherein some of the predefined
labels include information indicating corresponding signal
values are affected by operation of at least one of the
components.

6. The method of claim 1, wherein some of the predefined
labels include information identifying whether a corre-
sponding one or more of the components are sensors.

7. The method of claim 1, wherein some of the predefined
labels include information identifying whether correspond-
ing data should be included in data sets used for training of
machine learning models.

8. The method of claim 1, wherein a plurality of the
predefined labels indicative of the measured parameters is
categorized according to one of the predefined labels indica-
tive of the components.

9. The method of claim 1, wherein one of the predefined
labels indicative of the measured parameters is categorized
by a plurality of the predefined labels indicative of the
components.

10. The method of claim 1, wherein a plurality of the
predefined labels indicative of the components is catego-
rized according to one of the predefined labels indicative of
the subsystems.



