US 20180157544A1

a9y United States

a2y Patent Application Publication (o) Pub. No.: US 2018/0157544 A1

Brown et al. 43) Pub. Date: Jun. 7, 2018
(54) METHODS AND SYSTEMS THAT USE (52) US. CL
VOLATILE EVENT TYPES IN LOG FILES CPC ... GO6F 11/0709 (2013.01); GOG6F 17/30368
TO NARROW A SEARCH FOR POTENTIAL (2013.01); GO6F 11/0793 (2013.01); GO6F
SOURCES OF PROBLEMS IN A 11/0751 (2013.01); GO6F 11/0781 (2013.01);
DISTRIBUTED COMPUTING SYSTEM GO6F 17/30424 (2013.01)
(71) Applicant: VMware, Inc., Palo Alto, CA (US) 7 ABSTRACT
]] Methods and systems to narrow a search for potential
(72) Inventors: ?arren](?)liown, ds]?ﬁme’ WA (I[\IJ S); York sources of problems in a distributed computing system are
Ne;em)é) ;Il,ls:le) Io<mpl§0n, . T{W orK, described. A volatile event type of event messages recorded
S CIU %;] A lcUé) as Rushmerick, in an event-log file is identified. The volatile event type is an
eattle, US) event type that may have unexpectedly increased in fre-
.) quency over an observation time window. An historical
(73) Assignee: VMware, Inc., Palo Alto, CA (US) period of time may be selected to search for potential
. sources of the volatile event type. Frequencies of event
(21) Appl. No.: 15/366,640 messages in the event-log file with the same event type as
o the volatile event type are determined for time intervals of
(22) Filed: Dec. 1, 2016 the historical period of time. A time interval of the historical
o . . period of time with a largest increase in frequency of event
Publication Classification messages is identified. A list of event messages of the
(51) Int. CL event-log file in a selected sub-time interval of the sub-time
GO6F 11/07 (2006.01) intervals of the time interval are displayed in a graphical user
GO6F 17/30 (2006.01) interface.

/——~102

/—- 103

CPU [

CPU

L“_'~—" MEMORY

1) — |

/| Y L

CPU

\—105 108

— SPECIALIZED

BRIDGE

112
S

——| PROCESSOR /
114

116
// /_
118

BRIDGE

120

|

—

]

CONTROULER CONTROLLER GONTROLLER

CONTROLLER CONTRGULER CONTROLLER

| I\122 ‘\7123 !\—124 ‘\125 l/

MASS

126 STORAGE
DEVICE

Patent Application Publication

110 ——— |

/—102

Jun. 7,2018 Sheet 1 of 28

/—103

CPU

CPU

US 2018/0157544 Al

104-——/

CPU m

CPU

MEMORY

— SPECIALIZED
—1 PROCESSOR

BRIDGE

118~/

114/

BRIDGE

|

H

CONTROLLER

CONTROLLER

GONTROLLER

CONTROLLER

CONTROLLER

CONTROLLER

! I\ l\ l \ l\- l
122 123 124 125

FIG. 1

126

127

128

Patent Application Publication Jun. 7,2018 Sheet 2 of 28 US 2018/0157544 A1

\—212

Lo
2‘E4ﬁ\

/—»216
FIG. 2

US 2018/0157544 Al

Jun. 7,2018 Sheet 3 of 28

Patent Application Publication

¢ Old

HIOMIBN
{2207

Z0¢ |\ / 90€ l\
0LE T~

yie .I/

[4%% [oepieluy saaniag pnojg _
N\ AR

US 2018/0157544 Al

Jun. 7,2018 Sheet 4 of 28

Patent Application Publication

aIEMpIEH

8¥y —

WeIsAg
Buiesedo

sweiboid
toneoyddy

00y
14 2Ly Oly 80¥ OLp
|/ |/, \l \' __\l
/ J ,, \ m_ L \
! : j j : \ 20%
abeiog
sseyy ol oll SI08S320l4) Aowap
T T)
Yoy —\ ey — 0y — gy —
\\mmmmm_%m_@gmae sossalppe/sIalsibal | suononsus Sonnd \\\] 9y
pafapaud pabspaud-uou pafiepnid Suojonisu paGaind-uou
Sianig wiaisAg o)i4 awabeuepy Aowaspy WUBI ¥SEL (1
aona(] ') senpayps | | 0y
sientajul SO — sferlajul SO
wovw T (oIS vy SESLE] ucmhmmmwe%m FAGEDT \\\\\| ey
Hel 18AS pue suogonsu pebiapaud-uou
8zy — oz
90
wr— sgp—/ wr—" sv— wr—

US 2018/0157544 Al

Jun. 7,2018 Sheet 5 of 28

Patent Application Publication

VG Old

sl Sl
AT o
SaSEaIPPE]IB|5I06T | So55aIpPE/IS|SiDa] ToraysTy - | A
pabonaud pabonaud-uou pafiepaud _ suoponsjsuf pabajinid-uoN 7
SIBAUD BR3P ﬂ. SIOALD BASD
Jojuoly
\\\\\\\mmswx\z\s’\\; [BUIsy WA sUIYden _mch\\
SE5SEIppe;B)510a] | Sasso ApEIeTsInal | SUCHINITSul
pobapnd pebajlid-uou pabigyaud _ suogonysu; pabiejiayd-uop 1]
\\\
S0 SO SO SO SO
_\\
uoneoydde uoyeoydde uoneaydde uopeoydde uolexdde

/

—— 904

Y08
818

809

— 91§

1S

ovml\

US 2018/0157544 Al

Jun. 7,2018 Sheet 6 of 28

Patent Application Publication

OvG /

~

e ke
ajempiey <
s /
. T A<
P
Wweishs Bugesadg <
A% \ oBLo 1EaISA SRS n:m_m%wm_%w FAITE]
\ oL | 1 pue suonossul padajaud-uou
-
..m&m._ uolieZijgniiA
Lonezyenpip 9
o/ U T]
2
255
SC SO S0
8¥5 / oS /
SOUIYoRW <
[BIMIA
uogeoydde uoneoydde uoljeaydde
A
866/ 1667 956/

g9 9ld

swelfold
s uopesiddy

US 2018/0157544 Al

Jun. 7,2018 Sheet 7 of 28

Patent Application Publication

9€9
f/

0v9
||/

Jsegueul Jo 15abip
S8pN{oUL JRU} SjeIyILe0

8|y saInosai jo ysabig

all} a0inosas jo 1sebig

ol obewn ysip J0 189810

ajy abew ysip Jo 15961Q

abeyoed jo 1safig

0¢9 I\

Jeunio uojezienyiA uadp

s/ AY
/ 2 /N/
e e e e e e e W
¢! N ///
b A
i RN
iy SR G ¥4 IANAN RN
/ // // /// \
/ <adopauzs |+ N N
{ // 0/ //
' <LO108]{09) WIB)SAS [ENUIA/> AN M\,
M NN R
<UOHOBS BIEMPIEH [BNHIA/> /////
: ~
et <UOND8S SIBMPIBH [BRUIA> W ved N
<UORD8]j00) WaISAS [enUIA>
<U0I}08S HIOMIaN/>
0g9 AH m /
<U00BS HIOMIBN> ;
<U0R0BS YSI/> /
829 : ,/
<0988 ¥sII> J
<S80UBISJON/>
9¢s8 A : ’
<S90UBIBJOY> p
<t mgo_mémv_, J

/ﬁ 229

abexoed A0

8|y BOM0SS

.

ajlj 9oinosal
8ilf 92IN08)

+

oy afiew ¥sip

oy ebewul ysip

SIeIISY JAOD

sgjuey JAC

10di0ssg JAD

¢09

US 2018/0157544 Al

Jun. 7,2018 Sheet 8 of 28

Patent Application Publication

Jajuen ejeq 1eoIsAud

611
0z. lv«

L Ol

T4 YA
9 |/
\

cel
AL

\

0L~

/ \\iiﬂ\lmﬁ\imﬁ\lv

.

\,\

V
3

/

¥

7

/]

/

|/

/

/]

7

~— 0L

193
9¢L

veL

100 90MN0SaY

181U37 Bjeq [enyIA

.
* /

US 2018/0157544 Al

Jun. 7,2018 Sheet 9 of 28

Patent Application Publication

8 9l

2e8 n/ 128 |/ 028 '/ 208 r/ 08 |/
sseqelep
alempieH SIEMpIBH QUEMPIBL 908 —1 L sJempleH By
Ele(] BN
AR lahke Jshe Jaker
UOREZHENHA uonezieniin uonezZifeMIA 809 A uonezenaia
A o~
] (]| | (] (]| |] [P /
e
] (][] [] [—gzg, sones
Uastladeuel
E 088) Miate oan | | 6C8 E Pid L _m_,_m> 018
™. \
/ 3 o\ /
928 5¢8 ves N\ _ /
o — ~
N glg 7/
/ 3 y \‘! \
ualwsfeuewl jsoH
/ N
/ IR
SAOINBS 81070
918 w \\ T - usweBeuel s2inossy
iiiiii - — Janpayos yse|
|.V\ SODIASS PLINALISIC ,,/\P buibboy Jo uonosjioa sonsels
dnyoeg 718 N~ / S)UaAs B SWikely
uonelbiu A 8An PN odelislu| Juswebeuen | , ™ Buuoisinoid WA
Ringepeny ubiH - T uoemBiuos A
Jajnpayog soinosey paingusiq — - - uoleInBL0D 1504
= 218

US 2018/0157544 Al

Jun. 7,2018 Sheet 10 of 28

Patent Application Publication

P
=
S
N
|
|
N

7 i ! 74
e | _ i),
/ { _ t
||||||||| — | | /
y e SEBJUA0 Smn {enpA)

' : / { f

i . T T T I e
[EmEo_w ejep __wa_s 4 / Géo 7 p =7 vN 5
| | 10J3311p pRofp e e e
/ Py p p , J0}084p go_o
106 £ 940,72 990, 7 940 D ¥ OH0 ,7E9M0, 2940, | DHO
v06 e \ 616 l\tm@& ﬁj
N\ 126 |\
- g
/4
p ! L/ 016 026 —
/ i
e S19)usd muwu L 7 Jowaip pno o
< | e - — - — 986
505 / - / \ —— 976 S0BHRIU SIN DOA
2940 /1 9¥0 T 0¢6
m. w jood ypomau woy BujuosINGId HoMBN /
«l\ sfoelen eipa|y pue siejdws |
mo_um._jm_wcou a0 gle(] |Bnln U] mNmﬂmm._o Sa9IAISC JOIDBST BNO
[4%4) FiLs) lz\ pue uoneinByuon uonezitebin 11195 J0RSIQ PRoD \

T Buiosinond Jajten BIeq BMUIA | goppaq| justuebeuely ¥t6

US 2018/0157544 Al

Jun. 7,2018 Sheet 11 of 28

Patent Application Publication

_}-,:--i:-{:;i.;i}-!.:i.:.,!;,:.

. 9201 — |

0} Ol m 7101 010} Z2L0)

BPOU DA

i

3pOU YA m 7 JBRES DO A “

T ! &) | i

I 3N

1 _,

qwor — ! R ﬁ 9101 -

I
Y
h
.
AN
N
~
i
o
()
(=]
ol
P
t
I
ol
== |
ol
A
!
|
|
I
|
l
l
|
I
|
|
I
I
I
I
|
I
|
/
|
I

i] N
i i S0 AW
i b e | € 18ju8D
“ N LN ? T o ejep fenyin
; R apou DOA apou 908 ~ <
/ / W
}20L €00l
6l
2004
BUsD i _
Ejep [enpin o AW I . _
&%) - pou DA 7] I B AN
@ LR f
|\ BPON DA et I
/au.._.//m |
8001 ~

$30IAIBS PO ,\ H / $001

Aped pg N 0Z01

\

l\ \ 8pou DA
600l

Patent Application Publication Jun. 7,2018 Sheet 12 of 28 US 2018/0157544 A1l

1102 1103 1104 1105 1106
= @@/@@/@@/@@/@
1116 ||,] 4
YRy NENENE AR NI
el N ELAWN =) 2 A M
AN R\ | IR i I A 0% ,/1/
TG ASIATE SNV [V T L[
\ B
1108 /ma)
1128-]
Search resulls
—
N
_________________________ —
~~~~~~~~~~~~~~~ AT
/1120 /1121 1122 1112
e =
1118
\\ | |
\“26 1123 1124

e FIG. 11



US 2018/0157544 Al

Jun. 7,2018 Sheet 13 of 28

Patent Application Publication

¢l Ol

7 afessawi juane

N§\

| afiessaul juana

»

(z ofessaw uans) sjum Boj

0ich

A

91l

e

.

|, oBessaul Juane

| abessaw juena

802 _\\

{1 sBessow juana) ajum oy

g0 Jo wesbod uofjesyddy

¢0C1 \;



US 2018/0157544 Al

Jun. 7,2018 Sheet 14 of 28

Patent Application Publication

vl 9l

(poysTuTy (6ZFE999L00EZLPGO689— ‘9Z9LESCELLLYLERE68T-)

abuexr x0F ZICRPIIPEILY-ZLPR-pRTT-2LL0-02LZTETS voTssas aTedsy [9TL9€:CF:€Z 0T-£0-ST0C]
[[(zTedax ‘wod:sremga ybTsutbor-pord-sTooluow ‘Y- ‘TO0OIIPOU/UTC/QT 0 Z-eIpuessed-sy2rede/dT]
JuotaentTdde/ayubrsutboT/qrr/asn,/1] ] [I0INDOXESSIAD0I “ TOFNOSKD " SUOWWCD " YD IsuThoT ' aI1emma " woo )
[OANI T°0°0 LZT/96%2281~-Pe2IUlL] [0000+6GB 9€:EFE€Z 0T-€0-5T0Z]

1\\\ movw\\\ movr\\\ vovrx\\
ool

€l Ol

80¢€1
N\

{paystuty 2buers abuer I0J g4 uoTsses ATedey [93ep SWTLS]
[[zTedax ‘wod:sIemua-1ybrsuTboT-poad-sToojuow ‘UY- ‘T0038pCU/UTd/CT (" Z-eIpuessed—aysede/qrl
JuoTtjeonTrTdde/aubTsuthoT/gTI/Isn/)] 1 [I0INDOXESSOD0Id * TOINDIXS * SUOWWOD * 1ybTsuihoT * vxemMwa " woD |

\ [0ANI/dI$/X$~Pea1qr] [eaep surrtig])satam-bot
0lel

90t ﬁ\ ¥0€ P\

GOEl

Nomwl\\m



Patent Application Publication Jun. 7,2018 Sheet 15 of 28  US 2018/0157544 A1l

g% 1508 1510 3 v
/// ///
2013-12-02710:44:24.095Z li-ge-esxb.vmware.com Rhttpproxy: 1504
_-—/

[289598B90 verbose 'Proxy Reg 46691'] Connected to
localhost: 8307~ {512 1506

2013-12-02710:44:24.094% li-ge~esxb.vmware.com Rhtipproxy:
[FFFCZBY0 verbose 'Proxy Reg 466%1'] new proxy client
TCP (local-127.0.0.1:80, peer=127.0.0.1:50155)

2013-12-02710:44:24.0932 li-ge-esx5.vaware.com Rhitpproxy:
[2888B90 verbose 'Proxy Reqg 46685'] The client closed the
stream, not unexpectedly.

Dec 2 18:48:29 strata-vc 2013-12-02718:48:30.273%
{7FA354488700 info 'commonvpxlro' opiD=1947d6f9] [VpxLRO] -~
FINISH task-internal-2163522 -- -- vim.SessionManager.logout -

2013~12-02T18:48:51.3867 strata-eszl.eng.vmware.com Vpxa:
[65BSABY0 verbose 'VpxaHalCnxHostagent'! opID=WFU-ed393333]
[WaitForUpdatesDone] Completed callback

2013-12-02T18:48:531.3952 strata-esxl.eng.vmware.com Vpxa:
[65B5ABS0 verbose 'VpxaHalCnxHostagent' opID=WFU-ed393333]
{WaitForUpdatesDone] Starting next WaitForUpdates() call to
hostd

2013-12-02T18:48:51.395% strata-esxl.eng.vmware.com Vpxa:
[65B5ABY0 verbose 'vpxavpxalnvtVm' oplD=WFU-ed393333]
[VpxaInvtVmChangeListener] Guest DiskInfo Changed

2013-12-02T18:48:51,395% strata-esxl.eng.vmware.com Vpxa:
[65B5ABY0 verbose 'vpxavpxalnvtVm' opID=WFU-ed393333]
{VpxalnvtVmChangelistener] Guest DiskInfo Changed

FIG. 15



US 2018/0157544 Al

Jun. 7,2018 Sheet 16 of 28

Patent Application Publication

g adA} Jusna

G adf) wons

 adfy ans

¢ adfy juana

91 Old

Z adfyjusns

| adA} uane

unoo

adf} Juarg

A

6091

/

\momw \vomv \ 1091
adfjjuanajo | adf} Juans P abessaw
Junod uewsiyy | surwisleg | JUBAS PI02SY

09} ~¢ |, obessall Jusna
009, —1 7 °bessow jona
L g ofessalt Juans
\
G091 a8 B0

€091

\mo@ﬁ

|

 abiessaw uana

|




US 2018/0157544 Al

Jun. 7,2018 Sheet 17 of 28

Patent Application Publication

S|eAsR)U
awry Jo "oN

[BOLIOJSIH

Et‘\

¢0L1

/

St\

/o_&‘

\JAIE
O G adA) uang A8'E
O v adA} Jueng ME'E
O ¢ adf} Juang Abe
() | meea ¢ 8dkyjueng b
\
O / ¢ell | adA) Juang 1A
10885 sadA] Jusag wnon
wot‘\ vot\ wot\\

N



US 2018/0157544 Al

Jun. 7,2018 Sheet 18 of 28

Patent Application Publication

81L) — k,E

00:00:80 E%m
BT Eq
S[RAISJUl pouad
8k 0 "ON [BILIOISIH

m_\t\
/

VA

it\

d.l 9l

O G 904} JusAZ 4g'e
O  adA}] wany Y8'E
O £ 8dk) Jueng M2
02l ——@ | emeoa N/ Z 8dAy juang Wil
/
O celh | adkijuang Nl
108j9g sodA) Juang uno)
wot\ voﬁ\ mot\




Patent Application Publication Jun. 7,2018 Sheet 19 of 28  US 2018/0157544 A1l

1808 1809 1810 1811
TBGQ TBeg + AT Tgeg + ZA'E‘ TBEQ + 3AT j
k———[ML—; . e N
- g

b
T < gl

\ 1802 Historical period of time

1804 FIG. 18 1806
o 1902

Log file
4 1904
1906, O . =y
o TB h s
0 = Determine Determine
event message 2 event type of .| frequency of
sach event selectedovent | |
Tosg + AT i message type
1912
_— 1910 Determine Determine
avent massage 2 event type of > frequency of N
" 5 each event selected event
. event message message type
£
= 1914
-§ Toeg + 2AT
5
= event message 2 - -
& Determine Determine
5 event type of | frequency of 3
2 event message 2 sach event selected event |
message 8
A event message 2 * ki
- 1916
Theg + 3AT
Y

. Tena ey L
1 9087—



Patent Application Publication Jun. 7,2018 Sheet 20 of 28  US 2018/0157544 A1l

5
for
P ————
-
)= <
&N S
[
| \
i( \
l
l “ 2
o My
1 A ii 5 o
el sy S [1b] .
= / SE |
N o~ N5 —_—
= = .
™ k<]
2
£
=
=
&
/ 8dA1 1UaAS Pajoaes jo Aouanbal
«©
ol
L
o




¢ Ol

US 2018/0157544 Al

Jun. 7,2018 Sheet 21 of 28

Vb=t

7 ofiessall Juong

Z obessaut jusng

(bs1)
(sL)
(tg1) z abessaw jusag
(s1)

S 1) 7 obessauw e

9Lz

{s31) g abessaw JusAg

{rg1) ¥ oBessaul Jusng

{e51) 6 abessaul jusag

(t51) ¢ abessaw Juang

{tg1) | abessauw juang

12374

el

abessall jusag

0bic
E.;uw// \s

80l¢

v0le

Aouenbay) efesal Jusag

c0ie

Patent Application Publication




Patent Application Publication Jun. 7,2018 Sheet 22 of 28  US 2018/0157544 A1l

N
o
L]
N
~—— =
; b S
L ] —
*
.
.
4
¢
) o
& o -
* Y = e & 4
e
. E i 2/ 4
° i L b2
£l [ o
o
= <
N
N
O
=] L
~ 0 . 4
o™ (] L]
&~ L+
~ .
.
*
.
.
¢
.
L)
)
.
H

Toeg

adA} Juene payos|as jo Aouanbald

2204



Patent Application Publication Jun. 7,2018 Sheet 23 of 28  US 2018/0157544 A1l

™
~N
o
L
2
[
N
<
>
o
| /
I
l
l
l =R m
I =T N
= 2 |
= e 2 O]
S > 2 T
& 2
o
z
£
=
P
g
[».._
/ adA} Jusne pajos|as jo Aousnbalg
«©>
o
o
od




Patent Application Publication Jun. 7,2018 Sheet 24 of 28  US 2018/0157544 A1l

Method to narrow search for
potential sources of problems in a
distributed computing system

.

Identify volatile eventtypein | |~ 2301

event-log file

v

Determine frequencies of

event messages with same event| | " 2302

type as the volatile event type
in time intervals

v

Identify & time interval with - 2303

largest increase in frequency of
volatile event type

Y

Determine frequencies of event - 2304
messages in sub-time intervals

of identified time interval

v

Display list of event messagesina | " 2305
selected sub-time interval

FIG. 23



Patent Application Publication Jun. 7,2018 Sheet 25 of 28  US 2018/0157544 A1l

Identify volatile event type in
event-log file

L
2401 ~ For each event message
generated in an observation
time window

[«

*"\
2402 ™~ Determine event type of
event message

v

2403
™ Increment event-type count

Another
event message
?

N

2405 ~ sum event-type counts

v

2406
N For each event type

Le

*‘

24Q7 Calculate fraction F(n) of
™ event type generated with the

observation time window

2408
N
ﬁ\’ / 2409

identify event type as a
volatile event type

2410

>
Another Y
event type
?
N

FIG. 24



Patent Application Publication

event messages with same event

Determine frequencies of

type as the volatile event type
in time intervals

v

Jun. 7,2018 Sheet 26 of 28

Receive a historical period of
time

v

Receive number of time
intervals M

)

2503 N

Calculate duration of time
intervals

v

Partition historical period of
time into time intervals

v

For each time interval

[«

v‘\

|dentify event messages in
the time interval

v

Determine event type of
event messages

Determine frequency of
event messages that match
event type of volatile event

type

Another

time interval
?

Display frequency event
types that match volatile
event type in time intervals

US 2018/0157544 Al

FIG. 25



Patent Application Publication

Identify a time interval with
largest increase in frequency of
volatile event type

Initialize
Smax=10

{

For each time interval index
i=1, ..., M1

Calculate slope
S

Set
Smax = Siat

v

ldentify time interval
of fiy as having largest
frequency

Increment i

) V4 2607

Jun. 7,2018 Sheet 27 of 28

FIG. 26

2608

US 2018/0157544 Al



Patent Application Publication

Jun. 7,2018 Sheet 28 of 28

Determine frequencies of even
messages in sub-time infervals
of identified time interval

v

2701 —_|

Receive number of sub-time
intervals K

|

2702 —_

Calculate duration of sub-time
intervais

'

2703 —_

Partition time interval into sub-
time intervals

'

2704 —_

For each sub-time interval

%
Y

2705 —_|

|dentify event messages in the
sub-time interval

v

2706 —_|

Determine frequency of event
messages in sub-time interval

2707 Another
sub-tim% interval

2708 —_

Display frequency of event
messages in sub-time intervals

FIG. 27

US 2018/0157544 Al



US 2018/0157544 Al

METHODS AND SYSTEMS THAT USE
VOLATILE EVENT TYPES IN LOG FILES
TO NARROW A SEARCH FOR POTENTIAL
SOURCES OF PROBLEMS IN A
DISTRIBUTED COMPUTING SYSTEM

TECHNICAL FIELD

[0001] The present disclosure is directed to event mes-
sages and log files and, in particular, to methods that use
event types of log files identified as volatile event types in
order to narrow a search for potential sources of problems in
a distributed computing system.

BACKGROUND

[0002] During the past seven decades, electronic comput-
ing has evolved from primitive, vacuum-tube-based com-
puter systems, initially developed during the 1940s, to
modern electronic computing systems in which large num-
bers of multi-processor server computers, work stations, and
other individual computing systems are networked together
with large-capacity data-storage devices and other electronic
devices to produce geographically distributed computing
systems with hundreds of thousands, millions, or more
components that provide enormous computational band-
widths and data-storage capacities. These large, distributed
computing systems are made possible by advances in com-
puter networking, distributed operating systems and appli-
cations, data-storage appliances, computer hardware, and
software technologies. Despite all of these advances, how-
ever, the rapid increase in the size and complexity of
computing systems has been accompanied by numerous
scaling issues and technical challenges, including technical
challenges associated with communications overheads
encountered in parallelizing computational tasks among
multiple processors, component failures, and distributed-
system management. As new distributed-computing tech-
nologies are developed and as general hardware and soft-
ware technologies continue to advance, the current trend
towards ever-larger and more complex distributed comput-
ing systems appears likely to continue well into the future.

[0003] In modern computing systems, individual comput-
ers, subsystems, and components generally output large
volumes of status, informational, and error messages that are
collectively referred to, in the current document, as “event
messages.” In large, distributed computing systems, tera-
bytes of event messages may be generated each day. The
event messages are often collected into event logs stored as
files in data-storage appliances and are often analyzed both
in real time, as they are generated and received, as well as
retrospectively, after the event messages have been initially
processed and stored in event logs. Event messages may
contain information that can be used to detect serious
failures and operational deficiencies prior to the accumula-
tion of a sufficient number of failures and system-degrading
events that lead to data loss and significant down time. The
information contained in event messages may also be used
to detect and ameliorate various types of security breaches
and issues, to intelligently manage and maintain distributed
computing systems, and to diagnose many different classes
of operational problems, hardware-design deficiencies, and
software-design deficiencies. It is often a challenging task
for system administrators, system designers and developers,
and system users to identify information within the enor-

Jun. 7, 2018

mous event logs generated in distributed computing systems
relevant to detecting and diagnosing operational anomalies
and useful in administering, managing, and maintaining
distributed computer systems.

SUMMARY

[0004] Methods and systems to narrow a search for poten-
tial sources of problems in a distributed computing system
are described. A volatile event type of event messages
recorded in an event-log file are identified. The volatile
event type is an event type that may have unexpectedly
increased in frequency over an observation time window. An
historical period of time may be selected to search for
potential sources of the volatile event type. Frequencies of
event messages in the event-log file with the same event type
as the volatile event type are determined for time intervals
of the historical period of time. A time interval of the
historical period of time with a largest increase in frequency
of event messages is identified. Frequencies of event mes-
sages of the event-log file in sub-time intervals of the time
interval are determined. A list of event messages in a
selected sub-time interval of the sub-time intervals of the
time interval are displayed in a graphical user interface.

DESCRIPTION OF THE DRAWINGS

[0005] FIG. 1 shows a general architectural diagram for
various types of computers.

[0006] FIG. 2 shows an Internet-connected distributed
computer system.

[0007] FIG. 3 shows cloud computing.

[0008] FIG. 4 shows generalized hardware and software
components of a general-purpose computer system.

[0009] FIGS. 5A-5B show two types of virtual machine
and virtual-machine execution environments.

[0010] FIG. 6 shows an example of an open virtualization
format package.

[0011] FIG. 7 shows virtual data centers provided as an
abstraction of underlying physical-data-center hardware
components.

[0012] FIG. 8 shows virtual-machine components of a
virtual-data-center management server and physical servers
of a physical data center.

[0013] FIG. 9 shows a cloud-director level of abstraction.
[0014] FIG. 10 shows virtual-cloud-connector nodes.
[0015] FIG. 11 shows an example of logging event mes-

sages in event-log files.
[0016] FIG. 12 shows an example of a source code with
log write instructions.

[0017] FIG. 13 shows an example of a log write instruc-
tion.
[0018] FIG. 14 shows an example of an event message

generated by the log write instruction of FIG. 13.

[0019] FIG. 15 shows a small, eight-entry portion of an
event-log file.
[0020] FIG. 16 shows an example of handling event

messages as the event messages are received.

[0021] FIG. 17A shows an example of a graphical-user
interface (“GUI”) that list the event types and associated
counts of an event-log file collected within an observation
time window.

[0022] FIG. 17B shows the GUI with an event type
selected for further investigation.



US 2018/0157544 Al

[0023] FIG. 18 shows an example of a historical period of
time partitioned in time intervals.

[0024] FIG. 19 shows an example of counting event
messages with the same event type as a selected event type
in time intervals of a historical period of time.

[0025] FIG. 20 shows an example of a GUI of frequencies
of event messages that match a selected event type as a bar
graph.

[0026] FIG. 21 shows a GUI of event messages frequen-

cies in sub-time intervals as a bar graph.

[0027] FIG. 22A shows a plot of frequencies of event
messages with an event type that matches a selected event
type.

[0028] FIG. 22B shows an example of a GUI of frequen-

cies of event messages that match a selected event type as a
bar graph.

[0029] FIG. 23 shows a control-flow diagram of a method
to narrow a search for potential sources of problems in a
distributed computing system.

[0030] FIG. 24 shows a control-flow diagram of the rou-
tine “identify volatile event type in event-log file” called in
FIG. 23.

[0031] FIG. 25 shows a control-flow diagram of the rou-
tine “determine frequencies of event messages with same
event type as the volatile event type in time intervals” called
in FIG. 23.

[0032] FIG. 26 shows a control-flow diagram of the rou-
tine “identify a time interval with largest increase in fre-
quency of volatile event type” called in FIG. 23.

[0033] FIG. 27 shows control-flow diagram of the routine
“determine frequencies of event messages in sub-time inter-
vals of identified time interval” called in FIG. 23.

DETAILED DESCRIPTION

[0034] This disclosure presents computational methods
and systems that use event types of log files identified as
volatile in order to narrow a search for potential sources of
problems in a distributed computing system. In a first
subsection, computer hardware, complex computational sys-
tems, and virtualization are described. Methods and systems
to narrow a search for potential sources of problems in a
distributed computing system based on volatile event types
in log files are described in a second subsection.

Computer Hardware, Complex Computational
Systems, and Virtualization

[0035] The term “abstraction” is not, in any way, intended
to mean or suggest an abstract idea or concept. Computa-
tional abstractions are tangible, physical interfaces that are
implemented, ultimately, using physical computer hardware,
data-storage devices, and communications systems. Instead,
the term ““abstraction” refers, in the current discussion, to a
logical level of functionality encapsulated within one or
more concrete, tangible, physically-implemented computer
systems with defined interfaces through which electroni-
cally-encoded data is exchanged, process execution
launched, and electronic services are provided. Interfaces
may include graphical and textual data displayed on physical
display devices as well as computer programs and routines
that control physical computer processors to carry out vari-
ous tasks and operations and that are invoked through
electronically implemented application programming inter-
faces (“APIs”) and other electronically implemented inter-

Jun. 7, 2018

faces. There is a tendency among those unfamiliar with
modern technology and science to misinterpret the terms
“abstract” and “abstraction,” when used to describe certain
aspects of modern computing. For example, one frequently
encounters assertions that, because a computational system
is described in terms of abstractions, functional layers, and
interfaces, the computational system is somehow different
from a physical machine or device. Such allegations are
unfounded. One only needs to disconnect a computer system
or group of computer systems from their respective power
supplies to appreciate the physical, machine nature of com-
plex computer technologies. One also frequently encounters
statements that characterize a computational technology as
being “only software,” and thus not a machine or device.
Software is essentially a sequence of encoded symbols, such
as a printout of a computer program or digitally encoded
computer instructions sequentially stored in a file on an
optical disk or within an electromechanical mass-storage
device. Software alone can do nothing. It is only when
encoded computer instructions are loaded into an electronic
memory within a computer system and executed on a
physical processor that so-called “software implemented”
functionality is provided. The digitally encoded computer
instructions are an essential and physical control component
of processor-controlled machines and devices, no less essen-
tial and physical than a cam-shaft control system in an
internal-combustion engine. Multi-cloud aggregations,
cloud-computing services, virtual-machine containers and
virtual machines, communications interfaces, and many of
the other topics discussed below are tangible, physical
components of physical, electro-optical-mechanical com-
puter systems.

[0036] FIG. 1 shows a general architectural diagram for
various types of computers. Computers that receive, process,
and store event messages may be described by the general
architectural diagram shown in FIG. 1, for example. The
computer system contains one or multiple central processing
units (“CPUs”) 102-105, one or more electronic memories
108 interconnected with the CPUs by a CPU/memory-
subsystem bus 110 or multiple busses, a first bridge 112 that
interconnects the CPU/memory-subsystem bus 110 with
additional busses 114 and 116, or other types of high-speed
interconnection media, including multiple, high-speed serial
interconnects. These busses or serial interconnections, in
turn, connect the CPUs and memory with specialized pro-
cessors, such as a graphics processor 118, and with one or
more additional bridges 120, which are interconnected with
high-speed serial links or with multiple controllers 122-127,
such as controller 127, that provide access to various dif-
ferent types of mass-storage devices 128, electronic dis-
plays, input devices, and other such components, subcom-
ponents, and computational devices. It should be noted that
computer-readable data-storage devices include optical and
electromagnetic disks, electronic memories, and other
physical data-storage devices. Those familiar with modern
science and technology appreciate that electromagnetic
radiation and propagating signals do not store data for
subsequent retrieval, and can transiently “store” only a byte
or less of information per mile, far less information than
needed to encode even the simplest of routines.

[0037] Of course, there are many different types of com-
puter-system architectures that differ from one another in the
number of different memories, including different types of
hierarchical cache memories, the number of processors and



US 2018/0157544 Al

the connectivity of the processors with other system com-
ponents, the number of internal communications busses and
serial links, and in many other ways. However, computer
systems generally execute stored programs by fetching
instructions from memory and executing the instructions in
one or more processors. Computer systems include general-
purpose computer systems, such as personal computers
(“PCs”), various types of servers and workstations, and
higher-end mainframe computers, but may also include a
plethora of various types of special-purpose computing
devices, including data-storage systems, communications
routers, network nodes, tablet computers, and mobile tele-
phones.

[0038] FIG. 2 shows an Internet-connected distributed
computer system. As communications and networking tech-
nologies have evolved in capability and accessibility, and as
the computational bandwidths, data-storage capacities, and
other capabilities and capacities of various types of com-
puter systems have steadily and rapidly increased, much of
modern computing now generally involves large distributed
systems and computers interconnected by local networks,
wide-area networks, wireless communications, and the
Internet FIG. 2 shows a typical distributed system in which
a large number of PCs 202-205, a high-end distributed
mainframe system 210 with a large data-storage system 212,
and a large computer center 214 with large numbers of
rack-mounted servers or blade servers all interconnected
through various communications and networking systems
that together comprise the Internet 216. Such distributed
computing systems provide diverse arrays of functionalities.
For example, a PC user may access hundreds of millions of
different web sites provided by hundreds of thousands of
different web servers throughout the world and may access
high-computational-bandwidth computing services from
remote computer facilities for running complex computa-
tional tasks.

[0039] Until recently, computational services were gener-
ally provided by computer systems and data centers pur-
chased, configured, managed, and maintained by service-
provider organizations. For example, an e-commerce retailer
generally purchased, configured, managed, and maintained a
data center including numerous web servers, back-end com-
puter systems, and data-storage systems for serving web
pages to remote customers, receiving orders through the
web-page interface, processing the orders, tracking com-
pleted orders, and other myriad different tasks associated
with an e-commerce enterprise.

[0040] FIG. 3 shows cloud computing. In the recently
developed cloud-computing paradigm, computing cycles
and data-storage facilities are provided to organizations and
individuals by cloud-computing providers. In addition,
larger organizations may elect to establish private cloud-
computing facilities in addition to, or instead of, subscribing
to computing services provided by public cloud-computing
service providers. In FIG. 3, a system administrator for an
organization, using a PC 302, accesses the organization’s
private cloud 304 through a local network 306 and private-
cloud interface 308 and also accesses, through the Internet
310, a public cloud 312 through a public-cloud services
interface 314. The administrator can, in either the case of the
private cloud 304 or public cloud 312, configure virtual
computer systems and even entire virtual data centers and
launch execution of application programs on the virtual
computer systems and virtual data centers in order to carry

Jun. 7, 2018

out any of many different types of computational tasks. As
one example, a small organization may configure and run a
virtual data center within a public cloud that executes web
servers to provide an e-commerce interface through the
public cloud to remote customers of the organization, such
as a user viewing the organization’s e-commerce web pages
on a remote user system 316.

[0041] Cloud-computing facilities are intended to provide
computational bandwidth and data-storage services much as
utility companies provide electrical power and water to
consumers. Cloud computing provides enormous advan-
tages to small organizations without the devices to purchase,
manage, and maintain in-house data centers. Such organi-
zations can dynamically add and delete virtual computer
systems from their virtual data centers within public clouds
in order to track computational-bandwidth and data-storage
needs, rather than purchasing sufficient computer systems
within a physical data center to handle peak computational-
bandwidth and data-storage demands. Moreover, small orga-
nizations can completely avoid the overhead of maintaining
and managing physical computer systems, including hiring
and periodically retraining information-technology special-
ists and continuously paying for operating-system and data-
base-management-system upgrades. Furthermore, cloud-
computing interfaces allow for easy and straightforward
configuration of virtual computing facilities, flexibility in
the types of applications and operating systems that can be
configured, and other functionalities that are useful even for
owners and administrators of private cloud-computing
facilities used by a single organization.

[0042] FIG. 4 shows generalized hardware and software
components of a general-purpose computer system, such as
a general-purpose computer system having an architecture
similar to that shown in FIG. 1. The computer system 400 is
often considered to include three fundamental layers: (1) a
hardware layer or level 402; (2) an operating-system layer or
level 404; and (3) an application-program layer or level 406.
The hardware layer 402 includes one or more processors
408, system memory 410, various different types of input-
output (“I/0”) devices 410 and 412, and mass-storage
devices 414. Of course, the hardware level also includes
many other components, including power supplies, internal
communications links and busses, specialized integrated
circuits, many different types of processor-controlled or
microprocessor-controlled peripheral devices and control-
lers, and many other components. The operating system 404
interfaces to the hardware level 402 through a low-level
operating system and hardware interface 416 generally
comprising a set of non-privileged computer instructions
418, a set of privileged computer instructions 420, a set of
non-privileged registers and memory addresses 422, and a
set of privileged registers and memory addresses 424. In
general, the operating system exposes non-privileged
instructions, non-privileged registers, and non-privileged
memory addresses 426 and a system-call interface 428 as an
operating-system interface 430 to application programs 432-
436 that execute within an execution environment provided
to the application programs by the operating system. The
operating system, alone, accesses the privileged instructions,
privileged registers, and privileged memory addresses. By
reserving access to privileged instructions, privileged reg-
isters, and privileged memory addresses, the operating sys-
tem can ensure that application programs and other higher-
level computational entities cannot interfere with one



US 2018/0157544 Al

another’s execution and cannot change the overall state of
the computer system in ways that could deleteriously impact
system operation. The operating system includes many
internal components and modules, including a scheduler
442, memory management 444, a file system 446, device
drivers 448, and many other components and modules. To a
certain degree, modern operating systems provide numerous
levels of abstraction above the hardware level, including
virtual memory, which provides to each application program
and other computational entities a separate, large, linear
memory-address space that is mapped by the operating
system to various electronic memories and mass-storage
devices. The scheduler orchestrates interleaved execution of
various different application programs and higher-level
computational entities, providing to each application pro-
gram a virtual, stand-alone system devoted entirely to the
application program. From the application program’s stand-
point, the application program executes continuously with-
out concern for the need to share processor devices and other
system devices with other application programs and higher-
level computational entities. The device drivers abstract
details of hardware-component operation, allowing applica-
tion programs to employ the system-call interface for trans-
mitting and receiving data to and from communications
networks, mass-storage devices, and other 1/O devices and
subsystems. The file system 446 facilitates abstraction of
mass-storage-device and memory devices as a high-level,
easy-to-access, file-system interface. Thus, the development
and evolution of the operating system has resulted in the
generation of a type of multi-faceted virtual execution
environment for application programs and other higher-level
computational entities.

[0043] While the execution environments provided by
operating systems have proved to be an enormously suc-
cessful level of abstraction within computer systems, the
operating-system-provided level of abstraction is nonethe-
less associated with difficulties and challenges for develop-
ers and users of application programs and other higher-level
computational entities. One difficulty arises from the fact
that there are many different operating systems that run
within various different types of computer hardware. In
many cases, popular application programs and computa-
tional systems are developed to run on only a subset of the
available operating systems, and can therefore be executed
within only a subset of the various different types of com-
puter systems on which the operating systems are designed
to run. Often, even when an application program or other
computational system is ported to additional operating sys-
tems, the application program or other computational system
can nonetheless run more efficiently on the operating sys-
tems for which the application program or other computa-
tional system was originally targeted. Another difficulty
arises from the increasingly distributed nature of computer
systems. Although distributed operating systems are the
subject of considerable research and development efforts,
many of the popular operating systems are designed primar-
ily for execution on a single computer system. In many
cases, it is difficult to move application programs, in real
time, between the different computer systems of a distrib-
uted computer system for high-availability, fault-tolerance,
and load-balancing purposes. The problems are even greater
in heterogeneous distributed computer systems which
include different types of hardware and devices running
different types of operating systems. Operating systems

Jun. 7, 2018

continue to evolve, as a result of which certain older
application programs and other computational entities may
be incompatible with more recent versions of operating
systems for which they are targeted, creating compatibility
issues that are particularly difficult to manage in large
distributed systems.

[0044] For all of these reasons, a higher level of abstrac-
tion, referred to as the “virtual machine,” (“VM”) has been
developed and evolved to further abstract computer hard-
ware in order to address many difficulties and challenges
associated with traditional computing systems, including the
compatibility issues discussed above. FIGS. 5A-B show two
types of VM and virtual-machine execution environments.
FIGS. 5A-B use the same illustration conventions as used in
FIG. 4. FIG. 5A shows a first type of virtualization. The
computer system 500 in FIG. 5A includes the same hardware
layer 502 as the hardware layer 402 shown in FIG. 4.
However, rather than providing an operating system layer
directly above the hardware layer, as in FIG. 4, the virtual-
ized computing environment shown in FIG. 5A features a
virtualization layer 504 that interfaces through a virtualiza-
tion-layer/hardware-layer interface 506, equivalent to inter-
face 416 in FIG. 4, to the hardware. The virtualization layer
504 provides a hardware-like interface to a number of VMs,
such as VM 510, in a virtual-machine layer 511 executing
above the virtualization layer 504. Each VM includes one or
more application programs or other higher-level computa-
tional entities packaged together with an operating system,
referred to as a “guest operating system,” such as application
514 and guest operating system 516 packaged together
within VM 510. Each VM is thus equivalent to the operat-
ing-system layer 404 and application-program layer 406 in
the general-purpose computer system shown in FIG. 4. Each
guest operating system within a VM interfaces to the virtu-
alization layer interface 504 rather than to the actual hard-
ware interface 506. The virtualization layer 504 partitions
hardware devices into abstract virtual-hardware layers to
which each guest operating system within a VM interfaces.
The guest operating systems within the VMs, in general, are
unaware of the virtualization layer and operate as if they
were directly accessing a true hardware interface. The
virtualization layer 504 ensures that each of the VMs cur-
rently executing within the virtual environment receive a fair
allocation of underlying hardware devices and that all VMs
receive sufficient devices to progress in execution. The
virtualization layer 504 may differ for different guest oper-
ating systems. For example, the virtualization layer is gen-
erally able to provide virtual hardware interfaces for a
variety of different types of computer hardware. This allows,
as one example, a VM that includes a guest operating system
designed for a particular computer architecture to run on
hardware of a different architecture. The number of VMs
need not be equal to the number of physical processors or
even a multiple of the number of processors.

[0045] The virtualization layer 504 includes a virtual-
machine-monitor module 518 (“VMM?”) that virtualizes
physical processors in the hardware layer to create virtual
processors on which each of the VMs executes. For execu-
tion efficiency, the virtualization layer attempts to allow
VMs to directly execute non-privileged instructions and to
directly access non-privileged registers and memory. How-
ever, when the guest operating system within a VM accesses
virtual privileged instructions, virtual privileged registers,
and virtual privileged memory through the virtualization



US 2018/0157544 Al

layer 504, the accesses result in execution of virtualization-
layer code to simulate or emulate the privileged devices. The
virtualization layer additionally includes a kernel module
520 that manages memory, communications, and data-stor-
age machine devices on behalf of executing VMs (“VM
kernel”). The VM kernel, for example, maintains shadow
page tables on each VM so that hardware-level virtual-
memory facilities can be used to process memory accesses.
The VM kernel additionally includes routines that imple-
ment virtual communications and data-storage devices as
well as device drivers that directly control the operation of
underlying hardware communications and data-storage
devices. Similarly, the VM kernel virtualizes various other
types of I/O devices, including keyboards, optical-disk
drives, and other such devices. The virtualization layer 504
essentially schedules execution of VMs much like an oper-
ating system schedules execution of application programs,
so that the VMs each execute within a complete and fully
functional virtual hardware layer.

[0046] FIG. 5B shows a second type of virtualization. In
FIG. 5B, the computer system 540 includes the same hard-
ware layer 542 and operating system layer 544 as the
hardware layer 402 and the operating system layer 404
shown in FIG. 4. Several application programs 546 and 548
are shown running in the execution environment provided
by the operating system 544. In addition, a virtualization
layer 550 is also provided, in computer 540, but, unlike the
virtualization layer 504 discussed with reference to FIG. 5A,
virtualization layer 550 is layered above the operating
system 544, referred to as the “host OS,” and uses the
operating system interface to access operating-system-pro-
vided functionality as well as the hardware. The virtualiza-
tion layer 550 comprises primarily a VMM and a hardware-
like interface 552, similar to hardware-like interface 508 in
FIG. 5A. The hardware-layer interface 552, equivalent to
interface 416 in FIG. 4, provides an execution environment
for a number of VMs 556-558, each including one or more
application programs or other higher-level computational
entities packaged together with a guest operating system.
[0047] In FIGS. 5A-5B, the layers are somewhat simpli-
fied for clarity of illustration. For example, portions of the
virtualization layer 550 may reside within the host-operat-
ing-system kernel, such as a specialized driver incorporated
into the host operating system to facilitate hardware access
by the virtualization layer.

[0048] It should be noted that virtual hardware layers,
virtualization layers, and guest operating systems are all
physical entities that are implemented by computer instruc-
tions stored in physical data-storage devices, including
electronic memories, mass-storage devices, optical disks,
magnetic disks, and other such devices. The term “virtual”
does not, in any way, imply that virtual hardware layers,
virtualization layers, and guest operating systems are
abstract or intangible. Virtual hardware layers, virtualization
layers, and guest operating systems execute on physical
processors of physical computer systems and control opera-
tion of the physical computer systems, including operations
that alter the physical states of physical devices, including
electronic memories and mass-storage devices. They are as
physical and tangible as any other component of a computer
since, such as power supplies, controllers, processors, bus-
ses, and data-storage devices.

[0049] A VM or virtual application, described below, is
encapsulated within a data package for transmission, distri-

Jun. 7, 2018

bution, and loading into a virtual-execution environment.
One public standard for virtual-machine encapsulation is
referred to as the “open virtualization format” (“OVF”). The
OVF standard specifies a format for digitally encodinga VM
within one or more data files. FIG. 6 shows an OVF package.
An OVF package 602 includes an OVF descriptor 604, an
OVF manifest 606, an OVF certificate 608, one or more
disk-image files 610-611, and one or more device files
612-614. The OVF package can be encoded and stored as a
single file or as a set of files. The OVF descriptor 604 is an
XML document 620 that includes a hierarchical set of
elements, each demarcated by a beginning tag and an ending
tag. The outermost, or highest-level, element is the envelope
element, demarcated by tags 622 and 623. The next-level
element includes a reference element 626 that includes
references to all files that are part of the OVF package, a disk
section 628 that contains meta information about all of the
virtual disks included in the OVF package, a networks
section 630 that includes meta information about all of the
logical networks included in the OVF package, and a
collection of virtual-machine configurations 632 which fur-
ther includes hardware descriptions of each VM 634. There
are many additional hierarchical levels and elements within
a typical OVF descriptor. The OVF descriptor is thus a
self-describing, XML file that describes the contents of an
OVF package. The OVF manifest 606 is a list of crypto-
graphic-hash-function-generated digests 636 of the entire
OVF package and of the various components of the OVF
package. The OVF certificate 608 is an authentication cer-
tificate 640 that includes a digest of the manifest and that is
cryptographically signed. Disk image files, such as disk
image file 610, are digital encodings of the contents of
virtual disks and device files 612 are digitally encoded
content, such as operating-system images. A VM or a
collection of VMs encapsulated together within a virtual
application can thus be digitally encoded as one or more files
within an OVF package that can be transmitted, distributed,
and loaded using well-known tools for transmitting, distrib-
uting, and loading files. A virtual appliance is a software
service that is delivered as a complete software stack
installed within one or more VMs that is encoded within an
OVF package.

[0050] The advent of VMs and virtual environments has
alleviated many of the difficulties and challenges associated
with traditional general-purpose computing. Machine and
operating-system dependencies can be significantly reduced
or entirely eliminated by packaging applications and oper-
ating systems together as VMs and virtual appliances that
execute within virtual environments provided by virtualiza-
tion layers running on many different types of computer
hardware. A next level of abstraction, referred to as virtual
data centers or virtual infrastructure, provide a data-center
interface to virtual data centers computationally constructed
within physical data centers.

[0051] FIG. 7 shows virtual data centers provided as an
abstraction of underlying physical-data-center hardware
components. In FIG. 7, a physical data center 702 is shown
below a virtual-interface plane 704. The physical data center
consists of a virtual-data-center management server 706 and
any of various different computers, such as PCs 708, on
which a virtual-data-center management interface may be
displayed to system administrators and other users. The
physical data center additionally includes generally large
numbers of server computers, such as server computer 710,



US 2018/0157544 Al

that are coupled together by local area networks, such as
local area network 712 that directly interconnects server
computer 710 and 714-720 and a mass-storage array 722.
The physical data center shown in FIG. 7 includes three
local area networks 712, 724, and 726 that each directly
interconnects a bank of eight servers and a mass-storage
array. The individual server computers, such as server com-
puter 710, each includes a virtualization layer and runs
multiple VMs. Different physical data centers may include
many different types of computers, networks, data-storage
systems and devices connected according to many different
types of connection topologies. The virtual-interface plane
704, a logical abstraction layer shown by a plane in FIG. 7,
abstracts the physical data center to a virtual data center
comprising one or more device pools, such as device pools
730-732, one or more virtual data stores, such as virtual data
stores 734-736, and one or more virtual networks. In certain
implementations, the device pools abstract banks of physical
servers directly interconnected by a local area network.

[0052] The wvirtual-data-center management interface
allows provisioning and launching of VMs with respect to
device pools, virtual data stores, and virtual networks, so
that virtual-data-center administrators need not be con-
cerned with the identities of physical-data-center compo-
nents used to execute particular VMs. Furthermore, the
virtual-data-center management server 706 includes func-
tionality to migrate running VMs from one physical server
to another in order to optimally or near optimally manage
device allocation, provides fault tolerance, and high avail-
ability by migrating VMs to most effectively utilize under-
lying physical hardware devices, to replace VMs disabled by
physical hardware problems and failures, and to ensure that
multiple VMs supporting a high-availability virtual appli-
ance are executing on multiple physical computer systems
so that the services provided by the virtual appliance are
continuously accessible, even when one of the multiple
virtual appliances becomes compute bound, data-access
bound, suspends execution, or fails. Thus, the virtual data
center layer of abstraction provides a virtual-data-center
abstraction of physical data centers to simplify provisioning,
launching, and maintenance of VMs and virtual appliances
as well as to provide high-level, distributed functionalities
that involve pooling the devices of individual physical
servers and migrating VMs among physical servers to
achieve load balancing, fault tolerance, and high availability.

[0053] FIG. 8 shows virtual-machine components of a
virtual-data-center management server and physical servers
of a physical data center above which a virtual-data-center
interface is provided by the virtual-data-center management
server. The virtual-data-center management server 802 and
a virtual-data-center database 804 comprise the physical
components of the management component of the virtual
data center. The virtual-data-center management server 802
includes a hardware layer 806 and virtualization layer 808,
and runs a virtual-data-center management-server VM 810
above the virtualization layer. Although shown as a single
server in FIG. 8, the virtual-data-center management server
(“VDC management server”) may include two or more
physical server computers that support multiple VDC-man-
agement-server virtual appliances. The virtual-data-center
management-server VM 810 includes a management-inter-
face component 812, distributed services 814, core services
816, and a host-management interface 818. The host-man-
agement interface 818 is accessed from any of various

Jun. 7, 2018

computers, such as the PC 708 shown in FIG. 7. The
host-management interface 818 allows the virtual-data-cen-
ter administrator to configure a virtual data center, provision
VMs, collect statistics and view log files for the virtual data
center, and to carry out other, similar management tasks. The
host-management interface 818 interfaces to virtual-data-
center agents 824, 825, and 826 that execute as VMs within
each of the physical servers of the physical data center that
is abstracted to a virtual data center by the VDC manage-
ment server.

[0054] The distributed services 814 include a distributed-
device scheduler that assigns VMs to execute within par-
ticular physical servers and that migrates VMs in order to
most effectively make use of computational bandwidths,
data-storage capacities, and network capacities of the physi-
cal data center. The distributed services 814 further include
a high-availability service that replicates and migrates VMs
in order to ensure that VMs continue to execute despite
problems and failures experienced by physical hardware
components. The distributed services 814 also include a
live-virtual-machine migration service that temporarily halts
execution of a VM, encapsulates the VM in an OVF pack-
age, transmits the OVF package to a different physical
server, and restarts the VM on the different physical server
from a virtual-machine state recorded when execution of the
VM was halted. The distributed services 814 also include a
distributed backup service that provides centralized virtual-
machine backup and restore.

[0055] The core services 816 provided by the VDC man-
agement server VM 810 include host configuration, virtual-
machine configuration, virtual-machine provisioning, gen-
eration of virtual-data-center alarms and events, ongoing
event logging and statistics collection, a task scheduler, and
a device-management module. Each physical server 820-
822 also includes a host-agent VM 828-830 through which
the virtualization layer can be accessed via a virtual-infra-
structure application programming interface (“API”). This
interface allows a remote administrator or user to manage an
individual server through the infrastructure API. The virtual-
data-center agents 824-826 access virtualization-layer server
information through the host agents. The virtual-data-center
agents are primarily responsible for offloading certain of the
virtual-data-center management-server functions specific to
a particular physical server to that physical server. The
virtual-data-center agents relay and enforce device alloca-
tions made by the VDC management server VM 810, relay
virtual-machine provisioning and configuration-change
commands to host agents, monitor and collect performance
statistics, alarms, and events communicated to the virtual-
data-center agents by the local host agents through the
interface API, and to carry out other, similar virtual-data-
management tasks.

[0056] The virtual-data-center abstraction provides a con-
venient and efficient level of abstraction for exposing the
computational devices of a cloud-computing facility to
cloud-computing-infrastructure users. A cloud-director man-
agement server exposes virtual devices of a cloud-comput-
ing facility to cloud-computing-infrastructure users. In addi-
tion, the cloud director introduces a multi-tenancy layer of
abstraction, which partitions VDCs into tenant-associated
VDCs that can each be allocated to a particular individual
tenant or tenant organization, both referred to as a “tenant.”
A given tenant can be provided one or more tenant-associ-
ated VDCs by a cloud director managing the multi-tenancy



US 2018/0157544 Al

layer of abstraction within a cloud-computing facility. The
cloud services interface (308 in FIG. 3) exposes a virtual-
data-center management interface that abstracts the physical
data center.

[0057] FIG. 9 shows a cloud-director level of abstraction.
In FIG. 9, three different physical data centers 902-904 are
shown below planes representing the cloud-director layer of
abstraction 906-908. Above the planes representing the
cloud-director level of abstraction, multi-tenant virtual data
centers 910-912 are shown. The devices of these multi-
tenant virtual data centers are securely partitioned in order to
provide secure virtual data centers to multiple tenants, or
cloud-services-accessing organizations. For example, a
cloud-services-provider virtual data center 910 is partitioned
into four different tenant-associated virtual-data centers
within a multi-tenant virtual data center for four different
tenants 916-919. Each multi-tenant virtual data center is
managed by a cloud director comprising one or more
cloud-director servers 920-922 and associated cloud-direc-
tor databases 924-926. Each cloud-director server or servers
runs a cloud-director virtual appliance 930 that includes a
cloud-director management interface 932, a set of cloud-
director services 934, and a virtual-data-center management-
server interface 936. The cloud-director services include an
interface and tools for provisioning multi-tenant virtual data
center virtual data centers on behalf of tenants, tools and
interfaces for configuring and managing tenant organiza-
tions, tools and services for organization of virtual data
centers and tenant-associated virtual data centers within the
multi-tenant virtual data center, services associated with
template and media catalogs, and provisioning of virtual-
ization networks from a network pool. Templates are VMs
that each contains an OS and/or one or more VMs containing
applications. A template may include much of the detailed
contents of VMs and virtual appliances that are encoded
within OVF packages, so that the task of configuring a VM
or virtual appliance is significantly simplified, requiring only
deployment of one OVF package. These templates are stored
in catalogs within a tenant’s virtual-data center. These
catalogs are used for developing and staging new virtual
appliances and published catalogs are used for sharing
templates in virtual appliances across organizations. Cata-
logs may include OS images and other information relevant
to construction, distribution, and provisioning of virtual
appliances.

[0058] Considering FIGS. 7 and 9, the VDC-server and
cloud-director layers of abstraction can be seen, as discussed
above, to facilitate employment of the virtual-data-center
concept within private and public clouds. However, this
level of abstraction does not fully facilitate aggregation of
single-tenant and multi-tenant virtual data centers into het-
erogeneous or homogeneous aggregations of cloud-comput-
ing facilities.

[0059] FIG. 10 shows virtual-cloud-connector nodes
(“VCC nodes”) and a VCC server, components of a distrib-
uted system that provides multi-cloud aggregation and that
includes a cloud-connector server and cloud-connector
nodes that cooperate to provide services that are distributed
across multiple clouds. VMware vCloud™ VCC servers and
nodes are one example of VCC server and nodes. In FIG. 10,
seven different cloud-computing facilities are shown 1002-
1008. Cloud-computing facility 1002 is a private multi-
tenant cloud with a cloud director 1010 that interfaces to a
VDC management server 1012 to provide a multi-tenant

Jun. 7, 2018

private cloud comprising multiple tenant-associated virtual
data centers. The remaining cloud-computing facilities
1003-1008 may be either public or private cloud-computing
facilities and may be single-tenant virtual data centers, such
as virtual data centers 1003 and 1006, multi-tenant virtual
data centers, such as multi-tenant virtual data centers 1004
and 1007-1008, or any of various different kinds of third-
party cloud-services facilities, such as third-party cloud-
services facility 1005. An additional component, the VCC
server 1014, acting as a controller is included in the private
cloud-computing facility 1002 and interfaces to a VCC node
1016 that runs as a virtual appliance within the cloud
director 1010. A VCC server may also run as a virtual
appliance within a VDC management server that manages a
single-tenant private cloud. The VCC server 1014 addition-
ally interfaces, through the Internet, to VCC node virtual
appliances executing within remote VDC management serv-
ers, remote cloud directors, or within the third-party cloud
services 1018-1023. The VCC server provides a VCC server
interface that can be displayed on a local or remote terminal,
PC, or other computer system 1026 to allow a cloud-
aggregation administrator or other user to access VCC-
server-provided aggregate-cloud distributed services. In
general, the cloud-computing facilities that together form a
multiple-cloud-computing aggregation through distributed
services provided by the VCC server and VCC nodes are
geographically and operationally distinct.

Methods and Systems to Narrow a Search for
Potential Sources of Problems in a Distributed
Computing System

[0060] FIG. 11 shows an example of logging event mes-
sages in event-log files. In FIG. 11, a number of computer
systems 1102-1106 within a distributed computing system
are linked together by an electronic communications
medium 1108 and additionally linked through a communi-
cations bridge/router 1110 to an administration computer
system 1112 that includes an administrative console 1114.
As indicated by curved arrows, such as curved arrow 1116,
multiple components within each of the discrete computer
systems 1102-1106 as well as the communications bridge/
router 1110 generate event messages that are transmitted to
the administration computer 1112. Event messages may be
generated by application programs, operating systems, VMs,
guest operating systems, and other computer programs run-
ning on the computer systems 1102-1106 and the bridge/
router 1110. Event messages may be relatively directly
transmitted from a component within a discrete computer
system to the administration computer 1112 or may be
collected at various hierarchical levels within a discrete
computer system and then forwarded from an event-mes-
sage-collecting entity within the discrete computer system to
the administration computer 1112. The administration com-
puter 1112 collects and stores the received event messages in
a data-storage device or appliance 1118 as event-log files
1120-1124. Rectangles, such as rectangle 1126, represent
individual event messages. For example, event-log file 1120
may comprise a list of event messages generated within the
computer system 1102. Methods described below enable an
administrator, or other user, to display 1128 search results of
a limited search for potential sources of problems in the
distributed computing system based on volatility of certain
types of event messages.



US 2018/0157544 Al

[0061] FIG. 12 shows an example of a source code 1202
of an application program, an operating system, a VM, a
guest operating system, or any other computer program or
machine code. Rectangles, such as rectangle 1204, represent
a definition, a comment, a statement, or a computer instruc-
tion that expresses some action to be executed by a com-
puter. The source code 1202 includes log write instructions
that generate event messages when certain events predeter-
mined by the developer occur during execution of the source
code 1202. For example, source code 1202 includes an
example log write instruction 1206 that when executed
generates an event message 1 represented by rectangle 1208,
and a second example log write instruction 1210 that when
executed generates event message 2 represented by rect-
angle 1212. In the example of FIG. 2, the log write instruc-
tion 1206 is embedded within a set of computer instructions
that are repeatedly executed in a loop 1214. As shown in
FIG. 2, the same event message 1 is repeatedly generated
1216. The same type of log write instructions may also be
located in different places throughout the source code, which
in turn may create repeats of essentially the same type of
event message in the event-log file.

[0062] Note that the notation “log.write( )” is a general
representation of a log write instruction. In practice, the
form of the log write instruction varies for different pro-
gramming languages. In general, event messages are rela-
tively cryptic, including generally only one or two natural-
language words and/or phrases as well as various types of
text strings that represent file names, path names, and,
perhaps various alphanumeric parameters. In practice, a log
write instruction may also include the name of the source of
the event message (e.g., name of the application program or
operating system and version) and the name of the event-log
file to which the event message is written. Log write
instructions may be written in a source code by the devel-
oper of an application program or operating system in order
to record events that occur while an operating system or
application program is running as event messages. For
example, a developer may include log write instructions that
are executed when certain events occur, such as failures,
logins, or errors.

[0063] FIG. 13 shows an example of a log write instruc-
tion 1302. In the example of FIG. 13, the log write instruc-
tion 1302 includes arguments identified with *“$.” For
example, the log write instruction 1302 includes a time-
stamp argument 1304, a thread number argument 1305, and
an internet protocol (“IP”) address argument 1306. The
example log write instruction 1302 also includes text strings
and natural-language words and phrases that identify the
type of event that triggered the log write instruction, such as
“Repair session” 1308. The text strings between brackets “[
17 represent file-system paths, such as path 1310. When the
log write instruction 1302 is executed, parametric values are
assigned to the arguments and the text strings and natural-
language words and phrases are stored as an event message
in an event-log file.

[0064] FIG. 14 shows an example of an event message
1402 generated by the log write instruction 1302. The
arguments of the log write instruction 1302 are assigned
numerical parameters that are recorded in the event message
1402 at the time the event message is written to the event-log
file. For example, the time stamp 1304, thread 1305, and IP
address 1306 of the log write instruction 1302 are assigned
corresponding numerical parameters 1404-1406 in the event

Jun. 7, 2018

message 1402. The time stamp 1404, in particular, repre-
sents the date and time the event message is generated. The
text strings and natural-language words and phrases of the
log write instruction 1302 also appear unchanged in the
event message 1402 and may be used to identify the type of
event that occurred during execution of the application
program or operating system.

[0065] As event messages are received at the administra-
tion computer 1112, the event messages are stored in event-
log files in the order in which the event messages are
received. FIG. 15 shows a small, eight-entry portion of an
event-log file 1502. In FIG. 15, each rectangular cell, such
as rectangular cell 1504, of the portion of the event-log file
1502 represents a single stored event message. For example,
event message 1502 includes a short natural-language
phrase 1506, date 1508 and time 1510 numerical parameters,
as well as, a numerical parameter 1512 that appears to
identify a particular host computer.

[0066] The text strings and natural-language words and
phrases of each event message describe a particular type of
event called an “event type.” For example, the text strings
and natural-language words and phrases, called “non-para-
metric tokens,” of the event message 1402 shown in FIG. 14
identify the event type. As explained above, each time the
log write instruction 1302 of FIG. 13 is executed, only the
parameter values are changed, such as the time and date. The
non-variable text strings and natural-language words and
phrases (i.e., non-parametric tokens) are the same for each
event message generated by the log write instruction 1302
and stored in the event-log file. Event-type analysis may be
used to identify the event type of each event message based
on the non-parametric tokens, and event messages of the
same event type may be counted. A record of the different
event types and number of each event type may be recorded
in an event-type log file.

[0067] FIG. 16 shows an example of handling event
messages as the event messages are received at the admin-
istration computer system 1112. In block 1601, event mes-
sages, such as event message 1602, are recorded in an
event-log file 1603. In block 1604, each event message is
subject to event-type analysis in order to determine the event
type of the event message. Event-type analysis determines
the non-parametric tokens of each event message. Event
messages having the same non-parametric tokens may be
regarded as being of the same event type. For example, event
message 5 1605 belongs to an event type denoted by “event
type 5,” event message 2 1606 belongs to an event type
denoted by “event message 2,” and event message 1 1607
belongs to an event type denoted by “event message 1.” In
block 1608, the count of each event type is incremented. The
event types and associated counts of each event type are
recorded in an event-type log 1609.

[0068] The event types and associated counts may be
displayed in a graphical user interface (“GUI”) that enables
a user to identify a volatile event type. FIG. 17A shows an
example of a GUI 1702 that list the event types and count of
each event type collected with an observation time window.
Column 1704 list each the event types. Column 1706 lists
the associated count of each event type recorded in the
observation time window. The GUI 1702 includes a column
1708 that enables each event type to be selected for further
investigation. The GUI 1702 includes a scrollbar 1710 and
bar 1712 that enables a user to scroll up and down through
the list of event types and associated counts in an effort to



US 2018/0157544 Al

identify one or more potential volatile event types. A volatile
event type is an event type that has suddenly or unexpectedly
increased in frequency relative to the frequency of other
event types generated over the observation time window.
The GUI 1702 includes a field 1714 for entering beginning
and ending time limits of a historical period of time and a
field 1716 for entering a number of time intervals the
historical period of time is to be partitioned into. The
historical period of time is the time period in which a search
is conducted to identify one or more potential sources of the
volatile event type. When an event type has been selected for
further investigation in column 1708 by clicking on an open
circle, such as open circle 1720, with a cursor 1718, the
fields of the historical period 1714 and the number of time
intervals 1716 are activated. FIG. 17B shows the GUI 1702
with the event type “event type 2 selected for further
investigation as indicated by shaded circle 1720. Fields are
for the historical period of time 1714 and number of time
intervals 1716 are filled.

[0069] In certain implementations, volatile event types
may be identified with a warning 1722 in order to aid a user
in deciding which of the event types may be a volatile event
type to investigate. The warning may be generated based on
the fraction or percentage of each event type generated over
the observation time window. Let {ET,**, .. ., ET, ",
..., ET\"} be a set of event-type counts of N different
event types generated within the observation time window,
where subscript n is an event type index, n=1, . . ., N, and
ET, " is the event-type count or number of times an
“event type n” is generated within the observation time
window. The fraction of each event type generated within
the observation time window may be calculated as follows:

ETCount (1a)
F) = o
E TTOT

[0070] where the sum of the event-type counts is given by

N (1b)
ET;%"#’ - Z ET,fo"m

n=1

When the fraction of an event type satisfies the following
condition:

Fn)>Thgr ()]

where Th,, is a volatility threshold with a value between
zero and one, a warning may be displayed in the GUI 1702
next to, or within, the field of the event type in order to aid
the user in identifying which of the event types may be a
volatile event type. In the example of FIGS. 17A-17B, the
fraction F(2) of the “event type 2” is greater than Th,,. As
a result, the warning “Volatile” 1722 is displayed within the
field of the “event type 2.”

[0071] After the event type has been selected and values
for the historical period of time and number of time intervals
have been entered as described above with reference to FIG.
17B, the historical period of time is partitioned into time
internals according to the number of selected time intervals.
FIG. 18 shows an example of a historical period of time
represented by a horizontal line 1802. The beginning time
1804 of the historical period is denoted by Tg,.. The end

Jun. 7, 2018

time 1806 of the historical period is denoted by T, . The
historical period is partitioned into time intervals of approxi-
mately equal duration AT, where AT=(T,, ~T5,,)/M and M
is the number of time intervals. The time intervals are
represented by line segments 1808-1811.

[0072] FIG. 19 shows an example of determining a fre-
quency of event messages of an event-log file 1902 with a
selected event type in time intervals of a historical period of
time. Event messages are represented by rectangles, such as
rectangle 1904. Lines 1906 and 1908 mark the beginning
and ending times, Tj,, and T, , of the historical period of
time 1910. Event messages with time stamps in a time
interval [Ty, +(m-DAT, T4, +mAT], where m=1, . . . , M,
are subjected to event-type analysis in order to determine the
event type of each event message 1912. Event messages
with the same event type as the selected event type are
counted to give the frequency of the selected event type in
the time interval [Ty, +(m-1)AT, T, +mAT]. In the
example of FIG. 19, selected “event type 2” event messages
of'the event-log file 1902 are denoted by “event message 2.”
A set of event messages 1912 with time stamps in the time
interval [Ty, ., T5,+AT] are subjected to event-type analysis
in order to determine the event type of each event message
in the set of event messages 1912. Event messages with the
same event type as selected “event type 2” are counted to
give a frequency of “1” for the “event type 2” in the time
interval [Tg,,, Tg, +AT]. The frequency of “event type 27
event messages in the set of event messages 1914 with time
stamps in the time interval [Ty, +AT, Tp,  +2AT] is “2.” The
frequency of “event type 2” event messages in the set of
event messages 1916 with time stamps in the time interval
[Tpog+2AT, T +3AT] is “3.7

[0073] The frequencies of event messages that match the
selected event type may be displayed in a GUI. FIG. 20
shows an example of GUI display of frequencies of event
messages that match a selected event type. Horizontal axis
2004 represents time. Vertical axis 2006 represents fre-
quency of selected event type. Bars represent the frequency
of event messages with the same event types as the selected
event type generated within a time interval of the historical
period of time determined as described above with reference
to FIG. 19. For example, bar 2008 represents the frequency
of' event messages with an event type that matches the event
type of the selected even type generated within a time
interval [T,,T,] 2010, where T,=+AT. The GUI 2002
enables a user to click on a bar in order to reveal the number
of'event messages generated within sub-time intervals of the
time interval associated with the bar. For example, the bar
2008 represents the greatest increase in event messages of
the time intervals and may be a place to begin searching for
a problem. When a user clicks on the bar 2008 using cursor
2012, a separate window is displayed to reveal the number
of'event messages generated within sub-time intervals of the
time interval [T, T,] 2010. The user may input a selected
number of sub-time intervals in field 2014.

[0074] FIG. 21 shows a GUI 2102 that displays a bar
graph 2104 of frequencies of event messages generated in
sub-time intervals of a selected time window. Horizontal
axis 2106 represents an expansion of the time interval [T,
T,] 2010 shown in FIG. 20. Vertical axis 2108 represents
event message frequency of the event messages. The
selected time interval is partitioned into sub-time intervals of
duration At. The duration of the sub-time intervals may be
determined by At=(T,-T, /K, where K represents a number



US 2018/0157544 Al

of user selected number of sub-time intervals of the time
interval [T, T,] 2010. The event-log file is searched for
event messages generated within each of the sub-time inter-
vals. The event messages with time stamps that lie with a
sub-time interval are counted and displayed as a shaded bar
in the bar graph 2104. For example, shaded bar 2108
represents the total number of event messages generated
with time stamps in the selected sub-time interval [t;, t,]
2110. A user may investigate the event messages generated
within a sub-time interval by clicking on a shaded bar of the
bar graph 2104. For example, when a user clicks on shaded
bar 2108 using a cursor 2112, a window 2114 that list the
event messages generated within the sub-time interval 2110
is displayed. The window 2114 includes a scrollbar 2116 and
bar 2118 that enables a user to scroll through different types
of event messages. In the example of FIG. 21, the time
stamps of the event messages displayed in the window 2114
include time stamps denoted by TS, where the subscript j is
a positive integer index and the time stamps satisty the
condition t,<TS<t,. The user may scroll through the event
messages to try and identify an event message that may
indicate the cause of the increased frequency of the “event
message 2.” In other implementations, the event-type analy-
sis may be applied to each of the event messages in a
selected to sub-time interval in order to identify any event
types that are indications of problems, such as Errors or
Failures. For example, certain event types may be generated
when a particular type of error or failure occurs.

[0075] Inother implementations, the time interval with the
greatest increase in frequency of the selected event may be
indicated in order to aid a user. FIG. 22A shows a plot of
frequencies of event messages with an event type that
matches a selected event type. Horizontal axis 2202 repre-
sents time. Vertical axis 2204 represents frequency of a
selected event type. Solid dots represent the frequencies of
the event messages that match the selected event type
described above with reference to FIG. 20. For example, dot
2206 represents the frequency of event messages with an
event type that matches the event type of the selected even
type generated within a time interval [T, T,] 2010, where
T,=T,+AT and corresponds to the bar 2008 in FIG. 20. The
slopes of lines connecting the frequencies of adjacent time
intervals are used to identify a time interval of interest. The
slope of frequencies of adjacent time intervals may be
calculated as follows:

_ fi+1 _fi (3)
Siv1i = AT
[0076] where
[0077] i=1,..., M-1; and

[0078] {,,, and f, are frequencies of event messages with
an event type that matches a selected event type in
adjacent time intervals.

For example, in FIG. 22, the slop of the line 2208 connecting

frequencies )5 and f)4 of adjacent time intervals is S,4 ;5

2210. The maximum slope is identified as S, ,=max{S,,

1}, The time interval with the frequency f,,, corre-

sponding to the maximum S,,,, , may be used to highlight

the bar of the bar graph in the GUI as having the largest
increase in event messages with an event type that matches
the selected event type. FIG. 22B shows a GUI 2212 with

the bar graph shown in GUI of FIG. 20. The bar 2008 that

Jun. 7, 2018

corresponds to the largest increase in event messages is
hash-marked in order to aid a user in identifying a time
interval. The user may then click on the hash marked bar
2008 to obtain the GUI 2102 shown in FIG. 21.

[0079] FIG. 23 shows a control-flow diagram of a method
to narrow a search for potential sources of problems in a
distributed computing system. In block 2301, a routine
“identify volatile event type in event-log file” is called. The
volatile event type is an event type that unexpectedly
increased in frequency over an observation time window, as
described above with reference to FIGS. 17A-17B. In block
2302, a routine “determine frequencies of event messages
with same event type as the volatile event type in time
intervals™ of a historical period of time is called. In block
2303, a routing “identify a time interval with largest increase
in frequency of volatile event type” is called. In block 2304,
a routine “determine frequencies of event messages in
sub-time intervals of identified time interval” is called. In
block 2305, a list of event messages in a selected sub-time
interval of the selected time interval are displayed, as
described above with reference to FIG. 22B.

[0080] FIG. 24 shows a control-flow diagram of the rou-
tine “identify volatile event type in event-log file” called in
block 2301 of FIG. 23. A loop beginning with block 2401
repeats the operations of blocks 2402-2410 for each event
message of an event-log file generated in an observation
time window. In block 2402, event-type analysis is deter-
mined the event type of each event message as described
above with reference to FIG. 19. In block 2403, an event-
type count associated with the event type is incremented. In
decision block 2402, the operations represented by blocks
2402 and 2403 are repeated for another event message. In
block 2405, the event-type counts are summed as described
above with reference to Equation (1b). A loop beginning
with block 2406 repeats the operations represented by block
2407-2410 for each event type. In block 2407, a fraction
F(n) of an event type generated in the observation time
window is calculated as described above with reference to
Equation (1a). In decision block 2408, when the fraction
F(n) satisfies the condition given by Equation (2), control
flows to block 2409 and the event type is identified as being
a volatile event type. In decision block 2410, the operations
of blocks 2407-2409 are repeated for another event type.

[0081] FIG. 25 shows a control-flow diagram of the rou-
tine “determine frequencies of event messages with same
event type as the volatile event type in time intervals” called
in block 2302 of FIG. 23. In block 2501, a historical period
oftime is received as described above with reference to FIG.
17B. In block 2502, a number of time interval, M, is
received as described above with reference to FIG. 17B. In
block 2503, duration of time intervals of the historical period
of time is calculated as described above with reference to
FIG. 18. In block 2504, the historical period of time is
partitioned into M time intervals, as described above with
reference to FIG. 18. A loop beginning with block 2505
repeats the operations represented by blocks 2506-2509 for
each time interval. In block 2506, event messages with time
stamps in the time interval are identified. In block 2507,
event-type analysis is used to identify the event type of each
event message with a time stamp in the time interval. In
block 2508, frequency of event messages that match volatile
event type are determined, as described above with reference
to FIG. 19. In decision block 2509, the operations repre-
sented by blocks 2506-2508 are repeated for another time



US 2018/0157544 Al

interval of the historical period of time. In block 2510,
frequencies of the event types that match the volatile event
type are displayed in time intervals as described above with
reference to FIG. 20.

[0082] FIG. 26 shows a control-flow diagram of the rou-
tine “identify a time interval with largest increase in fre-
quency of volatile event type” called in block 2303 of FIG.
23. In block 2601, a maximum slope parameter S,,,. is
initialized to zero. A loop beginning with block 2602 repeats
the operations for each the time intervals indexed i=1, . . .
M-1 as described above with reference to FIG. 22A. In
block 2603, a slope S,,, , is calculated as described above
with reference to Equation (3). In decision block 2604, when
the slope S,,, , is greater than S, ., control flows to block
2605. In block 2605, the maximum slope parameter S, is
set equal to the slope S, .. In block 2606, a time interval of
the frequency f;,, is identified as having the largest fre-
quency. In block 2607, the time interval index i is incre-
mented. In decision block 2608, the operations represented
by blocks 2603-2607 are repeated until the time interval
index i equals M.

[0083] FIG. 27 shows control-flow diagram of the routine
“determine frequencies of event messages in sub-time inter-
vals of identified time interval” called in block 2304 of FIG.
23. In block 2701, a number of sub-time intervals K is
received as described above with reference to FIG. 20. In
block 2702, duration of sub-time intervals is calculated as
described above with reference to FIG. 21. In block 2703,
the time interval is partitioned as described above with
reference to FIG. 21. A loop beginning with block 2704
repeats the operations represented by blocks 2705-2707 for
each sub-time interval of the time interval In block 2705,
event messages with time stamps in the sub-time interval are
identified. In block 2706, frequency of event messages in the
sub-time interval are determined, as described above with
reference to FIG. 21. In decision block 2707, the operations
represented by blocks 2705 and 2706 are repeated for
another sub-time interval. In block 2708, the frequencies of
event messages in the sub-time intervals are displayed, as
described above with reference to FIG. 21.

[0084] The methods described above may be stored in a
computer readable medium as machine readable instructions
and executed on the computer system described above with
reference to FIG. 1.

[0085] Itis appreciated that the previous description of the
disclosed embodiments is provided to enable any person
skilled in the art to make or use the present disclosure.
Various modifications to these embodiments will be readily
apparent to those skilled in the art, and the generic principles
defined herein may be applied to other embodiments without
departing from the spirit or scope of the disclosure. Thus, the
present disclosure is not intended to be limited to the
embodiments shown herein but is to be accorded the widest
scope consistent with the principles and novel features
disclosed herein.

1. A methods to narrow a search for potential sources of
problems in a distributed computing system, the method
comprising:

identifying a volatile event type of event messages

recorded in an event-log file recorded in an observation
time window;

determining frequencies of event messages in the event-

log file with same event type as the volatile event type
in time intervals of a historical period of time;

Jun. 7, 2018

identifying a time interval of the time intervals of the
historical period of time with a largest increase in
frequency of event messages;

determining frequencies of event messages of the event-

log file in sub-time intervals of the time interval with
the largest increase in frequency of event messages as
the volatile event type; and

displaying a list of event messages of the event-log file in

a selected sub-time interval of the sub-time intervals of
the time interval.

2. The method of claim 1, wherein identifying the volatile
event type of event messages recorded in the event-log file
comprises:

determining event type of each event message generated

in the observation time window:

determining frequency of each event type generated in the

observation time window;

for each event type, calculating a fraction of the event

type generated with the observation time window based
on the frequency of the event type and total number of
event messages generated in the observation time win-
dow; and

when the fraction of an event type is greater that a

volatility threshold, the event type is identified as the
volatile event type.

3. The method of claim 1, wherein determining the
frequencies of event messages in time intervals of the
historical period of time comprises:

partitioning the historical period of time into the time

intervals, each time interval corresponding to a differ-
ent time period of the historical period of time and
having the same duration;

for each time interval,

determining an event type of each event message with
a time stamp in the time interval;

determining frequency of event messages the same
event type as the volatile event type.

4. The method of claim 1, further comprises:

displaying each frequency of the event message with the

same event type as the volatile event messages in the
time intervals in a graphical user interface with,
wherein the graphical user interface allows a user to
select one of the time intervals for further inspection;
and

displaying frequencies of the event messages of the

event-log file in a selected time interval in the graphical
user interface.

5. The method of claim 1, wherein identifying the time
interval with the largest frequency of event messages with
the same event type as the volatile event type comprises:

calculating a slope of a pair of frequencies of event

messages for each pair of adjacent time intervals;
determining a largest slope of the slopes calculated for
each pair of frequencies; and

identifying the time interval with the

6. The method of claim 1, wherein determining the
frequencies of event messages of the event-log file in the
sub-time interval of the time interval with the largest
increase in frequency comprises:

receiving a constant that represents a number of sub-time

intervals to partition the time interval into;

dividing a duration of the time interval by the constant to

generate a duration of the sub-time intervals;



US 2018/0157544 Al
12

partitioning the time interval into the sub-time intervals,
each sub-time interval corresponding to a different time
period of the time interval and having the same dura-
tion; and

for each sub-time interval, determining a frequency of

event messages generated with the sub-time interval.

7. The method of claim 1, further comprising:

performing event-type analysis of the list of event mes-

sages in the selected sub-time interval;

identifying event messages that are indicators of errors or

failures based on the event types of the event messages;
and

displaying the event messages that are indicators of errors

or failures in the sub-time interval.

8. A system to determine potential sources of problems in
a distributed computing system, the system comprising:

one or more processors;

one or more data-storage devices; and

machine-readable instructions stored in the one or more

data-storage devices that when executed using the one

or more processors controls the system to carry out

identifying a volatile event type of event messages
recorded in an event-log file recorded in an obser-
vation time window;

determining frequencies of event messages in the
event-log file with same event type as the volatile
event type in time intervals of a historical period of
time;

identifying a time interval of the time intervals of the
historical period of time with a largest increase in
frequency of event messages;

determining frequencies of event messages of the
event-log file in sub-time intervals of the time inter-
val with the largest increase in frequency of event
messages as the volatile event type; and

displaying a list of event messages of the event-log file
in a selected sub-time interval of the sub-time inter-
vals of the time interval.

9. The system of claim 8, wherein identifying the volatile
event type of event messages recorded in the event-log file
comprises:

determining event type of each event message generated

in the observation time window:

determining frequency of each event type generated in the

observation time window;

for each event type, calculating a fraction of the event

type generated with the observation time window based
on the frequency of the event type and total number of
event messages generated in the observation time win-
dow; and

when the fraction of an event type is greater that a

volatility threshold, the event type is identified as the
volatile event type.

10. The system of claim 8, wherein determining the
frequencies of event messages in time intervals of the
historical period of time comprises:

partitioning the historical period of time into the time

intervals, each time interval corresponding to a differ-
ent time period of the historical period of time and
having the same duration;

for each time interval,

determining an event type of each event message with
a time stamp in the time interval;

Jun. 7, 2018

determining frequency of event messages the same
event type as the volatile event type.

11. The system of claim 8, further comprises:

displaying each frequency of the event message with the

same event type as the volatile event messages in the
time intervals in a graphical user interface with,
wherein the graphical user interface allows a user to
select one of the time intervals for further inspection;
and

displaying frequencies of the event messages of the

event-log file in a selected time interval in the graphical
user interface.

12. The system of claim 8, wherein identifying the time
interval with the largest frequency of event messages with
the same event type as the volatile event type comprises:

calculating a slope of a pair of frequencies of event

messages for each pair of adjacent time intervals;
determining a largest slope of the slopes calculated for
each pair of frequencies; and

identifying the time interval with the

13. The system of claim 8, wherein determining the
frequencies of event messages of the event-log file in the
sub-time interval of the time interval with the largest
increase in frequency comprises:

receiving a constant that represents a number of sub-time

intervals to partition the time interval into;
dividing a duration of the time interval by the constant to
generate a duration of the sub-time intervals;

partitioning the time interval into the sub-time intervals,
each sub-time interval corresponding to a different time
period of the time interval and having the same dura-
tion; and

for each sub-time interval, determining a frequency of

event messages generated with the sub-time interval.

14. The system of claim 8, further comprising:

performing event-type analysis of the list of event mes-

sages in the selected sub-time interval;

identifying event messages that are indicators of errors or

failures based on the event types of the event messages;
and

displaying the event messages that are indicators of errors

or failures in the sub-time interval.

15. A non-transitory computer-readable medium encoded
with machine-readable instructions that implement a method
carried out by one or more processors of a computer system
to perform the operations of

identifying a volatile event type of event messages

recorded in an event-log file recorded in an observation
time window;
determining frequencies of event messages in the event-
log file with same event type as the volatile event type
in time intervals of a historical period of time;

identifying a time interval of the time intervals of the
historical period of time with a largest increase in
frequency of event messages;

determining frequencies of event messages of the event-

log file in sub-time intervals of the time interval with
the largest increase in frequency of event messages as
the volatile event type; and

displaying a list of event messages of the event-log file in

a selected sub-time interval of the sub-time intervals of
the time interval.



US 2018/0157544 Al

16. The medium of claim 15, wherein identifying the
volatile event type of event messages recorded in the event-
log file comprises:

determining event type of each event message generated

in the observation time window:

determining frequency of each event type generated in the

observation time window;

for each event type, calculating a fraction of the event

type generated with the observation time window based
on the frequency of the event type and total number of
event messages generated in the observation time win-
dow; and

when the fraction of an event type is greater that a

volatility threshold, the event type is identified as the
volatile event type.

17. The medium of claim 15, wherein determining the
frequencies of event messages in time intervals of the
historical period of time comprises:

partitioning the historical period of time into the time

intervals, each time interval corresponding to a differ-
ent time period of the historical period of time and
having the same duration;

for each time interval,

determining an event type of each event message with
a time stamp in the time interval;

determining frequency of event messages the same
event type as the volatile event type.

18. The medium of claim 15, further comprises:

displaying each frequency of the event message with the

same event type as the volatile event messages in the
time intervals in a graphical user interface with,
wherein the graphical user interface allows a user to
select one of the time intervals for further inspection;
and

Jun. 7, 2018

displaying frequencies of the event messages of the
event-log file in a selected time interval in the graphical
user interface.

19. The medium of claim 15, wherein identifying the time
interval with the largest frequency of event messages with
the same event type as the volatile event type comprises:

calculating a slope of a pair of frequencies of event

messages for each pair of adjacent time intervals;
determining a largest slope of the slopes calculated for
each pair of frequencies; and

identifying the time interval with the

20. The medium of claim 15, wherein determining the
frequencies of event messages of the event-log file in the
sub-time interval of the time interval with the largest
increase in frequency comprises:

receiving a constant that represents a number of sub-time

intervals to partition the time interval into;
dividing a duration of the time interval by the constant to
generate a duration of the sub-time intervals;

partitioning the time interval into the sub-time intervals,
each sub-time interval corresponding to a different time
period of the time interval and having the same dura-
tion; and

for each sub-time interval, determining a frequency of

event messages generated with the sub-time interval.

21. The medium of claim 15, further comprising:

performing event-type analysis of the list of event mes-

sages in the selected sub-time interval;

identifying event messages that are indicators of errors or

failures based on the event types of the event messages;
and

displaying the event messages that are indicators of errors

or failures in the sub-time interval.

#* #* #* #* #*



