US 20170160984A1

a9y United States

a2y Patent Application Publication (o) Pub. No.: US 2017/0160984 A1

Frank et al. (43) Pub. Date: Jun. 8, 2017
(54) MEMORY FABRIC OPERATIONS AND (52) US. CL
COHERENCY USING FAULT TOLERANT CPC GO6F 3/0653 (2013.01); GOGF 3/0604
OBJECTS (2013.01); GO6F 3/064 (2013.01); GO6F
3/0673 (2013.01)
(71) Applicant: Ultrata, LL.C, Vienna, VA (US) (57) ABSTRACT
(72) Inventors: Steven Frank, Boulder, CO (US); According to one embodiment, a hardware-based processing
Larry Reba k. Vienna, VA (US) ’ node of a plurality of hardware-based processing nodes in an
’ ’ object memory fabric can comprise a memory module
storing and managing a plurality of memory objects in a
(21) Appl. No.: 15/371,440 hierarchy of the object memory fabric. Each memory object
can be created natively within the memory module, accessed
o using a single memory reference instruction without Input/
(22) Filed: Dec. 7, 2016 Output (I/O) instructions, and managed by the memory
module at a single memory layer. The object memory fabric
Related U.S. Application Data can distribute and track the memory objects across the
.. .. hierarchy of the object memory fabric and the plurality of
(60) Provisional application No. 62/264,652, filed on Dec. hardwarz-based prgcessing ng}:ies on a per-ol?ject bta}llsis.
8, 2015. Distributing the memory objects across the hierarchy of the
object memory fabric and the plurality of hardware-based
Publication Classification processing nodes can comprise storing, on a per-object
basis, each memory object on two or more nodes of the
(51) Int. CL plurality of hardware-based processing nodes of the object
GO6F 3/06 (2006.01) memory fabric.

COMPONENT

208

US 2017/0160984 A1

(My 1ouid)
ASTE

Wy
o

YIOMIBN [BDISAUd

|

D

i

abeioig MS abeioig ST MS

NIOMIBN HIOMIBN

=

uoneassiday abeiois onejuasaiday abeioig

|

]
poeIresTIde IO IUSSIIdT

[

Jun. 8,2017 Sheet 1 of 39

LIOISASOlL LUSISASSl
UONRIUIoSTIOTs = OoneIUesSTivTy
o5eaeIB(] __ aseqele(]
uonejussaidey ddy o s o4 | uUOpRIUBSBIdEY ddy
Gt
(aiaym) Alooaii((aieym) Aioosai
5 g S R g
Q&q Q&{ 0‘9000“0@&&{ Q&{ QQ{ 2 &8 & B & B & B & QQ<

ko

jaaag AlpoWIUIoD

JBAIBE AIPOLILIOT

Patent Application Publication

Patent Application Publication Jun. 8,2017 Sheet 2 of 39 US 2017/0160984 A1

e

40

DATABASE
218

Darasase
214

COMPONENT COMPONENT
220

SERVER
212

FIG. 2

US 2017/0160984 A1

Jun. 8,2017 Sheet 3 of 39

Patent Application Publication

€ '9id

IV

45y §7% ferid
salvodny] |swyasig] | $0334
INZAT INBAT VivEl
\ \ A \ 4
2L

WILSASENS SNOLLYOINAWKOD

8L
WHLSASENG 3DYVEOLE
(44
— VIQRW 3HVH0LS
MNALSAG ONILVMRLO Favaviy
~HELAGNOD
i€
VI¥(] WodE0Ed
— ooe
ZiE MICOVEE VIOEN
BWVNOUH ROLLYOM iy HOWOLS
G Fevavay
HILAGNO

AHCHER WHLSAR

AU

208
WILSASHNG Of

90T
1NN
NOUYEETI00Y
MBSO

3N DONISHHOONG

PEe FANS
Likn LINA
ONISSTQDUE 8NS DNISEIDIOMG BNS
T THOYTS IHOVD FHOVD
L FHO 3HOD 3INOD
EZ0

US 2017/0160984 A1

Jun. 8,2017 Sheet 4 of 39

Patent Application Publication

oiE iy 50ty ey iy q0iF BOF
ddy ddy ddy ddy ddy dady | e e e e ddy
507

olge- Alows

GOy

Patent Application Publication

P

Jun. 8,2017 Sheet 5 of 39

fow]
lﬁ‘\\ »»»»» —
.\‘
.,\’
~
XQ__ A2
3 <"
4]
.-sg“ %t"' [
| & D] e ~ < ﬁf
W " 3 %o uf’
] H \\ 4 <<
4y ()] 3 ¢
ot o s
v
m 3 V4 o 2
w@ f'\ Q_q;;
g Q ,!’ \\ /ﬁ<£
4] wfoccd? ¢ 3
o A
Q G b ’ b 5
m Y s o T
et i £ _Fo v
Q O VA i
= & 8-
o] —
3008008 S Q.. 1‘.;
R V] B —— 3 O OF
e Li. 4L
O > 'l
b o,
O /,/ | -l a B
E ’/ g}& -
O A
PN
P .
o @

US 2017/0160984 A1

US 2017/0160984 A1

Jun. 8,2017 Sheet 6 of 39

Patent Application Publication

9618,

9 "'Old

asig, °Glg 4Gig 9GLG. TN PSS Gl USlg BGLG
\\\ﬁ ‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘ > - S NN Y e — P ,, ///,ﬂ
i T Ny A0 i Y i , ! f R
i b s el s Z|...|0| ¥ € .2 b0
1/ VY Y vV Y VY ddy ddy | ddy| | ddy
Ao AloWs AIOUID €9
WL W A cied Asouisiy 109ig0 BpoN
108{G0 8poN 109[00 SPON 1980 epoN |
e -~ o - ; P ’ /// i | \.\
m m oeg- / 5297 \\
JOIOY 029 1gmnoy
019 lelcilelg \ o palgo
- / N S
SI9 19IN0N
106090
o005
//, L

US 2017/0160984 A1

Jun. 8,2017 Sheet 7 of 39

Patent Application Publication

L 9Id

573

mﬁ N
BpON JUge4

BPON e

SPON oHGE
ATOUUSI

welao

SRON DLGR 4
AJOUIBIN

welgo

I8N0y
wslgO epoN

JBIN0Y
1eft0 spoN

Siz

Jnoy 1sigo
mwoz-ﬁc\

18I0 108ign epon-iBiul
janet doubilg o

4/_/ 004

=
2 8 "Oid
3
S “apoN
r~
> mmm\v
(g\]
2 -
rig . I
o \ . 108
- 118
=]
om S
g i g8
wn :
~ Va SB3pON
> 028
(g\]
<
£ b e
—
98 = A
148 o 908
‘/m% ;/Em ;/m%
SSaIpPY 1e21SAlYd SSIUPPY [BNHIA (v1) sseippy dsuiqed
sjueuwifag Alowisp-uj Aowsly syoelgo Alowep-uj

Z/ 008

Patent Application Publication

US 2017/0160984 A1

Jun. 8,2017 Sheet 9 of 39

Patent Application Publication

6 "Old
1es40lqo (Lueislqo) gi welqo
i IRERGE FRAS
1983000 (ueislao) aiwelqo
i} (2L Ae At
1L g llele) (Leislqo) ai welqo
& FA il
it igllelg (veislao) gl welqo
4 ST LEL
184040 {(Weislqo) g welao
& 88 0 LEL
1@syolqo (Leislao) gl welao
i Ly Lol
016

(J81uiod ss8IppPY 108lg0 Wslsy0)) J8iuiod YOI

.,.,“.w
LR

G086
ozZIg

198{G0
4[/ 006

US 2017/0160984 A1

Jun. 8,2017 Sheet 10 of 39

Patent Application Publication

0L "Sid
\mh.mo Wil @poN S440 WSl mvo% \w:wo LWE BpoN _ _ SIDJOJUO0D AJOUISUI SPON L
; | | osot ||] | 0g01
I Al M I N N AlCWay Aowspy |
Ol Of o] olRIN o] Ol 108[a0 4WO0 1ela0 4o
AR A A Vo
xepupfao || || xeputfao ||| xeputfan || | xapuj f[ao
SPON 4O SPON 4NO BPON JWO SPCHN HJINO j
OrQgL // \ OFoL \
\ / \ /
xapuj fao xspu} [go
\:.
oz | ON9H ON orr)\ 19INoH ON UNE £o07)
xapu 90
. JeInoy ONI ™
GLOL
xapuy 13890
ABIION JIN}
fanot8yBi of
AN 0001

L "Old

901 L Alaoy punolbyoeg Jo
6041 158NnboYy 10858004

US 2017/0160984 A1

- v
S
z IdV B 19 Wy 9%
m ayoen 18207 !
2 SiLl A
yseld 8207 OELL
— NooU) ‘SSIN
<
(g\]
= | 0Lt
m. s Buissaippy ereq
= @wvl Buiyoes xspuiyxepu) LISy HH
srib L Aausiayon
S T uopsioag/Bunnoy Arouwisiy
m GGLk welqo 4/
g 0941 oeli
b= HH Yseid v
= G911
= ele(]
=
: oY N oo
= B SYOED
=
="

¢l "Old

G821 gpzi Alnioy punoibioeg io

Em.wmm sozi 1s9nbey J0ssen0Id

¥

1dv g AJOLBNUI 1280

US 2017/0160984 A1

N
O
=
[y

£l

m sLoBD Bunines/ssem08 wsiy
=]
a by Buissaippy
BUIYoBO/SSI00E WSIN
w . 1/ “ BURIORD XepulXapU|
= N KN e
A * _ Aouaseyon o7y
~ ‘
M * \Y v uoISIDeC/BUNNoY 1/
00”, Q874 ¢¢ / gadi T I
= wney ¥
E| r izl
jeay
\n - pPIBMO] L,
1824’ N D104 P o¥Zi
e R e ’ 0488
v Py 4 joA8] saybiH

O} SEIEARI]

0Z2ei

/_/Qown

Patent Application Publication

US 2017/0160984 A1

Jun. 8,2017 Sheet 13 of 39

Patent Application Publication

€L "Old

GLEL
{(Yd) 8ordg ssalppy [BOISAUY J0S58001d Ul IWYNQ

0EEL
/ / (eysisted) yseld

Jic1i gLgl
98] =38

Xapuy AIPLY

1welgn welgo
i8d 8+

YA
e, ..
0LEL)
(LI0d) @211 (110}
xapuy15elqo 12d gel] xepuj 1o8lgo

/_/Qcmh

US 2017/0160984 A1

Jun. 8,2017 Sheet 14 of 39

Patent Application Publication

PL "Old

Giri

{(pruD) Aowapy 1afgo jes 0 sy pRUD

......

oLyl

(110d) 8811
xapuj J98iqQ Jod

Oive OLEL GLFL
284} =3 g}
Xapuj X8pU| Xapuy|
18la0 walgn 108iq0
183 1834 J&d
GzrL \\\
SopL
{110}

28] X&pij pelan

US 2017/0160984 A1

Jun. 8,2017 Sheet 15 of 39

Patent Application Publication

V&l "Old

Aug 110d | (szislgojo voounpiesyo 1oolqo [8zISlqo |9dAl | 0jd 9PON LIOde — — —
i
Anu3 110 aiwslao sziglgo j=dAlg Xooid epoN LIQ< ~ — — ~
]
e w
JBIHOT frevrevevesninnnnanss o hoe cBINBAN- - - 4- BI04 BNBAN IBUOAT | wsied | 8TIQN | 8dAf

€/_/ 0054

US 2017/0160984 A1

Jun. 8,2017 Sheet 16 of 39

Patent Application Publication

gsl "9id
parasey adiy | JB9 POAISSSY <« — o
f
H
2oLBy Jes 2}LIS o0 asyo af winu{ us1py adAd
} ¥ 4887 1i0d 1B1S 001 | 18SH0 Jo8iq0D pPIyo } 887 110d< H
Eo
1BIN0Y §8a1 110d fogLimers sa 1950 199l00 jwinu | adAyd 1897 110d < - ”
Py
WO esT LI0d] =g yooig | 1esyo peiq) fwnu| seiunod | edAd e LiOd< - ;H
;
jeo71 110 ai welqo 9zISlqO | Jepmod [edAio | sooig e LIO < - ;”
// §
SNEAT] anjen’ aneAT 87IS | adhy

R

yeadal

\Q....}.o.%w.o\ i

s .xxf...vxﬁ.&wx»&kk

i ;

S8JAY M -Hoolg Jean

Z/Qmmw

9L "Old

049L —~Gi8) ~028L —~529] G081
Aawanwa -

GRS RIS DOV FAA PAR PNy

US 2017/0160984 A1

S S W = NO0I =
3
=
wnn
~
e
0 5
» # Nomg
=3
=
=}
J
7 %018 : ,
0$94 ASDLUSIN 1ESALL c00s £ mﬁﬁﬁ

4// 009¢

Patent Application Publication

US 2017/0160984 A1

Jun. 8,2017 Sheet 18 of 39

Patent Application Publication

brgzid

GLABISIAO 21 802:8

vz az1C

0

¢zt ueislao

bz &sl

: 0cii
{oordg S884pDY

108lgo JusisyoD)
SSAUPPY 4INO

Vil 'old

Ci/} gi/ezsign
giep-elan
w‘l
0
0iZ4
B1eQ
L-ez15la0
S0l 198G
walgD

Z/ 0GLi

US 2017/0160984 A1

Jun. 8,2017 Sheet 19 of 39

Patent Application Publication

a1 "9ld
0941 54
i a

0z15lq0 esgodiglao ai elgo 198[q0
0 A N Zb - 3y A A201d

\ §G14

aneds sssuppyY
0 L zi p-i s LTt

/_/Qm\.;

-
«
oy
X .
S gl 'Ol
e
<
=
e
&
72 b
- 1004 eag sob0u | Jo 3108611 9l/eShas
=)
e
S
= (eiep-gl0W
< eiqe 8la slowsy uonesydde
S Heat
= R 1LI9)SAS
z SIBUIO ‘swiesboid
~
= pauyep uonealddy soB6iy
a ‘siabBbi Jop)
oM DELBP WSISAS g1 anedyg
= uoisuedxy
ad peegad ‘sBeiyg uondAious
nd pejeiss ‘sbejd uoissalduwion
ad Ased
NI
MDD
gL8i
8713 10890 SHO0IE 184 b
anedg ss8ppY 10800 Waseyon 8L BIED-BISN 19550 %00Ig

V/mew
;Qcmw

Patent Application Publication

Patent Application Publication Jun. 8,2017 Sheet 21 of 39 US 2017/0160984 A1

1900\‘\
Meta-data 1905 \
opdef |e
5
8 gpabe
Micro-thread\ e Micro-thread 7907
FP | P | | FP | IP |
M:’Q?OJWG{JLQJ/ ‘1911J
__""/
B
g a
= b
- c
d
e
£

FIG. 19

Patent Application Publication Jun. 8,2017 Sheet 22 0of 39 US 2017/0160984 A1

2000 \’\
Object zo0s Meta-data

’/ 2015

load *fn{al b
Micro-thread) 2020

*fpla)

FIG. 20

US 2017/0160984 A1

Jun. 8,2017 Sheet 23 of 39

Patent Application Publication

............

11324

UOCISIBA [o]jeiRd

ﬂ

[G+3 =3 ppe |

ﬂ

| 4 (B)dy, peoy |

I
[=1 ppe |

M

| 3 {8)4y, peoj |

q

[p+d =4 PpE |
I

| P {9)04, peOY] |

ﬁ

| g (ejdj, peoj |

ﬂ

G0l
UOISIBA

jeLeg

f_/QQ“N

vée 9Old

e R SRR

158l Grod Y
ﬁmmno wpalao |
Ms

./...Vu, d

US 2017/0160984 A1

=)
« Tvee 0¥z
3 AowiRiy 1 | Aouwsp
S welgo NG | | PslaD 4W0
m .
» S el PURBIBORUND ALY 8
~
e
<
(g\]
=
g R I Y
= ¢ ...anw ThIEe : N DLEC] 0scc
WP joefa 0 «%& elo # &e % 6 el @“.om_uo. 10800
i Buy Buiry Ay
gize
BNy P8ia0 epoN-IsiUl

B
._ L\ - 5072

Z/ 0oce

Patent Application Publication

gZ¢ Old

wi;%\ SAET Y
,wow 0Cpaips T
.C H

siaon .

US 2017/0160984 A1

(=2
er;
S
=]
' g]
(o]
~N—
[-P]
[-P]
=
[90]
o~
A o T sesssssasnanr----~---~-~-ssnsansansnes SN St
[—] orce
a Aloiusiy
m 18I0 WO
=
J

BNy osiun wmazawwcw?
N 8022
L N L0072

i TAAA

Patent Application Publication

US 2017/0160984 A1

Jun. 8,2017 Sheet 26 of 39

Patent Application Publication

u.

W

&
4

(

\

N

e . 25..?}

SpON
m\ 188 pIEMO) / £¢ "Oid

\ weass
~. JeoisAud \/

e d
e,
[l S ey

S S i
i i,

i e

R SO

~Wesas NG ‘w{,{m
10 1eoisAyd
10 USHBUIGLUOD

. %ﬁ{ A

P, P

e, ..\..c.:.‘\s

B AN

e A TRPON
P "
W\ i

100y plemo} ¢
\ weas ;
AN ~. JBOISAYd - /

s

A1dNYXE H31LN0Y DIV d AHOWIW — SNV LS

US 2017/0160984 A1

Jun. 8,2017 Sheet 27 of 39

Patent Application Publication

e ‘Old

LS

BAIY

FeARRERE

: GRS
; ;

~-4iAdE EIEHIN
DS SISUM O
seeifiy Appouusuip

-Sysesse
seneya oBRI01 Y

o

_ {swory p=) N9EL
“Aiowispy 91had 9

BNON- LI
eas] soufiy o}

P AIDUIAY

NOILNTOS VAVA 9ig AHAVA L LONAd0Hd vivdl i

G¢ "Old

wmﬂﬁwm_._._._._._.___._._._._._._._._._. SuBus iy 5 950y S3pN-38l O
SAIGE R WIBE UESDIRT IBAES I At sisseye 1T v peebeiBly ity
eI I S

US 2017/0160984 A1

sEny s anlde

BERRERAR mm&n%m%&w

"

.,v..x......, o 3 m.mwm Mﬁw

or

L Ascwuspyg :

; »&wmﬁm U RE
o

Aoy ouged
SPONBINBY-IE |

ARETREED

Jun. 8,2017 Sheet 28 of 39

(408 &0l 118 8L
%mﬁaﬁ ﬁﬁ@ Ot

3 \aww&m HOHEE %ﬁﬁ@% PERENSY DUOES Al

Patent Application Publication

Patent Application Publication Jun. 8,2017 Sheet 29 of 39 US 2017/0160984 A1

conrdinatas MF Db
incaily & giobally gt MW
spreds

FIG. 26

US 2017/0160984 A1

Jun. 8,2017 Sheet 30 of 39

Patent Application Publication

2UsED

RS R FRIAPER P
seufis s op BBuy ciaBBin suopuop

P00 S0 siouRg

WINIG/3TNAON AHOWN3IIN

1 R P

;

SYAPERE P00
ssaBfiu sropuopy
S5a00r

PO W SRBUSTH

US 2017/0160984 A1

Jun. 8,2017 Sheet 31 of 39

NWIGQ/ZTNAON ASOWIW

Patent Application Publication

voDwE e ouliy
s g eBBuL Ty

US 2017/0160984 A1

BRTE

3 Gugpiy PERRILR

mmw EH T
LHEFEAA R wrﬁmm

Jun. 8,2017 Sheet 32 of 39

agyer AUSYY AR
ey B
BUGRT AoRNG
AICHOBR) S S
4 : Al NG TE
BT Y 00 PRENILEN P e
EYuSEId | (1do} ysejd
S1AGD) 971

sfinwns yopiy

(demnoyr) ¥31N0OY IQON

Patent Application Publication

US 2017/0160984 A1

Jun. 8,2017 Sheet 33 of 39

Patent Application Publication

B0

0 iSEs 0y
iy e Rl

D1

i U %wmww

yERD O D , gonac

WEpUDEY iy HEeH
S Feng) yoey

(181n0xU)
HA3LN0Y ORIV d AJOWEIN

US 2017/0160984 A1

Jun. 8,2017 Sheet 34 of 39

Patent Application Publication

L€ "Old

: LMY BNt
Purdesrasnoy Hy m&; EE AR

SIRPA R ey DUl 45

3 13y % punnsByoen

AU PR AUIDIE DO PEOILBIR

aipen ARUOY SBUR SRy AP Sy

ey Sury
BUDE AM0BIN
A3y U

A HSH

2l 9 L0 PR

OWH

91D 7€

L0 U

siinom varmy

(181noMu)
H41N0Y D1dgvd AHOWZN

ﬁmmm -
81409 821

US 2017/0160984 A1

Jun. 8,2017 Sheet 35 of 39

Patent Application Publication

¢€ 'Ol

(VO) doolg Alowsiy-ul

(WA 18907 ‘YO) s1oalqo Alowsin-u)

GeT
(VA 18207 'YO)
1BUIO AloWwan-u|

0cce
(VA 18207 'YO)
(] Aowap-ui

IeT
(VA 8207 'YO)
saji4 AJOWa-u]

N’
&3

Ot

(ayoen vd AQ payoeq YA |B007) Buissanold Alowain-u]

US 2017/0160984 A1

Jun. 8,2017 Sheet 36 of 39

Patent Application Publication

€€ "Old

asuged Alowsiy 102040

)

X%

(SO0 INA) JBALIT SO SUgE 4 AIOUISIN

233

SSE00Y 108.I(]

1£¢

SS200E 1024D PUR SUOHDUNY {JY Saeiouad
Sl S ‘dojenoje ADtusLL Sapnou
Areiqry ssein ouged Aowep 1oslgn

TFEE OPEE T oo oEEE T, oo
siebeuep A Jabeurpy W
e4a abeicig BUYIO ebelors abrIoIS TOSAN sbeioig
WssAsali4 grydein
598 O9EE ss000y 55T 7%EE
{s)uoneoyddy J8yin LIS1SAS) (sjuopesyddy Amvcczwo:aa/x
708 piepulg gauaeis
pIepuUEIS DIEpUEIS

00ge W

siebeusiy
abrio}s
AJOUWIBIA UL

sucieoddy
PRNOUILN

Patent Application Publication Jun. 8,2017 Sheet 37 0of 39 US 2017/0160984 A1

FIG. 34

US 2017/0160984 A1

Jun. 8,2017 Sheet 38 of 39

Patent Application Publication

R s
SRR AR I
e

R L

sl
3

S

e

R

5
i

i

i)

5

s

S

s

SR
s
e
i 2000
RIS
R

: i

Patent Application Publication Jun. 8,2017 Sheet 39 0of 39 US 2017/0160984 A1

FIG. 36

US 2017/0160984 Al

MEMORY FABRIC OPERATIONS AND
COHERENCY USING FAULT TOLERANT
OBJECTS

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] The present application claims benefit under 35
USC 119(e) of U.S. Provisional Application No. 62/264,652,
filed on Dec. 8, 2015 by Frank et al and entitled “Infinite
Memory Fabric Operations, Coherency, and Interfaces,” of
which the entire disclosure is incorporated herein by refer-
ence for all purposes.

[0002] The present application is also related to the fol-
lowing co-pending and commonly assigned U.S. Patent
Applications:

[0003] U.S. patent application Ser. No. 15/001,320, filed
on Jan. 20, 2016, by Frank and entitled “Object Based
Memory Fabric;”

[0004] U.S. patent application Ser. No. 15/001,332, filed
on Jan. 20, 2016, by Frank and entitled “Trans-Cloud Object
Based Memory;”

[0005] U.S. patent application Ser. No. 15/001,340, filed
on Jan. 20, 2016, by Frank and entitled “Universal Single
Level Object Memory Address Space;”

[0006] U.S. patent application Ser. No. 15/001,343, filed
on Jan. 20, 2016, by Frank and entitled “Object Memory
Fabric Performance Acceleration;”

[0007] U.S. patent application Ser. No. 15/001,451, filed
on Jan. 20, 2016, by Frank and entitled “Distributed Index
for Fault Tolerant Object Memory Fabric;”

[0008] U.S. patent application Ser. No. 15/001,494, filed
on Jan. 20, 2016, by Frank and entitled “Implementation of
an Object Memory Centric Cloud;”

[0009] U.S. patent application Ser. No. 15/001,524, filed
on Jan. 20, 2016, by Frank and entitled “Managing Metadata
in an Object Memory Fabric;”

[0010] U.S. patent application Ser. No. 15/001,652, filed
on Jan. 20, 2016, by Frank and entitled “Utilization of a
Distributed Index to Provide Object Memory Fabric Coher-
ency;”

[0011] U.S. patent application Ser. No. 15/001,366, filed
on Jan. 20, 2016, by Frank and entitled “Object Memory
Data Flow Instruction Execution;”

[0012] U.S. patent application Ser. No. 15/001,490, filed
on Jan. 20, 2016, by Frank and entitled “Object Memory
Data Flow Triggers;”

[0013] U.S. patent application Ser. No. 15/001,526, filed
on Jan. 20, 2016, by Frank and entitled “Object Memory
Instruction Set;”

[0014] U.S. patent application Ser. No. 15/168,965 filed
on May 31, 2016 by Frank and entitled “Infinite Memory
Fabric Streams and APIs;”

[0015] U.S. patent application Ser. No. 15/169,580 filed
on May 31, 2016 by Frank and entitled “Infinite Memory
Fabric Hardware Implementation with Memory;”

[0016] U.S. patent application Ser. No. 15/169,585 filed
on May 31, 2016 by Frank and entitled “Infinite Memory
Fabric Hardware Implementation with Router;”

[0017] U.S. patent application Ser. No. 15/371,393 (Attor-
ney Docket Number 8620-15) filed concurrent herewith and
entitled “Memory Fabric Software Implementation;” and
[0018] U.S. Patent Application No. (Attorney
Docket Number 8620-17) filed concurrent herewith and

Jun. &, 2017

entitled “Object Memory Interfaces Across Shared Links” of
which the entire disclosure of each is incorporated herein by
reference for all purposes.

BACKGROUND

[0019] Embodiments of the present invention relate gen-
erally to methods and systems for improving performance of
processing nodes in a fabric and more particularly to chang-
ing the way in which processing, memory, storage, network,
and cloud computing, are managed to significantly improve
the efficiency and performance of commodity hardware.
[0020] As the size and complexity of data and the pro-
cesses performed thereon continually increases, computer
hardware is challenged to meet these demands. Current
commodity hardware and software solutions from estab-
lished server, network and storage providers are unable to
meet the demands of Cloud Computing and Big Data
environments. This is due, at least in part, to the way in
which processing, memory, and storage are managed by
those systems. Specifically, processing is separated from
memory which is turn is separated from storage in current
systems and each of processing, memory, and storage is
managed separately by software. Each server and other
computing device (referred to herein as a node) is in turn
separated from other nodes by a physical computer network,
managed separately by software and in turn the separate
processing, memory, and storage associated with each node
are managed by software on that node.

[0021] FIG. 1is ablock diagram illustrating an example of
the separation data storage, memory, and processing within
prior art commodity servers and network components. This
example illustrates a system 100 in which commodity serv-
ers 105 and 110 are communicatively coupled with each
other via a physical network 115 and network software 155
as known in the art. Also as known in the art, the servers can
each execute any number of one or more applications 120q,
1205, 120c¢ of any variety. As known in the art, each
application 120a, 1205, 120¢ executes on a processor (not
shown) and memory (not shown) of the server 105 and 110
using data stored in physical storage 150. Each server 105
and 110 maintains a directory 125 mapping the location of
the data used by the applications 120a, 1205, 120c. Addi-
tionally, each server implements for each executing appli-
cation 120a, 1205, 120c¢ a software stack which includes an
application representation 130 of the data, a database rep-
resentation 135, a file system representation 140, and a
storage representation 145.

[0022] While effective, there are three reasons that such
implementations on current commodity hardware and soft-
ware solutions from established server, network and storage
providers are unable to meet the increasing demands of
Cloud Computing and Big Data environments. One reason
for the shortcomings of these implementations is their
complexity. The software stack must be in place and every
application must manage the separation of storage, memory,
and processing as well as applying parallel server resources.
Each application must trade-off algorithm parallelism, data
organization and data movement which is extremely chal-
lenging to get correct, let alone considerations of perfor-
mance and economics. This tends to lead to implementation
of more batch oriented solutions in the applications, rather
than the integrated real-time solutions preferred by most
businesses. Additionally, separation of storage, memory, and
processing, in such implementations also creates significant

US 2017/0160984 Al

inefficiency for each layer of the software stack to find,
move, and access a block of data due to the required
instruction execution and latencies of each layer of the
software stack and between the layers. Furthermore, this
inefficiency limits the economic scaling possible and limits
the data-size for all but the most extremely parallel algo-
rithms. The reason for the latter is that the efficiency with
which servers (processors or threads) can interact limits the
amount of parallelism due to Amdahl’s law. Hence, there is
a need for improved methods and systems for managing
processing, memory, and storage to significantly improve
the performance of processing nodes.

BRIEF SUMMARY

[0023] Embodiments of the invention provide systems and
methods for managing processing, memory, storage, net-
work, and cloud computing to significantly improve the
efficiency and performance of processing nodes. Embodi-
ments described herein can implement an object-based
memory fabric in which memory objects in the memory
fabric are distributed and tracked across a hierarchy of
processing nodes. Each processing node can track memory
objects and blocks within the memory objects that are
present on paths from that node toward it’s leaf nodes in the
hierarchy. Additionally, each processing node can utilize the
same algorithms for memory object management such as
memory object creation, block allocation, block coherency,
etc. In this way, each higher level of the hierarchy creates an
ever-larger cache which can significantly reduce the band-
width in and out of the processing nodes at that level.

[0024] According to one embodiment, fault tolerance
capability can be implemented based on this hierarchical
distribution and tracking by enabling memory objects, on a
per-object basis, to be stored in more than a single node. This
distribution of memory objects across multiple nodes can be
across the hierarchy and/or across multiple physical loca-
tions. Memory object fault tolerance copies can be handled
by a block coherency mechanism as part of memory fabric
operation. In this way, each memory object can be made to
be present on multiple different nodes. The memory object
can be contained as a whole within each of the multiple
nodes or at a given level of the hierarchy or may be stored
as different portions with each portion being contained
within multiple different nodes.

[0025] According to one embodiment, a hardware-based
processing node of a plurality of hardware-based processing
nodes in an object memory fabric can comprise a memory
module storing and managing a plurality of memory objects
in a hierarchy of the object memory fabric. Each memory
object can be created natively within the memory module,
accessed using a single memory reference instruction with-
out Input/Output (I/O) instructions, and managed by the
memory module at a single memory layer. The object
memory fabric can distribute and track the memory objects
across the hierarchy of the object memory fabric and the
plurality of hardware-based processing nodes on a per-
object basis. Distributing the memory objects across the
hierarchy of the object memory fabric and the plurality of
hardware-based processing nodes can comprise storing, on
a per-object basis, each memory object on two or more
nodes of the plurality of hardware-based processing nodes of
the object memory fabric. The two or more nodes of the
plurality of hardware-based processing nodes can be remote

Jun. &, 2017

from each other in the hierarchy of the object memory fabric
and/or in different physical locations.

[0026] Tracking the memory objects across the hierarchy
of the object memory fabric can comprise tracking, by the
hardware-based processing node, the memory objects and
blocks within the memory objects that are present on the
hardware-based processing node. Additionally or alterna-
tively, tracking the memory objects across the hierarchy of
the object memory fabric can comprise tracking the memory
objects and blocks within the memory objects that are
present on each level of the hierarchy of the object memory
fabric and branches from each level of the hierarchy towards
leaves of the hierarchy of the object memory fabric. The
hardware-based processing node can utilize a same algo-
rithm for object management as each other node of the
plurality of hardware-based processing nodes. The algo-
rithm for object management can comprise an algorithm for
object creation, an algorithm for block allocation, and/or an
algorithm for block coherency.

[0027] In one implementation, the hardware-based pro-
cessing node can comprise a Dual In-line Memory Module
(DIMM) card. In other cases, the hardware-based processing
node can comprise a commodity server and wherein the
memory module comprises a DIMM card installed within
the commodity server. In other cases, the hardware-based
processing node can comprise a mobile computing device.
In yet other implementations, the hardware-based process-
ing node can comprise a single chip.

[0028] According to another embodiment, an object
memory fabric can comprise a plurality of hardware-based
processing nodes. Each hardware-based processing node can
comprise a memory module storing and managing a plural-
ity of memory objects in a hierarchy of the object memory
fabric. Each memory object can be created natively within
the memory module, accessed using a single memory ref-
erence instruction without Input/Output (I/0) instructions,
and managed at a single memory layer. A node router can be
communicatively coupled with each of the one or more
memory modules of the node and can be adapted to route
memory objects or portions of memory objects between the
one or more memory modules of the node. One or more
inter-node routers can be communicatively coupled with
each node router. Each of the plurality of nodes of the object
memory fabric can be communicatively coupled with at
least one of the inter-node routers and can be adapted to
route memory objects or portions of memory objects
between the plurality of nodes.

[0029] The object memory fabric can distribute and track
the memory objects across the hierarchy of the object
memory fabric and the plurality of hardware-based process-
ing nodes on a per-object basis. Distributing the memory
objects across the hierarchy of the object memory fabric and
the plurality of hardware-based processing nodes can com-
prise storing, on a per-object basis, each memory object on
two or more nodes of the plurality of hardware-based
processing nodes of the object memory fabric. The two or
more nodes of the plurality of hardware-based processing
nodes can be remote from each other in the hierarchy of the
object memory fabric and/or in different physical locations.
[0030] Tracking the memory objects across the hierarchy
of the object memory fabric can comprise tracking, by each
hardware-based processing node, the memory objects and
blocks within the memory objects that are present on the
hardware-based processing node. Tracking the memory

US 2017/0160984 Al

objects across the hierarchy of the object memory fabric can
also comprise tracking the memory objects and blocks
within the memory objects that are present on each level of
the hierarchy of the object memory fabric and branches from
each level of the hierarchy towards leaves of the hierarchy
of the object memory fabric. Each hardware-based process-
ing node can utilize a same algorithm for object manage-
ment. The algorithm for object management can comprise an
algorithm for object creation, an algorithm for block allo-
cation, and /or an algorithm for block coherency.

[0031] According to yet another embodiment, a method
for providing coherency and fault tolerance in an object
memory fabric including a plurality of hardware-based
processing nodes can comprise creating, by the hardware-
based processing nodes of the object-based memory fabric,
each memory object natively within a memory module of
the hardware-based processing node, accessing, by the hard-
ware-based processing nodes, each memory object using a
single memory reference instruction without Input/Output
(I/O) instructions, and managing, by the hardware-based
processing nodes, each memory object within the memory
module at a single memory layer. The memory objects can
be distributed and tracked across a hierarchy of the object
memory fabric and the plurality of hardware-based process-
ing nodes on a per-object basis. Distributing the memory
objects across the hierarchy of the object memory fabric and
the plurality of hardware-based processing nodes can com-
prise storing, on a per-object basis, each memory object on
two or more nodes of the plurality of hardware-based
processing nodes of the object memory fabric. The two or
more nodes can be remote from each other in the hierarchy
of the object memory fabric and/or in different physical
locations. Tracking the memory objects across the hierarchy
of the object memory fabric can comprise tracking the
memory objects and blocks within the memory objects that
are present on the hardware-based processing node and/or
that are present on each level of the hierarchy of the object
memory fabric and branches from each level of the hierar-
chy towards leaves of the hierarchy of the object memory
fabric.

BRIEF DESCRIPTION OF THE DRAWINGS

[0032] FIG.1is ablock diagram illustrating an example of
the separation data storage, memory, processing, network,
and cloud computing within prior art commodity servers and
network components.

[0033] FIG. 2 is a block diagram illustrating components
of an exemplary distributed system in which various
embodiments of the present invention may be implemented.
[0034] FIG. 3 is a block diagram illustrating an exemplary
computer system in which embodiments of the present
invention may be implemented.

[0035] FIG. 4 is a block diagram illustrating an exemplary
object memory fabric architecture according to one embodi-
ment of the present invention.

[0036] FIG. 51is a block diagram illustrating an exemplary
memory fabric object memory according to one embodiment
of the present invention.

[0037] FIG. 6 is a block diagram illustrating an exemplary
object memory dynamics and physical organization accord-
ing to one embodiment of the present invention.

[0038] FIG. 7 is a block diagram illustrating aspects of
object memory fabric hierarchy of object memory, which

Jun. &, 2017

localizes working sets and allows for virtually unlimited
scalability, according to one embodiment of the present
invention.

[0039] FIG. 8 is a block diagram illustrating aspects of an
example relationship between object address space, virtual
address, and physical address, according to one embodiment
of the present invention.

[0040] FIG. 9 is a block diagram illustrating aspects of an
example relationship between object sizes and object
address space pointers, according to one embodiment of the
present invention.

[0041] FIG. 10 is a block diagram illustrating aspects of an
example object memory fabric distributed object memory
and index structure, according to one embodiment of the
present invention.

[0042] FIG. 11 illustrates aspects of an object memory hit
case that executes completely within the object memory,
according to one embodiment of the present invention.
[0043] FIG. 12 illustrates aspects of an object memory
miss case and the distributed nature of the object memory
and object index, according to one embodiment of the
present invention.

[0044] FIG. 13 is a block diagram illustrating aspects of an
example of leaf level object memory in view of the object
memory fabric distributed object memory and index struc-
ture, according to one embodiment of the present invention.
[0045] FIG. 14 is a block diagram illustrating aspects of an
example of object memory fabric router object index struc-
ture, according to one embodiment of the present invention.
[0046] FIGS. 15A and 15B are block diagrams illustrating
aspects of example index tree structures, including node
index tree structure and leaf index tree, according to one
embodiment of the present invention.

[0047] FIG. 16 is a block diagram illustrating aspects of an
example physical memory organization, according to one
embodiment of the present invention.

[0048] FIG. 17A is a block diagram illustrating aspects of
example object addressing, according to one embodiment of
the present invention.

[0049] FIG. 17B is a block diagram illustrating aspects of
example object memory fabric pointer and block addressing,
according to one embodiment of the present invention.
[0050] FIG. 18 is a block diagram illustrating aspects of
example object metadata, according to one embodiment of
the present invention.

[0051] FIG. 19 is a block diagram illustrating aspects of an
example micro-thread model, according to one embodiment
of the present invention.

[0052] FIG. 20 is a block diagram illustrating aspects of an
example relationship of code, frame, and object, according
to one embodiment of the present invention.

[0053] FIG. 21 is a block diagram illustrating aspects of an
example of micro-thread concurrency, according to one
embodiment of the present invention.

[0054] FIG. 22A is a block diagram illustrating an
example of streams present on a node with a hardware-based
object memory fabric inter-node object router, in accordance
with certain embodiments of the present disclosure.

[0055] FIG. 22B is a block diagram illustrating an
example of software emulation of object memory and router
on the node, in accordance with certain embodiments of the
present disclosure.

US 2017/0160984 Al

[0056] FIG. 23 is a block diagram illustrating an example
of streams within a memory fabric router, in accordance with
certain embodiments of the present disclosure.

[0057] FIG. 24 is a block diagram illustrating a product
family hardware implementation architecture, in accordance
with certain embodiments of the present disclosure.

[0058] FIG. 25 is a block diagram illustrating an alterna-
tive product family hardware implementation architecture,
in accordance with certain embodiments of the present
disclosure.

[0059] FIG. 26 is a block diagram illustrating an memory
fabric server view of a hardware implementation architec-
ture, in accordance with certain embodiments of the present
disclosure.

[0060] FIG. 27 is a block diagram illustrating a memory
module view of a hardware implementation architecture, in
accordance with certain embodiments of the present disclo-
sure.

[0061] FIG. 28 is a block diagram illustrating a memory
module view of a hardware implementation architecture, in
accordance with an alternative embodiment of the present
disclosure.

[0062] FIG. 29 is a block diagram illustrating an node
router view of a hardware implementation architecture, in
accordance with certain embodiments of the present disclo-
sure.

[0063] FIG. 30 is a block diagram illustrating an inter-
node router view of a hardware implementation architecture,
in accordance with certain embodiments of the present
disclosure.

[0064] FIG. 31 is a block diagram illustrating a memory
fabric router view of a hardware implementation architec-
ture, in accordance with certain embodiments of the present
disclosure.

[0065] FIG. 32 is a block diagram illustrating object
memory fabric functions that can replace software functions
according to one embodiment of the present disclosure.
[0066] FIG. 33 is a block diagram illustrating an object
memory fabric software stack according to one embodiment
of the present disclosure.

[0067] FIG. 34 is a block diagram illustrating a summary
of memory module caching according to one embodiment.
[0068] FIG. 35 is a diagram illustrating an exemplary
partitioning of the DDR4 dram cache for several functions
related to the memory module according to one embodi-
ment.

[0069] FIG. 36 is a block diagram illustrating node and
leaf caching according to one embodiment.

DETAILED DESCRIPTION

[0070] In the following description, for the purposes of
explanation, numerous specific details are set forth in order
to provide a thorough understanding of various embodi-
ments of the present invention. It will be apparent, however,
to one skilled in the art that embodiments of the present
invention may be practiced without some of these specific
details. In other instances, well-known structures and
devices are shown in block diagram form.

[0071] The ensuing description provides exemplary
embodiments only, and is not intended to limit the scope,
applicability, or configuration of the disclosure. Rather, the
ensuing description of the exemplary embodiments will
provide those skilled in the art with an enabling description
for implementing an exemplary embodiment. It should be

Jun. &, 2017

understood that various changes may be made in the func-
tion and arrangement of elements without departing from the
spirit and scope of the invention as set forth in the appended
claims.

[0072] Specific details are given in the following descrip-
tion to provide a thorough understanding of the embodi-
ments. However, it will be understood by one of ordinary
skill in the art that the embodiments may be practiced
without these specific details. For example, circuits, sys-
tems, networks, processes, and other components may be
shown as components in block diagram form in order not to
obscure the embodiments in unnecessary detail. In other
instances, well-known circuits, processes, algorithms, struc-
tures, and techniques may be shown without unnecessary
detail in order to avoid obscuring the embodiments.
[0073] Also, it is noted that individual embodiments may
be described as a process which is depicted as a flowchart,
a flow diagram, a data flow diagram, a structure diagram, or
a block diagram. Although a flowchart may describe the
operations as a sequential process, many of the operations
can be performed in parallel or concurrently. In addition, the
order of the operations may be re-arranged. A process is
terminated when its operations are completed, but could
have additional steps not included in a figure. A process may
correspond to a method, a function, a procedure, a subrou-
tine, a subprogram, etc. When a process corresponds to a
function, its termination can correspond to a return of the
function to the calling function or the main function.
[0074] The term “machine-readable medium” includes,
but is not limited to portable or fixed storage devices, optical
storage devices, wireless channels and various other medi-
ums capable of storing, containing or carrying instruction(s)
and/or data. A code segment or machine-executable instruc-
tions may represent a procedure, a function, a subprogram,
a program, a routine, a subroutine, a module, a software
package, a class, or any combination of instructions, data
structures, or program statements. A code segment may be
coupled to another code segment or a hardware circuit by
passing and/or receiving information, data, arguments,
parameters, or memory contents. Information, arguments,
parameters, data, etc. may be passed, forwarded, or trans-
mitted via any suitable means including memory sharing,
message passing, token passing, network transmission, etc.
Various other terms used herein are now defined for the sake
of clarity.

[0075] Virtual memory is a memory management tech-
nique that gives the illusion to each software process that
memory is as large as the virtual address space. The oper-
ating system in conjunction with differing degrees of hard-
ware manages the physical memory as a cache of the virtual
address space, which is placed in secondary storage and
accessible through Input/Output instructions. Virtual
memory is separate from, but can interact with, a file system.
[0076] A single level store is an extension of virtual
memory in which there are no files, only persistent objects
or segments which are mapped into a processes’ address
space using virtual memory techniques. The entire storage of
the computing system is thought of as a segment and address
within a segment. Thus at least three separate address
spaces, i.e., physical memory address/node, virtual address/
process, and secondary storage address/disk, are managed
by software.

[0077] Object storage refers to the way units of storage
called objects are organized. Every object consists of a

US 2017/0160984 Al

container that holds three things: actual data; expandable
metadata; and a globally unique identifier referred to herein
as the object address. The metadata of the object is used to
define contextual information about the data and how it
should be used and managed including relationship to other
objects.

[0078] The object address space is managed by software
over storage devices, nodes, and network to find an object
without knowing its physical location. Object storage is
separate from virtual memory and single level store, but can
certainly inter-operate through software.

[0079] Block storage consists of evenly sized blocks of
data with an address based on a physical location and
without metadata.

[0080] A network address is a physical address of a node
within an IP network that is associated with a physical
location.

[0081] A node or processing node is a physical unit of
computing delineated by a shared physical memory that be
addressed by any processor within the node.

[0082] Object memory is an object store directly acces-
sible as memory by processor memory reference instructions
and without implicit or explicit software or Input/Output
instructions required. Object capabilities are directly pro-
vided within the object memory to processing through
memory reference instructions.

[0083] An object memory fabric connects object memory
modules and nodes into a single object memory where any
object is local to any object memory module by direct
management, in hardware, of object data, meta-data and
object address.

[0084] An object router routes objects or portions of
objects in an object memory fabric based on an object
address. This is distinct from a conventional router which
forwards data packets to appropriate part of a network based
on a network address.

[0085] Embodiments may be implemented by hardware,
software, firmware, middleware, microcode, hardware
description languages, or any combination thereof. When
implemented in software, firmware, middleware or micro-
code, the program code or code segments to perform the
necessary tasks may be stored in a machine readable
medium. A processor(s) may perform the necessary tasks.
[0086] Embodiments ofthe invention provide systems and
methods for managing processing, memory, storage, net-
work, and cloud computing to significantly improve the
efficiency and performance of processing nodes. Embodi-
ments described herein can be implemented in a set of
hardware components that, in essence, change the way in
which processing, memory, and storage, network, and cloud
computing are managed by breaking down the artificial
distinctions between processing, memory, storage and net-
working in today’s commodity solutions to significantly
improve the efficiency and performance of commodity hard-
ware. For example, the hardware elements can include a
standard format memory module, such as a (DIMM) and a
set of one or more object routers. The memory module can
be added to commodity or “off-the-shelf” hardware such a
server node and acts as a big data accelerator within that
node. Object routers can be used to interconnect two or more
servers or other nodes adapted with the memory modules
and help to manage processing, memory, and storage across
these different servers. Nodes can be physically close or far
apart. Together, these hardware components can be used

Jun. &, 2017

with commodity servers or other types of computing nodes
in any combination to implement the embodiments
described herein.

[0087] According to one embodiment, such hardware
components can implement an object-based memory which
manages the objects within the memory and at the memory
layer rather than in the application layer. That is, the objects
and associated properties are implemented and managed
natively in memory enabling the object memory system to
provide increased functionality without any software and
increasing performance by dynamically managing object
characteristics including, but not limited to persistence,
location and processing. Object properties can also propa-
gate up to higher application levels.

[0088] Such hardware components can also eliminate the
distinction between memory (temporary) and storage (per-
sistent) by implementing and managing both within the
objects. These components can eliminate the distinction
between local and remote memory by transparently manag-
ing the location of objects (or portions of objects) so all
objects appear simultaneously local to all nodes. These
components can also eliminate the distinction between pro-
cessing and memory through methods of the objects to place
the processing within the memory itself.

[0089] According to one embodiment, such hardware
components can eliminate typical size constraints on
memory space of the commodity servers imposed by address
sizes. Rather, physical addressing can be managed within the
memory objects themselves and the objects can in turn be
accessed and managed through the object name space.
[0090] Embodiment described herein can provide trans-
parent and dynamic performance acceleration, especially
with big data or other memory intensive applications by
reducing or eliminating overhead typically associated with
memory management, storage management, networking and
data directories. Rather, management of the memory objects
at the memory level can significantly shorten the pathways
between storage and memory and between memory and
processing, thereby eliminating the associated overhead
between each. Various additional details of embodiments of
the present invention will be described below with reference
to the figures.

[0091] FIG. 2 is a block diagram illustrating components
of an exemplary distributed system in which various
embodiments of the present invention may be implemented.
In the illustrated embodiment, distributed system 200
includes one or more client computing devices 202, 204,
206, and 208, which are configured to execute and operate
a client application such as a web browser, proprietary
client, or the like over one or more network(s) 210. Server
212 may be communicatively coupled with remote client
computing devices 202, 204, 206, and 208 via network 210.
[0092] In wvarious embodiments, server 212 may be
adapted to run one or more services or software applications
provided by one or more of the components of the system.
In some embodiments, these services may be offered as
web-based or cloud services or under a Software as a Service
(SaaS) model to the users of client computing devices 202,
204, 206, and/or 208. Users operating client computing
devices 202, 204, 206, and/or 208 may in turn utilize one or
more client applications to interact with server 212 to utilize
the services provided by these components. For the sake of
clarity, it should be noted that server 212 and database 214,
216 can correspond to server 105 described above with

US 2017/0160984 Al

reference to FIG. 1. Network 210 can be part of or an
extension to physical network 115. It should also be under-
stood that there can be any number of client computing
devices 202, 204, 206, 208 and servers 212, each with one
or more databases 214, 216.

[0093] In the configuration depicted in the figure, the
software components 218, 220 and 222 of system 200 are
shown as being implemented on server 212. In other
embodiments, one or more of the components of system 200
and/or the services provided by these components may also
be implemented by one or more of the client computing
devices 202, 204, 206, and/or 208. Users operating the client
computing devices may then utilize one or more client
applications to use the services provided by these compo-
nents. These components may be implemented in hardware,
firmware, software, or combinations thereof. It should be
appreciated that various different system configurations are
possible, which may be different from distributed system
200. The embodiment shown in the figure is thus one
example of a distributed system for implementing an
embodiment system and is not intended to be limiting.
[0094] Client computing devices 202, 204, 206, and/or
208 may be portable handheld devices (e.g., an iPhone®,
cellular telephone, an iPad®, computing tablet, a personal
digital assistant (PDA)) or wearable devices (e.g., a Google
Glass® head mounted display), running software such as
Microsoft Windows Mobile®, and/or a variety of mobile
operating systems such as i0S, Windows Phone, Android,
BlackBerry 10, Palm OS; and the like, and being Internet,
e-mail, short message service (SMS), Blackberry®, or other
communication protocol enabled. The client computing
devices can be general purpose personal computers includ-
ing, by way of example, personal computers and/or laptop
computers running various versions of Microsoft Win-
dows®, Apple Macintosh®, and/or Linux operating sys-
tems. The client computing devices can be workstation
computers running any of a variety of commercially-avail-
able UNIX® or UNIX-like operating systems, including
without limitation the variety of GNU/Linux operating sys-
tems, such as for example, Google Chrome OS. Alterna-
tively, or in addition, client computing devices 202, 204,
206, and 208 may be any other electronic device, such as a
thin-client computer, an Internet-enabled gaming system
(e.g., a Microsoft Xbox gaming console with or without a
Kinect® gesture input device), and/or a personal messaging
device, capable of communicating over network(s) 210.
[0095] Although exemplary distributed system 200 is
shown with four client computing devices, any number of
client computing devices may be supported. Other devices,
such as devices with sensors, etc., may interact with server
212.

[0096] Network(s) 210 in distributed system 200 may be
any type of network familiar to those skilled in the art that
can support data communications using any of a variety of
commercially-available protocols, including without limita-
tion TCP/IP (Transmission Control Protocol/Internet Proto-
col), SNA (Systems Network Architecture), IPX (Internet
Packet Exchange), AppleTalk, and the like. Merely by way
of example, network(s) 210 can be a Local Area Network
(LAN), such as one based on Ethernet, Token-Ring and/or
the like. Network(s) 210 can be a wide-area network and the
Internet. It can include a virtual network, including without
limitation a Virtual Private Network (VPN), an intranet, an
extranet, a Public Switched Telephone Network (PSTN), an

Jun. &, 2017

infra-red network, a wireless network (e.g., a network oper-
ating under any of the Institute of Electrical and Electronics
(IEEE) 802.11 suite of protocols, Bluetooth®, and/or any
other wireless protocol); and/or any combination of these
and/or other networks. Elements of such networks can have
an arbitrary distance, i.e., can be remote or co-located.
Software Defined Networks (SDNs) can be implemented
with a combination of dumb routers and software running on
servers.

[0097] Server 212 may be composed of one or more
general purpose computers, specialized server computers
(including, by way of example, Personal Computer (PC)
servers, UNIX® servers, mid-range servers, mainframe
computers, rack-mounted servers, etc.), server farms, server
clusters, or any other appropriate arrangement and/or com-
bination. In various embodiments, server 212 may be
adapted to run one or more services or software applications
described in the foregoing disclosure. For example, server
212 may correspond to a server for performing processing
described above according to an embodiment of the present
disclosure.

[0098] Server 212 may run an operating system including
any of those discussed above, as well as any commercially
available server operating system. Server 212 may also run
any of a variety of additional server applications and/or
mid-tier applications, including HyperText Transport Proto-
col (HTTP) servers, File Transfer Protocol (FTP) servers,
Common Gateway Interface (CGI) servers, JAVA® servers,
database servers, and the like. Exemplary database servers
include without limitation those commercially available
from Oracle, Microsoft, Sybase, International Business
Machines (IBM), and the like.

[0099] In some implementations, server 212 may include
one or more applications to analyze and consolidate data
feeds and/or event updates received from users of client
computing devices 202, 204, 206, and 208. As an example,
data feeds and/or event updates may include, but are not
limited to, Twitter® feeds, Facebook® updates or real-time
updates received from one or more third party information
sources and continuous data streams, which may include
real-time events related to sensor data applications, financial
tickers, network performance measuring tools (e.g., network
monitoring and traffic management applications), click-
stream analysis tools, automobile traffic monitoring, and the
like. Server 212 may also include one or more applications
to display the data feeds and/or real-time events via one or
more display devices of client computing devices 202, 204,
206, and 208.

[0100] Distributed system 200 may also include one or
more databases 214 and 216. Databases 214 and 216 may
reside in a variety of locations. By way of example, one or
more of databases 214 and 216 may reside on a non-
transitory storage medium local to (and/or resident in) server
212. Alternatively, databases 214 and 216 may be remote
from server 212 and in communication with server 212 via
a network-based or dedicated connection. In one set of
embodiments, databases 214 and 216 may reside in a
Storage-Area Network (SAN). Similarly, any necessary files
for performing the functions attributed to server 212 may be
stored locally on server 212 and/or remotely, as appropriate.
In one set of embodiments, databases 214 and 216 may
include relational databases that are adapted to store, update,
and retrieve data in response to commands, e.g., MySQL-
formatted commands. Additionally or alternatively, server

US 2017/0160984 Al

212 can provide and support big data processing on unstruc-
tured data including but not limited to Hadoop processing,
NoSQL databases, graph databases etc. In yet other imple-
mentations, server 212 may perform non-database types of
bog data applications including but not limited to machine
learning.

[0101] FIG. 3 is a block diagram illustrating an exemplary
computer system in which embodiments of the present
invention may be implemented. The system 300 may be
used to implement any of the computer systems described
above. As shown in the figure, computer system 300
includes a processing unit 304 that communicates with a
number of peripheral subsystems via a bus subsystem 302.
These peripheral subsystems may include a processing
acceleration unit 306, an [/O subsystem 308, a storage
subsystem 318 and a communications subsystem 324. Stor-
age subsystem 318 includes tangible computer-readable
storage media 322 and a system memory 310.

[0102] Bus subsystem 302 provides a mechanism for
letting the various components and subsystems of computer
system 300 communicate with each other as intended.
Although bus subsystem 302 is shown schematically as a
single bus, alternative embodiments of the bus subsystem
may utilize multiple buses. Bus subsystem 302 may be any
of several types of bus structures including a memory bus or
memory controller, a peripheral bus, and a local bus using
any of a variety of bus architectures. For example, such
architectures may include an Industry Standard Architecture
(ISA) bus, Micro Channel Architecture (MCA) bus,
Enhanced ISA (EISA) bus, Video Electronics Standards
Association (VESA) local bus, Peripheral Component Inter-
connect (PCI) bus, which can be implemented as a Mezza-
nine bus manufactured to the IEEE P1386.1 standard, or PCI
enhanced (PCle) bus.

[0103] Processing unit 304, which can be implemented as
one or more integrated circuits (e.g., a conventional micro-
processor or microcontroller), controls the operation of
computer system 300. One or more processors may be
included in processing unit 304. These processors may
include single core or multicore processors. In certain
embodiments, processing unit 304 may be implemented as
one or more independent processing units 332 and/or 334
with single or multicore processors included in each pro-
cessing unit. In other embodiments, processing unit 304 may
also be implemented as a quad-core processing unit formed
by integrating two dual-core processors into a single chip.
[0104] In various embodiments, processing unit 304 can
execute a variety of programs in response to program code
and can maintain multiple concurrently executing programs
or processes. At any given time, some or all of the program
code to be executed can be resident in processor(s) 304
and/or in storage subsystem 318. Through suitable program-
ming, processor(s) 304 can provide various functionalities
described above. Computer system 300 may additionally
include a processing acceleration unit 306, which can
include a Digital Signal Processor (DSP), a special-purpose
processor, and/or the like.

[0105] I/O subsystem 308 may include user interface input
devices and user interface output devices. User interface
input devices may include a keyboard, pointing devices such
as a mouse or trackball, a touchpad or touch screen incor-
porated into a display, a scroll wheel, a click wheel, a dial,
a button, a switch, a keypad, audio input devices with voice
command recognition systems, microphones, and other

Jun. &, 2017

types of input devices. User interface input devices may
include, for example, motion sensing and/or gesture recog-
nition devices such as the Microsoft Kinect® motion sensor
that enables users to control and interact with an input
device, such as the Microsoft Xbox® 360 game controller,
through a natural user interface using gestures and spoken
commands. User interface input devices may also include
eye gesture recognition devices such as the Google Glass®
blink detector that detects eye activity (e.g., ‘blinking” while
taking pictures and/or making a menu selection) from users
and transforms the eye gestures as input into an input device
(e.g., Google Glass®). Additionally, user interface input
devices may include voice recognition sensing devices that
enable users to interact with voice recognition systems (e.g.,
Siri® navigator), through voice commands.

[0106] User interface input devices may also include,
without limitation, three dimensional (3D) mice, joysticks or
pointing sticks, gamepads and graphic tablets, and audio/
visual devices such as speakers, digital cameras, digital
camcorders, portable media players, webcams, image scan-
ners, fingerprint scanners, barcode reader 3D scanners, 3D
printers, laser rangefinders, and eye gaze tracking devices.
Additionally, user interface input devices may include, for
example, medical imaging input devices such as computed
tomography, magnetic resonance imaging, position emission
tomography, medical ultrasonography devices. User inter-
face input devices may also include, for example, audio
input devices such as MIDI keyboards, digital musical
instruments and the like.

[0107] User interface output devices may include a display
subsystem, indicator lights, or non-visual displays such as
audio output devices, etc. The display subsystem may be a
Cathode Ray Tube (CRT), a flat-panel device, such as that
using a Liquid Crystal Display (LCD) or plasma display, a
projection device, a touch screen, and the like. In general,
use of the term “output device” is intended to include all
possible types of devices and mechanisms for outputting
information from computer system 300 to a user or other
computer. For example, user interface output devices may
include, without limitation, a variety of display devices that
visually convey text, graphics and audio/video information
such as monitors, printers, speakers, headphones, automo-
tive navigation systems, plotters, voice output devices, and
modems.

[0108] Computer system 300 may comprise a storage
subsystem 318 that comprises software elements, shown as
being currently located within a system memory 310. Sys-
tem memory 310 may store program instructions that are
loadable and executable on processing unit 304, as well as
data generated during the execution of these programs.

[0109] Depending on the configuration and type of com-
puter system 300, system memory 310 may be volatile (such
as Random Access Memory (RAM)) and/or non-volatile
(such as Read-Only Memory (ROM), flash memory, etc.)
The RAM typically contains data and/or program modules
that are immediately accessible to and/or presently being
operated and executed by processing unit 304. In some
cases, system memory 310 can comprise one or more
Double Data Rate fourth generation (DDR4) Dual Inline
Memory Modules (DIMMs). In some implementations, sys-
tem memory 310 may include multiple different types of
memory, such as Static Random Access Memory (SRAM) or
Dynamic Random Access Memory (DRAM). In some
implementations, a Basic Input/Output System (BIOS), con-

US 2017/0160984 Al

taining the basic routines that help to transfer information
between elements within computer system 300, such as
during start-up, may typically be stored in the ROM. By way
of example, and not limitation, system memory 310 also
illustrates application programs 312, which may include
client applications, Web browsers, mid-tier applications,
Relational Database Management Systems (RDBMS), etc.,
program data 314, and an operating system 316. By way of
example, operating system 316 may include various ver-
sions of Microsoft Windows®, Apple Macintosh®, and/or
Linux operating systems, a variety of commercially-avail-
able UNIX® or UNIX-like operating systems (including
without limitation the variety of GNU/Linux operating sys-
tems, the Google Chrome® OS, and the like) and/or mobile
operating systems such as i0S, Windows® Phone,
Android® OS, BlackBerry® 10 OS, and Palm® OS oper-
ating systems.

[0110] Storage subsystem 318 may also provide a tangible
computer-readable storage medium for storing the basic
programming and data constructs that provide the function-
ality of some embodiments. Software (programs, code mod-
ules, instructions) that when executed by a processor pro-
vide the functionality described above may be stored in
storage subsystem 318. These software modules or instruc-
tions may be executed by processing unit 304. Storage
subsystem 318 may also provide a repository for storing data
used in accordance with the present invention.

[0111] Storage subsystem 300 may also include a com-
puter-readable storage media reader 320 that can further be
connected to computer-readable storage media 322.
Together and, optionally, in combination with system
memory 310, computer-readable storage media 322 may
comprehensively represent remote, local, fixed, and/or
removable storage devices plus storage media for temporar-
ily and/or more permanently containing, storing, transmit-
ting, and retrieving computer-readable information.

[0112] Computer-readable storage media 322 containing
code, or portions of code, can also include any appropriate
media known or used in the art, including storage media and
communication media, such as but not limited to, volatile
and non-volatile, removable and non-removable media
implemented in any method or technology for storage and/or
transmission of information. This can include tangible com-
puter-readable storage media such as RAM, ROM, Elec-
tronically Erasable Programmable ROM (EEPROM), flash
memory or other memory technology, CD-ROM, Digital
Versatile Disk (DVD), or other optical storage, magnetic
cassettes, magnetic tape, magnetic disk storage or other
magnetic storage devices, or other tangible computer read-
able media. This can also include nontangible computer-
readable media, such as data signals, data transmissions, or
any other medium which can be used to transmit the desired
information and which can be accessed by computing sys-
tem 300.

[0113] By way of example, computer-readable storage
media 322 may include a hard disk drive that reads from or
writes to non-removable, nonvolatile magnetic media, a
magnetic disk drive that reads from or writes to a removable,
nonvolatile magnetic disk, and an optical disk drive that
reads from or writes to a removable, nonvolatile optical disk
such as a CD ROM, DVD, and Blu-Ray® disk, or other
optical media. Computer-readable storage media 322 may
include, but is not limited to, Zip® drives, flash memory
cards, Universal Serial Bus (USB) flash drives, Secure

Jun. &, 2017

Digital (SD) cards, DVD disks, digital video tape, and the
like. Computer-readable storage media 322 may also
include, Solid-State Drives (SSD) based on non-volatile
memory such as flash-memory based SSDs, enterprise flash
drives, solid state ROM, and the like, SSDs based on volatile
memory such as solid state RAM, dynamic RAM, static
RAM, DRAM-based SSDs, Magnetoresistive RAM
(MRAM) SSDs, and hybrid SSDs that use a combination of
DRAM and flash memory based SSDs. The disk drives and
their associated computer-readable media may provide non-
volatile storage of computer-readable instructions, data
structures, program modules, and other data for computer
system 300.

[0114] Communications subsystem 324 provides an inter-
face to other computer systems and networks. Communica-
tions subsystem 324 serves as an interface for receiving data
from and transmitting data to other systems from computer
system 300. For example, communications subsystem 324
may enable computer system 300 to connect to one or more
devices via the Internet. In some embodiments communi-
cations subsystem 324 can include Radio Frequency (RF)
transceiver components for accessing wireless voice and/or
data networks (e.g., using cellular telephone technology,
advanced data network technology, such as 3G, 4G or
Enhanced Data rates for Global Evolution (EDGE), WiFi
(IEEE 802.11 family standards, or other mobile communi-
cation technologies, or any combination thereof), Global
Positioning System (GPS) receiver components, and/or
other components. In some embodiments communications
subsystem 324 can provide wired network connectivity
(e.g., Ethernet) in addition to or instead of a wireless
interface. In some cases, communications subsystem 324
can be implemented in whole or in part as one or more PCle
cards.

[0115] In some embodiments, communications subsystem
324 may also receive input communication in the form of
structured and/or unstructured data feeds 326, event streams
328, event updates 330, and the like on behalf of one or more
users who may use computer system 300.

[0116] By way of example, communications subsystem
324 may be configured to receive data feeds 326 in real-time
from users of social networks and/or other communication
services such as Twitter® feeds, Facebook® updates, web
feeds such as Rich Site Summary (RSS) feeds, and/or
real-time updates from one or more third party information
sources.

[0117] Additionally, communications subsystem 324 may
also be configured to receive data in the form of continuous
data streams, which may include event streams 328 of
real-time events and/or event updates 330, that may be
continuous or unbounded in nature with no explicit end.
Examples of applications that generate continuous data may
include, for example, sensor data applications, financial
tickers, network performance measuring tools (e.g. network
monitoring and traffic management applications), click-
stream analysis tools, automobile traffic monitoring, and the
like.

[0118] Communications subsystem 324 may also be con-
figured to output the structured and/or unstructured data
feeds 326, event streams 328, event updates 330, and the like
to one or more databases that may be in communication with
one or more streaming data source computers coupled to
computer system 300.

US 2017/0160984 Al

[0119] Computer system 300 can be one of various types,
including a handheld portable device (e.g., an iPhone®
cellular phone, an iPad® computing tablet, a PDA), a
wearable device (e.g., a Google Glass® head mounted
display), a PC, a workstation, a mainframe, a kiosk, a server
rack, or any other data processing system.

[0120] Due to the ever-changing nature of computers and
networks, the description of computer system 300 depicted
in the figure is intended only as a specific example. Many
other configurations having more or fewer components than
the system depicted in the figure are possible. For example,
customized hardware might also be used and/or particular
elements might be implemented in hardware, firmware,
software (including applets), or a combination. Further,
connection to other computing devices, such as network
input/output devices, may be employed. Based on the dis-
closure and teachings provided herein, a person of ordinary
skill in the art will appreciate other ways and/or methods to
implement the various embodiments.

[0121] As introduced above, embodiments of the inven-
tion provide systems and methods for managing processing,
memory, storage, network, and cloud computing to signifi-
cantly improve the efficiency and performance of processing
nodes such as any of the servers or other computers or
computing devices described above. Embodiments
described herein can be implemented in a set of hardware
components that, in essence, change the way in which
processing, memory, storage, network, and cloud are man-
aged by breaking down the artificial distinctions between
processing, memory, storage and networking in today’s
commodity solutions to significantly improve the perfor-
mance of commodity hardware. For example, the hardware
elements can include a standard format memory module,
such as a Dual Inline Memory Module (DIMM), which can
be added to any of the computer systems described above.
For example, the memory module can be added to com-
modity or “off-the-shelf” hardware such a server node and
acts as a big data accelerator within that node. The compo-
nents can also include one or more object routers. Object
routers can include, for example, a PCI express card added
to the server node along with the memory module and one
or more external object routers such as rack mounted
routers, for example. Object routers can be used to inter-
connect two or more servers or other nodes adapted with the
memory modules and help to manage processing, memory,
and storage across these different servers Object routers can
forward objects or portions of objects based on object
addresses and participate in operation of the object memory
fabric. Together, these hardware components can be used
with commodity servers or other types of computing nodes
in any combination to implement an object memory fabric
architecture.

[0122] FIG. 4 is a block diagram illustrating an exemplary
object memory fabric architecture according to one embodi-
ment of the present invention. As illustrated here, the
architecture 400 comprises an object memory fabric 405
supporting any number of applications 410a-g. As will be
described in greater detail below, this object memory fabric
405 can comprise any number of processing nodes such as
one or more servers having installed one or more memory
modules as described herein. These nodes can be intercon-
nected by one or more internal and/or external object routers
as described herein. While described as comprising one or
more servers, it should be noted that the processing nodes of

Jun. &, 2017

the object memory fabric 405 can comprise any of a variety
of different computers and/or computing devices adapted to
operate within the object memory fabric 405 as described
herein.

[0123] According to one embodiment, the object memory
fabric 405 provides an object-based memory which manages
memory objects within the memory of the nodes of the
object memory fabric 405 and at the memory layer rather
than in the application layer. That is, the objects and asso-
ciated properties can be implemented and managed natively
in the nodes of the object memory fabric 405 to provide
increased functionality without any software and increasing
efficiency and performance by dynamically managing object
characteristics including, but not limited to persistence,
location and processing. Object properties can also propa-
gate to the applications 410a-g. The memory objects of the
object memory fabric 405 can be used to eliminate typical
size constraints on memory space of the commodity servers
or other nodes imposed by address sizes. Rather, physical
addressing can be managed within the memory objects
themselves and the objects can in turn be accessed and
managed through the object name space. The memory
objects of the object memory fabric 405 can also be used to
eliminate the distinction between memory (temporary) and
storage (persistent) by implementing and managing both
within the objects. The object memory fabric 405 can also
eliminate the distinction between local and remote memory
by transparently managing the location of objects (or por-
tions of objects) so all objects appear simultaneously local to
all nodes. The memory objects can also eliminate the
distinction between processing and memory through meth-
ods of the objects to place the processing within the memory
itself. In other words, embodiments of the present invention
provide a single-level memory that puts the computes with
the storage and the storage with the computes, directly and
thereby eliminating numerous levels of software overhead
communicating across these levels and the artificial over-
head of moving data to be processed.

[0124] In these ways, embodiments of the object memory
fabric 405 and components thereof as described herein can
provide transparent and dynamic performance acceleration,
especially with big data or other memory intensive applica-
tions by reducing or eliminating overhead typically associ-
ated with memory management, storage management, net-
working, data directories, and data buffers at both the system
and application software layers. Rather, management of the
memory objects at the memory level can significantly
shorten the pathways between storage and memory and
between memory and processing, thereby eliminating the
associated overhead between each.

[0125] Embodiments provide coherent, hardware-based,
infinite memory managed as memory objects with perfor-
mance accelerated in-memory, spanning all nodes, and scal-
able across all nodes. This enables transparent dynamic
performance acceleration based on the object and end appli-
cation. Using an architecture according to embodiments of
the present invention, applications and system software can
be treated the same and as simple as a single, standard server
but additionally allowing memory fabric objects to capture
heuristics. Embodiments provide multiple dimensions of
accelerated performance including locality acceleration.
According to one embodiment, object memory fabric meta-
data associated with the memory objects can include triggers
which enable the object memory fabric architecture to

US 2017/0160984 Al

localize and move data to fast dram memory ahead of use.
Triggers can be a fundamental generalization that enables
the memory system to execute arbitrary functions based on
memory access. Various embodiments can also include an
instruction set which can provide a unique instruction model
for the object memory fabric based on the triggers defined in
the metadata associated with each memory object and that
supports core operations and optimizations and allows the
memory intensive portion of applications to be more effi-
ciently executed in a highly parallel manner within IMF.
[0126] Embodiments can also decrease software path-
length by substituting a small number of memory references
for a complex application, storage and network stack. This
can be accomplished when memory and storage is directly
addressable as memory under embodiments of the present
invention. Embodiments can additionally provide acceler-
ated performance of high level memory operations. For
many cases, embodiments of the object memory fabric
architecture can eliminate the need to move data to the
processor and back to memory, which is extremely ineffi-
cient for today’s modern processors with three or more
levels of caches.

[0127] FIG. 5is a block diagram illustrating an exemplary
memory fabric object memory according to one embodiment
of the present invention. More specifically, this example
illustrates an application view of how memory fabric object
memory can be organized. Memory fabric object address
space 500 can be a 128 bit linear address space where the
object ID corresponds to the start of the addressable object.
Objects 510 can be variable size from 212 to 264 bytes. The
address space 500 can efficiently be utilized sparsely within
and across objects as object storage is allocated on a per
block basis. The size of the object space 500 is meant to be
large enough that garbage collection is not necessary and to
enable disjoint systems to be easily combined.

[0128] Object metadata 505 associated with each object
510 can be transparent with respect to the object address
space 500 and can utilize the object memory fabric to
manage objects and blocks within objects and can be acces-
sible at appropriate privilege by applications 515a-g through
Application Program Interfaces (APIs) of the object memory
fabric. This API provides functions for applications to set up
and maintain the object memory fabric, for example by
using modified Linux libc. With a small amount of addi-
tional effort applications such as a SQL database or graph
database can utilize the API to create memory objects and
provide and/or augment object metadata to allow the object
memory fabric to better manage objects. Object metadata
505 can include object methods, which enable performance
optimization through dynamic object-based processing, dis-
tribution, and parallelization. Metadata can enable each
object to have a definable security policy and access encap-
sulation within an object.

[0129] According to embodiments of the present inven-
tion, applications 515a-g can now access a single object that
captures it’s working and/or persistent data (such as App0
515a) or multiple objects for finer granularity (such as App1
515b). Applications can also share objects. Object memory
500 according to these embodiments can physically achieves
this powerfully simple application view with a combination
of physical organization, which will be described in greater
detail below with reference to FIG. 6, and object memory
dynamics. Generally speaking, the object memory 500 can
be organized as a distributed hierarchy that creates hierar-

Jun. &, 2017

chical neighborhoods for object storage and applications
515a-g. Object memory dynamics interact and leverage the
hierarchal organization to dynamically create locals of
objects and applications (object methods) that operate on
objects. Since object methods can be associated with
memory objects, as objects migrate and replicate on the
memory fabric, object methods naturally gain increased
parallelism as object size warrants. The hierarchy in con-
junction with object dynamics can further create neighbor-
hoods of neighborhoods based on the size and dynamics of
the object methods.

[0130] FIG. 6 is a block diagram illustrating an exemplary
object memory dynamics and physical organization accord-
ing to one embodiment of the present invention. As illus-
trated in this example, an object memory fabric 600 as
described above can include any number of processing
nodes 605 and 610 communicatively coupled via one or
more external object routers 615. Each node 605 and 610
can also include an internal object router 620 and one or
more memory modules. Each memory module 625 can
include a node object memory 635 supporting any number
of applications 515a-g. Generally speaking, the memory
module 625, node object router 620 and inter-node object
router 615 can all share a common functionality with respect
to the object memory 635 and index thereof. In other words,
the underlying design objects can be reused in all three
providing a common design adaptable to hardware of any of
a variety of different form factors and types in addition to
those implementations described here by way of example.

[0131] More specifically, a node can comprise a single
node object router 620 and one or more memory modules
625 and 630. According to one embodiment, a node 605 can
comprise a commodity or “off-the-shelf” server, the memory
module 625 can comprise a standard format memory card
such as a Dual-Inline Memory Module (DIMM) card, and
the node object router 620 can similarly comprise a standard
format card such as a Peripheral Component Interconnect
express (PCle) card. The node object router 620 can imple-
ment an object index covering the objects/blocks held within
the object memory(s) 635 of the memory modules 625 and
630 within the same node 605. Each memory module 625
and 630 can hold the actual objects and blocks within
objects, corresponding object meta-data, and object index
covering objects currently stored local to that memory
module. Each memory module 625 and 630 can indepen-
dently manage both dram memory (fast and relatively
expensive) and flash memory (not as fast, but much less
expensive) in a manner that the processor (not shown) of the
node 605 thinks that there is the flash amount of fast dram.
The memory modules 625 and 630 and the node object
router 620 can both manage free storage through a free
storage index implemented in the same manner as for other
indexes. Memory modules 625 and 630 can be directly
accessed over the standard DDR memory bus by processor
caches and processor memory reference instructions. In this
way, the memory objects of the memory modules 625 and
630 can be accessed using only conventional memory ref-
erence instructions and without implicit or explicit Input/
Output (I/O) instructions.

[0132] Objects within the object memory 635 of each node
625 can be created and maintained through an object
memory fabric API (not shown). The node object router 620
can communicate with the API through a modified object
memory fabric version of libc and an object memory fabric

US 2017/0160984 Al

driver (not shown). The node object router 620 can then
update a local object index, send commands toward a root,
i.e., towards the inter-node object router 615, as required and
communicate with the appropriate memory module 625 or
630 to complete the API command locally. The memory
module 625 or 630 can communicate administrative requests
back to the node object router 620 which can handle them
appropriately.

[0133] According to one embodiment, the internal archi-
tecture of the node object router 620 can be very similar to
the memory module 625 with the differences related to
routing functionality such as managing a node memory
object index and routing appropriate packets to and from the
memory moduels 625 and 630 and the inter-node object
router 615. That is, the node object router 620 can have
additional routing functionality but does not need to actually
store memory objects.

[0134] The inter-node object router 615 can be considered
analogous to an IP router. However, the first difference is the
addressing model used. IP routers utilize a fixed static
address per each node and routes based on the destination [P
address to a fixed physical node. However, the inter-node
object router 615 of the object memory fabric 600 utilizes a
memory fabric object address (OA) which specifies the
object and specific block of the object. Objects and blocks
can dynamically reside at any node. The inter-node object
router 615 can route OA packages based on the dynamic
location(s) of objects and blocks and track object/block
location dynamically in real time. The second difference is
that the object router can implement the object memory
fabric distributed protocol which provides the dynamic
nature of object/block location and object functions, for
example including, but not limited, to triggers. The inter-
node object router 615 can be implemented as a scaled up
version of node object router 620 with increased object
index storage capacity, processing rate and overall routing
bandwidth. Also, instead of connecting to a single PCle or
other bus or channel to connect to memory modules, inter-
node object router 615 can connect to multiple node object
routers and/or multiple other inter-node object routers.
According to one embodiment, a node object router 620 can
communicate with the memory modules 625 and 630 with
direct memory access over PCle and the memory bus (not
shown) of the node 605. Node object routers of different
nodes 605 and 610 can in turn connect with one or more
inter-node object routers 615 over a high-speed network (not
shown) such as 25/100GE fiber that uses several layers of
Gigabit Ethernet protocol or object memory fabric protocol
tunneled through standard IP, for example. Multiple inter-
node object routers can connect with the same network.

[0135] Inoperation, the memory fabric object memory can
physically achieve its powerfully simple application view
described above with reference to FIGS. 4 and 5 with a
combination of physical organization and object memory
dynamics. According to one embodiment and as introduced
above with reference to FIG. 5, the memory fabric object
memory can be organized as a distributed hierarchy that
creates hierarchical neighborhoods for object storage and
applications 515a-g. The node object routers can keep track
of which objects and portions of objects are local to a
neighborhood. The actual object memory can be located on
nodes 605 or 610 close to applications 515a¢-g and memory
fabric object methods.

Jun. &, 2017

[0136] Also as introduced above, object memory dynam-
ics can interact and leverage the hierarchal organization to
dynamically create locals of objects and applications (object
methods) that operate on objects. Since object methods can
be associated with objects as objects migrate and replicate
across nodes, object methods naturally gain increased par-
allelism as object size warrants. This object hierarchy, in
conjunction with object dynamics, can in turn create neigh-
borhoods of neighborhoods based on the size and dynamics
of the object methods.

[0137] For example, App0 515a spans multiple memory
modules 625 and 630 within a single level object memory
fabric neighborhood, in this case node 605. Object move-
ment can stay within that neighborhood and its node object
router 620 without requiring any other communication links
or routers. The self-organizing nature along the hierarchy
defined neighborhoods provides efficiency from a perfor-
mance and minimum bandwidth perspective. In another
example, Appl (A1) 51556 can have the same characteristic
but in a different neighborhood, i.e., in node 610. App2 (A2)
515¢ can be a parallel application across a two-level hier-
archy neighborhood, i.e., nodes 605 and 610. Interactions
can be self-contained in the respective neighborhood.

[0138] As noted above, certain embodiments may include
a data types and metadata architecture certain embodiments
can also include a data types and metadata architecture that
facilitate multiple advantages of the present invention. With
respect to the architecture, the following description dis-
closes various aspects of: object memory fabric address
spaces; an object memory fabric coherent object address
space; an object memory fabric distributed object memory
and index; an object memory fabric index; object memory
fabric objects; and an extended instruction execution model.
Various embodiments may include any one or combination
of such aspects.

[0139] FIG. 7 is a block diagram illustrating an aspect of
object memory fabric hierarchy of object memory, which
localizes working sets and allows for virtually unlimited
scalability, according to one embodiment of the present
invention. As disclosed herein, certain embodiments may
include core organization and data types that enable the
object memory fabric to dynamically operate to provide the
object memory application view. The core organization and
data types facilitate the fractal-like characteristics of the
system which allow the system to behave identically in a
scale-independent fashion. In the depicted example, an
object memory fabric 700 as disclosed herein can include
any number of processing nodes 705 and 710 communica-
tively coupled at higher levels via one or more external
object routers, such as object router 715, which may in turn
be coupled to one or more higher level object routers.

[0140] Specifically, the system may be a fat-tree built from
nodes, from leaf nodes to root node(s). According to certain
embodiments, each node may just understand whether its
scope encompasses an object and based on that whether to
route a request/response toward the root or leaf. Putting
these nodes together enables a system to dynamically scale
to any capacity, without impacting the operation or perspec-
tive of any node. In some embodiments, the leaf node may
be a DIMM built from standard memory chips, plus object
memory fabric 700 implemented within an FPGA. In some
embodiments, standard memory chips could have object
memory fabric 700 imbedded. In various embodiments,

US 2017/0160984 Al

implementations may have remote nodes such as mobile
phones, drones, cars, interne of things components, and/or
the like.

[0141] To facilitate various advantageous properties of
object memory fabric 700, certain embodiments may
employ coherent object memory fabric address spaces. Table
1 below identifies non-limiting examples of various aspects
of address spaces, in accordance with certain embodiments
of the present disclosure. All nodes that are connected to a
single object memory fabric 700, local or distributed, can be
considered part of a single system environment according to
certain embodiments. As indicated in Table 1, object
memory fabric 700 can provide a coherent object address
space. In some embodiments, a 128-bit object address space
may be provided. However, other embodiments are possible.
There are several reasons for a large object address space,
including the following. The object address space is to
directly uniquely address and manage all memory, storage
across all nodes within an object memory fabric system, and
provide a unique address for conventional storage outside of
an object memory fabric system. The object address space
can allow an address to be used once and never garbage
collect, which is a major efficiency. The object address space
can allow a distinction between allocating address space and
allocating storage. In other words, the object address space
can be used sparsely as an effective technique for simplicity,
performance, and flexibility.

[0142] As further indicated in Table 1, the object memory
fabric 700 can directly support per-process virtual address
spaces and physical address spaces. With some embodi-
ments, the per-process virtual address spaces and physical
address spaces may be compatible with x86-64 architecture.
In certain embodiments, the span of a single virtual address
space may be within a single instance of Linux OS, and may
be usually coincident with a single node. The object memory
fabric 700 may enable the same virtual address space to span
more than a single node. The physical address space may be
the actual physical memory addressing (e.g., within an
x86-64 node in some embodiments).

TABLE 1

Jun. &, 2017

[0143] FIG. 8 is a block diagram illustrating an example
relationship 800 between object address space 805, virtual
addresses 810, and physical addresses 815, in accordance
with certain embodiments of the present disclosure. With
object address space 805, a single object can range in size.
By way of example without limitation, a single object can
range in size from 2 megabytes (22') to 16 petabytes (2°%).
Other ranges are possible. Within the object memory fabric
700, object address space 805 may be allocated on an object
granularity basis in some embodiments. In some embodi-
ments, storage may be allocated on a 4 k byte block basis
(e.g., blocks 806, 807). Thus, the object address space block
806, 807 in some embodiments may correspond to the 4 k
byte page size within x86-64 architecture. When the object
address space 805 is created, only the address space and
object metadata may exist. When storage is allocated on a
per block basis, there can be data stored in the corresponding
block of the object. Block storage can be allocated in a
sparse or non-sparse manner and pre and/or demand allo-
cated. For example, in some embodiments, software can use
an object as a hash function and only allocate physical
storage for the valid hashes.

[0144] Referring to the example of FIG. 8, within a node
820, 825, which could be a conventional server in some
embodiments, physical pages corresponding to physical
addresses 815 may be allocated on a dynamic basis corre-
sponding to the virtual addresses 810. Since object memory
fabric 700 actually provides the physical memory within a
node 820, 825 by way of the object memory fabric DIMM,
when a virtual address segment 811, 812, 813, 814 is
allocated, an object address space 805 object which corre-
sponds to the particular segment 811, 812, 813, 814 can also
be created. This enables the same or a different virtual
address 810 across nodes 820, 825 to address and access the
same object. The actual physical address 815 at which a
block/page within an object resides within a node 820, 825
can vary over time within or across nodes 820, 825, trans-
parently to application software.

Address Spaces

Object memory
fabric Object

Parameter Address Space Virtual Address Physical Address
Description Object memory fabric Process address handle Cache of object
address to object memory memory fabric
fabric address
Scope Global Per process, can be Per node
shared
Size 2128 264 (248 Haswell) 24 (Haswell)

Object Support Yes, object memory
fabric object index tree
and per object index

tree

Yes, page tables

Object Sizes 21121211301391481

Yes, object memory
fabric metadata

Address Space Sparse - with or Sparse - with or Sparse - page
Allocation without storage, object without storage, object

units units
Storage Allocation Object or block (page) Based on object Page

memory fabric

Security (Access) Through virtual Operating system
address, operating

system, and file system

Operating system/
object memory fabric

US 2017/0160984 Al

[0145] Certain embodiments of the object memory fabric
700 may provide key advantages: embodiments of object
memory fabric 700 may provide integrated addressing,
objects with transparent invariant pointers (no swizzling
required), and methods to access a large address space
across nodes—a with certain embodiments being compat-
ible with x84-64, Linux, and applications. Normally, sys-
tems have numerous different addresses (e.g., for memory
address with separate address space, sectors, cylinders,
physical disks, database systems, file systems, etc.), which
requires significant software overhead for converting, buff-
ering, and moving objects and blocks between different
layers of addresses. Using integrated addressing to address
objects, and blocks within objects, and using the object
namespace eliminates layers of software by having single-
level addressing invariant across all nodes/systems. With a
sufficiently large address space, one address system is not
invariant with particular database application and all these
systems working together.

[0146] Thus, a node may include a memory module may
store and manage one or more memory objects, where
physical address of memory and storage is managed with

Jun. &, 2017

block diagram illustrating an example relationship 900
between object sizes 905 and object address space pointers
910, in accordance with certain embodiments of the present
disclosure. Table 2 below identifies non-limiting examples
of aspects of the object address space pointer 910, in
accordance with certain embodiments of the present disclo-
sure. As indicated by Table 2, some example embodiments
can support three pointer formats. The object address space
format may be an object memory fabric native 128 bit
format and can provide a single pointer with full address-
ability for any object and offset within object. Object
memory fabric 700 can support additional formats, for
example, two additional formats in 64 bit format to enable
direct compatibility with x86-64 virtual memory and virtual
address. Once a relationship between an object memory
fabric object and a virtual address segment is established by
object memory fabric API (which can be handled transpar-
ently to the application in Linux libc, in some embodi-
ments), standard x86 Linux programs can directly reference
data within an object (x86 segment) efficiently and trans-
parently utilizing the x86-64 addressing mechanisms.

TABLE 2

Object Address Space Pointer Formats

Object Object

memory Address Transformation Virtual
Pointer fabric Space to Virtual Address
Type Pointer Generation ~ Address Format
Object 128 bit Storage Direct None None
memory fabric
Address
Object Offset (64 bit) Obj Start + None virtual address
Relative ObjOffset base + offset

address mode

Object Virtual Offset (64 bit) ObjStart + Add virtual address 48 bit virtual
Address ObjOffset base to offset address with 64 bit

data type

each of the one or more memory objects based at least in part
on an object address space that is allocated on a per-object
basis with a single-level object addressing scheme. The node
may be configured to utilize the object addressing scheme to
operatively couple to one or more additional nodes to
operate as a set of nodes of an object memory fabric, where
the set of nodes operates so that all memory objects of the
set of nodes are accessible based at least in part on the object
addressing scheme, the object addressing scheme defining
invariant object addresses for the one or more memory
objects that are invariant with respect to physical memory
storage locations and storage location changes of the one or
more memory objects within the memory module and across
all modules interfacing the object memory fabric. Accord-
ingly, the object addresses are invariant within a module and
across all modules that interface to object memory fabric,
regardless of whether the objects are in a single server or not.
Even though the objects can be stored on any or all modules,
the object addresses are still invariant no matter at which
physical memory locations the objects are currently or will
be stored. The following provides details of certain embodi-
ments that may provide such advantages through the object
address space and object address space pointers.

[0147] Certain embodiments of object memory fabric 700
may support multiple, various pointer formats. FIG. 9 is a

[0148] Table 3 below identifies non-limiting examples of
aspects of the object address space pointers in relation to
object sizes, in accordance with certain embodiments of the
present disclosure. Embodiments of object address space
can supports multiple segment sizes, for example, six seg-
ment sizes from 221 to 264 as illustrated in Table 3 below.
The object sizes correspond to the x86-64 virtual memory
segment and large page sizes. Objects can start on a modulo
0 object size boundary. Object address space pointers 910
may be broken into ObjStart and ObjOffset fields, the sizes
of which are dependent on the object size as shown in the
example below. The ObjStart field corresponds to the object
address space start of the object and also the ObjectID. The
ObjOffset is an unsigned value in a range from zero to
(ObjectSize-1) with specifies the offset within an object.
Object metadata can specify the object size and object
memory fabric interpretation of the object address space
pointer 910. Objects of arbitrary size and sparseness can be
specified by only allocating storage for blocks of interest
within an object.

[0149] Because of the nature of most applications and
object nature of object memory fabric 700, most addressing
can be relative to an object. In some embodiments, all the
object memory fabric address pointer formats can be
natively stored and loaded by the processor. Object Relative

US 2017/0160984 Al

and Object Virtual Address can work directly with x86-64
addressing modes in some embodiments. Object Virtual
Address pointer can be or include a process virtual address
that works within the x86-64 segment and corresponding
object memory fabric object. Object memory fabric object
address space can be calculated by using the Object Virtual
Address as an object offset. Object Relative pointer can be
or include an offset into an x86-64 virtual address segment,
thus base plus index addressing mode works perfectly.
Object memory fabric object address space can be calculated
by using the Object Relative as an object offset. Table 3
below identifies non-limiting examples of details of gener-
ating a 128 bit object address space from an Object Virtual
Address or Object Relative pointer as a function of object
size, in accordance with certain embodiments of the present
disclosure.

TABLE 3

Object Address Space Generation

Object Address Space
Generation from Object
Object Relative and Object Virtual
Size Address Pointers

22! IA[127:00] = (ObjBase[127:21], zero[20:0]) + (zero[127:21],
ObjOffset[20.0])

230 IA[127:00] = (ObjBase[127:30], zero[29:0]) + (zero[127:30],
ObjOffset[29.0])

2% IA[127:00] = (ObjBase[127:39], zero[38:0]) + (zero[127:39],
ObjOffset[38.0])

248 IA[127:00] = (ObjBase[127:48], zero[47:0]) + (zero[127:48],
ObjOffset[47.0])

257 IA[127:00] = (ObjBase[127:57], zero[56:0]) + (zero[127:57],
ObjOffset[56.0])

264 IA[127:00] = (ObjBase[127:21], zero[20:0]) + (zero[127:21],
ObjOffset[20.0])

[0150] As disclosed herein, certain embodiments may
include an object memory fabric distributed object memory
and index. With the distributed index, individual nodes may
index local objects and blocks of objects on a per-object
basis. Certain embodiments of object memory fabric dis-
tributed object memory and index may be based at least in
part on an intersection concept of cellular automata and fat
trees. Prior distributed hardware and software systems with
real-time dynamic indices used two approaches: a central-
ized index or a distributed single conceptual index. Embodi-
ments of object memory fabric may use a new approach
which overlays an independent local index function on top
of a fat-tree hierarchical network.

[0151] FIG. 10 is a block diagram illustrating an example
object memory fabric distributed object memory and index
structure 1000, in accordance with certain embodiments of
the present disclosure. At leaves of the structure 1000 are
any number of processing nodes 1005 and 1010 object
memories 1035. These object memories 1035 may each have
an object index that describes the objects and portions of
objects currently stored locally in the object memories 1035.
A number of object memories 1035, which in some embodi-
ments may be DDR4-DIMM interface compatible cards
within a single node are logically connected with an object
memory fabric node object index 1040. The object memory
fabric node object indices 1040 may each have an object
index that describes the objects and portions of objects
currently stored locally and/or currently stored in the object
memories 1035. In some embodiments, the object memory

Jun. &, 2017

fabric node object index 1040 can be instantiated as a PCle
card. With some embodiments, the object memory fabric
object memory DDR4-DIMM and object memory fabric
node object index PCle card can communicate over PCle
and memory bus.

[0152] In some embodiments, the object memory fabric
node object index 1040 works identically to the object index
within the object memory 1035, except that the object
memory fabric node object index 1040 tracks all objects and
portions of objects that are within any of the connected
object memories 1035 and maps the objects and portions of
objects to particular object memory 1035. The next level up
in the tree is an node object router object index 1020 that
may be provided by an object memory fabric router that
performs the same object index function for all the object
memory fabric node object indices 1040 to which it is
connected. The node object router object indices 1020 may
each have an object index that describes the objects and
portions of objects currently stored locally in lower levels
(e.g., at 1040, 1035). Thus, according to some embodiments,
router modules may have directory and router functions,
whereas memory modules may have directory and router
functions, as well as memory functions to store memory
objects. However, other embodiments are possible, and, in
alternative embodiments, the router modules may addition-
ally have memory functions to store memory objects.

[0153] The pattern may illustrated by the structure 1000
may continue to another higher level inter-node object router
object index 1015 that may be provided by an object
memory fabric router that performs the same object index
function for all the object memory fabric node object indices
to which it is connected, and so on to the root of the tree.
Thus, in certain embodiments, each object index and each
level may perform the same function, independently, but, the
aggregate of object indices and levels as a tree network may
provide a real time dynamic distributed index, with great
scalability properties, that efficiently tracks and localizes
memory objects and blocks. An additional property may be
that the combination of tree, distributed indices, and caching
enable a significant reduction in bandwidth requirements.
This may be illustrated by the hierarchically indicated
neighborhoods that are delineated by object memory fabric
router to leafs (down in this case). As the level of the defined
hierarchy increases, so does the aggregate object memory
caching capacity. So, as an application working set fits
within the aggregate capacity of a given level, the bandwidth
requirement at the level toward the root may go to zero.

[0154] As disclosed herein, each processing node is con-
figured to utilize a set of algorithms to operatively couple to
one or more additional processing nodes to operate as a set
of processing nodes independently of a scale of the set of
processing nodes. The set of nodes may operate so that all
memory objects of the set of nodes are accessible by any
node of the processing set of nodes. At the processing nodes,
object memory modules may store and manage memory
objects, each instantiated natively therein and managed at a
memory layer, and object directories that index the memory
objects and blocks thereof on a per-object basis. A memory
module may process requests based at least in part on the
one or more object directories, which requests may be
received from an application layer. In some case, the
requests may be received from one or more additional
processing nodes. Responsive to the requests, a given
memory module may process an object identifier corre-

US 2017/0160984 Al

sponding to a given request and may determine whether the
memory module has requested object data. If the memory
module has the requested object data, the memory module
may generate a response to the request based at least in part
on the requested object data. If the memory module does not
have the requested object data, an object routing module
may routes the first request to another node in the tree. The
routing of the request may be based at least in part on the
object routing module making a determination about a
location of object data responsive to the request. If the object
routing module identifies the location based at least in part
on the object routing module’s directory function, the object
routing module may rout the request down toward the
location (i.e., a lower level node possessing the requested
object data). However, if the object routing module deter-
mines that the location is unknown, the object routing
module may rout the request toward a root node (i.e., to one
or more higher level object routers—inter-node object rout-
ers) for further determinations at each level until the
requested object is located, accessed, and returned to the
original memory module.

[0155] In addition, as disclosed herein, triggers may be
defined for objects and/or blocks within objects in object
metadata. The object-based triggers may predict what opera-
tions will be needed and may provide acceleration by
performing the operations ahead of time. When a node
receives a request that specifies an object (e.g., with a
128-bit object address), the node uses an object directory to
determine if the node has any part of the object. If so, the
object directory points to a per-object tree (a separate one,
where the size is based on the size of the object) which may
be used to locate local the blocks of interest. There could be
additional trigger metadata that indicates, for the particular
blocks of interest, to interpret the particular addresses in a
predefined manner as the blocks are transferred to/through
the memory module. The triggers may specify one or more
pre-defined hardware and/or software actions on a per-block
basis with respect to one or more data blocks within an
object (e.g., fetch a particular address, run a more compli-
cated trigger program, perform pre-fetching, calculate these
other three blocks and send signal to software, etc.). Triggers
may correspond to a hardware way to dynamically move
data and/or perform other actions ahead of when such
actions are needed as objects flow through any memory
module of the object memory fabric. Accordingly, such
actions may be effected when a particular memory object
having one or more trigger is located at a respective memory
module and accessed as part of the respective memory
module processing one or more other requests.

[0156] FIGS. 11 and 12 are block diagrams illustrating
examples at a logical level of how the distributed nature of
the object index operates and interoperates with the object
memory fabric protocol layering, in accordance with certain
embodiments of the present disclosure. Certain embodi-
ments of object memory fabric protocol layering may be
similar to, but have important differences from, a conven-
tional layered communication protocol. A communications
protocol may be essentially stateless, but embodiments of
the object memory fabric protocol may maintain object state
and directly enable distributed and parallel execution—all
without any centralized coordination.

[0157] FIG. 11 illustrates an object memory hit case 1100
that executes completely within the object memory 1135, in
accordance with certain embodiments of the present disclo-

Jun. &, 2017

sure. Object memory 1135 may receive a processor request
1105 or background trigger activity 1106. The object
memory 1135 may manage the local DRAM memory as a
cache 1130, based on processor physical address. The most
frequent case may be that the requested physical address is
present and it gets immediately returned to the processor, as
indicated at 1110. The object memory 1135 may use triggers
to transparently move data from slower flash memory into
the fast DRAM memory, as indicated at 1115.

[0158] For the case of a miss 1115 or background trigger
activity 1106, some embodiments may include one or a
combination of the following. In some embodiments, an
object memory fabric object address may be generated from
the physical address, as indicated by block 1140. The object
index may generate the location in local flash memory from
the object address space, as indicated by block 1145. Object
index lookup can be accelerated by two methods: (1) a
hardware-based assist for index lookup; and (2) results of
the object index lookup being locally cached. Object
memory fabric cache coherency may be used to determine
whether the local state is sufficient of the intended operation,
as indicated by block 1150. Based on the index, a lookup
may be performed to determine whether the object and/or
block within object are local, as indicated by block 1155. In
the case of a hit 1160, the data corresponding to request 1105
or trigger activity 1106 may be transferred, as indicated by
1165. And, in some embodiments, when the cache state is
sufficient, a decision may be made to cache the block into
DRAM.

[0159] FIG. 12 illustrates an object memory miss case
1200 and the distributed nature of the object memory and
object index, in accordance with certain embodiments of the
present disclosure. The object memory 1235 may go through
steps described previously, but the routing/decision stage
125 may determine that the object and/or block is not local.
As a result, the algorithm may involve the request traversing
1270 up the tree toward the root, until the object/block is
found. Any number of levels and corresponding node ele-
ments may be traversed until the object/block is found. In
some embodiments, at each step along the path, the same or
similar process steps may be followed to independently
determine the next step on the path. No central coordination
is required. Additionally, as disclosed herein, object memory
fabric API and triggers normally get executed in the leafs,
but can be executed in a distributed manner at any index.

[0160] As a simplified example, in the case depicted the
request traverses 1270 up from the object memory fabric
node object index 1240 corresponding to object memory
1235 to the object router 1220. The object router 1220, with
its an object router object index, may identify the request
object/block as being down the branch toward object
memory fabric node object index 1241. Hence, at the index
of object router 1220, the request may then be routed 1275
toward the leaf(s) that can supply the object/block. In the
example depicted, the object memory 1236 can supply the
object/block. At the object memory 1236, memory access/
caching 1241 may be performed (which may include pre-
viously described process steps for a hit case being per-
formed), and the object/block may be returned 1280 back to
the original requesting leaf 1235 for the ultimate return
1290. Again, in some embodiments, at each step along the
path, the same or similar process steps may be followed to
independently determine the next step on the path. For
example, the original requesting leaf 1235 may perform

US 2017/0160984 Al

previously described process steps 1285 for a hit case, and
then return 1290 the requested data.

[0161] As disclosed herein, the operation of a single object
memory fabric index structure, the object memory fabric
index structure may be based on several layers of the same
tree implementation. Certain embodiments employing tree
structure may have several uses within object memory fabric
as described in Table 4 below. However, various other
embodiments are possible.

TABLE 4

Tree Structure Uses

Node
Object Object Object Memory
Use Memory Index Fabric Router
Determine local location of Yes

objects and blocks comprising

objects as function of object

address space

Determine which children hold Yes Yes
objects, and blocks comprising

objects, as a function of object

address space

Generate object address space Yes

as function of local physical

address (single level)

Object virtual address to object Yes

address space

Application defined Yes

[0162] FIG. 13 is a block diagram illustrating an example

of leaf level object memory structure 1300 in view of the
object memory fabric distributed object memory and index
structure, in accordance with certain embodiments of the
present disclosure. In some embodiments, the leaf level
object memory structure 1300 may include a nested set of
B-trees. The root tree may be the object index tree (OIT)
1305, which may index objects locally present. The index
for the object index tree 1305 may be the object memory
fabric object address, since objects start at object size
modulo zero. There may be one object index tree 1305 for
each object that has at least a single block stored locally
within the object memory.

[0163] The object index tree 1305 may provide one or
more pointers (e.g., local pointers) to one or more per object
index trees (POIT) 1310. For example, every local object
may have a per object index tree 1310. A per object index
tree 1310 may index object metadata and blocks belonging
to the object that are locally present. The per object index
tree 1310 leaves point to the corresponding metadata and
blocks (e.g., based on offset within object) in DRAM 1315
and flash 1320. A leaf for a specific block can point to both
DRAM 1315 and flash 1320, as in the case of leaf 1325, for
example. Organization of object metadata and data is dis-
closed further herein.

Jun. &, 2017

[0164] The tree structure utilized may be a modified B-tree
that is copy-on-write (COW) friendly. COW is an optimi-
zation strategy that enables multiple tasks to share informa-
tion efficiently without duplicating all storage where most of
the data is not modified. COW stores modified blocks in a
new location which works well for flash memory and
caching. In certain embodiments, the tree structure utilized
may be similar to that of the open source Linux file system
btrfs, with major differences being utilization for a single
object/memory space, hardware acceleration, and the ability
of independent local indices to aggregate as described
previously. By utilizing multiple layers of B-trees, there can
be a higher degree of sharing and less rippling of changes.
Applications, such as file systems and database storage
managers, can utilize this underlying efficient mechanism
for higher level operation.

[0165] FIG. 14 is a block diagram illustrating an example
of object memory fabric router object index structure 1400,
in accordance with certain embodiments of the present
disclosure. With some embodiments, the object memory
fabric router object index and the node object index may use
an almost identical structure of object index trees 1405 and
per object index trees 1410 for each object. The object index
trees 1405 may index objects locally present. Each object
described in an object index tree 1405 may have a per object
index tree 1410. The per object index trees 1410 may index
blocks and segments that are locally present.

[0166] The object memory fabric router object index and
the node object index may index objects and blocks within
objects that are present in the children 1415 within the tree
structure 1400, namely child router(s) or leaf object
memory. An entry within a leaf in the per object index tree
1410 has the ability to represent multiple blocks within the
object. Since blocks of an object may tend to cluster together
naturally and due to background housekeeping, each object
tends be represented much more compactly in object indices
that are closer to the tree root. The object index trees 1405
and per object index trees 1410 may enable reduplication at
the object and block level, since multiple leafs can point to
the same blocks, as in the case of leaves 1425 and 1430, for
example. Index Copy-On-Write (COW) support enables, for
example, only modified blocks to be updated for an object.

[0167] FIGS. 15A and 15B are block diagrams illustrating
non-limiting examples of index tree structures, including
node index tree structure 1500 and leaf index tree 1550, in
accordance with certain embodiments of the present disclo-
sure. Further non-limiting examples of various aspects of
index tree fields are identified in Table 5 below. Other
embodiments are possible. An individual index tree may
include node blocks and leaf blocks. Each node or leaf block
may include of a variable number of entries based on the
type and size. Type specifies type of node, node block, leaf,
and/or leaf block.

TABLE 5

Index Tree Fields

Name

Description Size

NSize

ObjSize

Encoded node size field. Single value for OIT node. Multiple 3
values for POIT node based on object size corresponding to

POIT index. Implies the size of NValue field.

Encoded Object Size 3

US 2017/0160984 Al

17

TABLE 5-continued

Jun. &, 2017

Index Tree Fields

Name Description Size
ObjectID Maximum size object ID 107
Object Offset 4k block Based on Object size corresponding to POIT index 52
(9-52)
LPointer (LP) References local 4k block in flash or dram. Includes 32 bits of 32
pointer and a single bit specifying dram address space.
LParent (LPt) Local Parent references the local 4k block of the parent node in 33
flash or dram. Includes 32 bits of pointer and a single bit
specifying dram address space.
LSize Encoded leaf LValue size. 3
Otype Type of OIT Leaf 2
Ptype Type of POIT Leaf 2
Etype Type of OIT or POIT Entry Node 3
Rtype Type of reserved Leaf 3
num May be utilized to increase the size of data that the leaf 0
specifies to increase the efficiency of index tree and storage
device. Values may include:
1 block
4 blocks (flash page)
512 blocks (minimum size object, 2 Mbyte)
Children Specifies a remote device number 32
Block State Encoding of 4k block cache coherency state 8
Block referenced count (unsigned) 7
Modified - Indicates that the block has been modified with 1
respect to persistent store. Only valid for blocks while they are
present in volatile memory.
DS State [15:0] DownStream State [15:0] - Enumerates the state of for the 128

block within object specified by Object Offset for each of 16
devices.

[0168] Size specifies independently the size of the
LPointer and IndexVal (or object offset). Within a balanced
tree, a single block may point to all node blocks or all leaf
blocks. In order to deliver highest performance, the tree may
become un-balanced, such as for example where the number
of levels for all paths through the tree are equivalent. Node
blocks and leaf blocks may provide fields to support un-
balanced trees. A background activity may re-balance the
trees that are part of other background operations. For
example, an interior node (non-leaf) in OIT may include L.
Pointer and N'Value fields. NValue may include object size
and object ID. Object ID requires 107 (128-21) bits to
specify the smallest possible object. Each LPointer may
point to the next level of interior node or a leaf node.
LPointer may require enough bits to represent all the blocks
within its local storage (approximately 32 bits representing
16 terabytes). For a node in the POIT, the NValue may
consist of the object offset based on object size. The object
size may be encoded within the NSize field. The size field
may enable a node to hold the maximum number of I.Pointer
and NValue fields based on usage. An index tree root node
may be stored at multiple locations on multiple flash devices
to achieve reliable cold boot of the OIT. Tree root block
updates may be alternated among mirrors to provide wear
leveling.

[0169] By default, each POIT Leaf entry may point to the
location of a single block (e.g., 4 k bytes). POIT Leaf OM
entry and POIT Leaf Router entry may contain a field to
enable support beyond single block to enable more com-
pressed index trees, higher resulting index tree performance
and higher persistent storage performance by being able to
match the page size for persistent storage.

[0170] Nodes and leafs may be differentiated by the Type
field at the start of each 4 k block. The NNize field may

encode the size of NValue field within a node, and LSize
field may encode the size of the LValue field within a leaf.
The size of the LPointer field may be determined by the
physical addressing of local storage is fixed for a single
devices (e.g., RDIMM, node router, or router). The [.Pointer
may be only valid within a single device and not across
devices. The LPointer may specify whether the correspond-
ing block is stored in persistent memory (e.g., flash) or faster
memory (e.g., DRAM). Blocks that are stored in DRAM
may also have storage allocated within persistent memory,
so that two entries are present to indicate the two storage
locations for a block, node or leaf. Within a single block
type, all NValue and/or [Value fields may be a single size.

[0171] The OIT Node may include several node level
fields (Type, NSize, and LParent) and entries including OIT
Node Entry or OIT Leaf Entry. Since an index tree can be
un-balanced at times a node can include both node and leaf
entries. The POIT Node may include one or more node level
fields (e.g., Type, NSize, and/or LParent) and entries includ-
ing OIT Leaf Entry. OIT Leaf types may be differentiated by
the otype field. OIT Leaf (Object Index Table Leaf) may
point to the head of a POIT (Per Object Index Table) that
specifies object blocks and object metadata. OIT Leaf R may
point to a remote head of an POIT. This may be utilized to
reference an object that is residing on a remote device across
a network. This leaf may enable the remote device to
manage the object.

[0172] POIT Leaf types may be differentiated by the ptype
field. POIT Leaf OM may point to a block of object memory
or metadata. The Object offset field may be one bit greater
than the number of bits to specify the offset for a specific
object size to specify metadata. For example, for 221 object
size 10 bits may be required (9 plus 1 bits). The implemen-
tation can choose to represent the offset in two’s comple-

US 2017/0160984 Al

ment form (signed form, first block metadata is -1), or in
one’s complement where the additional bit indicates meta-
data (first block of metadata is represented by 1, with
metadata bit set).

[0173] POIT Leaf Remote may point to an block of object
memory or metadata that is remote from the local DIMM.
This may be used to reference a block that is residing on a
remote device across a network through the stream package
interface. For example, this device could be a mobile device.
This leaf may enable object memory fabric hardware to
manage coherence on a block basis for the remote device.
[0174] POIT Leaf Router may be utilized within node
object routers and inter-node object routers to specify the
state of the corresponding object memory fabric Block
Object Address for each of up to 16 downstream nodes. If
within a node object router, up to 16 DIMMs may be
specified in some embodiments (or more in other embodi-
ments). If within an inter-node object router up to 16
downstream routers or node object routers (e.g., server
nodes) may be specified in some embodiments (or more in
other embodiments). The Block Object Address can be
present in one or more downstream devices based on valid
state combinations.

[0175] Index lookups, index COW updates, and index
caching may be directly supported in object memory fabric
hardware in Object Memory, node object index, and object
memory fabric Router. In addition to the node formats for
object memory fabric indices, application-defined indices
may be supported. These may be initialized through the
object memory fabric APl. An advantage of application-
defined indices may be that object memory fabric hardware-
based index lookup, COW update, index caching, and par-
allelism may be supported

[0176] Various embodiments may provide for background
operations and garbage collection. As each DIMM and
Router within object memory fabric may maintain its own
directory and storage locally, background operations and
garbage collection may be accomplished locally and inde-
pendently. Each DIMM or Router may have a memory
hierarchy for storing index trees and data blocks, that may
include on-chip cache, fast memory (e.g., DDR4 or HMC
DRAM) and slower nonvolatile memory (e.g., flash) that it
can manage, as well as index trees.

[0177] Each level within the hierarchy may perform the
following operations: (1) Tree balancing to optimize lookup
time; (2) Reference count and aging to determine when
blocks are moved between different storage; (3) Free list
updating for each local level of hierarchy as well as keeping
a parameters of fill level of the major levels of the local
hierarchy; (4) Delivering periodic fill levels to the next level
of hierarchy to enable load balancing of storage between
DIMMs on a local server and between levels of object
memory fabric hierarchy; (5) If a Router, then load balanc-
ing between child nodes.

[0178] Block reference count may be utilized object
memory fabric to indicate the relative frequency of access.
Higher value may indicate more frequent use over time,
lower less frequent use. When block reference count is
associated with a block in persistent memory, blocks which
have lowest values may be candidates to move to another
DIMM or node that has more available space. Each time a
block is accelerated into volatile memory, the reference
count may be incremented. Low frequency background
scanning may decrement the value if it is not in volatile

Jun. &, 2017

memory and increments the value if it is in volatile memory.
It may be expected that the scanning algorithm may evolve
over time to increment or decrement based or reference
value to provide appropriate hysteresis. Blocks that are
frequently accelerated into or present in volatile memory
may have higher reference count values.

[0179] When a block reference count is associated with a
block in volatile memory, blocks which have lowest values
may be candidates to move back to persistent memory or
memory within another DIMM or node. When a block
moves into volatile memory, reference count may be initial-
ized based on the instruction or use case that initiated the
movement. For example, a demand miss may set the value
to a midpoint, and a speculative fetch may set it to a quarter
point. Single use may set it to below the quarter point.
Moderate frequency background scanning may decrement
the referenced value. Thus, demand fetches may be initially
weighted higher than speculative fetches. If a speculative
fetch is not utilized, it may quickly fall to the lower
referenced values that may be replaced first. Single use may
be weighted low to be candidate for replacement sooner than
other blocks. Thus, single use and speculative blocks may
not replace other frequently accessed blocks.

[0180] FIG. 16 is a block diagrams illustrating an aspect of
example physical memory organization 1600, in accordance
with certain embodiments of the present disclosure. Object
memory fabric may provide multiple methods to access
objects and blocks. For example, a direct method may be
based on execution units within object memory fabric or
devices that can directly generate full 128-bit memory fabric
addresses may have full direct access.

[0181] An associated method may consider conventional
servers having limited virtual address and physical address
spaces. Object memory fabric may provide an API to
dynamically associate objects (e.g., segments) and blocks
(e.g., pages) with the larger object memory fabric 128-bit
memory fabric address. The associations provided by Asso-
cObj and AssocBlk operations may be utilized by object
memory fabric driver (e.g., Linux driver) and object memory
fabric system library (Syslib) interfacing with the standard
processor memory management to enable object memory
fabric to behave transparently to both the operating system
and applications. Object memory fabric may provide: (a) an
API to associate a processor segment and its range of virtual
addresses with an object memory fabric object thus ensuring
seamless pointer and virtual addressing compatibility; (b) an
API to associate a page of virtual address space and the
corresponding object memory fabric block with a page/
block of local physical memory within an object memory
fabric DIMM (which may ensure processor memory man-
agement and physical addressing compatibility); and/or (c)
local physical memory divided into standard conventional
server DIMM slots, with 512 Gbytes (239 bytes) per DIMM
slot. On a per slot basis, object memory fabric may keep an
additional directory indexed by physical address of the
object memory fabric address of each block that has been
associated with the corresponding physical address as illus-
trated in the following diagram.

[0182] FIG. 16 is a block diagram illustrating an example
physical memory organization 1600, in accordance with
certain embodiments of the present disclosure. A physical
memory directory 1605 for physical memory 1630 may
include: object memory fabric object block address 1610;
object size 1615; reference count 1620; a modified field

US 2017/0160984 Al

1625 which may indicate whether the block has been
modified with respect to persistent memory; and/or write
enable 1630 which may indicate whether local block cache
state is sufficient for writing. For example, if the cache state
were copy, writes may be blocked, and object memory fabric
would may with sufficient state for writing. The physical
address range may be assigned to each by system BIOS on
boot based object memory fabric DIMM SPD (Serial Pres-
ence Detect) configuration.

[0183] FIG. 17A is a block diagram illustrating an
example object addressing 1700, in accordance with certain
embodiments of the present disclosure. FIG. 17B is a block
diagram illustrating example aspects of object memory
fabric pointer and block addressing 1750, in accordance
with certain embodiments of the present disclosure. Object
memory fabric objects 1705 may include object data 1710
and metadata 1715, both divided into 4 k blocks in some
embodiments as one unit of storage allocation, referenced by
the object memory fabric address space 1720. The object
starting address may be the ObjectID 1755. Data 1710 may
be accessed as a positive offset from ObjectID 1755. The
largest offset may be based on ObjectSize 1760.

[0184] Object metadata 1715 may be accessed as a nega-
tive offset from ObjectStart 1725 (ObjectID). Metadata 1715
can be also referenced by an object memory fabric address
in the top Yisth of object address space 1720. The start of a
specific objects metadata may be 2128-2124+0bjStart/16.
This arrangement may enable the POIT to compactly rep-
resent metadata 1715 and the metadata 1715 to have an
object address space so it can be managed coherently just
like data. Although the full object address space may be
allocated for object data 1710 and metadata 1715, storage
may be sparsely allocated on a block basis. At a minimum,
an object 1705 has a single block of storage allocated for the
first block of metadata 1715, in some embodiments. Object
access privilege may be determined through object memory
fabric Filesystem ACL or the like. Since object memory
fabric manages objects in units of 4 k blocks, addressing
within the object memory fabric object memory are block
addresses, called Block Object Address 1765 (BOA), which
corresponds to object address space [127:12]. BOA [11:0]
may be utilized by the object memory for ObjectSize
(BOA[7:0]) and object metadata indication (BOA[2:0])
[0185] FIG. 18 is a block diagram illustrating example
aspects 1800 of object metadata 1805, in accordance with
certain embodiments of the present disclosure. Table 6
below indicates metadata of the first block 1810 of metadata
1805 per certain embodiments. In some embodiments, the
first block 1810 of metadata 1805 may hold metadata for an
object as depicted.

TABLE 6

Metadata First Block

Name Description Size

Object address Object ID. Number of significant bits 16

space determined by object size

Object size Object Size

CRC Reserved for optional object crc 16

Parity pointer Pointer to pages used for optional object block 16
parity

Compression OID of compression object 16

Flags

Encryption Flags OID of encryption object 16

Jun. 8, 2017
TABLE 6-continued
Metadata First Block

Name Description Size
System Defined Reserved for software defined OS functions 256
Application Reserved for software defined owning 256
Defined application functions
Others 432
Remote Object Specifies Objects accessible from this object. 1024
Table Specifies 64 OIDs (128 bit). The zero entry is

used to specify object or metadata within this
Triggers Triggers or Trigger B-Tree root 2048

4096

[0186] System-defined metadata may include any Linux-

related data to coordinate use of certain objects seamlessly
across servers. Application-defined metadata may include
application related data from a file system or database
storage manager to enable searches and/or relationships
between objects that are managed by the application.
[0187] For an object with a small number of triggers, base
triggers may be stored within the first block; otherwise, a
trigger B-tree root may reference metadata expansion area
for the corresponding object. Trigger B-tree leat may specify
base triggers. A base trigger may be a single trigger action.
When greater than a single action is required, a trigger
program may be invoked. When trigger programs are
invoked, they may reside in the expansion area. The remote
object table may specify objects that are accessible from this
object by the extended instruction set.

[0188] Certain embodiments may provide for an extended
instruction execution model. One goal of the extended
execution model may be to provide a lightweight dynamic
mechanism to provide memory and execution parallelism.
The dynamic mechanism enables a dataflow method of
execution that enables a high degree of parallelism com-
bined with tolerance of variation in access delay of portion
of objects. Work may be accomplished based on the actual
dependencies, not a single access delay holding up the
computation.

[0189] Various embodiments may include one or a com-
bination of the following. Loads and memory references
may be split transactions, with separate request and response
so that the thread and memory path are not utilized during
the entire transaction. Each thread and execution unit may be
able to issue multiple loads into object memory fabric (local
and remote) prior to receiving a response. Object memory
fabric may be a pipeline to handle multiple requests and
responses from multiple sources so that memory resources
can be fully utilized. The execution unit may be able to
accept responses in a different order from that the requests
were issued. Execution units can switch to different threads
to be fully utilized. Object memory fabric can implement
policies to dynamically determine when to move objects or
portions of objects versus moving a thread versus creating a
thread.

[0190] FIG. 19 is a block diagram illustrating aspects of an
example micro-thread model 1900, in accordance with cer-
tain embodiments of the present disclosure. A thread may be
the basic unit of execution. A thread may be defined at least
in part by an instruction pointer (IP) and a frame pointer
(FP). The instruction pointer may specify the current instruc-
tion that is being executed. The frame pointer may specify
the location of the current execution state of the thread.

US 2017/0160984 Al

[0191] A thread can include multiple micro-threads. In the
example depicted, the thread 1905 include micro-threads
1906 and 1907. However, a thread can include greater
numbers of micro-threads. The micro-threads of a particular
thread may share the same frame pointer but have different
instruction pointers. In the example depicted, frame pointers
1905-1 and 1905-2 specify the same location, but instruction
pointers 1910 and 1911 specify different instructions.

[0192] One purpose of micro-threads may be to enable
data-flow like operation within a thread by enabling multiple
asynchronous pending memory operations. Micro-threads
may be created by a version of the fork instruction and may
be rejoined by the join instruction. The extended instruction
set may treat the frame pointer as a top of stack or register
set by performing operations on offsets from the frame
pointer. Load and store instructions may move data between
the frame and the object.

[0193] FIG. 20 is a block diagram illustrating aspects of an
example relationship 2000 of code, frame, and object, in
accordance with certain embodiments of the present disclo-
sure. Specifically, FIG. 20 illustrates how object data 2005
is referenced through the frame 2010. The default may be for
load and store instructions to reference the object 2005
within local scope. Access to object 2005 beyond local scope
can be given in a secure manner by access control and
security policies. Once this access is given, objects 2005
within local and non-local scope can be accessed with equal
efficiency. Object memory fabric encourages strong security
by encouraging efficient object encapsulation. By sharing
the frame, micro-threads provide a very lightweight mecha-
nism to achieve dynamic and data-flow memory and execu-
tion parallelism, for example, on the order of 10-20 micro-
threads or more. The multiple threads enable virtually
unlimited memory based parallelism.

[0194] FIG. 21 is a block diagram illustrating aspects of an
example of micro-thread concurrency 2100, in accordance
with certain embodiments of the present disclosure. Specifi-
cally, FIG. 21 illustrates the parallel data-flow concurrency
for a simple example of summing several randomly located
values. A serial version 2105 and a parallel version 2110 are
juxtaposed, in accordance with certain embodiments of the
present disclosure. The parallel version 2110 can be almost
n times faster since loads are overlapped in parallel.

[0195] Referring again to FIG. 20, the approach can be
extended to interactive and recursive approaches in a
dynamic manner. The advantages of prefetching ahead can
now be achieved in cases with minimal locality without
using prefetch. When an object is created, a single default
thread 2015 (single micro-thread 2020 is created) may be
waiting to start with a start message to the default thread
2015. The default thread 2015 then can create micro-threads
with the thread or use a version of the fork instruction to
create a new thread.

[0196] In some embodiments, both the instruction pointer
and the frame pointer may be restricted to the expansion
metadata region 1815 starting at block two and extending to
SegSize/16. As the number of objects, object size, and object
capacity increase, the thread and micro-thread parallelism
may increase. Since threads and micro-threads may be tied
to objects, as objects move and distribute so may the threads
and micro-threads. Embodiments of object memory fabric
may have the dynamic choice of moving objects or portions
of objects to threads or distributing threads to the object(s).

Jun. &, 2017

This may be facilitated by the encapsulated object methods
implemented by the extended execution model.

[0197] As further noted above, embodiments of the pres-
ent invention may also include an object memory fabric
instruction set which can provide a unique instruction model
based on triggers that support core operations and optimi-
zations and allow the memory intensive portion of applica-
tions to be more efficiently executed in a highly parallel
manner within the object memory fabric.

[0198] The object memory fabric instruction set can be
data-enabling due to several characteristics. First, the
sequence of instructions can be triggered flexibly by data
access by a conventional processor, object memory fabric
activity, another sequence or an explicit object memory
fabric API call. Second, sequences can be of arbitrary length,
but short sequences can be more efficient. Third, the object
memory fabric instruction set can have a highly multi-
threaded memory scale. Fourth, the object memory fabric
instruction set can provide efficient co-threading with con-
ventional processors.

[0199] Embodiments of the present invention include two
categories of instructions. The first category of instructions
is trigger instructions. Trigger instructions include a single
instruction and action based on a reference to a specific
Object Address (OA). A trigger instruction can invoke
extended instructions. The second category of instructions is
extended instructions. Extended instructions define arbitrary
parallel functionality ranging from API calls to complete
high level software functions. After a discussion of the
instruction set model, these two categories of instructions
will be discussed in turn. As noted, trigger instructions
enable efficient single purpose memory related functions
with no context outside of the trigger.

[0200] Using the metadata and triggers defined above an
execution model based on memory data flow can be imple-
mented. This model can represent a dynamic dataflow
method of execution in which processes are performed
based on actual dependencies of the memory objects. This
provides a high degree of memory and execution parallelism
which in turn provides tolerance of variations in access
delays between memory objects. In this model, sequences of
instructions are executed and managed based on data access.
These sequences can be of arbitrary length but short
sequences are more efficient and provide greater parallelism.
[0201] The extended instruction set enables efficient,
highly threaded, in-memory execution. The instruction set
gains it’s efficiency in several manners. First, the instruction
set can include direct object address manipulation and
generation without the overhead of complex address trans-
lation and software layers to manage differing address
spaces. Second, the instruction set can include direct object
authentication with no runtime overhead that can be set
based on secure third party authentication software. Third,
the instruction set can include object related memory com-
puting. For example, as objects move, the computing can
move with them. Fourth, the instruction set can include
parallelism that is dynamic and transparent based on scale
and activity. Fifth, the instruction set can include an object
memory fabric operation that can be implemented with the
integrated memory instruction set so that memory behavior
can be tailored to application requirements. Sixth, the
instruction set can handle functionality for memory-inten-
sive computing directory in the memory. This includes
adding operations as memory is touched. Possible opera-

US 2017/0160984 Al

tions may include, but are not limited to, searching, image/
signal processing, encryption, and compression. Inefficient
interactions with conventional processors are significantly
reduced.

[0202] The extended instruction capability can be targeted
at memory intensive computing which is dominated with
memory references for interesting size problems that are
larger than caches or main memory, and simple operations
based on these references. Some examples can include but
are not limited to:

[0203] Defining API macros from conventional proces-
SOIS.
[0204] Defining the streams of interaction between hier-

archical components of the object memory fabric. Each

component can use a core set of instruction sequences

to implement object memory fabric functionality.

[0205] Short sequences for macros to accelerate key
application kernels such as BFS (Breath First Search),
etc. BFS is a core strategy for searching a graph and is
heavily used by graph databases and graph applica-
tions. For example, BFS is used across a wide variety
of problem spaces to find a shortest or optimal path. It
is a representative algorithm that illustrates the chal-
lenges for analyzing large scale graphs namely, no
locality because graphs are larger than caches and main
memory and virtually all the work is through memory
references. In the case of BFS, the extended instruction
capability described herein coupled with threads
handles almost the entire BFS by recursive instantiation
of threads to search adjacency lists based on graph size
and available nodes. Highly parallel direct in-memory
processing and high-level memory operations reduce
software path-length. When combined with object
memory fabric capability described above to bring all
data in-memory and localize it ahead of use, the per-
formance and efficiency per node is significantly
increased.

[0206] Complete layer functionality, such as:

[0207] Storage engine for hierarchical file system
built on top of a flat object memory. A storage engine
is, for example, what stores, handles, and retrieves
the appropriate object(s) and information from
within an object. For MySQL, the object may be a
table. For a file system, the object may be a file or
directory. For a graph database, the object may be a
graph and information may consist of vertices and
edges. Operators supported may be, for example,
based on type of object (file, graph, SQL, etc.).

[0208] Storage engine for structured database such as
MySQL
[0209] Storage engine for unstructured data such as

graph database
[0210] Storage engine for NoSQL key-value store
[0211] Complete application: Filesystem, structured
database such as MySQL, unstructured data such as
graph database or NoSQL key-value store
[0212] User programmable.
[0213] According to one embodiment, a base trigger may
invoke a single trigger action based on reference to a specific
OA. There can be a single base trigger per OA. When greater
than a single action is required, a trigger program can be
invoked with the TrigFunction base trigger. Base triggers
may consist of the instructions included in Table 7 below.

Jun. &, 2017

TABLE 7

Example Base Trigger Instruction Set

Base Trigger Description

Trigger Fetch the block specified in the pointer at the specified

object offset based on specified trigger conditions

and actions

TrigFunction Execute the trigger program starting at specified meta-data
offset when the specified data object offset and specified

trigger conditions.

[0214] As noted, the Trigger instruction set can include
fetching the block specified in the pointer at the specified
object offset based on the specified trigger conditions and
actions. The Trigger instruction binary format can be
expressed as:

[0215] 'Trigger PtrType Triglype TrigAction RefPolicy

ObjOffset

[0216] An example set of operands for the Trigger instruc-
tion set are included in Tables 8-12 below.

TABLE 8

PrtType—Pointer Type

Encoding Symbol Description
None No pointer
OA Object Address
ObjReg Object Relative
ObjVA Object Virtual Address
Reserved Reserved
TABLE 9

TrigType—Trigger Type

Encoding Symbol Description

None

demand Trigger by demand miss for block

prefetch Trigger by preached block

access Triggered by actual processor access to cache
block

emptyfill Trigger by empty or fill instructions. Enables
trigger on specific processor action

any Any trigger type

reserved Reserved

TABLE 10

TrigAction—Trigger Action

Encoding Symbol Description

None

Cache Trigger by demand miss for block

Clean Trigger by preached block

reserved Triggered by actual processor access to cache block

TABLE 11

RefPolicy—Reference Count and Policy

Encoding Symbol Description

InitLowA Initial reference count of prefetch page to low
value, policy A

US 2017/0160984 A1 Jun. 8, 2017
TABLE 11-continued TABLE 14-continued
RefPolicy—Reference Count and Policy TrigType—Trigger Type
Encoding Symbol Description Encoding Symbol Description
InitMidA Initial reference count of prefetch page to mid any Any trigger type
value, policy A reserved Reserved
InitHighA Initial reference count of prefetch page to high
value, policy A
InitLowB Initial reference count of prefetch page to low
value, policy B TABLE 15
InitMidB Initial reference count of prefetch page to mid
K MetaDataOffset—Meta-Data Offset
value, policy B Descrinti
escription
InitHighB Initial reference count of prefetch page to high

value, policy B

TABLE 12

ObjOffset—Object Offset
Description

Object offset based on Object size. Trigger can be evaluated based on
TriggerType and trigger action taken if TriggerType is satisfied is define
by TriggerAction and RefPolicy.

[0217] As noted, the TrigFunction (or TriggerFunct)
instruction set can include executing the trigger program
starting at specified meta-data offset when the specified data
object offset and specified trigger conditions. TriggerFunct
can enable more complex sequences than a single Trigger
instruction to be executed. The TrigFunct Instruction binary
format can be expressed as:

[0218] TrigFunct PtrType Triglype MetaDataOffset
ObjOffset

[0219] An example set of operands for the Trigger instruc-
tion set are included in Tables 13-16 below.

TABLE 13

PrtType—Pointer Type

Encoding Symbol Description
None No pointer
OA Object Address
ObjReg Object Relative
ObjVA Object Virtual Address
Reserved Reserved
TABLE 14
TrigType—Trigger Type
Encoding Symbol Description
None
demand Trigger by demand miss for block
prefetch Trigger by preached block
access Triggered by actual processor access to cache
block
emptyfill Trigger by empty or fill instructions. Enables

trigger on specific processor action

Meta-Data offset based on Object size. TriggerFunction can be evaluated
based on TriggerType. The trigger program starting at MetaDataOffset
is executed if TriggerType is satisfied.

TABLE 16

ObjOffset—Object Offset
Description

Object offset based on Object size. TriggerFunction can be evaluated
based on TriggerType at ObjOffset. The trigger program starting at
MetaDataOffset is executed if TriggerType is satisfied.

[0220] According to one embodiment, extended instruc-
tions can be interpreted in 64 bit word chunks in 3 formats,
including short (2 instructions per word), long (single
instruction per word), and reserved.

TABLE 17

Extended Instruction Format

Format bits[63:62] bits[61:31] bits[30:0]

Short 0x00 s_instruction[1] (31 bits) s__instruction[0]
(31 bits)

Long 0x01 |__instruction (62 bits)

Reserved Oox1*

[0221] Generally speaking, triggers in combination with

the extended instruction set can be used to define arbitrary,
parallel functionality such as: direct object address manipu-
lation and generation without the overhead of complex
address translation and software layers to manage differing
address space; direct object authentication with no runtime
overhead that can be set based on secure 3rd party authen-
tication software; object related memory computing in
which, as objects move between nodes, the computing can
move with them; and parallelism that is dynamically and
transparent based on scale and activity. These instructions
are divided into three conceptual classes: memory reference
including load, store, and special memory fabric instruc-
tions; control flow including fork, join, and branches; and
execute including arithmetic and comparison instructions.

[0222] A list of the different types of memory reference
instructions are shown in Table 18 below.

US 2017/0160984 Al

TABLE 18

23

Memory Reference Instructions

Jun. &, 2017

[30:23] [22:17] [16:11] [10:5] [4:0]
Instruction Encoding/Options FPA FPB FPC Predicate
Pull encode[7:0] oid offset prior, plstate src__pred
Push encode[7:0] oid offset prior, plstate src__pred
Ack encode[7:0] oid offset src__pred
Load encode[4:0], osize[2:0] src oid src offset dst fp src__pred
Store encode[4:0], osize[2:0] dst oid dst offset src fp src__pred
ReadPA encode[7:0] src pa dst fp src__pred
WritePA encode[7:0] dst pa src fp src__pred
Empty encode[7:0] src oid src offset dst fp src__pred
Fill encode[7:0] dst oid dst offset src fp src__pred
Pointer encode[5:0], opt[1:0] dst oid dst offset src__pred
PrePtrChn encode[4:0], opt[2:0 src oid src offset st src offset end src_pred
ScanEF encode[4:0], opt[2:0] src oid src offset dst fp src__pred
Create src__pred
CopyObj src__pred
CopyBlk src__pred
Allocate src__pred
Deallocate src__pred
Destroy src__pred
Persist src__pred
AssocObj src__pred
DeAssocObj src__pred
AssocBlk encode[5:0], opt[1:0] src oid src pa dst Is src__pred
DeAssocBlk encode[7:0] src__pred
OpenObj src__pred
OpenBlk src__pred
Btree src__pred
[0223] The pull instruction may be utilized within the TABLE 19

object memory fabric as a request to copy or move the
specified block to (e.g. local) storage. The 4 k byte block
operand in the object specified by src_oid at the object offset
specified by src_offset may be requested with the state
specified by pull_state with the priority specified by priority.
The data may be subsequently moved by a push instruction.
The Pull instruction binary format can be expressed as:

Pull Instruction (binary format)

[30:23] [22:17] [l6:11] [10:9] [8:5] [4:0]
src_old src_offset priority pull_state Predicate
[0224] An example set of operands for the Pull instruction

set are included in Tables 19-23 below.

predicate—Predicate
Description

Specifies a single bit predicate register. If the predicate value is true, the
instruction executes, if false the instruction does not execute.

TABLE 20

src__oid—Source Object Identifier
Description

Index into the remote object table to specify the specific object identifier
for this memory operation. Index value of 0 always corresponds to
local object.

TABLE 21

src__off—Source Object Offset
Description

Specifies the unsigned offset from the thread frame pointer to read the
source operand corresponding to the object offset.

TABLE 22

priority—How object memory fabric treats the requests

Encoding Symbol

Description

0x0

0x1

required-high

required-low

Highest priority handling of requests. Highest priority requests
are always handled in the order received.

Can be optionally reordered with respect to required-high by
object memory fabric only to prioritize required-high requests
for short time periods. Must be completed. Typically most
requests are of required-low priority.

US 2017/0160984 Al

24

TABLE 22-continued

priority—How object memory fabric treats the requests

Encoding Symbol

Description

0x2

0x3

optional-high

optional-low

Requests can be considered optional by object memory fabric
and can be delayed or deleted as required to manage object
memory fabric load. Optionalhigh requests are always
considered ahead of optional-low requests.

Request can be considered optional by object memory fabric
and can be delayed or deleted as required to manage object
memory fabric load. Optional-low requests are treated at the
lowest priority. Typically most optional requests are o the
optional-low priority.

TABLE 23

States can be listed in order of weakest to strongest. State can be returned in a stronger state.

pull__state—Requested object memory fabric state for block

Modified with respect to persistent memory can be indicated by _m suffix.

Encoding Symbol

Description

0x0
0x1

0x2

0x3

0x4
0x8

0x5
0x9

0x6
Oxa

0x7
Oxb
Oxc

invalid
snapcopy

shadcopy

copy

OWIl__Snapcopy

Snapshot copy. This copy can be updated when a block is

persisted. Utilized for object fault tolerance. Can be configured

on an object basis redundancy and geographic dispersion.
Shadow copy. Can be updated on a lazy basis (eventually
consistent), usually after a period of time or some number of
writes and/or transactions. Can also be used for fault tolerant
block copies.

Read-only copy. Will be updated for owner modifications as
they occur. Insures sequential consistency.

Exclusive owner with snapshot copy. Enables local write

own-snapcopy_m privilege without any updates required. Snapshot copies may

own__shadcopy

exist, but are only updated when corresponding block is
persisted and through and push instruction with push_ state =
pstate__sncopy.

Non-exclusive owner with shadow copies. Enables write

own-shadcopy__m privilege shadow copies or snapshot copies to exist which are

own__copy
own__copy_m

own
own__m
error

0xd-0xf reserved

updated from writes on a lazy basis-eventually consistent.
Non-exclusive owner with copies. Enables write privilege and
copies, shadow copies or snapshot copies to exist which are
updated from writes. Multiple writes to the same block can
occur with a single update.

Exclusive owner. Enables local write privilege. No copies,
shadow copies or snapshot copies exist.

Error has been encountered on corresponding block.
Reserved

[0225]

the specified block from local storage to a remote location.

Push instruction may be utilized to copy or move

Jun

TABLE 24

. 8,2017

The 4 k byte block operand in the object specified by src_oid
at the object offset specified by src_offset may be requested
with the state specified by pull_state with the priority

specified by priority. The data may be previously requested
by a pull instruction. The Push instruction binary format can

be expressed as:

predicate—Predicate

Description

Specifies a single bit predicate register. If the predicate value is true, the

instruction executes, if false the instruction does not execute.

Push Instruction (binary format)

TABLE 25

src__oid—Source Object Identifier
Description

Index into the remote object table to specify the specific object identifier

for this memory operation. Index value of O always corresponds to local

object.

[30:23] [22:17] [l6:11] [10:9] [8:5] [4:0]
src_oid src_offset priority push_state Predicate
[0226] An example set of operands for the Push instruc-

tion set are included in Tables 24-28 below.

US 2017/0160984 Al

25

TABLE 26

src__off—Source Object Offset

Description

Specifies the unsigned offset from the thread frame pointer to read the
source operand corresponding to the object offset.

TABLE 27

priority—How object memory fabric treats the requests

Encoding Symbol

Description

0x0 required-high Highest priority handling of requests. Highest priority requests
are always handled in the order received.
0x1 required-low Can be optionally reordered with respect to required-high by
object memory fabric only to prioritize required-high requests
for short time periods. Must be completed. Typically most
requests are of required-low priority.
0x2 optional-high ~ Requests can be considered optional by object memory fabric
and can be delayed or deleted as required to manage object
memory fabric load. Optional-high requests are always
considered ahead of optional-low requests.
0x3 optional-low Request can be considered optional by object memory fabric
and can be delayed or deleted as required to manage object
memory fabric load. Optional-low requests are treated at the
lowest priority. Typically most optional requests are o the
optional-low priority.
TABLE 28
push__state—Requested object memory fabric state for block
Modified with respect to persistent memory can be indicated by _m suffix.
Encoding Symbol Description
0x0 invalid
0x1 snapcopy Snapshot copy. This copy can be updated when a block is
persisted. Utilized for object fault tolerance. Can be
configured on an object basis redundancy and geographic
dispersion.
0x2 shadcopy Shadow copy. Will be updated on a lazy basis-eventually
consistent, usually after a period of time or some number of
writes and/or transaction. Can also be used for fault tolerant
block copies.
0x3 copy Read-only copy. Can be updated for owner modifications as
they occur. Insures sequential consistency.
0x4 OWI__Snapcopy Exclusive owner with snapshot copy. Enables local write
0x8 own__snapcopy_m privilege without any updates required. Snapshot copies may
exist, but are only updated when corresponding block is
persisted and through and push instruction with push_ state =
pstate__sncopy.
0x5 own__shadcopy Non-exclusive owner with shadow copies. Enables write
0x9 own__shadcopy_m privilege shadow copies or snapshot copies to exist which are
updated from writes on a lazy basis-eventually consistent.
0x6 OWI__COpy Non-exclusive owner with copies. Enables write privilege and
Oxa OWIN__copy__m copies, shadow copies or snapshot copies to exist which are
updated from writes. Multiple writes to the same block can
occur with a single update.
0x7 own Exclusive owner. Enables local write privilege. No copies,
Oxb own__m shadow copies or snapshot copies exist.
Oxc error Error has been encountered on corresponding block.
0xd-Oxf reserved

Jun. &, 2017

US 2017/0160984 Al

[0227] PushAck or Ack instruction may be utilized to
acknowledge that the block associated with a Push has been
accepted at one or more locations. The 4 k byte block
operand in the object specified by src_oid at the object offset
specified by src_offset may be acknowledged. The Ack
instruction binary format can be expressed as:

Ack Instruction (binary format)

[30:23] [22:17] [16:11] [10:9] [8:5] [4:0]
sre__oid src__offset Predicate
[0228] An example set of operands for the Push instruc-

tion set are included in Tables 29-31 below.

TABLE 29

predicate—Predicate
Description

Specifies a single bit predicate register. If the predicate value is true, the
instruction executes, if false the instruction does not execute.

TABLE 30

src__oid—Source Object Identifier
Description

Index into the remote object table to specify the specific object identifier
for this memory operation. Index value of 0 always corresponds to local
object.

TABLE 31

src__off—Source Object Offset
Description

Specifies the unsigned offset from the thread frame pointer to read the
source operand corresponding to the object offset.

[0229] The Load instruction set includes the osize operand
in the object specified by src_oid at the object offset speci-
fied by src_offset. src_offset can be written to the word offset
from the frame pointer specified by dst_fp. The load instruc-
tion ignores the empty state.

Load Instruction (binary format)

[30:26] [25:23] [22:17] [l6:11] [10:5] [4:0]
osize src_oid src_offset dst_fp Predicate
[0230] An example set of operands for the Load instruc-

tion set are included in Tables 32-36 below.

TABLE 32

osize—Object operand size

Encoding Symbol Description

0x0 8 bit
unsigned

8 bit source is zero extended to 64 bit dst__fp

Jun. &, 2017

TABLE 32-continued

osize—Object operand size

Encoding Symbol Description

0x1 16 bit 16 bit source is zero extended to 64 bit dst_fp
unsigned

0x2 32 bit 32 bit source is zero extended to 64 bit dst_ fp
unsigned

0x3 64 bit 64 bit source is loaded into 64 bit dst_fp

0x4 8 bit signed 8 bit source is sign extended to 64 bit dst_fp
0x5 16 bit signed 16 bit source is sign extended to 64 bit dst_fp
0x6 32 bit signed 32 bit source is sign extended to 64 bit dst__fp
0x7 reserved

TABLE 33

predicate—Predicate
Description

Specifies a single bit predicate register. If the predicate value is true,
the instruction executes, if false the instruction does not execute.

TABLE 34

src__oid—Source Object Identifier
Description

Index into the remote object table to specify the specific object identifier
for this memory operation. Index value of O always corresponds to local
object.

TABLE 35

src__off—Source Object Offset
Description

Specifies the unsigned offset from the thread frame pointer to read the
source operand corresponding to the object offset.

TABLE 36

dst__fp—Destination offset from frame pointer
Description

Specifies the unsigned offset from the thread frame pointer to write the
source operand.

[0231] The Store instruction set includes the word speci-
fied by src_{fp can be truncated to the size specified by osize
and stored into the object specified by dst_oid at offset of
dst_offst. For example, only the ssize bytes are stored. The
store instruction ignores the empty state. The Store instruc-
tion binary format can be expressed as:

Store Instruction (binary format)

[30:25] [24:23] [22:17] [16:11] [10:5] [4:0]
ssize dst_oid dst_offset src_fp Predicate
[0232] An example set of operands for the Store instruc-

tion set are included in Tables 37-41 below.

US 2017/0160984 Al

TABLE 37

ssize—Store Object operand size

Jun. &, 2017

TABLE 42

predicate—Predicate
Description

Encoding Symbol Description
0x0 8 bit Least significant 8 bits are stored
0x1 16 bit Least significant 16 bits are stored
0x2 32 bit Least significant 32 bits are stored
0x3 64 bit Least significant 64 bits are stored
TABLE 38

predicate—Predicate

Description

Specifies a single bit predicate register. If the predicate value is true, the

instruction executes, if false the instruction does not execute.

TABLE 39

dst__oid—Source Object Identifier
Description

Index into the remote object table to specify the specific object identifier
for this memory operation.
Index value of 0 always corresponds to local object.

TABLE 40

dst__off—Source Object Offset
Description

Specifies the unsigned offset from the thread frame pointer to read the
source operand corresponding to the object offset.

TABLE 41

src__fp—Destination offset from frame pointer
Description

Specifies the unsigned offset from the thread frame pointer to read the
source operand.

[0233] The ReadPA instruction reads 64 bytes by physical
address of the local memory module. The operand in the
object specified by src_pa can be written to the word offset
from the frame pointer specified by dst_fp. The ReadPA
instruction binary format can be expressed as:

ReadPA Instruction (binary format)

[30:26] [25:23] [22:17] [l6:11] [10:5] [4:0]
src_pa dst_fp Predicate
[0234] An example set of operands for the ReadPA instruc-

tion set are included in Tables 42-44 below.

Specifies a single bit predicate register. If the predicate value is true, the
instruction executes, if false the instruction does not execute.

TABLE 43

src__pa—Source Physical Address
Description

Specifies a physical address local to the current node/server.

TABLE 44

dst__fp—Destination offset from frame pointer
Description

Specifies the unsigned offset from the thread frame pointer to write the.
source operand

[0235] The WritePA instruction writes 64 bytes by physi-
cal address of the local memory module. The 64 bytes
specified by src_fp is stored into the physical address
specified by dst_pa. The ReadPA instruction binary format
can be expressed as:

‘WritePA Instruction (binary format)

[30:25] [24:23] [22:17] [l6:11] [10:5] [4:0]
dst_pa sre__fp Predicate
[0236] An example set of operands for the WritePA

instruction set are included in Tables 45-47 below.

TABLE 45

predicate—Predicate
Description

Specifies a single bit predicate register. If the predicate value is true, the
instruction executes, if false the instruction does not execute.

TABLE 46

dst__pa—Destination physical address
Description

Specifies a physical address local to the current node/server

TABLE 47

sre__fp—Source frame pointer
Description

Specifies the unsigned offset from the thread frame pointer to read the
source operand.

[0237] Each word within an object memory fabric object
can include an state to indicate empty or full states. An
empty state conceptually means that the value of the corre-

US 2017/0160984 Al

sponding word has been emptied. A full state conceptually
means the value of the corresponding word has been filled.
This state can be used by certain instructions to indivisibly
insure that only a single thread can read or write the word.
Empty instructions can operate similar to a load, as shown
below in Table 48.

TABLE 48

State Result

Memory doesn’t respond until
word transitions to full state

Full Completes as load and indivisibly
transitions state to empty

Empty

[0238] The osize operand in the object specified by src_
oid at the object offset specified by src_offset can be written
to the word offset from the frame pointer specified by dst_fp.
The Empty instruction binary format can be expressed as:

Empty Instruction (binary format)

[30:26] [25:23] [22:17] [l6:11] [10:5] [4:0]
src_oid src_offset dst_fp Predicate
[0239] An example set of operands for the Empty instruc-

tion set are included in Tables 49-52 below.

TABLE 49

Jun. &, 2017

conceptually means that the value of the corresponding word
has been emptied. Full state conceptually means the value of
the corresponding word has been filled. This state can be
used by certain instructions to indivisibly insure that only a
single thread can read or write the word. The Fill instruction
binary format can be expressed as:

Fill Instruction (binary format)

[30:25] [24:23] [22:17] [l6:11] [10:5] [4:0]
dst_oid dst_offset src_fp Predicate
[0241] Fill instruction operates similar to a store, as shown
below in Table 53.
TABLE 53
State Result
Empty The fill instruction completes as a
store and transitions state to full.
Full The fill instruction

[0242] The word specified by src_{p can be stored into the
object specified by dst_oid at offset of dst_offst. Only the
ssize bytes are stored. Store ignores empty state. An example
set of operands for the Fill instruction set are included in
Tables 54-57 below.

TABLE 54

predicate—Predicate
Description

predicate—Predicate
Description

Specifies a single bit predicate register. If the predicate value is true, the
instruction executes, if false the instruction does not execute.

Specifies a single bit predicate register. If the predicate value is true, the
instruction executes, if false the instruction does not execute.

TABLE 50

TABLE 55

src__oid—Source Object Identifier
Description

dst__oid—Source Object Identifier
Description

Index into the remote object table to specify the specific object identifier
for this memory operation. Index value of 0 always corresponds to
local object.

Index into the remote object table to specify the specific object identifier
for this memory operation. Index value of 0 always corresponds to
local object.

TABLE 51

TABLE 56

src__off—Source Object Offset
Description

dst__off—Source Object Offset
Description

Specifies the unsigned offset from the thread frame pointer to read the
source operand corresponding to the object offset.

Specifies the unsigned offset from the thread frame pointer to read the
source operand corresponding to the object offset.

TABLE 52

TABLE 57

dst__fp—Destination offset from frame pointer
Description

sre__fp—Destination offset from frame pointer
Description

Specifies the unsigned offset from the thread frame pointer to write the
source operand.

Specifies the unsigned offset from the thread frame pointer to read the
source operand.

[0240] Each word within a memory fabric object can
include an state to indicate empty or full states. Empty state

[0243] The Pointer instruction set can specify to the object
memory fabric that a pointer of ptr_type can be located in

US 2017/0160984 Al

the object specified by scrod at object offset specified by
src_offset. This information can be utilized by the object
memory fabric to pre-stage data movement. The Pointer
instruction binary format can be expressed as:

Pointer Instruction (binary format)

[30:26] [24:23] [22:17] [l6:11] [10:5] [4:0]
ptr_type src_oid src_offset Predicate
[0244] An example set of operands for the Pointer instruc-

tion set are included in Tables 58-61 below.

TABLE 58

ptr__type—Pointer Type

Encoding Symbol Description

0x0 none
0x1 MF Address

No pointer at this object offset

Full 128 Memory Fabric Address pointer at
this object offset

0x2 Object Relative 64 bit object relative pointer at this object
offset. The range of the object relative
pointer can be determined by object size
64 bit object virtual address pointer at this
object offset. The range of the object
relative pointer can be determined by
object size.

0x3 Object-VA

TABLE 59

predicate—Predicate
Description

Specifies a single bit predicate register. If the predicate value is true,
the instruction executes, if false the instruction does not execute.

TABLE 60

src__oid—Source Object Identifier
Description

Index into the remote object table to specify the specific object identifier
for this memory operation. Index value of 0 always corresponds to
local object.

TABLE 61

src__off- Source Object Offset
Description

Specifies the unsigned offset from the thread frame pointer to read
the source operand corresponding to the object offset.

[0245] The Prefetch Pointer Chain instruction set can be
based on the policy specified by policy in the object speci-
fied by src_oid, in the range specified by src_offset_st to
src_offset_end. The osize operand in the object specified by
src_oid at the object offset specified by src_offset can be
written to the word offset from the frame pointer specified by
dst_fp. Load ignores empty state. The PrePtrChn instruction
binary format can be expressed as:

Jun. &, 2017

PrePtrChn Instruction (binary format)

[30:26] [25:23] [22:17] [16:11] [10:5] [4:0]
policy sre__oid src_off- src_off- sre_pred
set_ st set_end
[0246] An example set of operands for the Prefetch

Pointer Chain instruction set are included in Tables 62-66
below.

TABLE 62

Policy- Prefetch PointerChain Policy

Encoding Symbol Description

0x0 none_ ahead Just prefetch blocks corresponding to
pointers in chain

0x1 breath lahead Breath first prefetch. Fetch each pointer in
chain then fetch one ahead of each pointer

0x2 breath 2ahead Breath first prefetch. Fetch each pointer in

chain then recursively fetch two ahead of
each pointer

0x3 breath 3ahead Breath first prefetch. Fetch each pointer in
chain then recursively fetch three ahead of
each pointer

0x4 reserved reserved

0x5 depth__lahead Depth first prefetch 1 deep.

0x6 depth_ 2ahead Depth first prefetch 2 deep.

0x7 depth_ 3ahead Depth first prefetch 3 deep.
TABLE 63

predicate- Predicate
Description

Specifies a single bit predicate register. If the predicate value is true,
the instruction executes, if false the instruction does not execute.

TABLE 64

src_oid- Source Object Identifier
Description

Index into the remote object table to specify the specific object
identifier for this memory operation. Index value of 0 always
corresponds to local object.

TABLE 65

src__off. st- Source Object Offset
Description

Specifies the unsigned offset from the thread frame pointer to read
the source operand corresponding to starting object offset..

TABLE 66

src_off _end- Destination offset from frame pointer
Description

Specifies the unsigned offset from the thread frame pointer to read
the source operand corresponding to ending object offset.

[0247] The Scan and Set Empty or Full instruction set can
be initialed in an object specified by src_oid, at offset

US 2017/0160984 Al

specified by src_offset with specified policy. Scan can be
used to do a breath first or depth first search and empty or
fill the next available location. The ScanEF instruction
binary format can be expressed as:

ScanEF Instruction (binary format)

[30:26] [25:23] [22:17] [l6:11] [10:5] [4:0]
policy sre__oid sre_offset dst_fp Predicate
[0248] An example set of operands for the Scan and Set

Empty or Full instruction set are included in Tables 67-71
below.

TABLE 67

osize- Object operand size

Encoding Symbol Description

0x0 scan__empty Scan object until empty state and set to full.
Terminates on full with null value. The ob-
ject offset when the condition was met can
be placed into dst_fp. If the scan terminated
without condition being met, a value of —-0x1
can be placed into dst_ fp.

Scan object to full state and set to empty.
Terminates on empty with null value. The ob-

0x1 scan__full

ject offset when the condition was met can

be placed into dst__fp. If the scan terminated
without condition being met, a value of —-0x1
can be placed into dst_ fp.

Follow pointer chain until full and set to empty.
Terminates on null pointer. The object offset

0x2 ptr__full

when the condition was met can be placed into
dst__fp. If the scan terminated without condi-
tion being met, a value of —0x1 can be placed
into dst_fp.

Follow pointer chain until empty and set to full.
Terminates on null pointer. The object offset

0x3 ptr__empty

when the condition was met can be placed into
dst__fp. If the scan terminated without condi-
tion being met, a value of —0x1 can be placed
into dst_fp.

Jun. &, 2017

TABLE 70

sre_off- Source Object Offset

Description

Specifies the unsigned offset from the thread frame pointer to read

the source operand corresponding to the object offset.

TABLE 71

TABLE 68

predicate- Predicate
Description

Specifies a single bit predicate register. If the predicate value is true, the
instruction executes, if false the instruction does not execute.

TABLE 69

src__oid- Source Object Identifier
Description

Index into the remote object table to specify the specific object
identifier for this memory operation. Index value of 0 always
corresponds to local object.

dst__fp- Destination offset from frame pointer
Description

Specifies the object offset when the condition was met. If the scan
terminated without condition being met, a value of —0x1 can be placed
into dst__fp.

[0249] The Create instruction set includes an object
memory fabric object of the specified ObjSize with an object
ID of OA and initialization parameters of Datalnit and Type.
No data block storage can be allocated and storage for the
first meta-data block can be allocated. The Create instruction
binary format can be expressed as:

[0250] Create Type Redundancy ObjSize OID
[0251] An example set of operands for the Create instruc-
tion set are included in Tables 72-75 below.
TABLE 72
Type
Encoding Symbol Description
volatile temp object that does not need to be persisted
persistant object must be persisted
reserved reserved
TABLE 73

Redundancy

Encoding Symbol Description

nonredundant Object memory fabric does not provide
object redundancy
redundant Object memory fabric guarantees that

object can be persisted in at least 2
separate nodes

Object memory fabric guarantees that
object can be persisted in at least 2
separate nodes which are remote with
respect to each other

reserved

remote__redundant

reserved

TABLE 74

ObjSize- Object Size
Description

Specifies the object size.

US 2017/0160984 Al

TABLE 75

Jun. &, 2017

TABLE 79-continued

OID- Object Id
Description

Object memory fabric object ID which also the starting address for the
object.

[0252] The CopyObj instruction set includes copies source
object specified by SOID to destination object specified by
DOID. If DOID is larger object than SOID, all DOID blocks
beyond SOID size are copied as unallocated. If SOID is
larger object than DOID, then the copy ends at DOID size.
The CopyObj instruction binary format can be expressed as:
[0253] CopyObj Ctype SOID DOID

[0254] An example set of operands for the CopyObj
instruction set are included in Tables 76-78 below.

76. Ctype- Copy type

Ctype- Copy type

Encoding Symbol Description

blocks become unallocated SOA blocks, object
memory fabric has the option of treating the
copy initially as cow and executing the copy in
the background.

cow All allocated blocks are treated as copy on write.
Newly allocated blocks after cow are considered
modified.

reserved reserved

TABLE 80

cnum- Number of blocks to copy
Description

Specifies the number of blocks to copy.

Encoding Symbol Description

copy One time copy from SOID to DOID. Allocated
blocks are one time copied and non-allocated block
SOID blocks become unallocated DOID blocks,
object memory fabric has the option of treating
the copy initially as cow and executing the copy
in the background.

cow All allocated blocks are treated as copy on
write. Newly allocated blocks after cow are
considered modified.

reserved reserved

TABLE 77

SOID- Source Object ID
Description

Object memory fabric object ID which is the source for the copy.

TABLE 78

DOID- Destination Object ID
Description

Object memory fabric object ID which is the destination for the copy.

[0255] The CopyBIk instruction set includes copies cnum
source blocks starting at SourceObjectAddress (SOA) to
destination starting at DestinationObjectAddress (DOA). If
cnum blocks extends beyond the object size associated with
SOA, then the undefined blocks are copied as unallocated.
The CopyBIlk instruction binary format can be expressed as:
[0256] CopyBlk ctype cnum SOA DOA
[0257] An example set of operands for the CopBlk instruc-
tion set are included in Tables 79-82 below.

TABLE 79

Ctype- Copy type

Encoding Symbol Description

copy One time copy of cnum blocks starting at SOA to
destination blocks starting at DOA. Allocated
blocks are one time copied and non-allocated SOA

TABLE 81

SOA- Source object memory fabric Block Object Address
Description

Object memory fabric block object address which is the source for the
copy.

TABLE 82

DOA- Destination object memory fabric Block Object Address
Description

Object memory fabric block object address which is the destination for the
copy.

[0258] The Allocate instruction set includes storage to the
object specified by OID. The Allocate instruction binary
format can be expressed as:

[0259] Allocate init ASize OID
[0260] An example set of operands for the Allocate
instruction set are included in Tables 83-85 below.

TABLE 83

init- Initialization

Encoding Symbol Description
Zero Zero all data
random Random data.
reserved reserved

TABLE 84
ASize- Allocation Size

Encoding Symbol Description
block single block
object full object
size21 29 blocks
size30 28 plocks
size39 227 blocks

US 2017/0160984 Al

TABLE 85

OID- Object ID
Description

Object memory fabric object ID for which storage is allocated.

[0261] The Deallocate instruction set includes storage for
cnum blocks starting at OA. If deallocation reaches the end
of the object, the operation ends. The Deallocate instruction
binary format can be expressed as:

[0262] Deallocate cnum OA

[0263] An example set of operands for the Deallocate
instruction set are included in Tables 86 and 87 below.

TABLE 86

cnum- Number of blocks to copy
Description

Specifies the number of blocks to deallocate.

TABLE 87

OA- Object Address
Description

Object memory fabric block object address which is starting block number
for deallocation.

[0264] The Destroy instruction set includes completely
deleting all data and meta-data corresponding to object
specified by OID. The Destroy instruction binary format can
be expressed as:

[0265] Destroy OID

[0266] An example set of operands for the Destroy
instruction set are included in Table 88 below.

TABLE 88

OID - Object ID
Description

Object ID of the object to be deleted.

[0267] The Persist instruction set includes persisting any
modified blocks for the specified OID. The Persist instruc-
tion binary format can be expressed as:

[0268] Persist OID
[0269] An example set of operands for the Persist instruc-
tion set are included in Table 89 below.

TABLE 89

OID—Object ID
Description

Object ID of the object to be persisted.

[0270] The AssocObj instruction set includes associating
the object OID with the VaSegment and ProcessID. Asso-
ciating an OID and VaSegment enables ObjectRelative and
ObjectVA addresses to be properly accessed by the object

Jun. &, 2017
32

memory fabric. The AssocObj instruction binary format can
be expressed as:

[0271] AssocObj OID ProcessID VaSegment
[0272] An example set of operands for the AssocObj

instruction set are included in Tables 90-92 below.

TABLE 90

OID—Object ID
Description

Object ID of the object to be associated.

TABLE 91

ProcessID—Process ID
Description

Process ID associated with the VaSegment.

TABLE 92

OID—Object ID
Description

Object ID of the object to be associated.

[0273] The DeAssocObj instruction set includes de-asso-
ciating the object OID with the VaSegment and ProcessID.
An error can be returned if the ProcessID and VaSegment do
not match those previously associated with the OID. The
DeAssocObj instruction binary format can be expressed as:

[0274] DeAssocObj OID ProcessID VaSegment
[0275] An example set of operands for the DeAssocObj

instruction set are included in Tables 93-95 below.

TABLE 93

OID—Object ID
Description

Object ID of the object to be de-associated.

TABLE 94

ProcessID—Process ID
Description

Process ID associated with the VaSegment.

TABLE 95

OID—Object ID
Description

Object ID of the object to be de-associated.

[0276] The AssocBIk instruction set includes associating
the block OA with the local physical address PA. This
enables an Object Memory to associate an object memory

US 2017/0160984 Al

fabric block with a PA block for local processor access. The
AssocBIk instruction binary format can be expressed as:

[0277] AssocBlk place OA PA LS[15:00]

[0278] An example set of operands for the AssocBlk
instruction set are included in Tables 96-99 below.

TABLE 96

place—Physical Placement

Encoding Symbol Description

0x0 match Associate PA must match physical

DIMM with allocated block. If currently not
allocated on any physical DIMM will associate
and allocate on DIMM specified. Returns status
within ack_ detail package file of SUCCESS
or NOT_ALLOC If not allocated the LS field
provides a bitmap of current physical

Force associate and implicit allocate on DIMM
specified.

Memory fabric associates a free PA with

the OA and returns PA.

reserved

0x1 force
0x2 dynamic

0x3 reserved

TABLE 97

OA—object memory fabric Block Object Address
Description

Object ID of the object to be associated.

Jun. &, 2017

TABLE 101

PA—Physical block Address

Description

Local physical block address of the block to be de-associated. Corresponds
to Operand2 within the package header.

[0282] The OpenObj instruction set includes caching the
object specified by OID in the manner specified by Type-
Fetch and CacheMode on an advisory basis. The OpenObj
instruction binary format can be expressed as:

[0283] OpenObj TypeFetch CacheMode OID
[0284] An example set of operands for the OpenObj

instruction set are included in Tables 102-104 below.

TABLE 102

OID—Object ID
Description

Object ID of the object to be associated.

TABLE 103

TypeFetch—Type of Prefetch

Encoding Symbol Description
TABLE 98 MetaData Cache MetaData only
. First 8 Blocks Cache MetaData and first 8 data blocks
PA—Physical blqck Address First 32 Blocks Cache MetaData and first 32 data blocks
Description Reserved Reserved
Local physical block address of the block to be associated.
TABLE 104
TABLE 99 CacheMode- Advisory Block State
LS[lS:OO]]; I;;?;iigﬁateﬂS:OO] Encoding Symbol Description
Valid for ackdetail::NOT_ASSOC which indicates that the copy goPy bIOth s;alte if I;;.)Sfl?le' All updates can
OA is allocated on a different physical DIMM. Local state specifies a shadco Sifjggafg N kﬁl;rc?{esgt: ?f ossible. Updates
single bit indicating which DIMM(s) have currently allocated the Py can be pro P;’ ated in a laz Ir,nanner. P
corresponding OA. Value is return in operand3, with bit0 corresponding propas 4
o DIMMO snapcopy Snapshot copy. Copy only updated on
i persist.
own Own block state is possible. No other copies

. . . in memory fabric
[0279] The DeAssocBlk instruction set includes de-asso- owncopy Own block state with 0 or more copies if
ciating the block OA with the local physical address PA. possible. .
This OA will then no longer be accessible from a local PA. own_shadcopy S)V;i :l&(;kcsotgt; g’r;tchkost‘i;)“ore shadow
The DeAssocBlk instruction binary format can be expressed own_snapcopy Own block state with 0 or mote snapshot
as: copes. (no copy or shadow copy block state)

[0280] DeAssocBlk OA PA
0281] An example set of operands for the DeAssocBlk

[] P P [0285] The OpenBlk instruction set includes caching the

instruction set are included in Tables 100 and 101 below.

TABLE 100

OA—object memory fabric Block Object Address
Description

Block object address of block to be de-associated.

block(s) specified by OID in the manner specified by Type-
Fetch and CacheMode. The prefetch terminates when it’s
beyond the end of the object. The OpenBlk instruction
binary format can be expressed as:

[0286] OpenBlk TypeFetch CacheMode OID

[0287] An example set of operands for the OpenBlk
instruction set are included in Tables 105-107 below.

US 2017/0160984 Al

TABLE 105

OID - Object ID
Description

Object ID of the object to be associated.

TABLE 106

TypeFetch- Type of Prefetch

Encoding Symbol Description

1 Block Cache MetaData only

First 8 Blocks Cache MetaData and & data blocks starting
at OID

First 32 Blocks Cache MetaData and 32 data blocks starting
at OID

Reserved Reserved
TABLE 107

CacheMode- Advisory Block State

Encoding Symbol Description

copy Copy block state if possible. All updates can
be propagated immediately

shadcopy Shadow copy block state if possible. Updates
can be propagated in a lazy manner

snapcopy Snapshot copy. Copy only updated on
persist.

own Own block state is possible. No other copies
in memory fabric

OWNCOpY Own block state with 0 or more copies if

possible.

Own block state with 0 or more shadow
copies (no copy block state)

Own block state with 0 or more snapshot
copes. (no copy or shadow copy block state)

own__shadcopy

OWIl__Snapcopy

[0288] An example set of operands for the Control Flow
(short instruction format) instruction set are included in
Table 108 below.

TABLE 108
[30:23] [22:17] [16:11] [10:5] [4:0]
Instruction Encoding/ FPA FPB FPC Predicate
Options
Fork encode[6:0], IP Fp count src__pred
fpobj[0]
Join encode[6:0], IP Fp count src__pred
fpobj[0]
Branch disp[5:0] src_pred
BranchLink src__pred
[0289] The fork instruction set provides an instruction

mechanism to create a new thread or micro-thread. Fork
specifies the New Instruction Pointer (NIP) and new Frame
Pointer for the newly created thread. At the conclusion of the
fork instruction, the thread (or micro-thread) which executed
the instruction and the new thread (e.g. micro-thread) are
running with fork_count (count) incremented by one. If the
new FP has no relationship to the old FP, it may be
considered a new thread, or otherwise a new micro-thread.
The Fork instruction binary format can be expressed as:

34

Jun. &, 2017

Fork Instruction (binary format)

[30:24] [23] [22:17] [16:11] [10:5] [4:0]
where NIP NFP count Predicate
[0290] Anexample set of operands for the Fork instruction

set are included in Tables 109-113 below.

TABLE 109

where-Where fork join count can be stored

Encoding Symbol Description

0x0 frame Fork count can be stored directly on the frame.
Faster, but only accessible to micro-threads within
the same thread on a single node

0x1 object Fork count can be stored within the object which

enables distributed operation.

TABLE 110

predicate- Predicate
Description

Specifies a single bit predicate register. If the predicate value is true, the
instruction executes, if false the instruction does not execute.

TABLE 111

NIP- New micro-thread Instruction Pointer
Description

Specifies the unsigned offset from the thread frame pointer to read the
IP of the newly spawned micro-thread. The IP can be a valid object meta-
data expansion space address.

TABLE 112

New micro-thread Frame Pointer
Description

Specifies the unsigned offset from the thread frame pointer to read the
FP of the newly spawned micro-thread. The FP can be a valid object

meta-
data expansion space address.

TABLE 113

count- Fork count variable
Description

The fork count variable keeps track of the number of forks that have not
been paired with joins. If the where options indicates frame, the count
specifies the unsigned offset from the thread frame pointer where
fork__count can be located. If the where option indicates object, the count
specifies the unsigned offset from the thread frame pointer to read the
pointer to fork_ count.

[0291] Join is the instruction mechanism to create a new
thread or micro-thread. The join instruction set enables a
micro-thread to be retired. The join instruction decrements
fork count (count) and fork_count is greater than zero there
is no further action. If fork_count is zero, then this indicates
the micro-thread executing the join is the last spawned

US 2017/0160984 Al

micro-thread for this fork_count and execution continues at
the next sequential instruction with the FP specified by FP.
The Join instruction binary format can be expressed as:

Jun. &, 2017

TABLE 118

Short Instruction Format-Execute

[30:23] [22:17] [l16:11] [10:5] [4:0]
[30:24] [23] [22:17] [16:11] [10:5] [4:0] Instruction Encoding/Options FPA FPB FPC Predicate
Add encode[5:0], SrcA sreB dst sre_pred
where Fp count Predicate esize[1:0]
Compare encode[5:0], SrcA sreB dpred src_pred
esize[1:0]
[0292] An example set of operands for the Join instruction
set are included in Tables 114-117 below.
[0295] Object Memory Fabric Streams and APIs
TABLE 114
[0296] Object memory fabric streams facilitate a mecha-

where-Where fork join count can be stored

Encoding Symbol Description

0x0 frame Fork count can be stored directly on the frame.
Faster, but only accessible to micro-threads within
the same thread on a single node

0x1 object Fork count can be stored within the object which

enables distributed operation.

TABLE 115

predicate- Predicate
Description

Specifies a single bit predicate register. If the predicate value is true, the
instruction executes, if false the instruction does not execute.

TABLE 116

NFP- Post join Frame Pointer
Description

Specifies the unsigned offset from the thread frame pointer to read the FP
of the post join micro-thread. The FP can be a valid object meta-data
expansion space address.

TABLE 117

count—Fork count variable
Description

The fork_ count variable keeps track of the number of forks that have
not been paired with joins. If the where options indicates frame, the
count specifies the unsigned offset from the thread frame pointer where
fork_count can be located. If the where option indicates object, the
count specifiesthe unsigned offset from the thread frame pointer to
read the pointer to fork count.

[0293] The branch instruction set allows for branch and
other conventional instructions to be added. The Branch
instruction binary format can be expressed as:

Branch Instruction (binary format)

[30:24] [23] [22:17) [16:11] [10:5] [4:0]

Predicate

[0294] An example set of operands for the Execute (short
instruction format) instruction set are included in Table 118
below

nism that object memory fabric utilizes to implement a
distributed coherent object memory with distributed object
methods. According to certain embodiments, object memory
fabric streams may define a general mechanism that enables
hardware and software modules in any combination to
communicate in a single direction. Ring streams may sup-
port a pipelined ring organization, where a ring of two
modules may be just two one-way streams.

[0297] A stream format API may be defined at least in part
as two one-way streams. Thus, as part of providing the
infinite memory fabric architecture in some embodiments,
communication between two or more modules may be
executed with the stream format API, which at least partially
defines the communication according to the object memory
fabric stream protocol so that the communication is based on
different unidirectional streams.

[0298] Each stream may be logically composed of instruc-
tion packages. Each instruction package may contain an
extended instruction and associated data. In some embodi-
ments, each stream may interleave sequences of requests and
responses. Streams may include short and long packages.
The short package may be referenced herein as simply an
“instruction package,” which may be descriptive of the
instruction packages containing bookkeeping information
and commands. The short package may include either the
Pull or Ack instructions and object information. The long
package may be referenced herein as an “object data pack-
age,” which may be descriptive of the object data packages
carrying object data, as distinguished from the short package
(“instruction packages”) which do not carry object data. The
object data package may include one or more push instruc-
tions, object information, and a single block specified by the
object address space block address. All other instructions
and data may be communicated within the block.

[0299] Insome embodiments, for example, the short pack-
age may be 64 bytes (1 chunk), and the long package may
be 4160 bytes (65 chunks). However, other embodiments are
possible. In some embodiments, there may be a separator
(e.g., a 1 byte separator). Object memory fabric streams may
be connectionless in a manner similar to UDP and may be
efficiently embedded over UDP or a UDP-type protocol
having certain characteristics common with, or similar to,
UDP. In various embodiments, attributes may include any
one or combination of:

[0300] Transaction-oriented request-response to enable
efficient movement of object memory fabric-named (e.g.,
128-bit object memory fabric object address) data blocks.

US 2017/0160984 Al

36

[0301] Packages may be routed based on the location of
block, the request object memory fabric object address
(object address space), and object memory fabric instruc-
tion—not be based on a static IP-like node address.

[0302] Coherency and object memory fabric protocol may
be implemented directly.

[0303] Reliability may be provided within the object
memory fabric end-to-end protocol.

[0304] Connectionless.

[0305] The only state in the system may be the individual
block coherency state at each end node, which may be
summarized at object memory fabric routing nodes for
efficiency.

[0306] Table 119 below identifies non-limiting examples

of various aspects of a short package definition, in accor-

dance with certain embodiments of the present disclosure.

TABLE 119

Jun. 8, 2017
TABLE 121
Obiject Size Encoding
Encoding ObjSize
0x0 221
0x1 230
0x2 239
0x3 248
0x4 257
0x5 264
0x6-0xff reserved

[0309] Software and/or hardware based objects may inter-
face to 2 one-way streams, one in each direction. Depending
on the object, there can be additional lower level protocol
layering including encryption, checksum, and reliable link

Short Package Definition

Name Description Size (bytes)
Instruction For the short extended instruction format, only 8
s_instruction[0] may be utilized. Pull and Ack
may be short extended instructions.
ObjID, ObjOff, ObjSize ObjSize (bit[7:0]) may define the ObjID and 16
ObjOff fields as defined in object memory fabric
Coherent Object Address (Object Address Space)
Space disclosure above. Bit [11] set specifies
meta-data.
NodeID Hierarchical node number. Nodes can be 8
hardware and/or software based. May utilize to
route a response back to the original requestor.
Acknowledge Accumulated acknowledge fields. These may be 1
utilized to signal acknowledgement across objects
as defined below.
Operand2 Utilized for PA address for PA instructions. 8
Utilized for optional streaming block count for
other instructions
Operand3 8
Checksum Checksum of the package. This assures 8
correctness all package chunks and correct
number of chunks per package.
Acknowledge Detail This may include status or error codes specific to 1
each instruction, shown in the Table CIII below.
Local use Source of the incoming package 1
Local destination Destination of the outgoing package 1
Local mod_ ref Utilized to locally pass modified and referenced 1
information
Reserved Reserved. 2
Total Size Short package size. 64
[0307] Table 120 below identifies non-limiting examples protocol. The object memory fabric stream protocol pro-

of various aspects of a long package definition, in accor-
dance with certain embodiments of the present disclosure.

TABLE 120

Long Package Definition

Name Description Size (bytes)
Short package Push may be long package instruction. 64
Block Data 4096

Total Size Short package size. 128
[0308] Table 121 below identifies non-limiting examples

of various aspects of object size encoding, in accordance
with certain embodiments of the present disclosure.

vides for matching request response package pairs (and
timeouts) to enforce reliability for packages that traverse
over an arbitrary number of streams.

[0310] In certain cases, each request-response package
pair is approximately 50% short package and 50% long
package on the average, the average efficiency relative to a
block transfer is 204%, with the equation:

efficiency= 1/(50% «4096 /(40 + 4136))

= 1/(50% = blocksize [(smallpackagesize + largepackagesize))

[0311] For links with stochastic error rates, a reliable link
protocol may be utilized to detect the errors locally.

US 2017/0160984 Al

[0312]

[0313] Object address spaces (object memory fabric
object addresses) can be dynamically present in any object
memory within object memory fabric, as well as dynami-
cally migrate. There still can be (or, for example, needs to
be) a mechanism that enables object memory’s and routers
(collectively nodes) to communicate with each other for
several purposes including book-keeping the original
requestor, setup and maintenance. The NodelD field within
packages can be utilized for these purposes. DIMMs and
routers can be addressed based on their hierarchical orga-
nization. Non-leaf nodes can be addressed when the lesser
significant fields are zero. The DIMM/software/mobile field
can enable up to 256 DIMMs or more and the remainder
proxied software threads and/or mobile devices. This
addressing scheme can support up to 2*° servers or server
equivalents, up to 2*® DIMMs and up to 2°* mobile devices
or software threads. Examples of these fields are shown
below in Tables 122-124.

Node ID

TABLE 122

Package NodeID Field

[63:56] [55:48] [47:40] [39:32] [31:24] [23:00]
Level5 Level4 Level3 Level2 Levell DIMM/software/

Inter-Node mobile

Object

Router

TABLE 123
Leveln Field (n = 1 to 5)
Encoding Description
0x00-0xfd Node address with hierarchy
Oxfe Add this router ID to NodeID when it first leaves this level
toward root.

Oxff Indicates that the NodelID Field specifies an interior node that

is one level above the field in which this value is specified.
All fields lower than this Leveln Field should be specified as
Oxff.

TABLE 124

DIMM/SW/Mobile NodeID Field

Jun. &, 2017

TABLE 125

Acknowledge Fields

Posi- Size
Name Description tion (bits)

Ack Cleared when package first inserted into 0 1
ring from another ring. Set by an object
when it is able to respond to the request.
Cleared when package first inserted into 1 1
ring from another ring. Set by an object
when it is unable to evaluate or perform
appropriate action on the Object Block
Address. BusyAck may cause the package
to be re-transmitted around the local ring.
SnapCopyAck Cleared when package first inserted into 2 1
ring from another ring. Set by an object to
indicate it still has a snapshot copy of the
Object Block Address. This information
may be used to enable the proper state to
be set when an object transfers the
package between rings (hierarchy
levels).
ShadCopyAck Cleared when package first inserted into 3 1
ring from another ring. Set by an object to
indicate it still has a shadow copy of the
Object Block Address. This information
may be used to enable the proper state to
be set when an object transfers the
package between rings (hierarchy
levels).
Cleared when package first inserted into 4 1
ring from another ring. Set by an object to
indicate it still has a copy of the Object
Block Address. This information is used
to enable the proper state to be set when
an object transfers the package between
rings (hierarchy levels).
Function may be to enable the uplink ring 4 1
object that provides streams toward the
root to not require a directory. Signals the
uplink object that a package has traversed
once around the ring and can now be sent
toward the root.
Reserved. 3

BusyAck

CopyAck

ToRoot

Reserved

Total Size Acknowledge field size. 8

[0315] Table 126 below identifies non-limiting examples
of various aspects of the Acknowledge detail field, in
accordance with certain embodiments of the present disclo-
sure. The Acknowledge detail field may provide detailed
status information of the corresponding request based on the
package instruction field.

TABLE 126

Encoding Description

0x000000-0x0000fe Up to 256 DIMMs per logical server

Oxfe Add this router ID to NodeID when it first leaves
this level toward root.

Indicates that the NodeID Field specifies an interior
node that is one level above the field in which this
value is specified. All fields lower than this Leveln
Field should be specified as Oxff.

Up 22428 (16,776,960) SW threads or

Mobile Devices per logical server

0x0000fF

0x000100-Ox{FHT

[0314] Table 125 and 126 below identifies non-limiting
examples of various aspects of acknowledge fields and
detail, in accordance with certain embodiments of the pres-
ent disclosure.

Acknowledge Detail

Instructions Acknowledge Field Definition

Pull, Push, Ack previous block state. Utilized for diagnostic

and
Load, Store 0x0- Success
0x1- Fail
Empty, Fill 0x0- Success
0x1- Fail
Pointer, PrePtrChn, ScanEF 0x0- Success
0x1- Fail
Create 0x0- Success
0x1- Already created (fail)
0x2- Fail
Destroy 0x0- Success

0x1- Not valid (nothing to destroy)
0x2- Fail

US 2017/0160984 Al

TABLE 126-continued

Acknowledge Detail

Instructions Acknowledge Field Definition

Allocate 0x0-
0x1-
0x2-
0x0-
0x1-
0x2-
0x0-
0x1-
0x2-
0x0-
0x1-
0x2-
0x0-
0x1-
0x2-
0x0-
0x1-
0x2-
0x0-
0x1-
0x2-
0x3-
0x0-
0x1-
0x2-
0x0-
0x1-
0x2-
0x3-
0x0-
0x1-
0x2-
0x3-
0x0-
0x1-
0x2-

Success

Already allocated (fail)
Fail

Success

not allocated (fail)

Fail

Success

Object doesn’t exist (fail)
Fail

Success

Block doesn’t exist (fail)
Fail

Success

Object doesn’t exist (fail)
Fail

Success

Object doesn’t exist (fail)
Fail

Success

Object doesn’t exist (fail)
Object not associated (fail)
Fail

Success

Object or block doesn’t exist (fail)
Fail

Success

Object or block doesn’t exist (fail)
Block not associated (fail)
Fail

Success

Object doesn’t exist (fail)
Object already open

Fail

Success

Object doesn’t exist (fail)
Fail

Deallocate

CopyObj

CopyBlk

Persist

AssocObj

DeAssocObj

AssocBlk

DeAssocBlk

OpenObj

Btree

[0316] In some embodiments, the topology used within
object memory fabric may be a unidirectional point-to-point
ring. However, in various embodiments, the stream format
would support other topologies. A logical ring may include
any combination of hardware, firmware, and/or software
stream object interfaces. A two-object ring may include two
one-way streams between the objects. An object that con-
nects to multiple rings may have the capability to move,
translate, and/or generate packages between rings to create
the object memory fabric hierarchy.

[0317] FIG. 22A is a block diagram illustrating an
example of streams present on a node 2200 with a hardware-
based object memory fabric inter-node object router 2205, in
accordance with certain embodiments of the present disclo-
sure. In some embodiments, the node 2200 may correspond
to a server node. The inter-node object router 2205 may
include ring objects 2210 which are connected with physical
streams 2215 in a ring orientation. In various embodiments,
the ring objects may be connected in a ring 2220, which may
be a virtual (Time Division Multiplexed) TDM ring in some
embodiments. The ring objects 2210 and streams 2215 can
be any combination of physical objects and streams or TDM
ring objects and streams when hardware is shared. As
depicted, one ring object 2210 may connect within the
inter-node object router ring 2220 and to a stream 2225 that
goes toward the object memory fabric router. In some
embodiments, more than one ring object 2210 may connect
within the inter-node object router ring and corresponding
streams.

38

Jun. &, 2017

[0318] As depicted, the node 2200 may include a PCle
2230, node memory controllers and DD4 memory buses
2235, and object memory fabric object memories 2240.
Each object memory fabric object memory 2240 may have
at least one pair of streams that connect to a inter-node object
router ring object 2210 over the DD4 memory bus 2235 and
PCle 2230, running at hardware performance. As depicted,
there can be software objects 2245 running on any processor
core 2250 that can be functioning as any combination of
routing agent and/or object memory. The software objects
2245 may have streams that connect ring objects 2210
within the inter-node object router 2205. Thus, such soft-
ware objects 2245 streams may stream over the PCle 2230.

[0319] FIG. 22B is a block diagram illustrating an
example of software emulation of object memory and router
on the node 2200-1, in accordance with certain embodi-
ments of the present disclosure. The software object 2245
may, for example, emulate object memory fabric object
memory 2240. The software object 2245 may include the
same data structures to track objects and blocks and respond
to requests from the inter-node object router 2205 identically
to the actual object memory fabric object memory 2240. The
software object 2245-1 may, for example, correspond to a
routing agent by emulating the inter-node object router 2205
functionality. In so doing, the software object 2245-1 may
communicate streams over standard wired and/or wireless
networks, for example, to mobile, wired, and/or Internet of
Things (IoT) devices 2255.

[0320] In some embodiments, the entire inter-node object
router function could be implemented in one or more
software objects 2245 running on one or more processing
cores 2250, with the only difference being performance.
And, as noted, one or more processing cores 2250 can also
directly access object memory fabric object memory per
conventional memory reference.

[0321] FIG. 23 is a block diagram illustrating an example
of streams within an object memory fabric node object
router 2300, in accordance with certain embodiments of the
present disclosure. The object memory fabric router 2300
may include ring objects 2305 which are connected with
streams 2310. As depicted, ring objects 2305 may be con-
nected by streams 2310 in a ring topology. The ring objects
2305 and streams 2310 can be any combination of physical
or TDM. One or more ring objects 2305 may connect to a
physical stream 2315 that goes toward a leaf node. As
depicted, one ring object 2305 may connect to a physical
stream 2320 that goes toward a root node. In some embodi-
ments, more than one ring object 2305 may connect to a
respective physical stream 2320 that goes toward a root
node.

[0322] API Background

[0323] Although API which stands for Applications Pro-
gramming Interface, sounds like it should be about how
software interfaces to object memory fabric, the main inter-
face to object memory fabric may correspond to memory in
some embodiments. In some embodiments, the object
memory fabric API may correspond to how object memory
fabric is set up and maintained transparently for applica-
tions, e.g., by modified Linux libc. Applications such as a
SQL database or graph database can utilize the API to create
object memory fabric objects and provide/augment meta-
data to enable object memory fabric to better manage
objects.

US 2017/0160984 Al

[0324] In various embodiments, overall capabilities of the

API may include:

[0325] 1. Creating objects and maintaining objects within
object memory fabric;

[0326] 2. Associating object memory fabric objects with
local virtual address and physical address;

[0327] 3. Providing and augmenting meta-data to enable
object memory fabric to better manage objects; and/or

[0328] 4. Specifying extended instruction functions and
methods.
[0329] API functions may utilize the last capability to

implement all capabilities. By being able to create functions
and methods, entire native processor sequences can be
offloaded to object memory fabric, gaining efficiencies such
as those disclosed above with respect to the extended
instruction environment and extended instructions.

[0330] The API interface may be through the PCle-based
Server Object Index, also referred to as object memory
fabric inter-node object router. The API Programming model
may directly integrate with the application. Multi-threading
(through in memory command queue) may be provided so
that each application is logically issuing commands. Each
command may provide return status and optional data. The
API commands may be available as part of trigger programs.
[0331] As noted regarding “Memory Fabric Distributed
Object Memory and Index” (e.g. with respect to FIGS. 10-12
described herein), three components where introduced to
describe the data structures and operation of the Object
memory and index. The three components are shown below
in Table 127. This section will discuss the physical instan-
tiations in more depth.

TABLE 127

Logical Abstraction Physical Device Form Factor

Object Memory
Server Object Index

Memory module/DIMM DDR4 DIMM

Node router PCle Card

(half height & length)
0.5 U Rack mount

Inter-node Router Inter-node router

Object Index

[0332] Since all three form factors share a common func-
tionality with respect to Object Memory and Index, the
underlying design objects may be reused in all three (a
common design).

[0333] FIG. 24 is a block diagram illustrating a product
family hardware implementation architecture, in accordance
with certain embodiments of the present disclosure.

[0334] Within a server, memory modules or DIMMs may
plug into standard DDR4 memory sockets. Each memory
module/DIMM may independently manage both dram
memory (fast and relatively expensive) and flash memory
(not as fast, but much less expensive) in a manner that the
processor thinks that there is the flash amount of fast dram
(see, for example, “Object Memory Caching” section
herein). There may be eight memory sockets per processor
socket or sixteen for a two-socket server. The node router or
“uRouter” may communicate with the memory modules/
DIMM(s) with direct memory access over PCle and memory
bus. The memory fabric may reserve a portion of each
memory module/DIMM physical memory map to enable
communication to and from the PCle based node router/
uRouter. Thus the combination of PCle, memory bus and
memory fabric private portion of memory module/DIMM

Jun. &, 2017

memory may form a virtual high bandwidth link. This may
all be transparent to application execution.

[0335] The node router/uRouter may connect with with an
inter-node router or “IMF-Router” over 25/100GE fiber that
uses several layers of Gigabit Ethernet protocol. Inter-node
routers may connect with same 25/100GE fiber. An inter-
node router may provide sixteen downlinks and two uplinks
toward root. One embodiment may utilize dedicated links.
Another embodiment may interoperate with standard links
and routers.

[0336] FIG. 25 is a block diagram illustrating an alterna-
tive product family hardware implementation architecture,
in accordance with certain embodiments of the present
disclosure. This embodiment may provide an additional
memory trigger instruction set and extended object method
execution resources. This may enable a reduction in the
number of servers that are required because more of the
database storage manager and engine can execute within the
object memory without need of server processor resources.
A server-less memory fabric node may consist of sixteen
object memories with a node router/uRouter. Ten nodes may
be packaged into a single 1U rack mount enclosure, provid-
ing sixteen times reduction in space and up to five-times the
performance improvement.

[0337] Server Node

[0338] The server may consist of a single node router/
uRouter and one or more memory modules/DIMMs. The
node router may implement the object index covering all
objects/blocks held within the object memory(s) (memory
modules) within the same server. The memory module may
hold the actual objects and blocks within objects, corre-
sponding object meta-data and object index covering objects
currently stored locally. Each memory module indepen-
dently manages both dram memory (which may be, for
example, fast and relatively expensive) and flash memory
(which may be, for example, not as fast, but much less
expensive) in a manner that the processor thinks that there
is the flash amount of fast dram. Both memory module and
node router may can manage free storage through a free
storage index, which may be implemented in the same
manner as for other indexes.

[0339] FIG. 26 is a block diagram illustrating a memory
fabric server view of a hardware implementation architec-
ture, in accordance with certain embodiments of the present
disclosure.

[0340] Objects may be created and maintained through the
memory fabric API as described herein. The API may
communicate to the node router/uRouter through the
memory fabric version of libc and memory fabric driver. The
node router may then update the local object index, send
commands toward the root as required and communicate
with the appropriate memory module/DIMM to complete
the API command (e.g. locally). Memory module may
communicate an administrative request back to the node
router, which may handle them appropriately both with
respect to the memory fabric and the local Linux. The node
router and memory module may participate in moving
objects and blocks (e.g. in the manner described in the
“Object Memory Miss” with respect to FIG. 12.

[0341] Memory Module/RDIMM

[0342] The RDIMM may consist of dram (e.g. 32 Gbyte),
flash memory (e.g. 4 Terabytes) and FPGA and DDR4
compatible buffers (first generation product capacities per
memory module). The FPGA may include all the resources,

US 2017/0160984 Al

structure, and internal data structures to manage the dram

and flash as Object Memory integrated within the memory

fabric whole.

[0343] FIG. 27 is a block diagram illustrating a memory

module view of a hardware implementation architecture, in

accordance with certain embodiments of the present disclo-
sure.

[0344] A single scalable and parametrizable architecture

may be used to implement the memory fabric on a memory

module/DIMM as well as node router/uRouter and inter-
node router/IMF-Router.

[0345] The internal architecture may be organized around

a high performance, scalable ring interconnect that may

implement a local version of memory fabric coherency

protocol. Each subsystem may connect the ring through a

coherent cache. The type of meta-data, data and objects

stored may depend on the functionality of the subsystem.

The routing engines in all three subsystems may be synthe-

sized from a common design, may be highly multi-threaded,

and may have no long term threads or state. An example set
of routing engines may be as follows:

[0346] 1. Dram Routing Engine (StreamFEngine): Controls
memory module/DDR4 access, monitors triggers for pro-
cessor access data and includes DDR4 cache. StreamEn-
gine may monitor DDR4 operations for triggers and
validate DDR4 cache access through an internal table that
maps the 0.5 Tbyte physical memory module address
space. This table has several possible implementations
including:

[0347] a. Fully associative: Table that may convert each
page physical number (excludes low 12 bits of address) to
a page offset in DDR4. This has the advantage that any
arbitrary set of pages can be cached.

[0348] b. Partially associative: Same as associative tech-
nique except that RAS address bits for the associative set
and give the StreamEngine time to do the translation. This
enables associativity level of 16-32 way, which is very
close to the performance of fully associative. This tech-
nique requires a table of approximately 128 kx4 bits (512
k bits).

[0349] 2. Memory Fabric Background & API Engine
(ExecuteEngine): May provides core memory fabric algo-
rithms such as coherency, triggers, memory fabric APIs to
accelerate graph and other big data as well as higher level
memory fabric instruction sequences. May provide higher
level API and memory fabric trigger execution. Also may
handle background maintenance.

[0350] 3. OIT/POIT Engine: Manages OIT/POIT and pro-
vides this service to the other engines. The engine can
process a level within an index in 2 cycles providing high
performance index search and management. Manages
flash storage for objects, meta-data blocks, data blocks
and indices.

[0351] FIG. 28 is a block diagram illustrating a memory

module view of a hardware implementation architecture, in

accordance with an alternative embodiment of the present
disclosure.

[0352] According to this embodiment, the capability of the

multi-threaded memory fabric background & API engine

may be functionally increased to execute a wide range of
memory fabric trigger instructions. Additional instances of
the updated multi-threaded memory fabric background &

API engine may be added for more memory fabric trigger

program performance. The combination of functional addi-

Jun. &, 2017

tions and more instances may be intended to enable memory
fabric to execute big-data and data-manager software with
fewer servers as shown, for example, in FIG. 28.
[0353] Node Router
[0354] The internal architecture of the node router/
uRouter may be the same as the memory module/DIMM,
with the differences related to the functionality of the node
router, manage memory fabric server object index, and route
appropriate packets to/from PCle (memory modules) and
inter-node router/IMF-Router. It may have additional rout-
ing function and may not actually store objects. As noted, an
example set of routing engines may be as follows:

[0355] FIG. 29 is a block diagram illustrating an node

router view of a hardware implementation architecture, in

accordance with certain embodiments of the present disclo-
sure.

[0356] 1. Routing Engine: Controls routing of packets
to/from PCle (memory modules) and inter-node router.
Typically packets enter through one path are processed
internally and exit on one of the paths.

[0357] 2. OIT/POIT Engine (ObjMemEngine): Manages
OIT/POIT and provides this service to the other engines.
The engine can process a level within an index in 2 cycles
providing high performance index search and manage-
ment. Manages flash and HMC (Hybrid Memory Cube)
storage for indices. Caches most frequently used indices
in HMC.

[0358] 3. Memory fabric background & API engine: Pro-
vides higher level API and memory fabric trigger execu-
tion. Also handles background maintenance.

[0359] Inter-node Router
[0360] FIG. 30 is a block diagram illustrating an inter-
node router view of a hardware implementation architecture,
in accordance with certain embodiments of the present
disclosure.
[0361] The inter-node router may be analogous to an IP
router. A difference may be the addressing model and static
vs. dynamic. IP routers may utilize a fixed static address per
each node and routes based on the destination IP address to
a fixed physical node (can be virtualized for medium and
long timeframes). The inter-node router may utilize a
memory fabric object address (OA) which may specify the
object and specific block of the object. Objects and blocks
may dynamically reside at any node. The inter-node router
may route OA packages based on the dynamic location(s) of
objects and blocks and may track object/block location
dynamically in real time.

[0362] The inter-node router may be a scaled up version of

node router. Instead of connecting to a single PCle bus to

connect to leaf memory modules, it may connect multiple

(e.g. 12-16, but expected to be 16) downlink node routers or

inter-node routers and two uplink inter-node routers. There

may also be a scale up of the object index storage capacity,
processing rate and overall routing bandwidth.

[0363] FIG. 31 is a block diagram illustrating an memory

fabric router view of a hardware implementation architec-

ture, in accordance with certain embodiments of the present
disclosure. The memory fabric architecture may utilize an
memory fabric router for each downlink or uplink it con-
nects to. The memory fabric router may be virtually identical
to the node router (e.g. with the exception of supporting the
internal memory fabric ring—which may be the same as the
on chip version—and deleted PCle). The memory fabric ring
may utilize Interlaken protocol between memory fabric

US 2017/0160984 Al

routers. Interlaken protocol at the packet level may be
compatible with utilizing 10G and 100G ethernet for down-
links and uplinks. Each memory fabric router may have as
much object index storage capacity, processing rate and
routing bandwidth as the node router, thus allowing the
inter-node router to scale up to support the number of
downlinks and uplinks.

[0364] Each downlink memory fabric router’s object
index may reflect all objects or blocks that are downlink
from it. So even an inter-node router may use a distributed
internal object index and routing.

[0365] The inter-node routers at any level with respect to
leafs may be identical. The larger aggregate hierarchical
object memory (caches) at each level from leaf may tend to
lower the data movement between levels since more data
can be stored at each level. Data that is in high use may be
stored in multiple locations.

[0366] Implementation with standard software

[0367] The object-based memory fabric described above
can provide native functions that can replace portions of
virtual memory, in-memory file systems and database stor-
age managers and store their respective data in a very
efficient format. FIG. 32 is a block diagram illustrating
object memory fabric functions that can replace software
functions according to one embodiment of the present
disclosure. As described in detail above, these object-based
memory fabric functions can include functions 3205 for
in-memory handling of blocks within objects through the
object address space and functions 3210 for handling of
objects through the object address and the local virtual
address space of the node. Building on these functions 3205
and 3210, the object-based memory fabric can also provide
in-memory file handling functions 3215, in-memory data-
base functions 3220, and other in-memory functions 3225.
Each of these in-memory functions 3215, 3220, and 3225
can, as described above, operate on the memory objects
within the object-based memory fabric through the object
address space and the virtual address space of the individual
nodes of the object-based memory fabric. The object-based
memory fabric and the functions provided thereby can be
transparent to end user applications with minor changes to
storage managers. While minor, these changes can create a
huge increase in efficiency by storing data in an in-memory
object format in the object infinite address space. The
efficiency increase is two-fold: 1) the underlying in-memory
object format and; 2) eliminating the conversions from
storage and various database and/or application formats.
[0368] As introduced above, embodiments of the inven-
tion provide interfaces to the object-based memory fabric
that can be implemented below the application level in the
software stack. In this way, differences between the object-
based memory and a standard address space are transparent
to the applications which can utilize the object-based
memory without modification, with the functional and per-
formance benefits of object-based memory. Instead, modi-
fied storage managers can interface system software, such as
a standard operating system, e.g., Linux, to the object-based
memory. These modified storage managers can provide for
management of standard processor hardware, such as buffers
and caches, can control portions of the object-based memory
space visible to the narrower physical address space avail-
able to the processor, and can be accessible by the applica-
tions through the standard, system software. In this way, the
applications can access and utilize the object-based memory

Jun. &, 2017

fabric through the system software, e.g., through the stan-
dard operating system memory allocation process, without
modification.

[0369] FIG. 33 is a block diagram illustrating an object
memory fabric software stack according to one embodiment
of the present disclosure. As illustrated in this example, the
stack 3300 begins with and is built on top of the object-based
memory fabric 3305 as described in detail above. A memory
fabric operating system driver 3310 can provide access to
the object-based memory space of the object-based memory
fabric 3305 through memory allocation functions of the
operating system of the node. In some cases, the operating
system can comprise Linux or Security-Enhanced Linux
(SELinux). The memory fabric operating system driver
3310 can also provide hooks to one or more virtual machines
of the operating system.

[0370] In one implementation, the stack 3300 can also
comprise an object-based memory specific version of a
library file 3315 of the operating system. For example, this
library file 3315 can comprise an object-based memory
fabric specific version of a standard ¢ library, libc. This
library file 3315 can handle memory allocation and file
system APIs in a manner appropriate to the object-based
memory and that takes advantage of object-based memory
fabric leverage. Additionally, the us of this library file 3135
and the functions therein can be transparent to application
programs and users, i.e., they do not need to be treated
different from the corresponding standard library functions.
[0371] The stack 3300 can further include a set of storage
managers 3325, 3330, 3335, 3340, and 3345. Generally
speaking, the storage managers 3325, 3330, 3335, 3340, and
3345 can comprise a set of modified storage managers that
are adapted to utilize the format and addressing of the
object-based memory space. The storage managers 3325,
3330, 3335, 3340, and 3345 can provide an interface
between the object-based memory space and an operating
system executed by the processor and an alternate object
memory based storage transparent to a file system, database,
or other software using the interface layer. The storage
managers 3325, 3330, 3335, 3340, and 3345 can include, but
are not limited to, a graph database storage manager 3325,
an SQL or other relational database storage manager 3330,
a filesystem storage manager 3335, and/or one or more other
storage managers 3340 of different types.

[0372] According to one embodiment, a direct access
interface 3320 allows a direct inmemory storage manager
3334 to directly access the object memory fabric 3305 with
interfacing through the object memory fabric library file
3315. Since the memory fabric 3305 manages objects in a
complete and coherent manner the direct storage manager
3345 can directly access the memory fabric 3305. Both the
direct access interface 3320 and the direct memory manager
3345 are enabled by the capability of the memory fabric
3305 to coherently manage objects. This gives a path for a
modified application to directly interface to the memory
fabric class library 3315 or directly to the memory fabric
3305.

[0373] The object-based memory fabric additions to the
software stack 3300 sit below the application level to
provide compatibility between a set of unmodified applica-
tions 3350, 3355, 3360, and 3365 and the object-based
memory fabric 3305. Such applications can include, but are
not limited to, one or more standard graph database appli-
cations 3350, one or more standard SQL or other relational

US 2017/0160984 Al

database applications 3355, one or more standard filesystem
access applications 3360, and/or one or more other standard,
unmodified applications 3365. The object-based memory
fabric additions to the software stack 3300, including the
memory fabric operating system driver 3310, object-based
memory specific library file 3315, and storage managers
3325, 3330, 3335, 3340, and 3345 can therefore provide an
interface between the applications 3350, 3355, 3360, and
3365 and the object-based memory fabric 3305. This inter-
face layer can control portions of the object-based memory
space visible to a virtual address space and physical address
space of the processor, i.e., a page fault and page handler that
controls what portion of the object address space is currently
visible in each node’s physical address space and coordi-
nating the relationship between memory objects and appli-
cation segments and files. According to one embodiment,
object access privilege for each application 3350, 3355,
3360, and 3365 can be determined through an object-based
memory fabric Access Control List (ACL) or equivalent.

[0374] Stated another way, each hardware-based process-
ing node of an object memory fabric 3305, such as described
in detail above, can comprise a memory module storing and
managing one or more memory objects within an object-
based memory space. Also as described above, each memory
object can be created natively within the memory module,
accessed using a single memory reference instruction with-
out Input/Output (I/O) instructions, and managed by the
memory module at a single memory layer. The memory
module can provide an interface layer 3310, 3315, 3320,
3325, 3330, 3335, 3340, and 3345 below an application
layer 3350, 3355, 3360, and 3365 of a software stack 3300.
The interface layer can comprise one or more storage
managers 3325, 3330, 3335, 3340, and 3345 managing
hardware of a processor and controlling portions of the
object-based memory space visible to a virtual address space
and physical address space of the processor of each hard-
ware-based processing node of the object-based memory
fabric 3305. The one or more storage managers 3325, 3330,
3335, 3340, and 3345 can further provide an interface
between the object-based memory space and an operating
system executed by the processor of each hardware-based
processing node and an alternate object memory based
storage transparent to a file system, database, or other
software of the application layer 3350, 3355, 3360, and 3365
of a software stack 3300 using the interface layer 3310,
3315, 3320, 3325, 3330, 3335, 3340, and 3345. In some
cases, the operating system can comprise Linux or Security-
Enhanced Linux (SELinux). Memory objects created and
managed by the memory fabric can be created and managed
equivalently from any node with the memory fabric. Thus a
multi-node memory fabric does not require a centralized
storage manager or memory fabric class library.

[0375] The interface layer 3310, 3315, 3320, 3325, 3330,
3335, 3340, and 3345 can provide access to the object-based
memory space to one or more applications executing in the
application layer of the software stack access through
memory allocation functions of the operating system. In one
implementation, the interface layer can comprise an object-
based memory specific version of a library file 3315 of the
operating system. The one or more storage managers 3325,
3330, 3335, 3340, and 3345 can utilize a format and
addressing of the object-based memory space. The one or

Jun. &, 2017

more storage managers can comprise, for example, a data-
base manager 3330, a graph database manager 3325, and/or
a filesystem manager 3335.

[0376] Operations and Coherency Using Fault-Tolerant
Objects
[0377] As introduced above, embodiments described

herein can implement an object-based memory fabric in
which memory objects in the memory fabric are distributed
and tracked across a hierarchy of processing nodes. Each
processing node can track memory objects and blocks within
the memory objects that are present on paths from that node
toward it’s leaf nodes in the hierarchy. Additionally, each
processing node can utilize the same algorithms for memory
object management such as memory object creation, block
allocation, block coherency, etc. In this way, each higher
level of the hierarchy creates an ever-larger cache which can
significantly reduce the bandwidth in and out of the pro-
cessing nodes at that level.

[0378] Fault tolerance capability can be implemented
based on this hierarchical distribution and tracking by
enabling memory objects, on a per-object basis, to be stored
in more than a single node. This distribution of memory
objects across multiple nodes can be across the hierarchy
and/or across multiple physical locations. Memory object
fault tolerance copies can be handled by a block coherency
mechanism as part of memory fabric operation. In this way,
each memory object can be made to be present on multiple
different nodes. The memory object can be contained as a
whole, within each of the multiple nodes, or at a given level
of the hierarchy or may be stored as different portions with
each portion being contained within multiple different
nodes.

[0379] For illustrative purposes, reference will now be
made to FIG. 7. The object memory fabric 700 can distribute
and track the memory objects across the hierarchy of the
object memory fabric 700 and the plurality of hardware-
based processing nodes 705 and 710 on a per-object basis.
Distributing the memory objects across the hierarchy of the
object memory fabric 700 and the plurality of hardware-
based processing nodes 705 and 710 can comprise storing,
on a per-object basis, each memory object on two or more
nodes of the plurality of hardware-based processing nodes
705 and 710 of the object memory fabric 700. The two or
more nodes of the plurality of hardware-based processing
nodes 705 and 710 can be remote from each other in the
hierarchy of the object memory fabric and/or in different
physical locations.

[0380] More specifically, and as described above, the
hierarchy can be a fat-tree structure. The Object Index Tree
(OIT) and Per Object Index Tree (POIT) at each hardware-
based processing node, node router, or inter-node router can
track objects and blocks within objects that are present on all
paths from that node toward it’s leaves. Thus, the algorithms
for object creation, block allocation and block coherency can
be the same at each node in the hierarchy. The power of such
a hierarchy provides simplicity and efficiency of these
algorithms. Each level of the hierarchy can create an ever-
larger cache, which reduces the bandwidth in/out of that
level. In the normal operating state where the working set is
held within the corresponding level of the hierarchy, the
bandwidth in/out of that level approaches zero.

[0381] Algorithm operations are now described within a
node in the hierarchy with any interaction toward the root
and/or toward the leaf. As used herein, “toward the root”

US 2017/0160984 Al

(root-path) refers to the direction from the node to the tree
root while “toward the leaf” (leaf-path) refers to the direc-
tion from the node to the tree leaf. Hardware-based process-
ing node memory modules, e.g., DIMMs, are considered the
leaf within the hierarchy.

[0382] Each node in the hierarchy can track some number
of paths toward the leaf, called tree-span factor. In the one
implementation, the spanning factor at any level of the
hierarchy can be 16. Thus, a memory module can keep track
of objects stored locally. Other nodes, such as node routers
and inter-node routers, can track, for example, up to 16 paths
toward the leaf. In such an example, node routers and
inter-node router OITs can keep the object state for the 16
paths and the POITs track block state of the 16 paths.
Steady-state, most objects or blocks can be present in a
single (or small number) of leaf path(s).

[0383] Although the unit of tracking can be a single block,
the POIT can be organized so that it can provide a single
entry for a grouping of blocks to improve POIT storage
efficiency. This grouping can correspond to the storage
chunk the persistent level of hierarchy (typically 4 blocks) or
a defined object size.

[0384] Objects are created using the CreateObject instruc-
tion issued from a processor within a server or from pro-
cessing on a hierarchy leaf (memory module/DIMM). If the
object is already valid within the memory fabric, an indi-
cation of “already valid” is returned. The leaf which receives
the CreateObject instruction can check locally to determine
if the object is valid. If it is not, then the leaf can pass the
CreateObject instruction toward the root and can record a
local state of “pending_create.” Eventually the CreateObject
instruction can reach the hierarch root. The object is created
and the CreateObject package is passed as successful back
toward the requesting leaf, with each node along the way
transitioning from pending_create to valid object. If there
are simultaneous CreateObject instructions for the same
object, then the first to reach the root can be successtul and
the other CreateObject Instructions return that the object is
already valid. Thus, software does not have to keep external
locks to control creation.

[0385] The DestroyObject instruction can delete blocks
and meta-data associated with the corresponding object in a
hierarchical manner similar to CreateObject.

[0386] Once an object is created, any individual block
within the object can be allocated, creating storage within
the memory fabric for that block. The AllocateBIlk instruc-
tion can work much like the CreateObject instruction. The
AllocateBlk instruction can allocate a block of storage at the
specified IOA within the memory fabric. The block can be
stored in at least one memory module within the memory
fabric or within at 2 or more memory modules if object fault
tolerance is enabled for the object that the block is part of.
[0387] The AllocateBlk instruction can be issued from a
processor within the server or from processing on a hierar-
chy leaf (memory module/DIMM). If the block is already

Jun. &, 2017

allocated within the memory fabric, an already allocated
response can be returned. The leaf which receives the
AllocateBlk instruction can check locally to determine if the
block is allocated. If it is not, then the leaf can pass the
AllocateBlk instruction toward the root and record a local
state of pending_allocate. Eventually the AllocateBlk
reaches the hierarchy root. The block can be allocated and
the AllocateBlk package can be passed as successful back
toward the requesting leaf, with each node along the way
transitioning from pending_allocate to valid block state
(usually own). If there are simultaneous AllocateBlk instruc-
tions for the same block, then the first to reach the root can
be successful and the other AllocateBlk Instructions can
return that the block is already allocated. Thus, software
does not have to keep external locks to control allocation.
[0388] When an OA reference from a leaf is made to an
OA object that is shown by IOT as not valid (invalid object
or no local object), a root-path search can be made to
establish the object is valid and implicitly create that object
in the leaf-path back toward the requesting leaf. If the object
is not valid, a not-valid status can be returned. When an IOA
reference from a leaf is made to an IOA block that is shown
by 10T or PIOT as not allocated (invalid block), a rootpath
search can be made to establish the block is allocated and
route the request to the leafpath of the allocated block. The
leaf can then return block data to the requesting leaf with the
path between the responding leaf to requesting leaf through
their closest common root. If the block is not allocated
within the memory fabric, a not-allocated status can be
returned.

[0389] According to one embodiment, the memory fabric
can optionally support allocation and deallocation of mul-
tiple blocks for more efficient allocation. Additionally or
alternatively, the memory fabric can utilize a protocol as will
be described in greater detail below and that can provide
sequential consistency and forward progress guarantees
across the memory fabric for applications including data-
bases and filesystems. For example, the protocol can be an
AllCache, ownership based, supporting update and invali-
date modes. Use of such a protocol can provide lockless
synchronization and can support integral object/block fault
tolerance. The protocol can match the hierarchal distributed
nature of object indices so that the coherency algorithm can
be identical at each router. Thus, proving correctness in a
single router provides correctness by construction for any
arbitrary size memory fabric.

[0390] According to one embodiment, the memory fabric
can support coherency on a 4 k block basis for object data
and metadata. Memory fabric block state describes the state
a level of the hierarchy including all leafs. Memory fabric
package has the ability to optionally chain together requests
so that many blocks (e.g., up to 227 blocks) can move on a
single, initial request. Under certain conditions, the chain
may be broken and can be retried. Each chained package can
be pushed as an individual package for purposes of coher-
ency.

TABLE 128

Memory Fabric Block & Object States

Encoding Symbol

Description

local__object
no__local__object

object created on DL node or router
No object allocated on DL node or router. Usually another
DL node or router from this node is in state local__object.

US 2017/0160984 Al

44

TABLE 128-continued

Memory Fabric Block & Object States

Encoding Symbol Description

0x0c invalid_ object Object OIT entry allocated, but invalid object corresponding
to DL node

0x0d invalid_ block Object allocated, but block not allocated on corresponding DL
node

0x00 invalid Block allocated locally, but no data present (valid)

0x0I snapcopy Snapshot copy. This copy is updated only when a block is
persisted. Utilized for object fault tolerance. Can be
configured on an object basis redundancy and geographic
dispersion.

0x02 shadcopy Shadow copy. Will be updated on a lazy basis-
eventually consistent, usually after a period of time or
some number of writes and/or transaction. Can also be
used for fault tolerant block copies.

0x03 copy Read-only copy. Will be updated for owner
modifications as they occur. Insures sequential
consistency.

0x04 OWI__snapcopy Exclusive owner with snapshot copy. Enables local

0x08 own__snapcopy_m write privilege without any updates required. Snapshot
copies may exist, but are only updated when
corresponding block is persisted and through and push
instruction with push_ state = pstate_ sncopy.

0x05 own__shadcopy Non-exclusive owner with shadow copies. Enables

0x09 own_shadcopy_m write privilege shadow copies or snapshot copies to
exist which are updated from writes on a lazy basis-
eventually consistent.

0x06 OWI__COpy Non-exclusive owner with copies. Enables write

0x0a OWIN__copy__m privilege and copies, shadow copies or snapshot copies
to exist which are updated from writes. Multiple writes
to the same block can occur with a single update.

0x07 own own_m Exclusive owner. Enables local write privilege. No

0x0b copies, shadow copies or snapshot copies exist.

0x0e error Error has been encountered on corresponding block.

0x0f reserved

[0391] According to one embodiment, when blocks are

Jun. &, 2017

leaf direction. Remote requests can be requests that are

being requested and/or moved within the memory fabric,
instances of the Object Index within memory modules, node
routers and inter-node routers can track the request and
movement with pending block states. The pending states
enable multiple simultaneous requests to get services with a
single or minimal number of responses. Pending states can
be divided into 2 categories, leaf requests and remote root
requests. Leaf requests can be received by a node from the

received from the root direction for requests that progressed
the maximum required depth toward the IMF root. Although
infrequent, a request can be busied for retry as a simple
hardware mechanism to handle the most complex cases.
Through the hardware-based hierarchical memory fabric
with integrated Index Trees including pending states at each
node as described herein, software can be spared the burden
of detecting performance robbing boundary cases.

TABLE 129

Memory Fabric Pending Block States

Encoding Symbol

Description

pending_ create

pending allocate
pending_ destroy

pending remote_ destory
pending_deallocate

pending_remote_ deallocate

Object is being created on corresponding DL router
or node

Storage for block is being allocated on corresponding
DL router or node

Object is being destroyed on corresponding DL router
or node

Object is being destroyed on corresponding DL router
or node. Destroy initiated remotely from root.

Storage for block is being deallocated on
corresponding DL router or node

Storage for block is being deallocated on
corresponding DL router or node. Deallocate initiated
remotely from root.

invalid__pown
invalid__powncopy
invalid__pcopy
invalid__psnapcopy
invalid__pshadcopy
SNapcopy__powi

invalid, pending own
invalid, pending own__copy
invalid, pending copy
invalid, pending snapcopy
invalid, pending shadcopy
snapcopy, pending own

US 2017/0160984 Al

45

TABLE 129-continued

Memory Fabric Pending Block States

Jun. &, 2017

Encoding Symbol Description
SNAPCOPY_ POWIL_COpY snapcopy, pending own__copy
SNapcopy__peopy snapcopy, pending copy
snapcopy_ pshadcopy snapcopy, pending shadcopy
snapcopy__remote_ pull snapcopy, pending remote (from root) pull__snapcopy
snapcopy__remote__invalid snapcopy, pending remote (from root) invalidate
snapcopy__remote snapcopy, pending remote (from root) update
shadcopy__pown shadcopy, pending own
shadcopy__pown__copy shadcopy, pending own__copy
shadcopy_ pcopy shadcopy, pending copy
shadcopy__remote_ pull shadcopy, pending remote (from root) pull__shadcopy
shadcopy__remote__invalid shadcopy, pending remote (from root) invalidate
shadcopy__remote shadcopy, pending remote (from root) update
copy__pown copy, pending own
COpY__POWIL__copy copy, pending own__copy
copy__remote__pull copy, pending remote (from root) pull__copy
copy__remote__invalid copy, pending remote (from root) invalidate
copy__remote copy, pending remote (from root) update
own__snapcopy_m__pupdate own__snapcopy__m, pending update
own__snapcopy_m__invalidate own_ snapcopy_m, pending invalidate
own__snapcopy_ ppush own__snapcopy, pending push
own__snapcopy_m_ ppush own__snapcopy__m, pending push
own__shadcopy__m_ pupdate own__shadcopy__m, pending update
own_shadcopy_m__invalidate = own_ shadcopy_m, pending invalidate
own__shadcopy_ ppush own__shadcopy, pending push
own__shadcopy_m_ ppush own__shadcopy__m, pending push
own__copy__m__pupdate own__copy_m, pending update
own__copy_m__invalidate own__copy_m, pending invalidate
own__copy__ppush own__copy, pending push
own__copy__m__ppush owrn__copy_m, pending push
own__ppush own, pending push
own_m_ ppush own__m, pending push
TABLE 130
Within Router packet status bits
Bit Name Description
0 Busy Indicates one or more routing nodes is unable to handle
the request
1 Copy Indicates one or more routing nodes toward root contain
a copy of corresponding address
2 Shadow Indicates one or more routing nodes toward root contain
Copy a shadow copy of corresponding address
3 Snapshot Indicates one or more routing nodes toward root contain
Copy a snapshot copy of corresponding address

[0392] Routing through the hierarchical memory fabric
can be based on package instruction, directory match on
object address, match on appropriate level of node ID,
acknowledge fields, and/or cache state of block. The routing
decision outputs can include, but are not limited to, where to
route package, update to block state, and/or set/clear
acknowledge fields.

[0393] Inone implementation, the memory fabric memory
module as described herein can comprise a DIMM 32 Gbyte
of fast DDR4 dram and 2-4 Tbytes of slower/less expensive
flash memory. From the processor viewpoint, it manages a
2-4 Thyte object memory with a 32 Gbyte dram cache. The
memory fabric can be managed as a three-level memory
hierarchy by taking advantage of two ideas. First, DDR
DIMMs can indicate to the processor up to a maximum
capacity of 0.5 Tbyte through direct physical addressing
(PA). The memory module can indicate to the processor that
it has 0.5 Tbyte of dram through 0.5 Tbyte physical address
range and can fake that amount through caching from the

larger flash memory. Second, the memory module can utilize
object triggers to predict and move data into dram, which
can be being managed as a cache ahead of use. A reference
count algorithm can be utilized to determine which objects/
blocks can be removed from dram cache. Background
cleaning of modified pages can also be implemented. In the
low probability event that a processor requested physical
address within the 0.5 Tbyte range is not immediately
available, the memory module can signal a special recovery
exception, which can then be fielded by the memory fabric
exception handler as well as makes the request physical
address available. The application and access can then be
restarted.

[0394] The performance advantages of this technique are
two-fold. First, the memory module behaves as if it were
over 125 times larger or it appears that flash memory has the
performance close dram, which is 1000x faster. Second, the
operating system overhead of switching page table entries
(PTEs) and PTE shoot-down is virtually eliminated.
[0395] FIG. 34 is a block diagram illustrating a summary
of memory module caching according to one embodiment.
As illustrated in this example, the memory module can
dynamically manage the 3 levels of cache within the
memory module/DIMM. The DRAM cache can be managed
based on a set associate approach where the RAS addresses
form the set index. This can provide approximately 256-way
associativity for the DRAM cache which by all cache studies
closely approximates fully associative.

[0396] FIG. 35 is a diagram illustrating an exemplary
partitioning of the DDR4 dram cache for several functions
related to the memory module according to one embodi-
ment. In this example, PA Memory is the memory that is

US 2017/0160984 Al

physically addressed from the processor. According to one
embodiment, almost 90% of the dram is allocated for this
function. This partition can cache the 512 Gbyte physical
memory address space of the memory module.

[0397] The Index Tree Cache (OIT & POIT Cache) can be
a partition that caches portions of the OIT and POIT to
minimize flash access. The allocated space as indicated in
this example can cache the index tree for approximately
10% of a 4 Terabyte object memory.

[0398] The PA Directory can consist of the PA IOA
Directory and PA DS Directory, both indexed by PA. The PA
OA Directory can hold the OA (Object Address) for each
block that has been associated with a processor physical
address. The PA DS Directory can hold the DRAM slot
number corresponding to each processor physical address.
The PA DS Directory can also hold valid, modified and
reference could information with respect to PA accesses.
[0399] The DramSlot Directory can be a directory of the
blocks from the PA Directory that are currently in DRAM
and can be indexed by DRAM block address. If the DRAM
block is in use, a corresponding entry can contain the IOA
(-128 bits) and associated PA (if associated, 27+1 valid bit).
If the corresponding block is free it can contain a pointer in
a free list chain.

DIMMs utilize a reference count algorithm to maintain and
move blocks between levels of cache. An exemplary algo-
rithm is explained above with reference to background
operations and garbage collection.

[0400] FIG. 36 is a block diagram illustrating node and
leaf caching according to one embodiment. According to
one embodiment, each memory module, node router, and
inter-node router can keep a separate instance of the OIT and
POITs based on their place within the memory fabric hier-
archy. Each instance independently caches OIT and POIT
nodes and leafs based on activity and likely activity. Addi-
tionally, the direct IOA to POIT translation can be cached at
the fastest level. In this case, the OIT and POIT access is
eliminated. The levels of cache from fastest to slowest are:
1. IOA (IMF Object Address) to POIT Leaf translation; 2.
Object Memory on chip cache for OIT/POIT nodes and
leafs; 3. Local dram cache for OIT/POIT nodes and leafs;
and 4. Local flash. The local flash can also provide persis-
tence.

[0401] By caching individual nodes and leaves, the
latency for OIT and POIT access can be reduced and overall
throughput memory access can be increased. By caching the
I0A to POIT Leaf translation OIT and POIT look up can be
reduced to a single on-chip reference. According to one
embodiment, each memory module can utilize a reference
count algorithm to maintain and move blocks between levels
of cache. An exemplary algorithm is explained above with
reference to background operations and garbage collection.
[0402] Fault tolerance capability can be implemented
enabling objects on a per object basis to be stored in more
than a single node and/or in multiple physical locations.
Object fault tolerance copies can be handled by the standard
block coherency mechanism as part of basic memory fabric
operation. Thus, blocks can be tracked and copies only
updated on the block being updated. Therefore, object fault
tolerance can have the inherent high performance of the
memory fabric as described herein since minimum data
movement is done. For each block of a fault tolerant object
there can be a copy, snapcopy or shadcopy in addition to the
own_copy, own_snapcopy or own_shadcopy. The snapcopy

Jun. &, 2017

and corresponding own_snapcopy enable the second copy to
be updated when the object is persisted. The shadcopy and
corresponding own_shadcopy enables a more realtime, but
lazy update. The copy and corresponding own_copy enable
a realtime update. According to one embodiment, fault
tolerance can be extended to a mode of 3-5 copies. This
mode can utilizes the 16 to 1 spanning of a router as
described above to put copies in parallel on several leaf-
paths. When nodes are physically distributed, object fault
tolerance can provide copies on leafs on both sides of
physical distribution.

[0403] Memory Fabric Protocol and Interfaces

[0404] Embodiments of the invention provide systems and
methods for managing processing, memory, storage, net-
work, and cloud computing to significantly improve the
efficiency and performance of processing nodes. Embodi-
ments described herein can implement an object-based
memory fabric in which memory objects in the memory
fabric are distributed and tracked across a hierarchy of
processing nodes. Each processing node can track memory
objects and blocks within the memory objects that are
present on paths from that node toward it’s leaf nodes in the
hierarchy. Additionally, each processing node can utilize the
same algorithms for memory object management such as
memory object creation, block allocation, block coherency,
etc. In this way, each higher level of the hierarchy creates an
ever-larger cache which can significantly reduce the band-
width in and out of the processing nodes at that level.
[0405] According to one embodiment, a highly threaded
and latency tolerant memory fabric protocol can be used
between nodes and routers within the memory fabric. This
protocol can be implemented across dedicated links, e.g.,
25/100GE (Gigabit Ethernet), and or can be tunneled over a
standard link, e.g., an Internet Protocol (IP) link, enabling
standard routers, such as IP routers, to be utilized between
memory fabric routers. With that change, physically distrib-
uted memory fabric systems can be built which can cache
data locally with neighborhoods of equal distant nodes
and/or aggressively cache and duplicate objects that are
utilized in multiple physical locations. Using a memory
fabric protocol over such links, movement of memory
objects across the memory fabric can be initiated at any node
in the memory fabric hierarchy on a per object basis. Once
a memory object is duplicated across nodes, changes to that
memory object can be propagated to the other node(s) by
moving only the data that changes rather than replicating or
copying the memory object.

[0406] For illustrative purposes, reference will now be
made to FIG. 7. As illustrated in this example, an object
memory fabric 700 can comprise a plurality of hardware-
based processing nodes 705 and 710. Each hardware-based
processing node 705 and 710 can comprise one or more
memory modules 725 and 730 storing and managing a
plurality of memory objects in a hierarchy of the object
memory fabric 700. Each memory object can be created
natively within the memory module 725 or 730, accessed
using a single memory reference instruction without Input/
Output (I/O) instructions, and managed by the memory
module 725 or 730 at a single memory layer. A node router
720 can be communicatively coupled with each of the one
or more memory modules 725 and 730 of the node 705 and
can be adapted to route memory objects or portions of
memory objects between the one or more memory modules
725 and 730 of the node 705 using a memory fabric protocol.

US 2017/0160984 Al

One or more inter-node routers 715 can be communicatively
coupled with each node router 720. Each of the plurality of
nodes 705 and 710 of the object memory fabric 700 can be
communicatively coupled with at least one of the inter-node
routers 715 and can be adapted to route memory objects or
portions of memory objects between the plurality of nodes
705 and 710 using the memory fabric protocol.

[0407] Two or more nodes 705 and 710 of the plurality of
hardware-based processing nodes can be remote from each
other in the hierarchy of the object memory fabric 700. In
such cases, distributing and tracking the memory objects
across the object memory fabric 700 can comprise creating
neighborhoods of equal-distance nodes in the hierarchy of
the object memory fabric. Additionally or alternatively, two
or more nodes 705 and 710 of the plurality of hardware-
based processing nodes can each be in different physical
locations. In such cases, distributing and tracking the
memory objects across the object memory fabric can com-
prise caching and duplicating objects in a plurality of
different physical locations.

[0408] Distributing the memory objects across the object
memory fabric can be initiated by one of the hardware-based
processing nodes 705 on a per-object basis. Tracking the
memory objects across the object memory fabric 705 can
comprise tracking, by the hardware-based processing node
705, the memory objects and blocks within the memory
objects that are present on the hardware-based processing
node 705. Tracking the memory objects across the object
memory fabric 700 can also comprise propagating changes
to the memory objects from one of the hardware-based
processing node 705 to one or more other nodes 710 of the
plurality of hardware-based processing nodes. Propagating
changes to the memory objects from the hardware-based
processing node 705 to one or more other nodes 710 of the
plurality of hardware-based processing nodes can comprise
moving only data within the memory objects that has
changed and without replicating or copying the memory
object.

[0409] As introduced above, the memory fabric 700 can
utilize a protocol that can provide sequential consistency and
forward progress guarantees across the memory fabric 700
for applications including databases and filesystems. Use of
such a protocol can provide lockless synchronization and
can support integral object/block fault tolerance. The pro-
tocol can match the hierarchal distributed nature of object
indices so that the coherency algorithm can be identical at
each router. Thus, proving correctness in a single router
provides correctness by construction for any arbitrary size
memory fabric. The underlying memory fabric protocol
between inter-node routers 715 and/or node routers 720 can
be highly threaded and latency tolerant.

[0410] The object memory fabric 700 can utilize the
memory fabric protocol between the hardware-based pro-
cessing nodes 705 and one or more other nodes 710 of the
plurality of hardware-based processing nodes to distribute
and track the memory objects across the object memory
fabric 700. The memory fabric protocol can be utilized
across a dedicated link between the hardware-based pro-
cessing node 705 and one or more other nodes 710 of the
plurality of hardware-based processing nodes. For example,
the dedicated link can comprise an Ethernet link. In other
implementations, the memory fabric protocol can be tun-
neled across a shared link between the hardware-based
processing node 705 and one or more other nodes 710 of the

Jun. &, 2017

plurality of hardware-based processing nodes. For example,
the shared link can comprise an Internet Protocol (IP) link.
In such cases, the memory fabric protocol can provide a
dedicated communication link between the hardware-based
processing node 705 and one or more other nodes 710 of the
plurality of hardware-based processing nodes and the shared
link supports communications other than the memory fabric
protocol.

[0411] By way example, in the case of an IP link, by using
the User Datagram Protocol (UDP), the memory fabric
protocol can be encapsulated in UDP messages between
node routers and inter-node routers and between inter-node
routers, within standard IP network routers and switches.
The memory fabric node routers and inter-node routers are
responsible for memory fabric protocol and error checking.
Thus standard IP network routers and switches properly
route memory fabric UDP packets without any knowledge of
the object-based memory fabric or memory fabric protocol.
Now the links between node router and inter-node router and
different inter-node routers are point to point in a virtual
sense, but utilize the shared IP network to provide distrib-
uted virtual connectivity of memory fabric nodes, within a
data center, across data centers, distributed memory fabric
nodes or mobile memory fabric nodes.

[0412] By using such a protocol and the coherency mecha-
nisms described above, the underlying ability for the
memory fabric to cache data locally with neighborhoods of
equal distant nodes as described herein can be exploited to
more aggressively cache and duplicate objects that are
utilized in multiple physical locations. The chaining and
memory fabric instruction set enable this data movement to
be initiated at any node in the memory fabric hierarchy on
a per object basis. Once objects are duplicated only the data
that changes moves.

[0413] The memory fabric packets that are sent between
the inter-node router and/or node routers can be referenced
by OA (Object Address) and based in a conventional
memory type protocol. A link level reliability protocol with
packet numbering and acknowledgement can be included
and can reduce reliance on the relatively inefficient IP
protocol.

[0414] The present disclosure, in various aspects, embodi-
ments, and/or configurations, includes components, meth-
ods, processes, systems, and/or apparatus substantially as
depicted and described herein, including various aspects,
embodiments, configurations embodiments, sub combina-
tions, and/or subsets thereof. Those of skill in the art will
understand how to make and use the disclosed aspects,
embodiments, and/or configurations after understanding the
present disclosure. The present disclosure, in various
aspects, embodiments, and/or configurations, includes pro-
viding devices and processes in the absence of items not
depicted and/or described herein or in various aspects,
embodiments, and/or configurations hereof, including in the
absence of such items as may have been used in previous
devices or processes, e.g., for improving performance,
achieving ease and\or reducing cost of implementation.
[0415] The foregoing discussion has been presented for
purposes of illustration and description. The foregoing is not
intended to limit the disclosure to the form or forms dis-
closed herein. In the foregoing Detailed Description for
example, various features of the disclosure are grouped
together in one or more aspects, embodiments, and/or con-
figurations for the purpose of streamlining the disclosure.

US 2017/0160984 Al

The features of the aspects, embodiments, and/or configu-
rations of the disclosure may be combined in alternate
aspects, embodiments, and/or configurations other than
those discussed above. This method of disclosure is not to be
interpreted as reflecting an intention that the claims require
more features than are expressly recited in each claim.
Rather, as the following claims reflect, inventive aspects lie
in less than all features of a single foregoing disclosed
aspect, embodiment, and/or configuration. Thus, the follow-
ing claims are hereby incorporated into this Detailed
Description, with each claim standing on its own as a
separate preferred embodiment of the disclosure.
[0416] Moreover, though the description has included
description of one or more aspects, embodiments, and/or
configurations and certain variations and modifications,
other variations, combinations, and modifications are within
the scope of the disclosure, e.g., as may be within the skill
and knowledge of those in the art, after understanding the
present disclosure. It is intended to obtain rights which
include alternative aspects, embodiments, and/or configura-
tions to the extent permitted, including alternate, inter-
changeable and/or equivalent structures, functions, ranges or
steps to those claimed, whether or not such alternate, inter-
changeable and/or equivalent structures, functions, ranges or
steps are disclosed herein, and without intending to publicly
dedicate any patentable subject matter.
What is claimed is:
1. A hardware-based processing node of a plurality of
hardware-based processing nodes in an object memory
fabric, the hardware-based processing node comprising:
a memory module storing and managing a plurality of
memory objects in a hierarchy of the object memory
fabric, wherein:
each memory object is created natively within the
memory module,

each memory object is accessed using a single memory
reference instruction without Input/Output (I/O)
instructions,

each memory object is managed by the memory mod-
ule at a single memory layer, and

the object memory fabric distributes and tracks the
memory objects across the hierarchy of the object
memory fabric and the plurality of hardware-based
processing nodes on a per-object basis.

2. The hardware-based processing node of claim 1,
wherein distributing the memory objects across the hierar-
chy of the object memory fabric and the plurality of hard-
ware-based processing nodes comprises storing, on a per-
object basis, each memory object on two or more nodes of
the plurality of hardware-based processing nodes of the
object memory fabric.

3. The hardware-based processing node of claim 2,
wherein the two or more nodes of the plurality of hardware-
based processing nodes are remote from each other in the
hierarchy of the object memory fabric.

4. The hardware-based processing node of claim 2,
wherein the two or more nodes of the plurality of hardware-
based processing nodes are in different physical locations.

5. The hardware-based processing node of claim 1,
wherein tracking the memory objects across the hierarchy of
the object memory fabric comprises tracking, by the hard-
ware-based processing node, the memory objects and blocks
within the memory objects that are present on the hardware-
based processing node.

Jun. &, 2017

6. The hardware-based processing node of claim 1,
wherein tracking the memory objects across the hierarchy of
the object memory fabric comprises tracking the memory
objects and blocks within the memory objects that are
present on each level of the hierarchy of the object memory
fabric and branches from each level of the hierarchy towards
leaves of the hierarchy of the object memory fabric.

7. The hardware-based processing node of claim 1,
wherein the hardware-based processing node utilizes a same
algorithm for object management as each other node of the
plurality of hardware-based processing nodes.

8. The hardware-based processing node of claim 7,
wherein the algorithm for object management comprises an
algorithm for object creation.

9. The hardware-based processing node of claim 7,
wherein the algorithm for object management comprises an
algorithm for block allocation.

10. The hardware-based processing node of claim 7,
wherein the algorithm for object management comprises an
algorithm for block coherency.

11. The hardware-based processing node of claim 1,
wherein the hardware-based processing node comprises a
Dual In-line Memory Module (DIMM) card.

12. The hardware-based processing node of claim 1,
wherein the hardware-based processing node comprises a
commodity server and wherein the memory module com-
prises a Dual In-line Memory Module (DIMM) card
installed within the commodity server.

13. The hardware-based processing node of claim 1,
wherein the hardware-based processing node comprises a
mobile computing device.

14. The hardware-based processing node of claim 1,
wherein the hardware-based processing node comprises a
single chip.

15. An object memory fabric comprising:

a plurality of hardware-based processing nodes, each

hardware-based processing node comprising:

a memory module storing and managing a plurality of
memory objects in a hierarchy of the object memory
fabric, wherein each memory object is created
natively within the memory module, each memory
object is accessed using a single memory reference
instruction without Input/Output (I/O) instructions,
each memory object is managed by the memory
module at a single memory layer, and the object
memory fabric distributes and tracks the memory
objects across the hierarchy of the object memory
fabric and the plurality of hardware-based process-
ing nodes on a per-object basis, and

a node router communicatively coupled with each of
the one or more memory modules of the node and
adapted to route memory objects or portions of
memory objects between the one or more memory
modules of the node; and

one or more inter-node routers communicatively coupled

with each node router, wherein each of the plurality of
nodes of the object memory fabric is communicatively
coupled with at least one of the inter-node routers and
adapted to route memory objects or portions of memory
objects between the plurality of nodes.

16. The object memory fabric of claim 15, wherein
distributing the memory objects across the hierarchy of the
object memory fabric and the plurality of hardware-based
processing nodes comprises storing, on a per-object basis,

US 2017/0160984 Al

each memory object on two or more nodes of the plurality
of hardware-based processing nodes of the object memory
fabric.

17. The object memory fabric of claim 16, wherein the
two or more nodes of the plurality of hardware-based
processing nodes are remote from each other in the hierar-
chy of the object memory fabric.

18. The object memory fabric of claim 16, wherein the
two or more nodes of the plurality of hardware-based
processing nodes are in different physical locations.

19. The object memory fabric of claim 15, wherein
tracking the memory objects across the hierarchy of the
object memory fabric comprises tracking, by each hardware-
based processing node, the memory objects and blocks
within the memory objects that are present on the hardware-
based processing node.

20. The object memory fabric of claim 15, wherein
tracking the memory objects across the hierarchy of the
object memory fabric comprises tracking the memory
objects and blocks within the memory objects that are
present on each level of the hierarchy of the object memory
fabric and branches from each level of the hierarchy towards
leaves of the hierarchy of the object memory fabric.

21. The object memory fabric of claim 15, wherein each
hardware-based processing node utilizes a same algorithm
for object management.

22. The object memory fabric of claim 21, wherein the
algorithm for object management comprises an algorithm
for object creation.

23. The object memory fabric of claim 21, wherein the
algorithm for object management comprises an algorithm
for block allocation.

24. The object memory fabric of claim 21, wherein the
algorithm for object management comprises an algorithm
for block coherency.

25. The object memory fabric of claim 15, wherein at least
one of the plurality of hardware-based processing nodes
comprises a Dual In-line Memory Module (DIMM) card.

26. The object memory fabric of claim 15, wherein at least
one of the plurality of hardware-based processing nodes
comprises a commodity server and wherein the memory
module comprises a Dual In-line Memory Module (DIMM)
card installed within the commodity server.

27. The object memory fabric of claim 15, wherein at least
one of the plurality of hardware-based processing nodes
comprises a mobile computing device.

28. The object memory fabric of claim 15, wherein at least
one of the plurality of hardware-based processing nodes
comprises a single chip.

29. A method for providing coherency and fault tolerance
in an object memory fabric comprising a plurality of hard-
ware-based processing nodes, the method comprising:

Jun. &, 2017

creating, by the hardware-based processing nodes of the
object-based memory fabric, each memory object
natively within a memory module of the hardware-
based processing node;
accessing, by the hardware-based processing nodes, each
memory object using a single memory reference
instruction without Input/Output (I/O) instructions;

managing, by the hardware-based processing nodes, each
memory object within the memory module at a single
memory layer; and
distributing the memory objects across a hierarchy of the
object memory fabric and the plurality of hardware-
based processing nodes on a per-object basis; and

tracking the memory objects across the hierarchy of the
object memory fabric and the plurality of hardware-
based processing nodes on the per-object basis.

30. The method of claim 29, wherein distributing the
memory objects across the hierarchy of the object memory
fabric and the plurality of hardware-based processing nodes
comprises storing, on a per-object basis, each memory
object on two or more nodes of the plurality of hardware-
based processing nodes of the object memory fabric.

31. The method of claim 30, wherein the two or more
nodes of the plurality of hardware-based processing nodes
are remote from each other in the hierarchy of the object
memory fabric.

32. The method of claim 30, wherein the two or more
nodes of the plurality of hardware-based processing nodes
are in different physical locations.

33. The method of claim 29, wherein tracking the memory
objects across the hierarchy of the object memory fabric
comprises tracking, by the hardware-based processing node,
the memory objects and blocks within the memory objects
that are present on the hardware-based processing node.

34. The method of claim 29, wherein tracking the memory
objects across the hierarchy of the object memory fabric
comprises tracking the memory objects and blocks within
the memory objects that are present on each level of the
hierarchy of the object memory fabric and branches from
each level of the hierarchy towards leaves of the hierarchy
of the object memory fabric.

35. The method of claim 29, wherein the hardware-based
processing node utilizes a same algorithm for object man-
agement as each other node of the plurality of hardware-
based processing nodes.

36. The method of claim 35, wherein the algorithm for
object management comprises an algorithm for object cre-
ation.

37. The method of claim 35, wherein the algorithm for
object management comprises an algorithm for block allo-
cation.

38. The method of claim 35, wherein the algorithm for
object management comprises an algorithm for block coher-
ency.

