US 20190155581A1

a9y United States

a2y Patent Application Publication (o) Pub. No.: US 2019/0155581 A1l

Callahan et al.

43) Pub. Date: May 23, 2019

(54)

(71)
(72)

@

(22)

(63)

(60)

SOURCE CODE REWRITING DURING
RECORDING TO PROVIDE BOTH DIRECT
FEEDBACK AND OPTIMAL CODE

Applicant: Apple Inc., Cupertino, CA (US)

Inventors: Brooke K. Callahan, San Jose, CA
(US); Michael S. Ferris, Sunnyvale,
CA (US); William B. Turner, San
Francisco, CA (US); Paul E. Marks,
San Jose, CA (US); Matthew E.
Dreisbach, Boulder Creek, CA (US);
Joar Wingfors, Campbell, CA (US)

Appl. No.: 16/195,438

Filed: Nov. 19, 2018

Related U.S. Application Data

Continuation of application No. 15/275,354, filed on
Sep. 24, 2016, now Pat. No. 10,162,607.

Provisional application No. 62/339,857, filed on May
21, 2016.

Publication Classification
(51) Inmt. Cl

GOGF 8/34 (2006.01)
GOGF 3/0482 (2006.01)
(52) US.CL
CPC oo GOGF 8/34 (2013.01); GOGF 3/0482

(2013.01)

(57) ABSTRACT

Systems and methods are disclosed for developing an appli-
cation on a development device. The application is built on
a development device, then installed and run on a test
device. Installation includes installing an event tap to inter-
cept events generated by a user interacting with the appli-
cation. In response to a call from the event tap, a test
manager daemon snapshots the user interface elements of
the application and packages the snapshot and event for
transmission to the development device. A development
environment on the development device receives the pack-
age, then generates and displays optimized source code in
response to the received events and snapshots. Generated
source code can be optimized to minimize a number iden-
tifiers, minimize a length of identifiers, minimize a gener-
ated number of lines of code, or optimize the generated
source code for readability.

~
4)
110 -
4 ™\ iDE — %5
i 9:30 2.m 41% i Fide Edit Compile Test Help — 30
230 | Build H instatt H Run ” Record J — 365
Login
3o in — S—
Mame:| Me<backspase> Login — Test Code e
ST Test.ogin {
var NameField = XCURpplication. TextFields ["Mame"}
NameField. Click §: 315
320 - NameField. TypeText{"M'} el
i Login — U1 events
Name tat fietd, cfick
Name text fetd, type text "M
Name text field, type text"a”
Name text Geld, type text " <ackspaces"
o J

Patent Application Publication @ May 23, 2019 Sheet 1 of 12 US 2019/0155581 A1

FIG. 1

(i —

US 2019/0155581 A1l

May 23,2019 Sheet 2 of 12

Patent Application Publication

Z N

57 niempini

§i57 jeulan/wansAs Sunraady

7 sauRIgn

GH7 ddy a8

G771 axina(uswidoisasg

EOT ausmpiriy

BT7 jeusnjfuiaisds Sunesado

@4\

D77 uowpeq 4310 wany

©)

517 uouwiaeg I8 1581

®)

G7¢ deg usAy

A A

9 o

<
<
@ Y

®

BTT snneg 159)

v

0%¢ ddyipy

= Q0L

US 2019/0155581 A1l

May 23,2019 Sheet 3 of 12

Patent Application Publication

W aid

s3uBA3 i ~ ugdol

s —

{

}ufiopsay

DLE

PO 353 - w0

3

[paooay || umy || peasw || puos |

%E

diof] 58] aydwal wpd ol

Eieds

/

@
| fouen
uidat
B iy ureoes fiw
T DL

- 0z

Gle
Gt

$-¥4

US 2019/0155581 A1l

May 23,2019 Sheet 4 of 12

Patent Application Publication

G

& Ol
SO PBIBY JKG) BN
SIUDAB I} ~ WB0Y
s —
{
Dwous],suen,Ipeiare fueseoddyingy
yuibopsay
Qg — Fpoe 15af - uBoy
N [pasoey || wny || pewsw || pung |

gfof 3s9f apdwad up3 Sud

3G

J/

- L

(o)
_ _”w&mz
us30y
M oty ureose 8
e Db

Gie

Die

¥4

US 2019/0155581 A1l

May 23,2019 Sheet 5 of 12

Patent Application Publication

N D £

J<aoedsyoeqs 3xa odh) play e swey
LB, 1481 adA) 'DioY 1%8) Ay
49, 1oy oddy ‘Disy 1Kay suley

YOUD play 19 owep

(10)

G918

<goedsNoRa>) [BWERN

13N

uidoy

S3UDAB I} ~ WS0Y {
\ LrgJins [adA § pip gowey
518 [uouD projaunN
o, Jspi fxe ucneonddyifiox = pltjewny Jes
juibopsay
QIg ~—— apod sy - widoy
§gg e [piovoy || uny || newsw || pung |
g~ dieH 1531 apdwol upd =
QO el

ﬂ %y WEOEE

- Ol

V1%

€E

US 2019/0155581 A1l

May 23,2019 Sheet 6 of 12

Patent Application Publication

& 94

<aoedsyoug> 1xoy adAy pioy 1xer swey

& anan adhn ‘preg ey atiey
3, 159 a0y pioy 1xey swey
L 1% 9dh proy 1wy sy
L& axay 9dhy ‘pray Py sley
A, Do athy sy 1xas Swey

FHO Py 1oy sy

SIUBAB i1}~ 8O

{

{0 J3no adh 1 el omuen

g — [N plos foweN
{ Buep, JSpIP 140 | uoneoyddying Y = PRt jowey i
yabopsay
g — 3P0 3594 — WiBoy
e — _ pi00AY : uny x jeIsug mm png _

diaH 35 afichuol wpd ond

Gig

30t

(10)
~ DI Louen
udoy
M w1y weoss e

T 2t

— il

0ie

2

US 2019/0155581 A1l

May 23,2019 Sheet 7 of 12

Patent Application Publication

£ 94

&, 1xa) 9dK ‘proy 1y vwny

. %9 24/ ‘pray 1xe) atuey

A 3x3 odds ‘proy 18t swiny
<avedsyoe | e odft ‘pioy 1xe) awey
2. 3%a oddy ‘prey 1xoy awen

. 1% 3di Doy 181 Ay .M

R42 'PloY IxaY aley

o4O BORNG RO

Pouniag.lsuonng ddy

SIUBAS 1N ~ uifoy

{29 Jisa adh) plat ey

iony pretsuwegy

{.awen Jsppipxepddy = pieijawen Jea
Guoneopddyinox = déy sea

OLg i

SN [ewey

gy

3} wbopsay
POy say —uBoy
e | proooy || uny || pesw || pung |
o9 — dioH 152 aydwol upd sud
84— 343t

D %y

Wie G615

fi

S

R 441

T B

Ol

4 Y4

Patent Application Publication @ May 23, 2019 Sheet 8 of 12 US 2019/0155581 A1

405 e

IDE user opens/creates test code file

Ty — l

IDE user selects recording mode

£15 e, i

{DE user selects build, install, and run
MyApp, e.g. Login App, and libraries on
test device

420 L 2

Oin test device, event tap and test
manager daemon are installed between
MyApp and event manager daemon

425 \ 4

On development device, IDE enters
recording mode for execution of MyApp
on test device

FIG. 4

Patent Application Publication @ May 23, 2019 Sheet 9 of 12 US 2019/0155581 A1

L0 e

) U
IDE on development device builds,
instails, and runs application and libraries

on test device {see Fig. 4}

!
R

User of test device interacts with
application, generating an event

v — 1

Event tap intercepts event and calls test
manager daemaon with event

S p— l

Test manager daemon takes a snapshot
of application user interface {Ul}

520 ¥

Event tap allows application to receive
the evant

525 - i

Mo User interface
A action completed?

Tast manager dagmon sends Ul aclion
event{s) and snapshot{sj of Ul to
development IDE

w} Tet—— ¥
IDE optimize and emit test source code
{See Fig. 6}

!

Continue recording?

540 e
Yes

FIG. 5

Patent Application Publication

May 23,2019 Sheet 10 of 12

“~
835 ——

identify user interface U} clements

and events within Ul snapshot
3o J— i
Synthesize events
615 —— l
Generate elementvent tree

62(} — ¥

Traverse elementévent treg,
generating test source code that
oplimizes:

1. Number of identifiers in the code
2 Length of identifiers in the code
3 Readability of the code

4 Number of fines of code

625 ——.

A A

Emit test source code, replacing

previousty generated test source code.

FIG. 6

US 2019/0155581 A1l

Patent Application Publication May 23, 2019 Sheet 11 of 12 US 2019/0155581 A1

APPLICATION 1 APPLICATION 2
r A A
/
/
/
\s A 4
SERVICE 1AM l I SERVICE 2APit l I SERWICE 2AB1 2
SERVICE 1 SERVICE 2
- A 4 v
0S5 AP OS API 2
DPERATING SYSTEM{0S)

FIG. 7

Patent Application Publication May 23,2019 Sheet 12 of 12 US 2019/0155581 A1

80—
Storage
Processor(s) Memory ROM Bevice
g1 80 80 840
Bus 805 \
Display Alphanumetic Cursor Network
Device input Device Controf interface(s}
80 860 810 880 \

N

&s7

FiG. 8

US 2019/0155581 Al

SOURCE CODE REWRITING DURING
RECORDING TO PROVIDE BOTH DIRECT
FEEDBACK AND OPTIMAL CODE

RELATED APPLICATIONS

[0001] This application is a continuation of co-pending
U.S. application Ser. No. 15/275,354 filed on Sep. 24, 2016,
which claims priority under 35 U.S.C. § 119(e) of U.S.
Patent Application No. 62/339,857 (Attorney Docket No.
4860.P293227), filed May 21, 2016, and entitled,
“SOURCE CODE REWRITING DURING RECORDING
TO PROVIDE BOTH DIRECT FEEDBACK AND OPTI-
MAL CODE,” which is hereby incorporated by reference to
the extent that it is consistent with this disclosure.

TECHNICAL FIELD

[0002] This disclosure relates to the field of generation and
display of application testing source code on a computing
device.

BACKGROUND

[0003] Current software development environments often
have an editor, a compiler, debugger, and builder for use in
software development. This functionality is incorporated
into a single software product termed an “integrated devel-
opment environment” (IDE). Some IDEs also contain a link
into an event stream that lets a developer examine a stream
of events and see how her software performs in view of the
events. An event is typically an atomic event, such as a text
control of a user interface receiving a typed character. Each
character typed in the text control generates its own event.
Thus, typing the name “Mike” in the text control generates
the following TypeText events: TypeText(“M”), TypeText
(“1”), TypeText(“k”), and TypeText(“e”). If the user makes a
mistake while typing, a TypeText(<backspace>) will appear
in the stream of TypeText events.

[0004] A developer will often want to generate test code to
test a new program. The test code allows a developer to
generate a simulated sequence of user-generated events,
without requiring a user to actually generate the events each
time the new program is tested. Current software tools
generate source code that is based on each received event.
The generated source code is difficult to read, lengthy, and
not efficiently written.

SUMMARY OF THE DESCRIPTION

[0005] Systems and methods are disclosed for generating
test source code that tests an application. The source code is
generated by capturing and recording events generating by
the application while the user interacts with the application.
The application is compiled with one or more libraries that
include an event tap and a test manager daemon for use on
the test device that will run the application during testing.
The event tap can intercept the events that are generated by
a user interacting with a user interface of the application.
The event tap can call the test manager daemon with the
event. The test manager daemon can take a snapshot of the
user interface elements of the application, package the
snapshot with the event, and send the package to an inte-
grated development environment (IDE). The IDE can
receive the snapshot and event, and generate optimized
source code based on the event and snapshot. The generated
source code can be optimized to minimize the number of

May 23, 2019

identifiers in the source code, minimize the length of iden-
tifiers in the source code, minimize the number of lines of
generated source code, and thereby maximizing the read-
ability of the generated source code.

[0006] In an embodiment a non-transitory computer read-
able medium can store executable instructions, that when
executed by a processing system, can perform any of the
functionality described above.

[0007] In yet another embodiment, a processing system
coupled to a memory programmed with executable instruc-
tions can, when the instructions are executed by the pro-
cessing system, perform any of the functionality described
above.

[0008] Some embodiments described herein can include
one or more application programming interfaces (APIs) in
an environment with calling program code interacting with
other program code being called through the one or more
interfaces. Various function calls, messages or other types of
invocations, which further may include various kinds of
parameters, can be transferred via the APIs between the
calling program and the code being called. In addition, an
API may provide the calling program code the ability to use
data types or classes defined in the API and implemented in
the called program code.

[0009] Other features and advantages will be apparent
from the accompanying drawings and from the detailed
description.

BRIEF DESCRIPTION OF THE DRAWINGS

[0010] Embodiments of the invention are illustrated by
way of example, and not by way of limitation, in the figures
of the accompanying drawings in which like reference
numerals refer to similar elements.

[0011] FIG. 1 illustrates, in block form, an overview of an
application development environment according to some
embodiments.

[0012] FIG. 2 illustrates, in block form, internal compo-
nents of a test device and a development device in an
application development environment, according to some
embodiments.

[0013] FIGS. 3A through 3E illustrate a example displays
of an interaction with an application deployed and running
on a target device, generating test code on a development
device, according to some embodiments.

[0014] FIG. 4 illustrates a method of building, installing
and running an application for test on a test device, accord-
ing to some embodiments.

[0015] FIG. 5 illustrates a method of automatically gen-
erating optimized test code based on events received from
the application on the test device, according to some
embodiments.

[0016] FIG. 6 illustrates a method of optimizing test code
generated in a development environment, according to some
embodiments.

[0017] FIG. 7 illustrates an exemplary embodiment of a
software stack usable in some embodiments of the inven-
tion.

[0018] FIG. 8 is a block diagram of one embodiment of a
computing system.

DETAILED DESCRIPTION

[0019] In the following detailed description of embodi-
ments, reference is made to the accompanying drawings in

US 2019/0155581 Al

which like references indicate similar elements, and in
which is shown by way of illustration manners in which
specific embodiments may be practiced. These embodiments
are described in sufficient detail to enable those skilled in the
art to practice the invention, and it is to be understood that
other embodiments may be utilized and that logical,
mechanical, electrical, functional and other changes may be
made without departing from the scope of the present
disclosure. The following detailed description is, therefore,
not to be taken in a limiting sense, and the scope of the
present invention is defined only by the appended claims.
[0020] FIG. 1 illustrates, in block form, an overview of an
application development environment 100 according to
some embodiments.

[0021] A development device 120 can be coupled to a test
device 110 via a network 130. An application is developed
on development device 120. The application can be built on
the development device 120, then transmitted to test device
110 over network 130, along with supporting software
components that facilitate installation and testing of the
application on the test device 110. Development device 120
can comprise a desktop computer, such as an Apple®
iMac®, a tablet computer, such as an Apple® iPad®, or
other computing device 110 as described below with refer-
ence to FIG. 8.

[0022] Test device 110 is a device that will receive, install,
and run the application developed on development device
120. Test device 110 can also receive and install supporting
software components that facilitate testing of the applica-
tion. Test device 110 can comprise a desktop computer, such
as an Apple® iMac®, a tablet computer, such as an Apple®
iPad®, an Apple® iPhone® or other computing device 110
as described below with reference to FIG. 8.

[0023] Network 130 can be any type of network, such as
Ethernet, Token Ring, Firewire, USB, Fibre Channel, or
other network type.

[0024] FIG. 2 illustrates, in block form, internal compo-
nents of a development environment 100, according to some
embodiments. In the figures and examples that follow, a test
device 110 and a development device 120 are shown as two
distinct devices. However this need not be the case. The test
device and development device can be the same device.
Such a configuration would not require a network to inter-
connect the test and development devices because the devel-
opment and test devices would be the same device.

[0025] Internal components of development device 120
can include hardware 255, an operating system and kernel
260, and a development application 265 with access to
development libraries 270. Development device 120 hard-
ware 255 can include one or more hardware processors,
volatile and non-volatile storage, input/output devices, a
display, network communication devices, and other hard-
ware, coupled internally by a bus or other communication
structure. Exemplary hardware 255 is described in detail
with respect to FIG. 8, below. Development device 120
operating system and kernel 260 can comprise one or more
daemons, application programming interfaces (APIs),
frameworks, libraries and other functionality that supports
the development application IDE 265. APIs are described in
detail, below, with reference to FIG. 7.

[0026] Test device 110 can include hardware 205, an
operating system/kernel 210, a test manager daemon 215, an
event manager daemon 220, event tap 225, and an applica-
tion 230 that is to be tested, e.g. “MyApp.” Test device 110

May 23, 2019

hardware 205 and operating system 210 can comprise sub-
stantially the same functionality as development device 120
hardware 255 and operating system/kernel 260, with such
differences as may be appropriate for the particular manu-
facturer, model, and hardware of the test device 110.
[0027] A user can interact with MyApp 230, thereby
generating one or more hardware events. Operating system/
kernel 210 can receive and process hardware events gener-
ated by the user interaction with MyApp 230. In operation
1, event manager daemon 220 can receive and process
events from operating system/kernel 210. Processing the
event can include making one or more calls to operating
system/kernel 210, function call, API, framework, or other
daemon in the operating system/kernel 210. Events can
include, e.g., a click on a user interface element of MyApp
230, typing text into a text field, making a gesture on a touch
device, such as swiping a finger, and the like. In operation
2, event tap 225 can receive an event from event manager
daemon 220. In operation 3, event tap 225 can call test
manager daemon 215 with the event. In operation 4, test
manager daemon 215 can take a snapshot of the user
interface elements of My App 230 (“Ul snapshot™). In opera-
tion 5, test manager daemon 215 can optionally inform event
tap 225 that the Ul snapshot has been completed. Event tap
225 can filter events that are destined for MyApp 230. In an
embodiment, event tap 225 can determine whether, and
when, to pass the event to MyApp 230. In operation 6, test
manager daemon 215 can pass the Ul snapshot and the event
to IDE application 265 on development device 120. In an
embodiment, the event can be passed to MyApp for pro-
cessing instead of, or in addition to, processing of the event
by event manager daemon 220. In operation 7, event tap 225
can pass events to MyApp 230.

[0028] Development device 120 development application
IDE 265 can receive the user interface snapshot and event
from test manager daemon 215 over network 130. IDE 265
can process the snapshot and event to generate test source
code for future, automated tests of MyApp 230. Generating
and optimization of source code is described below with
reference to FIGS. 5 and 6.

[0029] FIGS. 3A through 3E illustrate example displays of
aboth test device 110 and development device 120 during an
interaction with an application 230 deployed and running on
a target test device 110. Displays also show generated test
source code and generated events on a development device
120. Interconnecting network 130 is not shown). The spe-
cific controls, screens, and hardware configurations shown
are exemplary and not limiting.

[0030] InFIGS. 3Athrough 3E, MyApp 230 comprises an
application 230 to test a login screen. A user of the test
device 110 is to enter his name in the name text field 310
using keypad 320, then click the Ok button 315 to complete
a login function of the login application 230. Test device 110
can comprise a touch screen display, such that a “click”
event is generated in response to the user touching a location
on the touch screen display of test device 110. In an
embodiment, the click event can be generating using a
pointing device such as mouse, touchpad, or other selection
device. Keypad 320 can be a physical keypad or a portion of
a touch screen display allocated to the functionality of a
keypad.

[0031] In FIGS. 3A through 3E, development device 120
can include a development application 265, such as an
integrated development environment (IDE). An IDE 265 can

US 2019/0155581 Al

comprise an editor, a compiler, a debugger, and deployment
functionality that can build a package of software compo-
nents for installing the application on test device 110 along
with any necessary support components. Support compo-
nents can include an installer, libraries 270, a binary of event
tap 225, test manager daemon 215, and other components
that may be needed to install and run MyApp 230 (here,
login application 230) on test device 110.

[0032] IDE 265 can include a menu bar 360 that can
contain controls that call the above-described functionality
of the IDE 265. A file menu on menu bar 360 can provide
controls for creating, opening, and saving one or more
source code files, including generated test source code files.
An edit menu on menu bar 360 can include controls for
performing editing functions such as cut, paste, insert,
delete, etc. A compile menu on menu bar 360 can include
controls for compiling source code, making or building
compiled source code into a package for installation on the
test device, parsing source code for errors, debugging source
code, etc. A test menu on menu bar 360 can include controls
for installing the package on the test device 110, running the
installed MyApp 230 on the test device 110, starting/stop-
ping recording of events generated by MyApp 230, etc. A
help menu on menu bar 360 can access local help text and
online help text related to IDE 265. In an embodiment, help
can include help text regarding the test source code that is
generated by recording events of MyApp 230. IDE 265 can
further include a button bar 365 that can include frequently-
used functionality of the IDE 265. Buttons on the button bar
365 can act as a single-click shortcut to functionality that is
otherwise accessed by the menus on the menu bar 360.
Buttons on button bar 365 can include buttons for fre-
quently-used functionality such as Build, Install, and Run an
application. Buttons on button bar 365 can also include a
Record button to start/stop recording of events generated by
MyApp 230 on test device 110. Buttons on button bar 365
can further include an “Undo” button (not shown), a “Redo”
button (not shown) and an “Edit” button (not shown). When
source code is optimized and presented to the user, the Undo
button (not shown) can present source code generated to the
user without optimization, so that the user can visually note
the optimizations performed on the source code. The Redo
button (not shown) can re-apply the source code optimiza-
tion and display the optimized source code in place of the
unoptimized source code. A user can toggle between opti-
mized and unoptimized source code by pressing the Undo
and Redo buttons. The Edit button (not shown) can enter an
editing mode that allows the user to edit the generated source
code, such as to add comments, or make other changes or
additions to the generated source code. In an embodiment,
edits to the source code made by the user are not changed by
subsequent optimizations of the source code. In an embodi-
ment, only comments are unchanged between source code
optimizations. In an embodiment, the relative position of
user-added comments within generated source code is pre-
served between optimizations. IDE 265 can further include
a window 370 to display source code generated in response
to events from MyApp 230. In an embodiment, IDE 265 can
also include a window 375 that displays user interface
events generated by MyApp 230 on test device 110. The user
interface events window 375 can be updated simultaneously
with updated source code in test code window 370.

[0033] FIGS. 3A through 3E illustrate a user interacting
with MyApp 230, entitled “Login.” The login application

May 23, 2019

230 has a name text field 310 for the user to enter his name.
The name text field 310 has a text label “Name:”. In
embodiment, the text label “Name:” can form a part of the
name text field control 310 that receives the user’s name.
Login application 230 also has an OK button 315 that the
user can click when he finishes entering his name.

[0034] In FIG. 3A, the login application 230 has been
compiled, built, installed, and is running on test device 110.
The user of the IDE 265 has enabled recording. The user of
the IDE 265 has also opened or created a file in window 370
“Login—Test Code” to display test source code generated
from events generated by login application 230 on test
device 110. In addition the user has opened a window 375
to see a log of events received from login application 230 on
test device 110. In FIG. 3 A, test code window 370 and event
window 375 indicate that no events have been received from
Login application 230 and no test source code has been
generated yet in test code window 370.

[0035] In FIG. 3B, a user of test device 110 has clicked
inside the name text field 310. Login application 230 gen-
erates a click event for the name text field 310, generating
a hardware event that is received by operating system/kernel
210. Event manager daemon 220 can receive and process the
event from operating system/kernel 210. Event tap 225 can
receive the click event from event manager daemon 220 and
pass the click event to test manager daemon 215. Test
manager daemon 215 can then take a snapshot of the user
interface elements of login application 230 and pass the
snapshot and event to IDE application 265 on development
device 120. IDE 265 can receive the snapshot and click
event and display the click event in the event window 375
for the login application 230. IDE 265 can also use the event
and snapshot of the user interface elements of login appli-
cation 230 to generate and display source code correspond-
ing to the click event for display in test code window 370.
Event tap In FIG. 3B, IDE 265 generates source code
corresponding to the name text field click event.

[0036] InFIG. 3C, a user has begun typing his name in the
name text field 310. First, the user types “M,” generating a
TypeText(“M”) event in the events window 375 of the IDE
265 on development device 120, generating hardware events
that are received by operating system/kernel 210. The events
are then processed by event manager daemon 220. Event tap
225 can receive the TypeText(“M”) event from event man-
ager daemon 220 and pass the TypeText(“M”) event to test
manager daemon 215. Test manager daemon 215 can take a
snapshot of the user interface elements of login application
230 and pass the snapshot and TypeText(“M”) event to IDE
265 on development device 120. Event tap 225 can pass the
TypeText(“M”) event to login application 230 on test device
110. Similarly, the user can continue typing his name with an
“a,” which generates a TypeText(*“a”) event. Assuming that
the user’s name is, “Mike,” the user may then type a
backspace or delete key to delete the “a” to correct the
mistake in typing his name. Event manager daemon 220 can
send the TypeText events to event tap 225 that in turn, sends
the TypeText events to test manager daemon 215 on test
device 110. Test manager daemon 215 can snapshot the user
interface of login application 230 and send the snapshots and
TypeText events to the IDE 265. IDE 265 can display the
TypeText events in the events window 375. Event tap 225
can also send the TypeText events to login application 230.
The IDE 265 can synthesize the TypeText events such that
the generated source code does not include the erroneously

US 2019/0155581 Al

typed “a” or the corrective “backspace.” The IDE 265 can
optimize the generated source code for the least number of
identifiers, the shortest length of identifiers, and/or fewest
lines of generated source code. As shown in FIG. 3C, source
code window 370, a variable has been generated
NameField=XCUIApplication.TextFields[“Name”] to sim-
plify the multiple references to the name text field 310. The
source code is then simplified by using the NameField
variable to reference the Click and TypeText(“M”) events.

[0037] In FIG. 3D, the user has completed typing his
name, “Mike,” in text name field 310 on test device 110.
TypeText events for each letter, “i,” “k,” and “e,” can be
generated in the events window 375. The TypeText events
can be synthesized, and optimized source code can be
generated for the TypeText events in the single source code
line, NameField. TypeText(“Mike”).

[0038] In FIG. 3E, the user has clicked the Ok button 315
to complete the login process of the login application 230,
thereby generating a hardware event that is received by
operating systenvkernel 210 and passed to event manager
daemon 220 for processing. Event manger daemon 220 can
process the event using one or more calls to operation
system functions, APIs, frameworks, daemons, or other
processes. The Ok button click event is received from event
manager daemon 220 by event tap 225 and passed to test
manager daemon 215. Test manager daemon 215 can take a
snapshot of the user interface of the login application 230
and pass the snapshot and Ok button click event to IDE 265.
Event tap 225 can pass the Ok button click event to login
application 230.

[0039] FIG. 4 illustrates a method 400 of building, install-
ing and running an application 230 for test on a test device
110, according to some embodiments.

[0040] In operation 405, a user of IDE 265 on develop-
ment device 120 can open or create a file to receive test
source code that is generated from events and snapshots of
user interface elements of application MyApp 230 running
on test device 110 (also referred to as login application 230
in FIGS. 3A-3E).

[0041] In operation 410, the user of IDE 265 selects
recording mode to record events received from MyApp 230
on test device 110.

[0042] In operation 415, the user of the IDE 265 selects
build, install, and run of the login application 230 and
libraries 270 on test device 110.

[0043] In operation 420, on test device 110, event tap 225
and test manager daemon 215 can be installed between login
application 230 and event manager daemon 220.

[0044] In operation 425, recording mode can be selected
on IDE 265 on development device 120. Login application
230 on test device 110 enters recording mode. In recording
mode, a hardware event is received by operation system/
kernel 210 and passed to event manager 220 for processing.
Event manager daemon 220 may call one or more APIs,
system calls, daemons, processes, frameworks, or functions
that process the event, then pass the event and process
results to login application 230. Event manager daemon then
passes the event to event tap 225. Event tap 225 can call test
manager daemon 215 with the event. In response to the call
from event tap 225, or otherwise receiving the event from
event tap 225, test manager daemon 215 can take a snapshot
of the user interface elements of login application 230. Test
manager daemon 215 then packages the snapshot and event

May 23, 2019

and passes the package to IDE 265 on development device
120. Event tap 225 then releases the event to login appli-
cation 230.

[0045] FIG. 5 illustrates a method 500 of automatically
generating optimized test source code based on user inter-
face snapshots and events received from the application 230
on the test device 110, according to some embodiments.
[0046] In operation 400, the IDE on development device
120 builds, installs and runs application 230 on test device
110. Operation 400 is described in detail with reference to
FIG. 4, above.

[0047] Inoperation 505, a user of test device 110 interacts
with the application 230 thereby generating a hardware
event that is received by operating system/kernel 210 and
passed to event manager daemon 220 for processing
[0048] In operation 510, event tap 225 intercepts the event
from the event manager daemon 220 and calls test manager
daemon 215 with the event.

[0049] In operation 515, test manager daemon 215 takes a
snapshot of user interface elements of the application 230.
[0050] In operation 520, event tap 225 allows the appli-
cation 230 to receive the event my passing the event to event
manager daemon 220.

[0051] In operation 525, it can be determined whether the
user interface action is completed. For example, a user
interface action may require multiple keystrokes, gestures,
touch screen actions, or combination of these before the
action is deemed completed. If in operation 525 it is deter-
mined that the user interface action is not complete, then
method 500 resumes at operation 505. Otherwise method
500 continues at operation 530.

[0052] In operation 530, test manager daemon 215 pack-
ages the snapshot of user interface elements taken in opera-
tion 515 with the event generated in operation 505 and
passes the package to IDE 265 on development device 120.
[0053] Inoperation 600, IDE 265 optimizes and emits test
source code for display in test code window 370 of IDE 265.
Operation 600 is described in more detail, below, with
reference to FIG. 6.

[0054] In operation 540, it is determined whether record-
ing of events should continue. If so, then method 500
resumes at operation 505. Otherwise method 500 ends.
[0055] FIG. 6 illustrates a method 600 of optimizing test
code generated in a development environment, according to
some embodiments.

[0056] In operation 605, user interface elements are iden-
tified with the user interface snapshot received from test
manager daemon 215 on test device 110.

[0057] In operation 610, events received from test man-
ager daemon 215 can be synthesized into an optimized series
of'events. For example, as described with reference to FIGS.
3C and 3D, above, a series of TypeText events for the user
name “Mike,” containing a correction, can be synthesized
into a single TypeText event: TypeText(“Mike™).

[0058] In operation 615, an element/event tree can be
generated that represents the elements of the user interface
in the received snapshot.

[0059] In operation 620, the element/event tree can be
traversed, generating source code during the traversal. The
source code can be optimized to minimize a number of
identifiers used in the generated source code, minimize a
length of identifiers used in the generated source code,
maximize readability of the generated source code, or mini-
mize the number of lines of generated source code. In an

US 2019/0155581 Al

embodiment, one or more of the above optimizations results
in source code that can execute more efficiently by reducing
a number of calls to an API, framework, operating system/
kernel 210 function, interpreter, library, or other function-
ality. For example, optimizing a sequence of TypeText
events into a single TypeText call, e.g. TypeText(“Mike”),
can result in fewer function calls.

[0060] Inoperation 625, optimized source code is emitted,
replacing the previously generated source code.

[0061] In FIG. 7 (“Software Stack™), an exemplary
embodiment, applications can make calls to Services 1 or 2
using several Service APIs and to Operating System (OS)
using several OS APIs. Services 1 and 2 can make calls to
OS using several OS APIs.

[0062] Note that the Service 2 has two APIs, one of which
(Service 2 API 1) receives calls from and returns values to
Application 1 and the other (Service 2 API 2) receives calls
from and returns values to Application 2, Service 1 (which
can be, for example, a software library) makes calls to and
receives returned values from OS API 1, and Service 2
(which can be, for example, a software library) makes calls
to and receives returned values from both as API 1 and OS
API 2, Application 2 makes calls to and receives returned
values from as API 2.

[0063] FIG. 8 is a block diagram of one embodiment of a
computing system 800. The computing system illustrated in
FIG. 8 is intended to represent a range of computing systems
(either wired or wireless) including, for example, desktop
computer systems, laptop computer systems, tablet com-
puter systems, cellular telephones, personal digital assistants
(PDAs) including cellular-enabled PDAs, set top boxes,
entertainment systems or other consumer electronic devices.
Alternative computing systems may include more, fewer
and/or different components. The computing system of FIG.
8 may be used to provide the computing device and/or the
server device.

[0064] Computing system 800 includes bus 805 or other
communication device to communicate information, and
processor 810 coupled to bus 805 that may process infor-
mation.

[0065] While computing system 800 is illustrated with a
single processor, computing system 800 may include mul-
tiple processors and/or co-processors 810. Computing sys-
tem 800 further may include random access memory (RAM)
or other dynamic storage device 820 (referred to as main
memory), coupled to bus 805 and may store information and
instructions that may be executed by processor(s) 810. Main
memory 820 may also be used to store temporary variables
or other intermediate information during execution of
instructions by processor 810.

[0066] Computing system 800 may also include read only
memory (ROM) and/or other static storage device 840
coupled to bus 805 that may store static information and
instructions for processor(s) 810. Data storage device 840
may be coupled to bus 805 to store information and instruc-
tions. Data storage device 840 such as flash memory or a
magnetic disk or optical disc and corresponding drive may
be coupled to computing system 800.

[0067] Computing system 800 may also be coupled via
bus 805 to display device 850, such as a cathode ray tube
(CRT) or liquid crystal display (LCD), to display informa-
tion to a user. Computing system 800 can also include an
alphanumeric input device 860, including alphanumeric and
other keys, which may be coupled to bus 805 to communi-

May 23, 2019

cate information and command selections to processor(s)
810. Another type of user input device is cursor control 870,
such as a touchpad, a mouse, a trackball, or cursor direction
keys to communicate direction information and command
selections to processor(s) 810 and to control cursor move-
ment on display 850. Computing system 800 may also
receive user input from a remote device that is communi-
catively coupled to computing system 800 via one or more
network interfaces 880.
[0068] Computing system 800 further may include one or
more network interface(s) 880 to provide access to a net-
work, such as a local area network. Network interface(s) 880
may include, for example, a wireless network interface
having antenna 885, which may represent one or more
antenna(e). Computing system 800 can include multiple
wireless network interfaces such as a combination of WiFi,
Bluetooth® and cellular telephony interfaces. Network
interface(s) 880 may also include, for example, a wired
network interface to communicate with remote devices via
network cable 887, which may be, for example, an Ethernet
cable, a coaxial cable, a fiber optic cable, a serial cable, or
a parallel cable.
[0069] In one embodiment, network interface(s) 880 may
provide access to a local area network, for example, by
conforming to IEEE 802.11 b and/or IEEE 802.11 g stan-
dards, and/or the wireless network interface may provide
access to a personal area network, for example, by conform-
ing to Bluetooth standards. Other wireless network inter-
faces and/or protocols can also be supported. In addition to,
or instead of, communication via wireless LAN standards,
network interface(s) 880 may provide wireless communica-
tions using, for example, Time Division, Multiple Access
(TDMA) protocols, Global System for Mobile Communi-
cations (GSM) protocols, Code Division, Multiple Access
(CDMA) protocols, and/or any other type of wireless com-
munications protocol.
[0070] In the foregoing specification, the invention has
been described with reference to specific embodiments
thereof. It will, however, be evident that various modifica-
tions and changes can be made thereto without departing
from the broader spirit and scope of the invention. The
specification and drawings are, accordingly, to be regarded
in an illustrative rather than a restrictive sense.
What is claimed is:
1. A computer-implemented method, comprising:
receiving, by a development system, a first event gener-
ated by user interaction with an application;
generating and causing display of first source code that
corresponds to the first event;
receiving, by the development system, a second event
generated by user interaction with the application;
generating second source code that is optimized based on
both the first and second events; and
causing display of the optimized second source code to be
displayed in place of the first source code.
2. The method of claim 1, further comprising:
receiving, by the development system, a snapshot of a first
state of user interface elements of the application, the
first state including the first event, wherein generating
first source code is further based on the snapshot of the
first state of the user interface;
receiving, by the development system, a snapshot of a
second state of user interface elements of the applica-
tion, the second state including the second event; and

US 2019/0155581 Al

wherein generating second source is further based on
the second snapshot of the user interface elements.

3. The method of claim 1, wherein optimizing source code
based on both the first and second events includes at least
one of:

minimizing the number of identifiers used in the source

code;

minimizing the length of at least one identifier used in the

source code;

minimizing a number of calls to an API, framework, or

operating system function; or

minimizing the number of lines of source code generated.

4. The method of claim 1, wherein optimizing source code
based on both the first and second events includes consoli-
dating events.

5. The method of claim 4, wherein consolidating events
comprises excluding one or more of the first or second
events.

6. The method of claim 5, wherein excluding one or more
of'the first or second events comprises excluding a TypeText
event that comprises a backspace or delete key, and exclud-
ing the TypeText event that immediately preceded the Type-
Text event comprising the backspace or delete key.

7. The method of claim 4, wherein consolidating events
comprises combining a sequence of one or more TypeText
events into a single TypeText event comprising the text of
each of the one or more TypeText events.

8. A non-transitory computer readable medium pro-
grammed with instructions that, when executed by a pro-
cessing system, perform operations, comprising:

receiving, by a development system, a first event gener-

ated by user interaction with an application;
generating and causing display of first source code that
corresponds to the first event;

receiving, by the development system, a second event

generated by user interaction with the application;
generating second source code that is optimized based on
both the first and second events; and

causing display of the optimized second source code to be

displayed in place of the first source code.

9. The medium of claim 8, the operations further com-
prising:

receiving, by the development system, a snapshot of a first

state of user interface elements of the application, the
first state including the first event, wherein generating
first source code is further based on the snapshot of the
first state of the user interface;

receiving, by the development system, a snapshot of a

second state of user interface elements of the applica-
tion, the second state including the second event; and
wherein generating second source is further based on
the second snapshot of the user interface elements.

10. The medium of claim 8, wherein optimizing source
code based on both the first and second events includes at
least one of:

minimizing the number of identifiers used in the source

code;

minimizing the length of at least one identifier used in the

source code;

minimizing a number of calls to an API, framework, or

operating system function; or

minimizing the number of lines of source code generated.

May 23, 2019

11. The medium of claim 8, wherein optimizing source
code based on both the first and second events includes
consolidating events.

12. The medium of claim 11, wherein consolidating
events comprises excluding one or more of the first or
second events.

13. The medium of claim 12, wherein excluding one or
more of the first or second events comprises excluding a
TypeText event that comprises a backspace or delete key,
and excluding the TypeText event that immediately pre-
ceded the TypeText event comprising the backspace or
delete key.

14. The medium of claim 11, wherein consolidating
events comprises combining a sequence of one or more
TypeText events into a single TypeText event comprising the
text of each of the one or more TypeText events.

15. A system comprising:

a processing system coupled to a memory programmed
with executable instructions that, when executed by the
processing system perform operations, comprising:

receiving, by a development system, a first event gener-
ated by user interaction with an application;

generating and causing display first source code that
corresponds to the first event;

receiving, by the development system, a second event
generated by user interaction with the application;

generating second source code that is optimized based on
both the first and second events; and

causing display of the optimized second source code to be
displayed in place of the first source code.

16. The system of claim 15, the operations further com-

prising:

receiving, by the development system, a snapshot of a first
state of user interface elements of the application, the
first state including the first event, wherein generating
first source code is further based on the snapshot of the
first state of the user interface;

receiving, by the development system, a snapshot of a
second state of user interface elements of the applica-
tion, the second state including the second event; and
wherein generating second source is further based on
the second snapshot of the user interface elements.

17. The system of claim 15, wherein optimizing source
code based on both the first and second events includes at
least one of:

minimizing the number of identifiers used in the source
code;

minimizing the length of at least one identifier used in the
source code;

minimizing a number of calls to an API, framework, or
operating system function; or

minimizing the number of lines of source code generated.

18. The system of claim 15, wherein optimizing source
code based on both the first and second events includes
consolidating events.

19. The system of claim 18, wherein consolidating events
comprises excluding one or more of the first or second
events.

20. The system of claim 19, wherein excluding one or
more of the first or second events comprises excluding a
TypeText event that comprises a backspace or delete key,
and excluding the TypeText event that immediately pre-
ceded the TypeText event comprising the backspace or
delete key.

US 2019/0155581 Al May 23, 2019

21. The system of claim 18, wherein consolidating events
comprises combining a sequence of one or more TypeText
events into a single TypeText event comprising the text of
each of the one or more TypeText events.

#* #* #* #* #*

